211 research outputs found

    Solving atomic multicast when groups crash

    Get PDF
    In this paper, we study the atomic multicast problem, a fundamental abstraction for building faulttolerant systems. In the atomic multicast problem, the system is divided into non-empty and disjoint groups of processes. Multicast messages may be addressed to any subset of groups, each message possibly being multicast to a different subset. Several papers previously studied this problem either in local area networks [3, 9, 20] or wide area networks [13, 21]. However, none of them considered atomic multicast when groups may crash. We present two atomic multicast algorithms that tolerate the crash of groups. The first algorithm tolerates an arbitrary number of failures, is genuine (i.e., to deliver a message m, only addressees of m are involved in the protocol), and uses the perfect failures detector P. We show that among realistic failure detectors, i.e., those that do not predict the future, P is necessary to solve genuine atomic multicast if we do not bound the number of processes that may fail. Thus, P is the weakest realistic failure detector for solving genuine atomic multicast when an arbitrary number of processes may crash. Our second algorithm is non-genuine and less resilient to process failures than the first algorithm but has several advantages: (i) it requires perfect failure detection within groups only, and not across the system, (ii) as we show in the paper it can be modified to rely on unreliable failure detection at the cost of a weaker liveness guarantee, and (iii) it is fast, messages addressed to multiple groups may be delivered within two inter-group message delays only

    Distributed eventual leader election in the crash-recovery and general omission failure models.

    Get PDF
    102 p.Distributed applications are present in many aspects of everyday life. Banking, healthcare or transportation are examples of such applications. These applications are built on top of distributed systems. Roughly speaking, a distributed system is composed of a set of processes that collaborate among them to achieve a common goal. When building such systems, designers have to cope with several issues, such as different synchrony assumptions and failure occurrence. Distributed systems must ensure that the delivered service is trustworthy.Agreement problems compose a fundamental class of problems in distributed systems. All agreement problems follow the same pattern: all processes must agree on some common decision. Most of the agreement problems can be considered as a particular instance of the Consensus problem. Hence, they can be solved by reduction to consensus. However, a fundamental impossibility result, namely (FLP), states that in an asynchronous distributed system it is impossible to achieve consensus deterministically when at least one process may fail. A way to circumvent this obstacle is by using unreliable failure detectors. A failure detector allows to encapsulate synchrony assumptions of the system, providing (possibly incorrect) information about process failures. A particular failure detector, called Omega, has been shown to be the weakest failure detector for solving consensus with a majority of correct processes. Informally, Omega lies on providing an eventual leader election mechanism

    Synchronization using failure detectors

    Get PDF
    Many important synchronization problems in distributed computing are impossible to solve (in a fault-tolerant manner) in purely asynchronous systems, where message transmission delays and relative processor speeds are unbounded. It is then natural to seek for the minimal synchrony assumptions that are sufficient to solve a given synchronization problem. A convenient way to describe synchrony assumptions is using the failure detector abstraction. In this thesis, we determine the weakest failure detectors for several fundamental problems in distributed computing: solving fault-tolerant mutual exclusion, solving non-blocking atomic commit, and boosting the synchronization power of atomic objects. We conclude the thesis by a perspective on the very definition of failure detectors

    Design and performance study of algorithms for consensus in sparse, mobile ad-hoc networks

    Get PDF
    PhD ThesisMobile Ad-hoc Networks (MANETs) are self-organizing wireless networks that consist of mobile wireless devices (nodes). These networks operate without the aid of any form of supporting infrastructure, and thus need the participating nodes to co-operate by forwarding each other’s messages. MANETs can be deployed when urgent temporary communications are required or when installing network infrastructure is considered too costly or too slow, for example in environments such as battlefields, crisis management or space exploration. Consensus is central to several applications including collaborative ones which a MANET can facilitate for mobile users. This thesis solves the consensus problem in a sparse MANET in which a node can at times have no other node in its wireless range and useful end-to-end connectivity between nodes can just be a temporary feature that emerges at arbitrary intervals of time for any given node pair. Efficient one-to-many dissemination, essential for consensus, now becomes a challenge: enough number of destinations cannot deliver a multicast unless nodes retain the multicast message for exercising opportunistic forwarding. Seeking to keep storage and bandwidth costs low, we propose two protocols. An eventually relinquishing (}RC) protocol that does not store messages for long is used for attempting at consensus, and an eventually quiescent (}QC) one that stops forwarding messages after a while is used for concluding consensus. Use of }RC protocol poses additional challenges for consensus, when the fraction, f n, of nodes that can crash is: 1 4 f n < 1 2 . Consensus latency and packet overhead are measured through simulation indicating that they are not too high to be feasible in MANETs. They both decrease considerably even for a modest increase in network density.Damascus University

    Intrusion-Tolerant Middleware: the MAFTIA approach

    Get PDF
    The pervasive interconnection of systems all over the world has given computer services a significant socio-economic value, which can be affected both by accidental faults and by malicious activity. It would be appealing to address both problems in a seamless manner, through a common approach to security and dependability. This is the proposal of intrusion tolerance, where it is assumed that systems remain to some extent faulty and/or vulnerable and subject to attacks that can be successful, the idea being to ensure that the overall system nevertheless remains secure and operational. In this paper, we report some of the advances made in the European project MAFTIA, namely in what concerns a basis of concepts unifying security and dependability, and a modular and versatile architecture, featuring several intrusion-tolerant middleware building blocks. We describe new architectural constructs and algorithmic strategies, such as: the use of trusted components at several levels of abstraction; new randomization techniques; new replica control and access control algorithms. The paper concludes by exemplifying the construction of intrusion-tolerant applications on the MAFTIA middleware, through a transaction support servic

    Atomic Broadcast in Heterogeneous Distributed Systems

    Get PDF
    Communication services have long been recognized as possessing a dominant effect on both performance and robustness of distributed systems. Distributed applications rely on a multitude of protocols for the support of these services. Of crucial importance are multicast protocols. Reliable multicast protocols enhance the efficiency and robustness of distributed systems. Numerous reliable multicast protocols have been proposed, each differing in the set of assumptions adopted, especially for the communication network. These assumptions make each protocol suitable for a specific environment. The presence of different distributed applications that run on different LANs and single distributed applications that span different LANs mandate interaction between protocols on these LANs. This interaction is driven by the necessity of cooperation between individual applications. The state of the art in reliable multicast protocols renders itself inadequate for multicasting in interconnected LANs. The progress in development methodology for efficient and robust LAN software has not been matched by similar advances for WANs. A high-latency, a lower bandwidth, a higher probability of partitions, and a frequent loss of messages are the main restrictive barriers. In our work, we propose a global standard protocol that orchestrates cooperation between the different reliable broadcast protocols that run on different LANs. Our objective is to support a reliable ordered delivery service for inter-LAN messages and achieve the utmost utilization of the underlying local communication services. Our protocol suite accommodates the existence of LANs managed by autonomous authorities. To uphold this autonomy (as a defacto condition), LANs under different authorities must be able to adopt different ordering criteria for group multicasting. The developed suite assumes an environment in which multicasting groups can have members that belong to different LANs; each group can adopt either total or causal order for message delivery to its members. We also recognize the need for interaction between different reliable multicasting protocols. This interaction is a necessity in an autonomous environment in which each local authority selects a protocol that is suitable to its individual needs. Our protocols are capable of interacting with any reliable protocol that achieves a causal order as well as with all timestamp-based total-order protocols. Our protocols can also be used as a medium for interaction between existing reliable multicasting protocols. This feature opens new avenues in interactability between reliable multicasting protocols. Finally, our protocol suite enjoys a communication structure that can be aligned with the actual routing topology, which largely minimizes the necessary protocol messages

    Goddard Conference on Mass Storage Systems and Technologies, volume 2

    Get PDF
    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression
    • …
    corecore