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ABSTRACT

Improving patient experience at hospitals leads to better health outcomes. To improve

this, we must first understand and interpret patients’ written feedback. Patient-generated

texts such as patient reviews found on RateMD, or online health forums found onWebMD are

venues where patients post about their experiences. Due to the massive amounts of patient-

generated texts that exist online, an automated approach to identifying the topics from

patient experience taxonomy is the only realistic option to analyze these texts. However,

not only is there a lack of annotated taxonomy on these media, but also word usage is

colloquial, making it challenging to apply standardized NLP technique to identify the topics

that are present in the patient-generated texts. Furthermore, patients may describe multiple

topics in the patient-generated texts which drastically increases the complexity of the task.

In this thesis, we address the challenges in comprehensively and automatically understand-

ing the patient experience from patient-generated texts. We first built a set of rich semantic

features to represent the corpus which helps capture meanings that may not typically be

captured by the bag-of-words (BOW) model. Unlike the BOW model, semantic feature

representation captures the context and in-depth meaning behind each word in the corpus.

To the best of our knowledge, no existing work in understanding patient experience from

patient-generated texts delves into which semantic features help capture the characteristics

of the corpus. Furthermore, patients generally talk about multiple topics when they write

in patient-generated texts, and these are frequently interdependent of each other. There are

two types of topic interdependencies, those that are semantically similar, and those that are

not. We built a constraint-based deep neural network classifier to capture the two types

of topic interdependencies and empirically show the classification performance improvement

over the baseline approaches.

Past research has also indicated that patient experiences di↵er depending on patient seg-

ments [1–4]. The segments can be based on demographics, for instance, by race, gender, or

geographical location. Similarly, the segments can be based on health status, for example,

whether or not the patient is taking medication, whether or not the patient has a particular

disease, or whether or not the patient is readmitted to the hospital. To better understand

patient experiences, we built an automated approach to identify patient segments with a fo-

cus on whether the person has stopped taking the medication or not. The technique used to

identify the patient segment is general enough that we envision the approach to be applicable

to other types of patient segments.
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With a comprehensive understanding of patient experiences, we envision an application

system where clinicians can directly read the most relevant patient-generated texts that

pertain to their interest. The system can capture topics from patient experience taxonomy

that is of interest to each clinician or designated expert, and we believe the system is one of

many approaches that can ultimately help improve the patient experience.
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CHAPTER 1: INTRODUCTION

1.1 PATIENT EXPERIENCE AND HEALTH OUTCOME

Improving patient experience at hospitals leads to better health outcomes [5–7]. Patient

experience and health outcomes were once commonly thought to be separate issues, and

practitioners believed that improving one aspect of the hospital experience did not influ-

ence the other. Perhaps because of these reasons, many physicians and researchers did not

investigate ways to improve the patient experience.

According to a meta-study consisting 21 academic articles, however, there are correlations

between positive patient experience and desirable health outcomes [8]. The study focused,

in particular, on the link between the health outcomes and e↵ective communication between

the doctors and the patients. Examples of e↵ective communications are providing a more

a�rmative statement (‘You will be better in the next few days,’ over ‘I am not sure if

you will be better in the next few days’), or providing better information which leads to

better health outcomes. Furthermore, an agreement between the patient and the physician

about the nature of the problem, a by-product of e↵ective communication, bodes well for a

successful treatment outcome. Ultimately, the researchers found that out of all the articles

analyzed, 16 of these showed that e↵ective communication between physicians and patients

improved health outcomes, 4 showed adverse outcomes, and one showed no di↵erence.

Many later studies replicated the relationship between patient experience and health out-

comes. Street et al. [7, 9] suggests good communication between patient and clinicians lead

to better health outcomes not only because of the therapeutic nature of the conversation,

but also because of improved patient understanding, trust, and clinician-patient agreement.

Furthermore, this allows patients to talk more openly about their pain and other health

concerns. Another meta study [6] of 55 research articles found positive associations between

patient experience, patient safety, and clinical e↵ectiveness. They suggest that patients with

a better hospital experience are more likely to be vigilant in tracking their health.

In all of these studies, positive patient experience is often linked with better health out-

comes and vice versa. We believe that for patients to have positive hospital experiences,

we must first understand their experience. Patient-generated texts are one means through

which patients describe their experience. Patient-generated texts refer to those that patients

author after a medical event such as taking medication, visiting a doctor’s o�ce, or chang-

ing their health status (such as, catching a cold, or stop taking medication). Generally,

patient-generated texts can be found online on websites such as RateMD (www.ratemd.com)
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or WebMD (www.webmd.com) in the form of patient reviews or online health forums. Pa-

tients may ask or respond to questions or share their experience on a wide range of topics

in these venues.

Patient-generated texts, in particular, were previously utilized in gathering information

from patients on such topics as those regarding prescription drugs, epidemiology or sick-

ness [10–19]. However, there are limited number of works that seek to comprehensively and

automatically understand patient experience in these venues. In this thesis, we propose a

comprehensive and automated approach to understanding patient experience from pa-

tient generated texts.

1.2 IMPORTANCE OF COMPREHENSIVELY UNDERSTANDING PATIENT
EXPERIENCE FROM PATIENT GENERATED TEXTS

We gain a comprehensive understanding of the patient experience by analyzing a wide

range of topics on which patients post regarding their experience. Comprehensive under-

standing of the patient experience refers to representing what the patients post, and who

authors these type of posts. Characterizing what topics patients write about is relevant

because it allows us to identify di↵erent topics present from patient experience taxonomy.

In the literature, the practice and science of characterizing concepts, including the principles

that underlie such classification is called taxonomy. Without a taxonomy to identify the

topics that patients mention, we cannot characterize patient-generated texts, since there is

no systematic way to represent what they have written. Furthermore, the taxonomy should

cover most, if not all, of the topics patients write about in patient-generated texts. A typical

comprehensive patient experience taxonomy covers dozens of topics [20–23]. Only then, can

we understand what patients write regarding their experiences in patient-generated texts.

The second instance, understanding who posts these types of texts, pertains to identifying

patient segments. We define patient segments as a group of patients who share similar traits

such as their health status, or medications that they are taking. In an in-depth analysis of

patient satisfaction data from Veterans Health Administration (VHA) [24], researchers found

that age, health status, and race consistently had a statistically significant e↵ect on satis-

faction scores. Of these, health status is determined by whether the patient was readmitted

to the hospital, had an adverse drug reaction, or had a particular illness [1–4]. Researchers

should also consider patients’ segments which allow us to deepen our understanding of who

expresses what topics in patients’ experiences.

However, comprehensiveness is not enough to properly understand the patient experience

from patient-generated texts. There are dozens of websites such as RateMD, and WebMD
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where patients can write about their experiences. Each of these has millions of patient-

generated texts, so manually labeling them is infeasible. To properly understand this massive

amount of texts, we need an automated way to annotate these texts comprehensively.

1.3 CHALLENGES IN AUTOMATED EXTRACTION OF COMPREHENSIVE
PATIENT EXPERIENCE

Past works in understanding patient experience have focused on only one of the two

aspects: they were either comprehensive but not automated, or automated but not compre-

hensive. Lopez et al [20], Doyle et al [21], Jung et al [22], and Emmert et al [23] for instance,

proposed a comprehensive patient experience taxonomy covering dozens of topics. Their

research, however, was not automatic and required manual annotations. On the opposite

end of the spectrum, Doing-Harris et al [25] proposed an automated approach to identify-

ing di↵erent topics in patient experience. However, they only covered seven topics in their

analysis, and hence, it is not comprehensive. Unsupervised methods, such as those used by

Ranard et al [26] and Wallace et al [27] are highly automatic and require minimal training

data. However, these methods are not comprehensive because unsupervised methods, by

definition, do not have a structured taxonomy that the topics fall into. We believe that part

of the reason why researchers do not approach the problem both automatically and compre-

hensively is because it is a challenging task. Identifying patient experiences automatically

and comprehensively from patient generated texts is di�cult for four reasons.

First, annotating patient-generated texts with comprehensive list of topics related to pa-

tient experience is a challenging task. With recent development in machine-learning liter-

ature, popular supervised learning approaches such as Logistic Regression, Support Vector

Machines and Deep Neural Network frameworks have gained traction in automatically clas-

sifying a target dataset. However, to utilize these methods, we must first obtain a labeled

dataset. In the absence of one, as was the case in our problem domain, researchers must

then manually annotate the dataset with the corresponding labels. The annotated dataset

should have a relatively high inter-annotator agreement, a key metric in ensuring the quality

of the annotation. However, as the number of labels increases, the more di�cult it becomes

to achieve high agreement. In a comprehensive patient experience taxonomy, there is a large

number of topics. Hence a high-quality annotation process becomes complicated.

Second, capturing both the shallow and syntactic (e.g., those represented by unigram,

or dependency parses), and the deep semantic representation of patient-generated texts is

a di�cult task. Patient-generated texts encode a wide variety of information useful for

hospital decision making [28]. However, processing and analyzing these texts brings a series
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of challenges [25, 29–32] stemming both from how patients write (form, style, grammar,

language, etc.) as well as from what they write (the content itself). Unlike other free-form

text, in their vast majority, patient comments are short, relatively concise and written with

no context. While previous research does well in analyzing long pieces of text, it generally

disregards short and vague comments [20, 33]. Furthermore, patient comments abound in

shortenings and abbreviations defined by the patients themselves rather than determined

consistently by the medical field. What further complicates the task is that their language

is informal, with many stylistics (i.e., ‘lol’, ‘wtf’) and figurative terms (sarcasm, metaphors,

etc.). All these issues pose a significant challenge for text-processing tools.

Furthermore, automatically identifying topics in patient experience from patient-generated

texts is a di�cult task. When a patient writes about their experience, he or she has a specific

list of topics that he or she would like to express. The patient may decide to talk about a

single topic or multiple topics. In automatically understanding patient experience, the model

should consider whether patients generally talk about a single topic, or if they talk about

multiple topics. Furthermore, if a patient talks about multiple topics, some of the topics may

naturally co-occur. We define the tendency for two topics to co-occur in a given corpus as

topic inter-dependency. However, capturing topic inter-dependency is a di�cult task. There

are exponentially many combinations on how labels can correlate, making understanding

how the topics co-occur an intractable task.

Fourth, inferring patient segments is a di�cult task. While some websites allow patients to

declare their segments, for instance, gender, geographical locations, or their health status in

their user profile, many others opt not to do so in fear of potential privacy issues. However,

the lack of publicly available patient profiles poses di�culty in inferring their segments,

dampening the possibility of comprehensively understanding patient experience.

1.4 CONTRIBUTIONS

To automatically and comprehensively understand patient experience, we are faced with

four separate challenges: high-quality data annotation, feature representation, topic repre-

sentation, and patient segment representation. In this thesis, we present our contributions

to tackle the four separate challenges. With a comprehensive and automated approach to

understanding patient experience in place, we explore how this can be applied in a real-world

application domain, which is our fifth contribution. We make the following contributions:

Contribution 1.1. We utilized a state of the art patient experience taxonomy to

classify topics from the taxonomy on patient-generated texts.
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In collaboration with researchers at DePaul University, we built a classifier to an auto-

matically annotate topics from patient experience taxonomy on patient-generated texts. In

order to realize this goal, annotated dataset with topics from patient experience is neces-

sary. The researchers at DePaul University first proposed a new patient experience taxonomy

motivated by Healthcare Providers and Systems (HCAHPS), a survey which is a patient ex-

perience questionnaire already being used by hospitals [34], Lopez et al [20, 35], and Doyle

et al [21].

Next, our collaborators at DePaul University annotated patient-generated text based on

their proposed taxonomy. The annotators from DePaul University went through a multi-

step process to annotate comprehensive and high-quality patient experience taxonomy an-

notations in patient reviews. We calculated the inter-annotator agreement and using this

agreement as a guidance, the collaborators refined the definition of each topic in patient

experience taxonomy on each iteration of the annotation process.

With the new annotation in place, we were able to train our models on the new corpus.

We discuss the annotation process in more detail, because it is an integral part of the dataset

that we use in this thesis in Chapter 3.

Contribution 1.2. We utilized a comprehensive patient experience taxonomy

built by the collaborators at DePaul university to develop a classifier which was

trained on rich semantic feature representation of the corpus that we identified

for patient-generated texts.

Researchers, in understanding patient experience from patient generated texts, typically

represent the corpus with a bag-of-words (BOW) model [25–27]. The BOWmodel treats each

word in a document as a set of words, disregarding grammar, and word order. Furthermore,

the BOW model ignores context of the words, and is incapable of capturing which words may

be semantically similar. As an example: two sentences, ‘I want to express my gratitude to my

doctor,’ and ‘I want to express my appreciation to my doctor ’ both capture similar meaning,

but a BOW-based classifier will not recognize the resemblance. By capturing the semantic

representation of ‘gratitude’ and ‘appreciation,’ the classifier can capture the similarity.

To the best of our knowledge, our work is the first in utilizing semantic representation

of patient generated texts to classify topics in patient experience taxonomy. We utilized

and adapted semantic tools such as WordNet [36], and latent embedding space [37–39] with

the aim of capturing complex word usage present in the RateMD corpus. Our classifier

was trained on the annotated RateMD dataset that our collaborators at DePaul University

annotated with topics from patient experience taxonomy. The in-depth discussion of this

contribution is in Chapter 4.
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Contribution 1.3. We trained a comprehensive patient experience taxonomy

classifier by incorporating label inter-dependencies.

Existing works in understanding patient-generated texts focus on how topics are discussed

in the corpus as a whole, for example, by analyzing which unigram features are prominent

for a given topic [11, 25]. Topic analysis is conducted on a wide range of areas such as

those in understanding patient experience [13–15,20,25], health status [16–19,40], and drug

usage [10–12]. However, such an analysis of topics does not capture how the two topics may

be related to each other. Consider the following example:

“His sta↵ are VERY rude on the phone and in person. You have to wait at least a month

to get in to see him”

In traditional approaches, three topics, ‘Professionalism,’ ‘Friendliness,’ and ‘Appointment

Access’ are captured in this snippet. However, these approaches do not capture, in their

model representation, whether ‘Friendliness’ and ‘Appointment Access,’ for example, are

interdependent or not. They assume that each of the topic is independent of each other,

i.e., they presume topics follow binary relevance model [41]. We explore whether binary

relevance assumption holds or not, which, to the best of our knowledge, is the first to do

so in classifying topics in patient experience taxonomy. We built a constraint-based deep

neural network model based on two di↵erent assumptions to capture inter-dependencies.

The first assumption captures how topics that are semantically similar to each other tend

to be interdependent with each other. As an example, if a patient expresses that the doctor

is friendly, then the patient is likely to think the doctor is professional as well, The second

assumption measures how the two semantically di↵erent groups may be interdependent with

each other. From the above snippet, it is possible that professionalism and appointment

access are interdependent, despite the fact they are not semantically similar. We discuss

how we capture topic inter-dependencies in Chapter 5.

Contribution 1.4. We trained an automated patient segment classifier.

To comprehensively represent topics from patient experience taxonomy, we also need to

identify who posts about the experience. Patients’ experiences di↵er depending on the pa-

tient segment that the patient is in. Because the number of patient segments is potentially

infinite (as an example, there are thousands of di↵erent health ailments, or medications that

they may be taking) we instead focus on a single type of patient segment to demonstrate

that it is possible to capture patient segments. We, in particular, focus on whether a patient

has stopped taking medication or not. This is an important segment where the patients may

have a vastly di↵erent experience depending on their drug usage [1–4]. We implemented rich
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semantic features to represent di↵erent patient segments which we believe can be applied to

extracting other patient segments as well. To the best of our knowledge, none of the pre-

vious works specifically focused on automatically segmenting patients to better understand

the patient experience. We discuss this contribution in Chapter 6.

Contribution 1.5. We propose an automated recommender system which iden-

tifies patient-generated texts that contains the topics that physicians may be

interested in.

With a comprehensive and automated patient experience classifier that can annotate

patient-generated texts, what are some of its applications? One application is in better

facilitating communication between patients and hospital sta↵ members. In patient review

websites, patients express their gratitude or frustrations regarding their hospital visits. In

each of the reviews, there are a diverse set of topics mirroring those in patient experience tax-

onomy. Reading through these reviews, addressing concerns that patients have, and passing

on gratitude that they had will help improve patient experience in the future.

However, reading through the reviews can be a daunting task. There are over a dozen

patient review websites such as RateMD or WebMD, and at least as many online health

forums which makes it unrealistic for all of the sta↵ members to sit down and read through

all the reviews and posts that are written about the hospital. Hospital sta↵ members are

known to be extremely busy, and it would be helpful to receive updates on what patients

talked about on the topics that they are interested in. For example, doctors themselves

may not be interested in how the financing works, whereas the administrative sta↵ would be

interested in learning more about what patients say about these topics. On the other hand,

if the doctor sees that patients complain a lot about friendliness, he or she can then focus

his or her e↵ort in being more cordial. What we see here is that di↵erent sta↵ members

are interested in di↵erent topics. Hence, a method that can route posts that are of interest

to a given sta↵ member will help save time, especially if they are interested in reading

patient reviews. Our proposed recommender system learns which topics the corresponding

sta↵ member, or expert is interested in. It also assigns one expert per patient-generated

text, which ensures each sta↵ members are shown a di↵erent set of posts. We discuss

our contribution on how to build a recommender system that can utilize topics in patient

experience in Chapter 7.

1.5 THESIS ORGANIZATION

The rest of this thesis is organized as follows:
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• Chapter 2 provides an overview of relevant techniques and prior works in understanding

patient experience from patient-generated texts. We explore related works with a focus

on patient experience, patient segments, and applications in patient-generated texts.

• Chapter 3 details the dataset that we used to conduct our experiment on patient-

generated texts.

• Chapter 4 shows the justifications and descriptions of each semantic features of the

patient-generated texts, and is our first and second contribution of this thesis. We

show how the representation improves our understanding of patients’ experience by

empirical experiments we have conducted. Furthermore, we explore semantic insights

we gained on each topic.

• Chapter 5 details how the topic-dependencies can be modeled and corresponds to our

third contribution of this thesis. We explore two di↵erent hypotheses in modeling topic-

dependencies, showing that the two assumptions enable a richer topic representation

in patient-generated texts.

• Chapter 6 describes how patient segments can be identified from patient-generated

texts. This chapter corresponds to our fourth contribution. We explore and evaluate

the semantic representation of the two patient segments with which we experimented.

• Chapter 7 explores a patient-generated text routing system for clinicians which is our

fifth contribution of this thesis. We describe how we ensure the routed texts are of

interest to clinicians, and to help them save time with one expert per post constraint.

We then empirically show the performance results.

• Chapter 8 summarizes our findings and explores future research directions to gain a

comprehensive understanding of patient experience.
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CHAPTER 2: RELATED WORKS

We discuss past works as to how researchers collected and analyzed patient experience

feedback.

2.1 COLLECTING PATIENT EXPERIENCE FEEDBACK

Identifying the relationship between patient experience and health outcome is possible

because of the thorough data collection process. There have traditionally been two di↵erent

approaches to gathering this information, one by utilizing the HCAHPS survey, and another

by analyzing surveys sent by hospitals. HCAHPS survey is a formalized questionnaire that

asks patients to answer multiple-choice questions in order to gauge their experience at a

given hospital. Private hospital surveys, on the other hand, often act as addendums to

existing HCAHPS surveys to solicit aspects of patient experience that the HCAHPS do not

cover. In the past decade, online media – in particular, customer review or patient review

websites, have arisen as an alternative method of collecting patient experience. We describe

each di↵erent approach in this section.

2.1.1 HCAHPS

According to Manary et al. [42], when designed and administered appropriately, patient-

experience surveys provide invaluable insight into the quality of the care. Furthermore, to

eliminate confounders and alternative explanations, researchers should take into considera-

tion the interactions and aspects of the quality of care to properly analyze outcome mea-

surements as opposed to treating patient satisfaction as an overall rating that care providers

should maximize.

The United States government has instituted a standardized survey, called HCAHPS, to

measure patients’ outcomes after examining past studies which indicated the importance of

collecting patient experience. The HCAHPS survey was a culmination of di↵erent studies;

it showed that patient satisfaction had decreased over time, indicating that we should be

measuring patient health dating back many decades. HCAHPS has since seen broad adoption

across the United States.

HCAHPS has been widely successful in that it replaced the old survey that measured

patient experience [34]. Furthermore, 30% of incentive funds, estimated at $850 million, is

based on how patients rate their hospital experience on the Hospital Consumer Assessment
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of Healthcare Providers and Systems (HCAHPS) patient satisfaction survey.

The survey asks discharged patients 27 standardized questions about their hospital stays.

Of these, 18 core questions pertain to critical aspects of patients’ hospital experiences. The

questions cover a wide range of topics, in numerous verticals such as the hospital environ-

ment, communication between the sta↵ members, and responsiveness of the sta↵ members,

and is designed to cover essential aspects of a patient’s stay at a healthcare institute.

Furthermore, there have been many longitudinal studies on how demographics influence

patient responses. HCAHPS are most frequently utilized to understand overall patient satis-

faction for a given disease or treatment (for instance, cancer, or a surgical procedure) [43,44].

These are not limited to identifying patients’ well-being; some studies focused on the rela-

tionship between nurses’ perception of work and patients’ satisfaction [45]. The survey

collects demographic information to determine the outcome.

The limitation, however, is that these often do not collect free response feedback from

patients. We are not able to further drill down on why patients responded in a particular

direction. Furthermore, these surveys are mandated only to hospitals subject to the Inpa-

tient Prospective Payment System (IPPS) [46], and there is currently no system in place to

measure the satisfaction of outpatients, nor of primary care patients.

2.1.2 Proprietary Hospital Surveys

Due to the limitations of the original HCAHPS, some institutes and researchers propose

utilizing their patient experience surveys. These are used to identify unknown factors that

may influence patient satisfaction, particularly factors that are not covered by HCAHPS.

Some of these include parking facilities, opening hours, cleanliness or privacy settings [47–

49]. Researchers utilize exit surveys to draw these conclusions. The surveys are mailed to

patients’ homes, where they are asked to answer and return responses to the hospital.

Hospital surveys have a high response rate [50, 51], often as high as 70%. Of these,

face-to-face surveys often had a higher response rate (76%) than those collected by mail

(66%). These are fairly high response rates, high enough to indicate general trends. More

concerning, however, is the indication that those who do not respond to surveys are more

likely to have had a negative experience at the hospital [51]. It is beneficial to understand why

patients are dissatisfied to improve hospital experience. Furthermore, these surveys often

have specific questions that physicians have in mind and ask targeted questions towards

patients [47–49,52]. Patients, in return, respond back to these questions, but they may not

mention the reason behind their response. Hospital surveys, while useful in learning specific

aspects of patient experience, may have limitations when it comes to freely expressing patient
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experience.

2.1.3 Online Patient Experience Analysis

A third approach is to utilize an online medium to learn more about patient experience.

Unlike HCAHPS or proprietary hospital surveys, online media is not limited to targeted

questions. Instead, the medium provides a place for patients to express whatever concerns

or problems they encountered during their hospital visits, allowing patients to describe topics

that proprietary hospital surveys and HCAHPS have not covered. Indeed, due to the flexibil-

ity they provide, online media have actively been utilized to conduct a wide array of research

outside of patient experience. Examples include identifying adverse drug events, epidemics,

and analyzing public health policies. We provide a brief overview of the works done online

with regard to health, and delve deeper into the works specific to patient experience.

Health and Online Social Media

Online patient reviews or online forums allow patients to talk about their experiences

and can be viewed as a supplement to both HCAHPS and hospital surveys [26]. Indeed,

some researchers indicate that online reviews provide a rich source of data that may be used

to track the quality of care [53], though special care is required to be done to correct for

cohort size. These sources are useful because the dataset is generally publicly available and

patients are not motivated to be overly positive or negative. Furthermore, culling patient

discourses online is useful because these provide insight into concerns that patients may not

have mentioned to their primary doctors. As an extreme example, some patients lie to avoid

negative consequences, to achieve secondary gain (e.g., to obtain medication or disability

payments), out of embarrassment or shame, or to present themselves in a better light (e.g.,

as dutiful and compliant) [54]. Similarly, they may decide to withhold information due in

part to embarrassment or privacy concerns [55, 56]. With respect to this, researchers have

found that paying attention to patients’ online comments may help uncover topics that the

clinicians or patients may have missed.

To learn more about the topics discussed online, researchers have investigated multiple

ways to tackle this problem – for instance, by topic modeling. Ranard et al [26] used Latent

Dirichlet Allocation (LDA) to discover topics frequently discussed on an online review website

(Yelp). They then mapped these topics to those in the HCAHPS survey and found that the

review website had numerous topics that were analogous to those found in the HCAHPS

survey. They further claim that they discovered topics discussed in the online domain that
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were not covered by the survey. The compassion of the sta↵ was one of these topics; HCAHPS

do not explicitly ask if the hospital sta↵ were empathetic. Another study analyzed what

causes patient satisfaction and sentiment [27]; this survey segments topics into three broad

categories (interpersonal, technical and system) motivated by Lopez et al [20] and run a

variant of LDA in the dataset. They uncover the words indicating patient sentiment most

frequently associated with these categories. Zhang et al [57] on the other hand, investigated

the intent behind posting online, finding that patients frequently post to either find out

how to manage their symptoms, what the cause of the symptoms might be, or if a given

medication can cause side e↵ects. These works, which are essential contributions in helping

us understand patient-generated contents online, did not explicitly build patient experience

taxonomy, unlike our work.

Research was not limited to identifying patient experience in online social media. Under-

standing drug experiences expressed in an online medium is another popular research area.

In understanding drug experience, researchers have focused on adverse drug e↵ects or drug-

addicted patients’ experiences. Identifying adverse drug events from online media [10–12] is

a heavily researched area. The goal is for computer algorithms to detect adverse drug events

even before health researchers identify this as a potential problem. If an unusual pattern is

identified for the drug of interest, this may merit further investigation to see if the medica-

tion does, indeed, have adverse e↵ects that patients have reported. Another line of works

summarize drug usage from social media by modeling how di↵erent demographics use drugs

di↵erently [14, 58]. Some other works focus on experiences of drug addiction [13–15, 59].

This line of work focuses on patients who are addicted to drugs, or how these users utilize

social media to seek help or support. While not direct patient experiences, these sources are

similar in that they are a means by which patients share their experience with regards to

drugs.

Online social media is also used as a signal to identify potential epidemic [16–19] while

other lines of research focus more on pharmacovigilance [60, 61]. These works utilize users’

tendencies to post on social media about discomfort and aggregates these based on geo-

graphical location. In evaluating the validity of these sources, researchers frequently utilize

historical data from the Center for Disease Control.

Patient Review Websites

Online patient review websites are places where patients can describe their hospital ex-

periences, and where these writings are available to be viewed by anyone else who comes

to the website. Patient review sites such as RateMD consist of numeric ratings along with
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free text responses. The website allows outsiders to glean from one particular interaction

with the healthcare institute. Many works utilizing patient reviews focused primarily on

understanding review ratings themselves [62–65] because they not only provide numerical

evaluation of the doctors, but free response texts as well. Some of these works focus on rat-

ing behavior characteristics [62–64,66], while other researchers seem more interested in how

di↵erent patient demographics rate clinicians [65]. Interestingly, patients generally rated

pediatricians, general surgery, and subspecialty surgery the highest, while generalists and

subspecialists had the lowest overall ratings [40]. Perhaps it is not surprising that a lot of

computational models focused on sentiments [27] or predicted physician ratings on online

review websites [67, 68].

A di↵erent line of work strives to better understand the patient experience from these

review websites, arguing that these are a useful supplement to existing HCAHPS and hospital

surveys. According to one study, 57% of reviews mention questions that are covered in

HCAHPS domain [69]. Topics that were not covered in HCAHPS include financing, including

unexpected out of pocket costs and stressful interactions with billing departments; system-

centered care; and perceptions of safety. Because of these characteristics, incorporating

aspects of HCAHPS and other features that are distinct to patient reviews help us better

understand patient experience. To better understand patient experience, we utilize patient

reviews to understand the experiences of patients.

2.2 UNDERSTANDING PATIENT EXPERIENCE FROM PATIENT GENERATED
TEXTS

Computational research in health care traditionally focused on analyzing medical chart

entries and notes made by physicians or discharge summaries written by medical sta↵ with

the goal of discovering relationships among medical concepts, patient diagnosis and treat-

ment [70–72]. More recently, thanks to technological advancements in data acquisition as

well as increased attention to patients, a growing body of patient data has fueled a new wave

of academic research, this time with the goal of investigating patient comments to improve

patient satisfaction and experience [73, 74]. This research, based on a new type of data –

patient feedback, in the form of solicited and unsolicited free-text collected through patient

surveys – has been particularly interesting yet challenging. So far, the research aimed to

discover patients’ complaints through their negative comments [29, 75, 76]. Various models

have been proposed for such analyses, notably content analysis [77,78] and thematic evalua-

tion [30,75,79,80]. With our research, we broaden the scope of the analysis so that we learn

from all types of comments, positive as well as negative.
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Directly related to our research are the works of Licong et al [31], Maramba et al [32],

Elmessiry et al. [81], Doing-Harris et al. [25], Doyle at al. [21], Lopez, et al. [20], Greaves et

al. [82], and Brody et al. [83]. They present di↵erent modeling approaches and all show that

linguistic analysis of textual comments provided by patients and healthcare practitioners

bring new insight to understanding what matters with regard to patient satisfaction and

experience. For example, Lopez, et al. [20] provided a detailed analysis of patient comments

identifying topics such as overall excellence, negative sentiment, and professionalism as well

as specific factors like interpersonal manner, technical competence, and system issues. Doyle,

et al. [21] refined their topic categories to better search for a meta-analysis of patient ex-

perience. We expand on this previous research with our own empirical observations and

propose a revised topic schema (with definitions and examples) which we then use to better

understand patient comments and automatically identify relevant topics.

From a computational perspective, most previous research relied on shallow text repre-

sentations in their empirical investigations. For example, based on a term frequency–inverse

document frequency (tf-idf) analysis of a large number of consumer health questions, Li-

cong et al [31] discovered a set of relevant topics. Similarly, Maramba et al. [32] analyzed

free-text responses from a post-consultation postal survey. They used a patient’s overall

satisfaction rating (Dissatisfied, Satisfied) to label relevant vocabulary terms ranked based

only on simple word counts; e.g. , ‘surgery’, ‘excellent’, ‘service’, ‘good’, ‘helpful’ (for sat-

isfied patients), and ‘doctor’, ‘feel’, ‘appointment’, ‘rude’ (for dissatisfied patients). In our

research, we go beyond simple tf-idf metrics and representations to better identify a larger

number of semantic labels indicative of patient comments supplemented by comment codes

and sentiment, and thus, bring in new insights.

Elmessiry et al., 2016 [81] focus only on patients’ complaints about their doctors relying on

a standard bag of words representation tested on six machine learning classifiers. Similarly,

Greaves et al. [82] used a Näıve Bayes multinomial classifier to classify 6,412 free-text online

comments about hospitals but they also limit their analysis to only three topics – overall

recommendation, cleanliness, and treatment with dignity. In this thesis, we expand previous

research and seek to understand and learn from all patients’ comments, positive, negative,

mixed or neutral. Further, our approach goes beyond bag of words processing to account for

verbal as well as non-verbal context (e.g., sequences of words in a comment as well as meta-

data, such as comment codes), and thus, dives into the underlying language structure and

reduces search noise. Moreover, we go beyond two target labels and recognize that patient

complaints involving physicians’ practices are very broad and complex on their own as they

can refer to many issues, from treatment concerns and decisions, to room environment,

physician behavior, and competency questions.
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More recent research has provided new insight into the problem through novel methods of

analysis, though still focusing on complaints. For example, Doing-Harris et al. [25] employ

supervised and unsupervised methods to identify the most common topics (i.e., vocabulary-

based and Näıve Bayes classifiers), as well as to discover new, unexpected topics (i.e., topic

modeling) discussed in negative patient comments. They augment their model with senti-

ment features by training a positive-negative classifier. With our approach and dataset, we

expand the breadth of the analysis, build better models, and gain new insight – e.g. we

analyze all patient comments, and we augment the model with a much richer set of gold

standard meta-information (sentiment, ratings), all without additional training.

Researchers have also utilized Deep Neural Network (DNN) framework to aid in tasks in

online health domains [84,85]. These methods modify existing networks such as Convoluted

Neural Network [86], or sequential models such as Recurrent Neural Network, Long Short

Term Memory [87] or their variant in their approaches. Motivated by promising results seen

from utilizing these frameworks, we also employ DNNs, but additionally applied constraints

to these networks in line with constrained convoluted neural networks [88]. Motivated by

promising results of the constraint-based neural network, we also add new soft-constraints to

our domain. Unlike the previous works in DNN framework, we utilized a unique hierarchical

structure that is present in patient experience taxonomy in Chapter 5. To the best of our

knowledge, such approaches have not yet been attempted in capturing patient experience

taxonomy.

2.3 APPLICATIONS THAT CAN HELP IMPROVE PATIENT EXPERIENCE

Recommending or finding experts [89, 90] is an ongoing research field that helps question

askers find the best domain expert. The goal here is to return a ranked list of best answerers

based on the similarity between the query and the answerer’s posting behavior. Guo et

al. [89] proposed a probabilistic generative model for the QA community and employed a

user-question-answer model. They evaluated their method on Yahoo! Answers. Another line

of work [90] proposed combining both the user’s profile and the questions that they have

answered. They utilized a variant of LDA called segmented topic models [91] to recommend

posts to users. Similarly, CQARank [92] made use of the Topic Expertise Model to learn

about users topical interests, and inferred their model using Gaussian Mixture Model. Such

research is especially helpful for CQA websites like Quora1 where users can ask specified

users to answer in exchange for on-website credits. The main goal of these works, however,

1http://www.quora.com/
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is di↵erent from ours. While they focus on recommending experts to question askers (which

helps question askers), our aim is to recommend forum posts to experts (which in turn helps

experts save time).

Some research has investigated the expertise of such users. These are known as expertise

retrieval [93] systems, and are widely used. Some popular examples are ArnetMiner2 and

Microsoft Academic Search3. These can be either profile-based [94], where the works leverage

existing user profiles to further build expertise of a given user, or document-based [95], which

ranks candidates based on a combination of the documents relevance score and the degree

to which the person is associated with that document. Our approach builds users’ expertise

by analyzing documents to which they have responded previously, and hence, is an example

of document-based user modeling.

A more closely related line of research to our work is that of question recommender

systems. These can be divided into two main areas: 1) those that utilize only the forum

text, and 2) those that also leverage user’s behavior. In the first line of research, there

are works that recommend questions based on users’ queries [96], forum threads [97] or

posts [98]. Other works utilize answerer behavior to recommend users to posts [99–102].

These methods are based on collaborative filtering [100], probabilistic models [99, 101, 103],

or classification models [102]. Similar to our work, these works recommend which questions

users should respond to. The di↵erence, however, is that we focus on designated experts

while they address only general question answerers, i.e., non-designated experts. To the best

of our knowledge, our work is the first to tackle the problem of recommending questions to

designated experts in online forum environments. We have noticed that, when it comes to

designated experts, only one expert is likely to respond to a given post. On the other-hand,

multiple users may respond to the question on CQA websites that do not have designated

experts.

Our work on routing texts to experts has multiple objective functions to capture the

characteristics of the forum posts and designated experts. Other works have phrased this

as social collaborative filtering [104, 105] which captures various social aspects. We further

extend this framework by adding constraints, or regularization [106] terms based on the our

intuitions and data observation.

2http://www.arnetminer.org/
3http://academic.research.microsoft.com/
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CHAPTER 3: BUILDING AND ANNOTATING PATIENT EXPERIENCE
TAXONOMY

In this chapter, we describe how our collaborators at DePaul University built and anno-

tated patient experience taxonomy on patient-generated texts. The work is based on a grant

sponsored by DePaul University. We reproduce the work here since we utilize this dataset

in understanding patient experience, and the annotation process provides insight into why

topics exist in the proposed patient experience taxonomy.

We first discuss the process that our annotators at DePaul University followed to build

a comprehensive patient experience taxonomy based on both online patient reviews and

existing research works [20, 21, 107]. The annotators then annotated the corpus with the

topics from patient experience taxonomy. The challenge of this step of the process was in

ensuring that the definition of each of the topics was not ambiguous. To ensure that the

annotators agreed on the definition of each topic in the corpus, they went through a multi-

step annotation process. In each step, we calculated inter-annotator agreement to gauge and

guide annotators in their annotation process. Afterwards, we conducted an analysis of the

topic distribution of the new patient experience taxonomy in patient-generated texts. This

work is based on our journal article that is currently under submission [108].

3.1 INTRODUCTION

Any machine learning algorithms require annotated datasets to make predictions. These

datasets typically consist of input features and desired output labels. The goal of a machine

learning algorithm is then to learn to predict output labels from the input features [109,110].

More precisely, a typical machine learning learns y = f(x), where x is input features, and

y is the desired output labels, or prediction labels. The function f(·) learns to map input

features to output labels. Without labeled data, it is not possible for an automated system to

learn to classify new input. Predicting topics in patient-experience taxonomy from patient-

generated texts is no di↵erent. To automatically identify which topics are being discussed

in patient-generated texts, we first need labeled data.

From a cursory glance, it may seem that obtaining the annotated dataset, especially from

patient-generated texts may be a trivial task. There are millions of patient-generated texts

available online, whether they are patient review websites such as RateMD, or online health

forums such as Healthboards. A researcher can merely implement a web scraper to gather

these texts. Indeed, obtaining input features x from these media is not an issue at all. The

unfortunate reality, however, is that obtaining topics, or labels y from patient-generated
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texts is more challenging. To mitigate the lack of annotated labels in online texts, some of

the past research works reframed their problems into predicting meta-data such as hashtags

from microblogs [111–113]. However, it is not feasible to annotate patient-generated texts

with topics from patient-experience taxonomy by utilizing meta-data. Patients typically do

not express their hospital experiences by utilizing hashtags, or other topic-related meta-data.

Even if we were able to obtain topics related to patient experience by mining the related

hashtags, there are still issues with data annotations. Only a subset of users (typically

younger users) actively utilize hashtags which skews the distribution of the dataset. The

classifier will not perform well when it is tasked with predicting posts by users who do not

typically use hashtags [114].

Because of the limitations in utilizing meta-data to label patient-generated texts with

topics from patient-experience taxonomy, we instead opted to obtain manually annotated

patient-generated texts, in particular, online patient reviews. Our collaborators at DePaul

University first propose a new patient experience taxonomy in which we conduct our analysis

throughout this thesis. The taxonomy was built in multiple phases, where our collaborators

first conducted an in-depth analysis of potential topics. We then went through multiple

stages of agreement analysis to ensure that annotators agreed on label annotations. We

describe the annotation process and annotation agreements in this chapter.

3.2 ANALYZING FREE-TEXT COMMENTS

3.2.1 Data Description

To understand patient experience from patient-generated texts, we started out with a

widely known patient review website, RateMD (http://www.ratemds.com), with 58, 110

patient reviews across 19, 636 unique US doctors, as was also the case in Wallace et al [115].

The website lists a vast number of doctors in the United States in many di↵erent disciplines

such as dentistry, cardiology or family health. Upon interacting with a doctor, the patient

can write a review detailing his or her experience. They are first asked to rate service

quality in four specific areas (helpful, knowledge, sta↵, and punctual), and a global rating.

The ratings range from 1 (very poor) to 5 (excellent). They then write free-response answers

detailing their experience at a hospital.

Consistent with existing research on patient reviews, the majority of the reviews in

RateMD dataset was positive [64]. The sentiment distribution can be seen in Table 3.1.

We note that approximately two-thirds of the reviews received ‘very good,’ or ‘good’ rat-

ings. Consistent with existing literature, the review website does not appear to be a venue
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Meta-data Review Rating
dimension Very Good Good Neutral Poor Very Poor Total

(5) (4) (3) (2) (1)
Sta↵ 52.70% 15.17% 10.33% 6.88% 14.91% 44,409
Helpful 60.89% 5.71% 4.45% 6.48% 22.47% 52,218
Punctual 46.16% 19.30% 12.40% 7.57% 14.57% 52,067
Knowledge 63.38% 6.29% 6.52% 6.99% 16.82% 52,218
Overall rating 68.15% 6.42% 25.42% 52,240

Table 3.1: Distribution of Patient Comments by Meta-data dimensions.

Sentiment Mean Std. Dev. Min Max Total
Positive 54.88 44.56 1 261 24490 (46.9%)
Negative 82.71 64.57 1 512 6074 (11.63%)
Neutral 70.46 62.81 1 231 122 (0.02%)
Mixed 73.84 57.53 1 273 21554 (41.3%)
Overall 65.98 53.91 1 512 52240 (100%)

Table 3.2: Distribution of Patient Comments by length [words].

where disgruntled patients unreasonably criticize on physicians [116]. Furthermore, because

a significant portion of the corpus is positive, analyzing only the negative reviews will not

provide us with a comprehensive picture of what patients write.

A more interesting analysis focuses on the length of the reviews, seen in Table 3.2. An

average review is 65.98 words long. However, negative reviews (82.71 words) were quite a

bit longer than the positive ones (54.88). The above statistics indicate that reviewers have

more to say when they have had a negative experience than a positive one.

3.2.2 Data Annotation and Topic Classification Schema

Our collaborators built the patient experience taxonomy and annotated the topics on

patient-generated texts. To provide the readers with how the taxonomy was conceived and

the corpus annotated, we provide an overview of the annotation process. In this section,

we use the word ‘we’ if a particular portion was done by us, whereas we use ‘collaborators,’

‘annotators,’ ‘they,’ or ‘researchers’ if the collaborators from DePaul University performed

a particular section.

To build a patient experience taxonomy, our collaborators first started by manually anno-

tating a sample of 300 random reviews from the RateMD dataset. Two annotators with a

background in linguistics, natural language processing, and health care started annotating

the comments with topics that they felt best describe the reviews. Each annotator, consis-
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tent with many other annotation tasks, worked independently. They then met to compare

the topics that they found in the reviews. In parallel, our collaborators conducted thorough

research in both computer science and healthcare domains related to patient experience.

They found three works to be of interest, those conducted by Doyle et al. [21] and Lopez,

et al. [20], and Doing-Harris et al. [25]. These works all describe and propose di↵erent pa-

tient experience taxonomies, and were all, to di↵erent degrees, motivated by the HCAHPS

survey. The researchers compared the patient experience topics that exist in the literature

and those that the annotators found from RateMD, finding that a significant portion of the

topics overlap. They then combined the topics discovered by the annotators and those from

existing research works to create a preliminary annotation schema.

To validate the proposed schema, our collaborators conducted another round of annota-

tion study. Two annotators who have prior training in annotating datasets were given a

batch of 300 comments to annotate individually and were asked to annotate as many topics

as they could for each review. We then calculated their inter-annotation agreement, and

the researchers analyzed and discussed any disagreements. The process repeated through

four more batches, each with 300 comments, and each time, they refined the annotation

guidelines. Furthermore, the inter-annotator agreement improved on each iteration, as can

be seen in Figures 3.2, 3.3, 3.4, and 3.5. After they have annotated 1,500 comments, the

inter-annotator agreement reached an overall  agreement of 0.777 with an average agree-

ment percentage of 77.9%. In the existing literature, an inter-annotator agreement of above

0.7 is considered acceptable [117]. This allowed researchers to finalize the annotation schema

of 27 topics on a two-layer taxonomy. The researchers also proposed to group the 27 topics

into those that are semantically similar to each other. The groupings are referred to as

meta-classes and cover eight di↵erent general topics (Interpersonal Manner, Communica-

tion, Technical Competence/Skills, Scheduling, Medical Plan, Practice Environment, Other,

Overall Patient Experience).

Our collaborators then annotated 2,090 additional RateMD reviews to create a gold stan-

dard based on the finalized annotation schema which we refer to as patient experience

taxonomy. The frequencies of each topic are shown in Table 3.3 and Table 3.4.

Because annotators were allowed to annotate more than one topic per review, we also

conducted how many topics reviews have on average. On average, patients described 3.32

topics per review. Furthermore, patients may discuss up to 11 topics, but only 10% of the

reviews had a single topic which implies that a multi-label multi-class classifier should be

employed to model this dataset. We then investigated which topics co-occur frequently,

shown in Figure 3.1. We note that frequently occurring topics such as professionalism, and

temperament co-occur with virtually all the other topics, indicating that the two topics
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Topic Topic Definition Example of Patient Comment Frequency

Interpersonal Manner

Helpful
(helpful) Useful, giving or

ready to give help
A great physician who was very helpful and helping me get
back to work.

962

Temperament/
Manner
(temp)

The medical sta↵s
nature, especially as
it permanently a↵ects
their behavior, e.g.
nice, kind, awful, po-
lite, sarcastic, cour-
teous, frustrated, an-
gry...

Of all the doctors and specialists my family visits (and there
are A LOT), Dr. Klomp is my favorite. He’s knowledgeable
and friendly.

1882

Trust
(trust) Belief in the reliabil-

ity, truth, honesty of
medical sta↵.

Dr. Kramer & sta↵ will promise the world to get your money.
He told me after surgery that he & the surgery team decided
that I had a young appearance; so he did not do extensive
procedure as he & I had agreed upon & for which I paid. His
arrogance was unequaled when I voiced my opinion about the
unsatisfactory results.

213

Put-at-ease
(ease) To cause someone to

relax, lessen discom-
fort, feel welcome.

Dr Kronholm’s manner put me at ease instantly. 243

Good with
kids
(kids)

Medical sta↵ does
well caring for chil-
dren

Is it not standard that when you see a new Dentist, they
introduce themselves to you; This one barely acknowledges
me. Sta↵ and dentist not good with children. Very rough
and abrasive. Recommended root canal on a 5 year olds baby
tooth.

116

Communication

Communication
Skills
(comm)

Sharing and exchang-
ing information on
patients and treat-
ment

he didnt look me in the eyes, came in for 5 minutes told me
i was fine and left

616

Explanation
(explain) revealing relevant

facts, answers ques-
tions, clarifies infor-
mation in easy to
understand terms

Brilliant man. Gave me more info than what I was in for. 472

Follow up
(follow) Medical sta↵ commu-

nicates with patient
on treatment, med-
ication previously
given/prescribed.

He told me after surgery that he & the surgery team decided
that I had a young appearance so he did not do extensive
procedure as he and I had agreed upon & for which I paid.

180

Empathy
(empathy) Shows concern about

patients feelings and
needs and those of
their families, shows
compassion, respect,
encouragement.

I believe Dr. Kronholm is a very good concienous Dr. who
cares about his patients and not just the $ sign. He is very
informative so you know everything he is doing. Great bed
side manner. I can’t remember when I was so impressed with
a DR.

822

Technical Competence/Skills

Professionalism
(prof) Hospital sta↵ shows

competence, knowl-
edge, experience, e�-
ciency, detail in care

The sta↵ is rude and short with me and when i called for help
in 2011 during a flare up becuase i had no one else to turn to,
they promply turned me away and said he is not even sure
he wants to see you anymore; He is very rude and so are the
sta↵.

1955

Clinical-skills
(clinical) Any discrete and

observable act in the
process of patient
care

Had he started helping me in 2008 instead of thinking i was
just a dumb 21 year old i wouldnt be this bad.

714

Perceived suc-
cess treatment
(perc treat)

description of the
perceived outcome of
treatment

He told me after surgery that he & the surgery team decided
that I had a young appearance so he did not do extensive
procedure as he & I had agreed upon & for which I paid.

539

Pain
(pain) physical su↵ering or

discomfort caused by
illness or injury

I was diagnosed with lupus and RA in 2008, but my stats
were low, even tho i was ina lot of pain and i was very sick.

215

Medication
(meds) All Medicinal cures

administered to treat
patients

He did not put me on any medications that he thought would
help me.

197

Tests quality
(tests) The standard of

health tests adminis-
tered to patients

Brilliant man. Gave me more info than what I was in for.
Told me I was vit D deficient, needed osteoporosis test(which
me internist had overlooked)

46

Perceived bias
(bias) See, feel or su↵er in-

clination or prejudice
for or against some-
one

I was diagnosed with lupus and RA in 2008, but my stats
were low, even tho i was ina lot of pain and i was very sick.

28

Table 3.3: Taxonomy of Patient Comments for topics Interpersonal Manner, Communication and
Technical Competence/Skills
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Topic Topic Definition Example of Patient Comment Frequency

Scheduling

Appt. Access
(appt) Easiness to set up

medical appoint-
ments

One of his nurses was extremely di�cult to work with. Al-
most make it unbearable to call his o�ce.

150

Response/
Wait Time/
Punctuality
(response)

The time it takes
medical sta↵ to start
caring for the patient.

Only issue is that he does get behind on his appointments,
because of the extra time spent with patients.

420

Time Spent
(spent) The amount of time

medical sta↵ dedi-
cates to patients and
their care

She got in and out of my appointments as fast as she could
she never asked if I had questions or concerns.

500

Referrals
(referral) Sta↵s communication

with patients after a
treatment is put in
place, after discharge

He also waited 4 years before he decided to send me elsewhere
when he could not cure my headaches. She passed me o↵
to the on call Doctor that night and told her I was getting
petocin without ever discussing it with me

132

Medical Plan

Insurance
Coverage
(coverage)

Any discussion in re-
lation to insurance
coverage, e.g. qual-
ity of insurance, what
covers

This doctor’s o�ce says they accept Aetna, but they tricked
my wife into signing a form claiming that we would pay any
amount not covered by insurance despite what we agreed over
the phone.

80

Cost of Care
(cost) Any discussion in re-

lation to the cost of
care, medical bills, in-
surance costs

He was willing to do most of our appointments on the phone,
because of my money situation... and he did not charge me.

251

Practice Environment

Privacy
(privacy) State/condition of

being free from being
observed or disturbed
by other people or
public attention.

Dr Kronholm’s manner put me at ease instantly. I believe this
is vital when exposing one’s most personal physical issues.

9

O�ce Envi-
ronment
(patient room
and waiting
room)

Setting, status, am-
biance of patient
rooms, waiting room

He has a collage on his ceiling above the exam table of various
attractive male celebrities and cut-outs from magazines of
words that say things like: do you love me.

89

Location
(location) comment related to

the location of the
medical o�ce, e.g.
far, close, convenient,
etc.

The only reason I continue to come here is because I don’t
want to drive to Colorado Springs. But next time I think I
will.

17

Overall Patient Experience

Overall Pa-
tient Experi-
ence
(ov exp)

Comments describing
patients liking or dis-
liking of their overall
experience with their
doctor. It includes
likelihood to recom-
mend.

I would recommend Dr. Kerr or his sta↵ to anyone looking to
get a cosmetic treatment. If you are considering facial plastic
surgery by Dr. Jonathan D. Kramer, run, don’t walk away
from his o�ce!

884

Other

Other
(other) General comments

with no specific topic.
Dr Cordova no longer has a practice in Homer Alaska. He
sold his business to Dr Nelson

287

Table 3.4: Taxonomy of Patient Comments for topics Scheduling, Medical Plan, Practice
Environment, Overall Patient Experience and Other

are what patients generally discuss when they write patient reviews. Some of the less fre-

quent topics co-occurred frequently as well, for instance, {response time and appointment

access}, {perceived treatment and pain}, and {cost and coverage}. Many of the frequently

co-occurring topics belong to the same meta-class, indicating that when patients write re-

views, they frequently talk about multiple semantically similar topics, i.e., they often talk

about various topics that belong to a single meta-classes. Of course, there are outliers, for

instance, {explain and time spent} which belong to di↵erent meta-classes, indicating that it

is not su�cient to merely capture the topic co-occurrences based on whether the two topics
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Figure 3.1: Co-occurrence heatmap

fall under the same meta-class or not.

3.3 CREDIBILITY OF PATIENT-GENERATED TEXTS

The primary concern regarding patient-generated texts is their credibility. Mostly anony-

mous people author patient-generated texts, and there are concerns that the medium may

not be an excellent source to learn about patients’ experience. As an example, researchers

may be concerned that only disgruntled patients may post on patient review websites. Fur-

thermore, it is possible that patient-generated texts may not represent all segments of pa-

tients. Younger patients may be more likely to utilize patient-generated texts, than say,

older patients.
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Figure 3.2:  Inter-Annotator Agreement for Di↵erent Target Classes

Figure 3.3: Percentage Inter-Annotator Agreement for Di↵erent Target Classes

Figure 3.4:  Inter-Annotator Agreement on temperament, helpfulness, overall experience,
professionalism and empathy
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Figure 3.5: Percentage Inter-Annotator Agreement on temperament, helpfulness, overall
experience, professionalism and empathy

There are several lines of works which investigated concerns associated with the quality

of patient-generated texts. The first concern is whether the dataset itself is trustworthy, in

particular, whether they may be a target of malicious actors writing overwhelmingly negative

reviews. Numerous research works, including ours, indicate that online patient reviews are

not overwhelmingly negative [23, 26, 40, 64, 118]. Indeed, these past works indicate that

anywhere between 60�90% of the reviews are positive. The findings are consistent with past

works that were performed on proprietary survey [119], where the authors found about 70% of

the patient feedback are also positive. However, it is essential to note that the ratio of positive

to negative reviews does not prove the presence or absence of malicious reviewers that aim

to impact a given hospital’s reputation. Indeed, it is possible that there are malicious actors

who are spreading false or misleading information on patient review websites, but the ratio of

positive to negative reviews is still similar to those seen in proprietary surveys. Furthermore,

because patient-generated texts are anonymous, it is impossible to know whether the reviewer

is indeed a past patient, or is only acting as one [120, 121]. With recent developments in

false and malicious online reviews detection algorithms [122,123], however, we can mitigate

the issues of malicious actors.

Another concern is whether the quality of the patient reviews is good enough to capture

patients’ hospital experiences. The quality can be captured first by determining whether

or not patient-generated texts contain the topics that researchers and clinicians may be

interested in. According to a past research [26, 69], patient reviews seem to capture most

of the topics that researchers and clinicians are interested in, one claiming that 57% of the

reviews are topics seen in HCAHPS survey. Furthermore, patients and physicians generally

agree (74.3%) on what constitutes a good physician [62]. The study implies that, when
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patients write patient reviews, other physicians will agree that the ratings that patients

assigned to the doctor are justified. However, there are physicians that question whether

patient reviews correctly capture the actual quality of care that patients have received [53,

124]. According to one study [53], there was no significant di↵erence in ratings between

hospitals that serve a large number of patients, or those that serve relatively few numbers

of patients. While the size of the hospital is not a proxy of the quality of care, the larger

hospitals are likely to have more facilities, hence, more likely that they can process large

segments of patients.

Furthermore, patient reviews sometimes su↵er from data sparsity issues [64, 65]. The

median number of reviews each doctor received was in a single digit, indicating that aggre-

gating reviews from di↵erent doctors to conduct meta-analysis is a more realistic approach

to utilizing this medium. Because of the relatively few reviews an average doctor receives,

it may be di�cult to conclude what a typical patient’s experience is like with said doctor.

It is possible, however, as more people start utilizing patient reviews in the future, that the

median number of reviews for each doctor may increase.

The three limitations that the patient reviews currently pose – potential for malicious

actors, quality of the reviews themselves, and data sparsity issues in terms of individual

doctors – can all be overcome, either by deploying malicious online review algorithms when

patients post reviews or by designing a procedure that is more conducive to patients writing

higher quality patient reviews. It is because the limitations of the dataset can be overcome

that we believe it is worth investigating patient experience as expressed in patient reviews.

3.4 DISCUSSION

In this chapter, we describe in detail how our collaborators proposed patient experience

taxonomy and annotated the RateMD dataset. This started with analyzing the dataset char-

acteristics where we found that vast majority of the reviews were positive. Based on existing

literature and in-depth analysis of the dataset, our collaborators came up with taxonomy

which consists of 27 di↵erent classes under 8 meta-classes. From taxonomy description, the

annotators labeled topics in multiple batches. At the end of each batch, our collaborators

conducted annotation studies to help improve agreement. This resulted in a satisfactory

-agreement. With these labeled patient experience comments, we are able to conduct a

more thorough research which we describe in the succeeding chapters.
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CHAPTER 4: RICH SEMANTIC REPRESENTATION OF PATIENT
EXPERIENCE TAXONOMY

To better understand patient experience as expressed in patient-generated texts, we first

investigate what patients write about on each of the topics in the patient experience tax-

onomy we proposed in the previous chapter. In this chapter, we explore rich semantic rep-

resentation to capture topics in patient experience taxonomy from patient-generated texts.

We then analyze association between semantic features and topics.

This work is based on our journal article that is currently under submission [108].

4.1 INTRODUCTION

The HCAHPS survey is an invaluable tool for understanding patient experience. There

have been numerous research works based on the patient responses of the survey – for

instance, understanding patients’ satisfaction after cancer treatment, or surgical proce-

dure [43, 44]. The vast impact of the survey with regard to understanding patients’ per-

ception of care is due in part to its wide use by hospitals. For any hospital under the

Inpatient Prospective Payment System (IPPS) [46], the government mandates HCAHPS

surveys be collected. Researchers are then able to utilize the surveys to conduct studies on

symptoms and diseases from hospitals that are under IPPS.

The survey, however, is not without its faults. Because the survey only has multiple choice

questionnaires, we can only collect what the patient feels, but we cannot collect the why.

As an example, consider an actual HCAHPS survey question:

During this hospital stay, how often did nurses treat you with courtesy and respect?

In a typical HCAHPS survey, a patient may indicate that the nurses seldom treated him or

her with respect. The reason may be that the nurses did not correctly answer the patient’s

question, or it may be that the nurses were busy with other patients and did not bother to

talk to the unsatisfied patient. However, a typical HCAHPS survey makes it impossible to

know why the patient felt that they were treated disrespectfully. Only by collecting free-

response texts can we understand why a patient answered in a particular way to a given

question.

One possible solution is to utilize proprietary surveys that hospitals send out to their

patients. The questionnaires can be better tailored to the needs of these hospitals and may

even include free-response questions. While this is an improvement over multiple-choice-only
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Figure 4.1: Example prompt patients are asked to answer at a patient review website. Notice
that they are allowed to write about any topics regarding their hospital visit.

questions, the proprietary survey still su↵ers from two big problems. First, the surveys are,

not surprisingly, private. Hospitals are not required to share the survey publicly, nor should

they necessarily share them, due to privacy concerns. Second, the proprietary surveys,

similar to HCAHPS questionnaires, are top-down. Hospital sta↵ members or researchers

come up with questions that they would like to ask, rather than patients coming up with

issues that they have had. It is possible that the questionnaire creators miss out on some

crucial issues that patients experience.

To remedy both the top-down approach of asking questionnaires to patients and to answer

why patients respond to particular issues, we propose supplementing existing surveys such as

the HCAHPS surveys with patient-generated texts – in particular, patient reviews. Patients

can rate their hospital experience, along with several specific topics such as the quality of

the sta↵, punctuality, or helpfulness. More importantly, however, they are free to describe

their experience at a given hospital, as seen in an example prompt in Figure 4.1. Such

a bottom-up approach allows patients more flexibility in describing their visits and may

prompt the discussion of topics that may not be covered in both HCAHPS nor proprietary

hospital surveys.

However, the flexibility that patients have in writing patient-generated texts is also its

most significant disadvantage. Because topic-specific questions are not asked, it is di�cult,

especially for an automated system, to identify the topics that are discussed in the text. Even

if an automated system can identify topics, each of the topics needs to be interpretable since

the purpose of utilizing patient-generated texts to understand topics in patient experience
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taxonomy was to understand why patients write about a particular topic.

One can be tempted to utilize an existing bag-of-words classifier to automatically identify

topics in patient-generated texts, similar to those seen in Doing-Harris, et al [25]. However,

such systems may not be able to capture subtleties present in natural language. For exam-

ple, consider the following three sentences:

I want to express my gratitude to my doctor.

I want to express my appreciation to my doctor.

I want to express my frustration to my doctor.

From the perspective of a unigram-based classifier, the three sentences di↵er only by a

single word. It may not recognize that the first two sentences are similar while the last

sentence means almost the complete opposite.

In this chapter, we address the various issues that arise from utilizing patient-generated

texts. To identify the topics present in patient-generated texts, we first implemented a

classifier based on the bag-of-words model. We then experiment to determine how richer

semantic representation and enrichment aid the classification task, finding that, indeed, a

simple bag-of-words model is not su�cient to capture each topic representation. Because

our model learns which features are strongly associated with each topic, we can analyze and

o↵er insight into each of the topics that our classifier was trained on. To help determine

why patients talk about a particular topic, we analyze features in each topic. The analysis

provides new insights into how and why patients write about topics in the taxonomy; for

example, patients are more concerned about how well their doctors listen to them when they

talk about the communication skills of their clinician.

4.2 MODELS

For our model, we start with clustering and classification, the main approaches used to

analyze large text datasets in natural language processing, each bringing own benefits and

limitations [25, 81, 83]. Clustering, an unsupervised learning method, uses statistical con-

cepts to split datasets into subsets with similar features and does not rely on any previously

labeled data. Its output is a set of clusters, with comments in each cluster described by

their similarities. On the other hand, classification is a supervised learning method that

assigns predefined tags to instances in a dataset. To do this, it relies on a training set to

find similarities based on cohesive attributes and then to categorize any new data. Clas-

sification will make use of labels for the new categories found based on information gain.

29



In previous literature, while both methods have been widely used, due to their individual

limitations, they o↵ered mixed results. In this study, we test both methods and define a set

of experiments to improve on their previous standard applications.

4.2.1 Clustering Models

Clustering, often used as a first step in understanding the topic distributions of a given

dataset, allows analysts to get preliminary valuable insights into new possible topics. Because

it works fast and at low cost, this method is especially useful when analyzing large text

datasets. In our study, the entire collection of comments is large, therefore, in the first phase

of our research plan, we also start with clustering. If successful, we proceed by comparing

the clustering output to the labels established in previous research as well as our proposed 23

labels. If there is a large overlap, this approach proves very e�cient – since it is cheaper to

run the clustering algorithm to find the relevant clusters, and then conduct analysis directly

on these clusters. However, if unsuccessful, e.g., the clusters are extremely noisy, we learn

that it is better to classify the patient data into predefined relevant topics. We are also

mindful that clustering uses a statistical approach that is entirely reliant on the text itself,

that is on how the patients themselves write their comments with no input from medical

personnel. Therefore, even though we may discover new patient topics through clustering,

these topics may not be relevant to medical practitioners. This limitation would further

indicate that a classification approach is better.

For our analysis, we use K-Means [125] and LDA [126], the two most used clustering

methods. As in previous research [25], we use unigrams to represent the data and run

the models with di↵erent numbers of clusters: 10, 15, 20, 25, and 30. K-Means, via the

Expectation - Maximization algorithm, calculates the k centroids for each cluster. Each

datum is then assigned a cluster-based distance to a given centroid. LDA (Latent Dirichlet

Allocation) is a generative model which learns latent topics from a given corpus, assuming

that a word may belong to di↵erent topics depending on the document that it appears in.

4.2.2 The Classification Model

As a second approach in identifying the topics of discussion in patients’ comments, we

develop a classification model. We start with the pre-annotated corpus of 3,590 patient

comments labeled with our proposed taxonomy classes and use it for training and testing

the classifier, the annotation labels being used as gold standard. Training the classifiers to

associate patient comments with their correct topics is extremely important and should rely
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Text What Why it Comment

Rep. it does is beneficial Example

(features)

a comment is Unigrams, as basic units of ”I thought his sta↵ was great”
Unigram represented as a bag text representation, capture is represented as the bag of words

of words (i.e., unigrams) the most representative words {I, thought, his, sta↵, was, great}
for the target class

Dependency captures grammatical allows us to capture multi-word ”The nurse who helped me
parse relationships between phrases, negations, long during my last visit in May was nice”,
(DP) two words in a sentence dependencies (that cannot be (captures long dependency

captured otherwise) ’nice’ – ’nurse’ encoding temperament)
Word learns semantically especially useful since it ”Nurses always o↵ered me and my
Embedding related words in the expands short test comments family water.”
(W2V) vocabulary during training with semantically similar word2vec adds:

and enriches every content words that appeared in training {nurse practitioner, sta↵},
word in test with similar {patient, family},
content words/collocations {tea, drink, plate},
as identified in training {tea, cup, bowl}

Dependency for every content word especially useful since it ”Nurses always o↵ered me and my
Parse in a review, it adds expands short comments with family water.”
Embedding the top 5 syntactically syntactically similar words dep2vec treats dependencies as
(Dep2V) related words learned which help capture grammatical context - i.e., the context vector

during training from the structures for the word ‘water’ is:
entire vocabulary {nmod:poss(water, my),
(content word types) compound(water family),

conj(me, water)}
Document an extension of word2vec especially useful if some doc2vec infers a given comment text
Embedding for learning document words appear infrequently; into the corresponding n-dimensional
(D2V) embeddings, i.e., a utilizing document’s embedding feature space

distributed bag of words latent subspace helps mitigate
over all reviews in training word sparsity issues

WordNet a freely available lexical brings semantic knowledge into in training, words like
(WN) database of English capturing the classification, being able ’doctor’ and ’nurse’

semantic relations (i.e., is-a) to map concepts into semantic occur frequently with
between lexical entries classes (i.e., super-concepts); labels like empathy.

generalizes over lexical tokens, However, if a test comment
especially when limited training. contains ’anesthesiologist’

(e.g.,: words related to
empathy), WordNet helps the classifier
label the comment
accordingly (i.e., all are a
’healthcare professional’)

Aspect meta-data identifying indicate patients’ The meta-data aspects ratings for
Ratings our aspects of patient sentiment of each ”I thought his sta↵ was great” were
(AR) experience: helpfulness, sta↵, aspect all positive

punctuality, knowledge

Table 4.1: Text representations (features), description, rationale and examples.

on a good text representation of the comments. We propose to employ a combination of seven

approaches starting with unigrams and bigrams representations further augmented with

dependency parse representation, word embedding (Word2Vec, Doc2Vec), WordNet [127]

and aspect ratings (meta-dimensions). Each of these representations (also called features),

provide di↵erent ways in understanding patients’ comments, as detailed in Table 4.1. In

our analysis, we run a total of 128 scenarios combining these features and then determining

which combinations give the best training, and, thus, classification. We report the best

20 scenarios. We are mindful of the risk of overfitting, since the bigger the combination

of features used, the bigger the feature vector and thus, the bigger the risk of overfitting.

As is standard in classification models [128], we compare the F-1 scores across all text

representation scenarios, we show these results and discuss them in Section 4.3, Evaluation)

below.

For classification, we build a binary classifier for each of the 23 topics in our proposed
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taxonomy, e.g. one classifier for helpful, one for temp, etc. We run the four most widely used

machine learning models for classification, i.e. Näıve Bayes, Decision Tree, Perceptron and

Support Vector Machines, and choose the best performing classifier1.

To account for these specifics when modelling unbalanced data distributions, we build 23

classification models, each with four machine learning models, two classification schemas, and

a combination of seven feature representations. Our formal classification model is therefore

described as follows.

hj(~x) = argmax
i,j
p(yi,j|~x), 8j 2 {1 . . . L}, 8i 2 {0, 1}, (4.1)

where: j denotes the j’s topic being classified out of the L total number of topics; ~x is the set

of features representing the textual comment; and ~y is the set of topics that identify it. yi,j

identifies whether the comment is labeled with topic j (i.e., y1,j) or not (i.e., y0,j); p(yi,j|~x)
is the prediction output for the label j (i.e., p(y1,j|~x)) or the rest (i.e., p(y0,j|~x)) for its given
feature ~x.

We test the performance of all classification models across the two schemas and across

the seven text representations using precision, recall and F-1 measures evaluated at micro

and macro levels. The Micro method, also reported by Doing-Harris et al [25], sums up the

individual true positives (TP), false positives (FP), and false negatives (FN) of all classifiers

i = 1 . . . n:

Pmicro =

P
i
TPiP

i
TPi +

P
i
FPi

, Rmicro =

P
i
TPiP

i
TPi +

P
i
FNi

, and F -1micro = 2 · Pmicro ·Rmicro

Pmicro +Rmicro

(4.2)

The Macro method averages the precision and recall over all classifiers i = 1 . . . n:

Pmacro =
1

N

nX

i=1

Pi, Rmacro =
1

N

nX

i=1

Ri, and F -1macro = 2 · Pmacro ·Rmacro

Pmacro +Rmacro

(4.3)

where Pi and Ri are the precision and recall of binary classifier i, respectively.

The Weighted method calculates weighted averages of the precision and recall over all

classes i = 1 . . . n. Weight of class i is based on the relative frequency of the label:

Pmacro =
nX

i=1

p(i) · Pi, Rmacro =
nX

i=1

p(i) ·Ri, and F -1macro = 2 · Pmacro ·Rmacro

Pmacro +Rmacro

(4.4)

1In our case, SVM was the best performing classifier
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where Pi and Ri are the precision and recall of class i, respectively, and p(i) = cnt(i)Pn
j=1 cnt(j)

.

cnt(i) refers to number of times class i appeared in the corpus.

Macro F-1 is used to determine the overall system performance across all the classifiers

(and thus, across all labels), but does not account for the number of text instances within each

label. Micro-F1 mediates this issue, therefore, we report it and analyze it when comparing

system performance. Ideally, a good classifier should perform well on micro, macro and

weighted F-1 scores.

4.2.3 The Classification Features

In multi-class classification models, having a quality text representation (features) is most

important in understanding the text and capturing the topics discussed. Because there are

numerous features that we experiment with, we identify these features into three di↵erent

groups. The first group, Surface Features, correspond to the type of features that we can

derive from a single review. Unigram, dependency parse, and aspect rating features all fall

under this group. The next group utilizes either an existing concept dictionary or word

similarity that is learned from the corpus to enrich a given unigram further. Features that

fall under this category does not significantly increase the feature size. Instead, they find top

k features that are similar to a given unigram. We call this Word Enrichment Features, and

the three feature types that fall under the group are WordNet, Word2Vec, and Dep2Vec. The

third type of features calculates the latent embedding space features for each review which

we denote as Latent Embedding Features. Document embedding features and Dependency

document embedding features correspond to this feature group.

Surface Features

Unigram Features. Unigrams, the basic text representation, tokenize all words in the

patients’ comments and feed them into the classifier. To further improve the classifier, we

add stopword removal, to remove words that are not indicative of the meaning of the text, as

well as stemming, to generalize over inflections of words. We used the two most recognized

stemmers, the Porter Stemmer and the Snowball Stemmer.

Dependency Parser Features. Used widely in many natural language processing appli-

cations, dependency parsers capture grammatical relationships between words in a sentence,

i.e. multi-word phrases, conjunctions, or negations. Using the Stanford Parser [129], we

experiment with two type of dependency parsers: 1) a list of full dependency parsed out-

puts identifying the dependency relations as well as their arguments in the given review,
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and 2) a list of dependency relations only, without their arguments in text. Consider the

sentence Nurses always o↵ered me and my family water.. Here, the first dependency parser

creates nsubj(o↵ered, Nurses), advmod(o↵ered, always), root(ROOT, o↵ered), cc(me, and),

nmod:poss(water, my), compound(water, family), conj(me, water), while the second parser

generates nsubj, advmod, root, cc, nmod:poss, compound, conj. As the example shows, the

second parser (that of dependency relations) is more general, and we expect it will help the

classifier better generalize over the training instances.

Aspect Rating Features. As described in Subsection 3.1, in our dataset, each text

review comes with meta-data that has five a�liated ratings. The first is an overall rating

which shows how the patient felt about the experience (equivalent to overall sentiment). The

next four provide specific information about the doctor’s o�ce visit – i.e., sta↵, punctuality,

helpfulness and knowledge – indicating how did the patient feel about them.

We assume that if a patient provides a rating score for an aspect, they indicate that they

were interested in addressing that aspect. With this in mind, for each aspect, we split the

the rating scores into the following intervals: positive (4 or 5 stars), neutral (3 stars) or

negative (1 or 2 stars).

Word Enrichment Features

WordNet Features. WordNet, a freely-available lexical database for English [36], has

been used successfully for word sense disambiguation [130] in a large range of applications

on product reviews [131]. Through WordNet, the words identified in a patient comment

are grouped into sets of synonyms (i.e., synsets) and augments with short definitions, usage

examples, and relationships to other synsets – i.e., hypernyms, hyponyms, or meronyms. In

our application, WordNet is especially useful in helping our classification model learn the

definition of a word, even with limited training data from short patient comments. Our

corpus also contains a lot of domain-specific medical terminology (e.g. medicine names,

names of medical personnel, etc.) so we have decided to encode some representative hand-

picked synsets as part of this feature set.

We tokenized our dataset and the Brown corpus (often used as a reference corpus) and

mapped the nouns that were found in WordNet into synsets. Using the probabilities of

each synset, we calculated their log ratios both in our dataset and in the Brown corpus. A

higher ratio means the given synset is more representative in our dataset, whereas a lower

ratio means the given synset appears less frequently than what we would expect. From the

top 200 synsets, we picked nouns that best represent our dataset, since we did not perform

disambiguation of synsets at this step, and removed emotion-related synsets. For example,
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doctor of the church and annoyance were ranked high in our dataset, but were subsequently

removed.

The representative synsets were S = {treatment, food, drug, health professional, physical

condition, ill health, pain, body part, hospital, emergency, hospital room, medical instrument,

disease, medical procedure}.
Each word w in a commentW , was mapped to this synset if the word was a hyponym of one

of the words in the synsets S. We denote the trail of synsets in between w and s 2 S as t(w, s).

All synsets in t(w, s) were added to the list of the WordNet features. By including trails of

the synset between the word w and synset s, the feature set includes only the words that

may be related to healthcare, yet still maintaining enough discriminating power between the

two di↵erent words which may map to the same hypernyms in S. For example, consider the

sentence: I got to the hospital with a serious flu. Direct hypernyms of ‘flu’ are ‘respiratory

disease,’ and ‘contagious disease’, which have as hypernyms ‘disease’ and ‘communicable

disease’, respectively. The hypernym of ‘communicable disease’ is ‘disease’. We add all the

hypernyms between ‘flu’ and ‘disease’ until we ding the first common hypernym ‘disease’.

The ‘hospital’ synset is also of interest, so this is added to the feature set as well.

Word Embeddings based Features (Word2Vec). Word embeddings, like Word2vec [132],

are vector space-based models [133] in which low dimensional vectors are learned from unla-

beled data through a neural network. They have been very successful in representing short

corpora such as micro-blogs [134] or patient reviews. In essence, such word embeddings

learn the surrounding window context of a given word. If the contexts for w1 and w2 are

similar, then the words are considered semantically similar. The more similar the words,

the more likely they are to refer to the same topic. For example, ‘ridiculous’ may also mean

‘absurd,’ and one patient may use the former, whereas another may use the latter. Such a

feature is especially important when w1 occurs relatively frequently, but w2 does not. In such

cases, the classifier would use the word representation of w1 instead of w2, thus resolving the

inherent sparsity issues.

1

T

T�kX

t=k

log p(wt|wt�k, . . . , wt+k) (4.5)

where k is the size of the window, and t is the t-th index of a given word; T is the length of

a sentence. Thus, the prediction task is done via a multi-class classifier as shown by

p(wt|wt�k, . . . , wt+k) =
ey
wtP
i
eyi

(4.6)
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where y represents the learned weights.

In some sense, this is very similar to what we have done with WordNet. Our WordNet

enrichment approach maps a given word to a higher order hypernym, thereby generalizing

what the word represents. Similarly, word embeddings map all the words that appear in the

data into k latent dimensions. There are some notable di↵erences, however: for Wordnet, we

focus only on a small subset of synsets and their hyponyms, whereas word embeddings learn

the latent representation from the data irrespective of which topics the word may belong to.

Please note, however, that our WordNet and word embeddings features do not necessarily

capture the same information – this is because semantic information like the one captured

by hypernyms and hyponyms identify language abstractions that usually do not occur in

free text.

In encoding these features, we first trained a word2vec model on our corpus. Then, for each

word w 2 W , we computed scores s for similar words w0, more precisely, (w0, s) = sim(w).

The similarity score s is based on the closeness of the embedded space. We then encoded the

top k similar words as part of the features for the classifier. 2 This allows the classifier to

utilize a similar word w0 instead of the word w when there are not enough training examples

for w.

Dependency Embeddings Features (Dep2Vec). Dependency parsed outputs may

su↵er from sparsity issues: each word may have a dependency relationship with many

other words in a sentence, thus drastically increasing the feature vector size. Thus, in-

stead of directly using dependency parsed outputs, we could train dependency parsed em-

beddings [135]. Similar to Word2Vec, which relies on a given word wi, and its context

wi�s, wi�s+1, . . . wi�1, wi+1, . . . wi+s�1 for a window size of s, dependency parsed embeddings

(Dep2Vec) are trained on the dependency parsed output as contexts for a given anchor word

w. Unlike Word2Vec, the contexts consist of dependency parsed relationships that contain

the word w. Consider again the sentence My son likes the doctor, with the correspond-

ing dependency parsed outputs nmod:poss(son, My), nsubj(likes, son), root(ROOT, likes),

det(doctor, the), dobj(likes, doctor). The context for the word ‘son,’ is nmod:poss(, My),

nsubj(likes, ). Similarly, contexts for the word ‘likes’ are nsubj( , son), root(ROOT, ), dobj(,

doctor).

Dep2Vec is known to extract functionally similar words, as opposed to semantically similar

words that Word2Vec extracts [135]. We hypothesize that, by expanding similar function

words, the classification performance improves. Here we encoded the top k similar words

(similar to word2vec similarity features).

2For all of our experiments, we set k = 5 words.
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Latent Embedding Features

Document Embeddings Features (Doc2Vec). Doc2Vec [136] captures a latent rep-

resentation of each document in the corpus (in our case, a document is a patient review and

the corpus is the set of reviews obtained after agreement). The model first learns the word

embeddings, while treating a given document as an unknown word. It then tries to infer

this missing document based on the words that represent the document. Unlike Word2Vec,

however, we use here the latent representation of a given document, and add it to the feature

set. In training the Doc2Vec model, we used the Skip-gram implementation with a latent

vector size of 200. Past literature has shown that after a certain point, neither a bigger

window size nor a larger vector would lead to better performance. Another research [137]

indicated that choosing a relatively big window size helps when training data is limited. In

particular, the bigger the window, the better the model is at capturing similarity between

the two words as it uses more contextual information [138].

Dependency Document Embedding based Features (DepD2Vec). We would also

like to experiement with another type of features like document embeddings based on depen-

dency parsed outputs. Here, we decided to represent documents as a collection of dependency

parsed outputs. More precisely, in a Doc2Vec setting, a collection of words is used to infer

the latent dimensions of a given document. Similarly, in Dependency document embeddings

setting, we treat dependency parsed outputs as the context, and infer the current document.

We call dependency parse based document embeddings model, DepDoc2Vec. The latent

embedding space is used as the classification feature. This approach is similar to [139] who

also use dependency parses as an embedding space. Similar to Doc2Vec features, we set the

latent vector size to 200.

Feature sizes

Overall, we had 8,437 unigram features, 12 aspect rating features, and 14 additional

WordNet features. Doc2Vec and DepDoc2Vec both added 200 additional features. Neither

Word2Vec nor Dep2Vec have added any additional features as it was finding similar words

from the corpus (top 5 most similar words) and using this as its feature set. There were 40

unique dependency parsed relationships that we used with 80,190 dependency parse features.

The dependency parsed features, somewhat not surprisingly, are very sparse. We mitigate

overfitting by setting tokens that appear less than 30 times as <UNK>.
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4.3 RESULTS AND EVALUATION

4.3.1 Clustering Results

We ran two clustering models, K-Means and LDA, on the entire patient experience dataset.

With a unigram text representation of patient comments, we investigated 10, 15, 20, 25 and

30 preset clusters. For each cluster scenario, we evaluated the cluster quality with Adjusted

Mutual Information (AMI) [140], a standard metric (with the SK-learn implementation

from scikit-learn.org) recommended when the gold standard clusters (as set manually) are

unbalanced [141]. The metric employs mutual information in calculating the similarity

score with the gold standard (with values in [0; 1]; 0 = no agreement; 1 = full agreement)

accounting for chance agreement.

Across all the clustering scenarios, we found that the biggest AMI scores were 0.038 and

0.0002 for K-means and LDA, respectively. These numbers indicated a very low perfor-

mance of the clustering analysis. Further investigation of the clustered comments in the

best performance scenario, of 20 clusters, showed the clusters were very noisy, di�cult to

interpret and label, and not clearly delimited. This outcome is not surprising, given the

limitations that come with unsupervised clustering, and given the complexities of the data

to be clustered, e.g. short comments, ambiguous language, inconsistent abbreviations, etc.

The outcome is in line with findings in previous research as well, where clustering models

also proved unsuccessful particularly when analyzing patient comments [25].

4.3.2 Classification Results

We started our classification modelling with a sample of 3,590 patient comments sampled

at random from the entire 50k RateMD collection, and annotated with 23 taxonomy classes.

On this data, we ran a series of classification models with an 80/20 training/test split and

10-fold cross-validation. In building the highest performing classification model, we devised

two major experiments. First, we developed a classification model based on several text and

contextual data representations. Second, with semantic knowledge from our proposed meta-

class hierarchical taxonomy, we augmented the initial model and created a semantically-

informed multi-class classification model of patient experience.

38



Method Macro Micro Weighted
P R F-1 P R F-1 P R F-1

U 0.541 0.378 0.434 0.621 0.513 0.562 0.604 0.496 0.538
U+PS 0.577 0.412 0.470 0.621 0.513 0.562 0.613 0.513 0.552
U+SS 0.576 0.413 0.470 0.619 0.513 0.561 0.612 0.513 0.552
U+SR 0.558 0.373 0.436 0.638 0.492 0.556 0.621 0.492 0.541
X=U+PS+SR 0.594 0.413 0.473 0.635 0.511 0.566 0.626 0.511 0.555

Table 4.2: Baseline Classification Models with Pre-processed Text. U: SVM, unigram with
one-vs-rest schema; PS: Porter Stemmer, SS: Snowball Stemmer, SR: Stopword Removal

Experiment 4.1: Multi-class Classification Model

In the first step, we train and test baseline binary classifiers built with four machine

learning models with a unigram text representation run with both a one-vs-one schema and

then again a one-vs-rest schema. We find that the Support Vector Machines (SVM) model

with one-vs-rest schema achieved the highest performance and show its Macro and Micro

measures in Table 4.2. We consider this as our baseline classification model and note it as

U.

In the second step, we augment U with pre-processing methods, such as stemming and

stopword removal. This increases text understanding through generalizations over inflections

of words, and through removing words that are not indicative of the meaning of text. As

in standard literature, we use the Porter Stemmer and Snowball Stemmer, noted as PS, SS,

respectively. Stopword removal is noted as SR. As shown in Table 4.2, the classification

performance improves and the best model now becomes X=U+PS+SR.

In the third step, we add a series of eight contextual features to text understanding:

Word2Vec (W2V), Doc2Vec (D2V), Dep2Vec (Dep2V), DepD2Vec (DepD2V), Dependency

Parser for dependency parsed output features (DP) and relationship only features from

dependency parsed output (DPR), WordNet (WN) and Aspect Ratings (AR). As shown

in Table 4.3, Latent Embedding Features (D2V, DepD2V) and Word Enrichment Features

(W2V, Dep2V, WN) generally show improvement over the baseline. This shows that finding

functionally (Dep2V), and semantically (W2V) similar words further enriches a given review.

WN, despite belonging to word enrichment feature group, had mixed performance, however.

In some metrics we see performance gains (macro measures), but in others, there were no

discernable performance di↵erences. Part of the reason is WN is general-purpose concept

dictionary, so it is not able to capture the contextual information as well as other Word

Enrichment Features

Mapping reviews into latent embedding subspace (D2V, DepD2V) acts as summarizing
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Method Macro Micro Weighted
P R F-1 P R F-1 P R F-1

X 0.594 0.413 0.473 0.635 0.511 0.566 0.626 0.511 0.555
X+W2V 0.603 0.427 0.488 0.645 0.521 0.576 0.636 0.521 0.566
X+D2V 0.601 0.430 0.490 0.639 0.528 0.578 0.632 0.528 0.569
X+Dep2V 0.605 0.416 0.479 0.647 0.519 0.576 0.637 0.519 0.564
X+DepD2V 0.604 0.428 0.487 0.628 0.522 0.570 0.623 0.522 0.561
X+DP 0.600 0.406 0.466 0.651 0.500 0.565 0.616 0.510 0.550
X+DPR 0.582 0.415 0.475 0.655 0.503 0.569 0.621 0.516 0.557
X+WN 0.585 0.415 0.472 0.630 0.511 0.565 0.621 0.511 0.554
X+AR 0.600 0.415 0.476 0.631 0.512 0.565 0.624 0.512 0.555

Table 4.3: Classification Models with Contextual Features. X:U+PS+SR, DP: Full dependency
parse features, DPR:Depency Parser by using only the relations as the feature, W2V: Word2Vec
similarities features, D2V: Doc2Vec similarities features, WN: WordNet features, AR: aspect
rating features, DepD2V: Dependency parser based embeddings features, Dep2V: Dependency
parser based similarity features

Method Macro Micro Weighted
P R F-1 P R F-1 P R F-1

X+W2V+Dep2V 0.607 0.426 0.489 0.671 0.515 0.582 0.640 0.524 0.568
X+Dep2V+DepD2V 0.611 0.429 0.491 0.662 0.523 0.585 0.654 0.523 0.572

Y=X+W2V+D2V 0.602 0.436 0.495 0.644 0.530 0.581 0.636 0.530 0.572
Y+WN 0.610 0.443 0.504 0.648 0.534 0.585 0.640 0.533 0.576
Y+WN+AR 0.606 0.440 0.499 0.643 0.530 0.581 0.637 0.530 0.573
Y+WN+AR+DPR 0.593 0.441 0.496 0.654 0.532 0.587 0.645 0.532 0.576
Y+Dep2V+WN+AR 0.614 0.434 0.496 0.671 0.522 0.587 0.642 0.532 0.575

Z=Y+DepD2V+Dep2V 0.609 0.438 0.500 0.661 0.529 0.587 0.654 0.529 0.576
Z+WN 0.613 0.436 0.496 0.660 0.527 0.586 0.652 0.527 0.575
Z+WN+AR+DPR 0.592 0.440 0.500 0.657 0.524 0.583 0.648 0.524 0.572
Z+WN+AR 0.609 0.437 0.494 0.663 0.531 0.590 0.654 0.531 0.578

Table 4.4: Classification Models with Combinations of Contextual Features. Y: X+W2V+D2V,
Z:X+W2V+D2V+Dep2V+DepD2V.

each of the reviews. Latent embedding features are less prone to noise which helped improve

the performance. On the other hand, shallow features (Aspect rating, dependency parses)

did not show improvement. DP feature, in particular, results in very large feature space, so

the classifier had a di�cult time learning each of the features and actually resulted in worse

performance. Aspect rating features had mixed performance, and there were no real gain or

loss in performance in the classification task.

In the fourth step, we experiment with latices of contextual features to determine their

contributions to the overall classification performance and identify the specific best perform-

ing combinations. We list the results in Table 4.4.

We see that both embeddings methods, unigram based and dependency based, consistently

show improvements over the baseline model. Furthermore, a combination of W2V similar-

ity model and D2V consistently shows improvement over that of D2V similarity model and

DepD2V. This seems to show that, for this task, the semantics of the words in a comment is

still more important than the dependency structure of that comment. Further, the combi-

nation of the two embedding models (DepD2V and D2V) and two similarity models (W2V
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Figure 4.2: Relationship between F-1 value and the frequencies for each labels

and Dep2V) improves performance over those that use only one embedding model or one

similarity model. In the table, as shown by micro and weighted F-1 scores, the combination

(W2V, D2V, Dep2V, DepD2V, AR, WN) generated the best performing model. This is the

multi-class classification model we will use.

In the fifth step, we evaluate the multi-class classification model on all the 23 classes in our

taxonomy of patient feedback and present the results in Table 4.5 and Figure 4.2. We find

several interesting insights. Overall, the system performed best on Professionalism and Tem-

perament and least on O�ce Environment, Other, Insurance Coverage, Follow, Appointment

Access, Trust, Referral. This is because, with higher occurrences, the classification system

had more examples to learn from, hence, had better classification accuracy; the opposite

explains the results for the lowest frequency classes. At the same time, there are several

notable exceptions. For example, Pain, Put-at-ease, Good with Kids, Cost of Care have

high accuracy even with low frequencies of occurrence. Comments discussing these classes

use many di↵erent terms, and have long text representations to learn from. At the other

extreme, when discussing Clinical Skills, patients seem to use a short list of general words

instead of talking about the specific skills of their medical personnel.

Experiment 4.2: Semantically-Informed Multi-Class Classification Model

The patient feedback taxonomy we developed proposed a list of 23 classes that we then

grouped semantically into eight multi-classes, e.g. Interpersonal Manner = {helpful, temper-

ament, trust, put-at-ease, good-with-kids}. We wish to test whether by adding this semantic
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Class Precision Recall F-1 Frequency

Helpfulness 0.645 0.522 0.569 962
Temperament 0.741 0.705 0.721 1,882
Trust 0.612 0.272 0.361 213
Put-at-ease 0.816 0.527 0.612 243
Good with Kids 0.663 0.381 0.531 116
Communication Skills 0.587 0.435 0.467 616
Explanation 0.685 0.538 0.585 472
Follow-up 0.518 0.221 0.306 180
Empathy 0.632 0.520 0.600 822
Professionalism 0.662 0.674 0.666 1,955
Clinical Skills 0.455 0.300 0.368 714
Perceived Success Treatment 0.573 0.419 0.503 539
Pain 0.779 0.639 0.702 215
Medication 0.647 0.372 0.502 197
Appointment Access 0.523 0.292 0.330 150
Response Time 0.719 0.556 0.630 420
Time Spent 0.730 0.614 0.667 500
Referrals 0.705 0.284 0.366 132
Insurance Coverage 0.443 0.155 0.261 80
Cost of Care 0.768 0.479 0.574 251
O�ce Environment 0.483 0.111 0.165 89
Overall Patient Experience 0.697 0.547 0.611 884
Other 0.339 0.160 0.254 287

Table 4.5: Per topic performance for Unigram + WN + Word2Vec + Doc2Vec + Dep2Vec +
DepD2Vec + Aspect Rating model.

knowledge from this two-level hierarchy we improve our understanding of patient comments

and, thus, increase the classification performance of our multi-class classifier. We start by

taking both our baseline (X) and the highest performing models (Z+WN+AR) and evaluate

them on classifying our meta-classes. Consistent with our previous analyses above, we find

that the (Z+WN+AR) model improves the baseline classification (Table 4.6). Further, if

we compare these results with those in Table 4.4 (Z+WN+AR model), we also confirm that

the multi-class classifier with semantic knowledge (over multi-classes) is significantly better

as shown in all the Macro and Micro performance measures, e.g. F-1 is 0.75 at the multi-

class level as compared to 0.59 at the class level. This suggests that semantic knowledge is

valuable for a high performing multi-class classification system and is further shown in the

high performance measures for each of the nine multi-classes (Table 4.7), where all but two

multi-classes (by far the most infrequent) show F-1 between 0.553 and 0.865.
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Method Macro Micro Weighted
P R F-1 P R F-1 P R F-1

X 0.617 0.522 0.554 0.774 0.713 0.742 0.742 0.708 0.717
Z+WN+AR 0.691 0.549 0.593 0.785 0.718 0.750 0.759 0.718 0.733

Table 4.6: Performance of the Meta-class Classification System. Best baseline model (X) and best
performing multi-class classification model (Z+WN+AR)

Taxonomy Meta-Classes Precision Recall F-1

Interpersonal Manner 0.796 0.849 0.821
Communication 0.790 0.624 0.697
Technical Competence/Skills 0.814 0.923 0.865
Scheduling 0.785 0.651 0.711
Medical Plan 0.822 0.422 0.553
Practice Environment 0.483 0.111 0.165
Other 0.429 0.105 0.168
Overall Experience 0.746 0.538 0.625

Table 4.7: Classification results for the Meta-classes of Patient Experience. Z+WN+AR
multi-class classification model

As another way to test whether the semantic knowledge improves classification, we also

compare the classification of meta-classes with the classification across classes, but grouped

in groups of 2, 3, 5, and all the way to 23. Our hypothesis is that the semantically-informed

meta-class classification, as opposed to any ad-hoc class grouping, will have higher perfor-

mance. This is because by grouping classes based on their semantic similarities, rather than

with any ad-hoc strategy, our meta-classes will be more di↵erent (meaningfully di↵erent)

from each other, and this means less ambiguity in training our classifier. Indeed as shown in

Table 4.8 grouping classes by their frequencies, as was done in previous literature, is worse

o↵ than grouping them semantically. In fact, our semantic meta-class classifier performs

better than even a 5-way classification (grouping the top most frequent 5 classes), the F-1

measure of the Z+WN+AR system in Table 4.7 is 0.75 as compared to an F-1 of 0.70 for

the model with the 5 most frequent classes.

4.4 ANALYSIS

4.4.1 Analysis of Results

With our final multi-topic classification model, we perform several analyses on the patient

experience dataset. First, we compare our model and classification results with those in
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Num Macro Micro Weighted
Classes Method Precision Recall F-1 Precision Recall F-1 Precision Recall F-1

2 X 0.787 0.837 0.811 0.787 0.837 0.811 0.787 0.837 0.811
3 X 0.772 0.727 0.723 0.741 0.757 0.739 0.739 0.757 0.746
5 X 0.680 0.630 0.652 0.696 0.664 0.680 0.693 0.664 0.677
7 X 0.605 0.525 0.559 0.647 0.581 0.612 0.639 0.581 0.606
9 X 0.609 0.517 0.556 0.664 0.562 0.609 0.654 0.562 0.599
11 X 0.603 0.498 0.542 0.633 0.548 0.587 0.626 0.548 0.581
23 X 0.594 0.413 0.473 0.635 0.511 0.566 0.626 0.511 0.555
2 Z+WN+AR 0.795 0.869 0.830 0.795 0.869 0.830 0.795 0.869 0.830
3 Z+WN+AR 0.746 0.747 0.745 0.761 0.776 0.768 0.759 0.784 0.769
5 Z+WN+AR 0.708 0.647 0.674 0.720 0.684 0.701 0.718 0.684 0.698
7 Z+WN+AR 0.649 0.553 0.594 0.679 0.606 0.640 0.672 0.612 0.637
9 Z+WN+AR 0.651 0.540 0.586 0.677 0.589 0.630 0.671 0.589 0.623
11 Z+WN+AR 0.659 0.531 0.586 0.675 0.574 0.620 0.670 0.574 0.614
23 Z+WN+AR 0.609 0.437 0.494 0.663 0.531 0.590 0.654 0.531 0.578

Table 4.8: X: unigram model (stopwords removed and words stemmed) vs best performing models
as number of classes are increased. U: Unigram features D2V: Doc2Vec embedding features,
W2V: Word2Vec word similarity features, DepD2V: Dependency Doc2Vec features, Dep2V:
Dep2Vec features, WN: WordNet features, AR: Aspect Rating features,
Z:U+W2V+D2V+DepD2V+Dep2V

the previous literature. Then, we present a number of findings and further discuss their

implications on academic research. We also explore their significance on managing patient

experience in the US healthcare marketplace.

Comparing with the previous research of Doing-Harris et al., 2016 [25], our multi-class

classifier with enriched features performs better on 5 out of 7 common classes/topics, in

spite of classifying threee times as many classes (23 compared with 7) to classify3. Our

model, based on SVM with the one-vs-rest schema and a combination of seven text features,

uses 8,437 unigrams, 12 sentiments, 14 WordNet, 200 Doc2Vec, 200 DepDoc2Vec and 80,190

Dependency features. We attempted to mitigate the possibility of overfitting by labeling

tokens that appear less than 30 times as <unk>.

Label Our System Doing-Harris et al. [25]
P R F-1 P R F-1

Explanation 0.685 0.538 0.585 0.90 0.64 0.74
Appointment Wait/Response 0.719 0.556 0.630 0.54 0.60 0.57
Access/Time spent 0.730 0.614 0.667 0.44 0.64 0.52
Practice Environment 0.483 0.111 0.165 0.24 0.57 0.34
Friendliness (Temperament) 0.741 0.705 0.721 0.32 0.57 0.40
Empathy 0.632 0.520 0.600 0.18 0.14 0.16
Overall 0.697 0.547 0.611 0.85 0.27 0.41

Table 4.9: Performance Comparison of Our Multi-class Classification System VERSUS
Doing-Harris et al. [25].

First, as Table 4.9 shows, some topics are better classified than others, e.g. Friendli-

ness/Temperament, Access/Time spent. This suggests that the task requires a wide range

3While both are patient feedback studies, they used di↵erent models (Doing-Harris et al., 2016: Näıve-
Bayes; Our classifier: SVM) and datasets and thus, are not directly comparable.
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of text representation levels, from shallow (i.e., lexical) to very complex (i.e., discourse and

pragmatics, and even word knowledge required for textual reasoning). Indeed, a manual eval-

uation of the results shows that people discuss the well classified topics by using adjectives

easily captured by our N-grams and WordNet features (Table 4.10 and Table 4.11): e.g., em-

pathy is all about the empathetic traits of the medical personnel seen indicated by adjectives

like compassionate, considerate. Many of the top unigrams, not surprisingly, are indicative

of the topics of interest. For example, money related words, those related to professionalism,

and those that pertain to top unigram words for cost, professionalism, and time spent and

response time, respectively. Interestingly, top unigram features for ‘communication skills’

had numerous ‘listen’ related terms, whereas those of ‘explains’ had terms which required

the doctor to speak, or to explain. Consistent with literature that indicates that patient

satisfaction increases the more the doctor listens [142], patients perceived doctor listens well

to be good communicators. Because the topics are, at least on surface, sentiment agnostic,

many of the topics contained both positive and negative polarity words amongst top unigram

features. For instance, both ‘professional,’ and ‘unprofessional’ were amongst top unigram

features for the topic ‘professional,’ ‘helpful,’ and ‘unfriendly’ for top helpfulness topic, and

for topic ease, there were ‘comfortable,’ and ‘uncomfortable.’ Sentiment agnostic topics were:

professional, temperament, helpfulness, overall experience, perceived treatment, ease. Simi-

larly, there were other topics which tend to predominantly have unigrams from single (either

positive or negative) sentiments. Empathy or communication skills, for instance, had pre-

dominantly positive unigram features. Topics whose top unigrams had predominantly single

sentiment were: empathy, communication skills, time spent, response time, trust, pain. We

later investigate if these had some correlations with aspect ratings as well.

Because our dataset is obtained from an online source, it was not surprising to see terms

that one would expect in an online domain. Examples of these were ‘meds,’ ‘appt,’ ‘ins,’

which were shortenings of medication, appointment, and insurances, respectively. Further-

more, some topics captured synonyms of the most predominant terms. For instance, ‘Cost’

had captured many forms of money, such as $, money, bill, billing, charges, refund, cost,

copay, cost, and bucks.

Some of the top unigram features were shared amongst multiple topics. One such example

is ‘knowledgeable’ which appeared with the topics professional and clinical skills, ‘time’,

which appeared with both response time and time spent, and ‘help,’ which appeared with

both helpfulness and empathy. These seem to indicate that some labels may appear together,

but we leave this up for later studies on how this information can be used to further improve

the classification performance.

Having a clear list of words that summarize a topic is very helpful for hospital and health-
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care administrators as it provides a snapshot of how patients perceive the medical care they

receive as well as the medical sta↵ providing that care. Negative descriptions like “rude”

immediately directs the hospital to institute personnel training to address this attitude prob-

lem. Likewise, seeing positive descriptions is an indication to the hospital to continue its

sta↵ management direction.

Class Top Unigram Features

Helpfulness helpful, help, helped, helping, unfriendly, best, impatient,
ache, uncaring, client, date, phenomenal, beyond

Temperament friendly, rude, abrupt, arrogant, kind, attitude, especially,
knowlegeable, polite, best

Trust trust, honest, admire, intelligent, realistic, insightful, proac-
tive, $, hands, trusted, ago, medi-cal, praise, final, ethical

Put-at-ease ease, comfortable, uneasy, safe, well-informed, feel, a↵ordable,
uncomfortable, calm, confident, input, upbeat, even, fearful,
well

Good with Kids kids, children, son, daughter, adults, babies, boys, daughters,
old, child, really, thoughtful, respect

Communication Skills talk, listen, listens, communicator, listener, listening, easy,
clinician, diagnostician, sits, shooter, information, relate,
acute

Explanation explain, explains, explaining, questions, explained, $, level,
tricare, everything, logical, details, evaluate, answered, part

Follow-up follow, followup, called, responds, pre-natal, prenatal,
phoned, show, set, call, calls, pre-op, pick, picked, work

Empathy cares, caring, compassionate, considerate, compassion,
warmth, genuinely, help, concern, left, empathetic, concerned

Professionalism professional, knowledgeable, deal, e�cient, unprofessional,
birth, submit, encourage, thorough, today, make, bled, at-
titude

Clinical Skills diagnosis, knowlegable, team, identify, newest, fine, birth,
quite, recognize, diagnose

Perceived Success
Treatment

awesome, eliminated, without, treated, waiting, prostate, re-
search, may, ridiculous, honest, results, cracked

Table 4.10: Top Unigram Features Associated with each Labels for 23 labels

Second, as we focus our analysis on the topics that are classified well, like Temperament,

Time spent, we discover that our model reached this performance grace to some text repre-

sentations, e.g. WordNet, that are particularly valuable in understanding patient comments.

For example, through WN, the model also learns new concepts like ’health professional’. We

take this learning and extend the WN analysis to the other topics modeled then extract all
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Class Top Unigram Features

Pain pain, traumatic, painful, cough, swelling, headaches, enjoy-
able, a↵ordable, discomfort, o�ce, fatigue, incomplete, visits,
friendly, useless

Medication meds, medications, medication, pills, prescribed, antibiotics,
drugs, even, rushed, worked, given, prescription, find

Appointment Access appointment, appt, appointments, actually, school, get, ses-
sions, day, manner, within, life, always, year, started

Response Time wait, waited, late, usually, time, us, waiting, empathetic, talk,
knowlegable, know, concerned, scheduled, level, timely

Time Spent rush, rushed, time, spent, spends, judges, take, spend, dis-
tracted, taken, talk, takes, pushes

Referrals refer, referred, specialist, references, transfered, recommen-
dations, another, referals, transferred, assistance, encourage,
discourage, suggestions, refers

Insurance Coverage coverage, ins, company, medicare, companies, help, go, insur-
ance, n’t, check, fix, also, extremely, pediatric

Cost of Care $, charged, money, bill, billing, charges, worth, refund, one,
cost, copay, costs, pay, well, bucks

O�ce Environment o�ce, modern, filthy, dirty, dingy, room, know, busy, explains,
family, clinic, waiting, needs

Overall Patient Expe-
rience

recommend, answered, reccommend, highly, recommended,
unbelievable, reduction, busy, horrific, job

Other probably, far, commited, agree, leave, moved, edwards, think,
pharmacy, maybe, richards, grandmas, every

Table 4.11: Top Unigram Features Associated with each Labels for 23 labels (Continued from
Table 4.10)

WordNet synsets amongst the top 100 most strongly associated features with a given topic

(Table 4.12).

In order to investigate into these features, we retrieved top 500 features for each topics (in

terms of learned weights), and listed all the WordNet features that appeared in Table 4.12.

There are some topics (professional, helpfulness, and kids) that did not have any WordNet

features in the top 500 features, hence we do not report them in the table.

With this, we discover that the topic of pain is further associated with ‘body part’, ‘medical

procedure’ and ‘emergency’, as patients discuss not only that they are in pain but also

mention the location of their pain (e.g. ‘head’ and ‘stomach’), the medical procedure they

were administered and the intensity of their pain. Moreover, we learn that patients also

seem to complain that the right medication was not administered, or that it happened

after a medical procedure. Two such example are: 1) “The nurse drew blood which did not
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hurt, but did cause awful bruising. Reckless!” and 2) “I was so sick, yet I had to call 2x

times to ask for antibiotics.” Such associations could be identified only because we allowed

hypernyms of given synsets to be included as feature sets. This analysis suggests that some

text representations are particularly beneficial in understanding comments in a healthcare

field and thus, we show here that, to some extent, WordNet is a useful text representation

in classification models of patient experience. Such associations could be identified only

because we allowed hypernyms of given synsets to be included as feature sets. Thus, it is

clear that some textual representations are particularly beneficial in understanding comments

in a healthcare field and thus, we suggest that WordNet is a useful text representation in

classification models of patient experience.

Class Top WordNet Features

Temperament health professional
Trust treatment, hospital room, drug, physical condition
Put-at-ease ill health, treatment, health professional
Communication Skills treatment, medical procedure, pain
Explanation physical condition, pain, health professional
Follow-up disease, hospital room, ill health, treatment, hospital
Empathy disease, hospital
Clinical Skills medical procedure, emergency, hospital room
Perceived Success
Treatment

ill health, physical condition, medical procedure, body part,
treatment, hospital room, hospital

Pain pain, emergency, drug
Medication drug, treatment, body part, ill health
Appointment Access emergency, pain, hospital
Response Time emergency, body part
Time Spent disease, treatment, physical condition
Referrals health professional, body part, hospital, emergency
Insurance Coverage treatment
Cost of Care pain, treatment, medical procedure
O�ce Environment body part
Overall Patient Expe-
rience

physical condition

Other emergency, drug

Table 4.12: Top WordNet Features

We see some obvious, and less obvious findings. Topics which involve treatment (medica-

tion, pain, or perceived treatment, clinical skills) all have medication or treatment related

WordNet concepts such as ill health, medical procedure, medication, pain, or treatment. On

the other hand, many of the interpersonal related topics had health professionals as its top
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WordNet features. These topics include temperament, explains, ease and referral. WordNet

concepts emergency and body parts often appeared on both treatment and interpersonal re-

lated topics, in part because these terms are used when clinicians explain the procedure (and

the body part where the surgery is being conducted), and when the procedure is actually

being done on the patient.

Third, we discover unexpected synsets in understanding how to classify some topics. Take

for example communication skills – based on its definition (Table 3.3), we expect to find

the synset health professional to be highly associated with the topic, since patients talk to

the medical personnel to learn about their symptoms and treatments, as in this example

comment: “Great doctor, he knows what he’s doing. I would recommend him to a friend..

The sta↵ was slightly rude on the other hand.” Rather, to our surprise, we find treatment,

medical procedure, and pain as the most strongly associated synsets. A manual inspection

of comments shows that patients tend to refer to doctors by their names or using pronouns,

which would not be captured by the ‘health professional’ synset.

Fourth, looking at the lower classification measurements, we see that some topics like

clinical skills are more di�cult to identify even when using our seven di↵erent features.

They would require not only more context but also more informative text representations

that allow us to perform reasoning. For example, for comments like:

“After an accident at work that herniated L-4,L5,S-1, I went to Dr. Cabot on a rec.

from a friend. He tried facet injections which were extremely painful and not helpful. He

seemed angry when I returned because they had in fact, made me worse. He scheduled a CT-

Myleogram. Did not use an IV to replace fluids. Sent me home with a migraine headache.

I laid in my bed for 12 days with a migraine. He refused to fix the problem and refused to

give pain meds. His unwillingness to do a blood patch allowed blood to seep into the spinal

canal. This created scar tissue. IT CAN NOT BE REPAIRED. 11 years later I had to have

surgery to try and repair. Ended up worse. I am now perm. disabled and in EXTREME

pain every minute. This man destroyed my life - literally. Do not let him treat any part of

your spine. You will wake up every day for the rest of your life in agony. Most days the

pain is so bad i want to die. Could have fixed it easily. You get what you pay for.”

It is clear that a unigram representation, even if enriched with semantic information (e.g.,

from WordNet), is not enough to capture complex topics of discussion like empathy. As has

been shown previously [143], the person providing the comment usually does not say directly

and explicitly that the behavior of the other was unempathetic for fear that his comment can

be viewed as pathetic, or that he feels sorry for oneself. Instead, complaining about a non-

empathetic clinician, is usually associated with a negative situation that is so uncomfortable

that the patient feels that it needs to be described. Correctly identifying empathy in patient
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comments, thus requires discourse-level representations that allow textual reasoning.

Fifth, we further investigated into aspect rating features. There are four aspects (knowl-

edge, sta↵, punctual, helpful) and three sentiments (positive, neutral and negative) for com-

ment. Similar to the previous section, we took top 500 features from each topic and listed

aspect related topics in Table 4.13.

Class Top Aspect Rating Features

Helpfulness Helpful - Positive, Knowledge - Negative
Explaination Knowledge - Neutral
Clinical Skills Knowledge - Negative, Helpful - Positive
Medication Helpful - Neutral, Knowledge - negative
Response Time Punctual - Negative
O�ce Environment Helpful - Neutral
Overall Patient Ex-
perience

Knowledge - Neutral, Helpful - Positive

Other Helpful - Negative, Helpful - Neutral

Table 4.13: Top Aspect Rating Features. Takes a form of Aspect - Sentiment. Aspect can be one
of knowledge, helpful, punctual, or sta↵

Aspect rating features were often not among top 500 features for a given topic. However,

for those that did have aspect ratings, we find some interesting trends. Patients were more

likely to rate punctuality negatively if they were talking about response time. Those who

provided positive helpfulness and negative knowledge aspect ratings were more likely to be

talking about helpfulness in the free-form comment. This is in-line with what we noticed

in the Unigram feature analysis, where the top unigram features for this topic contained

both positive and negative sentiment terms. The same trend held for the topic ‘overall

experience’ as well. We further noticed negative aspect were more likely to be associated

with topic rather than positive aspect. There were only three positive aspect features related

to topics, whereas there were a total of ten neutral or negative aspect features.

4.4.2 Comparison with Latent Aspect Rating Analysis Classifier

We further compared whether or not an unsupervised method can still learn to classify each

topic in patient experience taxonomy. For this purpose, we picked LARA [144], which can

learn topic representation with minimal supervision. LARA learns representative keywords

for each topic from an initial set of seed words. Researchers are expected to come up with the

initial set of keywords since these guide how the algorithm selects representative keywords

for each topic. An advantage of the method is its ability to identify which topics are present
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in a given text without training data. The advantage of the method allows researchers to

rapidly explore new sets of datasets since annotations are not necessary to explore a given

corpus. LARA is considered a robust unsupervised approach that can learn to identify topics

in a text.

Because seed words are crucial for the performance of LARA, we conducted two di↵erent

runs based on the seed words. First, we selected seed words based on the name of each class

and its variants. As an example, variants of the class ‘helpful’ are ‘help,’ ‘helps,’ ‘helpful,’

and ‘helpfulness.’ The assumption in this run is that researchers do not have any knowledge

of each topic in the taxonomy; hence, selects seed words based on the name of the class.

We denote this run as LARA-1. The second run leverages the top unigrams for each topic,

learned by our classifier, as shown in Table 4.10 and Table 4.11. The assumption here is that

we have an oracle that knows which seed words best represent each topic. The second run

represents the best case scenario for LARA on our dataset. We label this run as LARA-2.

We compare F-1 scores of LARA-1 and LARA-2 against the supervised method, which we

denote as Our Method. The results are shown in Table 4.14

Method Macro Micro Weighted
P R F-1 P R F-1 P R F-1

Our Method 0.594 0.413 0.473 0.635 0.511 0.566 0.626 0.511 0.555
LARA� 1 0.245 0.541 0.257 0.196 0.447 0.273 0.386 0.447 0.332
LARA� 2 0.303 0.603 0.356 0.301 0.526 0.383 0.442 0.526 0.422

Table 4.14: F-1 score comparison for our method (on unigram features), LARA with seed words
based on child-class label variants (LARA-1), and LARA with oracle seed words (LARA-2).

We notice that somewhat unsurprisingly, our proposed classifier, which is a supervised ap-

proach, performs better than LARA. A more interesting finding is the performance di↵erence

between the case where we have an oracle that knows the most representative seed words,

versus the case where we do not. We notice significant performance gains on the oracle set of

seed words (LARA-2) over the topic variant seed words (LARA-1). The performance gains

of LARA-2 indicate that our proposed classifier and LARA have potentials to complement

each other in further understanding patient experience topics in di↵erent settings. Take, for

example, the researchers wish to explore patient experience topic in a di↵erent, unlabeled

corpus such as online health forums. The typical supervised approach may perform poorly

on a dataset that it is not trained on. The new dataset may follow di↵erent feature distribu-

tions than those from which the classifier was trained, causing degradation in performance.

On the other hand, LARA can use the top unigrams learned from our supervised approach

as its seed words, as we have done in LARA-2. LARA-2 can then learn other words that are

indicative of each topic in the new corpus, ultimately using these to classify unseen texts
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in a di↵erent type of corpus. Depending on the findings from this new corpus, researchers

can further decide to manually annotate training data on the new corpus, which will further

improve classification performance. For this thesis, however, we show new directions on how

LARA and our approach can complement each other, but leave the actual exploration of

this as potential future research work.

4.4.3 Error Analysis

We first conducted error analysis based on whether or not the number of gold labels

present in a given review impacted the classification performance. To conduct this analysis,

we grouped the RateMD corpus into two separate groups. The first group had at most

3 classes, whereas the second group had at least 4 classes per review. We picked 3 as

a demarcation point because the mean number of classes per review was 3.32; hence, we

divided up the corpus based on this number. For all the methods, the first group, which had

three or fewer classes had an F -1w, F -1micro, and F -1macro scores of 0.552, 0.560, and 0.481,

respectively. For those that had 4 or more classes, F -1w, F -1micro, and F -1macro scores were

0.603, 0.617, and 0.515, respectively. We were initially surprised at this result, seeing that

those with more labels in a given review had better classification performance, but upon

careful analysis, we found that more classes mean misclassifying one label had less of an

impact on classification performance than the ones with a small number of classes. In other

words, if a review text has 8 classes, then misclassifying one or two of these has less of an

impact than misclassifying those with 3 classes.

We next analyzed whether the length of the sentence had an impact on the classification

performance. Again, we grouped the corpus in two, one which had at most 65 words, and

another which had more than that number of words. This number was picked because an

average review had 65.98 words. We found that the classifier had more di�culties with

longer texts than with shorter ones (F -1w, F -1micro, and F -1macro scores of 0.594, 0.611,

and 0.489, respectively for short texts, versus F -1w, F -1micro, and F -1macro scores of 0.562,

0.571, and 0.493, respectively, for long texts). Longer texts contain more unique words

than shorter ones, which increases confusion for the classifier. We further noticed that

the unigram-only model performed quite a bit worse on longer texts than on shorter ones,

compared to our proposed method (0.527, 0.539, 0.459 for F -1w, F -1micro, and F -1macro,

respectively, for short texts). On the other hand, the unigram-only model had classification

performance comparable to that of the best performing approach (0.582, 0.600, 0.493 for

F -1w, F -1micro, and F -1macro, respectively, for long texts). We see that the gap between the

best performing model and the unigram model was around 0.01 for shorter texts, whereas it
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was 0.04 for longer ones. Our model performed better than the unigram models on longer

texts by either 1) reducing the corpus into word embedding subspace, allowing the classifier

to train in this subspace properly, or 2) expanding upon similar words, both semantically

(Word2Vec) and syntactically (Dep2Vec), which increases the number of times unigram

features are trained, and expands upon unigrams that did not appear frequently on training

dataset. Furthermore, both DepD2Vec and Doc2Vec map a given corpus into an embedding

document space, capturing complex interactions between di↵erent words in a corpus.

Consider the following example with which we demonstrate how to compare the pefor-

mance of the unigram model to that of our proposed model:

“WONDERFUL OBGYN! He’s a terrific practitioner. Kind and gentle, intelligent, great

diagnostician, too.”

Gold labels for the above snippet are ‘Clinical Skills,’ ‘Helpfulness,’ ‘Professionalism,’ and

‘Temperament.’ Unigram model predicted only the ‘Temperament’ class. On the other hand,

our model was able to predict three out of the four classes (‘Helpfulness,’ ‘Professionalism,’

and ‘Temperament’). Part of the reason our model performed better than the unigram-only

approach is that our model, unlike the unigram model, can utilize words that the classifier

may not have seen a su�cient number of times (for instance, diagnostician and OBGYN).

On the other hand, our combined model tended to under-predict when the label did not

appear frequently in the training set, and over-predicted those that appeared often. Classes

such as ‘Trust’ or ‘O�ce Environment,’ both of which did not appear often had a very

low recall. On the other hand, frequently occurring labels such as ‘Professionalism,’ or

‘Temperament’ often were predicted more often than appropriate. Consider the following

example:

“I was scared when I went to see Dr. Rajpal and he put me at ease and explained my MRI.

I have the utmost confidence in him. He is very caring and personable.”

Our model predicted five classes, ‘Ease,’ ‘Empathy,’ ‘Explanation,’ ‘Professionalism,’ and

‘Temperament.’ However, the gold labels were ‘Ease,’ ‘Empathy,’ ‘Explanation,’ ‘Tempera-

ment,’ and ‘Trust.’ One class that is conspicuously missing is the ‘Trust’ class. Furthermore,

even though the ‘Professionalism’ class was not a gold label, our classifier still predicted the

class. This class appeared the most frequently, and the classifier often erred on the side of

predicting than not predicting.

Furthermore, our model is not capable of capturing complex text representations that

require utilizing external knowledge. In such a scenario, word-based representations are

not su�cient because words themselves do not represent a given topic. Instead, it is the

combination of word phrases that represent a topic. To accurately infer a topic from a given

phrase, the classifier needs outside knowledge.
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Consider the following snippet:

“Dr. E. is very professional. He gives real advice, listens without judgment, and is ex-

tremely knowledgeable about the latest in medications.”

In the above snippet, ‘listens without judgment’ corresponds to the classes ‘Communica-

tion Skills’ and ‘Empathy.’ Furthermore, ‘knowledgeable about the latest in medications’

does not mean that the patient is talking about the drugs that were prescribed. Gold labels

for the above snippet are ‘Communication Skills,’ ‘Empathy,’ and ‘Professionalism.’ Our

classifier predicted ‘Medication’ class and failed to predict ‘Empathy.’ Neither of the predic-

tions (or lack of) is correct. For the classifier to correctly predict ‘Empathy,’ it would need

to know that ‘listens without judgment’ corresponds to ‘Empathy.’ Each unigram feature

(listens, without, judgment), however, does not capture the class ‘Empathy.’ It is only by

combining the three words into the phrase that it amounts to ‘Empathy.’ To capture this,

however, the classifier needs an external database of what constitutes empathy, which our

model does not incorporate.

Our classifier also had a di�cult time with labels that were similar to each other, or cases

where annotators could have assigned a topic one way or the other. For example, consider

the following snippet:

“She is never on time no matter what time of day you book an appointment. For a 5 minute

appoinment, plan on spending 2 hours in her o�ce. She is very knowledgeable about what

she does, demands perfection as an end result, but has trouble communicating to us regular

people not it the industry. She also talks super fast, and has frequent sta↵ turnover.”

Gold labels are ‘Communication Skills,’ ‘Professionalism,’ ‘Response Time,’ and ‘Time

Spent.’ Our classifier, on the other hand, predicted ‘Communication Skills,’ ‘Explanation,’

‘Response Time,’ and ‘Time Spent.’ The class, ‘Explanation’ was not predicted by our

classifier. On the one hand, this is perfectly reasonable - the phrase ‘trouble communicating

to us regular people not it the industry’ indicates that the doctor was not good at explaining

concepts. On the other hand, according to the annotation guideline, the topic ‘Explanation’

is assigned if it pertains to whether the doctor is explaining some concept or not, rather

than the communication skills itself. The above snippet describes more about the doctor’s

communication skills than how well she is at explaining concepts. However, our classifier

was unable to pick up on these subtleties.

Finally, our classifier had di�culties classifying texts with typos – in particular, those that

have multiple gold labels and are critical in classifying a review text into one class or the

other. Consider the following snippet:

“He was a great Doctor to deal with. Fixed my incisional hernia. Great bedside manner. I

would recomend him to anyone. Has a great sense of humor. Has always run ontime. Sta↵
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are always nice and helpful.”

In the above snippet, the gold labels are: ‘Helpfulness,’ ‘Overall Experience,’ ‘Perceived

Treatment,’ ‘Professionalism,’ ‘Response Time,’ and ‘Temperament.’ Our classifier, on the

other hand, predicted ‘Helpfulness,’ ‘Overall Experience,’ ‘Professionalism,’ and ‘Tempera-

ment.’ We notice that the classifier, in particular, failed to predict ‘Response Time’ even

though there is a time-related unigram (ontime). However, the patient did not correctly

spell the word in the review snippet. The patient should have written, ‘Has always run

on time,’ rather than ‘Has always run ontime.’ However, this typo (ontime instead of on

time) proved to be enough for our classifier to not predict ‘Response Time’ class.

4.5 DISCUSSION

We started this chapter with a question: can we utilize patient-generated texts to under-

stand patient experience? More precisely, we wanted an automated approach to identifying

what topics patients post in patient-generated texts. Furthermore, our next goal was to

further investigate why patients write about a given topic by analyzing the word usage of

each topic. However, simply utilizing a bag-of-words model is not su�cient to understand

patient-generated texts. Each word has a di↵erent semantic representation, where some

are similar to each other, and others di↵erent. Bag-of-words models, however, are agnostic

to how similar or di↵erent the two words are, so we cannot properly capture the corpus

characteristics with this model.

To address the challenges in identifying and analyzing patient experience topics in patient-

generated texts, we first proposed eight text features designed to enrich the review corpus.

The features can roughly be divided into three di↵erent approaches: Surface Features, which

include unigram, aspect ratings, and dependency parses; Word Enrichment Features, which

include retrieving top k similar words via Word2Vec and Dep2Vec, and WordNet; Latent

Embedding Features, which include latent embedding space represented by Doc2Vec and

Dep2Vec. Surface Features generally had minimal impact on improving the performance of

the algorithm over unigram models. In fact, dependency parses degraded the performance.

However, both Word Enrichment Features and Latent Embedding Features improved the

classification performance.

With a better approach to understanding and classifying patient experience topics, we

analyzed the two immediately interpretable features: unigram and WordNet features. The

analysis was conducted on all the topics covered under patient experience taxonomy. We

provided some intuitive and counterintuitive analysis by analyzing these two features. To

the best of our knowledge, we are the first to conduct such a thorough analysis of the patient
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experience from patient-generated texts, and the first to answer ‘how’ and ‘why’ patients

express each topic.

Because annotation is a laborious process, we were also curious if o↵-the-shelf clustering

algorithms can identify patient experience topic without supervision. Unfortunately, cluster-

ing algorithms did not identify these topics. While the finding is discouraging, because the

annotation process was based on randomly sampled patient reviews, we believe the classifier

will still perform well on unlabeled patient review texts. However, we did not verify the

classification performance outside of the annotated dataset.

Finally, in this chapter, we assumed that topics were independent of each other. While

such assumption is beneficial when conducting the analysis of each topic, patients do not

write reviews and consider each topic in isolation. To better understand patient experience,

we also need to characterize how topics co-occur.
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CHAPTER 5: TOPIC INTER-DEPENDENCIES IN PATIENT
EXPERIENCE TAXONOMY

In this chapter, we first explore whether a single topic or multiple topics should be assigned

to each patient-generated text. If there is a single topic per patient-generated text, the

problem becomes a single-label multi-class classification task. The goal is to find a single

topic that best fits the patient-generated text. On the other hand, if there are multiple

topics per patient texts, the problem becomes a multi-label multi-class classification task.

We argue that the patient-generated texts are best represented as a multi-label multi-class

problem.

We then explore how topics may be dependent of each other. We believe there are two

types of topic interdependencies. First, there may exist group of topics that are semantically

similar to each other. For example, ‘Helpful’ may be semantically similar to ‘Temperament.’

There are eight di↵erent semantic groupings in patient experience taxonomy which are re-

ferred to as a ‘meta-class.’ To understand the relationship between topics, we first explore

how topics within a given meta-classes may be interdependent of each other.

Second, semantically di↵erent topics – i.e., those that belong to di↵erent meta-classes may

still be interdependent of each other. As an example, a patient may view a doctor who didn’t

spend time with him/her to be unhelpful. The topics represented in this case are ‘Helpful’

and ‘Time spent.’ These two topics are not semantically similar to each other, i.e., they do

not belong to the same meta-class.

To understand topic inter-dependencies, we designed a model that explores the two sce-

narios in mind. By understanding how the topics interact with each other, we gain further

understanding of patient-generated texts and their relationship to patient experience taxon-

omy.

5.1 INTRODUCTION

A patient’s experience has a huge impact on his or her health outcome [5–7]. Positive

patient experience leads to not only therapeutic experience but also trust and understand-

ing between clinicians and patients. These a↵ect adherence to treatment (such as taking

medication), increased access to care, and a better understanding of underlying symptoms.

Traditionally, measuring patient experience was conducted by hospital surveys, most no-

tably HCAHPS [107, 145–147] which is the nation’s first standardized patient survey. The

survey asks discharged patients 27 standardized questions about their hospital stay. Of

these, 18 core questions pertain to critical aspects of patients’ hospital experiences which
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Question Type Example

Communication with nurses and
doctors

During this hospital stay, How
often did nurses treat you with
courtesy and respect?

Cleanliness and quietness of the
hospital environment

During this hospital stay, how of-
ten were your room and bathroom
kept clean?

Responsiveness of hospital sta↵ How often did you get help in get-
ting to the bathroom or in using
a bedpan as soon as you wanted?

Pain management During this hospital stay, did you
have any pain?

Communication about medicines During this hospital stay, were
you given any medicine that you
had not taken before?

Discharge information During this hospital stay, did you
get information in writing about
what symptoms or health prob-
lems to look out for after you left
the hospital?

Overall rating of hospital Using any number from 0 to 10,
where 0 is the worst hospital pos-
sible and 10 is the best hospital
possible, what number would you
use to rate this hospital during
your stay?

Recommendation Would you recommend this hos-
pital to your friends and family?

Table 5.1: HCAHPS Question Types and examples

are shown in Table 5.11.

While the HCAHPS survey is an invaluable tool for understanding patient experience,

it has its limitations. These surveys are mandated only to hospitals subject to Inpatient

Prospective Payment System (IPPS) [46]. The system covers only acute patients. The

vast majority of the patients’ experiences are not acute; primary doctors are often the first

point of contact. There is no such standardized system in place which measures patients’

experiences for less acute type patients. Furthermore, survey ratings are not personalized.

What is good for one demographic (say, a relatively healthy patient, or a person of a specific

1Questions were reprinted from https://www.hcahpsonline.org/globalassets/hcahps/survey-
instruments/mail/jan-1-2018-and-forward-discharges/click-here-to-view-or-download-the-updated-english-
survey-materials.pdf
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Meta Classes Child Classes

Interpersonal Manner Helpful, Temperament, Trust, Put-at-
ease, Good with kids

Communication Communication Skills, Explanation,
Follow-up, Empathy

Technical Competence/Skills Professionalism, Clinical skills, Perceived
success treatment, Pain, Medication, Test
quality, Perceived bias

Scheduling Appointment access, Response/wait
time/punctuality, Time spent, Referrals

Medical plan Insurance coverage, Cost of care
Practice environment O�ce environment, Privacy, Location
Overall patient experience Overall patient experience
Other Other

Table 5.2: Meta classes and its corresponding child classes.

race) may not be suitable for another demographic [148, 149]. A way to see why patients

have rated and talked about a particular topic would mitigate these problems.

Online sources act as an excellent supplement to these surveys [26]. A considerable ben-

efit of review websites such as Yelp or RateMD is that, similar to online product reviews,

patients give not only numeric ratings to doctors, but also give a subjective opinion of their

hospital experience. There is richness in data that researchers can leverage to understand

what patients think about a given topic. To realize this goal, however, we first need to be

able to identify the topics of discussion. Unfortunately, patient reviews are unstructured

which makes it somewhat di�cult to extract topics from what patients have written. A

reliable method to identify topics that patients are talking about will be immensely helpful

in understanding patient experience.

In the previous chapter, we utilized a topic taxonomy of online patient reviews motivated

by past research works in this domain [20, 21, 25]. It consists of 27 topics which roughly

mirror those identified in the HCAHPS survey and as well as others mentioned by the

previous researchers. The 27 di↵erent topics which are referred to as child-classes each have

a single parent. The parent class of the child-class is denoted as a meta-class. Similar child-

classes are grouped in the same meta-classes, whereas those that are di↵erent are grouped

into a di↵erent meta-class2. We reprint the patient experience taxonomy in Table 5.2.

Topics from the patient experience taxonomy are then assigned to patient reviews, allowing

2While there are 27 topics in patient experience taxonomy, we built a classifier using only 23 topics since
the four topics (Test quality, Perceived bias, Privacy, and Location) appeared very infrequently. We follow
this convention and also use 23 topics in conducting experiments

59



researchers to further investigate di↵erent topics. There can be a single topic for a given

review instance or multiple topics. Single-label multi-class scheme is an instance where each

text is assigned a single topic. However, this does not adequately capture all the topics that

are discussed in a corpus. As an example, consider the following patient review: “The ability

to schedule an appointment so quick was great and appreciated. Doctor took time to go over

my pain and provide some routes to go with treatment.” In this review snippet, the patients

talk about appointment access and explanation skills, covering two topics. A single-label

multi-class classification scheme, by definition, can only pick one of the two topics, and hence

is not su�cient for the task. Assigning multiple labels to each review instance will better

represent the topics that are discussed in reviews.

In this work we claim that the topic classification problem in the patient review cor-

pus should be defined as a multi-label multi-class classification and not as a single-label

multi-class one. The multi-label multi-class classification (MLMC) problem is where each

review text is assigned multiple topics and is not limited to single labels, as is the case with

the single-label multi-class classification setting. Furthermore, in the past works that have

considered patient reviews as multi-label multi-class classification problem, researchers have

considered the topics to be independent of each other [20, 25]. However, this is an overly

simplified assumption and some topics may be closely related to each other. For example, it

can be the case that when a patient mentions that the doctor put him or her at ease, he or

she also trusts the doctor. Similarly, a patient who has expressed easy appointment access

to the hospital may also feel that the sta↵ was professional.

Furthermore, in classifying patient experience taxonomy on patient reviews as a multi-label

multi-class classification problem, there is a clear dependency between the meta-classes and

child-classes in the classification process. There are two types of dependencies. First, child-

classes are grouped into the same meta-class based on how similar they are to each other.

Inevitably, this causes the child-classes that share the parents to have strong correlations

with each other. If we are aware that a parent class exists for a given patient review (for

instance, ‘Scheduling’ meta-class), we are then confident that at least one child-class (for

example, ‘Appointment access’) of the said meta-class will exist.

Second, outside of the parent-child relationship, child-classes may still correlate with a

di↵erent meta-class. This occurs because patients may not only talk about similar topics, but

di↵erent sets of topics as well. For instance, a patient may start by talking about the clinical

skills of the doctor, along with the medication that they were administered. They may

further mention that the doctor had good communication skills, and explained the purpose

of each of the treatments. In the above case, across four child-classes that the patients

talked about (‘Communication skills,’ ‘Explanation,’ ‘Clinical skills,’ and ‘Medication’), two
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meta-classes were mentioned (‘Communication,’ and ‘Technical Skills’). By capturing the

dependencies between the child-class and the meta-class, we gain deeper representation of

the patient experience taxonomy and patient reviews.

In ultimately capturing the label dependencies, we explore our work in a deep neural

network framework because of its success in tasks ranging from classification in both im-

ages [150,151] and texts [152–154]. The success comes from the ability to automatically infer

natural feature representation; hence the reduction in feature engineering. A further benefit

of this framework lies in its inherent ability to add constraints to its objective function such

as those seen in Constrained Convoluted Neural Network [88]. Because the framework is

capable of capturing natural feature representations that may only have been obtained via

feature engineering, utilizing this framework forces the proposed constraints to be su�ciently

meaningful; otherwise it would already be captured by its input features.

Our contributions are as follows:

1. We show that in hierarchical multi-label multi-class classification tasks, enforcing the

structure (parent-child) of the taxonomy better captures label correlations. Meta-

classes group similar child-classes in patient experience taxonomy. By enforcing the

parent-child relationship, we are able to capture inherent correlations between child-

classes that exist within a given meta-class.

2. Rather than capturing correlations between the child-classes which is typically con-

ducted in the multi-label multi-class classification domain, we further demonstrate

that we can instead capture correlations between a meta-class and a child-class. Such

is beneficial especially in the case where a given child-class does not appear frequently

in a given corpus, but its meta-class appears frequently.

3. We propose using Deep Neural Network (DNN) to classify online patient review top-

ics. While the framework has been used in many di↵erent areas, to the best of our

knowledge, DNN has not been used in classifying patient experience taxonomies.

In Section 5.2, we discuss patient experience and patient reviews, followed by Section 5.3

where we provide justification for picking the multi-label multi-class classification approach

to capture patient reviews, and provide the framework that we use to capture class cor-

relations. We then discuss hypotheses and methods that we developed to capture topics

in patient reviews in Section 5.4. We evaluate our method in Section 5.5 and conclude in

Section 5.6.
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5.2 UNDERSTANDING PATIENT EXPERIENCE IN PATIENT REVIEWS

Online patient reviews are places where patients can describe their hospital experience and

are publicly available to be viewed by anyone else who comes to the website. An example

of such review websites is RateMD which is a leading patient review webpage. To write

reviews on this website, patients go through two separate reviewing process to provide their

experience at hospital. First, patients are asked to provide meta-information on five di↵erent

aspects which are helpfulness, punctuality, sta↵, and knowledge, and their overall experience.

Patients can assign anywhere from one star (dissatisfactory) to five stars (satisfactory) in

these aspects. Afterwards, patients are asked to describe their experience in free-response

format. These free response reviews typically have 65 words across 4 sentences. The vast

majority of these (95%) are 10 sentences or fewer.

Within the reviews, patient talk about numerous di↵erent topics, where we show com-

monly mentioned topics in Table 5.2. We refer to these as patient experience taxonomy.

The taxonomy is hierarchical in nature, where a parent topic (which we call meta-class)

contains multiple child topics (which we refer to as child-class). This is a fairly common

setup, where di↵erent researchers in patient experience have also proposed hierarchical tax-

onomy structure [20, 25, 27, 155]. On the other hand, these past works have not utilized the

hierarchical structure of the taxonomies, opting to either focus on meta-topics [27, 155], or

to focus on child-topics [25].This finding will become evident later on in this paper.

A given review instance can be assigned a single topic from patient experience taxonomy.

These are instances of single-label multi-class classification (SLMC), where each review doc-

ument is assigned a single topic. The benefit of this approach is that assigning a single topic

is a lot easier than assigning multiple topics since annotators only need to pick one out of L

labels. On the other hand, assigning multiple topics to a patient review is a lot more di�cult

since there are 2L possible label combinations. The task of assigning multiple topics to a

given review is defined as multi-label multi-class (MLMC) classification problem. In reviews

with multiple topics, some of the topics are bound to correlate. Capturing the correlations

is, by itself, a di↵erent set of problem that needs to be answered in MLMC classification

tasks. We explore these issues in the next section.

5.3 SINGLE LABEL AND MULTI-LABEL MULTI-CLASS CLASSIFICATION

The task of classifying multiple texts (i.e., documents) can broadly be defined as a single-

label multi-class (SLMC) classification or a multi-label multi-class (MLMC) classification

problem. In a single-label multi-class classification setting, the task is to find a single topic
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that best captures the characteristics of the given dataset. In capturing this single topic,

classifier fk(x) is trained for each topic. Here, x is the set of features and s = fk(·) outputs
a score s for the k-th classifier which represents the k-th label. The score s represents the

fitness of a given label k. Ultimately, the goal of the classifier is to find the best k such that

ŷ = argmaxk2[1,L]fk(x).

In the traditional NLP domain, many tasks have taken the form of the single-label multi-

class classification problem. Document classification is one instance of these, with the most

prominent example being the 20 newsgroup classification task. Furthermore, we can treat

parts of speech tagging (POS), semantic role labeling, or named entity recognition as a

single-label multi-class classification task. In these use cases, each text unit (i.e., word) is

assigned a single label amongst many possible labels (such as verb or noun in the case of

POS tagging).

In assigning topics from patient experience taxonomy to patient reviews, we notice that

some patient reviews do, indeed, have single topic for a given review snippet. As an example,

consider the following snippet:

“Dr. Le is very knowledgeable, especially about the hip problem I have.”

In this snippet, the patient primarily talks about how much the doctor knows, so it

corresponds to a single topic, ‘Clinical Skills.’ These types of reviews are suitable for single-

label multi-class classification schemes.

However, many of the reviews are not as simple as the above snippet. A more typical

review has multiple topics. In such cases, a review may have multiple child topics that

share the same meta-class, or may not share the same parent. Consider the following review

snippet:

“The ability to schedule an appointment so quick was great and appreciated. Doctor took

time to go over my pain and provide some routes to go with treatment.”

In this review snippet, the patient primarily talks about ‘Appointment Access,’ and ‘Time

Spent.’ Both of the topics fall under the ‘Scheduling’ meta-class, so, at least in the case of a

meta-class classification task, a single-label multi-class classification scheme is su�cient to

capture the topics discussed in the review.

Other reviews do not even share the same meta-class, as we illustrate in the following

snippet:

“Very pleased with the quick availability of an appointment and the results of the appoint-

ment. My teenage son was very comfortable with Dr. Le.”

In this snippet, the child topics are ‘Scheduling Flexibility’ and ‘Good with Kids.’ The

snippet has two child-classes and also two meta-classes, ‘Scheduling,’ and ‘Interpersonal

Manner.’
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We notice from the above example, that while SLMC representation is suitable for some

patient reviews, they do not encompass other types of reviews. In assigning topics according

to patient experience taxonomies, we found three di↵erent types of product reviews: reviews

which have only a single child-class, those that have multiple child-classes but single meta-

class, and those with multiple child-classes and multiple meta-classes. In framing patient

experience taxonomy in patient reviews as a single-label multi-class problem, there is a loss

of relevancy, where the prediction does not fully capture the gold label as we have shown in

the previous examples. Assigning multiple labels to a given review snippet is able to address

the above problem.

In the traditional NLP domain, while single-label multi-class classification tasks have

been adapted into a wide array of applications, these are not su�cient for many other use

cases, similar to what we have seen in assigning topics to patient reviews. Document tag

prediction tasks [156], where the goal is to predict which tag the document is associated

with, or product recommendations, are examples where single-label multi-class tasks are not

able to capture the given task. The goal of these tasks is to predict more than one tag in the

case of the document tag prediction task or to provide multiple product recommendations

for the product recommendation tasks.

To address the limitations of single-label multi-class problems, researchers have proposed

assigning multiple labels to prediction tasks. These are called multi-label multi-class classi-

fication tasks. These tasks assign multiple labels per dataset. More formally, we have

F (x) = (f1(x), f2(x), . . . , fL(x)) (5.1)

Each classifier, fi(x), i 2 [1, L] learns whether a label exists (positive) or not (negative),

independent of what the other classifier has learned. The goal is to find label representations

such that the distance between F (X) and gold label Y is minimized. From the above

formulation, perhaps the most intuitive multi-label multi-class classification approach lies in

binary relevance (BR) model [41]. The model assumes that there are no label correlations

between labels, and trains L separate classifiers, where L is the number of labels in the

dataset.

In the MLMC setting, however, as the number of classes increases, some subset of classes

will correlate. Of these, some set of labels are truly related to each other. In such cases,

the classifier should take the correlations into account. As an example, a patient who felt

that they had easy appointment access are also likely to feel that the sta↵ members were

helpful. By learning that appointment access and helpfulness are related, we gain a richer

understanding of the dataset. To encode these types of relations, we explore possible ways
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that are used to capture label correlations in the next section.

5.3.1 Capturing Label Correlations in Multi-Label Multi-Class Classification Task

Given the importance of capturing label correlations, we discuss several lines of work which

capture label correlations in the multi-class multi-label classification problem. The lines of

work we discuss are label powerset, space reduction, label chains, and explicit relationship

encoding. We briefly discuss each of the lines of work in this section.

Label Enumeration Approaches

A naive extension of BR is to encode all possible label correlations. Label powerset enu-

merates every possible label combinations [157]. More precisely, given set of labels L, label

power-set computes correlations for all l ✓ L. While this would capture label correlations,

such a powerset will be exponential in size, hence is not desirable. To mitigate the expo-

nential nature of label correlations, other researchers proposed taking k labels to compute

correlations [158]. More precisely, suppose there are labels L = {li}ni=1. These approaches

then take k subsets of labels L0 ✓ L and treat it as a class, which we denote as c(L0). It

then feeds c(L0) ✓ C into a single-label multi-class classification framework, where C is the

set of k subset. These approaches do not explicitly encode the inherent correlation between

the two classes, opting to treat a subset of classes as a single unit instead. Furthermore,

there is a loss in expressiveness since the framework can only predict k label subsets. If the

gold label for a text is such that lg 6✓ C, then there is no possibility that the classifier can

predict the true label.

Label enumeration approaches are unlikely candidate for capturing patient experience tax-

onomy. If we were to opt for the powerset approach, then there will be 223 label correlations

that we need to consider, and this is simply not feasible. Furthermore, the number of anno-

tated data in the case of patient experience taxonomies are generally in several thousands,

so opting for this approach will lead to overfitting into the dataset. On the other-hand, a

k-subset approach leads to losing out on important label correlations and we may end up

classifying a limited number, i.e., k number of label sets. However, this limits the usefulnesss

of exploring patient experience discussed in patient reviews and some topic combinations may

simply not be considered.
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Label Space Reduction

Due to both the exponential nature of powersets and limited labels that can be recom-

mended in k-subset approaches, researchers proposed, instead to perform label space reduc-

tion in the form of label embeddings [151,159,160]. These approaches embed low dimensional

label subspace instead of trying to learn all possible label combinations, leading to mitiga-

tion of scalability issue. Label embedding spaces may su↵er from loss of information since

instead of directly learning the classes, classifiers learn the embedding space. Furthermore,

embedding spaces often require a significant amount of data to properly learn reasonable

subspace projection, which may not always be available. Similar to what we have argued

in the previous section, because in many applications the reviews annotated with patient

experience often number in several thousands, label space reduction is also not a feasible

candidate for understanding label correlations.

Explicit Relationship Encoding

Rather than trying to learn all possible combinations of labels, or to project labels into a

label embedding subspace, another line of work learns the structure of the label correlations.

Some of these examples include label chains [161, 162] which treats classes in a multi-label

problem as sequences of classes to predict, or by statistical or loss function analysis of

label dependencies [86, 154, 163–165]. In label chain approaches, the task is transformed

into learning multi-label sequences. The labels are first ordered from the most frequently

appearing to the least. Then, the algorithm learns the sequence of labels, similar to parts-

of-speech tasks. The intuition is that by learning the sequences, the algorithm learns the

relationship between more frequently appearing labels to less frequently appearing labels.

Statistical methods, on the other hand, first compute statistical correlations between labels,

such as �2 or t scores. In computing the multi-class multi-label classification tasks, these

statistics are added on top of the prediction layer.

A di↵erent line of work opts to directly encode the hypothesized structure of the cor-

pus [88, 166–168]. In this line of work, domain specific constraints are leveraged to aid in

multi-label multi-class classification tasks. In one example, they allow only some labels to

co-occur together [88], and penalize the objective function when constraints are violated,

while another line of work encodes domain knowledge to aid in classification tasks [168].

The benefits of these line of works lie in better capturing the domain characteristics and

in requiring less labeled data since the hypothesized structure already encodes what the

algorithm, without guidance, would also have had to learn. Furthermore, by encoding the
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domain characteristics, we are able to test hypotheses directly onto the model, hence allow-

ing us to explore the corpus. Because of the benefits, we opt to encode label relationships

explicitly over the other approaches. In particular, we utilize the hierarchical structure of

patient experience taxonomy in automatically assigning topics to patient taxonomy.

5.4 METHOD

5.4.1 Hypotheses

In the previous section, we identified three types of patient reviews, where the first type

had a single topic, the second type had multiple child classes but a single meta-class, and

the third type had multiple child classes and multiple meta-classes. Furthermore, we have

argued, in the case of MLMC problem formulations, we need to also capture how labels are

correlated with each other.

In the first type of patient reviews, there is no need to worry about label correlations as

this is an instance of an SLMC problem. On the other hand, label relationships need to

be considered for the second and the third type of reviews. In the second type of patient

reviews, all of the child-classes share the same meta-class given a patient review. By explicitly

encoding the patient experience hierarchies, for example, that ‘Helpful,’ or ‘Temperament’

belong to the same meta-class ‘Interpersonal manner,’ we can limit the number of possible

child-classes that is possible for a given patient review. Algorithm can limit the search space

by first identifying the meta-class, and then penalizing the objective function if the model

predicts child-classes that do not belong to the identified meta-class. However, limiting

the search space is contingent on a well-formed patient experience taxonomy, in particular,

when meta-classes form a cohesive collection of child-classes. As an example, a meta-class

such as ‘Interpersonal manner’ is expected to contain child-classes that is related to the said

meta-class. If the taxonomy is not well formed – say, some class really should have been a

child-class of ‘Interpersonal manner’ but belongs to a di↵erent meta-class, or vice versa –

the meta-class representation becomes less cohesive. Linguistically, some of the child-classes

will have more similarity to a di↵erent meta-class – say, ‘Scheduling’ – than it is to the

meta-class of interest. Capturing the meta-class representation in such cases will prove to

be di�cult which will lead the meta-class classifier to induce more errors, which will then

propagate to child-class classification tasks.

In the third type of patient reviews, those that have di↵erent meta-classes and child-classes

in a given review, we capture the taxonomy characteristics by learning correlation between

a child-class and a meta-class. Let us consider the following review snippet:
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“Dr Le is very professional and pleasant. She has a very caring demeanor and listens. I

highly recommend Dr Le if you are looking for a healthcare provider.”

In this snippet, the corresponding child-classes are ‘Professionalism,’ ‘Temperament,’ and

‘Communication skills.’ The corresponding meta-classes for this snippet are ‘Interpersonal

manner,’ and ‘Communication.’ An approach that learns correlations between meta-classes

will find ‘Interpersonal manner’ and ‘Communication’ are correlated from this snippet. In

the two meta-classes, there are five and four child-classes in ‘Interpersonal manner,’ and

‘Communication,’ respectively, and lumping the child-classes together to encode correlation

will lead to a very coarse set of correlations. However, because there are, in patient experience

taxonomy, 23 topics, as seen in Table 5.2, this may lead to very large number of class

correlations.

A more pressing issue is when a target class does not appear frequently enough to be cap-

tured into a correlation relationship. Take, for example, a child class (for instance, ‘Trust’

which falls under ‘Interpersonal manner’ meta-class) that does not appear very often in the

corpus. In this case, it is infeasible to properly learn the relationship between this class and

another class even if it appears frequently (for instance, ‘Communication skills’), since the

former label (‘Trust’) appears infrequently. This is because the co-occurrence between the

target label and the anchor label (‘Communication skills’) will not appear enough to properly

capture the topic correlations. On the other hand, ‘Interpersonal manner’ is a frequently oc-

curring meta-class, and capturing correlation between the child-class ‘Communication skills,’

and the meta-class ‘Interpersonal manner’ will mitigate this issue.

To capture the relationship between the child class and the meta class, we propose two

hypotheses:

• Child classes are strict subsets of meta-classes. The proposed two-layer patient

experience taxonomy from the previous chapter properly captures the relationship

between child and meta-classes. The relationship can be seen in Table 5.2, where

the meta-classes, such as ‘Interpersonal manner’ contains five child-classes, and they

are a one-to-many mapping. In a well-formed taxonomy, a model that leverages the

hierarchical relationship will better capture patient experience taxonomies in patient

reviews. This hypothesis aims to validate the relationship between the meta-class and

the child-class.

• Meta-classes and child-classes correlate outside of their parent-child rela-

tionships In a strict meta-class and child-class relationship, we expect there to be

nearly a perfect correlation between a child-class and its parent since there is a hy-

ponym relationship between a child node and its parent node. On the other hand, this
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hypothesis does not cover the relationship between a meta-class and a child-class that

do not have a hypernymic relationship. For example, it is possible that a child-class

‘Empathy,’ which falls under the ‘Communication’ meta-class frequently correlates

with the meta-class ‘Interpersonal Manner’ but does not strongly correlate with a

‘Scheduling’ meta-class. The child-class ‘Follow-up,’ which also falls under ‘Commu-

nication’ meta-class may correlate more strongly with ‘Scheduling’ meta-class rather

than that of the ‘Interpersonal Manner’ meta-class, however.

In testing the two hypotheses, we explore optimization frameworks which will allow us to

encode di↵erent experimental settings. The framework should allow us to incorporate the

two hypotheses, and compare with the null hypotheses. The null hypotheses in our case

form a simple binary relevance model, where we assume no label correlations. We discuss

the optimization framework that we use in this experiment.

5.4.2 Optimization Framework

We utilize a deep neural network (DNN) framework to test out the hypotheses. DNNs

have gained popularity recently in part due to their more expressive features than tradi-

tional loss function optimization modeling frameworks. Each of the input features in the

neural network is embedded into multiple hidden layers which learn latent features that tra-

ditional approaches are not able to capture. An additional benefit, which is particularly more

pertinent in testing various hypotheses, is its flexibility in encoding di↵erent loss functions.

Similar to traditional loss function optimization tasks, DNNs allow researchers to modify the

optimization objective to better capture modeling hypotheses. In the past, neural network

frameworks were combined with existing representations of multi-class multi-label classifi-

cation such as binary relevance [154], chain classification [162], label embeddings [151, 169]

which improved performance. Furthermore, researchers in the past were also able to add

various modeling hypotheses on top of DNN frameworks [88,169]. Techniques that combined

neural network with traditional modeling frameworks show improvements over existing us-

ing only the traditional modeling approaches. It is because of this flexibility and capability

of expressive feature representation that deep neural network frameworks have seen wide

applications in both image recognition and text categorization. Since the framework pro-

vides both the improvement in feature representation and the flexibility in encoding di↵erent

research assumptions, we opt to utilize this framework in posing our problem.
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5.4.3 Model

We now discuss how we have modeled the two hypotheses proposed in the previous section.

Modeling Child classes are a strict subset of meta-class

We model the first hypothesis in this section. In hierarchical taxonomies, a given meta-

class contains at least one child class. More precisely, let us define children of a given

meta-class yp as Ypc = children(yp). In such cases, we see that |Ypc| � 1 8yp 2 Yp, where Yp

is a set of meta classes.

Given the above assumption, we now define the meta-class classifier as ŷ
p
= fp(x) and

child-class classifier as ŷ = f(x). For each of the classifiers, we see that y ✓ Y, whereas fp(x)

learns to predict meta-classes yp ✓ Yp from the training features x. There are anywhere

between 0  |fp(x)|  Lp and 0  |f(x)|  L, where Lp is the number of meta-class labels,

and L is that of child-class labels.

Now let us look at an arbitrary prediction, ŷp 2 ŷp from ŷp = fp(x). We expect for each

meta-class predictions ŷp 2 ŷp, 9ŷpc 2 ŷpc from ŷpc = f(x) such that ŷpc 2 children(ŷp). If

meta-classifier predicted a parent label, then the child-classifier should predict at least one

label such that its parent is the same as the predicted parent label.

We formalize this relationship as

|fp(x)|�
X

parent(f(x)))2Yp

|parent(f(x))|  0 8f(x) 2 Ypc (5.2)

where parent(·) refers to set of all parents of the predicted labels, and both fp(·) and f(·)
are indicator function, i.e., they output either 0 or 1 for a given label, Ypc refers to the set

of all children classes for yp as defined above.

Notice the indicator function is a very stringent constraint. Instead of representing f(·)
and fp(·) as indicator function, we can represent these as probabilities to sets of all possible

labels. We call this function as s(·) and sp(·) for child-class prediction probability and meta-

class probability, respectively. For instance, suppose Ypc = {a, b, c}, and we have a classifier

s(x) = [0.7, 0.3, 0.4]. This means we are 70%, 30% and 40% confident in labels a, b, and c,

respectively . Notice that these do not sum up to 1 since this is an instance of the multi-class

multi-label classification problem.

Using scoring functions s(x) and sp(x), Equation 5.2 simply becomes

sp(x)�
X

parent(s(x))2Yp

parent(s(x))  0 8s(x) 2 Ypc (5.3)
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The parent(·) simply performs a reduce function to the score from f(·) to its corresponding
parent label.

Modeling Meta-class and child-class Relationship

We further hypothesize that meta-classes and child-label may correlate even amongst child

and parents which are not a single hop from each other, as per our second hypothesis. To

capture this relationship, we first represent the feature network, which is denoted as F (x).

The feature network can be represented as an arbitrary deep neural network. For an arbitrary

n-hidden layer single layer, this is defined as

F (x) = g(wn�1Fn�1(x)) (5.4)

Fn�1(x) = g(wn�2Fn�2(x)) (5.5)

F1(x) = g(w0x) (5.6)

where Fk, 0  k < n is a hidden layer, wi is weight on i-th layer, and g(·) is a coordinate-wise
non-linearity function, such as ReLu or Sigmoid.

In encoding the parent labels, we take as input ŷ = fp(x) from a di↵erent classifier. We

then concatenate the output from the feature network and the parent prediction. We have

xfy = F (x)� ŷ (5.7)

where � is a concatenation symbol. The concatenated feature is then fed into a hidden layer,

which feeds to output into the prediction layer. The prediction layer predicts child-classes.

This hidden layer is used to embed both the feature representations learned from the features

and the parent predictions before the output of the hidden layer is fed into the prediction

layer. The benefit of this representation is this allows mutual embedding of features used to

predict child classes, represented as F (x), and that of the parent class ŷ. Mutual embedding

ultimately allows us to encode the correlations between the parent and the child.

To formalize the representation, we have

ŷ = Fp(g(Fd(xfy))) (5.8)

Fd(xfy) = wdxfy (5.9)

Fp(x) = wpx (5.10)

where Fp(·) is a prediction layer, Fd(·) is label and feature embedding layer.
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There are some di↵erences to this approach and work that utilized canonical analysis in

embedding labels [151]. In the canonical analysis work, researchers do not leverage any

hierarchical information. Furthermore, they decouple the feature network and the label

network entirely. Their approach learns the feature network and label network independently

and only combining the two networks at the prediction layer. The premise behind this is

to learn label embedding space and feature embedding space independently. While this is a

powerful method, in the case where the dataset is small, label embedding approaches may

end up learning noisy label correlations. We instead embed hidden features and parents

classes in the same layer, removing the possibility that parent label embeddings are learned

independently of the embedded features, hence mitigating the chance of learning noisy label

correlations.

Loss Function

We introduced a new constraint which pertains to the parent-child relationship as seen in

Equation 5.3. We discuss how we incorporate the constraint into the loss function. We note

that there should be some penalty if the parent-child constraint is violated. To do so, we

have

PC = g(�sp(x) +
X

parent(s(x))2Yp

parent(s(x))) 8s(x) 2 Ypc (5.11)

This allows us to penalize the term if and only if the prediction violates the constraints.

Similar to the work done in Constrained Convoluted Neural Network [88], we introduce

slack variables to allow for convexity. We have,

PC = (�sp(x) +
X

parent(s(x))2Yp

parent(s(x))� ⇠i)
2 8s(x) 2 Ypc (5.12)

where ⇠i � 0 and i refers to i-th label, and ⇠i is slack variable for i-th label.

The optimization function is then given by

min
W1...Wn+1

H(y, ŷ) + � · PC (5.13)

where � determines how much weight to assign to parental constraint. H(y, ŷ) is cross

entropy between the prediction and the gold standard. We opt for cross entropy since this

is a very widely used metric in the literature, but we also compare this with the squared

di↵erence as well.
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5.4.4 Comparison with Existing Hierarchical Classification Approaches

Other researchers have also utilized hierarchical taxonomy structures to improve classi-

fication performance. In hierarchical taxonomies, class structures follow a directed acyclic

graph (DAG), in particular, that of a tree. A typical taxonomy starts from the root of the

tree. The root has some number of child classes, which we denote as c(1,ROOT ),i where i refers

to i-th child, and ROOT denotes that the class is a descendant of the ROOT class. Each of

the child class c(1,ROOT ),i may have descendents, denoted as child(c1,i) = {c(2,c1,i),j}j. In this

notation, 2 refers to the level, and j refers to a j-th child of the ancestor class c1,i. Notice

that we can further define this recursively, more precisely, as child(ck,i) = {c(k+1,ck,i),j}j.
There are multiple approaches to encode hierarchical taxonomy structures. The simplest

one is by simply ignoring the presence of the hierarchy. These approaches are called flat hier-

archy approaches [170]. Notice that flat hierarchies are no di↵erent from the non-hierarchical

classification algorithm. There have been some studies that indicate in the case where class

labels are balanced, flat classification approaches may have an advantage over hierarchical

ones [170]. In our case, class labels are imbalanced, so we opt for a hierarchical approach.

There are two di↵erent lines of thought in incorporating hierarchy into the classification

scheme. The first is to utilize local classifiers [171–175] . These approaches treat each layer as

a separate classification problem. Local classifiers first predict ancestor classes and use this

information to predict its descendent classes further. Suppose the classified parent node is

ck,i. In classifying its child node, parent-class label ck,i heavily influences the set of labels its

child can be predicted into. The most significant limitation of this approach is misclassifying

a parent node, which may propagate errors to the remaining descendent nodes. Furthermore,

in local classifiers, both the parent-classes and child-classes are trained independent of each

other, and predictions are later corrected via post-processing. The underlying classifiers,

because of this reason, do not learn the hierarchical relationship between the child and the

parent.

To mitigate the issues with local classifiers, researchers started utilizing global classi-

fiers [176–178]. Rather than classifying each node at a time, global classifiers take into

account the class hierarchy as a whole during a single run of the classification algorithm. A

major advantage of global classifiers over local classifiers is that misclassifying a parent class

does not lead to propagating classification errors to the child classes. Furthermore, unlike lo-

cal classifiers, global classifiers learn the relationship between child-classes and parent-classes

concurrently, which allows us to capture the link between the two types of classes directly.

On the other hand, because this is a less intuitive approach, coming up with the proper

global model in particular, an objective function that captures the hierarchical structure
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may prove to be complicated. Coming up with a global model requires researchers to explic-

itly encode an objective function that characterizes the relationship between child-classes

and parent-classes.

Researchers in Deep Neural Network (DNN) communities have also utilized a hierarchical

classification scheme, and there is a mix of both local and global classification approaches.

The approach utilized by Kowsari et al [179] is an example of local classification approach.

In the aforementioned cited work, researchers proposed first classifying parent classes via

a typical deep neural network (such as Convoluted Neural Network). They then utilized

parent-class classification results to aid in classifying child classes via Recurrent Neural

Network (RNN) framework. Unlike typical RNNs, which only takes the feature space as

its input, these methods take parent-class predictions as part of its feature space as well.

Similarly, Salakhutdinov et al [180], and Roy et al [181] first classified parent-classes, then

used these as a prior to further train and predict child-classes. Something we see in local

classification approaches is that parent-class classifiers and child-class classifiers are typically

trained separately. Because child-classes typically utilize parent-classes in learning to predict

labels, parent-class predictions do influence child-class predictions. However, child-class

predictions do not influence parent-class predictions.

DNNs have also been utilized for global classification approaches. DNNs typically utilize

loss function to guide both the training and prediction tasks. The loss function itself is global;

i.e., there is only a single loss function that drives the classification process. Because of its

structure, past researchers have extended the loss function to encode the structure of the

prediction tasks further. Previous works which utilize similar constraint to ours (parent-child

constraints) can be seen in Zhang et al [168]. The researchers, similar to what we have done,

propose enforcing parent-child constraints. They propose adding a parent-child constraint

to their objective function and minimize the prediction error and constraint violation at

the same time. Researchers such as Yan et al [182] similarly incorporated whether or not

parent-class predictions and child-class predictions were consistent with each other (the two

classifiers both predicted correct parent-child relationships). A general trend we see in global

classification approaches that utilize DNN is that their objective functions explicitly measure

whether the parent class and child class predictions form a valid relationship or not.

Our approach is a combination of local and global classification approaches. It is local in

the sense that the prediction task is still taken as input for the parent class predictions, i.e.,

our second constraint which feeds in the predictions from a parent classifier. Parent class

predictions influence child-class predictions. On the other hand, our first constraint, which

enforces parent-child relationships, is a global one. The constraint is encoded as part of the

loss function – hence, a global approach. More precisely, we have modified the loss function so
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that it incorporates the relationship between parent-classes and child-classes (corresponding

to global classifier approach) and utilizes the parent-class predictions as an extended set

of features to improve child-class predictions. Some of the past works have also combined

local and global classification schemes [182, 183] in which researchers utilize parent-class

predictions to refine that of child-classes. The di↵erence between these methods and ours

lies in the objective function where researchers have di↵erent hypotheses on the relationship

between parent-classes and child-classes. Fan et al [183] in particular, modeled their DNN

on the assumption that parent-classes and child-classes share the same feature space. On

the other hand, Yan et al [182] follows a similar assumption to ours. The researchers also

enforce parent-child class constraints. However, they have multiple DNN components that

classify each child-class, whereas our approach has a single DNN. The di↵erence is that

in Yan et al [182] researchers were not interested in capturing label-dependencies as their

problem space setting was single-label multi-class classification whereas our goal was to

capture multi-label multi-class classification.

5.5 EVALUATION

In this section, we first detail evaluation metrics used to compare di↵erent methods of

multi-label classification. We then briefly discuss di↵erent baselines and our approaches

to show the e↵ectiveness of encoding parent information. Using the evaluation metrics

and di↵erent approaches we then show the evaluation results and end the section with

hyper-parameter analysis where we show how sensitive our method is on di↵erent values of

parameters.

5.5.1 Dataset

In conducting our hypothesis on the relationship between topics in patient experience

taxonomy, we utilized RateMD, an online patient review website where patients write about

their hospital experience. The doctors range from primary physicians to dentists, and one

of the first uses was in analyzing doctor sentiments and latent factors online [155]. We

utilized a set of online reviews with 23 di↵erent topics across 3,590 online patient reviews as

described in Chapter 3.

A unique trait of this dataset is the existence of class hierarchy, where each of the 23 topics

belongs to one of eight parent topics. The parent topics are referred to as meta-classes. The

relationship between meta-classes and child-classes introduces a unique topic hierarchy that

can be exploited in building a classification model. For the rest of the paper, if there is a
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need to distinguish between one or the other, we refer to the topics as child-classes and their

parent classes as meta-classes.

Of the 23 child-classes, the most frequent class appeared 1,882 times, whereas the least

frequent one appeared 80 times. On average, there were 3.32 classes assigned per review.

Amongst eight meta-classes, the most frequent class appeared 2,715 times, and the least

frequent one appeared 89 times. On average, there were 2.65 meta-classes assigned per

review.

5.5.2 Experimental Settings

We investigated various shallow features such as unigram, word embeddings, rating infor-

mation, and dependency parses in Chapter 4. Rather than concoct a new set of features,

we focus on how labels interact with other labels. To do so, we need strong baseline fea-

tures. Motivated by FastText [152], we utilized a word embedding representation of the

document. FastText represents averaged out latent embedding space as its document repre-

sentation. Classification performance on document embedding labels is on-par with unigram

representation of a document while, at the same time, requiring significantly fewer features.

Since our goal is to focus on the relationship between child-classes and meta-classes in the

RateMD dataset rather than to experiment with di↵erent features, we opted to utilize the

representation motivated by FastText.

To represent embedded document representation, we crawled 50k online reviews from

RateMD and trained Doc2Vec by utilizing unigram features. These documents were crawled

because we only had 3,590 training examples and it was not su�cient to properly train

document embedding space. Each of the documents was then represented as a set of 10

sentences, each with 200 dimensions in latent subspace3. We picked 10 sentences because an

average review has 4.78 sentences, with standard deviation of 2.92. We found that 95% of

review texts have 10 sentences or fewer, hence the justification for picking 10 sentences. For

documents with fewer than ten sentences, the remaining vectors were assigned zero vectors.

The deep learning framework took the embedding as an input vector, with three hidden

layers, each with 1000 dimensions, dropout probability of 0.5, and learning rate of 0.0001.

All the neural networks we compared had the same number of hidden layers and the same

number of latent embedding space4. Furthermore, we predicted a label l if score(l) > sl.

During our validation phase, we find the best sl 8l 2 L, where L is the set of labels we try

3We did not observe a noticeable di↵erence in performance past 200 dimensions
4Neither tweaking hidden layers nor the number of dimensions have any measurable di↵erence after the

third layer and 1000 dimensions, hence the reason why we picked this set of hyper-parameters
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to predict. Threshold sl was picked between [0.05, 0.5], in 0.05 increments.

In all of our experiments, we ran a series of classification models with an 80/20 train-

ing/test split and 5-fold cross-validation.

5.5.3 Evaluation Metrics

Following the methodology used in previous works [151,154,184], we include micro/macro

F-1, Hamming Loss, coverage error, ranking loss and label ranking average precision. For

the sake of completeness, we also include weighted F-1 on top of micro and macro F-1. We

provide a brief overview of each of the evaluation metrics in this section.

Hamming Loss

Hamming loss measures how many times an instance-label pair is misclassified, i.e. a

label not belonging to the instance is predicted or a label belonging to the instance is not

predicted. More precisely, suppose the true label for i-th data on j-th label is yij 2 {0, 1}.
Given a prediction ŷij, suppose we have �hij = |yij � ŷij|. Using this, we have

Hamming Loss =
1

N

NX

i

1

L

LX

j

�hij (5.14)

where N is number of data, L is number of labels. Since this counts the number of mis-

categorizations, a lower value of Hamming Loss is better than that of a higher one. It is

immediately clear that if the expected number of the positive label is significantly smaller

than all possible sets of labels, Hamming Loss biases toward not predicting any labels.

Coverage Error

Suppose we can calculate score(ŷij) for all the predictions in i-th data. Using the scores,

it is possible to sort all the predictions by their scores in descending order. The rank of the

prediction can then be shown as rank(ŷij). Coverage error measures the maximum rank

that is needed to predict all positive labels. More precisely, we have

Coverage Error =
1

N

NX

i

maxy2Yirank(y)� 1 (5.15)
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Similar to Hamming Loss, lower Coverage Error is better, but unlike with the loss, not

predicting any labels will result in rather abysmal coverage error.

Ranking Loss

Ranking loss measures the proportion of two label pairs (ŷij, ŷij0) that are ranked in reverse,

or are not properly ranked. If the pairs are ranked in the correct order, the loss is 0, otherwise,

the loss is 1. We denote this as rl(·, ·). Ranking loss is more formally calculated as

Ranking Loss =
1

N

NX

i

P
L

j

P
L

j0 rl(j, j
0)

L · (L� 1)
(5.16)

Average Precision

Average precision was originally used in information retrieval area which measures the

number of correctly identified documents existing in top k retrieved documents. Similarly,

we rank each prediction and measure precision. Average precision is formally given as

Average Precision =
1

N

NX

i

1

Yi

X

yi2Yi

Li

rank(yi)
(5.17)

Micro, Macro, and Weighted F-1

F � 1 metrics are widely used in evaluating classification performance. We test the per-

formance of all classification models across the two schemas and across the seven text repre-

sentations using precision, recall and F-1 measures evaluated at micro, macro, and weighted

levels. The Micro method sums up the individual true positives (TP), false positives (FP),

and false negatives (FN) of all classifiers i = 1 . . . n:

Pmicro =

P
i
TPiP

i
TPi +

P
i
FPi

, Rmicro =

P
i
TPiP

i
TPi +

P
i
FNi

, and F -1micro = 2 · Pmicro ·Rmicro

Pmicro +Rmicro

(5.18)

The Macro method averages the precision and recall over all classifiers i = 1 . . . n:

Pmacro =
1

N

nX

i=1

Pi, Rmacro =
1

N

nX

i=1

Ri, and F -1macro = 2 · Pmacro ·Rmacro

Pmacro +Rmacro

(5.19)
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where Pi and Ri are the precision and recall of binary classifier i, respectively.

The Weighted method calculates weighted averages of the precision and recall over all

classes i = 1 . . . n. Weight of class i is based on the relative frequency of the label:

Pmacro =
nX

i=1

p(i) · Pi, Rmacro =
nX

i=1

p(i) ·Ri, and F -1macro = 2 · Pmacro ·Rmacro

Pmacro +Rmacro

(5.20)

where Pi and Ri are the precision and recall of class i, respectively, and p(i) = cnt(i)Pn
j=1 cnt(j)

.

cnt(i) refers to number of times class i appeared in the corpus.

Macro F-1 is used to determine the overall system performance across all the classifiers

(and thus, across all labels), but does not account for the number of text instances within

each label. Micro-F1 mediates this issue. Therefore, we report it and analyze it when

comparing system performance. Ideally, a good classifier should perform well on micro,

macro and weighted F-1 scores.

5.5.4 Baselines and Our Method

In this section, we test multiple baseline methods against our method. We briefly describe

several baseline methods we compared against, along with three approaches that we propose.

Baselines

FastText [152] FastText is a widely used baseline in single-label multi-class text classi-

fication tasks. This allows us to compare SLMC with MLMC.

DNN-BCE [153] Acronym for Deep Neural Network-Binary Cross Entropy. Similar to

FastText, this is another widely used baseline method in testing multi-label multi-class text

classification tasks. This baseline is a binary-relevance model in the context of DNN. We

include this baseline to compare classification with and without the hierarchical constraints.

BP-MLL [154] Acronym for Backpropagation for Multi-Label Learning. In both Fast-

Text and DNN-BCE, the loss function between the predicted label and the gold label is

cross-entropy. BP-MLL uses squared-loss instead, and we include this baseline to test which

loss function is better.

C2AE [151] Acronym for Canonical Correlated Auto Encoder. This approach projects

labels into label embedding space by jointly learning feature latent space and label em-

bedding space. As argued earlier, in a limited dataset setting, we are unable to learn the

label embedding space properly, and we include this baseline to verify the hypothesis. Fur-
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Method HL CE RL AP F-1micro F-1macro F-1w
FastText 0.132 8.52 0.127 0.650 0.305 0.148 0.257
DNN-BCE 0.130 8.58 0.125 0.672 0.438 0.361 0.488
BP-MLL 0.128 8.93 0.133 0.673 0.422 0.336 0.479
C2AE 0.146 12.19 0.230 0.535 0.327 0.220 0.412

HML-PC 0.131 8.55 0.124* 0.672* 0.445* 0.368* 0.494*
HML-PN 0.130 8.42* 0.124* 0.676* 0.540* 0.432* 0.546*
HML-PNC 0.128 8.40 0.122 0.679 0.549 0.441 0.557

Table 5.3: Evaluation Results. HL: Hamming Loss, CE: Coverage Error, RL: Rank Loss, AP:
Average Precision, F-1w: Weighted F-1. * indicates cases where our method performed better
than the best performing baseline for a given metric, bolded text indicates best performing
amongst all the algorithms tested.

thermore, C2AE captures correlations in the child-classes space, as opposed to meta-classes

space that we opt in our method.

Our Methods

We compare the four baseline methods with three methods that we propose. All three

method pertains to how we utilize the parent constraints.

HML-PN Acronym for Hierarchical Multi-Label - Parent Node, this is one of the ap-

proaches that we propose, where parent predictions are embedded alongside feature-embeddings.

This approach does not encode parent-child constraint.

HML-PC This stands for Hierarchical Multi-Label - Parent Constraints, where we add

parent constraints but do not embed parent predictions with feature embeddings.

HML-PNC This is a shorthand for Hierarchical Multi-Label Parent Node & Constraints

which adds parent predictions as feature along with parent constraints. HML-PNC is a

combination of HML-PN and HML-PC.

5.5.5 Evaluation Results

Performance Comparison

Using the evaluation metric we described in the previous section, we show the classification

performance in Table 5.35.

5While our method was not sensitive to di↵erent values of �, we set � = 1 for this experiment
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Not surprisingly, FastText, which utilizes a single-label multi-class model performs the

worst, especially in F-1 metrics, indicating that our problem is, indeed, best modeled as a

multi-label multi-class problem. An average number of topics per review text was 3.32, so a

single-label multi-class approach will under-predict labels. Multi-label multi-class classifica-

tion via label embeddings (C2AE) also did not perform very well. Because of the lack of data

to properly learn embeddings, the classification performance of C2AE su↵ered. Furthermore,

we have previously argued that capturing label correlations between two child-labels will lead

to very few co-occurrence between the two labels. C2AE ultimately learns the correlations in

the child-classes subspace which leads to learning some very sparse labels. We were limited

to only thousands of training data which proved to be too sparse to learn label embedding

space properly.

Hamming Loss metric was more interesting, however. We see baseline methods con-

sistently performed better on Hamming Loss than our methods. Upon analysis, baseline

approaches performed better, in part because the loss function measures how close the value

is to the actual label. Since our data had on average 3.32 labels per review text, predicting

a given review instance to negative labels generally reduces the loss.

We notice that, despite significant improvements on F-1 scores, our ranking loss did not

di↵er very much compared to the baseline approach. Ranking loss computes whether irrel-

evant labels are ranked higher than relevant labels. More precisely, the loss function takes

scores ŝ 2 Y , and ŝ 2 Y , where Y contains scores for relevant (positive) labels, and Y

contains those for irrelevant (negative) labels. The metric computes the number of times

that ŝ < ŝ. These numbers are then normalized by |Y | · |Y |.
The classifier predicts a label l if score(l) > sl. During our validation phase, we find

the best sl 8l 2 L, where L is the set of labels we try to predict. Threshold tl was picked

between [0.05, 0.5], in 0.05 increments, hence tl and tl0 may not be the same for two labels

l, l0 2 L, l 6= l0. Because each label can have di↵erent threshold tl at which the label is

predicted, it is possible that t̂l < t̂l0 , but l is still predicted while l0 is not predicted for a

given review.

Similarly, both average precision and coverage error assume that the threshold tl is the

same for all labels, L. However, we employed dynamic thresholding, which we tuned based

on the validation dataset. Thus, it is possible that for two labels, l and l0, scores sl < sl0 , but

the classifier still predicts l but not l0. Dynamic thresholding allows F-1 scores to improve

over the baseline even though average precision, coverage error, and ranking loss may not

have improved that much6.

6Notice that we ran dynamic thresholding on all the classifiers that we tested.
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(a) 1a (b) 1b (c) 1b

Figure 5.1: Parameter sensitivity for di↵erent � values. Notice that our method is not very
sensitive to di↵erent values of �

In terms of our method, adding parent predictions to the deep learning framework and

the constraints improved performance. Adding parent predictions proved to provide more

performance gains than adding constraints. However, adding both parent predictions and

constraints (HML-PNC) had the best classification performance, leading us to conclude that

the parent-child relationship we annotated on the taxonomy is generally correct, and that

there are correlations between child-classes and meta-classes.

Parameter Sensitivity

Our method has a hyper-parameter, in particular, � to decide how much weight to assign

to parent-child constraint. A higher weight indicates that parent-child constraint is more

important and vice versa. Notice that additional parent node (HML-PN) does not require

� parameter because it is an additional node to the deep network. Ideally, the algorithm

should be less sensitive to the hyperparameter as methods that are sensitive to the param-

eter are di�cult to optimize for best performance. We experimented with parameter values

of � = {0.001, 0.01, 0.1, 1.0, 10.}. We show the results in Figure 5.1. We see that the perfor-

mance stays consistent over di↵erent parameter values indicating that tuning our approach

is straightforward.

5.5.6 Analysis

We first measured which loss function works better. The two loss functions that we

compared are cross entropy metrics (which is denoted as DNN-BCE) and squared loss (BP-

MLL). Consistent with the literature, we noticed that cross entropy performed better than
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squared loss. Perhaps this is not too surprising since squared loss is more suited to regression

problems than classification ones.

We next measured whether encoding child-class correlations is feasible in our dataset. To

encode the correlations, the method needs to be resilient to noise, in particular, to prevent

the algorithm from making false correlations. Because there are limited numbers of label

annotations in our dataset, classes that appear infrequently are more likely to have false

class correlations. This occurs because some labels may co-occur together several times by

chance, and for classes that appear infrequently, simply co-occurring several times by chance

may be enough to trump the true label correlations. To test whether encoding child-class

correlations is resistant to making false correlations or not, we compared the performance

of C2AE against the cross-entropy baseline (DNN-BCE). C2AE projects child-classes into

child-class embedding space, and in doing, they learn how child-classes are correlated with

each other. This method, furthermore, uses cross-entropy as its loss function, so a direct

comparison is against DNN-BCE. In all of the metics, C2AE performed worse than DNN-

BCE baseline. This is not to say that this approach is not good; rather, C2AE is more suited

to fitting in bigger datasets where false class correlations are less of an issue.

Upon investigating deeper into the evaluation metrics, we further find that, indeed, infre-

quent classes caused degradation of performance. This is most evident in comparing macro

F-1 between DNN-BCE and C2AE. The metric assigns arithmetic mean of F-1 values for

all labels. Frequently appearing classes like ‘temperament’ and less frequent classes such

as ‘insurance coverage’ are assigned the same weight when computing macro F-1. In this

methodology, where frequent labels and infrequent labels have the same weight, there is a

39% drop in macro F-1 scores compared to the baseline (0.361 on DNN-BCE versus 0.220

on C2AE). On the other hand, while weighted F-1 score was lower on C2AE than on DNN-

BCE, it represented only 15% decrease in F-1 scores (0.488 versus 0.412). In calculating

weighted F-1, higher weights are assigned to frequently occurring classes, whereas infre-

quently occurring classes have lower weights which is reflected on the F-1 scores we see in

C2AE.

Seeing the limitations in C2AE, where the method was sensitive to false corelations, we

opted to utilize that between child-classes and meta-classes instead. We again compare

the results with the binary cross-entropy baseline method (DNN-BCE) against three of our

methods (HML-PC, HML-PN, and HML-PNC). The three methods measure di↵erent hy-

potheses. HML-PC captures our first hypothesis, where we claimed that child classes are a

strict subset of meta-classes. Capturing the relationship between the two classes was, indeed,

valid, because we were able to see improvement in classification performance. However, the

improvements were relatively modest. This suggests that there are relationships outside of
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that between child-classes and meta-classes. As we see in the evaluation results, HML-PN,

which leverages interaction between meta-classes and child-classes, has improved classifica-

tion performance quite a bit more than HML-PC. Because of this, we surmise that there are

di↵erent types of label interactions in play outside of child-parent relationships.

HML-PN captures the second hypothesis, where we claimed it is possible to correlate meta-

classes and child-classes together. The classification performance improved quite significantly

compared to the DNN-BCE baseline method. This indicates that, first, capturing label

correlations helps in assigning topics from patient experience to patient reviews. HML-PN

is designed in a way that it captures the relationship between meta-classes and child-classes

which ultimately helped with the classification peformance. Second, in datasets with a

few thousand instances of labeled data such as our patient review corpus, capturing the

relationships between meta-classes and child-classes is better than capturing them between

child-classes. We have noticed that label embedding method (C2AE) performed significantly

worse than even the cross-entropy baseline (DNN-BCE), while HML-PN, which leveraged

correlations between meta-classes and child-classes performed quite a bit better. Because

some of the child-classes, appear very infrequently, capturing correlation became a very

noisy task, hence the reason why we have seen C2AE underperform, whereas HML-PN had

performed better.

Our last proposed method, HML-PNC combined both of the proposed methods and it

performed better than the two of the methods that we proposed. This suggests that both

HML-PN and HML-PC capture di↵erent aspects of the interaction between meta-classes

and child-classes. Indeed, the two approaches were developed with di↵erent goals; HML-PC

to capture the relationship between child-classes and meta-classes, and HML-PN to capture

how child-classes and meta-classes interact. On the other hand, similar to the performance

gains we see in HML-PN, HML-PNC showed only modest improvement over HML-PC. This

suggests that interactions between meta-classes and child-classes are stronger than the innate

hierarchical structure between the two types of classes, but to properly capture the patient

review corpus, we should consider both label interactions and hierarchical structure.

5.6 DISCUSSION

We proposed utilizing parent-child relationships to better understand the patient expe-

rience taxonomy applied to the RateMD dataset. The taxonomy is inherently hierarchical

where it had meta-classes and child-classes. We implemented two di↵erent approaches, one

an explicit parent-child constraint and another capturing the relationship between parent

and child classes, where the two classes were not in a hypernymic relationship with each
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other. Both improved various performance metrics over the baseline. The takeaway from

these results is that incorporating meta-class allows additional information that is not read-

ily available in the text embeddings themselves. This improved the classification results. We

also see that encoding meta-class correlations to predict child-classes improved the perfor-

mance the most, though enforcing the constraints between meta-class and child-class still

improved the performance over the baseline. The combination of the two showed the highest

improvement in the performance compared to the baseline. The improvement in performance

indicates that the initial taxonomy we proposed is reasonably accurate, and there is an ad-

ditional parent-child relationship that we can further leverage to enhance our model. In this

work, while we were able to embed parent labels as part of the feature-set, we were unable

to learn the correlations between input labels. This was because we opted to embed the

predicted label into an embedding space, making it di�cult to interpret. For future works,

we would like to investigate a method to better learn correlations between the two labels.

Furthermore, our analysis was limited to only the RateMD data. While this allowed us to

re-verify the validity of the proposed taxonomy, it would be of interest to further run the

classifier on other datasets.
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CHAPTER 6: PATIENT SEGMENT IDENTIFICATION FOR
COMPREHENSIVE UNDERSTANDING OF PATIENT EXPERIENCE

TAXONOMY

To comprehensively understand patient experience, we first analyzed the semantic repre-

sentation of each topic in Chapter 4. We then investigated how topics are interdependent

of each other in Chapter 5. The methods described in the two chapters described how

to automatically identify topics from the comprehensive patient experience taxonomy in

patient-generated texts. However, not all patients’ experiences are the same. Patient ex-

perience is dependent on patients’ health statuses, for example, whether the patient was

readmitted to the hospital, had an adverse drug reaction, or had a particular illness [1–4].

Identifying the underlying patient segment furthers our understanding of patient experience

expressed in patient-generated texts.

We further note, however, that there are nearly infinite variations of patient segments that

each person may belong to. Rather than develop models for all possible segments, we sample

an example segment and show how the segment can be captured. Of particular interest is

whether the patient has stopped taking medication or not. The segment is important because

it is connected to a patient’s adherence to a given treatment. Drug adherence is a big problem

that causes over 300 billion dollars per year in estimated damage. We believe a technique

which can identify whether the person is currently taking medication of interest or not can

further be extended to enrich other types of patient segments. Segmenting patients allows

for a more targeted patient experience analysis, allowing us to improve patients’ satisfaction

and in turn, leading to a better health outcome.

We answer how we have identified whether the patient has stopped taking the medication

or not in this chapter. We first describe how we obtained and annotated training data

to identify the segments. Next, we develop both informative and complex sets of features

for use in understanding patients’ drug usage. The technique to identify di↵erent patient

segments is based on one of our published works [185].

6.1 INTRODUCTION

Medication non-adherence is a huge issue in the health community where up to about half

the patients do not take medication as prescribed [186,187]. Not surprisingly, non-adherence

is responsible for an estimated burden of 337 billions dollars per year in direct and indirect

health care costs [188]. Analyzing why patients do not adhere to prescribed medications

could have a huge impact on cutting health care costs in the long run.
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In analyzing medical non-adherence, the first step is to understand why people have

stopped taking a given medication, a subset of non-adherence. According to a previous

study [189], there are four reasons why patients stop taking medication:

1. Experience of loss by the use of medication (adverse drug reaction)

2. Personal meanings associated with taking medication (taking anti-depressants means

admitting one is depressed)

3. Di↵erent feelings evoked by the process of taking medication (emotions, such as disgust

or humiliation at the thought of taking the medication)

4. Perceived changes in payo↵ matrix (e�cacy of medication)

However, there are many limitations to this study. For example, the experiments were

conducted in a controlled session where researchers asked participants in-depth questions.

Due to the formal environment/setting in which the study was conducted, patients may not

have expressed themselves as freely as they would have in an informal setting. Moreover, it

is very di�cult to scale up the research and generalize it to di↵erent demographics in such

a formal environment.

A possible solution to this problem is to make use of online social media. This has been

an active medium for various healthcare tasks such as epidemiologic studies which looked

at drug adverse reactions [17], [190], [12]. Social media is also appealing due to its scale –

i.e., it is possible to conduct studies on a large number of probems with imput from many

people/patients around the world. Furthermore, most of the research seems to indicate that

the findings in this medium are consistent with real world findings.

In this work, we tackle the issue of medication use. In particular, we want to analyze why

people have stopped taking medication and, as a first step, we focus on identifying whether a

person has stopped taking a given medication or not – a binary classification problem given

a medication of interest. We note that this is not the only approach to determine how a

medication may be used – for example, patients may indicate that they are currently taking

the medication, or may simply be asking questions about a given medication. We consider

these intents as an ‘Others’ category and focus primarily on identifying whether a person

has stopped taking a given medication or not. We used user messages in health forums as

appropriate data and genre because people tend to give more descriptive reasons as to why

they may have stopped taking medication compared to micro-blogs despite potentials for

bigger amounts of data. We have identified feature sets that were successful in similar tasks,

and adapted these to suit our problem at hand. We then analyzed these features to see how

di↵erent complex features perform with regard to the identification process.
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Our contributions are as follows:

1. To the best of our knowledge, we are the first to tackle the problem of whether a person

stopped taking medication or not in the online health domain.

2. We adapted existing features that were successful in previous health status tasks (we

denote these as informative baselines features), and proposed new complex features

for the problem domain. We further analyzed how much each of the di↵erent feature

types contribute to the classification performance.

3. Our experiments also provide interesting insight not only into the language technology

community, but also to health practitioners and the healthcare insurance industry. For

example, when patients stop taking anti-depressants, they generally seems to have tried

more than one medications, an experience that generates emotions such as disgust and

sadness.

6.2 DATASET AND EXPERIMENTATION SETTINGS

In conducting our experiments, we first collected a dataset in which we labeled whether a

patient had stopped taking a given medication or not. Unfortunately, we couldn’t find any

(available) dataset annotated with this kind of information, so we annotated the dataset

ourselves. We first crawled a depression forum1. The rationale is that depression is one of

the most prevalent conditions that a↵ects a wide range of demographics [191]. By manual

inspection of a few forum messages, we decided to focus on three popular depression drugs

(Zoloft, Paxil and Cymbalta) as our target medication to annotate whether the patient had

stopped taking the medication or not. For each medication, we chose an opening post which

contained the medication of interest in a given thread and determined whether the person

had stopped taking the medication or not. Notice that our task is to classify, for the ‘Stop’

label, whether the person has stopped taking the medication of interest. The ‘Others’ label

refers to all the other situations, such as they are currently taking the medication, or wanting

to learn more about the medication, or citing previous research conducted on the medication.

Two annotators, one student in Linguistics and one in Natural Language Processing, labeled

300 forum posts for each medication, for a total of 900 labeled forum posts. These forum

posts were randomly selected from the crawled dataset. Next, we calculated the agreements

using Cohen’s Kappa coe�cient, shown here in Table 6.1. The data distribution is shown in

Figure 6.1.

1www.healthboard.com
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Drug Zoloft Paxil Cymbalta
Agreement 0.81 0.75 0.85

Table 6.1: Cohen’s Kappa coe�cient for Inter-rater agreement for the three di↵erent medications
considered

Figure 6.1: Number of labels for di↵erent medications

For any forum posts that the labelers disagreed on, there was an adjudication process to

determine the final labels. Change of dosage was often a source of confusion, for example

I was on Zoloft 100mg and then double and then i even eat a crocus plant.... Confusions

were especially evident when there were multiple mentions of changes of dosage. These were

adjudicated after re-reading the forum posts and then agreeing upon the final label. A subset

of these errors occurred when patients were weaning o↵ medications. While the intents of

these were often to stop taking the medication, unless it is clear from the text that they

ultimately stopped taking the medication, these were generally labeled as ‘Others’. Another

source of confusion is when the forum post was lengthy as there was a lot of information the

labelers had to absorb (they had to read the text multiple times).
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For all of the experiments, we used Support Vector Machines2 with 10-fold cross validation.

We chose SVM because it is generally considered to be a good classifier on sparse datasets.

6.3 FEATURES

We experiment first with informative baseline features. For this, we identified features

from the research literature on projects similar to ours. We then came up with additional

features to address common errors the informative baseline features made. Unless otherwise

annotated, we considered all our features equally likely, thus having a weight value of one.

6.3.1 Informative Baseline Features: Definitions and Examples

Keyword Pivoted Word Features: In the I2B2 challenge, using a set of good keywords

was one of the most popular and e↵ective approach [192,193]. One of the authors proposed

extracting sentences which contain a set of keywords, and ran the K-Nearest Neighbor model

on these sentences [193]. Another group proposed using windows of text up to 100 characters

instead [194]. Following the spirit of these works, we experimented by curating a list of

keywords: stop, quit, drop, try, wean, switch. We select a sentence if it has one of the

curated keywords and the medication we are interested in, and then extract all the words as

our feature set, using TF-IDF to assign weights to words.

Odds Ratio Features: MacLean, et. al., 2015 [59] proposed using odd log ratio for

extracting keywords on post level as opposed to sentence level. This was feasible because

the authors were interested in inferring the status of one medication in a given forum post,

as opposed to potentially inferring multiple instances of the medication which is what we

focus on. Thus, we adapt the odds ratio in such that we only take sentences that either

have the medication of interest, or are those that precede, or succeed the drug. The ratio is

a measure of strength of association and is given by:

OR(t, s) =
fs(t) · fs(t)
fs(t) · fs(t)

(6.1)

where s is the state (such as Stop taking or Others), t is the term we are interested in

calculating odds ratio, and fs(t) is the number of sentences with state s that contain t.

fs(t) is the number of sentences that does not contain the term t for state s, and fs(t)

2We used Scikit-learn for our experiments. We ran validation on the cost parameter C to set the correct
parameter, and set the parameter dual to false so that we can analyze the learned weights that we analyzed
later in this section. We did not notice any significant di↵erences in the performance results.

90



Informative Baseline Features
Feature type Example sentence Example features

Keyword pivoted features [S]o i was flusterated,
and just stopped tak-
ing my paxil for a few
days.

TF-IDF weighted
words that appears in
this sentence

Odds ratio features I quit the Cymbalta
cold turkey and am
now going through
withdrawal.

quit, cymbalta, cold,
turkey

Curated n-gram pattern features I’ve been o↵ the paxil
for a while.

’ve/VBP o↵/IN
MEDICATION

Time reatures I was on Zoloft about
3 years ago

was/VBD on/IN
MEDICATION
TIME WORD

Emotion features E↵exor gave me hives,
Zoloft gave me hor-
rible nightmares, and
Wellbutrin gave me
horrible hives after 2
1/2 weeks on it.

sensitivity: -0.51, at-
tention: 0.21, apti-
tude: -0.52, pleasant-
ness: -0.28

Complex Features
Feature type Example sentence Example features

Dependency relations features I stopped taking the
Cymbalta immedi-
ately and have now
been o↵ it 7 days.

... , (I, PRP) nsubj
(stopped, VBD),
(taking, VBG) xcomp
(stopped, VBD),
(Cymbalta, NNP)
dobj (taking, VBG),
(the, DT) det (Cym-
balta, NNP), ...

Frequent sequential pattern features He put me on e↵exor. put on MEDICA-
TION TOK, me on
MEDICATION TOK

Co-reference resolution features I’ve been clinically de-
pressed for the past
few months and Ef-
fexor hasn’t helped me
much. True, I’ve been
taking only 75 mg of
the medication...

Change ‘medication’
to ‘E↵exor’ and apply
all the other features

Table 6.2: Example Features used in our experiment
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is for any other states that are not s, how many times the term t appears. Similar to a

previous research work [59], we also retain odds ratios which are greater than 2, and set the

ratio as the feature weight for the odds ratio word. Furthermore, we do not include words

that appeared less than 10 times in our corpus. We compare the results of calculating the

odds ratio on a post level versus sentence level in our experiments, and indeed, we see that

sentence level odds ratio improves over that of post level.

Curated N-gram Pattern Features: Using carefully curated rules was shown to be

e↵ective in detecting whether patients stopped smoking or not in medical notes [195]. This

kind of work in particular proposed a set of seven rules to indicate whether a person may be a

smoker or not. We adapt this approach and propose an automated rule generation framework

which does not involve the stop keywords. In particular, we noticed that when a patient

starts a sentence with a verb in past tense, followed by a preposition and a medication, it is

likely to be an indication that the patient is not currently taking the medication. This may

or may not be followed by a duration/temporal keyword. As an example, in the sentence I

was on Zoloft for 3 months, we see that the past tense verb (was) is followed by a preposition

and a medication name. Similarly, when a sentence starts with a present tense verb, it may

be an indication that the patient is currently taking the medication, for example, I am

currently taking Zoloft (adverbs are important here as well). We further note that patients

may mention that they have switched from medication A to medication B. We add these as

a feature set as well. More formally, we encode these rules as

[VBD/VBP] [PREP] [MED]

[VBD/VBN] [FROM] [MED] [TO] [MED]

where VBD is past tense verb, VBP is a present tense verb and VBN is verb participle.

PREP and MED correspond to preposition and medication, respectively. We also replaced

pronouns with the medication name if only one medication was mentioned in the previous

sentence (i.e., we resolved the coreference). We further allowed the pattern words to appear

few words away from each other, i.e., a PREP may appear 3 words after a VBD or a VBP.

Time Features: Mentions of time expressions has also been a very popular approach in

previous research, either as part of a carefully orchestrated set of rules [195] or by utilizing a

system that can distinguish expressions that indicate current time, recent past, and distant

past [196]. One previous work [195], for example, used time tokens as part of the carefully

orchestrated rules to improve the performance of the health status detection. Motivated by

these lines of work, we used the rule generation framework from the previous section, and

added temporal words at the end. This framework would capture the sentence I was on
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Dimension Sensitivity Attention Pleasantness Aptitude
Positive Anger Anticipation Happiness Trust
Negative Fear Surprise Sadness Disgust

Table 6.3: Emotions used as features

Method Precision Recall F-1 Accuracy

Passage OR 0.540 0.523 0.528 0.680
Sentence OR 0.641 0.562 0.593 0.737

Table 6.4: Performance of odds ratios

Zoloft for 3 months as having a temporal word since the word months appeared after the

rule [VBD/VBP] [PREP] [MED]. Examples of temporal words are: currently, now, day,

month, week, year.

Emotion Features: Finally, we experimented with emotion features as well. One of

the reasons for which people stop taking medication is the feeling that may be evoked by

the act of taking the medication [189]. For instance, if they do not like the idea of taking

the medication itself (hatred), or the medication reminds them of some other events which

make them feel sad, patients may stop taking the medication. Thus, we used SenticNet [197]

which makes use of the idea of hourglass of emotions in modeling the emotions of interest

here. The work organizes emotions around four independent, yet concomitant dimensions

(sensitivity, attention, pleasantness, aptitude), whose di↵erent levels of activation make up

the total emotional state of mind. Each of the dimensions may have positive or negative

polarity which maps to di↵erent set of emotions. As an example, a positive pleasantness

may indicate happiness, whereas a negative one may indicate sadness. Table 6.3 shows all

8 emotions we used from SenticNet.. If a sentence contained the medication of interest, we

used this emotion ontology and then normalized by the log of the number of words in the

sentence. This gave us polarity scores for each of the four dimensions. All of the features

described in this section are summarized in Table 6.2.

6.3.2 Informative Baseline Features: Experiments and Analysis

We were first curious about whether it would be beneficial to use words taken from the

sentence level or from the passage level. Sentence level odds ratios were calculated using

words taken only from those that contain the medication of interest, whereas post level ratios

made use of the entire post. Our results are shown in Table 6.4.

We see that sentence level odds ratio outperforms the passage level one. This makes
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Sentence OR stopped, attacks, cold, point, upset, lbs,
thinking, saw, made, turkey

Passage OR baby, become, dad, yrs, mom, failed, per,
helping, met, depressants, man

Table 6.5: Top 10 highest ranked odds ratio words

intuitive sense – in a given post, patients are likely to talk about myriads of topics and

limiting the odds ratio calculation to the sentence which contains the medication of interest

allows us to utilize only the words that are relevant to the medication itself. We show the

top 10 highest ranked words for both sentence and passage odds ratios in Table 6.5. In the

case of sentence odds ratio, many of the words make intuitive sense. For example, ‘cold

turkey’ is an often used expression when a patient stops taking medication suddenly. We

see both ‘cold’ and ‘turkey’ in the top 10 highest ranked odds ratios. On the other hand,

passage odds ratios do not quite indicate whether a person has stopped taking medication

or not. It does, however, show that someone had something to do with medication (’baby’,

’dad’, ’mom’, ’man’ and ’depressant’). This can be because in generating our dataset, we

chose forum posts which contain the medication of interest.

Next, we were curious to see how much each additional di↵erent feature contributed to the

performance of the task. Based on the previous results from experimenting with di↵erent

types of odds ratio, we opted for sentence level odds ratio as the baseline method. Our

results are shown in Table 6.6 where we experiment by taking one feature out from all the

feature sets that we have described in the previous section.

Other than the odds ratio features which we used as the baseline, curated n-gram pattern

features seemed to have the biggest impact on the performance. This indicates that curated

n-gram pattern features correctly captured many of the relevant phrases. Keywords played

a big factor as well. Along with odds ratio, keyword based TF-IDF features captured the

context in which the medication word appeared. Emotions also had some impact in the

classification task. This seems to reiterate one of the hypotheses in our introduction where

patients stop taking medication because of the feeling that it evokes. Finally, we notice from

our evaluations that by combining all of our proposed features we get the best performance.

We next conducted error analysis on false positives and false negatives obtained with the

best performing informative baseline and found the following common errors:

Lack of Co-reference Resolution: Users often mention the medication and then indi-

cate they have stopped taking it in the sentences that follow. Consider the following snippet:

Hey guys I took Cymbalta for about three weeks and other than feeling good for the first week

I felt like I didn’t feel any better. Anyway I stopped it without tapering about 4 days ago and

94



Method Precision Recall F-1 Accuracy
Odds Ratio (Baseline) 0.641 0.562 0.593 0.737
Informative Baseline 0.673 0.640 0.650 0.762

Informative Feature - o 0.656 0.403 0.491 0.717
Informative Baseline - e 0.639 0.624 0.625 0.746
Informative Baseline - r 0.621 0.589 0.601 0.734
Informative Baseline - k 0.639 0.608 0.620 0.745
Informative Baseline - t 0.633 0.623 0.625 0.745

Table 6.6: Performance of di↵erent features. o: Odds ratio features, e: Emotion features, r:
Curated n-gram pattern features, t: Time features, k: keyword-based TF-IDF features

I have been itching all over since then. We see that the pronoun ‘it’ refers to ‘Cymbalta.’

However, this has to be solved automatically.

Lack of Dependency Relations: Dependency parsers help us in understanding con-

straints that may not be straightforward to encode. As an example, the verb ‘taken’ refers

to all the medications in the following sentence: I have taken Lexapro, Prozac, Zoloft and

now Celexa. Similarly, we have a sentence Needless to say, I stopped taking the Cymbalta

immediately and have now been o↵ it 7 days. where the word ‘stop’ is a clausal complement

of the verb ‘taking.’ These are not captured by the informative baseline features, but may

be captured by more advanced feature sets.

Unaccounted Frequent Text Patterns: There were various patterns that seemed to

appear frequently that were not captured by our basic informative feature sets. As an

example, I was on zoloft and switched over to paxil for about a year. Here ‘was on Zoloft’ is

a frequently occurring pattern that we did explicitly capture. However, the complex features

we introduce in the next section do capture this type of phrases.

6.3.3 Complex Features: Definitions and Examples

Based on the error analysis we have conducted, we propose here three new complex features

and use them to further improve the performance of our classifier as well as our understanding

of this challenging task.

Dependency Relation Features: Based on the error analysis we have conducted in the

previous section, we saw that dependencies between words have a big impact on the clas-

sification task. Based on this intuition, we employed the Stanford dependency parser [198]

which gives the grammatical relationship between a head word and its modifier word. In par-

ticular, this allows us to capture the relationship between a medication word and any other

words that may be describing it. Capturing multi-word phrases becomes possible as well,
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for instance, ‘Stopped taking’ in our previous example which is given a clausal complement

label.

Frequent Sequential Pattern Feature: We further noticed that sentences where pa-

tients described the times when they stopped taking medications, have similar structures. In

order to capture this, we utilized a frequent sequential pattern mining algorithm [199]. The

benefit of capturing frequent sequential patterns as opposed to n-grams is that the algorithm

can capture words that are farther apart from each other. As an example, He put me on ef-

fexor. cannot be captured by a simple bigram (put on) since there is a pronoun that appears

in between the two words, whereas this can be captured by frequent sequential patterns (as

put on medication). In running frequent sequential patterns, we tokenized all occurrences of

medication as either the current medication of interest (as ‘MEDICATION TOK’), or other

medications that are present in the post, but not something that we are interested in clas-

sifying whether the patient has stopped taking or not (as ‘OTHER MEDICATION TOK’),

and set the weight as the log of the number of occurrences the pattern had in our corpus.

Co-reference Resolution Features: In many sentences, people would mention a med-

ication and indicate if they stopped taking it the sentence after. Despite the usage of an

existing o↵-the-shelf co-reference resolution toolkit [200], it quickly became apparent that the

out-of-the-box features were not accurate in deciphering the coreferences. Thus, a heuristics

method was used to resolve the problem. Whenever we saw words that may be indicative of

medications (such as ’medication,’ ’med,’ and ’anti-depressant’ as well as ’it’) we replaced

this with the last medication that we have seen within a two sentence window. We then

could apply all the other features to this recovered co-reference as well.

Summaries of the features described in this section are shown in Table 6.2.

6.3.4 Complex Features: Experiments and Analysis

We next experimented with complex features as well. We set the best performing combi-

nation of features from informative baseline features as the starting point of this experiment.

Our results are shown on Table 6.7.

We can see the complex features we proposed improved both precision and F-1 score.

We have further noticed that frequent sequential pattern features had significant boost in

improving the performance. Furthermore, the new features we proposed had improved pri-

marily on precision with small reduction on recall. It is also interesting to note that adding

co-reference features, by itself, does not improve performance compared to the informative

baseline. However, we see an improvement when the co-reference feature is combined with

other features.
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Method Precision Recall F-1 Accuracy
Informative Baseline 0.673 0.640 0.650 0.762

Informative Baseline + d 0.702 0.616 0.652 0.775
Informative Baseline + f 0.768 0.633 0.693 0.809
Informative Baseline + c 0.661 0.634 0.643 0.759

Informative Baseline + d + f 0.756 0.627 0.684 0.802
Informative Baseline + c + f 0.771 0.638 0.695 0.810
Informative Baseline + c + d 0.700 0.606 0.646 0.772

Informative Baseline + d + f + c 0.786 0.636 0.701 0.817

Table 6.7: Performance of complex features. d: dependency parser features, f: frequent sequential
pattern features, c: co-reference features

There were also cases where the complex features did not perform very well. One common

error was when the forum post had sequences of events. As an example, I got on Paxil 2

years ago and switched to Wellbutrin, then I was pregnant and switched to Prozac. I got back

on medication, Paxil,two months ago. requires a temporal representation of taking/stop

taking the medication, for a given user. A simple ‘stop taking’ label is di�cult because the

patient did stop taking the medication at one point, though now the person is taking the

medication. While there is no previous research on exactly the problem we tackled here,

there is some body of research on generating timelines [201, 202] which we will be able to

leverage in future research to mitigate this problem.

Another common error was when the act of stop taking the medication was not explicitly

mentioned. From the sentence, He’s been on Zoloft but he said that he walked around in a

daze all the time and could barely function at work (his job requires that he is alert and ready

to respond to problems constantly.) Now he’s trying a di↵erent med (he takes it sporadically

- can’t remember the name), and it also makes him tired and like he’s in a fog. We see

that the target person has now stopped taking the medication. However, this is inferred

from what is written, and one way to classify this is by knowing that by taking a di↵erent

medication, the person is no longer taking the other medication – i.e., deeper semantic

inference. However, there are linguistic devices that will tell us if a person takes multiple

pills at the same time, or has switched medication. We will explore such contexts in future

work.

6.4 ANALYSIS OF RESULTS

In this section, we analyzed the coe�cients from our trained SVM. We have trained SVM

using its primal form so that interpreting weights would be easier than if we had used the
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dual form. The di↵erences in performance were negligible.

Curated n-gram pattern features were a strong indicator, where we found that a lot of

patterns which followed [past tense verb] on medication, and [present tense verb] o↵ medi-

cation were associated with ‘Stop taking’ patterns. Some other patterns that do not involve

the prepositions/particles ‘on’ or ‘o↵’ were: ‘tried with medication,’ ‘started with medica-

tion,’ ‘told that medication,’ and ‘did like medication.’ Furthermore, time related features

did have a small impact as well, though not as significant as that of the rules. The top 10

important curated n-gram pattern features we discovered are shown in Table 6.8.

Stop Taking Others
was/VBD on/IN MEDICATION
TEMPORAL WORD

have/VBP on/IN MEDICATION
TEMPORAL WORD

have/VBP o↵/RP MEDICATION
TEMPORAL WORD

’ve/VBP on/IN MEDICATION TEM-
PORAL WORD

was/VBD on/IN MEDICATION am/VBP on/IN MEDICATION
had/VBD on/IN MEDICATION
TEMPORAL WORD

put/VBD on/IN MEDICATION
MEDICATION

have/VBP o↵/IN MEDICATION
TEMPORAL WORD

have/VBP on/IN MEDICATION

’ve/VBP o↵/IN MEDICATION put/VBD on/IN MEDICATION
got/VBD on/IN MEDICATION MED-
ICATION

’m/VBP on/IN MEDICATION MED-
ICATION

am/VBP o↵/RP MEDICATION
TEMPORAL WORD

started/VBD on/IN MEDICATION
TEMPORAL WORD

’ve/VBP o↵/RP MEDICATION TEM-
PORAL WORD

’m/VBP on/IN MEDICATION

was/VBD like/IN MEDICATION got/VBD on/IN MEDICATION TEM-
PORAL WORD

Table 6.8: Top 10 important curated n-gram pattern features found by the classifier

As for the Emotion features, ‘Stop taking’ label had strong inverse correlation among

aptitude (0.011), pleasantness (0.00684), attention (0.00526) and sensitivity (0.00291) emo-

tional aspects according to SenticNet. These correspond to disgust, sadness, surprise and

fear when patients had stopped taking medications. We note that because of the emotion

model we used, there are four di↵erent dimensions, and hence, four di↵erent emotions for

each label. These seem to indicate that when patients stop taking medications, there are,

indeed, correlations related to emotions, in particular, that of disgust and sadness.

Frequent sequential patterns dominated most of the highest scoring weights. The algo-

rithm is able to capture many of the frequent patterns that occur. However, they may not

make immediate semantic sense for the human analyst. In ‘Stop taking’ labels, past tense
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Stop Taking Others
i MEDICATION TOK
OTHER MEDICATION TOK

i taking MEDICATION TOK

i on OTHER MEDICATION TOK i am MEDICATION TOK
i MEDICATION TOK again been MEDICATION TOK for
i MEDICATION TOK o↵ i of MEDICATION TOK
i o↵ MEDICATION TOK i like MEDICATION TOK
i and OTHER MEDICATION TOK i just MEDICATION TOK
o↵ MEDICATION TOK a i MEDICATION TOK mg
i been o↵ my me MEDICATION TOK
i on MEDICATION TOK but for and MEDICATION TOK
tried MEDICATION TOK and MEDICATION TOK and if

Table 6.9: 10 most important frequent sequential features the classifier used

verbs (’tried’, ’been’, and ’was’), and some prepositions/particles (’o↵’) were commonly

extracted as part of the patterns, whereas for Others label, present tense verbs (’taking’,

’am’) and other type of prepositions/particles (’on’) were common. For both labels, the

current medication of interest (such as Zoloft, Paxil or Cymbalta), annotated as MEDICA-

TION TOK were usually present in frequent patterns. These findings are consistent with

what we have found in curated n-gram pattern features – for example, usefulness of preposi-

tions/particles such as ‘o↵’ and ‘on,’ and phrases that start with ‘tried’ or ‘start.’ There were

instances where ‘MEDICATION TOK’ were not present, but the algorithm still thought it

was a frequent pattern. For instance the pattern ‘i been o↵’ was considered to be an im-

portant feature for the ‘Stop taking’ label. While this may be a source of ambiguity (in the

given frequent pattern, ‘i been o↵,’ there is no indication of which medication the author

has been on), since a given sentence may be captured by more than one frequent sequential

pattern, the fact that some frequent features did not have ‘MEDICATION TOK’ is not a

problem.

Another interesting observation is that the algorithm was able to find medications that

are not the current medication of interest (annotated as ‘OTHER MEDICATION TOK’)

to be useful as well, in particular for the Stop taking label. For example, we found a

very frequent pattern, I MEDICATION TOK OTHER MEDICATION TOK (used in the

context of, I tried Zoloft, Paxil, and Cymbalta if the medication of interest was ‘Zoloft.’)

to be indicative of stop taking medication. This indicates that often times patients mention

other medications when they indicate that they have stopped taking a given medication,

often times as an enumeration, or that they are now currently taking other medication. The

top 10 most important features used by the classifier on both target classes are shown in
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Stop Taking Others
longer/RB - neg - no/RB taking/VBG - dobj - MEDICA-

TION TOK/NNP
taken/VBN - nsubj - i/PRP day/NN - det - a/DT
stopped/VBD - xcomp - working/VBG take/VBP - nsubj - i/PRP
taking/VBG - aux - was/VBD wondering/VBG - nsubj - i/PRP
had/VBD - neg - never/RB taking/VBG - dobj - cymbalta/NNP
stopped/VBD - nsubj - i/PRP have/VBP - nsubj - i/PRP
years/NNS - amod - few/JJ started/VBD - advmod - just/RB
was/VBD - nsubj - i - P/RP ago/RB - npadvmod - months/NNS
tried/VBN - nsubj - i/PRP tell/VB - aux - can/MD
had/VBD - nsubj - i/PRP ’m/VBP - nsubj - i/PRP

Table 6.10: Top 10 most important dependency features found by the classifier

Table 6.9.

We used a dependency parser to capture the relationship between words in a sentence

with the hope that it would capture relevant relationships between words. Again, our top 10

most important features are shown in Table 6.10. We discovered some verbs that describe

medications, such as tapering/VBG - prep - MEDICATION TOK/NN, and phrases that in-

dicate (but do not necessarily explicitly mention) stop taking the medications, such as with-

drawal/NN - nn - cymbalta/NNP to be associated with the Stop taking label. On the other

hand, dependency relations such as taking/VBG - dobj - MEDICATION TOK/NNP or pre-

scribed/VBN - dobj - MEDICATION TOK/NN were associated with ‘Others’ label. Some of

the patterns we found here were also present in frequent sequential patterns. For instance, the

algorithm found MEDICATION TOK/NNP - conj - OTHER MEDICATION TOK/NNP to

be a useful pattern which is what we have also found via frequent sequential patterns. How-

ever, as was shown in our evaluation results, there were enough patterns that the frequent

sequential patterns did not capture but were captured by the dependency parser.

We analyzed keyword-based features, and focused our attention on medications that were

correlated with ‘Stop taking’ label or ‘Others’ label. Other than the medications that we

focused on (Paxil, Zoloft and Cymbalta), we found that Lexapro, Prozac, Wellbutrin, Ef-

fexor, Celexa, Lamictal, Remeron, Abilify, and Pristiq were associated with ‘Stop taking’

labels as well. This seems to indicate again that patients often mention multiple medications

when they indicate that they have stopped taking a given medication. On the other hand,

the medications Seroquel and Buspar had weak negative correlations with the ‘Stop taking’

label. Seroquel is primarily used as an antipsychotic, and often used in conjunction with

other medications to treat depression, and Buspar is often used to treat anxiety. Neither of
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the medications were primarily used as anti-depressants, which may explain why they had

weak negative correlations to the ‘Stop taking’ label. However, we leave these issues for a

future in-depth analysis of the complex problem of stop taking medications in social media

forums.

6.5 DISCUSSION

In this chapter we looked at di↵erent features of various compelxity to learn more about

the problem domain. We started out by taking odds ratio of the words that appear in

our corpus (i.e., ‘baseline’). We then proposed adding more features motivated by existing

approaches that seemed to perform well in similar problem domains and tasks (i.e., ‘informed

baseline’). After conducting an error analysis, we went on to propose complex features meant

to capture some of the errors that the existing features were unable to capture. These features

significangly improved the performance.

For future work, we have several directions. First, we would like to investigate on how to

encode the current state of the medication. Some of the common errors that the classifier

made were in cases where there were multiple instances of the medication of interest. By

constructing these into a timeline, we would be able to capture what the current state

of the medication prescription may be. Furthermore, both our keyword-based features and

curated n-gram pattern features, while e↵ective at generating relevant phrases, would benefit

from a more automated method to increase coverage. We leave this as future work to further

increase recall. Another direction, which is an extension of the previous direction in encoding

the current status of the medication, is to add a new label, ‘currently taking medication’ as

well as constraints to help us classify whether the person has stopped taking the medication

or not. We noticed that a person is not likely to take more than one or two medications

at a same time, especially if it pertains to the same class of medication (although this is

possible). By studying this constraint, we would be able to better classify whether the

person has stopped taking the medication or not. Finally, we would like to investigate the

reasons for which a patient has stopped taking the medication. This would provide useful

information to researchers working on healthcare problems or medical doctors on the type

of medication the patient should be taking.

101



CHAPTER 7: APPLICATIONS OF PATIENT EXPERIENCE TAXONOMY

With a way to identify patient experience taxonomy from patient-generated texts, we

explore how we can utilize it to improve the patient experience. An immediate, and perhaps,

an obvious application is in the research community, where, similar to work described in

Chapter 4, we can analyze each of the topics in more depth. Depending on the type of the

community, we further deepen linguistics knowledge, or what patient experience is like for

a specific patient segmentation in the case of the clinical research community.

A less obvious application is how we utilize the taxonomy to aid healthcare providers. We

find inspiration from online review websites, which have gained popularity in the recent years.

There are numerous similar websites where patients can visit and either read or write patient

authored reviews. There are domain specific websites such as RateMD(www.ratemd.com),

WebMD (www.webmd.com), Health Grades (www.healthgrades.com), and ZocDoc (www.

zocdoc.com), and general purpose websites such as Yelp (www.yelp.com), Google (www.

google.com) and Facebook (www.facebook.com). In each of the review websites, patients

can write about their experiences, and understanding what patients write on these websites

help healthcare providers identify how they can improve their service. Furthermore, in

some review websites, business owners can respond to reviews, as in the example shown

in Figure 7.1. These media provide venues for business owners to justify why a particular

action was done, which may mitigate misunderstanding between the owner and the customer.

Indeed, according to a marketing article [203], responsive business owners are more likely to

attract more customers, and it is no di↵erent for healthcare provider as well [64, 124,204].

However, there are too many websites that healthcare providers need to keep track of and

respond to. What complicates the issue is that patients may write about numerous di↵erent

topics, some of which may not be of interest to a given sta↵ member. As an example,

administrative sta↵ may be interested in improving financing and scheduling, while nurses

may be interested in accurate testing or empathy. A physician may be more interested in

his or her communication skills, in ensuring that patients understand their ailments and

treatment. Because of the diverse set of topics that the sta↵ members are interested in, they

need not be exposed to all the reviews, instead, only to the ones that can help them improve

the quality of care. A method to identify which post should be answered by sta↵ members

would help save time, not only allowing the providers to reconnect with patients, but also

letting them spend more time improving service.

An automated way of routing relevant posts or reviews to the corresponding expert will

save time for the sta↵ members, and improve their understanding of patient experience

102



Figure 7.1: Example of a hospital sta↵ responding to patient’s review.

directly from their patients, leading to improvement in healthcare service quality. We imple-

mented a system that captures topics of interest for the expert. Furthermore, since we want

to minimize the number of patient-generated texts they need to read through, we enforce a

soft-constraint which assigns one expert per text. We describe how we route relevant patient-

generated texts to designated experts in more detail in this chapter. While the experiment

we conducted are not on patient experience taxonomy, we believe the approach can easily

be translated to route texts to designated experts. We answer this research question based

on one of our published works [205].

7.1 INTRODUCTION

Recommender systems are developed to help many di↵erent types of users. Many of

the existing systems focus on helping average users [101, 206] while others help experienced

users [89, 100, 207]. Our work focuses on a specific type of user called designated experts.

These users are defined as those who have significant domain knowledge and are formally

designated by the forum administrators to aid average users. For instance, medical doctors

are designated experts on medical help websites such as MedHelp1 , while instructors and

course sta↵s are designated experts on Massive Online Open Course (MOOC) sites like

1http://www.medhelp.org
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Coursera. These users, performing many roles, including answering questions posted by

average users, are tasked to answer questions average users post on question-answer forums.

Designated experts should respond to many people at once. In the case of medical forums,

medical experts have to answer questions submitted by users. For example, MedHelp, which

is one of the leading medical websites, has over 12 million users every month. However, there

are less than 300 designated medical experts who respond to patients’ questions.

Furthermore, only a small portion of forum posts are answered by designated medical

experts. These are people who have medical expertise that are certified by the website that

hosts health forums. One work analyzed the role of designated medical experts on online

health forums [208] The results show that designated medical experts play a critical role in

responding to patients’ information needs. In particular, 62.1% of online forum posts may

benefit from clinical expertise. However, only 4.7% had responses from medical experts.

MOOCs similarly su↵er from imbalance between the number of designated experts and

users. Coursera has 5.2 million students and 532 courses2, which corresponds to an average of

approximately 10, 000 students per course. By building an e↵ective recommender systems for

designated experts, it would be possible to mitigate such imbalance problems, in particular

by minimizing the time experts spend on looking for questions to answer. The system

should utilize current approaches used by available recommender systems as well as exploit

the unique behavior that designated experts might have.

With this goal in mind, we analyzed the behavior of designated experts. We analyzed

160 thousand threads from the ‘Ask a Doctor’ forum (which consists of more than 60 sub-

forums related to health) from MedHelp. This forum consists of designated experts (medical

doctors) who answer average users’ (patients’) questions. Other non-designated users can

also respond to the patients’ questions. We found that less than 1% of threads had more

than one expert who responded to a patient’s query. This is a unique behavior of designated

experts which does not seem to exist on CQA websites. We believe this is because the

designated experts are very good at giving good answers to question askers. Other bystander

experts may feel it is unnecessary to give an addendum to these answers. This contrasts to

the behavior seen on ‘Medical Support Communities’ from MedHelp. These communities

consist of average patients who seek support from fellow users. About 30% of the threads

on these communities have more than one user who responded to the patient seeking help.

In this chapter we focus on this unique behavior designated experts have. In particular,

we propose to capture it by using matrix factorization with a regularization framework and

show that, by capturing how designated experts behave, the retrieval performance of the

2http://blog.coursera.org/post/64907189712/a-triple-milestone-107-partners-532-courses-5-2
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recommendation system improves.

Our contributions are as follows:

1. To the best of our knowledge, our work is the first to address the problem of recom-

mending forum threads to designated experts. Although some previous research has

focused on recommending questions and answers to users in CQA websites [92,99,100,

103, 207, 209], we were unable to find other works that address recommending forum

threads to designated experts. Other related research has focused on e-mail routing

commercial software such as IM an Expert3. However, these allow users to provide

expertise and take place in a corporate environment, while our work focuses on online

sources.

2. We propose a collective matrix factorization framework [105] to incorporate 1) forum

posts, 2) user profiles and 3) user similarity.

3. We propose a matrix regularization framework [210] to capture the behavior of desig-

nated experts. In particular, we note that only one expert is likely to answer a given

forum post. We propose a model that captures such characteristics.

The rest part of this chapter is organized as follows: Our approach is described in detail

in Section 7.2. Section 7.3 describes and shows results of our experiments. In particular, we

first analyze the impact of each semantic type we introduce in this chapter, then the impact

of the parameters. We then summarize and discuss our findings in Section 7.4.

7.2 OUR APPROACH

7.2.1 Base Formulation

Our formulation is defined using low-rank matrix formulation with implicit user feedback.

In low-rank matrix factorization formulation, the goal is to approximate the feedback matrix

R with two low-rank matrices. The general formulation is given as follows:

Lbase(U, P ) = ||C � (R� U · P>)||F (7.1)

where U 2 Rn⇥k and P 2 Rm⇥k are low-rank matrices that corresponds to experts and posts,

respectively, and || · ||F is Frobenius norm. The element-wise product is represented by �.

The matrix C is relative importance of a given entry.

3http://research.microsoft.com/en-us/projects/imanexpert/
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The feedback matrix R is captured by using binary user feedback, in particular, by de-

termining whether an expert has responded to the given post or not. More formally, if a

user i has responded to a j-th thread, then Rij = 1, 0 otherwise. Furthermore, not all

responses are equal. A user may not have responded to a particular thread because he was

not interested in the thread, or because he has not seen it. We utilize a well known weight-

ing metric [211] to mitigate the problem. The method proposes to frame the problem as

weighted user feedback. The weight C is defined as follows:

Cij =

(
1, if user i responded on j-th thread

1� sim( ~Ui, ~Pj), otherwise
(7.2)

The vectors ~Ui and ~Pj are row vectors of matrices U and P , respectively. Our similarity

metric sim( ~Ui, ~Pj) is cosine similarity between the word vector of the i-th user used and that

of the j-th thread.

7.2.2 Modeling Post Content

Pure collaborative filtering approaches are not su�cient to handle the semantics. Past

literature has suggested incorporating the context of the items [212,213] or user profiles [214]

to improve performance. We follow a similar formulation and model document content into

the matrix factorization framework. Our formulation is as follows:

Lposts(P,W ) = ||D � P ·W>||F (7.3)

where P 2 Rm⇥k and W 2 R|~w|⇥k are low-rank matrices for posts and words, respectively.

The matrix D 2 Rm⇥|~w| is modeled from TF -IDF weighting across the documents.

Modeling post content is an improvement over the base model as it explicitly states the

document formulation. However, as will be evident in the experiments section, this approach

does not model experts’ interests.

7.2.3 Modeling Expert Interest

Similar to what we have done to model post contents, we wish to capture experts’ interest

as well. The challenge here is the user’s profile page is often blank, or near blank. Instead

of modeling these profile pages, we leverage the threads that the expert has responded to,
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and use these as the feature set. Our formulation is given as follows:

Lusers(U,W ) = ||E � U ·W>||F (7.4)

where U 2 Rn⇥k and W 2 R|~w|⇥k are low-rank matrices for experts and words, respectively.

Similar to the document matrix D representation, the matrix E 2 Rn⇥|~w| is modeled using

TF -IDF weighting.

7.2.4 Modeling Expert Similarities

We cannot rely on interaction between two experts in our problem setting since in most

cases, only one expert responds to a given thread. More precisely, since only one expert

is likely to answer a given forum post, we cannot rely only on collaborative filtering to

recommend posts for them to answer. Instead, we measure the similarities between the two

experts based on the threads that they have responded to. If two experts are similar, they

would be interested in similar forum threads, and vice versa for two experts that are not

similar to each other. These are called social regularization framework in the context of

social collaborative filtering [215,216]. Our formulation to capture this intuition is given as

Lsim(U, V ) = ||S � U · V >||F (7.5)

where U 2 Rn⇥k, V 2 Rn⇥k are expert low-rank matrices and their weights, respectively.

S 2 Rn⇥n is a user similarity matrix.

Similarity matrix S is modeled using cosine similarity [217] between the two experts. For

a given user i and i0, we have Si,i0 = cos( ~Ei, ~Ei0), where Si,i0 2 S, ~Ei is the word vector for

the user i, and cos(·, ·) is the cosine similarity between the two vectors.

7.2.5 Modeling Designated Expert Constraints

One response per post.

We have noted only one expert is likely to respond to a given forum post. This formulation

is written as follows:

X

i

Ri,j = 1, 8j 2 {1, . . . ,m} (7.6)
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This equation means some expert would answer the post j. Based on our formulation,

Ri,j ⇠ ~Ui · ~Pj, we now have, for each posts Pj

X

i

~Ui · ~Pj = 1, ~Ui · ~Pj = {0, 1}, 8j 2 {1, . . . ,m} (7.7)

as the constraints.

We note this is an NP-complete problem [218] since it is an instance of 0-1 integer linear

programming and is not easily solvable. Instead, we relax the binary optimization problem

to an optimization problem as the following

X

i

~Ui · ~Pj = 1, 8j 2 {1, . . . ,m}, ~Ui, ~Pj 2 Rk (7.8)

This can be reformulated, by taking its square, as

C1j(U, P ) =

 
X

i

~Ui · ~Pj � 1

!2

= 0, 8j 2 {1, . . . ,m} (7.9)

Propensity to answer.

Each experts has a di↵erent propensity to answer questions. Some may be prolific at

answering questions, while others may not be. To capture this intuition, we introduce a

constraint to capture the expected number of posts each expert may answer in the future.

We note that
P

j
Ri,j is the number of forum threads the expert i has responded to, or

expected number of posts expert Ui is thought to have answered. We denote this as E[Ui].

Following similar logic as before, we propose the following formulation:

P
j
Ri,j = E[Ui], 8i 2 {1, · · · , n},

P
j
~Ui · ~Pj ⇡ E[Ui], 8i 2 {1, · · · , n} (7.10)

Intuitively, this equation forces how often the expert responds to a given post. In the case

the real value of E[u] is not known, E[u] can computed by calculating m⇥ p(U = u|P ),

where m is the number of posts in forum, and p(U = u|P ) is the probability that the expert

u would respond to a random post based on historic data. The constraints representation

of this formula is given as follows:

C2i(U, P ) =

 
X

j

~Ui · ~Pj � E[Ui]

!2

= 0, 8i 2 {1, · · · , n} (7.11)
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7.2.6 Learning Algorithm

We note that all of our constraints are convex which allows us to leverage KKT condition.

We can express the constraints into part of the objective function as the following:

C(U, P ) =
mX

j=1

�c1j C1j(U, P ) +
nX

i=1

�c2i C2i(U, P ) (7.12)

This allows us to encode both the constraints and the objective functions that we introduced

in the previous section into an unconstrained optimization problem as the following:

argmin
U,P,V,W

Lbase(U, P ) + �p · Lposts(P,W )

+�u · Lusers(U,W ) + �s · Lsim(U, V )

+�c · C(U, P )

+�� · (||U ||F + ||P ||F + ||W ||F + ||V ||F )

(7.13)

Algorithm 7.1 Thread Recommender System for Experts

Input: R 2 Rn⇥m, D 2 Rm⇥|w|, E 2 Rn⇥|w|, S 2 Rm⇥m

Output: U 2 Rn⇥k, V 2 Rn⇥k, P 2 Rm⇥k, W 2 R|w|⇥k

currIdx = 0
while Not converged do

if currIdx % nm = 0 then
Precompute

P
i
~Ui · ~Pj 8j 2 {1, · · · ,m}

Precompute
P

j
~Ui · ~Pj 8i 2 {1, · · · , n}

end if
Sample row index (i, j, l, i0) from U , P , W , and V
Update Ui,⇤, Pj,⇤, Wl,⇤, Vi,i0 from @L(U, P,W, V )
currIdx++

end while

In optimizing Equation 7.13, we applied a stochastic gradient descent (SGD) approach.

SGDs are widely used in approximating low-rank matrices and have been shown to show good

convergence and scalability properties [219]. We further note that computing equation 7.9

and equation 7.11 is rather expensive since it requires summation across rows and columns,

respectively. Rather than computing this every iteration of SGD, we precompute these values

every nm iterations. This proved to be a good compromise between the run time and the

performance. Pseudo-code for our algorithm is shown in Algorithm 7.1.
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7.3 EVALUATION

7.3.1 Dataset and Experimental Settings

MedHelp (http://www.medhelp.org/) is a website where users can satisfy their medical

information needs. The website consists of medical news, health diaries, support community

forums and an ‘Ask a Doctor’ forum. Of special interest to us is the ‘Ask a Doctor’ forum.

Average users post question on this forum and designated experts answer them if particular

question suits their interest. There are 67 di↵erent forum categories, ranging from ‘addiction’

to ‘undiagnosed symptoms.’ For the purpose of our system, we only evaluated a forum if

it had at least 5 active designated experts. In total, our dataset had 168 experts, 56,194

threads, and 18 forum categories.

For all of our experiments, we set k = 100 as the dimension of our latent features. We

calculated all of the performance results by running the algorithm 10 times on each of the

parameter settings. Unless otherwise mentioned, for each runs of evaluation, we randomly

chose 80% of the posts as training data and the rest as testing data. The performance results

we report here are based on taking the mean performance value of all 18 categories based on

the best performing parameter combination for the given forum with the exception of the

relative weights of the two constraints, �c1j and �c2i. Both of these parameters were set to 1

throughout all the forums. Based on the sensitivity analysis that we have run, the relative

weights do not cause significant changes in performance. We set �� = 0.001, which prevents

the algorithm from overfitting. Finally, our algorithm converges if the objective function

changes less than 0.001 compared to the previous iteration.

7.3.2 Evaluation Metrics

Performance of each method is measured using Precision at 1, 5, 10 (P@1, P@5, P@10),

Mean Average Precision (MAP ) and Mean Reciprocal Ranking (MRR). P@1, P@5 and

P@10 measures the proportion of recommended items that are ground-truth items amongst

the top k retrieved results. This represents how many relevant threads an expert would see if

they were presented with 1, 5 and 10 recommended threads. MAP is the arithmetic mean of

average precision values over a set of all the retrieved results, and represents a generalization

of what experts would see. MRR on the other hand, measures the inverse rank at which

the relevant ground-truth appears. This measures how many recommended threads a user

would need to browse to find a relevant thread.
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7.3.3 Competing Algorithms

In order to evaluate our algorithm, we compare our algorithm against various other meth-

ods.

NMF : Non-negative Matrix Factorization [220] is a widely used algorithm in recommender

system literature. These capture how users and items interact with each other. This is our

first baseline approach.

MF-D : Matrix factorization with post content model. This approach combines Lbase(U, P )

and Lposts(P,W ) to recommend posts to designated experts. Notice that this method does

not take expert’s interest into the model. This is our second baseline approach.

MF-ED : Matrix factorization with MF-D and expert interest model Lusers(U,W ). This

is our third baseline approach.

MF-SED : Matrix factorization with MF-ED and expert similarity Lsim(U, V ). This cap-

tures how similar experts are to each other.

MF-DEC : Matrix factorization with MF-ED and constraints C(U, P ).

MF-all : Matrix factorization with MF-ED, expert similarity Lsim(U, V ) and constraints

C(U, P ). This is our proposed method.

7.3.4 Performance Comparison

To evaluate the comparative performance of the algorithms, we ran all competing algo-

rithm on all 18 forum categories. The performance comparison for all our methods is shown

in Table 7.1.

Algorithm P1 P5 P10 MAP MRR

NMF 0.1959 0.2005 0.1953 0.2263 0.1975
MF-D 0.0736 0.0587 0.0703 0.1914 0.0907
MF-ED 0.3114 0.2708 0.2639 0.2999 0.3066
MF-SED 0.3117 0.2827 0.2750 0.3068 0.3067
MF-DEC 0.3408⇤ 0.3139⇤ 0.3062⇤ 0.3389⇤ 0.3200
MF-all 0.3698⇤ 0.3281⇤ 0.3172⇤ 0.3438⇤ 0.3390⇤

Table 7.1: Average performance on 18 di↵erent forum categories. * denotes statistical significance
over baseline methods at ↵ = 0.05.

We notice that NMF does not perform very well. This is because NMF only captures the

interaction between users (designated experts) and forum posts. In particular, NMF does not

capture the content of the forum itself. We notice a huge performance di↵erence between MF-
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Figure 7.2: Impact of number of users, number of posts and number of words on the performance
across all 18 forum categories.

D and MF-ED. This shows that, in recommending forum posts to experts, incorporating both

the content of the post and that of the expert is both important. Adding expert similarity

gives some performance improvements over MF-ED. In a given forum, there are experts

whose interests intersect. Similarity characteristics are captured by adding expert similarity

factor, which is consistent with existing literature in social collaboration [104,106,221].

A significant boost is seen for MF-DEC over MF-SED and MF-ED. This indicates the

constraints are suitable at capturing the macro level behavior in the existence of multiple

designated experts. As we have argued in the preceeding sections, only one expert is likely

to respond to a given post. The performance gain indicates that, indeed, constraints are

well-modeled and improve the performance. Finally, the combined method performs the

best which implies that all factors are complementary.

7.3.5 Impact of the Size of the Dataset

The next question we asked was, are there any di↵erences in performance as we increase

the size of the data set? In particular, how does the number of posts, unique words and
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users a↵ect the performance of each of the algorithms? In this experiment, we plot the

performance of all 18 forum categories into scatter plots. The x axis indicates number of

users, posts or words, and y axis denotes the value for MAP . Our results are shown in

Figure 7.2. In almost all forum categories, regardless of the size of the vocabulary, number

of posts or users, MF-all consistently outperformed all the other comparison methods. This

shows that our results are not biased by subset of forums on which our methods perform

very well, or not penalized because of a few forums on which it performs poorly.

7.3.6 Sensitivity Analysis

We also conducted a sensitivity analysis of each parameter. There were four parameters

that we tuned: These are �p which assigns how much weight to give to post contents, �u,

which captures expert’s interest, �s, which assigns relative weights to expert similarities,

and �c which dictates the importance weight of the constraints. The results that we present

are based on averaging the performance across all 18 forums for each of the parameters that

we have ran.

We first tuned �p from MD-D method. We see here that this method is not very sensitive to

the parameter. On the other hand, �u fromMD-ED seems to more sensitive to the parameter.

The two remaining parameters, �s and �c from MD-SED and MD-DEC, respectively, were

not very sensitive to the parameters. This experiment shows that the two constraints which

capture experts’ behaviors are fairly robust. Furthermore, we notice that encoding expert

similarities based on contents they write is robust as well.

We were also curious on how sensitive assigning di↵erent weights to the two constraints

are. In particular, these weights are �c2i and �c1j as shown in Equation 7.12. Tuning

each individual �c1j and �c2i for all of i and j would be rather expensive. Instead, we give

uniform weights to all of �c1j and �c2i and vary the parameters. We note from this experiment

that both �c1j and �c2i are not very sensitive to the parameters. All of our results are in

Figure 7.3. Based on the two sensitivity analysis, we learn that our algorithm is robust to

varying parameters. In particular, once �c is set, di↵ering relative weights of the two types

of constraints do not really a↵ect performance.

7.4 DISCUSSION

In this chapter, we introduced the problem of recommending forum posts to designated

experts. In particular, we designated an algorithm which captures the experts’ behavior

from websites such as online health web forums. For most of the questions that average users
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Figure 7.3: Parameter sensitivity on �p, �u, �s, �c, �c1j and �c2i

post, only one designated expert will answer them. To capture this intuition, we introduced

constraints such as only one expert answering a given post. The proposed constraints have

improved performance based on 18 di↵erent forum categories that we have on which we have

run the experiments on. We solved the recommendation problem using a matrix factorization
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framework. This was chosen because the matix factorization framework allows for an easy

extension to add additional constraints.

We believe the proposed solutions to routing health forums to designated experts can also

be applied to aid hospital sta↵ members find the most relevant patient reviews. Each of the

texts can be assigned topics from patient experience taxonomy. The model can be trained

on the assigned topics. Similar to the work conducted in health forums, only one hospital

sta↵ members is likely to respond to a patient review.

For future work, one can envision modeling how long an expert takes to answer a question,

and incorporating this into the model. Furthermore, we only focused on the behavior of

designated experts in our work. We also did not explore whether or not semantics may

a↵ect an expert responds to a post. Studying the impact of language semantics may help

us further understand designated experts’ behavior.
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CHAPTER 8: CONCLUSION AND FUTURE WORKS

8.1 RESEARCH SUMMARY

In this thesis, we discussed how we can better understand patient experience from patient-

generated texts. Patient experience is important because it a↵ects patient satisfaction and

health outcomes [6, 7, 9]. We stated in Chapter 1 that to improve patient experience, we

must first understand it.

To realize the goal of learning more about patient experience, we utilized a state-of-

the-art patient experience taxonomy which was built and annotated on patient-generated

texts by our collaborators in Chapter 3. The taxonomy was based on a combination of an

o�cial government’s patient experience questionnaire, the HCAHPS survey, along with past

research conducted to understand patient experience [20,21]. One challenge was in ensuring

high quality taxonomy annotation. By iterating multiple times, the annotation quality, as

measured by inter-annotator agreement improved.

With an annotated corpus, we next investigated how to classify topics from patient ex-

perience taxonomy. We explored two di↵erent approaches to capture the characteristics of

patient experience in patient-generated texts. We first implemented a rich semantic repre-

sentation of patient-generated texts which improved the performance of an automated and

comprehensive patient experience classifier in Chapter 4. From the semantic feature repre-

sentation of the texts, we learned how patients describe themselves when they talk about a

particular topic. For example, patients find clinicians who listen well to be strong commu-

nicators. Furthermore, we found that some topics are primarily positive, or negative. For

instance, patients generally perceive the topic ‘Time spent,’ to be negative, because they

feel rushed or feel that hospital sta↵ members did not spend adequate time with them.

Topic inter-dependency was important to further understand patient-generated text as it

pertains to patient experience; we described how we utilized this in Chapter 5. We developed

a model that captured two di↵erent topic interactions, one where they were semantically sim-

ilar, another where they were di↵erent. The hypotheses were tested by utilizing rich feature

representation a↵orded by a deep neural network, and by encoding the two hypotheses con-

straints. Both of the hypotheses helped improve our understanding of the patient experience,

though the second hypothesis had stronger signals in improving the classifier performance

than the first one.

Because patient experience di↵ers from one patient segment to another, we developed

an approach to identify an example segment in Chapter 6. We focused on learning more
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about the patients’ medical history – in particular, whether they are still taking a given

medication or not. We further explored linguistic features to further our understanding of

this particular patient segment. While this is not the only patient segment that influences

patient experience, we believe future researchers can bootstrap this method to learn to

identify di↵erent patient segments.

In Chapter 7, we proposed how physicians and patients can benefit from extracting topics

related to patient experience in patient-generated texts. We argued that while hospital sta↵

members are very busy, they benefit from learning more about their patients’ experience. In

routing relevant patient-generated texts to hospital sta↵ members, we enforced various con-

straints. This captured hospital sta↵ members’ behaviors as interact with patient-generated

texts. The behavioral constraints increased the relevancy of the recommended texts.

8.2 POTENTIAL IMPROVEMENTS

We discussed how to comprehensively and automatically understand patient experience,

and proposed its potential application. There are, however, limitations with our models,

and improving upon these can further our understanding of patient experience. We discuss

limitations and areas that can further improve our research in this section.

8.2.1 Rich Semantic Representation of Patient Experience Taxonomy

We introduced semantic features that can capture the document characteristics of the

RateMD dataset in this work. While these features provided us with valuable insights, there

are still limitations with our method. First, our proposed set of features did not substantially

improve the classification performance. In particular, while our embedding based methods

(Word2Vec, Dep2Vec) did improve performance over the baseline, other features such as

WordNet or aspect rating had very marginal improvement. Part of this can be due to us not

adequately exploring the given feature. We opted for a shallow feature representation of both

WordNet and aspect rating. By investigating whether a given shallow set of features improve

performance or not, we can, in later successive research works, decide to improve the set of

shallow features to better capture the corpus. Our work, in this sense, is exploratory. In the

literature there has been work which utilizes WordNet [222,223] or aspect ratings [144,224]

to represent the corpus. Furthermore, while Word2Vec and Dep2Vec both are powerful

embedding methods, researchers have also further extended upon these methods as well. An

exciting venture may have been, how we can combine Word2Vec and Dep2Vec, but we did

not explore this possibility.
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Second, as is the case with many classifiers, our algorithm had low evaluation performance

results on classes that appeared infrequently. Such is the critical limitation of supervised

approaches. We tried to mitigate this issue by utilizing LARA, which is an unsupervised

method. The benefit of the method is that we do not need a large number of labeled data;

instead, well-curated seed words are su�cient to identify topics present in texts. To test

the upper bound of LARA, we utilized representative keywords learned from our classifiers.

However, we were unable to observe improvements over our supervised approach even after

utilizing LARA. To ultimately improve the classification performance of infrequent classes,

we need more labeled data. However, if we were to annotate the dataset at random, we are

more likely to end up annotating those that appear very frequently, for example, ‘Tempera-

ment’ class, and still very few instances of infrequently occurring classes (such as ‘cost’). A

sampling approach that can sample infrequent labels from the corpus may help. However,

we did not explore how we can better label more data in this work.

Third, while we analyzed which features are closely related to each topic, we did not inves-

tigate why a particular review may be classified into the said topic. As an example, a patient

may have had a bad experience with an unfriendly doctor and detail what exactly happened

at the doctor’s o�ce. Our proposed approach can identify that the patient has talked about

the friendliness of the doctor. However, it is unable to extract, from a human-readable form,

what exactly the patient is talking about for the said topic (in the above example, the details

of what happened at the doctor’s o�ce). This problem can potentially be solved by utiliz-

ing existing text summarization approaches. Text summarization techniques can summarize

what patients most frequently mention for each topic in a human-readable form, which is an

improvement over the feature analysis we conducted. While this is an important avenue to

explore, we did not investigate how we can summarize each topic in the patient experience

taxonomy.

8.2.2 Topic Inter-dependencies in Patient Experience Taxonomy

First, while the proposed loss function incorporates both the child-class prediction errors

and encodes the hierarchical patient experience taxonomy, we have only experimented with

squared di↵erence loss to enforce the structural constraints (parent-child relationships). In

typical prediction tasks, researchers found that cross-entropy yields the best results. How-

ever, we did not explore whether a di↵erent type of loss, perhaps one motivated by cross-

entropy models would work better or not. Furthermore, we assumed that violation between

two di↵erent parent-child relationships should be assigned the same weight, regardless of

which meta-class or child-class violated the structural constraints. However, it is possible
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that some parent-child constraint violations are more significant than others. For instance,

it is possible that violating the parent-child relationship between ‘Interpersonal manner’ (a

parent class) and ‘Temperament,’ (a child class) is perfectly acceptable. On the other hand,

the same between ‘Scheduling,’ and ‘Time spent’ may not prove to be so. In such cases, we

should assign higher weights if we violate the latter than the former. In this work, however,

we treated both types of parent-child class violations with the same weight.

Second, while our model was driven by two hypotheses, both of which improved the

classification performance, the model is unable to learn which two child-classes are closely

associated with each other. If two child-classes belong to the same meta-class, then the

assumption was that these two should be tightly correlated with each other. Furthermore, we

assumed that the label interactions are driven by the meta-class prediction as well. However,

we did not explore if the two classes – for example, ‘Temperament,’ and ‘Helpfulness’ – are

closely correlated or not. Part of the limitation is that directly interpreting label correlations

is infeasible in our approach. We utilized a Deep Neural Network (DNN) framework to

conduct the study, and while DNNs frequently improve the classification performance, the

trained models are generally not interpretable. Our proposed approach also su↵ers from this

drawback.

Third, we proposed a generic hierarchical taxonomy classifier that can be applied to other

datasets that are hierarchical. Testing the method described in this work to other datasets

has numerous benefits if we can show that hierarchical multi-label (HML) classification ap-

proach discussed in this work performs better than non-hierarchical multi-label classification

models on other datasets. This may indicate that HML classification approach is flexible

and generalizable. On the other hand, if we do not observe any performance gains, then the

method is better suited for RateMD dataset but not the other ones. However, we have only

tested our method in RateMD dataset, and have not shown whether our approach can also

be applicable in other hierarchical problem domains.

8.2.3 Patient Segments Identification for Comprehensive Understanding of Patient
Experience Taxonomy

We proposed utilizing online health forums to identify patient segments. However, through-

out this thesis, we proposed how we can better understand patient experience from the

RateMD dataset. It is perfectly reasonable to question whether the approach we proposed

is also applicable on RateMD dataset. While we have not tested our method in the re-

view dataset, we argue that there is still benefit in identifying di↵erent patient segments

from health forums. The proposed set of features can still be utilized to identify patients’
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segments on RateMD dataset. While we have not tested whether the features will still be

valid in RateMD dataset, they are a good starting point to build a user segments classifier.

Recently, many websites have integrated Google ID or Facebook account as well. We can

further conceive that a unified online identification can be utilized to classify users’ identity

in one medium (for instance, in health forums), and use this information to understand

patients’ experiences better when they author patient reviews. The ID integration can then

be utilized to learn patient experiences from di↵erent patient segments gathered from online

health forums.

Second, we only explored a single type of patient segment. In particular, we proposed

an approach to identify whether a patient has stopped taking medication or not. However,

there are many di↵erent types of patient segments which we did not explore in this work –

for example, an automated approach to identify the type of illness that patients have may

help us better understand patients’ experiences. We argue that techniques developed to

identify whether a patient has stopped taking medication or not can still be applicable for

other types of patient segments, but we leave this for future work.

Third, while we described and evaluated an approach to identify di↵erent patient segments,

we did not utilize this information to better understand patients’ experiences. Part of this

was due to the first limitation we described, i.e., the inability to connect what patients had

posted in online reviews to patient segments we identified discussed in this work. Once we

can connect patient segments with online reviews that patients have posted, either by Google

or Facebook ID integration, or by running the patient segment identification algorithm on

the RateMD dataset, we believe we will be able to understand patient experience in di↵erent

patient segments.

8.2.4 Applications of Patient Experience Taxonomy

We proposed classifiers that can automatically identify topics from patient experience

taxonomy in Chapter 4 and Chapter 5. On the other hand, the recommender system we built

was trained to recommend posts relevant to a doctor’s specialization (such as cancer or heart

disease). More precisely, the recommender system was trained on disease taxonomy. While

the recommender system is general enough that it can be trained from patient experience

taxonomy rather than from disease taxonomy as we have conducted in Chapter 7, we did

not demonstrate that learning to recommend posts to hospital sta↵ based on the patient

experience taxonomy is, indeed, possible. It would be beneficial, in the future, to show

that the recommender system that we built can, indeed, be trained on patient experience

taxonomy.
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Furthermore, our recommender system was trained on online health forums, whereas the

patient experience taxonomy classifier was trained on RateMD patient review datasets. For

the recommender system to work, it would either need to be trained on RateMD datasets, or

the patient experience taxonomy classifier would need to be trained on online health forums.

Third, while we have conducted a thorough o✏ine test that measured various evaluation

metrics (MRR, Precision at k, MAP), we did not conduct a real-world test. A real-world

test is beneficial to demonstrate how useful the application is to hospital sta↵ members.

For example, a test showing that the vast majority of the hospital sta↵ members found the

recommender system to be useful might result in the system’s adoption by more hospital

sta↵ members.

8.3 FUTURE WORKS

We envision multiple potential future works arising from this thesis. In the thesis, we

answered the question of whether the topic interactions can be encoded into the model or

not. The answer was a resounding yes where such interactions not only exist but also can

be utilized to improve topic identification in the review corpus. However, the work did not

investigate how the topics may be correlated with each other. It may be the case that two

topics, say, ‘good with kids,’ and ‘empathy’ are correlated, but the current neural network

model was unable to capture such a relationship. The limitation was due to how the deep

neural network framework encodes features. With few notable exceptions, it is challenging

to analyze features in deep neural networks. Traditional machine learning approaches, such

as integer linear programming approach [225] may be one way to explore this venue, but

such an approach may su↵er, classification performance wise, compared to those developed

on deep neural networks. Care must be taken to ensure that the newly proposed method is

at least as competitive with the neural networks assuming that they are fed the same feature

sets.

We opted for a supervised learning approach where the model was trained based on the

patient experience taxonomy. While the supervised approaches capture the set of topics

that are of interest to researchers, this requires training data which requires an annotated,

or labeled, dataset. Unsupervised approaches, on the other hand, ease this process since

they do not need annotated data. However, we did not explore into this avenue, and future

works which look into unsupervised methods will allow researchers to identify new patient

experience topics more rapidly. At the same time, the newly discovered topics should align

with what healthcare researchers and physicians are interested in.

Furthermore, most of our analysis was conducted on a patient review website, with a
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focus on how patients describe their hospital experience. However, patient review websites

are not the only places where patients share their experience, nor are hospital experiences

the only type of experience patients have. There are online health forums, micro-blogs such

as Twitter or Weibo, where patients may talk about a di↵erent set of experiences. Some of

these examples are di↵erent treatment techniques or experiences of taking particular drugs.

Furthermore, comparing di↵erent venues of online patient-generated texts – for example,

online health forums and online patient reviews – may be of interest. It is possible that

patients express themselves di↵erently. For example, micro-blogs are succinct whereas health

forums and patient reviews tend to be longer. However, in this thesis, we did not explore how

the patients may describe their experience di↵erently, depending on which online medium

they write.

Assigning topics from patient experience taxonomy to patient-generated texts opens up

new application areas. We proposed utilizing a patient experience taxonomy classifier to aid

hospital sta↵ members to retrieve patient-generated texts that may be of interest to them.

There are even more application areas in which researchers can utilize patient experience tax-

onomy classifier, however. Past works investigated sentiments expressed in patient-generated

texts [226, 227]. We envision going a step further where each identified topic is assigned a

sentiment score. This allows patients to either filter hospitals that meet their criteria for

a given topic (for instance, finding hospitals whose sta↵ members are generally friendly),

or even allows patient review websites to recommend hospitals based on patients’ preset

criteria.

It is our belief that some of these applications arising from understanding patient experi-

ence will improve the well-being of future patients.
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[174] C. DeCoro, Z. Barutçuoglu, and R. Fiebrink, “Bayesian aggregation for hierarchical
genre classification,” in Proceedings of the 8th International Conference on Music
Information Retrieval, ISMIR 2007, Vienna, Austria, September 23-27, 2007, 2007.
[Online]. Available: http://ismir2007.ismir.net/proceedings/ISMIR2007 p077 decoro.
pdf pp. 77–80.

[175] P. N. Bennett and N. Nguyen, “Refined experts: improving classification
in large taxonomies,” in Proceedings of the 32nd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2009, Boston, MA, USA, July 19-23, 2009, 2009. [Online]. Available:
https://doi.org/10.1145/1571941.1571946 pp. 11–18.

[176] A. Sun and E. Lim, “Hierarchical text classification and evaluation,” in Proceedings
of the 2001 IEEE International Conference on Data Mining, 29 November
- 2 December 2001, San Jose, California, USA, 2001. [Online]. Available:
https://doi.org/10.1109/ICDM.2001.989560 pp. 521–528.

[177] P.-Y. Hao, J.-H. Chiang, and Y.-K. Tu, “Hierarchically svm classification based on
support vector clustering method and its application to document categorization,”
Expert Syst. Appl., vol. 33, no. 3, pp. 627–635, Oct. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2006.06.009

[178] C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel, “Decision trees for
hierarchical multi-label classification,” Machine Learning, vol. 73, no. 2, pp. 185–214,
2008. [Online]. Available: https://doi.org/10.1007/s10994-008-5077-3

[179] K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S. Gerber,
and L. E. Barnes, “Hdltex: Hierarchical deep learning for text classification,”
in 16th IEEE International Conference on Machine Learning and Applications,
ICMLA 2017, Cancun, Mexico, December 18-21, 2017, 2017. [Online]. Available:
https://doi.org/10.1109/ICMLA.2017.0-134 pp. 364–371.

[180] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba, “Learning with hierarchical-
deep models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1958–1971,
Aug. 2013. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2012.269

[181] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A deep convolutional neural
network for lifelong learning,” CoRR, vol. abs/1802.05800, 2018. [Online]. Available:
http://arxiv.org/abs/1802.05800

[182] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di, and
Y. Yu, “HD-CNN: hierarchical deep convolutional neural networks for large scale
visual recognition,” in 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, 2015. [Online]. Available:
https://doi.org/10.1109/ICCV.2015.314 pp. 2740–2748.

139



[183] J. Fan, T. Zhao, Z. Kuang, Y. Zheng, J. Zhang, J. Yu, and J. Peng, “HD-MTL:
hierarchical deep multi-task learning for large-scale visual recognition,” IEEE
Trans. Image Processing, vol. 26, no. 4, pp. 1923–1938, 2017. [Online]. Available:
https://doi.org/10.1109/TIP.2017.2667405

[184] G. Chen, D. Ye, Z. Xing, J. Chen, and E. Cambria, “Ensemble application of
convolutional and recurrent neural networks for multi-label text categorization,”
in 2017 International Joint Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, May 14-19, 2017, 2017. [Online]. Available: https:
//doi.org/10.1109/IJCNN.2017.7966144 pp. 2377–2383.

[185] J. H. D. Cho, T. Gao, and R. Girju, “Identifying medications that patients stopped
taking in online health forums,” in 11th IEEE International Conference on Semantic
Computing, ICSC 2017, San Diego, CA, USA, January 30 - February 1, 2017, 2017.
[Online]. Available: https://doi.org/10.1109/ICSC.2017.24 pp. 141–148.

[186] W. W. Fleischhacker, M. A. Oehl, and M. Hummer, “Factors influencing compliance
in schizophrenia patients,” J Clin Psychiatry, vol. 64 Suppl 16, pp. 10–13, 2003.

[187] H. Rittmannsberger, T. Pachinger, P. Keppelmuller, and J. Wancata, “Medication ad-
herence among psychotic patients before admission to inpatient treatment,” Psychiatr
Serv, vol. 55, no. 2, pp. 174–179, Feb 2004.

[188] M. R. DiMatteo, “Variations in patients’ adherence to medical recommendations: a
quantitative review of 50 years of research,” Med Care, vol. 42, no. 3, pp. 200–209,
Mar 2004.

[189] D. Roe, H. Goldblatt, V. Baloush-Klienman, M. Swarbrick, and L. Davidson, “Why
and how people decide to stop taking prescribed psychiatric medication: exploring the
subjective process of choice,” Psychiatr Rehabil J, vol. 33, no. 1, pp. 38–46, 2009.

[190] A. Signorini, A. M. Segre, and P. M. Polgreen, “The use of Twitter to track levels of
disease activity and public concern in the U.S. during the influenza A H1N1 pandemic,”
PLoS ONE, vol. 6, no. 5, p. e19467, 2011.

[191] L. Andrade, J. J. Caraveo-Anduaga, P. Berglund, R. V. Bijl, R. De Graaf, W. Volle-
bergh, E. Dragomirecka, R. Kohn, M. Keller, R. C. Kessler, N. Kawakami, C. Kilic,
D. O↵ord, T. B. Ustun, and H. U. Wittchen, “The epidemiology of major depres-
sive episodes: results from the International Consortium of Psychiatric Epidemiology
(ICPE) Surveys,” Int J Methods Psychiatr Res, vol. 12, no. 1, pp. 3–21, 2003.

[192] P. J. McCormick, N. Elhadad, and P. D. Stetson, “Use of semantic features to classify
patient smoking status,” AMIA Annu Symp Proc, pp. 450–454, 2008.

[193] E. Aramaki, T. Imai, K. Miyo, and K. Ohe, “Patient Status Classification by Us-
ing Rule based Sentence Extraction and BM25 kNN-based Classifier,” Processing for
Clinical Data, 2006.

140



[194] A. M. Cohen, “Five-way smoking status classification using text hot-spot identification
and error-correcting output codes,” J Am Med Inform Assoc, vol. 15, no. 1, pp. 32–35,
2008.

[195] R. Wicentowski and M. R. Sydes, “Using implicit information to identify smoking
status in smoke-blind medical discharge summaries,” J Am Med Inform Assoc, vol. 15,
no. 1, pp. 29–31, 2008.

[196] C. Clark, K. Good, L. Jezierny, M. Macpherson, B. Wilson, and U. Chajewska, “Iden-
tifying smokers with a medical extraction system,” J Am Med Inform Assoc, vol. 15,
no. 1, pp. 36–39, 2008.

[197] E. Cambria, D. Olsher, and D. Rajagopal, “Senticnet 3: A common and common-
sense knowledge base for cognition-driven sentiment analysis,” in Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec
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