
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Fall 1995

Atomic Broadcast in Heterogeneous Distributed
Systems
Osman ZeinElDine
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons, Digital Communications and Networking Commons,
and the Systems and Communications Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
ZeinElDine, Osman. "Atomic Broadcast in Heterogeneous Distributed Systems" (1995). Doctor of Philosophy (PhD), dissertation,
Computer Science, Old Dominion University, DOI: 10.25777/9qxp-ey89
https://digitalcommons.odu.edu/computerscience_etds/82

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/82?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ATOMIC BROADCAST IN
HETEROGENEOUS DISTRIBUTED SYSTEMS

by
Osman ZeinEIDine

B.S. June 86, Alexandria University, Alexandria, Egypt
M.S. July 89, Alexandria University, Alexandria, Egypt

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

Old Dominion University

Approved by:

Dr. Hussein Abdel-Wahab, Advisor

Dr. Ravi Mukkamala

Dr. Stewart Shen

Dr. Shunichi Toida

Dr. Hani Elsayed-Ali

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To My Parents

i i / I i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Communication services have long been recognized as possessing a dominant

effect on both performance and robustness of distributed systems. Distributed

applications rely on a m ultitude of protocols for the support of these services. Of

crucial importance are multicast protocols. Reliable m ulticast protocols enhance

the efficiency and robustness of distributed systems. Numerous reliable multicast

protocols have been proposed, each differing in the set of assumptions adopted,

especially for the communication network. These assumptions make each protocol

suitable for a specific environment. The presence of different distributed appli­

cations tha t run on different LANs and single distributed applications tha t span

different LANs m andate interaction between protocols on these LANs. This inter­

action is driven by the necessity of cooperation between individual applications.

The state of the art in reliable multicast protocols renders itself inadequate for

multicasting in interconnected LANs. The progress in development methodology

for efficient and robust LAN software has not been matched by similar advances

for WANs. A high-latency, a lower bandwidth, a higher probability of partitions,

and a frequent loss of messages are the main restrictive barriers. In our work, we

propose a global standard protocol that orchestrates cooperation between the dif­

ferent reliable broadcast protocols th a t run on different LANs. Our objective is to

support a reliable ordered delivery service for inter-LAN messages and achieve the

utm ost utilization of the underlying local communication services. Our protocol

suite accommodates the existence of LANs managed by autonomous authorities.

To uphold this autonomy (as a defacto condition), LANs under different authori­

ties must be able to adopt different ordering criteria for group multicasting. The

developed suite assumes an environment in which multicasting groups can have

members tha t belong to different LANs; each group can adopt either total or

causal order for message delivery to its members.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We also recognize the need for interaction between different reliable multicas­

ting protocols. This interaction is a necessity in an autonomous environment in

which each local authority selects a protocol tha t is suitable to its individual needs.

Our protocols are capable of interacting with any reliable protocol that achieves

a causal order as well as with all timestamp-based total-order protocols. Our

protocols can also be used as a medium for interaction between existing reliable

multicasting protocols. This feature opens new avenues in interactability between

reliable m ulticasting protocols. Finally, our protocol suite enjoys a communica­

tion structure tha t can be aligned with the actual routing topology, which largely

minimizes the necessary protocol messages.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I am extremely fortunate to have Dr. Hussein Abdel-Wahab as my advisor. His

guidance and knowledge made the completion of this work possible; I have always

been able to count on his encouragement and support whenever I need them. His

kindness and understanding have made my life easier. His patience in guiding my

educational progress has been remarkable, I have truly enjoyed our relationship

and fruitful discussions.

I would like to thank my dissertation committee members, Drs. Ravi Mukka-

mala, Stewart Shen, and Shunichi Toida, for their individual guidance and support.

Dr. Toida helped me to learn clustering. His support, advise, valuable comments,

and encouragement was of great help. I still remember my first database class at

ODU with Dr. Shen, and I will never forget the cooperative environment provided

by Dr. Mukkamala both in research and classes. A word of appreciation also goes

to Dr. Hani Elsayed-Ali for his participation in the committee.

I am indebted to Dr. Ken Birman for his valuable input and constructive

criticism of different aspects of this work. I would also like to thank Dr. Sam Toueg

for providing me with both the initial idea and the resources th a t made Chapter

9 possible. His assistance in revising some of my work is greatly appreciated. I

would also like to extend my thanks to P at Stephenson and Anne Spauster for

their help and advice.

Special thanks go to my dear friend and housemate, Ashraf Wadaa, for his

help, support, and fruitful ideas th a t positively contributed to this work. Our long

discussions and his cooking skills made my life much more enjoyable. Thanks are

also due to Mohamed Eltoweissy for his comments on different parts of this work,

and to Jonay Campbell for editing this dissertation. My thanks also are extended

to my friends Nahil Sobh, Alaa Elmiligui, Rafat Shaheen, Hussein Moustafa, and

Ashraf Morsi for the good times we had together. Also, a word of gratitude goes

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to my professors a t Alexandria University for their support and encouragement.

Finally, words do not begin to express my deepest gratitude to my family,

in particular, my parents who have overwhelmed me with their love, warmth,

care, support, and encouragement. Their sacrifice, endurance, and inspiration

are beyond description. Manal, Walid, and Marwa, being your brother is really

marvelous. In addition, I will never forget the encouragement, care, and support

of Drs. Mohamed Fahmy and Aly Fahmy, my cousins. They will never believe

how much difference they have made in my life and career. I am truly in debt to

both of them.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

1 Introduction 1

1.1 M otivation ... 4

1.1.1 A u tonom y ... 5

1.1.2 H eterogeneity ... 6

1.1.3 Perform ance.. 7

1.1.4 R esilien cy ... 7

1.2 O b jec tiv es ... 9

1.3 C ontribu tion .. 10

1.4 Outline of D isse rta tio n .. 11

2 Background 14

2.1 Overview of Distributed S y s te m s .. 14

2.1.1 The Need for Distributed S y s te m s ... 15

2.1.2 Problems in Distributed S y s te m s ... 16

2.2 Synchronous and Asynchronous N etw orks... 17

2.2.1 Autonomy .. 18

2.2.2 H eterogeneity ... 22

2.3 Ordered Reliable M ulticast.. 23

2.3.1 Aspects of Reliable Atomic M u ltic a s t... 26

2.3.2 Importance of Reliable Atomic M u ltic a s t.................................... 31

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 M ulticast Protocols ... 34

2.4.1 Chang and Maxemchuck: (Token passing ap p ro a c h)34

2.4.2 Birman and Joseph: (IS IS).. 36

2.4.3 Melliar-Smith et al.:(Trans-Total p ro to c o l) 39

2.4.4 Luan and Gligor: (The consensus pro toco l)................................ 40

2.4.5 Cristian et al.: (Atomic broadcast in real t i m e)41

2.4.6 Garcia-Molina and Spauster: (The propagation graph pro­

tocol) 42

3 M ulticasting in Interconnected Networks 44

3.1 In tro d u c tio n .. 44

3.2 Internetwork M ulticasting P rob lem s.. 45

3.2.1 Multicasting in a Heterogeneous S y s t e m 46

3.2.2 Communication E n v iro n m e n t..47

3.2.3 Failure A ssu m p tio n s .. 48

3.2.4 Problems W ith Broadcasting in Heterogeneous Distributed

S y s te m s .. 48

3.2.5 Case S t u d y ... 52

3.3 Statem ent of P u rp o se ... 55

3.3.1 The E nv iro n m en t... 55

3.3.2 G oals... 5S

3.3.3 Approach to the Solu tion .. 59

3.4 The Communication Model .. 60

3.4.1 The Communication S tru c tu re .. 62

3.5 Protocol Data Structures .. 68

3.6 C onclusion.. 71

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 BUS: B ottom -U p Stam ping Protocol 72

4.1 In tro d u c tio n .. 72

4.2 BUS Protocol D e sc r ip tio n .. 74

4.3 BUS Protocol O u t l i n e .. 76

4.3.1 S e n d e r ... 76

4.3.2 TFM ... 76

4.3.3 R e c e iv e r ... 77

4.3.4 R e m a rk s ... 77

4.4 BUS Protocol C o rre c tn e ss .. 81

4.5 C onclusion.. S3

5 BUS-TO: B ottom -U p Stam ping Protocol (Total-Order Version) 84

5.1 In tro d u c tio n .. 84

5.2 BUS-TO Protocol D escrip tion ... S6

5.3 BUS-TO Protocol O u t l in e .. 87

5.3.1 S e n d e r ... 87

5.3.2 T F M .. 88

5.3.3 R e c e iv e r ... 90

5.4 BUS-TO Protocol C orrectness... 95

5.5 TDS: Top-Down Stamping P ro to c o l.. 98

5.6 C onclusion...100

6 MLMO: M ulti-L A N M ulti-Order P rotocol 101

6.1 In tro d u c tio n ... 101

6.2 The MLMO P ro to c o l.. 103

6.2.1 Protocol D e sc rip tio n ... 104

6.2.2 Message Bypass P ro b le m s .. 107

6.2.3 Tim estam p Gap A djustm en t... 109

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.4 Timestam p Incarnation .. 110

6.2.5 Committed Message L i s t ... 112

6.3 Protocol O u t l i n e ..113

6.3.1 S e n d e r .. 113

6.3.2 R ece iv er... 114

6.3.3 TFM Procedure ...118

6.4 MLMO Protocol C orrectness..125

6.5 Conclusion... 129

7 INTER: A M ulti-Protocol Interface 131

7.1 The Interface P r o to c o l ..131

7.1.1 E C C U ...134

7.1.2 E T C H ...134

7.2 Message Handling in the Interface P r o to c o l ...136

7.2.1 Global Message Handling ..136

7.2.2 Local Message H a n d lin g ... 140

7.2.3 External Message H a n d l in g ...141

7.2.4 Order Correction Message (O C M)...142

7.2.5 Multi-Protocol I n te r f a c e ... 142

7.3 Protocol O u t l i n e .. 143

7.3.1 S e n d e r ...143

7.3.2 R ece iv er..145

7.3.3 TFM Procedure ...149

7.4 Conclusion... 154

8 Performance Issues 161

8.1 In troduction .. 161

8.2 E x a m p le s ... 163

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 The Point-to-Point M o d e l ... 170

8.4 The M ulticast M o d e l ...176

8.5 R em ark s ...179

5.6 Conclusion... 179

9 R eliability and Fault Tolerance 181

9.1 In tro d u c tio n .. 181

9.2 The Reliability Model ..183

9.2.1 M ulticast N e tw o rk ... 1S3

9.2.2 Point-to-Point N etw ork...188

9.3 Reliability Approaches for our P ro to c o ls ...188

9.3.1 Network Omission F a i lu r e .. 188

9.3.2 Receive Omission F a ilu re ... 191

9.3.3 M ulticast/Send Omission F a i lu r e ...192

9.3.4 Retransmission B u ffe rs ...192

9.3.5 Site F a i l u r e ...194

9.3.6 Network P a r t i t io n s ... 197

9.4 C onclusion...204

10 Conclusion 206

10.1 Multicasting P ro to c o ls ...208

10.1.1 BUS and BUS-TO P ro toco ls.. 208

10.1.2 The MLMO P ro to c o l..209

10.1.3 The INTER Layer ...210

10.2 Future E x te n s io n ..211

10.2.1 Building the Communication S tru c tu re212

10.2.2 Prototype of the P ro to co ls ..212

10.2.3 M ulti-Order S u p p o r t ..213

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2.4 Interoperability and the In te r f a c e ..213

10.2.5 Network P a r t i t io n s ...214

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f T ables

2.1 Summary of Reliable Broadcast Protocol Performance43

7.1 Permissible Encapsulation T y p e s ...132

5.1 Number of Hops for Example 1..165

8.2 Number of Hops for Example 2..167

8.3 Number of Hops for Example 3 .. 169

8.4 Performance Index for Point-to-Point M o d e l ...172

5.5 Performance Index for M ulticast M o d e l...178

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f F igures

2.1 Process p i delivers a locally without waiting for any messages from

p2.. 29

3.1 Conceptual layers of hardware and protocol software used in internet

communications.. 50

3.2 Example of three interconnected LANs... 52

3.3 Types of messages tha t can exist in a network....................................... 53

3.4 Network environm ent... 56

3.5 Applications environment... 57

3.6 Presented protocol suite and its development dependencies.................... 61

3.7 Protocol communication units... 64

3.8 Communication structure with multilevel communication units. . . 65

3.9 Reshaped communication structure to increase performance...................67

3.10 Message flow at a process tha t shows the da ta structure used. . . . 69

4.1 Communication structure for BUS protocol... 74

5.1 Communication structure for BUS-TO protocol..................................... S6

6.1 Communication structure for MLMO th a t shows both CCU and TCU.103

7.1 Communication structure for INTER tha t shows encapsulated unit. 133

7.2 Message flow between global and local agents in a gateway process. 135

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 Example 1 - a set of connected sites and possible communication

structures..164

8.2 Example 2 - a set of connected sites and possible communication

structures..166

8.3 Example 3 - a set of connected sites and possible communication

structures..168

8.4 Performance curves for group size equal to 1000 with point-to-point

model...173

8.5 Performance curves for group size equal to 100 with point-to-point

model...174

5.6 Performance curves for group size equal to 50 with point-to-point

model...175

8.7 Performance carves for group size equal to 20 with point-to-point

model...176

5.8 Performance curves for different group sizes with point-to-point model. 177

10.1 Comparison between existing reliable multicasting protocols..................207

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

In trod u ction

Computation and communication interplay; hence, you compute dis-

tributedly. Computation affects the state o f resources. Communication

publicizes these effects; hence, a distributed behavior results.

To com pute is to effect an orderly change upon the s ta te of computing re­

sources up to some specification. If computing resources are distributed and are

usable in their distributed fashion, a form of “distributed computing” is being

exercised. Upon numerous practical grounds, distributed computing is appealing

as a general-purpose computing paradigm. The case for distributed computing is

amply presented in the literature, as can be found in references [72, 42, 24, 23, 60].

The hallm ark of the distributed computing paradigm is the notion of distri­

bution. The distribution of resources and, hence, of computation results in appli­

cations th a t are distributed. A “distributed application” describes a situation in

which several concurrent processes, customarily referred to as application processes

[24], affect the state of disjoint subsets of resources to realize a logical specifica­

tion. In a distributed application, computation is distributed across a number of

application processes. Thus, application processes must act in concert to ensure

that their behavior indeed realizes the goal specification. This concerted action

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is possible only if the s ta te of resources in accordance with one process can be

shared by other processes, which allows them to adjust their future actions ac­

cordingly. If a platform of independent and network interconnected computers is

used for distributed computing [60], then communication via the network becomes

the only vehicle for state sharing. Hence, the distributed computing paradigm can

be considered as an interplay of computation and communication.

Collectively, the set of communication functions offered in a distributed com­

puting platform are incorporated into communication services [13]. Different ser­

vices generally possess different properties and, hence, are suitable for different

classes of distributed applications. A principal concern in designing communica­

tion services for distributed computing is to ensure th a t the communication needs

of different application classes in a given domain are satisfactorily accommodated

by the underlying communication services. Customarily, application classes would

impose conditions on the reliability, performance, and other properties of communi­

cation services [69, 9]. Unfortunately, efforts in designing efficient general-purpose

communication services for distributed computing have encountered m ajor diffi­

culties. Different application classes need different types of services. Also, for a

given type of service, the conditions prescribed by different classes of applications

can vary considerably. Furthermore, the accurate identification of the needs of

future applications a priori is often not feasible. As a result, research efforts in

this area have been driven to present solutions th a t establish specific services for

narrow classes of applications.

A communication service of m ajor im portance to distributed applications is

multicasting [38, 51]. In multicasting, an application process sends a message via

the network to a subset of other application processes, called recipients. The mul­

ticasted message is guaranteed to be received by either all or none of the recipients.

A multicast service tha t offers this guarantee is commonly referred to as an atomic

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

broadcast [19, 12]. If a multicasted message is guaranteed to be ultim ately received

by all correct recipients, then one has a reliable broadcast service. Atomicity and

reliability are highly desirable properties because atomic reliable broadcasts sim­

plify the design of distributed applications. In many practical situations, messages

need to be delivered according to a specific ordering criteria, as well as in a reliable

atomic manner. The later condition is met by ordered atomic reliable broadcast

services [12, -56, 53, 41]. Message delivery order is critical in a large class of practi­

cal applications. For example in multicasting voice data, successive packets can be

incorporated into messages tha t are eventually m ulticasted. The delivery of both

the transm itted packets and the corresponding messages in their chronological

order is considered a correctness criterion for such an application.

Numerous protocols for ordered reliable atomic m ulticasting have been pro­

posed in literature [19, 12, 63]. The m ajority of these protocols assume an envi­

ronment of a single LAN that has multicasting capabilities [19, 63]. Unfortunately,

almost all of the proposed protocols can enforce only a single ordering criterion for

message delivery across all active distributed applications. Birman and Joseph [12]

have proposed a multicasting protocol that can handle multiple message streams,

each associated with a single ordering criterion. Messages from the same stream

are ordered for delivery according to this criterion independent of the recipient.

Effectively, this deprives the recipients of their autonomy in determining their own

criteria for ordering delivery of incoming messages.

M ulticasting efforts thus far have largely failed to address the situation of an

interconnected group of networks. As a result of the interconnected network ar­

chitecture, a m ultitude of issues that have not been addressed before must now

be handled. Certain members of the interconnected networks possess no multi­

casting capabilities, contrary to the assumption made thus far in the majority of

multicasting protocols.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the development of new multicasting protocols, the maintenance of auton­

omy in managing local traffic in each network and the consequent heterogeneity

in communication services across different networks are principal concerns [40]. In

practice, neither the enforcement of a single ordering criterion nor the deprivation

of recipient control over their own ordering criterion is acceptable. Performance

tradeoffs in a single LAN can be invalidated in interconnected networks because

networks of different speeds can be part of the same interconnection. Failure mod­

els for interconnected networks are different from tha t of a single LAN because the

network elements differ in size and type. This variety has direct consequences on

the reliability problem and its solutions.

Upon numerous grounds, interconnected networks are envisioned to be the un­

derlying architecture fo r distributed computing in the next decade.

Supporting arguments can be found in references [4, 23, 31, 47]. The research

community has taken up the challenge of studying issues particular to such comput­

ing architectures and the subsequent formulation of an appropriate infrastructure

of communication services for these platforms. Our dissertation is an effort to

promote and design a core for an advanced multicasting infrastructure for inter­

connected networks.

1.1 M otivation

Urged by both economic and political forces, businesses, government, and other

entities are experiencing a massive drive for interconnection. The affordability

of relatively m ature network computing resources has resulted in a proliferation

of networking on both a small and large scale in the past few years. Today’s

economic landscape is witnessing intercorporation interaction as never before. For

example, mergers to facilitate cost consolidation and to gain a market share are

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commonplace. Business dynamics have forced m ajor corporations to pool expertise

in order to cut down on the cost and turn-around tim e of products. These practices

have magnified the problem of computing-resource interconnection and, hence, the

interoperability of autonomous networks.

Undoubtedly, the advent of the information superhighway as envisioned has

introduced new aspects to the problem. These interconnections between networks

become the means by which indispensable resources can be provided and accessed.

The dense interconnection and economy will continues to encourage a shift toward

utilization of the superhighway. These activities mark no less than a revolution in

the notion of distributed applications. The current state of the art in communica­

tion services in general and multicasting services in particular does not suffice as

an infrastructure for interconnected autonomous networks. Below is a discussion

of the reasons behind our conjecture.

1.1.1 A utonom y

Because processor cycles, storage bytes, and high-speed network bandwidths are

becoming increasingly affordable, the surge toward distributed computing is gain­

ing new momentum. Computing platforms th a t contain interconnected networks

are emerging as new intracorporation and intercorporation distributed applica­

tions are introduced. Because these platforms connect networks th a t have been

established and managed by autonomous entities, a principal concern is autonomy

[40]. Autonomy is relevant in two ways to the multicasting problem. First, the

autonomy of different applications in determining the properties of the communi­

cation services they invoke should be upheld. For multicasting, each application

should have the autonomy to determine the delivery order of messages to applica­

tion processes. In a large-scale interconnected network (e.g., the internet), marked

diversity is evident in the application space, which renders this autonomy a m ust.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second, the autonomy of each connected network to exercise control over commu­

nication activity th a t does not cross the network boundary (i.e., local activity)

m ust be preserved. For multicasting, one consequence is th a t each network must

be allowed the autonomy to use its own multicasting service protocol(s) in han­

dling local activity. Another consequence is the ability of each network to upgrade

or change local multicasting protocols a t their own discretion.

Autonomy, as manifested by the message delivery order and the use o f

local protocols to handle local activity in each network, is characteristic

o f multicasting in interconnected networks.

1.1.2 H eterogeneity

The interconnected networks are largely made up of networks th a t were established

and managed in the past by autonomous entities. Heterogeneities in network ser­

vices should be accepted as commonplace. Heterogeneity across different networks

is be manifested, in part, by differences in the types of communication services

and in the properties of a given type of service. For multicasting, heterogeneity

in the local protocol(s) poses a serious problem for distributed applications across

network boundaries. Processes of one application may belong to different net­

works; hence, m ulticast messages m ust be effectively “handed” to local m ulticast

protocols for delivery to uphold network autonomy.

The interoperability o f interconnected network multicasting protocols

and local multicasting protocols in each network constitutes a major

concern in interconnected network multicasting.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.3 Perform ance

Performance of communication services in a single LAN and in interconnected

networks are largely different problems. The multiplicity of networks in an inter­

connected environment introduces several issues (i.e., the speed of each network,

the performance of each local m ulticasting service (if any), and the performance

of different routers and gateways). Each of these factors can exhibit large varia­

tion. For example, a slow router or gateway can become faster with upgrades or

load fluctuations. An efficient multicasting protocol can experience performance

degradation if additional hosts and users are connected to the local network. Up

to the autonomy condition discussed above, local multicasting of messages in each

network is probably handled by local protocol(s). Therefore, in this case the per­

formance of multicasting activity is a function, in part, of the performance of local

m ulticasting in the different networks. Performance tradeoffs are difficult to define,

much less to take into account in designing multicasting protocols.

Multicasting protocols in interconnected networks should maintain ac­

ceptable performance across constant changes in the performance o f

different local networks and their services.

1.1.4 R esilien cy

Interconnected networks introduce a larger number of hardware and software ele­

ments tha t are susceptible to failures. The probability of a single element failure

is largely increased. Several types of failures in computer networks defined in the

literature undermine the resiliency of network service protocols [44]. Specifically,

connection failures due to the failure of connections, routers, and gateways can lead

to message losses. The fact th a t these failures are expected to occur at a higher

rate in interconnected networks adversely affects the message-loss problem. Net-

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

works interconnected by gateways results in a faster network partitioning [43. 66]

(i.e., one network becomes disconnected from the others because of a gateway fail­

ure). Two partitions are formed; one contains the disconnected network and the

other contains an interconnection of all other networks. In a single LAN, network

partitioning is not relevant and is not addressed by multicasting protocols for this

environment. For example, a connection failure in a token-ring network breaks the

ring and may potentially bring down the entire network rather than a part of it.

Several issues in regard to network partitioning have yet to be addressed, such as

whether one or both partitions should continue to function or whether one parti­

tion should function in a restricted manner [67]. Another issue is the management

of multiple partitions.

Contrary to a single L A N environment, network partitions are common

enough in an interconnected environment to seriously impact reliabil­

ity. Thus, this problem must be addressed by any practical multicasting

protocol fo r interconnected networks.

In summary, distributed computing on interconnected networks is expected to

be defacto in the near future. Because of economic and political forces, various

autonomous entities are involved in interconnection efforts in answer to a growing

need for cooperation. Affordable, m ature computing and networking resources are

essential to the economic feasibility of these efforts. Unfortunately, a communi­

cation infrastructure suitable for interconnected networks must address a host of

problems th a t are not addressed by current solutions for single LANs. Our dis­

sertation presents a m ulticasting infrastructure for interconnected networks. The

maintenance of intranetwork autonomy in managing communication in the local

network boundary is a m ajor concern of such an infrastructure. Another concern

is the accommodation of the heterogeneity of local communication services by al­

lowing for the interoperability of interconnected network multicasting protocol(s)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and local network m ulticasting protocols (if any). Such interoperability causes the

performance of multicasting in interconnected LANs to be dependent on the per­

formance of the local communication services in each network. M ulticasting service

performance must be addressed in a framework th a t incorporates the effects of all

local multicasting protocols. The multicasting infrastructure m ust have resiliency

against both message loss and network partitioning built into the design. The

characteristics discussed above stand in sharp contrast to the assumptions that

drove efforts toward the current s ta te of the art in m ulticasting services for dis­

tributed computing. Communication services have always had a far-reaching effect

upon the success of distributed applications. For interconnected autonomous net­

works, a m ulticasting infrastructure is no less than a cornerstone tha t will enable

technological advance; hence, our motivation is clear.

1.2 O bjectives

Our main objective is not only to design a global standard protocol tha t will sup­

port a reliable ordered multicast service in an interconnected group of LANs but

also to fully utilize the underlying communication network capabilities. Further­

more, we search for a m ethod of orchestrating the interaction between different

ordered reliable multicasting protocols. This m ethod, if realized, will introduce a

greater opportunity for cooperation between all distributed applications tha t use

different ordered reliable multicasting protocols. The multiprotocol interaction will

allow local adm inistrations to have a higher level of autonomy in selecting their

local protocols. We also introduce a new approach th a t not only allows greater

interaction between different groups in distributed applications but allows local

sites and groups to have more freedom in selecting their ordering criteria without

preventing interaction with groups tha t have different ordering criteria. Further-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more, if multiple ordering criteria are able to be used in the same environment,

then groups will not be forced to impose a costly ordering condition because they

m ust interact with another group tha t requires this ordering condition.

1.3 Contribution

To m eet our objective, we investigated the ordering requirements of multicasting

groups. As a result of this investigation, we have defined the communication

environment from both a physical and logical perspective. We then analyzed the

existing m ulticasting protocols to identify a link th a t would allow our protocol to

interact with other protocols. The complexity of this problem urged us to pursue

a m ultistep approach to the solution. This type of approach allows us to better

understand both the interaction between the reliable multicast protocols and our

IN T E R L A N multicast protocol and the expected effects of our protocol on the total

performance of the system. We then developed a set of protocols th a t achieves the

objectives. Our research includes the following outcomes:

• We characterize the multicasting requirement of interconnected LAN envi­

ronments.

• We introduce the hierarchical communication structure adopted by the pro­

tocols to achieve a lower delivery delay by using the inherent hierarchy of

the internet and recommend a heuristic algorithm to build this structure.

• We present a set of protocols th a t uses the presented communication struc­

ture to achieve total or causal ordering between m ulticasted messages. This

set of protocols includes the Bottom-Up Stam ping (BUS) protocol; the Bottom-

Up Stamping (BUS-TO) protocol, the Total-Order version; and the Top

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Down Stam ping (TDS) protocol. These protocols allow multicasting to be

performed over a set of interconnected LANs.

• We introduce the idea of multiorder delivery in a multigroup environment and

the development of MLMO: the Multi-LAN M ulti-Order protocol tha t allows

the enforcement of dilferent ordering criteria over m ulticasted messages.

• We tackle the m ultiple protocol interaction between our protocol and existing

protocols and between the existing protocols with one another. The study

of this problem has resulted in the development of INTER: a multiprotocol

interface th a t provides a vehicle of interoperability between these protocols.

• We examine the effectiveness of our approach in using the hierarchical com­

munication structure and determine its effects on the general behavior of the

protocol. Our results indicate a shorter delivery tim e and a decrease in the

number of protocol messages; these results show th a t our protocols meet the

established performance criteria. We also present several failure-handling

protocols tha t can be incorporated within our protocols. Our protocols are

resilient to send-omissions, receive-omissions, and network-omissions, and

can handle process failures and network partitions.

1.4 O utline o f D issertation

The remainder of this dissertation consists of the following:

C h a p te r 2, B a c k g ro u n d . Introduces distributed systems. The different char­

acteristics of a distributed system are discussed and the key issues in heterogeneous

systems are identified. The chapter introduces the ordered m ulticasting protocols

as a way to solve some of the problems in distributed systems. It also presents

a survey of different ordered reliable multicasting protocols relevant to our study,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

along with a comparison between th e different costs associated with each of them .

C h a p te r 3, M u ltic a s tin g in In te rc o n n e c te d N etw orks. Discusses the

different problems encountered in m ulticasting in interconnected networks in gen­

eral and in heterogeneous distributed systems in particular. The chapter provides

examples of some of the problems, and details our approach to the solution. The

chapter proceeds by introducing the communication structure tha t will be used by

our multicasting protocol suite in message delivery. It defines the set of rules and

term s tha t will be used to build this structure.

C h a p te r 4 , B U S: T h e B o tto m -U p S ta m p in g P ro to c o l. Presents a new

ordered multicasting protocol th a t achieves a causal order among multicasted mes­

sages. This protocol uses the communication structure presented in chapter 3. The

chapter also validates the correctness of the protocol.

C h a p te r 5, B U S -T O : B o tto m -U p S ta m p in g P ro to c o l (T h e T o ta l-

O rd e r V ersion). Defines another ordered multicasting protocol tha t achieves

a total order among messages. The chapter provides a layout of the protocol and

ends with a validation of its correctness.

C h a p te r 6, M L M O : M u lti-L A N M u lti -O rd e r P ro to c o l. Introduces a

new multicasting protocol tha t can achieve multiorder delivery of multicasted mes­

sages in a multigroup environment. The protocol allows group members to span

different LANs and enables each group to adopt its own ordering criteria for mes­

sage delivery.

C h a p te r 7, IN T E R : A M u lti -P ro to c o l In te rfa ce . Discusses the interac­

tion of different ordered m ulticasting protocols with one other to achieve a con­

sensus order in regard to shared messages. The chapter describes the protocol and

introduces the layout of the different modules.

C h a p te r 8, P e rfo rm a n c e Issu es. Describes several performance issues and

provides a simple basis for comparison with other existing protocols.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p te r 9 , R e lia b ility a n d F a u lt T o le ran ce . Presents the failure assump­

tions handled by our protocol suite and the different procedures tha t ensure the

reliability of these protocols.

C h a p te r 10, C o n c lu sio n a n d F u tu re W ork . Presents a final assessment

of the work, the significance of the work thus far, and the future direction of our

research.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

B ackground

2.1 O verview o f D istributed System s

A distributed system is a system with many processing elements and many storage

devices tha t are connected together by an underlying communication system. This

feature makes a distributed system potentially more powerful than a conventional

centralized system in two ways. First, it is more reliable because functions may be

replicated. For example, when one processor fails, another can take over the work.

Each file can be on several disks, so a disk crash does not destroy any information

beyond recovery. Second, a distributed system can do more work in the same

amount of time because many computations can be carried out in parallel.

These two properties, fault tolerance and parallelism, make a distributed system

much more powerful than a traditional centralized system. Although these two

properties are characteristics of any distributed system, an exact definition of a

distributed system is difficult to determine. Birrell et al. [14] defines a distributed

system with a set of symptoms. They states tha t if a system has all of the symptoms

listed below, it is probably a distributed system. If it does not exhibit one or more

of these symptoms, it is probably not a distributed system. These symptoms can

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be are summarized as follows.

• Multiple processing elements tha t run independently. Each processing ele­

m ent, or node, must contain at least a CPU and memory with communica­

tions between the processing elements.

• Interconnection hardware, which allows parallel processes to communicate

and synchronize.

• Independent failure o f processing elements, to prevent the simultaneous fail­

ure of all nodes. A distributed system cannot be fault tolerant if all nodes

fail simultaneously.

• Shared state th a t allows recovery from failure. If recovery were not possible,

a node failure would cause some part of the system’s state to be lost.

2.1.1 T h e N eed for D istributed System s

Several features of distributed systems and current technology have urged people

to move from old centralized systems toward distributed systems. Among the most

im portant features th a t encourage this migration are the following:

• Distribution: Information generated in one place is often needed in another.

The workstations and personal computers are connected together because of

a desire to communicate and to share information and resources.

• Expandability: Distributed systems are capable of incremental growth. To

increase the storage or processing capacity of a distributed system, one can

add file servers or processors at any time.

• Availability: Because distributed systems replicate data and have built-in

redundancy for resources that can fail, distributed systems have the potential

to be available when failures occur.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Scalability: The capacity of any component of a centralized system imposes a

limit on the system ’s maximum size. Distributed systems have no centralized

components; therefore, the maximum size of the system is not restricted.

• Reliability: Availability is one aspect of reliability. A reliable system must

not only be available, but it must do what it claims to do correctly even

when failures occur. The protocols used in a distributed system must not

only behave correctly when the functions of the underlying virtual machine

are correct but should be capable of recovering from failures of the underlying

virtual machine environment as well.

2.1.2 P rob lem s in D istributed System s

Distributed systems are among the most complicated systems to design and main­

tain. To quote Mullender [60] “Distributed computer systems have only been

around for a decade or so, but they are every bit complicated to design and will

take many generations of distributed systems before we can hope to understand

how to build one properly.”

The basic source in a complexity of distributed systems is tha t an interconnec­

tion of well-understood components can generate new problems not apparent in

the components. To clarify this m atter, we present some of the problems given in

reference [60].

• Interconnection: A large number of system problems come about when com­

ponents tha t have previously operated independently are interconnected.

This was a common type of problem when various computer networks for

electronic mail were interconnected.

• Interference: Two components in a system, each with reasonable behavior

when viewed in isolation, may exhibit unwanted behavior when combined.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Propagation o f effect: Failure in one component can bring down a whole

network when system designers aren’t careful enough.

• Effects o f scale: A system tha t works well with ten nodes may fail miserably

when it grows to a hundred nodes. This problem is usually caused by some

resource th a t doesn’t scale up with the rest of the system and become a

bottleneck, or by the use of protocols tha t do not scale up.

• Partial failure: The fundamental difference between traditional, centralized

systems and distributed systems is that in a distributed system a component

may fail, while the rest of the system continues to work. In order to exploit

the potential fault tolerance of a distributed system, distributed applications

must be prepared to deal with partial failures.

These problems exist in all computer systems, but they are much more apparent

in distributed systems. The distributed system comprises more pieces; hence, the

potential exists for more interference, more interconnections, more opportunities

for propagation of effect, and more kinds of partial failure.

2.2 Synchronous and Asynchronous Networks

Hadzilacos and Toueg[44] characterize a distributed system as synchronous if it

has the following properties:

1. A known upper bound exists on the tim e required by any process to execute

a step.

2. Every process has a local clock with a known bounded rate of drift with

respect to real time.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. A known upper bound exists on message delay; this consists of the tim e it

takes to send, transport, or receive a message over any link.

All of the above properties are necessary for the use of tim eouts to detect crash

failures. If any of the three properties is violated, and a process p tim eout on a

message expected from a process q, then p still cannot conclude th a t q has crashed.

The message delay could have been longer than expected, the clock used by p to

measure the timeout could have been running too fast, or q could be executing

steps slower than expected.

A distributed system is asynchronous if no timing assumptions are made what­

soever. In particular, no assumptions can be made on the maxim um message

delay, clock drift, or the tim e needed to execute a step. An asynchronous system is

easier to port than those th a t incorporate specific tim ing assumptions; in practice,

variable or unexpected workloads, network traffic, and other dynam ic components

tha t affect performance are sources of asynchrony. Thus, synchrony assumptions

are, at best, probabilistic.

Synchronous and asynchronous systems are the two extremes of a spectrum of

possible models. Many interm ediate models of partial synchrony have also been

studied [34, 35, 21, 36]. For example, known bounds may exist on clock drift and

step execution tim e, but message delays could be unbounded. O r bounds may

exist on clock drift, step execution tim e, and message delay, but these bounds may

be unknown.

2.2.1 A utonom y

Node autonomy is one of the keywords in distributed systems, especially in the

context of heterogeneous and federated systems. A heterogeneous database sys­

tems (HDBS), for example, is a distributed database system th a t includes hetero­

geneous database (HDB) components; heterogeneity means different components

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at the database level such as data model, query language, and schema. A fed­

erated database system (FDBS) is a collection of cooperating database systems

tha t are autonomous and possibly heterogeneous [70]. W ebster’s defines the word

autonomy as “the quality or s tate of being independent, free, and self-directing.”

The issue of autonomy in distributed systems is only meaningful in the context

of cooperation between nodes. Several reasons make node autonomy desirable in

distributed systems:

• Organizational issues: In a large organization, distributed-computer-system

node autonomy is a natural extension to departm ental autonomy.

• Diversity o f local needs: Different parts of the system can be more easily

tailored to the needs of local users.

• Data security: For those distributed systems th a t are sensitive to unautho­

rized data access, nodes are often responsible for the security of the data

they store. In such an environment, node autonomy is absolutely essential

to enforce security procedures.

• Failure/Bug containment: This help to limit the spread of the effects of local

failure a t a given node throughout the system. A degree of independence

implies that healthy nodes would continue to function in spite of such a

failure.

• Lower costs: Autonomy can be viewed as cooperation without constant coor­

dination. By reducing the number of messages exchanged among tasks that

are executing a t different nodes, costs can be decreased.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Types o f autonom y

Different types of autonomy are defined depending on the particular way each node

in the system exercises its freedom of choice. The degree to which each node in

the system exercises these different types of autonomy is difficult to evaluate [40].

Garcia-Molina has presented the following types of autonomy:

• Heterogeneity: Each node has the flexibility to select its local resources,

mechanisms, and representations.

• Naming autonomy. A node may have different degrees of independence in

creating and translating names. In particular, name creation autonomy is

determined by whether a node must secure the consent of any other node to

create a name. Translation autonomy is the capability of a node to indepen­

dently translate a name to the corresponding physical address.

• Communication autonomy: Each component in the system has the ability

to decide whether to communicate with other components. A component

with communication autonomy is able to decide when and how it responds

to a request from another component in the system.

• Execution autonomy: Each node has the right to execute transactions or

honor requests at any time. An example of this type of autonomy is the case

of database transactions, especially when replication exists.

• Setting priorities: Autonomous nodes should be able to unilaterally decide

whether to honor foreign requests, taking into account prim arily their own

interests. Also, data sharing is part of our autonomous node. D ata security

dictates tha t a node have complete freedom in deciding whether to grant

the requested access. A problem occurs here in regard to a read or a write

request to a nonreplicated data item. In this case, the node may have some

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obligation to not refuse the request. However, even in accepting the request,

the node may have the freedom to set th e local execution priority of the

request.

• Abort autonomy: Each node can unilaterally abort a distributed transaction,

perhaps even after a decision to commit has been made. This feature can be

a problem in tha t it violates commit protocols; however, it can be beneficial

in cases like optim istic protocols for partitioned networks [30], where a node

can have execution autonomy during partitions. After the partitions are

repaired, some of the transactions may need to be aborted due to conflict.

C ost of Autonom y

Node autonomy forces an overhead on the whole distributed system. Although

autonomy is generally viewed as a desirable characteristic for each node, it can

impose several restrictions on the behavior of the whole system. However, we see

tha t it has some advantageous properties, such as the possibility of maintaining

system functionality in case of partial failure. Among the most costly effects of

autonomy are:

• Correctness: The introduction of high levels of transaction-control autonomy

raises the im portant issue of execution correctness. For example, one way

to maintain correctness in distributed systems is through the use of lock-

based distributed-concurrency control mechanisms. When a node has lock

autonomy, it can release a lock acquired by a nonlocal transaction and, in

doing so, violate an established locking protocol, which in turn may imply a

breach of correctness criteria.

• Timeliness: W ith autonomous setting of priorities for foreign requests, no

guarantees can be made on how expediently such requests are executed.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, timeliness of execution of foreign requests can be negatively affected

by a high degree of node autonomy. In addition, timeliness of update prop­

agation can also suffer because of autonomy.

• Level o f cooperation: Cooperation involves da ta and load sharing among

nodes. W hen relatively high levels of cooperation are mandatory, node au­

tonomy is more difficult to maintain. However, autonomy does not necessar­

ily imply refusal to cooperate. In an ideal situation, nodes would be willing

to support the highest level of cooperation tha t would not compromise their

individual interests (e.g., data security, and good response tim e for local

jobs).

• Degree o f data replication: High autonomy in some cases requires data repli­

cation, which is yet another price tha t may have to be paid for autonomy. In

particular, replicated data of one type or another makes it easier to provide

scheduling, nam e translation, and execution autonomy.

2.2.2 H eterogen eity

Heterogeneity can be divided into two main categories: hardware and software.

In hardware heterogeneity, the nodes have different hardware configurations; in

software heterogeneity, the nodes have different software running, including the

operating system and all implemented algorithms and protocols. For example, a

heterogeneous database has individual nodes tha t are free to choose their local

schemata, concurrency control, etc.

Is homogeneity more beneficial than heterogeneity? To assume a homogeneous

system is an imposed assumption, so it is more realistic to assume a heterogeneous

system. Hardware heterogeneous systems have different com puter capabilities

(resources, speed, or manufacturer) and/or different networks (Ethernet, Token-

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ring, or point-to-point connections); software heterogeneous systems have different

operating systems, applications, and protocols th a t run at each site.

Realistically, the homogeneity assumptions cannot be imposed, and the inter­

action and flexibility of each site in choosing its own software and hardware while

being part of an integrated distributed system cannot be restricted. We believe

tha t this is not the only issue because, although some algorithms function well in

certain environments, they function much worse in other environments. For this

reason, the use of different algorithms is justified because the expected behavior

and performance of an algorithm depends mainly on the environment in which it

is running. Several criteria are involved in selecting the algorithm; because several

selections can be made, when a local algorithm is necessary in a distributed system,

the node requires the freedom to select the appropriate algorithm, depending on its

local environment. The possibility exists th a t the heterogeneity of the algorithm

over the nodes would enable better behavior across the whole system.

2.3 Ordered R eliable M ulticast

At the heart of any distributed system is the problem of transferring information

between cooperating processes. Broadly speaking, this can be done in one of two

ways: by perm itting the processes to interact with some common bu t passive re­

source or memory, or by supporting message exchange between them . Advantages

and disadvantages are associated with each approach; hence, the appropriate ap­

proach to information transfer for a particular problem must be determined by an

analysis of the characteristics specific to th a t problem.

In its simplest form, multicasting causes a copy of a message to be sent to each

one of several destination processes. The m ulticast operation must take care of

the possibility of failure of one or more of the participating processes. It m ust also

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handle the problem of lost messages. A multicast that provides such guarantees

is called a reliable multicast. Reliable multicasts are implemented with special

protocols that detect failures and/or take compensating actions. However, under

certain failure patterns, no protocol can guarantee the delivery of a multicast

message to all operational destinations. For example, the sender could crash before

it actually sends out any messages. Even if it manages to communicate with some

other processor before it crashes, the other processor could experience a failure

before it communicates with any other process. In general, a set of failures in an

early stage of a m ulticast protocol could wipe out all knowledge of the message.

Reliable message delivery m ust be an all-or-nothing operation. More precisely,

If processor p sends a message m to a set D of destination sites, then

the system will eventually reach one of the following two states:

1. For all q £ D : q has received m or q has crashed.

2. Processor p has crashed, and for all q € D : q has crashed or q

will never receive m.

In addition to atomicity, reliable multicast guarantees a particular ordering

of messages. This enforcement of order increases the latency, results in additional

communication, and requires tha t the messages be stored for some tim e during the

execution of the protocol. Control messages associated with a m ulticast protocol

represent additional overhead. This overhead depends on the degree of fault-

tolerance achieved and the type of order enforced.

Here, no shared memory exists between sites; therefore, the only form of com­

munication between them is through the network, which enables messages to be

transm itted from any processor to any other processor in the system. Message

transmission is asynchronous in the sense tha t sending and receiving operations

do not have to wait for one another for communication to occur, and message

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission times are variable.

The multicast protocols are located above the transport layer; the protocols

enables the site to send a message from one process to a set of processes. A

process tha t wants to perform a multicast presents the m ulticast layer with a

message and a list of destination processes for that message. The multicast layer

uses the destination list to compute a set of sites tha t m ust receive this message,

and uses the transport layer to send a copy of the m ulticast message to each of

these sites.

Many reliable atomic multicast protocols have been proposed [19, 28, 12, 26.

56, 53]. These protocols differ in the way they achieve the order and the reliability

of message delivery. Also, they differ in the assumptions adopted, especially for

the communication network. These differences make specific protocols appropriate

for different environments.

By imposing a consensus total order on multicast messages, one of the tradi­

tional problems in the design of distributed systems can be eliminated; the lack of

a global system state. W ithout a global system state, complex reasoning is neces­

sary about what information is known to each processor. The agreed total order

of multicast messages enforces a common history and, thus, a common system

state. Each processor maintains as much of the system state as necessary for its

functioning. This simplifies the design process of a distributed system.

The existence of several distributed applications running on different LANs

and distributed applications tha t span different LANs force interaction between the

protocols on these LANs. This interaction is forced by the need for the applications

to cooperate. The problem here is the heterogeneity tha t would normally occur due

to the interaction between different autonomous systems. This problem is similar

to tha t encountered with heterogeneous database systems, in which different DBM S

used in different sites cooperate in spite of the heterogeneity of the system.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The cooperation among different groups with different reliable atomic multicast

protocols is a real problem. However, this problem has never been tackled in record

research performed in m ulticasting [20]. A solution to this problem with a reason­

able cost protocol would revolutionize multicasting, similar to the achievement of

allowing heterogeneous databases to interact [10].

We foresee the possibility of several LANs tha t each run different reliable m ulti­

casting protocol with different LAN protocols such as ethernet, token-ring, or just

point-to-point links. Our purpose here is to develop a protocol that will orches­

tra te the cooperation between these protocols to achieve a reliable ordered delivery

service for InterLAN messages. Our main objective here is not only to design a

global standard protocol tha t can support a reliable atomic multicast service in an

interconnected group of LANs, but also to achieve full utilization of the underlying

communication network capabilities.

2.3.1 A sp ects o f R eliab le A tom ic M ulticast

Ordering

One of the im portant properties available in most of the reliable multicast pro­

tocols is message ordering. An order, enforced on the messages delivered to the

application layer, helps to decrease the complexity of the protocols th a t run over

the multicasting protocol (see section 2.3.2 for the im portance of the ordering

property).

The multicast protocol must guarantee the order in which messages are deliv­

ered to the destination processes. The following ordering criteria are common.

• Single-source ordering: If messages a and b are sent from the same site such

tha t a is sent before 6, denoted a < b, then all destination sites th a t receive

both a and b will deliver them in the same order.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Multiple-source ordering: If messages a and b are sent from two different

sites, then all the destination sites within the same group will receive them

in the same relative order.

• Multiple-group ordering: If messages a and b are sent from two different sites,

then all the destination sites, whether in the same or two different groups,

will get them in the same relative order.

In certain applications, the receipt of messages in different order will lead to

inconsistency or deadlock problems. For example, consider a bank with two main

computers. Each com puter has a copy of the entire banking database and can

process all transactions tha t arrive from the branch offices(the second computer is

necessary for disaster recovery). These two main computers constitute a multicast

group, and each branch office is a potential source site. Transactions should be

executed in the same order a t both computers, otherwise the database state on one

machine will differ from th a t on the other. For instance, consider a deposit and

a withdrawal to the same account. Assume tha t if the withdrawal is done first,

then an overdraft may occur and a penalty is charged. However, if withdrawal

follows the deposit, then no penalty is incurred and the resulting account balance

is different.

If we observe the locking procedure in a distributed database, we get some idea

of the importance of order. Assume that we have two transactions T l and T 2

initiated from two sites A and B , respectively. Transaction T1 requests a write

lock on data item X and Y; T2 requests a write lock on X and Z. Assume tha t item

X is replicated on a set of sites and we are using the write-all-read-one algorithm.

Site A will multicast the write lock request of T1 for X on all sites of the replica

set of da ta item X. Similarly, site B multicasts the write lock of T2. If the order

of arrival of the lock requests a t the replica sites of X are not the same, then a

lock on the data item for T1 would result a t some sites and for T2 a t the others.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The lock request will not be granted to either, and as a result, both transactions

will be aborted. If the order is enforced, then one of the two transactions would

be allowed to own the lock, which decreases the number of unnecessary aborts.

For some applications, not only must multicasts be received in the same or­

der at the different destinations, but this order must also be the same as some

predetermined order (called causal order). For example, consider a computation

tha t first sets copies of a replicated variable to zero and later increments tha t vari­

able. In this case the two operations must be carried out in the same order at

all copies, and the increment must always occur second. The potential causality

in an asynchronous distributed system, in which information is exchanged only by

transm itting messages, is studied by Lamport [50]. In such a system, a multicast

B is said to be potentially causally related to m ulticast B ' only if:

• Rule 1. They are sent by the same process and B ’occurs after B; or

• Rule 2. If B is delivered at the sender of B ' before B' is sent, or if B is

delivered a t the sender of B" before B" is sent and B" is delivered to sender

of B ' before B ' is sent (and so forth with any similar dependency).

In an asynchronous system, any protocol th a t guarantees ordering properties

requires every message to take at least two hops before it is delivered. Consider,

for example, a system with two processors p i and p2. Process p i multicasts a

message a; at the same time, p2 multicasts b. Both messages are addressed to

both processors. We claim that either message a also needs at least two hops (to

p2 and back to jjI) before it can be delivered a t p i, or message b needs two hops.

Assume tha t the protocol delivers a to pi in one hop. This means th a t p i sends

a to p2 but delivers the message locally without waiting for a reply from p2 (See

Figure 2.1). At the tim e of this local delivery, p i may not yet know tha t p2 has sent

a multicast. If the message b from p2 to p i is delayed long enough, the protocol

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will deliver a before b at p i. Similarly, the possibility exists tha t at p2, b will be

delivered before a , which would violate some relative order constraint [68].

Figure 2.1: Process pi delivers a locally without waiting for any messages from p2.

R eliability

Reliability is concerned with the behavior of the system in case of a failure. The

types of failures that may be encountered are described below7.

• Transient failure: This failure type causes some messages to be lost, possibly

due to buffer overflow.

• Persistent failure: This failure type causes network partitions, in which some

group of hosts is disconnected from the other m ulticast groups. This results

in a total loss of messages multicasted by sites from the other partitions.

Recovering from a persistent failure is more costly than recovering from a transient

one because it essentially requires remulticasting of multiple messages to multiple

destinations [39]. No protocol exists tha t is resilient to network partitioning when

messages are lost (i.e., the possibility always exists tha t some sites block when

networks become partitioned [71].

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Failure properties of the described network are characterized by the following

set of assumptions. Sites can exhibit omission failures (i.e., they can fail to send a

message when prescribed to do so). Note that omission failures cover the case of

site crashes. We assume, however, tha t no malicious failures occur (i.e., messages

are not altered or generated when they are not supposed to in order to disrupt the

correct functioning of the system). Detection of a. failure is a complicated issue

because many problems mimic failures. For example:

1. A series of message losses can mimic a failure.

2. Failure detection by tim eout is not reliable. For example, slow computers or

heavily loaded networks can trigger the timeout when a loss or failure did

not actually occur.

3. The order in which failures are perceived to have occurred may vary from

process to process.

A tom icity

Because we are m ulticasting the messages to a set of members, the issue of guar­

anteed delivery is im portant. Are we ensuring a delivery of the messages to all

operational members of the group? The atomicity properties ensure tha t a message

multicasted by a member of a group will either be received by all or none of the op­

erational sites of the group. Actually, the atomicity property is im portant because

without this property assumptions in regard to the state of th e other members

would be difficult. The atom ic multicast problem can be viewed as a multicopy

update problem, where the data copies are the to tal orders of th e m ulticast mes­

sages maintained by participating processors. In principle, existing protocols for

consistent updating of multicopy databases [73, 7, 1 ,2] could be used for atomic

m ulticast. However, these protocols would be inappropriate in practice because

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their generality would introduce unnecessary complexity and latency for atomic

multicast applications.

2.3.2 Im portance o f R eliab le A tom ic M ulticast

When processes cooperate to implement some distributed behavior, an im portant

issue is to ensure tha t their actions will be mutually consistent. Not surprisingly,

the precise meaning tha t one attaches to consistency has im portant implications

throughout a distributed systems tha t presents coordinated behavior. Transac­

tional serializability is a widely accepted form of consistency [61]. This leads to

a natural question: should all types of distributed consistency be viewed as a

variant form of transactional consistency, or are there problems tha t can only be

addressed with other methods[13]? The issue here may concern the isolation prop­

erties enforced over the transactional model. The isolation properties result in non

interference between processes. Not all distributed transactions conform to a sim­

ilar notion of consistency. This leaves us with two choices for solving the problem

of consistency criterion:

• Extending the transactional model to cover the requirements of distributed

applications. Some work has been done in this area [45, 54, 52]. The trouble

with these models is the extra complexity introduced.

• Developing a different notion of consistency for distributed com putation tha t

would fit the problem in a better way. The main approach here is to enable

programs to reason about each other’s states and actions [13].

Any notion of distributed consistency will be incomplete unless it takes into

account the asynchronous nature of the systems in question. This notion would

require a special protocol to allow each process involved in a distributed compu­

tation to have a view of each participant state. This allow each process to get to

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a common decision due to the state information available at each process. The

agreed total order on m ulticast messages enforces a common history and, thus, a

common system state: each processor maintains as much of the system state as

necessary for its functioning. Consequently, distributed systems need not be more

difficult to design than asynchronous centralized systems [56].

One of the major advantages of reliable atomic m ulticast is tha t it greatly

simplifies the im plementation of distributed applications. In most general terms,

a distributed im plementation of a service runs like this:

• A client at processor i invokes an operation a.

• Processor i starts an agreement protocol among all processors to decide on

the effect of operation a and its return value.

• When the protocol term inates, the result is returned to the client.

Schmuck [68] showed th a t in order to obtain an implementation to any special

problem, it is sufficient to have the agreement protocol establish a global order on

all operations invoked by different clients in the system. Such implementation gives

a correct solution for any specification. Therefore, the execution under reliable

multicast protocol will be greatly simplified, because no agreement protocol need

to be managed by the distributed application. Hence, a distributed implementation

of a service runs as follows:

• A client at processor i invoke an operation a.

• Processor i puts operation a (including its param eters) into a message and

multicasts it to all sites in the system (including itself).

• Other processors th a t receive this message update their local state.

• When site i receives its own message, it also updates its state and at that

time computes the result to be returned to the client.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aside from some strong “impossibility results” [37, 34, 58], existing asyn­

chronous agreement protocols are very expensive, and require a large number of

messages to reach agreement in the absence of failures and many more messages

in the presence of processor failures or communication errors [62]. Thus, all activ­

ities tha t need an agreement phase, which is essential to distributed systems, are

rather expensive. Multicasting protocols can potentially eliminate the need for an

agreement protocol, which reduces the total cost of reaching an agreement in a

distributed application.

Which a multicast protocol, the agreement process is highly efficient. For

example, locking records in a distributed replicated database typically requires

only a single m ulticast message to claim a lock and a single multicast message to

release it. Based on this strategy, a simple and efficient, yet very robust, distributed

systems can be designed, such as distributed operating systems and distributed

transaction processing systems [56].

Guaranteed delivery relieves application processes from implementing special

protocols for message delivery. Atomicity ensures tha t a multicast message will

be delivered to every operational destination or none. A delivery order of an

application’s messages from any single site is often im portant and, therefore, should

be preserved to ensure the correctness of the application. For example, the file lock

and unlock messages tha t originate from a given site in the distributed two-phase

locking scheme illustrates the need for delivery in the order tha t messages are

produced. In contrast, the ordering of the m ulticast messages tha t originate from

different applications need not be constrained. Nevertheless, all messages sent by

different sites are still delivered in the same arbitrary order at all sites.

On the other hand, atomic multicast makes the design of fault-tolerant dis­

tributed applications much easier because it reduces the uncertainty about the

system state caused by message delays and failures in the system.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M ulticasting can provide large performance improvements for distributed fault-

tolerant systems when appropriate protocols are used. The use of multicast com­

munications will make the development of high-performance transaction process­

ing systems, feasible with fault-tolerant distributed architectures rather than the

centralized architectures th a t are currently used.

2.4 M ulticast Protocols

2.4.1 Chang and M axem chuck: (Token passing approach)

Chang and Maxemchuck [19] describe a family of protocols th a t achieve ordered

reliable multicasts. The main idea behind their protocols is to make a general

system appear to be a combination of two simple systems, one with a single receiver

and the other with a single transm itter. A system with many transm itters can be

made to look like a system with a single transm itter by passing all the messages

through a primary receiver called the token site. The token site then retransm its

the messages to the receivers. The system operates as a positive acknowledgment

system between the sources and the token site and as a negative acknowledgment

system between the token site and the remaining receivers.

Their protocols do not require that the transport layer provide reliable point-

to-point transmission; unreliable datagrams suffice because the retransmission of

lost messages is built into their protocols. In these protocols,

• One member of each group of processes is assigned a token and is called the

token site;

• the token site assigns a tim estam p for each m ulticast, and multicasts are

delivered at all destinations in the order of their tim estam ps, which ensures

tha t all multicasts to a group are delivered in the same order to all members

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the group;

• The protocols require tha t the token be periodically transferred from site to

site; the list of possible token sites, called the token list is maintained at each

of the token sites, and a token site passes the token to the next site in this

list; the protocol operates correctly as long as the number of failures tha t

occur is less than the size of the token list;

• The sites go through a reformation phase whenever the token list has to be

changed, either because of a failure or because a new site is to be added to

the list.

Each protocol in this family of protocols has different rules in passing the token

to the next site in the token list. These rules determine the various costs for the

protocols which will be described shortly.

In the protocol by Chang and Maxemchuck, a message may be com m itted and

its memory discarded only when the token has been passed twice around the sites

in the token list. At the end of the first round the message has been received

everywhere; at this point copies can be safely delivered. At the end of the second

round the message has been com m itted (delivered) everywhere; the processes can

safely discard any status information needed during the protocol. Thus, the rate at

which the token is passed from site to site and the size of the token list determine

the latency as well as the storage cost (because information about the messages

m ust be stored until it is com m itted). If the token is passed rapidly, then the

latency and storage costs are minimized; however, unless special hardware can be

exploited, such as Ethernet m ulticast, the communication costs will go up (control

message overhead will be N or higher). The communication costs may be reduced

by passing the token infrequently, bu t this would increase the latency and storage

costs. In the lim it, if the token is never passed, the additional communication goes

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

down to one acknowledgment message per multicast, but the latency and storage

costs go up to infinity and fault-tolerance is lost.

The drawbacks of these protocols emerge from the fact that small latency and

high resiliency contradict one another. Also, the protocol enters a reformation

phase every tim e a site failure or recovery is detected. Site autonomy represents

yet another problem, for example, the decision to go off-line will be costly because it

requires the initiation of a reformation phase, which forces the normal operation of

the multicast to be delayed until the reformation succeeds. This cost is unavoidable

in ring-based m ulticast protocols because such protocols require global consensus

on site membership in the system following site failure and recovery.

2.4.2 B irm an and Joseph: (ISIS)

The ISIS system adopts an approach th a t is different from Chang and Maxemchuck

[19]; it is based on synchronous execution, whereby every process sees the same

events in the same order [1*2]. The problem with synchronous execution is its

cost. The ISIS system provides an illusion of synchronous execution, called virtual

synchrony [11], in much the same sense th a t transactional serializability provides

the illusion of a sequential transaction execution.

The ISIS broadcasting protocol avoids some of the problems that occur with the

protocol of Chang and Maxemchuck [19] presented earlier. The protocol does not

multicast the messages to all sites of the distributed system and provides different

primitives th a t help to relax the total order.

The ISIS system provides the following group of primitives to help perform the

multicasting operations:

• A B C A S T : This primitive provides an atomic broadcast for data, where

the order in which data are received at a destination must be the same as

the order at other destinations, even though this order is not determined in

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

advance. The set of processes to which the message must be delivered will

receive it in the same order relative to another ABCAST message tha t has

some overlapping destination.

ABCAST operates by assigning a tim estam p to each broadcast and delivering

messages in the order of the assigned timestamps.

The timestamp assignment costs a t least two round of messages. Also, a

message must wait for all messages with smaller timestamps to be delivered.

Extra storage is necessary for queues and for the copies kept for retransmis­

sion requests.

ABCAST requires 2N protocol messages per broadcast received under nor­

mal conditions, where N is the number of sites in the broadcast group. Mes­

sages received by a site cannot be delivered to the receiving process when

the network is partitioned.

• C B C A S T : This primitive, called the causal broadcast primitive, like AB­

CAST provide an atomic broadcast for data but differs because it allows a

certain predetermined order to be enforced.

CBCAST is used to enforce a delivery order, but with minimal synchro­

nization. The CBCAST message specifies the parameters over which the

order will occur. The potential causality [50] is the main criteria for ordering

messages using the CBCAST protocol. The issue of enforcing causal order

between all messages may not be required by all applications; as a result,

CBCAST only enforces order depending on the param eters specified by the

application. This allows more flexibility for the applications and decreases

the overhead required to enforce a total order.

• G B C A S T :

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The GBCAST primitive is used to inform operational group members when

another member fails, recovers, joins, withdraws, or experiences any other

change. It is used to update the group view th a t represents the group site

state.

A GBCAST message must be ordered relative to other GBCAST messages

sent to the site, as well as relative to the ABCAST and CBCAST messages.

In addition, the GBCAST messages must be delivered after every message

from the failed process has been delivered.

Both GBCAST and ABCAST are normally invoked synchronously to imple­

m ent rem ote procedure calls by one m ember on all members of its process group.

The CBCAST prim itive is almost invoked asynchronously, which represents the

main source of concurrency in the ISIS system.

The main features of the ISIS primitives follow:

• They allow the join, withdraw, and recover procedures to be less costly. This

cost reduction helps in the implemention of the dynamic group.

• They provide group addressing.

• The system does not assume a LAN with special broadcasting capabilities.

• In the case of partitions, the operations are resumed in the partition with

the m ajority of sites.

• Several ordering primitives allow more ordering precedence to the applica­

tions.

The disadvantage of the ISIS broadcast primitives is that they do not use any

of the broadcasting capabilities tha t can exist on the underlying communication

network. The ISIS does not survive network partitioning.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 .3 M elliar-Sm ith. et al.:(Trans-Total protocol)

Melliar-Smith a t al. [56] presented a broadcast mechanism th a t allows both relia­

bility and order to be maintained between broadcasted messages. They presented

two protocols that interact together to ensure reliability and ordering:

• Trans: an efficient broadcast protocol tha t ensures th a t every message re­

ceived by any operational processor is also received by every operational

processor, and

• Total: responsible for enforcing a total order on broadcast messages and for

ensuring that even in the presence of failure all operational processors agree

on the same sequence of broadcast messages.

A fundamental assumption is th a t th a t the underlying communication network

possess some broadcasting capabilities. The model also assumes that processors

are subject to fail-stop, omission, and timing faults, but not to malicious faults. In

order for this algorithm to functions efficiently, they assume th a t the broadcasted

message is received immediately or not at all. This protocol is able to accommodate

to network partitioning faults; the partitions with at least 2JV/3 processors can

resume operation, where N is the number of sites.

The idea behind the Trans protocol is tha t acknowledgments for broadcast mes­

sages are piggybacked on messages th a t are themselves broadcasted and typically

seen by all other processors.

The Trans protocol provides a partial order of messages a t all the sites, and

to achieve a total order they use the Total protocol to transform the partial order

to a total order. Their protocols require one broadcast message per agreement,

and they reach this agreement after [(iV-f 2)/2] broadcast messages from distinct

processors.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The problem with this approach is tha t both the Trans and Total protocols

assume tha t the communication interface will include a special interface processor

and extra buffer space sufficient to receive, buffer, process, and acknowledge every

message delivered by the communication medium.

2.4.4 Luan and Gligor: (The consensus protocol)

Luan and Gligor [53] presented a broadcast protocol tha t allows toleration of the

loss, duplication, reordering, and delay of messages, and network partitioning

in an arbitrary network of fail-stop sites. Their protocol is based on majority-

consensus decisions to commit on total ordering of received broadcast messages.

Under normal operating conditions, the protocol requires three phases to complete

and approximately AN protocol messages, where N is the number of sites. The

protocol-message overhead can be reduced if distributed among multiple-broadcast

messages: thus, the heavier the broadcast traffic, the lower the overhead per broad­

cast message. They presented a decentralized term ination protocol for abnormal

operating conditions.

Their main idea consists of broadcasting the message to all sites, including

the sender. Then a voting protocol is made on the commit list to ensure order

of deliver}', as well as to handle network partitioning and site failure. They use a

quorum-based approach with a quorum of \N/2-y-K~\ to handle the partitioning and

to overcome the necessity of failure detections, where N is the number of sites and

K is the safety margin tha t represents the num ber of failed sites or communication

links tha t can fail during phases II and III.

Their protocols consists of two parts: a normal-condition protocol and a termi­

nation protocol. The normal-condition protocol consists of three phases: invitation,

notification, and commitment. Their protocols does not assume th a t any detection

procedure is needed for a global consensus on site or link failures.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main drawback to this scheme is the number of protocol messages because

the assumption tha t the broadcast messages can be used to piggyback the protocol

messages may not sufficient decrease the number of messages.

2.4.5 C ristian et al.: (A tom ic broadcast in real tim e)

One property th a t may be useful in a reliable broadcast protocol is specifying that

delivery will occur within a specified amount of tim e after initiation of the protocol.

This property is especially useful in real-time systems and in control applications,

where a broadcast tha t arrives too late may not produce the desired response. If

the broadcast is being made to a set of processes to instruct each to begin some

action, it might also be desirable th a t broadcast deliveries occur within a known

tim e interval of one another, so th a t their actions take place with some degree

of simultaneity. The protocols described earlier make no such guarantees; they

ensure tha t broadcasts will be eventually delivered to all non-faulty destinations,

but delivery could take an arbitrarily long time.

Cristian et al. [28, 26] describe several broadcast protocols tha t provide real­

tim e delivery guarantees. For such protocols, one must have timing bounds on

various aspects of system behavior, for example, a bound on the tim e it takes for

the system to schedule a process for execution, a bound on the tim e it takes for a

message to travel from one site to another, the ability to schedule an event to occur

within a certain tim e, and so on. Given such bounds, one can devise broadcast

protocols by taking into account worst-case timing behavior.

A basic difference exists between these protocols and the ones described earlier.

The earlier protocols use explicit message transfer to ensure tha t a broadcast has

arrived at all destinations and to agree on an order of its delivery. The real-time

broadcast protocols, on the other hand, use the passage of tim e to implicitly deduce

the same information. As a result, these protocols will, in general, have a lower

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication cost. However, the latency and storage costs are based on worst-

case system behavior. If the variance in the duration of system events is low and

one has accurate estim ates of these times, the latency and storage costs are likely

to be low. On the other hand, if the variance is high, then the fact tha t these costs

are based on worst-case behavior might make them unacceptably high.

2.4.6 G arcia-M olina and Spauster: (T he propagation graph

protocol)

Garcia-Molina and Spauster They presented an atomic broadcast protocol [41]

that uses a graph for multicasting messages. The protocol ensures a causal-order

delivery between multicasted message. It relies on a graph (propagation graph)

to multicast the message and uses a distributed tim estam p assignment scheme

for ordering messages. This tim estam p scheme assigns the tim estam ping task to

a set of processes based on m ulticasting groups in order to enforce the required

order. Their approach allows a smaller number of protocol messages and a faster

delivery service. They allowed multiple group interactions and did not rely on

any multicasting capabilities of the network. This protocol sulfers from the initial

cost of building the propagation graph, which would be a minor cost in the case

of relatively long-lived groups. The protocol provides a set of reliability modules

to handle lost messages. It also tolerates network partitions by resuming execu­

tion in the m ajority partition and term inating execution in the other partitions.

Our protocol relies on a similar idea of using a propagation structure for message

multicasting; however, we used a different approach to enforce order.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Broadcast protocol Protocol

messages

Time for delivery Behavior under

Networks

partition

Chang and

Maxemchuck [19]

N , 2 'V N token transfer

for N resiliency

May commit

messages

Cristian [28] 0 After some fixed

pessimistic delay

Not applicable

Birman and

Joseph [12]

2 N After 2 rounds

message exchange

Not applicable

Melliar-Smith, Moser,

and Agrawala [56]

Variable due

to null ACKs

Random May commit

messages

Luan and Gligor [53] 1, 4N 3 phase protocol May commit

messages

Garcia-Molina and

Spauster [41]

N Number of levels

the message must

travel

May commit

messages

Table *2.1: Summary of Reliable Broadcast Protocol Performance

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3

M u lticastin g in In tercon n ected

N etw orks

3.1 Introduction

As the demand for economic and effective sharing of resources (data and otherwise)

grows, a new environment characterized by interconnected LANs th a t belong to

different, autonomous entities has emerged. Autonomy is manifested, among other

things, by different LANs tha t utilize different ordering criteria for multicasting.

To better serve the multicasting environment, the ideal protocol should be able

to function with a small number of protocol messages, to tolerate failures (par­

ticularly network partitions), and to utilize the multicasting capabilities of the

network if they exist. A bonus would be the ability to implement an intelligent

routing scheme, which would decrease the number of messages generated per mul­

ticast [31].

The remainder of this chapter is organized as follows. Section 3.2 describes the

environment targeted by our work and presents the problems that characterize such

an environement. Section 3.3.1 describes our goals and outlines the m ain steps to

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our approach to the solution. Section 3.4 introduces the system model and details

the communication structure used to forward and multicast the messages within

our system. It also defines the set of rules tha t are used in building this structure.

Section 3.5 presents the layout of the data structures used by the protocol.

3.2 Internetwork M ulticasting Problem s

Existing distributed applications have been developed mostly for LAN environ­

ments. The extension of these applications to wide area networks introduces the

problem of largely varied characteristics within these new environments. In or­

der to support the migration of such applications to an internetwork environment,

some features must be retained from the LAN environment [32]:

• Group addressing. In a LAN, a multicast packet is sent to a group address,

which identifies a set of destination hosts. The sender does not need to know

the membership of the group and does not need to be a member of the group.

Hosts can join and leave groups at will, with no need to synchronize or nego­

tia te with other members or with potential senders to the group. Examples

of such addressing is group broadcasting, or simply broadcasting (we remind

the reader tha t we use broadcasting and multicasting interchangeably, but

we mean, in fact, group broadcasting) which can be used for such purposes

as locating a resource or a server when its specific address is unknown.

• High probability o f delivery. In a LAN, the probability tha t a member of

a group will successfully receive a broadcast packet sent to the group is

usually the same as the probability tha t the member will successfully receive

a unicast packet sent to its individual address. Furthermore, the successful

reception by every member is very high in the absence of partitioning. This

property allows the designers of end-to-end reliable broadcast protocols to

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assume tha t a small number of retransmissions of a m ulticast packet will

result in successful delivery to all destination group members that are up

and reachable.

• Low delay. Very little delay is imposed by LANs on the delivery of broadcast

packets. This property is im portant for a number of broadcast applications

such as distributed conferencing, parallel computing, and resource location.

Also, the delay between the tim e when a host decides to join a group and the

tim e the host can begin to receive packets addressed to tha t group, called

join latency, is very low in a LAN environment. Low join latency is very

im portant for certain applications, such as those th a t use broadcasting to

communicate with migrating processes or mobile hosts, which is typical in

m ilitary applications.

3.2.1 M u lticastin g in a H eterogeneous S y stem

Looking back at some protocols for reliable atomic broadcasting, we can see that

they utilize the LANs’ broadcasting capabilities [53, 56]. These protocols poten­

tially exhibit good performance because of the specific properties of the LAN. Not

all LANs have broadcasting capabilities; therefore, the applicability of some of the

protocols is restricted. Some other protocols assume a point-to-point link [12]. The

generality of the assumption here puts more overhead on the protocol. Typically,

a lower performance would be expected for these protocols than for the ones that

use the special features of the network. We point out th a t no “optimum protocol”

exists; for each environment, a set of good protocols exists, and we can select the

one tha t satisfies our performance criteria.

The above discussion raises the issue of the utility of having different protocols

tha t can be used in different parts of the network. This issue implies a software

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heterogeneity in regard to the broadcasting protocols, in addition to a hardware

heterogeneity in different LAN protocols and different com puter configurations.

The im portant conclusion is as follows:

Because the heterogeneity o f the nodes cannot be ignored and the en­

forcement o f a homogeneous environment is not practical fo r reasons

such as autonomy, political, and environmental considerations, we must

cope with the existence o f this diversity.

3.2.2 C om m unication Environm ent

Many distributed com puter systems use a communication mechanism tha t is phys­

ically a broadcast medium, such as an Ethernet [57], a token ring [33], a token bus

[76], or a packet radio system. Some of the existing standard communication

protocols, however, do not allow distributed systems to use the broadcast capabil­

ity of the physical communication medium but rather require all messages to be

point-to-point from a single source to a single destination [59]. One reason for this

practice is to ensure that the same protocol is applicable to networks of different

characteristics.

We assume an environment of multi-access networks (LANs and possibly satel­

lite networks) th a t are interconnected in an arbitrary topology by packet switching

nodes (bridges and /o r routers). Point-to-point links (both physical links such as

fiber-optic circuits and virtual links such as X.25 virtual circuits) may provide ad­

ditional connections between the switching nodes, or between switching nodes and

isolated hosts, but almost all hosts are directly connected to LANs.

The LANs may not be similar (i.e., the capabilities of different LANs vary).

Specifically, some LANs may possess m ulticasting capabilities; others m ay not.

Thus, we have heterogeneous networks connected through the internet.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 .3 Failure A ssu m p tions

We cannot expect our protocol to function under a no-fault assumption. Building

a distributed system without considering the possibility of, for example, site failure

or message loss is not practical. We must consider the failure assumptions that are

stated below, especially when working with lower level protocols like the broadcast

protocols tha t are part of the transport-layer service.

1 . Sites can exhibit omission failures (i.e., they can fail to send a message when

they are supposed to do so).

2. Communication links can fail at any tim e and can come back up at any time.

3. Messages can be lost, and delays can be arbitrarily long. Note that the loss

of a message due to buffer overflow can be more easily modeled by a link

failure than a site failure.

4. Network partitions can occur; the probability of occurrence is higher because

of the interconnected LAN characteristics [23, 31].

Practicality dictates tha t our protocol take these failure characteristics into

consideration.

3.2 .4 Problem s W ith B roadcasting in H eterogeneous D is­

trib uted S ystem s

As mentioned in Section 3.2.1, the issue of software heterogeneity must be consid­

ered. Each site must be able to select their own operating system. Because we are

forced to consider the existence of distributed applications tha t run on different

LANs, we m ust also consider how these applications might interact. The same

problem is encountered when a distributed application spans different LANs and

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has both local operations tha t involve groups in one LAN and global operations

tha t involve groups in different LANs.

We are prim arily interested in the tools tha t these distributed applications use

to perform their functions. Specifically, we are interested in the reliable broadcast

protocols tha t are used by these applications. Can each of these applications use

the same reliable broadcasting protocol, or are they able to select a suitable broad­

casting protocol for their environment? Subsection 3.2.1 discusses the necessity of

allowing each site to select a protocol.

The answer to the above question must account for the possibility of having sev­

eral LANs, each with a different reliable broadcast protocol (like the one presented

in subsection 2.4) with different LAN protocols, such as Ethernet, token-ring, or

simply point-to-point links. Our primary objective is to develop a protocol tha t can

orchestrate the cooperation between these protocols to achieve a reliable ordered

delivery service for InterLAN messages.

The issue is not to design a new broadcasting protocol; rather, our rationale

is tha t if the site is able to choose its network protocol, then why not grant it

the same freedom to choose the best reliable broadcast protocol as well. This

concept goes along with that of site (network) autonomy; we think that preserving

this autonomy is worthwhile because the main criteria for using one broadcast

protocol over another is better performance in the local environment.

However, allowing sites to exercise autonomy in choosing both a network and

broadcast protocols introduces the problem of how to broadcast on different LANs.

Our approach is to develop a global protocol between the local heterogeneous

broadcast protocol layer and the application layer (see Figure 3.1). The role of

this global protocol would be to interface, organize, convert, and arbitrate for the

local protocols.

We may ask ourselves whether the existing reliable broadcast protocols can

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application

Hardware

Internet

Network Interface

Transport

Reliable broadcast
protocol

InterLAN broadcast
protocol

Figure 3.1: Conceptual layers of hardware and protocol software used in internet

communications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

achieve this task? The answer is no. To illustrate this assertion, consider the

following two cases:

• Systems with the same broadcasting protocol

In this case, we have different LANs that run the same reliable broadcast pro­

tocol. The distributed application forces an interaction between these LANs

because of a need for cooperation. First, if we assume tha t the broadcast

protocol is one of the protocols tha t assumes some broadcasting capabilities

in the underlying network, then broadcasting over different LANs is obvi­

ously not achievable because of the lack of broadcasting capability on the

connections between the LANs. Second, if we assume tha t the broadcast

protocol is one of the protocols tha t does not assume any broadcasting ca­

pabilities in the underlying network, then this protocol could perform the

required task. However, the performance achieved by the protocol would be

degraded because of both its inability to utilize the network capabilities and

the inefficient use of the links between the LANs (assuming a point-to-point

connection).

• System with multiple broadcasting protocols

In this case, we have different LANs th a t run different reliable broadcast

protocols. Different problems appear here mainly because of the protocol-

to-protocol interactions. None of the known broadcast protocols are capable

of achieving this type of interaction. Among these problems are:

1. The absence of a standard interface tha t allows for this type of interac­

tion among several heterogeneous broadcasting protocols.

2. The existence of different local and global broadcasting groups. The

ability to handle these groups spread over interconnected LANs is sim­

ply not addressed by the currently available reliable broadcast protocols.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.I

LANG3Internet

G2

LAN B

Figure 3.2: Example of three interconnected LANs.

3. The existence of gateways and routers (in the case of indirectly con­

nected networks), which requires a special scheme to handle the protocol

to allow the interaction between these interconnected LANs.

3.2.5 C ase S tudy

Assume th a t we have three connected networks A, B , and C of different types

interconnected with point-to-point links as shown in Figure 3.2.

Different applications are running on the networks, and each application may

need to send messages to groups in other networks.

First, we must identify the types of messages th a t can exist in the same network,

for example, network A (see Figure 3.3).

• Local messages. These are messages th a t are broadcasted within the same

LAN (i.e., local messages for LAN A are the messages where the source and

the destinations both belong to A).

• External messages. These messages originate from a different LAN (i.e.,

external messages are messages for which the destinations but not the source

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

External

LA N

Local
Global

Figure 3.3: Types of messages tha t can exist in a network,

belong to .4).

• Global messages. These messages originate from a LAN and have destina­

tions in other LANs, as well as in the local LAN (i.e., global messages for A

are messages for which the source belongs to A and the destinations belong

to both A and some other networks, for example, B and C).

Several distinct cases should be considered:

• Case 1: only receiving or sending sites

Assume each network has only one role in relation to the other networks.

By this, we mean that the group in each network may either send or receive

global messages but not both. For example, C is a receiver; A and B are

senders of global messages to C.

Assume the existence of a central node to which the global messages are

forwarded. This node timestamps these messages and, in turn , forwards

them to their destinations. This process ensures a global unique tim estam p

for each message.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The central tim estam per will tim estam p the message from A and B and

send them to C; they will be locally broadcasted by C ’s gateway. The

local broadcast protocol is assigned the task of ordering the messages. The

only task performed by network C s gateway would then be to ensure the

detection of lost messages sent from the central timestamper. This gateway

will always broadcast the messages coming from the central tim estam per in

the tim estam p order.

• C ase 2: b o th rec e iv in g a n d se n d in g s ite s

W hat would be the case if some networks both send global and receive ex­

ternal and global messages? For example, assume tha t C sends messages to

and receives messages from A and B.

All sites th a t belong to C will direct the global messages to the central

tim estam per. The central tim estam per timestamps each arriving message,

which enforces a relative order among the messages coming from A , B , and C .

The messages then are directed to their destinations. The message tim estam p

must be sent back to the message source to be used in the ordering task. An

im portant question to be considered is whether following this tim estam p is

sufficient to enable the global messages to be ordered accurately.

We have two main problems here:

- O rd e r in g th e g lobal m essages re la tiv e to one a n o th e r . The

unique tim estam p given to the global messages by the central times­

tam per supposedly helps to do this. Because we have a running broad­

casting protocol in each network, these global messages m ust be deliv­

ered to the protocol (see Figure 3.1). Therefore, the local protocol is

supposed to enforce this order. The question tha t arises is:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

How can we force the local protocol to adopt the central times­

tamp order?

- O rd e rin g th e e x te rn a l m essag es re la tiv e to th e g loba l a n d local

m essages. This problem is more difficult to solve than the first one.

The issue here is a twofold message-ordering problem.

1. G lo b a l m e ssag es re la tiv e to loca l m essag es .

For a particular network, global messages represent messages that

are to be sent to a destination outside the network. Such messages

must be ordered in relation to both local and global messages. If we

assume th a t the global messages are simply a special type of local

message, with destinations outside the local network, then the order

of these messages relative to the normal local ones could be easily

handled by the local broadcasting protocol. Global messages would

then be broadcasted locally by the local broadcast protocol.

2. E x te rn a l m essag es re la tiv e to g lo b a l m essag es .

Now that the relative order of global and local messages has been

enforced, the next question is:

How can we enforce the order between the external mes­

sages and the global messages through the local broadcasting

protocol by using the timestamp given by the central times­

tamper?

3.3 Statem ent o f Purpose

3.3.1 T he Environm ent

The environment targeted by our research can be divided into two categories:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Autonomous entities

Heterogeneous LANs

LAN A

G1

G3

Backbone'
LAN B

LAN C

G2

Figure 3.4: Network environment.

• Network environment: The targeted environment includes a set of autonomous

entities th a t select their local reliable m ulticasting protocols (e.g., ABCAST,

TOTAL, TOKEN), LAN topology (e.g, bus, point-to-point), and local or­

dering (e.g., total, causal, FIFO). A heterogeneous environment results tha t

is characterized heterogeneity in LAN protocols and message delivery order.

Figure 3.4 outlines the expected network environment.

• Applications environment: The targeted environment includes a set of ap­

plications that consists of different groups. For example, application Y in

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LANC

G4 App X = {Gl}

App Y = (G2, G4>

App Z = {G2, G5}

G5
LAN A

G3

G l

Figure 3.5: Applications environment.

Figure 3.5 contains groups G2 and G4. Each group may have members that

belong to the same LAN (e.g., G2 and G4) or to different LANs (e.g., G l,

G3, and G5). The same group may belong to different applications (e.g.,

G2). Each group has autonomy in selecting its local broadcast protocol, as

well as the delivery order of the received messages based on the application

need.

57

“ I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Goals

Our main goal is not only to design a global standard protocol th a t can support a

reliable atomic broadcast service in an interconnected group of LANs, but also to

achieve the utm ost utilization of the underlying communication network capabil­

ities. The protocol must take into consideration the following im portant areas of

concern:

• The existence of different LANs, each with its own protocol and topology

(LAN autonomy).

• The existence of different broadcasting protocols used in each LAN (protocol

heterogeneity).

• The different multicasting and broadcasting capabilities of each network.

• The possibility of omission failure and network partitioning.

• The larger delay for internetwork messages.

The protocol must possess some, if not all, of the following features:

• It must use the features and capabilities of the underlying LANs.

• It must have a small number of protocol messages tha t are exchanged be­

tween LANs to decrease the overhead of the protocol and result in better

performance.

• It must eliminate any type of interference in the operation of the local broad­

cast protocol tha t runs on each network.

• In the case of LANs tha t are not directly connected, the information avail­

able in the routing tables must be used to broadcast messages to the other

networks.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The high probability of network partitioning and global message loss must

be taken into consideration.

• The required order must be enforced by all the local protocols.

A protocol tha t possesses all of the above features promises to be both efficient

and reliable.

3.3 .3 A pproach to th e Solution

The complexity of the problem urges us to pursue a m ultistep approach to the

solution. This approach will allow us to better understand the interaction between

the reliable broadcast protocols and our InterLA N broadcast protocol and the ex­

pected effects of our protocol on the total performance of the system. The four

main steps that we have undertaken in our research can be summarized as follows:

1. A set of protocols will be devised tha t can accomodate different ordering cri­

teria (total and causal order) which comply with the requirements mentioned

previously. These protocols should have a common ordering enforcement ap­

proach to allow the easy incorporation of m ultiorder achievement later on.

2. A reliable m ulticasting protocol will be devised th a t allows the enforcement

of multiorder between messages, based upon the recipient’s group ordering

requirement. This protocol will use the single-order protocols to achieve

this goal. Group-driven ordering allows the removal of unnecessary order­

ing restrictions, which provides higher performance, delivery of multicasted

messages. It also allows cooperation between groups with different ordering

requirements and maintains group autonomy.

3. A scheme will be devised to allow the previously developed protocol to in­

teract with different protocols. This step, in part, also provides multicasting

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

groups with autonomy in selecting their multicasting protocols and does not

prevent them from interacting with other groups that rely on different mul­

ticasting protocols. Our InterLAN protocol is expected to interact with any

of these protocols without any type of direct interference in their operations.

This layered architecture has proven successful in the discipline of protocol

design for both reliable, and unreliable network delivery services [23].

4. The reliability issues will be examined and reliability modules will be pro­

vided for the prementioned protocols to achieve resiliency to the failures

assumptions mentioned earlier.

Figure 3.6 shows the development evolution of our protocol suite and the de­

pendencies between the protocols.

3.4 The Com m unication M odel

We propose an ordered m ulticasting protocol suite designed to support ordered

atomic reliable multicasting across interconnected LANs. Our protocol relies on a

hierarchical structure in the communication topology. This structure can be one

tha t reflects the actual physical connections, one tha t is inferred by studying the

group interaction, or one th a t is simply imposed over the message flow to honor

the protocol requirements.

Members of one group can be individual processes and/or o ther groups. The

protocol does not restrict the members of a group to the same LAN. Additionally,

the protocol allows each group to determ ine its own ordering criterion (causal or

total). Hence, our multicasting environment contains two types of groups: the

causal groups tha t enforce a causal order and the total groups th a t enforce a total

order. Our protocol can circulate messages tha t have some addressees in total

groups and other addressees in causal groups and can still observe the particular

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Causal Order

Total Order
BUS

BUS-TO

Causal/Total OrderMLMO

INTER Interoperability

Figure 3.6: Presented protocol suite and its development dependencies.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ordering criterion for each addressee’s group. Note that a given group’s ordering

criterion pertains to those members tha t are individual processes and not members

tha t are groups because the later would by definition have their own criteria.

Our protocols assume no sequenced delivery service from the underlying com­

munication network. This assumption is realistic because different routes can be

used by messages sent from the same sender to the same recipient. For simplicity,

the protocol version presented here assumes no failure. Our failure model, as well

as proper addendum to the protocol for handling network partitions, message loss,

and crash failures, is proposed in Chapter 9.

3.4.1 T he C om m unication Structure

The system is composed of a set of cooperating processes C = {p\,P2, with

disjoint memory space that uses message passing as the means for interaction.

Each process p, is identified by a ternary-tuple < raj, / ij , d{ > , where raj € N the set

of LANs, hi £ H the set of hosts, and d{ E D the set of process identifiers involved

in multicasting a t each host. The sets N, H, and D are dynamic and are affected

by the join-in and leave of processes to and from C. For simplicity, the processes

in set C will be referred to as “activity processes”.

E le m e n ts o f th e C o m m u n ica tio n S tru c tu re

We assume tha t multicasting can be performed either by the m ulticasting capa­

bilities of the individual networks or through point-to-point links. First, we must

introduce two new terms: the timestamping, forwarding, and multicasting (TFM)

process and the communication unit (CU). The TFM process is an independent

process responsible for timestamping, forwarding, and multicasting messages. The

TFM is not part of the sending or receiving set of processes; th a t is, it is not

a member of C. The CU, in its simplest form, consists of a set of cooperating

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processes and a TFM process. We can visualize each CU as a tree with two levels;

the TFM process is the root, and the other members are the leaves. The coop­

erating processes are always the leaves of the hierarchical structure. Examples of

CUs are shown in Figure 3.7. The set C is used to build a set of communication

units B = {cu],cu2 . c u m}. where, in general, relatively high interaction oc­

curs among members of the same CU and relatively low interaction occurs among

members of different CUs. Three types of messages are distinguished by a given

communication unit cux: local messages to which the sender and the destinations

reside in cux; global messages for which the sender belongs to cux and some of the

destinations belong to other CUs; and external messages for which the sender is

not a member of cux but some of its destinations are.

Communication between two different CUs must be performed through the

TFM that is least common to both. The least common TFM tha t covers all

recipients of a message m is referred to as the least common ancestor of m and is

denoted by LC A {m).

The CUs are the building blocks of our communication structure. If one of the

members of a CU wants to multicast a message to its CU members, it sends the

message to the TFM process. The TFM process then tim estam ps the message and

multicasts it to all the members of the CU, including the sender, or it directs the

message to a higher level in the communication structure. The messages will be

delivered to the receiving processes on the basis of the tim estam p.

The set of communication units B can be expressed as B = {cu:- : V t E cut-

either t €. C or t £ B or t is a T F M } . Figure 3.8 shows how the structure is built.

Processes p221 > P2 2 2 - and p223 form a communication unit cu22 with T22 as a TFM.

Similarly, p242i and p2422 form a communication unit cu242 with T2 42 as a TFM.

A more complex structure could be formed, for example, if our communication

pattern and/or topology implies the addition of cu242 to a higher communication

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TFMTFM

(a) Simple communication unit with cooperative processes as members.

(b) Communication unit with CU as member.

Figure 3.7: Protocol communication units.

structure; then, cu24 is formed by having p24i, P2 4 3 , and CU2 4 2 w ith 7 2 4 as a TFM.

Similarly, p21, P2 3 , CU2 2 , and cu24 must be linked together in a communication unit

cu2 with T2 as a TFM . As we can see, this configuration forms a tree structure.

Any CU is interfaced to other CUs through its designated TFM process, which

controls the message passing in the CU to and from the other CUs. The commu­

nication between two different CUs must be performed through the least common

TFM to both. For example, if a message must be m ulticasted from p221 to cu22

and cu242, then this message must reach 7 2 , which is the least common TFM that

has both cu22 and cu242 within its tree structure. Of course, the message, on its

way from p22i to cu242, will pass all TFM s in the hierarchical structure until cu242

(i.e.. it will pass by T22 ,7 2 ,7^4 ,7 242)-

If £>(m) is the set of destinations of the message m, then LC A (m) can be

defined as follows: L C A (m) is a TFM process % such tha t D (m) C cux and V cuy

if D (m) C cuy then cux C cuy. Therefore, LCA(m) is the TFM of the smallest

CU tha t contains all destinations of message m.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CU

CU

24J
244242 243,

22/

2421 2441 24422422,

Figure 3.8: Communication structure with multilevel communication units.

Formally, the least common ancestor of two communication units cux and cuy.

denoted by LC A (cux, cuy), is a TFM process TP such that Tx -< Tp A Ty -< Tp A V T-,

where Tx and Ty -<TZ , Tp T- (where -< denotes a precedence relation such that

X -< Y means tha t Y falls along the path between X and the root of the tree).

For clarification and ease of presentation, we have assumed that the TFM

process is an independent process; however, the functions of the TFM process can

be performed by one of the cooperating processes of its CU.

Com m unication U nit Formation Rules

Two rules are necessary for mapping this structure to our multicasting and group

addressing: the Subdivision rule and the Enclosure rule.

• The Subdivision Rule. A communication unit may not contain a subset of

another CU; it must contain either the entire CU or none of it (i.e., for all

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cux and cuy either cux fl cuy = <j> , cux fl cuy = cux, or cux fl cuy = cuy).

• The Enclosure Rule. If two communication units cux and cuy are contained

in another communication unit cuz, then cuz must contain LCA(cux,cuJ/),

which is the least common ancestor of cux and cuy. For example, if cu242 and

cu-2-2 in Figure 3.8 are to be in a CU, then T2 must be in that group because

T> = LCA(cU242r CU2 2).

If cui is specified as a member of another cuj, then the TFM of j (T j) would control

the delivery of messages to 7i; on the other hand, message delivery to a member

of cui remains under the control of %. According to our communication structure,

a message m must specify a set of CUs as its recipients.

The protocols introduced in this thesis depend on the hierarchical structure

imposed on the communication between the processes in the group. An im portant

issue is raised in constructing the hierarchical structure in regard to the CU inser­

tion in the total structure and its effect on the performance. For the example in

Figure 3.8, if cu24 and cu22 have heavy message traffic between them, then a TFM

process common to both of them th a t does not involve the whole group would be

the most efficient. A new construction is shown in Figure 3.9.

This hierarchical structure can be built w ith an algorithm tha t optimizes the

message delay; the frequency of communication between processes and the under­

lying communication topology are taken into consideration. The algorithm must

take care of subgroup addressing patterns while it constructs this hierarchy. The

best scheme for building the CU depends on the locality of networks (i.e., the

process in the same LAN would belong to the same CU). We have developed an

algorithm to build similar structure [77]. This algorithm optimizes the number of

levels in the tree and the number of nodes the message must pass by to get to its

TFM, by gathering the communication groups into a smaller number of CUs tha t

are closely located in the structure. The algorithm introduces a structure tha t

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CU

243j
24L

cu 22-2<

CU
24

Figure 3.9: Reshaped communication structure to increase performance.

minimizes the number of levels the message must go through to reach its LCA.

Also, it accommodates intersecting groups in a similar structure and minimizes

the num ber of levels the message must pass through before delivery.

The protocol performance improves if the TFM process runs a t the gateway

because the traffic going outside the LAN must pass by the gateway. Thus, the

protocol will not add extra hops for timestamping. Note tha t group addressing

is the main factor in the CU construction scheme because of its restriction in

subgroup formation. An algorithm that builds this communication structure by

considering the cost and frequency of communication between processes must be

devised. The dynamic characteristics of the communication need to be considered;

this will require a dynamic algorithm th a t can reconfigure the CU membership

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during execution.

This structure will benefit many applications th a t use a hierarchical commu­

nication structure, for example, the communication in a corporation between the

branches and the headquarters. Another example from the Computer Supporting

Cooperative Work (CSCW) domain is group writing [42, 3], with a running session

for writing a book and subsessions for chapter writing and section writing. In a

third example from the com puter communication domain, the interaction between

the sites on the internet is directed in a similar hierarchical structure to deliver

messages between LANs through gateways [22]. We believe that from performance

perspective, subgroup structure and hierarchical communication is still reasonable

in the case of an unclustered communication between members of a group.

3.5 Protocol D ata Structures

The data structures used by the protocol to enforce order are composed of queues

and other structures for handling timestamps. These structures are shown in

Figure 3.10 and are described below. Queues are used to hold the messages before

their delivery to achieve the specified order. We need the following four queues:

• Deliver Queue (DQ). The messages are buffered for delivery to the process.

• Local Wait Queue (LWQ). The local messages are kept waiting for those

messages to arrive tha t are assigned smaller tim estam ps if any are missing.

• Global Wait Queue (GW Q). The global messages are kept waiting for those

messages to arrive tha t are assigned smaller tim estam ps if any are missing.

. • Out-of-Order Queue (OOQ). The messages th a t arrive out of order from the

same process are kept until the late or lost messages arrive. W ith a TFM

process, the messages kept in this queue have not been assigned a tim estam p

from the receiving TFM yet.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The G W Q is mainly added to our structure to prevent delay and extra pro­

cessing overhead for the local messages because of the existence of global messages

in the queues.

OLDTS
CLCAM

LTS
LCAMLocal msg

lessages LWQ
Global msg

ProcessDQGWQ

Out—of—order msg
OOQ PTS

n
TWL TSUL

Figure 3.10: Message flow at a process tha t shows the da ta structure used.

The timestamping mechanism is responsible for assigning tim estam ps to the

messages and for ensuring the correct order of these assignments by keeping infor­

mation about other TFM timestamps. We assume in the following definition that

px is an activity process or a TFM process.

• M TSm x []• A tim estam p vector tha t accompanies the message m x and carries

the tim estam p assigned by the sender and the different TFM processes it

passes by as it moves along the hierarchy toward L C A (m x).

• P T S Px[]. A local tim estam p vector used by the process px to keep track of

the tim estam p of the last message delivered from the TFMs.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• L T S Px. A local timestamp variable used by the process px to stamp the

messages sent or passing by it. The L T S Px always contains the last used

timestamp value.

• O LD T SPx. A local timestamp variable used by the process px to store the

timestamp of the last message sent from px to the TFM T~.

The following data structures are specific to the TFM processes:

• T W L tx. For a given total communication unit TFM (TCU-TFM) Tx , T W L rx

contains the messages that passed by Tx in a One-Way (OW) path before

they gained their LCA timestamp. The TCU-TFM and the OW path are

defined in Section 6.2.

• L C A M jx and C LC A M rx- The least common ancestor message {LC A M t x)

contains all the messages for which Tx acts as the LCA. The L C A M rx is

a temporary list where messages reside until they are committed for de­

livery. The messages in L C A M jx are waiting for a message that has a

smaller tim estam p from Tx. The committed least common ancestor message

list (C L C A M rx) contains the part of these messages tha t have been com­

mitted by Tx for delivery; the C LC AM ?X is piggybacked with any message

that is traversing the OW path.

• T SU L rx■ The timestamp updater list (T SU L rx) is maintained by each TCU-

TFM. Any message directed down the hierarchy along any of its one-way type

A (O W A) paths (see Sections 5.2 and 6.2) is assigned a timestamp by Tx.

The message, after it is timestamped, adds an entry to T S U Lrx■ This list is

used by the messages that pass Tx in their two-way (TW) or one-way type

B (O W B) paths to adjust P T S Vx[].

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Conclusion

The protocols introduced in this thesis depend on the hierarchical structure tha t

is imposed on the communication between the processes in the group. This hierar­

chical structure can be built with an algorithm tha t optimizes the message delay;

the frequency of communication between processes and the underlying communi­

cation topology are taken into consideration. This optimization algorithm depends

on the network topology in order to decrease the number of circulating messages.

The algorithm must account for subgroup addressing patterns while it constructs

this hierarchy. The best scheme for building the CU depends on the locality of

the networks (i.e., the process in the same LAN would belong to the sam e CU).

The protocol performance improves if the TFM process runs at the gateway. This

structure will benefit many applications tha t use a hierarchical communication

structure, for example, communication in a corporation between the branch offices

and the headquarters office. We believe th a t this subgroup structure and hierar­

chical communication are still reasonable from the performance perspective in the

case of an unclustered communication between the members of a group. The pro­

tocols also allow only part of the cooperating group to be addressed by creating a

set of cooperating subgroups. This results in reducing the traffic over the network

because unnecessary messages sent to inactive participants are eliminated.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hap ter 4

B U S: B o tto m -U p S tam ping

P ro to co l

4.1 Introduction

The Bottom-Up Stamping (BUS) protocol is a reliable m ulticast protocol tha t uses

the hierarchical structure to achieve a causal order between m ulticasted messages.

In this chapter, we assume a reliable system with no site or link failure and no

loss of messages (Chapter 9 deals with these issues). We also assume tha t a

message m is directed to all processes under LC A {m). Chapter 3 as well as the

glossary give some details for these term s definitions. As stated earlier in Chapter

3, all messages are directed to the TFM processes of the CUs, which multicast

the messages to the members and direct them to a higher level TFM process.

The protocol will forward all messages sent from a node to its local TFM for

timestamping. If the message destinations are local to its CU (i.e., it is a local

message), then the local TFM will multicast the message to the CU members

after it has been tim estam ped. This process allows the TFM to be the unique

tim estam per for the CU messages; therefore, an order among the messages tha t

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

honors the rules presented in Section 2.3.1 can be achieved. If some of the message

destinations reside outside the CU (i.e., it is a global message), then the TFM will

forward the message up the hierarchy to the higher level TFM after it has been

multicasted. The higher level TFM , upon receiving the message, will perform the

same procedure until the message reaches its LCA. On its way up, the message is

timestamped by each TFM it passes. The members of the CU order the message

by using both the message and the node tim estam p vectors. All sites deliver the

messages tha t are multicasted by the TFM based on the message timestamp vector,

which is described later.

The protocol concept depends on forcing the order through the TFM processes

necessary to m ulticast a message. Assume that a session is running with a commu­

nication structure, as in Figure 4.1. Suppose a message m i is sent from 72221 to its

CU members (7*222? 72-2 23)- This message will be timestamped and forwarded to T22

(the TFM of 72221)7 which will schedule it for multicasting after it is tim estam ped.

The timestamping is performed in message sending order from 72221! if out-of-order

messages are detected, then the LWQ holds the message. This tim estam p will

enforce an order for mi among the messages sent from its group members; then

mj is m ulticasted to cu2 2 - If rn\ was originally directed to cii2 , then the message

will be sent from T2 2 to T2 , where it will be timestamped and multicasted to C112

members. (The path from which the message is traversing will be filtered out from

the destinations when multicasted from 7^).

This protocol (as it will be shown later) will honor the causal order outlined

in Lam port’s rules. We believe tha t this protocol has wide applicability because

most applications in a distributed system (especially with site autonomy) prefer

the causal order; the causal order dictates a less restricted order, which results in

a faster delivery.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t) LC A (m)
k CU

CU
24

CU
244

CU.
241

244 .
243.

CU225,221 242

2422 2442.24412422.

Figure 4.1: Communication structure for BUS protocol.

4.2 B U S Protocol D escription

The ordering guaranteed by our protocol honors the causal order described in Sec­

tion 2.3.1. A description of how the protocol works follows. A process (pty) sends

a message m*.. to its TFM (%). The message needs a two-entry tim estam p vector

(M T S vlk) to achieve the causal order. The first entry in the vector (M T S mk[0]) is

responsible for ensuring the ordered delivery of the messages from the sender p,y

to its TFM This entry contains a copy of the tim estam p assigned to the last

message sent to %. The second entry (M TSk[l]) contains a copy of the timestamp

assigned to m* by p:y. After the tim estam p values are assigned to M T S mk, m;. is

directed to

At 7;, if no messages that are out of order are present, then P T S t, [Piyl and

M T S mk [0] should match because P T [p,'y] has not been updated since the last

message from piy before m k. The TFM % will update P T S r ,[pty] with M T S mk[1],

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and then % will timestamp and add the new tim estam p to A/7’SmJ l] . If

the message needs to go up, Tt will adjust M T S mk [0] and O L D T S jx (see Section

4.3.4 for a description of the OLDTS functionality) then forward rrik to the higher

level TFM (see steps 17 through 21 in procedure 4.3). If T is LCA(m.k), then

Ti m ulticasts mjt to its members and then checks the LWQ for any messages that

are eligible for timestamping (see steps 3 through 7 in procedure 4.2). For any

such messages, Ti will repeat the same steps described previously. However, if

mu arrives at Tx and delayed messages are present (lost messages trigger a similar

action and are discussed in Chapter 9), mk will be adm itted to LWQ to wait for

these messages to arrive.

For a message moving down the hierarchy from Tx to 7i, messages tha t are lost

or out of order are detected by comparing M T S mk[l] and P T S t, \Tx\ (see steps 1

through 11 in procedure 4.3). Because M T S mk[1] carries the tim estam p assigned

to m.fc from Tx and P T St, \Tx] carries the last message tim estam p delivered from % .

if M T S „lL[1] does not follow P T S t,[Tx] in tim estam p order, then some messages

are delayed. If this is the case, will be adm itted to the LWQ, where it will wait

for the delayed message to arrive (see procedure 4.2).

At one of the receiving sites, pjx (with 7} as a TFM) will check times­

tam p (A/715m). [1]) with P T S p [7j] for out-of-sequence messages. If is not in

sequence, it is adm itted to pjx LWQ. If it is in sequence, then pjx will adjust

P T S P}X[Tj] with the value in M T S mk[1] and m* will be adm itted to DQ of pjx to

be buffered for delivery (see procedure 4.5).

The communication structure and the order enforced on the messages in the

links between the directly connected TFM s in conjunction with the message times­

tam p vector are enough to achieve the required order.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 B U S Protocol O utline

Three types of procedures handle the messages: the Sender, the Receiver, and the

TFM procedures.

4.3.1 Sender

Let 7rik be the message sent from p,y of cu ,• with Ti as its TFM process. The sender

P i y performs the steps shown in procedure 4.1 to send message mj...

SE N D E R (mk){

1 . M T S mk[0] := L T S Piy
2. Increment L T S Pty
3. M T S mk{ 1] := L T S Pty
4- Send message to %

}

Procedure 4.1 (Sender)

Note here tha t % (the TFM of pty) can detect missing messages from piy through

M T S mk[1] and P TSr,\p iy]-

4.3 .2 T FM

Let Tx be any TFM in the message path from its sender p,y to any of its destinations

P j x , and C = L C A (cu i,c ii j) . In addition, let D irect Sender represent the process

by which the message is forwarded to Tx . The TFM Tx performs the steps

shown in procedures 4.2 and 4.3 to forward a message mk.

O LD TSrx is used to provide a reliable delivery scheme between two consecutive

level processes while the message is moving up in the hierarchy (see Section 4.3.4

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TFMfm*; {

1. if nik has not passed by Tx before —►
2. if M U LTICASTABLE(m k) -»
3. For each m t € LWQ,

4- {
5. if M U LTlC ASTABLE(m t) —► remove m t from LWQ
6. Otherwise return

7- }
8. Otherwise
9. Adm it m* to LWQ

10. fi
11. Otherwise
12. Discard mk
13. fi

}

Procedure 4.2 (TFM)

for a description of the OLDTS functionality).

4.3.3 R eceiver

Let mfc be the message that is received by process p3X of cuj with Tj as its TFM

process. The receiver pjx performs the steps shown in procedures 4.4 and 4.5 to

receive the message m*.

4.3.4 R em arks

The G W Q is not used in this protocol because the protocol views both local and

global messages as local messages.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MULTICASTABLE (mk) {

1 . if mk is on its way down —*
2. if M TS„lk[\] = P T S tx [Direct Sender] + I
S. Increm ent P T S rx[Direct Sender]
4. Increment L T Srx
5. M T S mk[l] := L T Srx
6 . Multicast mk to cuT
7. return true
8. O th e rw ise
9. return false

10 . fi
1 1 . fi
1 2 . if mk is on its way up —»•
12. if M7\S'm;JO] = P T S rx[Direct Sender] —*•
1 4 . PTS-rx[Direct Sender] := M T S mk[1]
15. Increment LT Srx
16. M T S mk[l] -= L T S rx
17. if Tx ± LC A {m k) ->
18. M T S mk[0] := O LD T STx

19. O L D T STx ~ LT Srx
20. Forward m k up
21. fi
22. Multicast m k to cux
23. return true
24- O th e rw ise
25. return false
26. fi
27. fi

Procedure 4.3 (M ulticastable)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RECEIVE (mk) {

1. i f D E LIV E R A B LE (m k) ->
2. For each m t 6 LWQ,
3. {

4- if D ELIVERA BLE(m t) —* remove m t from LWQ
5. O th e rw ise return
0. }
7. O th e rw ise
8. Adm it m k to LWQ
9. fi

}

P ro c e d u re 4.4 (R ece iv e r)

D E L IV E R A B L E (m k) {

1. if (M T S mk[l) = P T S P]X[Tj] + \) - *
2. Increment P T S Pjx[Tj]
3. Adm it m k to DQ
4■ return true
5. O th e rw ise
6. return false
7. fi

}

P ro c e d u re 4.5 (D e liv e rab le)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O L D T S r x is used to provide a reliable delivery scheme between two consecu­

tive level processes while the message is moving up the hierarchy. To clarify the

functionality of O L D T S r x , assume tha t a message m k is sent from Tx to Tw (TFM

of Tx). The message m* is tim estam ped at Tr before it is forwarded to Tw with

L T S tx- This tim estam p given at Tx and assigned to M T S mk[l] is used at Tw to

be compared with P T S tw[Tx] for message ordering. So th a t this comparison is

useful, all the messages tim estam ped a t Tx are forwarded to Tw to pu t P T S tw[Tx]

in sequence with L T S r x • Because the message tha t has Tx as its LCA will not be

forwarded to Tw. P T S r w[Tx] will be missing these messages, which indicates that

L T S r x cannot be used for this comparison. This problem forced us to introduce

O L D T S as a tim estam p variable a t each TFM process to retain the tim estam p of

the last message tha t was forwarded to the higher level TFM from this process.

When a message m* is forwarded up in the hierarchy, the first entry in the vector

M T S mk carries a copy of O L D T S (see steps 18 and 19 in procedure 4.3). This en­

try is responsible for ensuring the ordered delivery of from the sender Tx to its

TFM Tw. The value assigned to M T S mk[0] should be in sequence with P T S r w[Tx\

unless a delayed message exists (see step 13 in procedure 4.3). Then, O L D T S r x is

adjusted by assigning the tim estam p value given to mk by Tx .

No assumptions are made in regard to the multicasting capabilities of the net­

work. However, the implementation of the protocol assumes th a t a CU could reside

on a set of LANs and tha t network multicasting is used on each of these LANs if

it exists. Messages are forwarded between LANs th a t have a point-to-point link.

The receiving LAN gateway will distribute the message to the LAN members. The

protocols also allow part of the cooperating group to be addressed by creating a set

of cooperating subgroups, which results in reduction of the traffic over the network

because the unnecessary messages sent to inactive participants are eliminated.

The protocol delay tim e for the message to reach a specific destination is pro-

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

portional to the number of levels the message must pass to reach this destination.

This feature makes the protocol appealing because the delay tim e is predictable;

this feature is a required feature in real-time m ulticasting [28]. The protocols

also have some features tha t reduce the likelihood of message loss during message

navigation in the communication structure, as will be discussed in Chapter 9.

4.4 BU S P rotocol Correctness

For the purpose of this work, assume a reliable environment with no failure or loss

of messages. This assumption does not weaken our proof because this environ­

ment is achievable through a reliability procedure developed for the protocol and

explained later. We m ust prove tha t the protocol guarantees a causal order for

message delivery. To do this, we must show tha t the protocol adheres to rules 1

and 2 described in Section 2.3.1.

• Rule 1:

Assume tha t a CU (cu,-) exists with a set of cooperating processes

{p,u, pt‘2 , p*3 , Pi4 i, % is the TFM of cu{. Also assume tha t we have

two messages m i and m 2 sent from piy. We must show th a t a t all receiving

processes m 5 will be received before m 2 . Two messages m i and m 2 are sent

from piy of cui, where m] -< m 2 is directed to cuXx¥t', we know tha t m 2 is sent

after m.i with no message loss and that both are tim estam ped at the original

site (M T S mi[1] < M T S m2[\]). If m 2 arrives a t % before m i, then it will

be queued in the L W Q until mi arrives. Because m 1 will be adm itted to %

first, it will be tim estam ped before m 2 . Then % will m ulticast just mi and

then m 2 to the CU and forward both of them up the hierarchy to the higher

TFM. For the copies of the messages going out of M T S mi[1] < M T S m2[1],

which means th a t m \ will be delivered before m 2 to the members of the CU.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because the TFM will deliver m i before m 2 , if the message is to be sent to

a higher CU, then mi will be sent before m 2 . Similarly, message m i will be

tim estam ped at the higher CUs (cu*) before m 2, even if they are received in

a different order. The process indicates that M T S mi[1] < M T S m2[1] a t Tx.

As a result, m i will be delivered before m 2 at all members of cux. We can

easily show tha t at all sites to which both mi and m 2 are directed, m i will

be delivered before m 2-

• Rule 2:

Assume tha t piyecu{ sends message mi to cuj. Assume tha t the process

PjxscUj (after it receives m i) sends m 2 to cut, where cut is also a destination

of m i. To conform to Lam port’s second rule, we must prove tha t mi is

delivered before m 2 at all common destinations. Because m i is received at

Pjx before pjx sends m 2, m a is received and timestamped a t 7) (the TFM of

cuj) before it is sent to pjx. When pjx sends m 2, it is directed to the TFM

of cu,j, where it is timestamped, so that M T S mi[1] < M T S m2[1]. Because

the delivery of the messages respects the tim estam p order and because no

messages are lost, at all members of cuj m \ will be delivered before m 2.

Because cut is a destination for both mi and m 2, a CU (cum) exists that

contains the LCA of cu*, cuj, and cut (e.g., £ m). Also assume th a t the LCA

of both cuj and cu,- is £„ , and £ m > £ n is always true.

Because mi has passed £ „ to get to pjx, mi passes £ n before pjx sends m 2.

This order implies that M T 5mJ l] < M T S m2[l] at £„. As a result, mi will

be sent to the higher level before m 2, which indicates tha t M T S mi[1] <

M T S m2[l] at T-, where Tz is any TFM such tha t Cn < T Z ^ £ m. Similarly,

we can show tha t m 1 will be delivered before m 2 at all higher CUs until

£ m. A s they arrive at £ m, both m x and m2 are multicasted down the tree.

Similarly, upon arrival at %, M T S mx [1] < M T S m2[1], which implies tha t m \

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will be delivered before m 2 a t cut.

If rules 1 and 2 are both satisfied, then the protocol is guaranteed to ensure a

partial order among the messages.

4.5 Conclusion

In this chapter, the Bottom-Up Stamping (BUS) protocol, which is a reliable or­

dered m ulticasting protocol, is presented. The BUS protocol ensures a causal order

among multicasted messages. The protocol depends on forcing the communication

between the processes to follow a certain hierarchical communication structure.

The knowledge of this structure allows the efficient multicasting of messages. This

protocol is useful for many distributed applications that do not require to tal order.

The BUS protocol encounters an initial overhead for building the communica­

tion structure tha t is necessary for the functionality of the protocols. However,

it still achieves a better performance over many existing m ulticasting protocols,

as shown in Chapter 8. The improved performance is due to the smaller stor­

age requirement and the low communication overhead necessary for the protocol.

Also, because the hierarchical structure used can be mapped to the communica­

tion topology th a t the message uses on the internet, no extra protocol messages

are necessary to achieve ordered delivery. Also, the use of the CU hierarchy in

m ulticasting decreases the number of physical messages sent on the internet. The

protocols assume th a t the messages have all the CUs under their LCAs in their

destinations. The problem with this assumption is the fact tha t some CUs under

LCA(m) will receive m; however, these CUs are not targeted by m . This effect

can be diminished if the group memberships are taken into consideration when the

structure is built, as described in [77].

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

B U S-T O : B o tto m -U p S tam ping

P ro to co l (T otal-O rder V ersion)

5.1 Introduction

The BUS-TO protocol is a reliable m ulticast protocol tha t uses the hierarchical

structure to achieve a total order between multicasted messages. The total order

we adopt in our research is the to tal order tha t honors the potential causality

property. As in Chapter 4, we assume a reliable system with no site or link failure

and no loss of messages (Chapter 9 will deal with these issues). We also assume

in this chapter tha t a message m is directed to all processes under L C A (m);

this assumption will be relaxed by the end of the chapter (see C hapter 3 and

the glossary for term definitions). As stated earlier in Chapter 3, all messages

are directed through the TFM processes of the CUs, which direct it to a higher

level TFM process or multicast it to its members. The protocol will forward all

messages sent from a node to its local TFM to be timestamped. If the message

destinations are local to the CU (i.e., it is a local message), then the local TFM

(after the message has been tim estam ped) will m ulticast it to the CU members.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This process allows the TFM to be the unique tim estam per for the CU messages;

therefore, an order between the messages that meets the rules presented in Section

2.3.1 can be achieved. If some of the message destinations reside outside the CU

(i.e.. it is a global message), then the TFM will forward the message to the higher

level TFM . The higher level TFM, upon receipt of the message, will perform the

same procedure until the message reaches its LCA. Once the message reaches its

LCA, it will be m ulticasted down the hierarchy to all its destinations. On its way

up, the message is timestamped by each TFM it passes but is not multicasted by

these TFMs in this phase. The members of the CU order the message with both

the message vector and the node timestamp vector.

Assume th a t a session is running with a communication structure as in Figure

5.1. Suppose th a t a message is sent from p221 to its CU members (p222, P 2 2 3) -

This message will be timestamped and then forwarded to T22 (the TFM of p22i).

which schedules the message for multicasting after it has been timestamped. The

tim estam ping is performed in the order the message is sent from P221; if out-of-order

messages are detected, then the LWQ is used to keep the message. This timestamp

assigns an order for mi among the messages sent from its group members, then

mi is m ulticasted to cu22 with a tim estam p vector of size 2. If mi is originally

directed to cu2, then the message is not multicasted to 7 2 2 ; rather, it is directed

from T22 to T2, where it is timestamped and multicasted to cu2 members with a

tim estam p vector of size 3.

These dilferent timestamps are necessary to ensure a total order for message

delivery. The da ta structure used by the protocol is described in Figure 3.10 and

Section 3.5. The acquisition of a tim estam p from the TFM s while the message

traverses the hierarchy serves mainly to reserve an order slot for the message within

each CU. This reservation scheme ensures the potential causality properties [50].

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CU.22

241
242, 24%

22%221.

2441. 2442.
One-Way path

Figure 5.1: Communication structure for BUS-TO protocol.

5.2 BU S-TO Protocol Description

The ordering that is guaranteed by the BUS-TO protocol meets the requirements

for both total and causal order (see Section 2.3.1). The concept of the BUS-TO

protocol is simple; for local messages within a CU, all messages will be timestamped

at the TFM node. Because each timestamp node is unique, ordering the messages

based on this tim estam p will ensure a total order for the local messages. For global

messages, the tim estam ps received from TFM along the message path from the

sender to the LCA in the way up on the communication hierarchy will be used

to order the messages in the CUs. For CUs that have not contributed in passing

the message to its LCA, the timestamp of the LC A (m) is used along with other

entries in the message tim estam p vector. The CUs that have contributed (through

the TFMs) to move the message from its sender to its LCA, use the entries of

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the message tim estam p vector th a t belongs to the TFMs in the path between the

receiving node and LCA(m).

If the message m t is sent from an activity process pt-, then this message will be

directed toward its LCA, where it will be timestamped and ultim ately multicasted

under its LCA. This message m*, on its way toward the LCA, passes by all TFMs

between piy and LCA(m,k) in the hierarchy. This defines the TW (Two-Way

path) for mjt, because m* traverses this path twice. The first tim e occurs during

the tim estam p collection from T{ to LCA(mfc); the second tim e occurs after m*

is tim estam ped at LCA(rrik) and is multicasted in its LCA’s subtree. On the

contrary, the OW path consists of all TFMs that connect LCA(rrik) and p,-c and

does not belong to {TW path - LCA(rrik)}, such that p,-- is a recipient of mk other

than the sender. If LCA(rrik) belongs to an OW path, then th is path is a type

A path (denoted O W A); otherwise, it is a type B path (denoted O W B). For

example, in Figure 5.1 m t is a message that is multicasted by P2421 and is received

by group cuo- The LCA{m,k) is and the T W of is (72, 724, ^ 242)- An O W A

of mfc is (72, 7 2 2), and (7 2 4 4) is the only O W B path for rrik.

5.3 B U S-T O Protocol Outline

Three types of procedures are available to handle messages: the Sender, the Re­

ceiver. and the TFM procedures. The steps for each of these procedures are de­

scribed below.

5.3.1 Sender

Let mk be the message sent from process p,y of cut with % as its TFM process.

The sender p:!/ performs the steps shown in procedure 5.1 to send message mi-

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SE N D E R (m*) {

1. M T S mk[0] = L T S Piy
2. Increment L T S Pty
3. M T S mk [pty] := L T S Piy
4■ Send nif; to T

}

Procedure 5.1 (Sender)

5.3.2 T FM

Let Tx be any TFM in the message path from its sender p,y to any of its destinations

p]X, and C = LC A{cui,cuj). Let Direct Sender represent the site from which the

message m k was forwarded to Tx. The TFM Tx will perform one of two handling

procedures, depending on whether the message is on its OW path (see procedures

5.2 and 5.3) or its TW path (see procedures 5.4 and 5.5).

• T h e O W p a th p ro c e d u re s

Let O W be the set of processes between LC A (m k) and Tx in the OW path

and T W be the set of processes between Tx and L C A (m k) tha t belong to

the TW path. Note that T W could contain just LC A(m h) if all the paths

between Tx and L C A (m k) belong to the OW path. Because mk is on its

OW path (i.e., it is moving down the communication hierarchy), the TFM

process will execute procedures 5.2 and 5.3.

The L C A (m k) tim estam p, along with the tim estam p copies given to the mes­

sage from the TFM processes between the receiving process and the LCA(mt)

members of T W , will be used by Tx to order the message. The message will

not acquire a tim estam p while it is moving down the hierarchy. However,

it will carry copies of the timestamps from the TFMs tha t are members of

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TFM-OWYm*; {

1. if M U LTIC A STA B LE .O W (m k) ->
2. For each m t € GWQ, i f n o t M U LTICASTABLEJD W (m t) -► exit
3. O th e rw ise
/f . Admit nik to GWQ
5. fi

}

Procedure 5.2 (TFM_(9W)

MULTICASTABLE_C>W(mfc) {

1. if For each Tw in T W , M T S mk [7 ,̂] = F T Srx [7L>] + 1
2. AND
3. For each Tz in O W , M T S mk[Tz]= P T S rx[Tz] —►
4. Multicast message to cux
5. For each Tw in T W , Adjust P T S rx[Tw\
6. return true
7. Otherwise
S. return false
9. fi

}

Procedure 5.3 (MULTICASTABLE_C>VV)

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its O W path as it passes by. This copy is added to the message timestamp

vector (M T S ,nk[]) to ensure its order within the messages tha t are multi­

casted from the TFMs along its OW path. This step is im portant because

some messages that are out of order may exist. For example, if arrives

at any of the CU members of its OW paths ahead of a local message m x

that was sent by any of these members and if m x was timestamped by one

or more of the O W TFM s before passed by, then m* should wait for

m x. This timestamp copy will prevent from being delivered before m x.

Therefore, these entries are needed to ensure the global order between the

global messages and the relative local messages.

• The TW path procedures

In the TW path, the TFM process assumes two roles; one role if the message

is moving down the tree (this role is similar to that outlined in the OW

path and will be called TFM_TW 1) and the second role if the message is

moving up. Let T W be the set of processes located between the sender of

the message and Tx in the TW path and D irect Sender be the child process

of Tx , from which the message is received. The O L D T S variable is used to

ensure th a t messages are not lost as they come from a process to the TFM

(a detailed description of OLDTS functionality is provided in Section 4.3.2).

The role assumed by the TFM process if is moving up the hierarchy is

outlined in procedures 5.4 and 5.5.

5.3.3 R eceiver

Let m* be the message received by the process pjx of cuj w ith Tj as its TFM

process. The receiver pjx executes one of the two handling procedures based on

whether or not the message m* is on its OW path or its TW path. Let O W be the

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TFM.TW2 (mk) {

1. if M U LTIC A STA B LE .TW 2 (mk) -►
2. For each m t G Wait Queues.
S. if not M U LTIC ASTA BLEJTW 2(m t) exit
4 - Otherwise
5. if LC A(m k) = T X
6. Admit message to LWQ
7. Otherwise
8. Admit message to GWQ
9. fi

10. fi

}

Procedure 5.4 (TFM -TW 2)

set of processes located between L C A {m k) and 7} tha t belongs to the OW path

and T W be the set of processes between 7} and L C A (m k) tha t belongs to the TW

path. Note that L C A (m k) could be the only member of T W if 7} belongs to one

of the OW paths.

• The OW path procedures

The OW path module will follow procedures 5.6 and 5.7. Note tha t we do

not test the LW Q because the global messages on its OW path cannot block

a local message. If the message m k does not follow the tim estam p of its LCA

entry in the timestamp vector at the receiver or if any of the corresponding

entries of the TFMs other than its LCA do not m atch, then the message is

added to the GW Q.

• The T W path procedures

The TW path module will follow procedures 5.8 and 5.9.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MULTIC ASTABLE_T W2 (mk) {

1. if For each Tw in T W — D irect Sender, M T S mk[Tw] = P T S tx[Tw] +1
2. A N D
3. M T S rn k[0] = P T Srx[Direct Sender] —*■
Jt . Increment L T S tx

5. M T S mk[Tx] := L T S Tx

6. For each Tz in T W — Direct Sender, Increment P T S tx[Tz]
7. P T S tx [Direct Sender] := M T S mk [Direct Sender]
8. if Tx is not the m essage L C A —*
9. M TS„lk [0] := O L D T S

10. O L D T S := L T S Tx

11. Forward m x up the tree
12. O th e rw ise
13. Multicast to cux
1 4 . fi
15. i f mk £ GWQ —*
16. Remove mk from GWQ
17. fi
18. return true
19. O th e rw ise
20. return false
21. fi

}

P ro c e d u re 5.5 (M U L T IC A ST A B L E _T W 2)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R E C E IV E D W (m k) {

1. if D ELI VERA BLEJDW (m k) ->
2. For each m t G GWQ, if not D E L IV E R A B L E .O W (mt) —► exit
3. Otherwise
/f . Adm it 7nk to GWQ
5. fi

}

Procedure 5.6 (Receiver_(9W)

DELIVERABLE-OW (mk) {

1. i f For each Tw in T W , P T S Pjx[Tw] = M T S mic[Tw] -f 1
2. AND
3. For each 71 in O W , P T S Pjx [71] = M T S mie [71] —*•
4- Admit message to DQ
5. For each Tw G T W , Increment P T S Pjx[Tw)
6. if m k G GWQ —►
7. Remove m k from GWQ
8. fi
9. return true

10. O th e rw ise
11. return false
12. fi

}

Procedure 5.7 (Deliverable.OW)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RECErVE-TW (mk) {

1. if DELI VERA B LE JTW (mk)
2. For each m t G Wait Queues, if not D E L IV E R A B L E -T W (m t)

exit.
0. Otherwise

if rii). is a local message
5. Admit mk to LWQ
6. Otherwise
7. Admit m k to GWQ
8. fi
9. fi

}

Procedure 5.8 (Receive_TW)

DELIVERABLE_TW(mfc) {

1. if For each Tz in T W ,M T S mk[T.} = P T S pJ T z] + 1
2. Admit message to DQ
•3. For each Tz in T W , Adjust P T S Pjx[Tz]
4. if mk G GWQ
5. OR
6. ni-k G LWQ —>
7. Remove m,k from Wait Queue
8. fi
9. return true

10. Otherwise
11. return false
1 2 . fi

}

Procedure 5.9 (DELIVERABLE-TW)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 BUS-TO Protocol Correctness

We must show that the message order will be maintained in accordance with the

criteria (rules 1 and 2) introduced in Section 2.3.1. Remember tha t we assume a

reliable environment with no loss of messages or site failure.

• Rule 1:

A C’U (cu,-) has a set of cooperating processes { p t l » P t 2 i P i 3 ; P i 4 ? ■■ ■■ ■P i n } - and

% is the TFM of cu,-. Assume tha t we have two messages m i and m 2 sent

from piy. We must show th a t ra , will be received before m 2 at all receiving

processes.

Two messages m j and m 2 are sent from piy of cu,-, where m \ -< m 2 is directed

to cuXxitt. Assume tha t m 2 is delivered at one of the cooperating processes

Pxix#,zC before m \. Because m 2 is delivered before m 1? this implies that

V :rxg-rw M T S m2(x) < M T S mi{x) (T W is the set of TFM s in the path

between px[and L C A (m 2) th a t belongs to the TW path).

Because m 2 and m \ are sent from piy, this implies th a t M T 5m, \piy] ■<

M T 5m2[p,y]. If we assume tha t m 2 arrives at T before m i and is adm itted for

timestamping, then M T S m2(Ti) -< M T S mi(T)', however, this is not the case.

Because the message delivery is made in accordance with the tim estam p or­

der and because a site will delay the messages until those with a smaller

tim estam p are delivered, even if m 2 arrives before m i it will be adm itted

to the wait queues until m i arrives and is passed to the DQ. As a result,

M T 5m, (Ti) < M T S m2(Ti) at %. Similarly, we can show th a t a t any Tx,

Tx < lo w er(L C A (m i),L C A (m 2)).>M T S m.i [Tx] -< M T S m2[Tx], which con­

tradicts our assumption and shows tha t m 2 will not be delivered before m x.

This proves the first potential causality case of Lamport [50] for the message

delivery.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Rule 2:

We must also show tha t the protocol follows th e second rule of Lamport [50],

which is introduced in Section 3.1.

Assume that pjx sends m i to cu,-, and m i is delivered to p,-y. Then piy sends

a message m 2 to cu,-. In accordance with Lam port’s potential causality, m i

must be delivered before m 2 at all processes where mi and m 2 are both to

be delivered.

Assume tha t piyecui sends message mi to cuj. After receiving m i, pjxscuj

sends m 2 to cu(, which is also a destination of m i. According to Lamport,

m-i should be delivered before m 2. The relationship of cuj to cut can be one

of four cases in our hierarchy: cut = cuj, cuj is a descendant of cut, cu£ is a

descendant of cuj, or cut and cuj are in a brotherhood relation. In order to

show adherence to Lam port’s rule 2, we m ust show for the first three cases

that the order condition will be honored.

1. cut = CUj.

Because m i is delivered at pjy before pjy sends m 2, this implies tha t mi

has already been tim estam ped a t Tj. W hen m 2 arrives at Tj , it will be

tim estam ped. Because Tj increases its tim estam p with each message,

M T S mi (Tj) -< M T S m2(Tj). At any of the cooperating processes of CUj,

m 2 will be delivered after mi because of the tim estam p order.

2. cuj is a descendant of cut.

(a) If m i passes cuj before it passes cut, then piy is a descendant of cuj\

m i is tim estam ped a t cu,- and moves on for its higher tim estam p

at cu£. When it arrives a t L C A (m \), m \ will be multicasted down

the tree. In other words, cut will multicast m i to its members and

forward it down to cuj. After m i is delivered at pjx, pjx will send

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m 2, and m i will move toward its LCA as it gains its timestamps. In

addition, \/Tz : pjx -< Tz -< low er(LC A (m i), L C A (m 2)), which m 2

will pass and which will cooperate in constructing the m i timestamp

vector. So, V77 : pjx -< Tz -< low er(LC A(rni), L C A (m 2)), and

M T S mi [T:] -< M T S m2[Tz], In accordance with rule 1, we can show

that m i is delivered before m 2.

(b) If mi passes cut before cuj.

In this case, a tim estam p is given to m i from a higher level TFM;

this tim estam p will be unique to the TFM . Upon its arrival at pjx,

mi will be delivered, and then m 2 will be sent. Clearly, m 2 will be

subm itted after m i a t both cuj and cut because of its higher value

tim estam p assignment at the TFMs on its way toward its LCA.

Because m i has already passed these processes on its OW path, it

has received a copy of the timestamp entry of each TFM (P T St-[7;],

where Tz 6 O W path o f m i). This implies th a t m 2 tim estam p val­

ues a t these TFM s (common TFMs in the mi OW path and m2

TW path) will be larger. As a result, M T S mi[Tz] -< M T S m2[Tz],

where Tz are the common TFMs in both the mi OW path and the

m 2 TW path.

3. If cut is a descendant of cuj.

This case is similar to the previous one.

4. cut and cuj are in a brotherhood relation.

The prim ary tim estam p th a t affects the order is the tim estam p given by

the L C A (m i) . Let 7)it = L C A C U (c u j ,c u t). Because L C A (m i) should

be higher or equal to the smaller CU that contains both cuj and cut

(Tj.t), m-i is directed to both of them. So m i will be tim estam ped at

(7jtt) and then will proceed to L C A (m \) (if higher than 7}it).

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After 7/i] arrives at cuj, the process pjx will forward m 2 to its LCA.

Because m 2 targets both cuj and cu.t. it will stop a t least at

is the first common parent process. This implies tha t M T S mi [7};j] -<

M T S m2[Tj,t]. Because the timestamp given to m 2 by TJyt is part of the

message vector, M T S m2[Tj?t] -< P T S pt\Tj,t}-

For those TFMs in the TW path of m2, which begins at Tj and extends

through lower (LC A(m.i), LC A(m-2)), mi has already visited the com­

mon TFM s in this path. This implies that fo r all Tz where pjx -< Tz -<

lower (LC A(m i),LC'A(m 2)), M T S mi[Tz] -< M T S m2[T.], which forces

m 2 to wait until mi is delivered. Therefore, m i is delivered before m2.

5.5 TDS: Top-Down Stam ping P rotocol

The Top-Do wn Stamping (TDS) Protocol achieves a reliable multicasting delivery

of messages. In addition to honoring Lamport rules, the TDS protocol achieves a

total order between multicasted messages. In this protocol, the message does not

gain the tim estam p on its way up as in the BUS-TO protocol; the timestamp is

gained in the message path down the hierarchical structure. A message m* sent

from any process is timestamped a t the process and then sent directly to LCA(mfc).

The message upon its arrival to LCA(m*) will be checked for possible delivery (i.e.,

it is not violating any ordering criteria) and either tim estam ped then multicasted

down the hierarchy or kept in one of the queues until it is ready for timestamping.

If the message reaches another TFM , then a similar procedure to the one outlined

above is followed. Before multicasting the message to its CU members, each TFM

will add an entry to the message tim estam p vector. If the message is received by a

cooperating process, then its timestamp vector is checked. If the vector does not

identify a violation of any ordering criteria, then the message is deliverable and

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will be adm itted to the delivery queue D Q ; otherwise, the message is added to one

of the wait queues.

Several lists are added to allow the protocol to work correctly and efficiently. A

list, the Holding L ist (H L s), is added at each node 5 . It contains all the message

IDs th a t have been sent out of a node S but haven’t reached S on their way down.

The H L s is added a t each sender S in the hierarchy to ensure the enforcement of

the order between messages sent from the same node. Another list, Received L ist

(RL-r), is added at each TFM (T), which contains the messages received by this

TFM.

By directing the message immediately to its LCA, we saved the tim e the mes­

sage needs to reach the LCA by passing through all intermediate TFM processes in

the hierarchical structure. Also, message m* does not block any local message m x

where Sender (nik) -< L C A (m x) LC A (m k), unless Sender(m k) = Sender(m x).

The overhead for using this protocol can be directed between two main factors:

the space overhead needed at each cooperating process to keep H L s and the one

required at each TFM to keep R L t • This space is finite because messages are re­

moved from lists based on certain criteria. The second factor is presented in H L mk

that accompanies the message. The protocol during the message path decreases

the size of the holding list at each TFM by marking the delivered entries in the

list. A decrease in the size of H L mk helps to lower the number of comparisons per­

formed at lower level TFMs. Another overhead th a t is encountered is the need for

the cooperating processes to know the communication structure in order to direct

the messages to the required LCAs. In addition, for correct protocol functionality

the TFMs must be able to identify the relationships between the different LCAs.

This knowledge is necessary in comparing the H L mk entries, which requires the

delivery of the messages contained in H Lmk tha t have an LCA in a higher level

than L C A (m k) before m^.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Conclusion

In this chapter, the Bottom-Up Stamping-Total Order (BUS-TO) protocol, which

is a reliable ordered m ulticasting protocol, is presented. The development of this

protocol was fueled by the need for multicasting protocols th a t can support the

existence of inter-group and intra-group messages in an interconnected LAN envi­

ronment. The protocol depends on forcing the communication between the pro­

cesses to follow a certain hierarchical communication structure. The knowledge

of this structure allows efficient multicasting for local messages. The BUS-TO

protocol ensures a total order among multicasted messages. An initial overhead is

encountered to build the communication structure necessary to support the pro­

tocol. However, the protocol performs better than many existing multicasting

protocols, as will be shown in Chapter 8. This superior performance is due to

smaller storage requirements and a reduced communication overhead. Also, be­

cause the hierarchical structure can be mapped to the communication topology

used by the message, therefore, no ex tra protocol messages are required to achieve

ordered delivery. Also, the use of the CU hierarchy in m ulticasting decreases the

number of physical messages sent on the internet; the protocol assumes th a t the

messages have all CUs under their LCAs in their destinations. The problem with

this assumption is tha t some CUs under L C A (m) will receive m although they

are not targeted by m. This effect can be diminished if the group memberships

are taken into consideration when the CU structure is built. Furtherm ore, the

introduction of additional da ta structures can eliminate the need to make this

assumption.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 6

M LM O : M u lti-L A N M ulti-O rder

P ro to co l

6.1 Introduction

As the demand for economic and effective sharing of resources (data and otherwise)

grows, a new environment characterized by interconnected LANs th a t belong to

different autonomous entities has emerged. Autonomy is manifested, among other

things, by different LANs tha t adopt possibly different ordering criteria for m ulti­

casting.

Numerous ordered reliable atomic multicasting protocols have been proposed

[19, 12, 63, 56]. The majority of these protocols adopt the assumption of a single

LAN tha t has multicasting capabilities [19, 63]. Unfortunately, almost all of the

proposed protocols enforce only one ordering criterion system-wide. Birman and

Joseph [12] have proposed a multicasting protocol tha t can handle multiple mes­

sage stream s, each associated with a single ordering criterion. Messages from the

same stream are ordered for delivery according to this criterion, independent of the

recipient. In effect, this deprives the recipients of their autonomy in determining

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their own criteria for ordering delivery of incoming messages. Conclusively, nei­

ther the enforcement of a single ordering criterion nor the elimination of recipient

control over the ordering criterion is acceptable in this heterogeneous setting.

This chapter proposes the Multi-LAN Multi-Order protocol (MLMO) designed

to support ordered atomic reliable multicasting across interconnected LANs. Our

protocol insists on a hierarchical structure in the communication topology. This

structure can be one tha t reflects the actual physical connections, one tha t is

inferred by studying the group interactions, or one that is simply imposed over

the message flow to honor the protocol requirements. The protocol uses the same

communication model outlined in Chapter 3, with the communication hierarchy

shown in Figure 6.1. Members of one group can be individual processes and/or

other groups. The protocol does not restrict the members of a group to the same

LAN. Additionally, the protocol allows each group to determ ine a causal or total

ordering criterion. Therefore, our multicasting environment contains two types of

groups: the causal groups that enforce a causal order and the total groups that

enforces a total order. Notice th a t our protocol can circulate messages that have

some destinations in total groups and other addressees in causal groups yet still

observe the particular ordering criterion for each addressee’s group. Note tha t a

given group's ordering criterion pertains to members that are individual processes

and not members th a t are groups, because the later would, by definition, have

their own criteria.

The MLMO assumes no sequenced delivery service from the underlying com­

munication network. This assumption is realistic because different routes can be

used by messages sent from the same sender to the same recipient. Our failure

model for handling network partitions, message loss, and crash failures is presented

in Chapter 9.

The remainder of the chapter is organized as follows. Section 6.2 presents the

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU-TFM ecu CCU-TFM
cu

: ecu
cu.

TCU,
242j

221 223

244L

2422 ecu

* • • • • O ne-W ay path
Two-Way path

Figure (5.1: Communication structure for MLMO that shows both CCU and TCU.

MLMO protocol and explains how the protocol handles the multicasting of differ­

ent messages. Several problems that result from the accommodation of multiple

ordering criteria are also discussed in this section. The protocol is outlined in

Section 6.3. Finally, conclusion are presented in Section 6.5.

6.2 The MLMO P rotocol

Two types of communication units can be identified under the MLMO protocol:

a causal-order communication unit (CCU) and a total-order communication unit

(TCU). In a CCU, a causal order is enforced; in a TCU, a total order is enforced.

Note tha t this total order is common to all TCUs in our communication structure.

The MLMO is realized as two separate yet interacting protocols, one for han­

dling the CCUs and the other for handling the TCUs. The interaction between

the two protocols is driven by the timestamping vectors assigned by the TFMs. A

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCU runs a modified version of the BUS protocol (see Chapter 4 and [78, 80, 79]).

The BUS protocol forwards a message m to the TFM of the sender, where it is

tim estam ped and multicasted to members of the sender’s CU. The message m is

then forwarded to the parent of its TFM until the LC A (m) has been reached. As

proven in Section 4.4, this protocol guarantees a causal order among the multi­

casted messages. A TCU runs a modified version of the BUS-TO protocol (see

Chapter 5), which enforces a total order among multicasted messages.

The m ajor challenge tha t confronts the MLMO is not only to enforce different or­

dering criteria for message delivery but to ensure tha t no conflicts arise as a result

of enforcing such different orders. Specifically, because ordering criteria may not

be totally independent, the enforcement of one can potentially violate another.

For example, total-order enforcement for delivering messages mi and m 2 , which

both originate from process pf, should not violate their inherent causal relationship

(order). Hence, the objectives of our protocol can be stated as:

1. All messages interrelated by a causal order are guaranteed to be delivered in

their causal order to all recipients (regardless of whether they are members

of CCUs or TCUs). This rule will be referred to as the “causal order” rule.

2. All messages not, interrelated by a causal order are guaranteed to be delivered

in identical order to all recipients that are members of TCUs. This rule will

be referred to as the “total order” rule.

A detailed description of the MLMO protocol is given below.

6.2.1 P rotoco l D escrip tion

Assume that m j is a message sent from piy of cu,- (with as its TFM process) and

th a t one of the recipients is pjX of cuj (with Tj as its TFM process). The message

m k is tim estam ped at piy and then forwarded to T on its way toward L C A {m k).

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The message may encounter two types of TFMs: a TCU type (TCU-TFM) or

a CCU type (C’CU-TFM). These two types require different steps to achieve the

correct order. Message m t is directed up the hierarchy toward its LCA, where

it is tim estam ped and ultim ately multicasted in the subtree of its LCA. On its

way toward its LCA, nik passes by all TFMs between piy and LCA(rrik) in the

hierarchy. This defines the TW path for m* because m t traverses this path twice.

The first tim e occurs during the timestamp collection from % up the hierarchy

to L C A{m k). The second tim e occurs after nik is com m itted for delivery and is

m ulticasted in its LC A s subtree. On the other hand, the OW path is one that

contains all TFMs th a t connect L C A (m k) and p,-- and does not belong to {TW

path - LCA(rrik)}, such tha t piz is a recipient of m k other than the sender. Two

types of paths are encountered here: O W A and O W B (readers are referred to

Chapter 5 for the definitions of these paths). For example, in Figure 6.1 mk is a

message multicasted by P2421 and received by group cu.2 , T is the LCA(mfc), TW

of mk is (To, T24 , T242). and (7 2 , T2 2) is an O W A of mk; (Tz4 4) is the only O W B

path for m-k-

As it passes by either CCU or TCU on the way to its LCA, is checked for

the correct tim estam p. If it is out of tim estam p order, then m*, is kept in OOQ;

otherwise, the message is timestamped. If is a t Tx such tha t cux is a CCU,

then a copy of m* is m ulticasted to cux. If Tx is not the L C A (m k) , then is sent

to the next highest TFM.

As it arrives a t LCA(mfc), mk is assigned a tim estam p and multicasted down

the hierarchy. The O W A paths will receive the message for the first time. In these

paths, the LCA tim estam p will be the main ordering tim estam p. Message mk is

delivered a t each TFM , where it is tim estam ped and m ulticasted to the CU m em­

bers. As a message traverses down the hierarchy on O W A paths, the TFM s will

execute either CCU_TFM(m,t) or TCU_TFM_DN_OW(mi), depending on whether

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the TFM is CCU-TFM or a TCU-TFM , respectively (see the MLMO protocol in

Section 6.3). Upon the arrival of mk at any of the recipient processes pjx , pjx

will execute either CCU_RECEIVE(m*) or TCU_RECEIVE_OW(mfc)? depending

again on the type of Tx.

Meanwhile, LCA(mjt) will forward m./. down its TW path for delivery to all

processes under this path. Some recipients are found along the TW path (P2422

in Figure 6.1), while others are reachable from the TW path along an O W B

path (p'244'2 hi Figure 6 .1). For those TFMs that are in O W B paths, either pro­

cedure (X 'lL T FM (m t) or T C U _T F M _D N _ 0 W (m /.) is executed. Upon arrival

at any of the recipient processes pjx along O W B paths, pjx will execute either

CCU_RECEIVE(mfc) or TCU_RECEIVE_OW(mjt). Alternatively, for those TCU-

TFM s that are members of the TW path, procedure TCU_TFM_DN_TW(mfc)

will be executed. Note th a t the tim estam p comparison here is based on the

TFM tim estam ps given to the message by all members of A T , where A T —

{Tx : LC A(m k) > T X > recipient T F M } . For the CCU-TFMs tha t are mem­

bers of the TW path, the CCU-TFM(m*) will be executed. Similarly, upon arrival

at any of the recipient processes pjx along the TW path, pjx will execute either

CCU_RECEIVE(mfc) or TCU_RECEIVE_TW(m*).

Note tha t the MLMO protocol meets the requirements of both the causal-order

rule and the total-order rule. The total-order rule is satisfied because the delivery

order of messages to all recipients tha t belong to TCUs is identical. On the other

hand, the causal-order rule is satisfied because any CCU delivers messages to its

members in accordance with causal order. Messages sent by a CCU or a TCU can

be received by processes in CCUs or TCUs.

The basic MLMO protocol described above allows message exchange between

the CCUs and the TCUs. This interaction allows a message to be delivered based

on the order enforced by its recipient’s CU. The order of the messages for all

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recipients that belong to TCUs is the same. However, the CCU tha t delivers the

messages enforces a causal order. According to the basic MLMO protocol presented

above, the TCU-TFM in the TW path, when visited for the first tim e by m*., will

tim estam p the message and forward it to its LCA. If any CCU exists under this

TCU-TFM . the message will not be delivered until it gains its LCA timestamp.

Obviously, the CCU does not need the LCA timestamp to enforce a causal order;

hence, blocking the message by the TCU results in a delay of message delivery

tha t would have not occurred if all CUs in a communication structure were CCUs.

In order to eliminate this blocking effect, a bypass approach has been introduced

to the protocol. This approach is described in the following subsections.

6.2.2 M essage B ypass Problem s

To eliminate the blocking effects of the TCU-TFM, the bypass approach is intro­

duced to the MLMO protocol. The main idea behind this approach is to allow the

message to bypass the TCU-TFM and go to any CCU under this TCU-TFM in the

O W B path. The bypass approach will speed up the delivery of the messages to the

CCUs in the O W B paths. Assume that a message m*. is sent from piy along the

TW path toward its LCA and tha t it reaches a TCU-TFM ('Tx). After it is times­

tamped at % (where Tx is any TFM in TW and Tx 7 ̂ LCA(rrik)) and is forwarded

up the hierarchy, a copy of m* is multicasted in the O W B paths tha t contain any

CCU under Tx . This excludes the paths from which originated. When mk

reaches Ty (a TFM under Tx in one of the O W B paths), mjt will be scheduled for

timestamping. The message is not carrying an LCA tim estam p; therefore, the

message can only be delivered to CUy members if CUy is a CCU because causal

order does not require the LCA timestamp. If CUy is a TCU, then Ty will not

deliver mk to its processes and will forward m* along the paths tha t contain any

CCU under Ty, after mk is timestamped. This process essentially eliminates the

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blocking of messages from delivery to the CCUs because of the existence of a TCU

between the receiving processes and the TW path members. Because the CCU is

in a heterogeneous environment (one th a t contains both CCUs and TCUs), further

steps m ust be taken to ensure that this causal order does not contradict any total

order assumed by the TCUs.

After m<; reaches its LCA, it is forwarded along its TW path for delivery. All

processes that are not in O W A paths (processes tha t are either directly managed

by the TFM in TW or O W B) would have already received the message; therefore,

in addition to those CUs in the O W A paths, only the TCUs in the TW path and

the O W B paths other than LCA(m.k) will be targeted by the message on its way

down. Message m/.., on its way down, will pass by some of the TCU-TFM s under

TW for the second time. It could have been tim estam ped by these TCU-TFMs

when the message bypassed them for delivery to the CCU-TFMs before the LCA

tim estam p was gained. The message, from the tim e it is tim estam ped by these

TCUs until it is reflected to the P T S r w , is called a hidden m essage. Message mjt

must gain the same tim estam p assigned to the copy of directed through this

path earlier. This problem is known as the timestamp incarnation problem and

will be discussed later. In this path, the CCU-TFM m ust disregard the copy of the

message directed down because the message was already delivered to the CCUs.

These CCUs simply forward the copied messages down the hierarchy.

Although the TCU-TFM obtains messages before they receive the LCA times­

tam p, these messages are unable to be delivered by any TCU-TFM until their

LCA tim estam p is received. The TCU-TFM will bypass these messages down the

hierarchy and will tim estam p them to reserve an order. These messages, however,

will not be delivered at any TCU-TFM and will not change any of the tim estam p

vectors kept at the TCU-TFMs until the version th a t has the LCA tim estam p is

received. The PTS%.[] is not updated because an update with m* information

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implies tha t has been delivered to Tx.

The bypass approach affects the delivery of the message in the TCUs because

blocking can affect messages whose LCAs reside under the TW path of m x. Be­

cause these messages would have been delivered without waiting for the L C A (m x)

tim estam p, the addition of the bypass to the protocol blocks it. Therefore, the

bypass approach may cause a delay in message delivery. This delay is eminent if

the frequency of similar cases is high. In addition, the blocking effect depends on

how the CCUs and TCUs are distributed in the structure, the frequency of global

messages, and their LCA positions in the structure.

6.2.3 T im estam p Gap A djustm ent

A problem occurs when m*, is traveling along its A paths after it receives its

LCA tim estam p (see Figure 6.1). To better visualize this problem, assume tha t

a message m y is sent from smy € Amk and tha t L C A (m y) > LCA(m,k). Also

assume tha t m y is on its way toward L C A (m y), with traveling along its A

path. Assume tha t Tx is a TCU-TFM in the path from sm9 to LCA(rrik) and

tha t both JTik and m y will meet a t Tx (m y gains a smaller tim estam p than m t).

W ith the normal tim estam p delivery order, m y should be delivered a t Tx before

mfc because M T S mk[Tx] > M T S my[Tx]. Because m y has not yet gained its LCA

tim estam p, m* will be adm itted to one of the waiting queues until the copy of

m y tha t carries its LCA tim estam p is delivered; m y will keep going toward its

LCA and will pass the TFM s tha t rrik has already passed on its way down. This

means tha t for each 7^, where Tx < Tz < LCA(rrik), M T Smk[Tz] < M T S my[Tz].

A tim estam p ordering conflict occurs here between the messages going down their

A paths and the messages going up their TW paths. To overcome this problem,

the protocol does not allow the messages tha t are moving along their A paths to

change the tim estam p vector (PTS[]) a t the TCU-TFM s. The messages will be

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timestamped at each TFM along the A paths. The delivery a t the CCU-TFM

will be handled by comparing the message and process tim estam p vectors (MTS

and PTS). The delivery a t the TCU-TFMs is performed with the message LCA

timestamp and a message list (C LC A M mk) that is carried with th e message. The

C L C A M mk contains the message identifiers that should have been delivered before

the message to the processes along this path (this list will be described in Section

6.2.5). Because the message will not update the TCU-TFM tim estam p vector

while it is going down its A paths, a problem is created in the delivery of the

messages that are moving down the hierarchy in their TW and B paths. These

messages will be blocked because they appear to be missing messages. These

missing messages may not be actually missing; however, they are viewed as such

because the messages in their A paths do not update the PTS vectors. This results

in a timestamp gap problem a t these TCU-TFMs. To solve this problem, a new

structure, the Timestamp Updater List (TSUL), is added a t each TCU-TFM . Any

message on its way down the hierarchy, when it passes any TFM s tha t belong to

its A paths, is assigned a tim estam p and is not allowed to change the tim estam p

vector of the TCU-TFM . The message, after it has been assigned a tim estam p,

adds an entry to the TSUL. This entry contains the tim estam p assigned to the

message by the TFM . Any message on its way down its TW path will check the

list and will group all messages tha t precede it in tim estam p order. When the

message is delivered at any of the lower sites, the P T S rx[] will be modified with

the entries gathered from the TCU-TFMs of the TW path.

6.2.4 T im estam p Incarnation

One of the problems encountered because of the bypass scheme occurs when

gains its LCA tim estam p and is directed down the hierarchy to be delivered to its

TCUs along O W B paths. Assume tha t Tx is a TCU in an O W B path. Because of

110

with permission of the copyright owner. Further reproduction prohibited without permission.

the bypass scheme, m k has been sent during the tim estam p collection phase to Tx

and, thus, has obtained a timestamp M T S mk Px] = to upon arrival. In accordance

with MLMO, will eventually arrive for the second tim e at Tx after it gains

its LCA tim estam p and will obtain a new tim estam p M T Smk\Tx\ = t2 such that

to > to- If m p has arrived at % and obtained a tim estam p M T S mii[Tx\ = where

t0 < tj < t2. then a timestamp conflict results. According to to, ttip must be

delivered a fte r m k: according to t2, m p must be delivered before rrik.

To solve this problem, MLMO prescribes tha t rrik should never obtain the t 2

timestamp and that the first copy of rrik should be incarnated by its second copy.

In other words, upon the second arrival of rrik, MLMO sets M T S mis[Tx] = to.

One im portant problem tha t arises during message delivery along O W A paths

is called timestamp ordering conflict. The problem occurs wiien one message mi

tha t is traversing its TW path meets another message mk th a t is traversing one

of its O W A paths a t a TCU-TFM (Tx). Assume th a t LCA(m;) > LCA(m k) and

M T S mk[Tx] > M T S mt[Tx]. For each Tz, where Tx < T Z < L C A (m k), M T S mk[T.] <

M T S m,[T~]. A conflict arises in imposing a total order between m k and mj.

To achieve the tim estam p reassignment or incarnation, each TCU-TFM that

bypassed the message and timestamped it before the LCA timestamp is gained

must identify the message after it receives its LCA tim estam p. An additional

list, called the Timestamp Wait List (TW L), is needed to handle these messages.

The list contains those messages that are tim estam ped by the TCU-TFM before

they gain their LCA timestamps. When a message arrives at the TFM with its

LCA tim estam p, it is matched against the TWL. If the message is on the list,

the tim estam p is added to the message tim estam p vector and multicasted to the

TCU members. After the message is matched and its tim estam p reassigned, the

message entry is removed from the TWL.

The same tim estam p must be reassigned to the message while it passes by B

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TFM s because a new timestamp assignment would result in a wrong message order

between CUs. The TWL is not an infinite list because this list is the first tim e

the message is directed down the hierarchy from the CCU delivery phase (i.e., it

bypasses the TCUs). The message is removed from the list the second tim e the

message is directed through this path for TCU delivery. Because the message must

come back for TCU delivery, it will be removed from the TWL. The size of the

TWL depends on the time the message takes to come back to the TFM after it is

added to the list. This time depends on the number of levels the TFM is located

from the message LCA and the frequency of messages sent that have the TFM as

part of the B set.

6.2.5 C om m itted M essage List

One problem, first described in Section 6.2.3, is the timestamp conflict between

messages on an A path and messages on a TW B path. To resolve this conflict,

we presented the possibility of using the LCA tim estam p and the CLCAM list to

deliver the message. The CLCAM list identifies the other messages th a t should

be delivered before the current message. Assume tha t , after it arrives at

LCA{nik), is assigned a timestamp and then is multicasted down the hierarchy.

The OW paths immediately under L C A (m k) (paths marked with A in Figure 6.1)

will receive the message for the first time. For m*,, the LCA tim estam p will be the

main ordering timestamp for message delivery on these paths. The message, on its

way down the A paths, will not modify the process timestamp vector {P T S jx[])

because of the timestamp gap problem discussed in Section 6.2.3. Each TFM

keeps two lists, the LCAM and the CLCAM. The LCAM, which is kept a t each

TFM , contains all messages for which the particular TFM acted as their LCA.

The CLCAM contains the part of these messages tha t have been com m itted by

the LCA. The message, when tim estam ped at its LCA, will be adm itted to the

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S E N D E R (m fc;{

1. M T S n k[0] = L T S Pty
2. Increment L T S Pty
3. M T S mk \piy] = L T SPty
4 . Send message to T

}

Procedure 6.1 (Sender)

LCAM and will be m ulticasted down the hierarchy. The LCAM is a temporary

list where messages reside until they are com mitted for delivery. The messages

in LC A Mr, are waiting for messages tha t received a smaller tim estam p from 7}

and have not passed by Tj with their LCA tim estam p. The arrival of this message

will trigger a relocation of messages from LCAM to CLCAM. The CLCAM is the

list carried with any message going down its A path and will be checked at any

TCU-TFM in its OW path. The messages in CLCAM should be delivered before

nik- In the case of missing messages, is adm itted to the GWQ wait for the

missing messages.

6.3 P rotocol O utline

Let nik be a message th a t is sent from piy of ctz,- with T as its TFM and is received

by the process pjx of cuj\ Tj is the TFM process. Three types of processes handle

the messages: the Sender , the Receiver, and the T F M procedures.

6.3.1 Sender

The sender piy performs the steps shown in procedure 6.1 to send .

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCU.RECEIVE (nik) {

3.

4 .
5.
6.
7.
8.
9.

1. if CCU.D ELIVERABLE(m k)
For each m t £ LWQ,

if not CCU-DELIVERABLE(m t) exit
Otherwise

if MTS™, [2}] > P T S rJ T i] —
Adm it mk to LWQ

Otherwise
Discard rrik

fi
10. fi

}

Procedure 6.2 (CC U .R ECEIV E)

6.3.2 R eceiver

The receiver processes will run one of two procedures, which depends on whether

the receiver process is a member of a TCU or a CCU. If the receiver process

Pjx is a member of a CCU, then the CCUJRECEIVE and CCU-DELIVERABLE

procedures will be executed. If pjx is a member of a TCU, then the proce­

dures to be executed will vary based on the position of pjx in relation to the

TW and the OW paths. If pjx is a member of the TW path, then procedures

TCU_RECEIVE_TW and TCU_DELIVERABLE_TW will be executed. If, on the

other hand, pjx is a member of the OW path, then procedures TCU_RECEIVE_OW

and TCU_DELIVERABLE_OW will be executed.

• CCU protocol

The pjx will execute the steps outlined in procedures 6.2 and 6.3. Step 4

of procedure 6.2 is added to eliminate the multicasting of the message by a

CCU-TFM on its way down the tree for the second time. This step is not

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCUJDELIVERABLE (mk) {

1. if (M T S mk[Tj] = P T S .J T j] + I) -
2. Increment P T S P}X[Tj]
3. Admit message to DQ
4. i f 7Tifc € LW Q —►
5. Remove nik from LWQ
6. fi
7. return true
8. O th e rw ise
9. return false

10. fi

}

Procedure 6.3 (CCU_DELIVERABLE)

necessary if the TFM filters the messages traveling along the hierarchy in a

TW path and sends the messages only in paths tha t contain a TCU. This

step eliminates the multicasting of the messages in the CCUs along the TW

path hierarchy. To achieve this filtering task, the TFM m ust be aware of the

structure of the hierarchy beneath it, which requires extra overhead to update

the view of the hierarchy at each TFM but prevents the extra multicasted

messages in the internet. Another approach, which is a compromise between

the two previous processes, is to direct these messages to the TFM s under the

TW hierarchy and let the CCU-TFM discard these messages. This approach

eliminates the m ulticasting of these messages to the CCU.

• T C U p ro to c o l

As mentioned before, one of two different handling procedures must be fol­

lowed, depending on whether or not the message is on its OW paths or TW

path. Let O W be the set of processes located between LCA(mfc) and Tj that

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU_RECEIVE_OW (mk) {

1. if nib already passed by LCA{nik) —*•

2. if TCU-DELI VERA B L E -0 W (m k) -►

S. For each m t 6 GWQ.

4. if not TCU -D ELIVERABLE-O W (m t) -*• exit

5. Otherwise

6. Adm it mk to GWQ

7. fi

8. Otherwise

9. Discard mk

10. fi

}

Procedure 6.4 (TCU_RECEIVE_e>W)

belongs to the OW path and T W be the set of processes between Tj and

LCA(mfc) th a t belongs to the TW path. Note tha t T W can be em pty if the

entire path between Tj and LCA belongs to the OW path.

- The OW path m odule.

The OW path module follows the steps outlined in procedures 6.4 and

6.5. Step 1 in procedure 6.4 is added to eliminate the messages tha t have

not gained their LCA timestamp from delivery. This happens because

the messages are multicasted down the hierarchy to be delivered to

the CCU (bypass approach). This step can be eliminated if the TCU-

TFM s filter these messages and do not forward them to the TCU group

members. This modification will be discussed when we present the TFM

procedure in regard to its impact on other parts of the CCU procedure.

Note here tha t we do not test the L W Q for possible message delivery

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU_DELIVERABLE_OW (mk) {

1. if For each Tw in T W , P T S PJ T W] = M T S mk[Tz] + 1

2. A N D

3. For each m e L C A M mk, P T SP]X[LC A(m)] > CLCAM [m]

4- Admit message to DQ

5. For each Tw € T W , Increment P T S Pjx[Tw]

6. if m k e G W Q ^

7. Remove mk from GWQ

8. fi

9. return true

10. O th e rw ise

11. return false

12. fi

}

Procedure 6.5 (TCUJDELIVERABLE.OW)

because the global message in its OW path cannot block a local message.

- The Two-W ay path m odule.

The TCU_RECEIVE_TW follows the same procedure as the

TCU_RECEIVE_OW presented before with one modification:

TCU_DELIVERABLE_TW is used instead of TCU.DELIVERABLE.OW .

Procedure 6.6 is designed to handle the tim estam p gap for the version

of MLMO that implements the bypass approach. Procedure

TCU-DELIVERABLE.OW provides the necessary steps to handle the

TSUL presented in Section 6.2.3 to solve the tim estam p gap problem.

Any message on its way down the hierarchy in the OW path is tiem-

stam ped and is not allowed to change the tim estam p vector of the

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T C U _D E L IV E R A B L E _ T W (m.k) {

1. i f For each Tz in T W , M T S mk[Tz] - P T S P}X[TZ] + 1 ->

2. Admit message to DQ

S. For each Tz in T W , Increment P T S Pjx[Tz]

Update P T S P]X fro m TSUL„lk

5. i f m*.. € GWQ ornik € LWQ —►

6. Remove mk from Wait Queue

7. fi

8. return true

9. O th e rw ise

10. return false

1 1 . fi

}

P ro c e d u re 6.6 (T C U _D E L IV E R A B L E _T W)

TCU-TFM. After the message is tim estam ped, an entry is added to

the TSUL. This entry contains the tim estam p assigned to the message

by the TFM . Any message on its way down the TW path will check the

list and from it will group all messages tha t have a smaller timestamp.

When the message is delivered at any of the lower sites, the P T S rx [Ty\

will be modified with this list (see step 4 in procedure 6.6), where Ty is

the site tha t has given the tiemstamp.

6.3.3 T F M Procedure

The TFM processes will run one of two procedures, depending on whether the

TFM process is a member of a TCU or a CCU. If the TFM process Tx is a mem­

ber of a CCU, then the CCU.TFM and CCU.MULTICASTABLE procedures will

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be executed. If 7^ is a member of a TCU, then the procedures to be executed

will vary depending on the position of Tx in relation to the TW and the OW

paths. If Tx is a member of the TW path, then two sets of procedures can be

executed based on whether the message is on its way up or down in the hierar­

chy. If the message is on its way down, then procedures TCU-TFM JDN.TW and

TCU_MULTICASTABLE_DN_TW will be executed. If the message is in its way

down, then procedures TCU.TFM_UP_TW and TCU_MULTICASTABLE_UP_TW

will be executed. If, on the other hand, Tx is a member of one of the OW paths,

then procedures TCU.TFMJDN.OW and TCU_MULTICASTABLE_DN_OW will

be executed.

• C C U p ro to c o l

Let Tx be any TFM in the message path from its sender to any of its destina­

tions, and let C be the least common ancestor of cui and cuj (LCACU(cii,-, cu j))

Let nik be the message sent from piy of cu, with % as its TFM process; the

message will pass by Tx. Let O W be the set of TFM processes in the OW

path between Tx and the LCA of m*,; Tx will execute procedures 6.7 and 6.8.

The test in step 1 is performed to determ ine if the message has been tim es­

tam ped before by the CCU-TFM. If this is the case, the message is forwarded

to the dependent TCU-TFMs because all the CCU-TFMs have already re­

ceived the message.

Step 7 is executed if the message is tim estam ped before by Tx and is on

its way down after it reaches its LCA. This step can be modified to direct

the message only to the paths tha t contain a TCU-TFM because the mes­

sage may have been received by Tx before (see Section 6.2.2 for the bypass

approach). As a result, Tx timestamps the message and multicasts it to

its descendants; therefore, the message is received by all CCU-TFMs in the

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C C U -TFM (m*; {

1. if m k has not been timestamped by Tx —*
2. if CCU .M U LTICASTABLE(m k) -*
3. For each m t € LWQ,
4- if not CCU .M U LTICASTABLE(m t) -> exit
5. Otherwise
6. Admit m k to LWQ
7. fi
8. Otherwise
9. Direct m k to the descendant TFMs

10. fi

}

Procedure 6.7 (CCLLTFM)

descendant hierarchy.

Two approaches can be used in forwarding the message down the hierarchy

if it has been previously tim estam ped by the TFM:

- The CCU-TFMs, after the receipt of a message (regardless of wether

the message has been received before or not), assume th a t the receiver is

responsible for identifying this message and discarding it. This option

eliminates any ex tra overhead on the TFM , increases the number of

messages on the network, and eliminates the need to maintain a view

information a t the TFM in regard to TCU/CCU membership in the

descendant hierarchy. The previously described protocol implements

this approach.

- The CCU-TFM checks the message and forwards it down the hierarchy

only if a TCU-TFM exists in the descendant hierarchy of the CCU-

TFM. The TCU-TFM then multicasts it to the CU members. This

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCU-M ULTICASTABLE (mk) {

1. if m k was in its way down —►
2. if M T S mic[Direct Sender] = P T S rx[Direct Sender] + 1 —>
3. Increm ent P T S rx[Direct Sender]
4- Increment L T S rx
5. M T S mk[Tx] = L T Srx
6. Multicast mk to cu.i
7. return true
8. Otherwise
9. return false

10. fi
11. Otherwise
12. if P T Srx[Direct Sender] = M T S mk[0] —>
13. Increment L T S rx
14. M T S mk[Tx] = L T S Tx

15. P T Srx[Direct Sender] = M T S mk[Direct Sender]
16. M T S n k[0] = O L D T S
17. if % ^ L C A (m k)-+
18. O L D T S = L T S Tx
19. Forward m k up
20 . fi
21. Multicast m k to cm
22. return true
23. Otherwise
2Jt . return false
25. fi
26. fi

}

Procedure 6.8 (CCLLMULTICASTABLE)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach optimizes the number of ex tra messages on the network; how­

ever, it requires the knowledge of the existence of any TCU-TFM in the

descendant hierarchy.

Therefore, the approach adopted in forwarding the messages become an op­

timization problem between the number of messages and the overhead of

maintaining the view management.

• TCU protocol

Let Tit k be the message sent from piy of cu{ with % as its TFM process; ira;-

passes by Tx. Let Tx be any TFM in the message path from its sender to

any of its destinations. Let T W be the set of processes located between the

sender of the message and Tx in the TW path, and let S be the child process of

Tx from where the message is received. Let A T be the set of ancestor TFMs

located between LCA (mk) and Tx tha t have already assigned a timestamp

to m t.

The manner in which Tx handles the messages varies, depending on the

position of Tx in relation to the TW and the OW paths. If Tx is a member of

the TW path, then two sets of procedures can be executed based on whether

or not the message is on its way up or down in the hierarchy. If the message is

on its way down its TW path, then procedures 6.9 and 6.10 will be executed.

If the message is on its way down its OW paths, then procedures 6.11 and

6.12 will be executed. If, on the other hand, Tx is on its way up in its TW

path, then procedures 6.15 and 6.16 will be executed.

- The message is on its way down.

Procedures 6.9 and 6.10 handle the message in the TW path. Similarly,

procedures 6.11 and 6.12 handle the message in the OW path. Another

version of the protocol could assume a different approach, which would

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T C U -T F M JD N _ T W (mk) {

/. i f TC U .M U LTIC ASTA BLE.D N .TW (m k) -+

2. For each m t € GWQ,

3. i f n o t TCU -M U LTICASTABLE.D N -TW (m t) -> exit

4■ O th e rw ise

5. Admit m k to GWQ

6. fi

}

P ro c e d u re 6.9 (T C U _T F M _D N _T W)

allow CCU-originated messages to keep a causal order in the TCU rather

then a total order. The causal order will help in a faster delivery of the

CCU message at the TCU instead of waiting for the CCU-originated

message to gain the LCA tim estam p. The message could be delivered

at its arrival at the TCU-TFM without the LCA tim estam p.

— The message is on its way up.

Procedures 6.15 and 6.16 handle the messages in this route. The O L D T S

variable is used to ensure tha t no lost messages arrive from the child

process. The sequence cannot be tested with M T S mk[S] = P T S rx[G]+l

because Tx does not receive messages for which S is the LCA.

Step 17 in procedure 6.16 should be modified if Tx has information about the

hierarchy under it. This will eliminate multicasting if the hierarchy does not have

a CCU.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU_MULTICASTABLE_DN_TW (mk) {

1. i f mk has its LCA timestamp —*

2. Adjust P T Srx from T S U L mk

3. if For each Tw in A T , M T S mk[Tw] = P T S tx[Tw] + 1 —*

4■ Remove from T W L

5. Adjust P T S rx[Tx]

6. For each Tw E A T , Adjust P T S jx[Tw]

7. if For each m in L C A M ,M T S mk[Tx] < all T W L messages —>•

8. Move m to CLCAM

9. fi

10. Move all messages with TS < M T S mk[Tx] fro m T S U L rx to T S U L mk

11. Multicast m*; to cux

12. return true

13. O th e rw ise

1 4 ■ return false

15. fi

16. O th e rw ise

17. Discard mk

18. fi

}

P ro c e d u re 6 .10 (T C U _M U L T IC A ST A B L E _D N _T W)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T C U _ T F M JD N _ O W (mk) {

1. i f TCU -M U LTICASTABLE-D N-O W (m k) ->

2. For each m t € GWQ,

S. if n o t TCU -M U LTICASTABLE.D N -O W (m t) -+ exit

4- O th e rw ise

5. Admit m k to GWQ

6. fi

}

P ro c e d u re 6.11 (T C U _T F M _D N _O W)

6.4 MLMO P rotocol Correctness

The MLMO protocol relies on running a combination of BUS and BUS-TO proto­

cols in both the CCU and the TCU. Assume tha t all CUs in the communication

structure are of type CCU, so tha t they all run the BUS protocol. Section 4.4 has

shown tha t the BUS protocol achieves a causal order for multicasted messages.

This proof can be easily extended to show th a t the MLMO protocol can achieve a

causal order under the previously stated assumption.

Similarly, let us assume th a t all CUs in the structure are of type TCU, so that

they all run a modified version of the BUS-TO protocol. Section 5.4 has shown that

the BUS-TO protocol guarantees a total order for multicasted messages. Similarly,

MLMO can achieve a to tal order for such setup.

Assume a general setting tha t combines both CCUs and TCUs within the same

structure and without implementing the bypass approach. The MLMO directs the

message through the communication hierarchy with the same m ethod tha t BUS-

TO uses, with only one difference: CCU type units are allowed in the TW path

to deliver the message without waiting for the LCA tim estam p. This delivery at

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU_MULTICASTABLE_DN_OW(mk) {

1. if For each Tw in A T , M T Smk[Tw] = PTStx[Tw] + 1 —

2. if 7nk is timestamped by LCA(mk) —

S. if nik not already timestamped by tx —*■

4- if For each m £ CLCAM mk, PTStx[LCA(m)] > CLCAM m.K —*•

5. Increment LTStx

6. Add CLCAM rx to mk

7. M T Smk[Tx] = LTSTx

S. Add nik to TSUL<tx

9. Multicast nik to cux

10. For each Tw € A T , Adjust PTS%[TW]

11. return true

12. O therw ise

13. return false

14. fi

15. O therw ise

16. PROCESS.TWL(mk)

17. Multicast mk to cux

18. return true

19. fi

20. O therw ise

21. PR OCESS.CLCAM(mk)

22. return false

23. fi

24- O therw ise

25. return false

26. fi

}

Procedure 6.12 (TCU_MULTICASTABLE_DN_OW)

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PR O C ESS-TW L (mk) {

1. M TSmk[Tx] = TWL[rnk\

2. Adjust PTStz[Tx]

3. For each Tw 6 A T , Adjust PTS%[TW]

4. remove mk from TWL

}

Procedure 6.13 (PROCESS_TW L)

PR O CESS-CLCA M (nik) {

1. if For each m € C’LCAMmk, PTSrA^C A(m)\ > CLCAM mk —

2. Increment L T S jx

3. M TSmk[Tx] = LTSTx

4■ Insert mk into TWL

5. Direct mk to TFM ancestor of Tx

6. fi

}

Procedure 6.14 (PROCESS_CLCAM)

TCU_TFM_UP(m*J {

1. i f TCU-MULTICASTA BLE. UP(mk)

2. For each m t £ Wait Queues,

3. if not TCU-M ULTICASTABLE-UP(mt) -* exit

4■ Otherwise

5. Admit message to GWQ

6. fi

}

Procedure 6.15 (T C U .T F M .U P)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU JV1ULTIC ASTABLE.UP (mk) {

1. if M T S m k{0] = P T S rx [5]

2. Increment LTSrx

S. M T S mk[Tc] := L T Srx

4■ For each T. in T W — S . Increment P T S rx[Tz]

5. P T S Tx[S]:= M T S mk[S]

6. if Tx is not the m essage L C A —►

7. M TS„lk[0]:= O L D T S

8. O L D T S := L T S Tx

9. Forward. m x up the tree

10. O th e rw ise

11. i f TW L is empty —*

12. admit m t to CLCAM

13. O th e rw ise

14■ admit nik to LCAM

15. fi

16. fi

17. Multicast mk to cux

18. i f m k e G W Q ^

19. Remove mk from GWQ

20. fi

21. return true

22. O th e rw ise

23. return false

24. fi

}

Procedure 6.16 (TCU_MULTICASTABLE_UP)

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the CCUs is an implementation of the BUS protocol. Thus, it would not violate

the causal order at these CCUs, as shown in Section 4.4. The prementioned CCUs

will not pass the message to any TCU in the subtree until the LCA tim estam p is

received again. That is, the existence of a CCU in the message TW path will not

be seen by the TCU under it. From the TCU 's perspective, the entire structure

contains only TCU units, which achieves a total order, as shown earlier.

For the CCUs tha t are not in the TW path of the message, these CUs will get

the message after it has gained its LCA tim estam p. The execution the BUS pro­

tocol on these messages will result in a total order and will meet the requirements

of the potential causality property as required.

The addition of the bypass approach to the protocol allows the message to

bypass the TCUs in the subtrees under the TW path to be delivered to the CCU

units. This bypass is possible because the CCU does not need to wait for the LCA

tim estam p. The proofs presented in Sections 4.4 and 5.4 can be extended to show

tha t both types of CUs will honor the required order.

6.5 Conclusion

A Multi-LAN M ulti-Order protocol for m ulticasting in heterogeneous distributed

systems has been proposed. The protocol allows group members to span differ­

ent LANS and enables each group to adopt its own ordering criteria for message

delivery. Our protocol relies on a hierarchical communication structure. The ben­

efit of this structure are twofold. First, it enables th e communication structure

to be potentially aligned with the internet routing topology, which minimizes the

number of protocol messages. Second, as a result of this alignment the protocol

can exercise control on its routing scheme, which effectively decreases the actual

number of multicasted messages. The protocol achieves a degree of latency, de-

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pending on the ordering criteria adopted. For example, groups th a t adopt causal

order under MLMO do not suffer unnecessary delays in message delivery because

of the presence of groups tha t have adopted total order. The protocol performance

is affected by the ratio of in tra to inter group traffic; it performs better for larger

ratios.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7

IN T E R : A M u lti-P ro toco l

Interface

7.1 The Interface Protocol

Interoperability between the MLMO protocol and local protocols is crucial in an

autonomous environment. Interoperability allows different applications with het­

erogeneous local protocols to m ulticast messages to each other. Thus, applications

do not have to be rewritten in order to conform to any one multicasting protocol.

The interface is built around the assumption tha t different CUs, each with a

different ordering criteria, can coexist. The design of the MLMO protocol allows

the interface to be added as a layer between the applications and the multicasting

layer. The added layer achieves an order among messages going to and from a CU,

independent of the particular multicasting protocol tha t is running in the CU.

These, local protocols can effectively handle all messages they receive as if they

are local to their CU. Therefore, a local protocol can function autonomously in

performing multicasting in its own CU. Note that the interface is responsible for

readjusting the order between the local and global messages from one side and the

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CUX Local

Protocol Order

Encapsulation Condition

Total ETCU CUX and other TCU s/ETCUs in

MLMO must enforce one total

order

Total ECCU CUX does not want to adhere to

a MLMO total order

Causal ECCU CUX wants to adhere to causal

order among other CUs

Causal ETCU not perm itted

Table 7.1: Permissible Encapsulation Types

external messages from the other side to ensure a correct delivery order.

Each CU tha t runs a local protocol is encapsulated by the interface so that

it appears to other CUs in MLMO either as a CCU (referred to as ECCU) or as

a TCU (referred to as a ETCU). The type of encapsulation (ECCU or ETCU)

depends on the order enforced by the local protocol, as well as on the desired

relationship between the encapsulated CU and other CUs on MLMO. Table 7.1

describes the permissible encapsulation types and their corresponding conditions.

Also, Figure 7.1 shows the communication structure and the encapsulation of the

local protocol.

An ECCU guarantees a causal delivery of the ECCU’s messages in relation to

other messages that are circulating in the system, regardless of whether the local

protocol enforces total or causal order. However, note that if the local protocol

guarantees a total order, the interface m ust deliver global messages in the same

order tha t is enforced locally. An ETCU will guarantee a total-order delivery of

both the global messages of this ETCU and the global messages th a t originate from

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ecu CCU-TFM
TCU-TFM cu

T j LCA(m)

ecu
cu

cu 244

TCU.
241 242 2A1

221 CU.223 242 I Local Protocol)
222

CU 2421 2441 24422422
TCU XCU

Encapsulated
2422 ecu

SenderOne— Way path
Two-Way path

Figure 7.1: Communication structure for INTER th a t shows encapsulated unit.

other TCUs (i.e., external messages). The protocol will also guarantee a causal

order delivery of the messages tha t originate from the ETCU to the CCUs on its

destination list.

Figure 7.2 shows the message flow to and from the local and global side of

the gateway, which constitutes the interfaces between the global and local proto­

cols. The gateway is divided into two processes: the Local Gateway (Gl) and the

Global Gateway (Gg)- The Gl, is added as a new node to the local multicasting

group and runs the local protocol along with an interface module. The interface

module ensures the enforcement of the order dictated by the local protocol upon

the delivery of messages outside the group. On the other side, Gg is added as a

m ulticasting node to the communication structure and, therefore, runs the MLMO

protocol with the interface protocol to interact with Gl on one side and its TFM

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the communication hierarchy on the other side.

7.1.1 E C C U

Any protocol can be encapsulated in a CCU regardless of whether the local protocol

enforces a total or causal order. In this case, the external and global messages

are delivered according to causal-order rules. Messages are delivered to a site

tha t implements both a local protocol and the CCU-TFM protocol. After the

local protocol makes an ordering decision and delivers the message to its group

members, Gl , once it receives the message, will forward it to Gg (the global side

of the gateway). Then, Gg multicasts the message passed from Gl with MLMO to

enforce the order imposed by the local protocol. Because Gl sends the messages in

the order dictated by the local protocol (Gg is forced to multicast these messages

in the same order) this guarantees that the causal order dictated by the local

protocol is not violated. The global protocol considers the ECCU to be one node

Gg; therefore, all messages tha t leave Gg will be guaranteed the same order.

7.1.2 E T C U

The protocol relies on the general fact th a t any total-order local protocol en­

capsulated in a TCU should use a timestamp-based protocol. This assumption

is justifiable because the literature does not report any total-order protocol that

currently use a different approach.

Our approach for building an interface for to tal ordering depends on the assign­

ment of a tim estam p that is based on the negotiation between the local and global

parts of the interface. Because both local and global protocols are timestamp-based

protocols, this agreed-upon tim estam p can drive the entire ordering process.

The first problem that is encountered by the ETCU protocol is the different

timestamp-assignment algorithms for global and local protocols (e.g., the local

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Global Gateway running MLMO

Global messages going to MLMO - I Gc External messages going from MLMOJ \ External messages going from MLMO
after bemg ordered by the local protocol V.------------------------- ^ to the heal protocol in MLMO causal

order sequence

/ Local Protocol Local Gateway rutting the Local protocol

(® © ©
—■ — ____ CCV Encapsulated

(a) CCU that encapsulates local protocol.

Global Gateway running MLMO

External messages going from MLMO
to the interface layer o f the local nodes

Global & OCM going to MLMOCM gomg to MUMU ^ \ »

- M r r -
I Local Protocol X . / ' ' ' " " s .

I \ ''V T ©)
I / * »I Local gateway runmng the local protocol • ‘ ^ /

\ TCU Encapsulated C C D
(b) TCU that encapsulates local protocol.

Figure 7.2: Message flow between global and local agents in a gateway process.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocol could be using the ABCAST or the TOKEN algorithm while the global

maybe using MLMO). Therefore, one of the requirements for the protocol is a

scheme tha t can map the two timestamps to achieve this ordering criteria.

The protocol relies on the two gateway processes Gl and Gg- The Gl process,

as a member of the local multicasting group, upon receipt of a global message will

pass it to Gg- The Gg process then tags the message as a global message and

forwards it to its TFM . The MLMO protocol ensures th a t those messages that

leave Gg are delivered to all sites in the same order. W hen an order is decided by

the local protocol, a correction vector is sent to the LCA of the message involved.

The message is blocked at its LCA until this order-correction message is received. If

the messages are in the same order as originally sent from Gg - then the L C A {m)

releases the message and multicasts it to all nodes in its subtree. If the order

dilfers, then the LCA will reassign the timestamp between these messages so tha t

the message tha t was first will replace the one that has the smallest timestamp

in the unreleased list from Gg- The following section describes in more detail

incoming, outgoing, and external message handling.

7.2 M essage H andling in the Interface Protocol

7.2.1 G lobal M essage H andling

1. Assume that one of the local protocol sites multicasts a global message. The

local protocol then passes the message to the local sites.

2. As the local protocol is determining a local order for the messages, a discrep­

ancy may arise about when to forward the message to the MLMO protocol.

Two alternate approaches can be used to solve this problem:

(a) W a it u n ti l th e loca l o rd e r is d ec id ed a n d th e n fo rw ard th e

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m essage to G g -

In this approach, the protocol holds the message a t G l until a local

order is agreed upon. Then, the message is forwarded to Gg so tha t

it can be sent to its destinations outside the local CU by MLMO. The

MLMO protocol provides an order for the message among the external

messages and forwards the message for delivery to its members, includ­

ing G g - While MLMO obtains a global order for the message, the local

protocol holds the message so tha t the delivery of any external messages

tha t should be delivered before this message can occur. Different ap­

proaches can be adopted to perform this task. After this order is agreed

upon, the message is released for delivery to the local nodes a t ETCU.

The interface protocol ensures tha t the local delivery of the external

messages adheres to the relative order of the global messages achieved

by MLMO.

(b) F o rw ard th e m e ssag e a n d c o rre c t th e o rd e r la te r .

While the negotiation is underway for determining the local order, G l

forwards the message to G g - The G g process tim estam ps the message,

tags it as a global message, and then forwards it to its TFM .

As the local and global protocols try to achieve an order for global

messages, MLMO ensures tha t messages going out of Gg are delivered

to all sites with the same order. A problem occurs because the order

of delivery from the gateway to the global protocol of the message is

not the final order. This order changes, depending on the local protocol

negotiation. For example, two global messages m \ and m 2 are sent

from the gateway to the global protocol in the order m i, m 2. From

the global protocol perspective, mi has to be delivered before m 2 to

honor Lam port’s rule 1 because from the point of view of the global

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocol both mi and m 2 originate from the same site (Gg)- However,

the possibility exists tha t m i and m 2 are from different local sites, so

that the final local order could be m 2, m i. As a result, the global order

and the local order disagree from the TCU point of view.

To overcome this problem without having to wait for local order to be

achieved before the global order, a new message is introduced. This

message is the Order Correction Message (OCM), which corrects this

ordering problem. In this case, the global message will wait at its LCA

until the OCM is received. After a local order is predicted, a correction

vector is sent to the LCA of the message involved. W hen OCM is

received by the message’s LCA, one of two situations may occur.

i. T h e m essag es a re in th e r ig h t o rd e r as o rig in a lly se n t fro m

G g -

The L C A (m) will then release the message and multicast it to all

descendants. The Gg process, upon receiving the message, will pass

it back to Gl to update the tim estam p vector, which will be used

later with external messages.

ii. T h e m essag es a re n o t in th e r ig h t o rd e r .

The L C A (m) will reassign th e tim estam p between these messages

such th a t the message that was agreed upon to be first will replace

the one from G g tha t has the smallest tim estam p in the unreleased

list. The order will be affected in the TCU but will not be affected in

any of the CCUs tha t have already delivered the message. The mes­

sage reassignment (or, more appropriately, incarnation) will switch

the data content in one message with the one in the other; the other

tim estam p data will remain unaffected. As a result, the reassign­

ment will be transparent to all other nodes in the TW paths of

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the message. The TFM s in the TW path must use the new data

contents of the message for multicasting.

In case (a), a problem occurs in regard to the external messages because

the delivery of the local message must wait for the LCA tim estam p to be

given. As a result, Total delay = Delay o f local protocol order + Delay o f

global protocol. In case (6), Total delay = max(both protocols). However, we

adopt the approach presented in case (a) to order ECCU messages because

the delay incurred in determining a causal order is minor in comparison with

the tim e needed to send the OCM. The approach presented for case (b) is

used in ETCU message ordering.

3. After the order agreement between the global and local protocols is reached,

the local delivery of the message must be performed. Two approaches can

achieve this delivery to conform to the agreed-upon order.

(a) A sk th e loca l p ro to c o l to c a r ry th e de livery .

In this approach, the delivery is achieved through Gl , which is a member

of the local group. In order for G l to achieve message mixing between

both global and external messages, the local protocol m ust be lead

to this ordering decision indirectly through a sequence of timestamp

assignments. This approach requires tha t the interface be dependent on

the local protocol. For example, in the case of ABCAST [12], assume

tha t we have a global message m i and an external message m 2 and

tha t MLMO has decided to deliver m 2 before m j. Also assume that

m \ was received by G l before m 2 . If G l delays the assignment of the

G l tim estam p until the global protocol provides an order between mi

and m 2 , then G l can enforce this order by assigning a higher value

tim estam p to m i. This tim estam p is higher than the tim estam ps of the

other nodes for mi and higher than the expected tim estam p assigned by

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all nodes to m 2. This timestamp assignment results in a final timestamp

for nil tha t is larger than the final tim estam p for m 2, which forces a local

delivery of m 2 before m 1 . This approach provides more autonomy than

the second one (see (b)). However, this approach may not be feasible

with the local multicasting protocols. We adopt this protocol in ECCU

because the causal order allows us to rely on the G l as the single source

for multicasting external messages to the local nodes. Achievement of

a causal order in a similar manner is possible because the local protocol

provides a single-source ordering. Therefore, whatever order G l uses to

multicast these messages will be honored by the local protocol.

(b) A chieve th e d e liv e ry th ro u g h th e in te rfa c e lay er.

In this approach, Gg sends the external message to the interface layer

that resides between the network layer that runs the local multicasting

protocol and the application layer at each local node in the ETCU. This

layer, after it receives the external message, as well as the global and

local messages, will insert the external message in the delivery queue

ordered by the local protocol in the same order provided by MLMO.

This process will allow the delivery order to be achieved in accordance

with the global order without violation of the local order. This approach

is adopted in the ETCU message delivery because the global message

is forwarded to the global protocol before a final order is agreed upon

locally.

7.2.2 Local M essage H andling

The local protocol is responsible for achieving the local order and for reliability in

delivering local messages. Thus, our protocol task is to honor this order and to

merge the stream of local and global messages delivered from the local protocol

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the external messages. As previously mentioned, a new node is added to the

local group; the gateway local agent G l - The m ain function of this node is to

serve as a link between the local and the global protocol; G l passes the global

messages from the local group to the gateway global agent Gg, and G l runs the

local protocol and the gateway procedure.

• Assume tha t one of the local protocol sites multicasts a local message mk-

The local protocol begins to deliver rrik to the members of the group, includ­

ing the gateway { G l) -

• The local protocol attem pts to deliver rrik, and the message is intercepted

by the interface sublayer tha t resides between the multicast sublayer and the

application layer. This new sublayer does not change the order achieved by

the local protocol but assists in merging the external messages with both the

local and global messages.

7.2.3 E xternal M essage H andling

External message order is determined by the global protocol MLMO. The gateway

global agent Gg receives the message from MLMO with the MLMO receive pro­

cedure (described in Section 6.3) and then forwards it, along with its timestamp

structure, to the interface layer.

• Assume tha t an external message rrik, which targets the local group, is de­

livered a t G g after receiving ra t; G g schedules it for delivery and begins to

to deliver m* to the members of the group, including the gateway G l -

• The interface sublayer at the local group members, upon receipt of the mes­

sage, checks for delivery of global messages th a t were scheduled for global

delivery prior to rrik under MLMO. The message rrik waits for the delivery of

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these messages (and all the local messages tha t were scheduled for delivery-

prior to these global messages) by the local protocol.

7.2.4 Order C orrection M essage (O C M)

As mentioned in Section 7.2.1, the order correction message is responsible for

adjusting the order of outgoing message if it differs from the initial order of delivery

of these messages to the global protocol (MLMO). For example, suppose m \ and

rn2 are delivered from the local to the global protocol in the order stated before and

that the local protocol has determined its order to be m 2 , m.\. If m j is delivered

to the global protocol before m 2 , then the global protocol ensures th a t mi will be

delivered before m 2 . To readjust this order, the order correction message is sent

to the LCA of mi and m 2 to indicate the new order. The order correction message

causes a tim estam p exchange between m i and m 2 in all the TCU-TFM s visited

by mi and rn2.

The tim estam p switching process can be performed based on one of two ap­

proaches: message id switching and timestamp switching.

7.2.5 M u lti-P rotoco l Interface

This interface runs on each local site th a t is involved in multicasting. The function

of this layer, which is located between the local protocol and the application layer,

is to insert the external messages among the global and local messages in accor­

dance with the order determined by MLMO. This layer is necessary because the

enforcement of an order on the external messages in relation to the global messages

must be performed in general by a higher layer than the local protocol. Also, the

enforcement of this order by the local protocol undermines the autonomy of the

local protocol. In addition, the interface must be customized to accommodate each

local protocol. No assumption is made on how the CCU and the TCU are added

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the communication structure; they can be in any distribution. This enables a

possible extension to this protocol to allow dynamic ordering by allowing a CU to

change between a TCU or a CCU.

7.3 Protocol O utline

Five types of procedures handle the messages: the Sender, the Receiver, the

T F M , the Gateway, and the In te r fa ce procedures. In this section, we focus on

the procedures tha t are specific to the interface protocol, which include both the

gateway and the interface procedures. The procedures that are similar to the ones

mentioned in the MLMO description in Chapter 6 will not be repeated.

7.3.1 Sender

Let mfc be a message sent from Piy of cu,- with % as its TFM; m* is received by a

process pjx of cuj with 7} as its TFM process. The message is tim estam ped

at piy, and the message tim estam p vector is adjusted by setting both M T S mk [p,y]

and M T S mk[0]; M T S mk[0] always carries the last message tim estam p sent from a

process (a TFM or a cooperative process) to its higher level TFM to ensure that

no messages are out of order (see Section 6.3.3 for more details).

The sender process will follow different procedures, depending on whether it is

a local site, a gateway, or a process that is running the MLMO protocol. If piy

is a member of the local group, then piy will use the local protocol procedure to

send and receive messages. If piy is a gateway local agent (Gl), then p,y will use

procedure 7.1 to send mfc. If piy is a gateway global agent (G g), then piy will use

procedure 7.2 to send the messages passed to it from Gl if the message is a global

message or an OCM. If piy is running the MLMO protocol, then piy will execute

procedure 6.1.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SENDER-G ATEWAY (mk){

1. Increment L T S Piy
2. M T S mk\piy\ = L T S Pty
S. Deliver to the local protocol

}

Procedure 7.1 (Local Gateway Agent Sender)

SENDER(m fcJ{

/. M T S n k[0] = L T S Pty
2. Increment L T S Pty
3. M T Smk\piy] = L T SPty
4. Send message to Ti

}

Procedure 7.2 (Sender)

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3.2 R eceiver

The receiver process will run one of two sets of procedures, depending on whether

it is a member of a TCU or a CCU. If the receiver process pjx is a member of

a CCU. then the CCU-RECEIVE and CCUJDELIVERABLE procedures will be

executed. If pjx is a member of a TCU, then the procedures to be executed will

vary depending on the position of pjx in relation to the TW and the OW paths.

If pjx is a member of the TW path, then procedures TCU_RECEIVE_TW and

TCU.DELIVERABLE.TW will be executed. If, on the other hand, pjx is a mem­

ber of the OW paths, then procedures TCU_RECEIVE_OW and

TCUJDELIVERABLE.OW will be executed. If pjx is a gateway global agent (G g) ,

then it will execute a set of procedures based on whether it is an agent for an ETCU

or an ECCU. If Gg is a gateway for an ECCU, then procedure

ECCU_RECEIVE_GLOBAL_GATEWAY and

ECCU_DELIVERABLE_GLOBAL_GATEWAY will be executed. If Gg is a gate­

way for an ETCU, then the procedures to be executed will vary between procedures

ETCU_RECE1VE_GATEWAY_0W and ETCU_DELIVERABLE_GATEWAY_OW

if Gg is in the message OW path or procedure ETCU_RECEIVE_GATEWAY_TW

and procedure ETCU_DELIVERABLE_GATEWAY_TW if Gg is in the TW path.

• CCU protocol

If pjx is a process tha t runs the MLMO protocol, then procedures 6.2 and 6.3

in Chapter 6 will be executed. If pjx is a Gg for an ECCU, then procedures

7.3 and 7.4 will be executed. When G g decides to deliver the message, it

will actually pass it to the gateway local agent (G l) ; G l will then execute

the Inter-Sender procedure listed in procedure 7.1. The traffic between G g

and G l is controlled with a tim estam p scheme th a t provides a more reliable

communication between them. The use of a tim estam p scheme between G g

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ECCU_RECEIVE_GLOBAL_GATEW AY (rrik) {

1. if C CU .D ELIVERABLE(m k)
2. For each m t € LWQ,
3. if not CCU-DELIVER A B LE (m t) -*• exit
4. Otherwise
.5. if M T 5„,K] > P T S ' J T j]
£. Admit m k to LW Q
7. Otherwise
£. Discard m k
9. fi

10. fi

}

Procedure 7.3 (ECCU_RECEIVE_GLOBAL_GATEWAY)

and Gl also allows both processes to be allocated at different sites, which

increases the protocol resiliency and decreases the recovery cost.

• TCU protocol

As mentioned previously, the gateway uses two different handling procedures,

depending upon whether the message is in one of its OW paths or its TW

path; O W is again the set of processes located between L C A (m k) and 7}

tha t belongs to the OW path, and T W is the set of processes between Tj

and L C A (m k) tha t belongs to the TW path. Note tha t T W could be empty

if all paths between 7} and LCA belong to the OW path.

— The O W path module.

The OW path module will follow the steps outlined in procedures 7.5

and 7.6. The G g process does not forward the message to G l , instead

it is directed to the interface layer at the local nodes. This approach

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ECCU_DELIVERABLE_GLOBAL_G ATEWAY (mk) {

1. i f (M T S mk\%\ = P T S P]X[TA + 1; -
2. Increment P T S Pjx[Tj]
3. Forward m k to Gl

4. if m k e LWQ ->
5. Remove m k from LWQ
6. fi
7. return true
8. O therwise
9. return false

10. fi

}

Procedure 7.4 (ECCU_DELIVERABLE_GLOBAL_GATEWAY)

ETCU_RECEIVE_GATEW AY.OW (mk) {

1. if m.k already passed by L C A (m k) —►

2. if TCU -D ELIVERABLE-O W (m k)

3. For each m t 6 GWQ, if not TCU -D ELIVER ABLE-O W (mt) —► exit

4. Otherwise

5. Adm it m k to GWQ

6. fi

7. O therwise

8. Discard m k

9. fi

}

Procedure 7.5 (ETCU_RECEIVE_GATEWAY_OW)

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ETCU JDELIVERABLE_G ATE WAY_OW (mk) {

1. if Far each Tw in T W , P T S pJ T w] = M T S mk[Tz] + 1

2. AND

2. For each rn E LC A M mk, P T S Pjx[LCA(m)} > C LC AM [m \ —►

/f . Multicast mk to the local nodes interface

5. For each Tw € T W , Increment P T S P)X[TW]

6. if m k € GWQ

7. Remove mk from GWQ

S. fi

9. return true

10. Otherwise

11. return false

12. fi

}

Procedure 7.6 (ETCUJDELIVERABLE_GATEWAY_OW)

(Section 7.2.3) is provided to allow the local nodes to merge the global,

external, and local messages without making changes to the local pro­

tocol. The interface layer, after the receipt of the message, will execute

procedure ??.

- The T W path module.

The ETCU_RECEIVE_GATEWAY_TW will follow the same procedure

as ETCU_RECEIVE_GATEWAY_OW presented before with one mod­

ification: ETCU_DELIVERABLE_GATEWAY_TW will be called in­

stead of ETCUJDELIVERABLE.GATEWAY.OW. Procedure

ETCUJDELIVERABLE_GATEWAY_TW provides the necessary steps

for handling the Timestamp Updater List (TSUL), which was intro-

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ETCU_DELIVERABLE_GATEW AY_TW (W J {

1. if For each Tz in T W ,M T S mk[Tz] = P T S pJ T z] + 1

2. Multicast nik to the local nodes interface

3. For each Tz in T W , Increment P T S P:jx[Tz]

4- Update P T S Pjx fr o m T S U L mk

5. if m t € GW Q or m k € LWQ —►

6. Remove mk from Wait Queue

7. fi

3. return true

9. Otherwise

10. return false

11. fi

}

Procedure 7.7 (ETCUJDELIVERABLE.GATEW AY.TW)

duced in Section 6.2.3 to solve the tim estam p gap problem.

7.3.3 T F M P rocedure

The TFM processes will run one of two procedures, depending on whether it is

a member of a TCU or a CCU. If the TFM process Tx is a member of a CCU,

then the INTER-CCU-TFM , CCU.TFM , and CCU-MULTICASTABLE proce­

dures will be executed. If Tx is a member of a TCU, then the procedures to be

executed will vary, based on the position of Tx in relation to the TW and OW

paths. If Tx is a member of the TW path, then two sets of procedures can be

executed, based on whether the message is on its way up or down in the hier­

archy. If the message is on its way down, then procedures TCU_TFM_DN_TW

and TCU_MULTICASTABLE_DN_TW will be executed. If the message is on its

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

way up. then procedures INTER_TCU_TFM_UP_TW, TCU_TFM_UP_TW, and

TCU_MULTICASTABLE_UP_TW will be executed. If, on the other hand, Tx

is a member of one of the OW paths, then procedures TCU_TFM_DN_OW and

TCU_MULTICASTABLE_DN_OW will be executed.

• CCU protocol

Let Tx be any TFM in the message path from its sender to any of its destina­

tions, and L be the least common ancestor of cu,- and cuj (LCACU(cu,-, cuj)).

Let rrik be the message sent from piy of cu,- with T as its TFM process; rrik

passes by Tx. Let O W be the set of TFM s processes in the OW path between

Tx and the LCA of m^.. Procedures 7.8, 7.9, and 7.10 will be executed by Tx.

• TCU protocol

Let rrik be the message sent from piy of cu,- with Ti as its TFM process; rrik

passes by Tx. Let Tx be any TFM in the message path from its sender to

any of its destinations. Let T W be the set of processes located between the

sender of the message and Tx in the TW path, and S be the child process of

Tx from where the message is received. Let A T be the set of ancestor TFM s

located between LCA(rrik) and Tx tha t have already assigned a tim estam p

to rrik.

The method with which Tx handles the messages varies, depending on the

position of Tx in relation to the TW and the OW paths. If Tx is a member of

the TW path, then two sets of procedures can be executed, based on whether

the message is on its way up or down in the hierarchy. If the message is on

its way down the TW path, then procedures 7.11 and 7.12 will be executed.

If the message is on its way down its OW paths, then procedures 7.13 and

7.17 will be executed. If, on the other hand, Tx is on its way up in its TW

path, then procedures 7.18, 7.16, and 7.19 will be executed.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTER_CCU_TFM(m<J {

1. if OCM or GLOBAL message —►
2. if OCM message —>
S. Timestamp m k using OCM timestamp structure
4. if Tx = LCA(rnk) —►
5. M essage- Timestamp.Switch (rrik)
6. O th e rw ise
7. Forward m k up
8 . f i

9. O th e rw ise
10. if rrik is going up —►
11. Timestamp m k
12. Admit m k to OCMHOLD
13. O th e rw ise
1 4 . if nik is timestamped by LCA{m,k) —*
15. I f timestamp switching is needed —>
16. Update messages in LWQ and GWQ
17. Remove message from OCMHOLD
18. CCU .TFM (m k)
19. fi
20. fi
21 . fi
22. O th erw ise
23. CCU.TFM (mk)
24. fi

Procedure 7.8 (INTER_CCU_TFM)

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCU_TFM (mk) {

1.
2.
S.

4-

if m k has not been timestamped by Tx —*
if CCUJM ULTICASTABLE(mk) —

For each m t £ LWQ,
if n o t CCU.M UL T IC A ST A B L E (mt) -► exit

O th e rw ise
6.

7.
8.

9.

Admit m k to LWQ
fi

O th e rw ise
Direct m k to the descendant TFMs

10. fi

}

P ro c e d u re 7.9 (C C U .T F M)

— The message is on its way down.

Procedures 7.11 and 7.12 will handle the message in th e TW path.

Similarly, procedures 7.13 and 7.17 will handle the message in the OW

path.

— The message is on its way up.

Procedures 7.18, 7.16, and 7.19 handle the messages on this route. The

O L D T S variable is used to ensure tha t no lost message arrives from the

child process because the sequence cannot be tested with M T S mk [5] =

P T S rx[S) + 1. It cannot be tested because Tx does not receive the

messages th a t have S as the LCA.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CCU_MULTIC ASTABLE (mk) {

1 . if Jiif; was on its way down —►
2. if M T S mk[Direct Sender] = P T Srz [Direct Sender] + 1 —*
"3. Increm ent P T S rx[Direct Sender]
4■ Increment L T S jx
5. M T S mk[Tx] = L T S rx
6 . Multicast m^ to cui
7. return true
8. Otherwise
9. return false

10. fi
11. Otherwise
1 2 . if P T Srz[Direct Sender] = M T S mk[0] —►
13. Increment L T Srz
14. M TSm k[Tx] = L T S Tz

15. P T S jz [Direct Sender] = M T S mk[Direct Sender]
16. M T S m JO] = O L D T S
17. if Tx ^ L C A (m k)
18. O L D T S = L T S Tx

19. Forward m k up
20. fi
21. Multicast m k to cu{
2 2 . return true
23. Otherwise
2 4 - return false
25. fi
26. fi

}

Procedure 7.10 (CCU.M ULTICASTABLE)

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU_TFM _DN_TW (m k) {

1 . i f TC U -M U LTIC ASTABLE-D N .TW (m k) ->

2. For each rnt G GWQ,

S. if n o t TC U .M U LTIC ASTA BLE.D N . T W (m t) -> exit

4 . O th e rw ise

5. Adm it ini,. to GWQ

6. fi

}

P ro c e d u re 7.11 (T C U _ T F M JD N _ T W)

7.4 Conclusion

In this chapter, we presented a new approach for allowing interoperability between

our protocol suite and different existing multicasting protocols. We have presented

INTER as an interface built around the assumption tha t different CUs, each with

a different ordering criteria, can coexist. INTER is added as a layer between the

applications and the m ulticasting layer. The added layer achieves an order among

messages going to and from a CU, independent of the particular m ulticasting pro­

tocol tha t is running. These local protocols can effectively handle all messages they

receive as if they are local to their CU. Therefore, a local protocol can function

autonomously in performing m ulticasting in its own CU. The interface is responsi­

ble for readjusting the order between the local and global messages from one side

and the external messages from the other side to ensure a correct delivery order.

This order, being causal or total, is selected based on the application needs. A

notable advantage to our approach is the ability to accommodate the coexistence

of multiple heterogeneous intra-group multicasting protocols. Specifically, an en­

capsulation protocol is described th a t effectively acts as an interface th a t connects

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU_MULTICASTABLE_DN_TW (mk) {

1 . if nik has its LCA timestamp —►

2 . Adjust P T S rx from T S U L mk

3. if For each Tw in A T , M T S mk[Tw] = P T S tx[Tw] + 1 —>

j . Remove mk from T W L

5. Adjust P T S tx[Tx\

6 . For each Tw G A T , Adjust P T S tx[Tw]

7. if F or each m in L C A M , M T S mk[Tx) < all T W L messages —*

8 . Move m to CLCAM

9. fi

10. Move all messages with TS < M T S mk[Tx] from TSU L% . to T S U L mk

11. Multicast mk to cux

1 2 . return true

13. O th e rw ise

l j . return false

15. fi

16. O th e rw ise

17. Discard mk

18. fi

}

P ro c e d u re 7.12 (T C U _M U L T IC A ST A B L E _D N _T W)

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T C U _T F M JD N _O W (mk) {

1 . if TCLLMUL TIC A S T A B LE .D N . 0 W (m k) -+

2. For each m t € GWQ,

3. if n o t TCU -M U LTICASTABLE.D N .O W (m t) -+ exit

O therw ise

5. Admit mk to GWQ

6 . fi

}

P ro c e d u re 7.13 (T C U _T F M _D N _O W)

PROCESS_TWL(mfc; {

1 . M TSmk[Tx\ = TW L[mk]

2. A djust PTSrx [Tx\

3. For each Tw £ A T , Adjust P TStx \Tw\

4 . remove mk from TWL

}

P ro c e d u re 7.14 (P R O C E S S .T W L)

PROCESS-CLCAM^n/..; {

1 . if For each m £ CLCAM mk, P TSTx [LCA{mj\ > CLCAM mk —

2. Increment LTS%

3. M TSmk[%] = LTSrx

4- Insert mk into TWL

5. Direct mk to TFM ancestor o f Tx

6 . fi

}

P ro c e d u re 7.15 (P R O C E S S .C L C A M)

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T C U _T F M _U P (mk) {

1 . i f TCILM ULTICA S T A BLE_ UP(mk) ->

2. For each m t E Wait Queues,

3. i f n o t TCU -M U LTICASTABLE.UP(m t) -> exit

4 . O th e rw ise

5. Admit message to GW Q

6. fi

}

P ro c e d u re 7.16 (T C U _ T F M _ U P)

any protocol that performs m ulticasting in a process group to the MLMO proto­

col. An added feature to our approach is its elimination of any need to alter the

local multicasting protocols. This enables the MLMO protocol to achieve interop­

erability of multiple intra-group multicasting protocol, such th a t full autonomy is

upheld.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T C U _ M U L T IC A S T A B L E J D N _ O W (mk) {

1 . if For each Tw hi A T , M T Smk[Tw] = PTSrx[Tw] + 1 —

2 . if 7«fc is timestamped by LCA(rrik) —

S. if m* is not already timestamped by tx —

4■ if For each m € CLCAM mk, PTS-rx[LCA(m)] > CLCAM mk

5. Increment LTS?x

6 . Add (' LC A M tx to m^

7- M T Smk[Tx) = LTSTx

S. Add 7/11- to T S U L jx

9. Multicast mk to cux

10. For each Tw € A T , Adjust PTSrx[Tw]

1 1 . return true

12. O therw ise

13. return false

I f . f i

15. O therw ise

16. PROCESS-TWL(mk)

11. Multicast mk to cux

IS. return true

19. fi

20. O therw ise

21. PR O CESS.CL CA M(mk)

2 2 . return false

23. fi

24. O therw ise

25. return false

26. fi

}

Procedure 7.17 (TCU_MULTICASTABLE_DN_OW)

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTER_TCU_TFM _UP (mk) {

1 . if OCM OR (GLOBAL message A N D % = LCA{m k))

2. if OCM message —*■

2. if Missing message

4 . Add to missing OCM list

5. Send retransmission request

6. fi

7. Timestamp m k using OCM timestamp structure

8 . if % = LC A(m k) -*

9. Message_ T imestamp.Switch(mk)

10. For each m t € OCMHOLD. if m t £ O C M

1 1 . Remove m t from OCMHOLD

12. TCU JTFM JJP(m t)

13. Otherwise

14- Forward m k up

15. fi

16. Otherwise

17. Timestamp m k

18. Admit m k to OCMHOLD

19. fi

20. Otherwise

21. TCU .TFM .U P(m k)

22 . fi

}

Procedure 7.18 (INTER_TCU_TFM _UP)

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCU.M ULTICASTABLE_UP (mk) {

1. if M T S m k[0] = P T S Tx [«?]

2 . Increment L T Srx

S. M T S mk[%] := L T S Ti

4. For each T: in T W — S , Increment P T S rx[Tz]

5. P T S Tx[S] := M T S mk[S]

6. if T- is n °t the message LC A

7. M TS„lk[0] := O L D T S

8. O L D T S := L T S Tx

9. Forward m x up the tree

10. O th e rw ise

11. if TW L is empty —*

12. admit mk to CLCAM

13. O th e rw ise

1 4 . admit nik to LCAM

15. fi

16. fi

17. Multicast mk to cux

18. i f mk € GW Q —»•

19. Remove mk from GWQ

2 0 . fi

21. return true

22. O th e rw ise

23. return false

24. fi

}

Procedure 7.19 (TCU_MULTICASTABLE_UP)

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 8

P erform ance Issu es

8.1 Introduction

Performance is a critical measure of practicality of our approach. To determine

the practicality of using any of our protocols, we must provide some performance

figures to show how well the protocols perform. Several approaches can be used

to conduct our performance study, including the development of an analytical or a

simulation model and the use of prototyping. We considered each of these options

at the outset of this performance study. Prototyping is a costly approach; we could

not justify the allocation of enough resources without providing some preliminary

evidence of the effectiveness of the new protocols. We also considered the devel­

opment of a simulation model for the new set of protocols. Several approaches

were evaluated for this option, such as the development of a sim ulator with one

of the existing simulation languages or the use of one of the network simulation

environments like NETSIM from MIT [46] or MaRS from the University of Mary­

land [5]. The problem we encountered with the use of simulation was the lack

of any performance study reported in the literature based on a simulation model

under a similar environment; as a result, we would need to develop a simulation

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model for each protocol to be used in our evaluation to provide a fair basis of

comparison. The development alone would require a massive effort, in addition to

the significant amount of simulation tim e required to get a confident interval.

We then investigated the possibility of developing an analytical model to evalu­

ate our protocols. The main advantage of an analytical model is th a t the computer

processing time required to solve it is much smaller than that required for simu­

lation. We first considered both queueing network models [25] and markov chain

models [75] for performance evaluation. For queueing network models, a class

of these models has a product form tha t provides an efficient solution. We en­

countered a problem in the analysis of our model because of th e intractability of

the network model presented. This intractability is caused by a multiple resource

possession problem and state-dependent service rates [48, 49, 55]. As a result,

the queuing network model violates the product form requirements. These prob­

lems can be solved with a markov chain model. The markov chain model is a

good method for representing system behavior in blocking and conflict situations

[49, 74]. However, a drawback to the markov model is the exponential growth in

the num ber of states tha t can exist in representing a real system like this, which

makes the solution infeasible [64]. We concluded from our investigation tha t both

the queueing network and markov chain models were not applicable in our case.

We finally decided to use a simplified deterministic model to evaluate the per­

formance of the system. Two models were considered; a point-to-point network

and a multicast network. We are using the models presented by Garcia-Molina

and Spauster in reference [41]. The models are macro level models and are in­

tended only for identifying trends and m ajor performance factors. The goal is not

to predict exactly how the protocols perform on a given system. To do this, we

would need to provide a more complex model that incorporates network topology,

congestion, routing, acknowledgment, and failures. The model does not present

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all of these factors, but as we will see, it is still capable of providing an index of

the m ajor differences in performance among the different protocols.

We focus on three main performance indexes: N , the num ber of messages

required to send a multicast; D , the tim e elapsed between the beginning of the

ordered multicast and the tim e when all members of the multicast destination

group deliver the message; and 0 , the extra overhead on the sites to deliver the

message. Here, we compare our hierarchical approach to the two-phase protocol

of Birman and .Joseph [12] and to a centralized version of Chang and Maxemchuck

[19].

8.2 Exam ples

In order to get a preliminary idea in regard to the performance of the protocols, we

took a simple example of five nodes involved in the m ulticasting process with the

following processes {pu , pw . Px - Py , P z j- The multicasting processes are divided

into two groups: g i= {puiP w ,P x} and 92—{pYiPz}- To perform an initial com­

parison, we assumed three different connectivity charts between these five nodes

with different communication costs. We built two different communication struc­

tures for each example to see the effect of the structure on the protocol behavior.

The communication structure in structure A used the same process site for running

multiple TFMs; structure B used one site to run only a single TFM . Structure A

had less resiliency to the TFM ’s site failure and a higher cost of recovery from

such failure. We checked the ABCAST and CBCAST for each of the different

examples, and we checked a centralized version that relies on receiving the times­

tam p from a central node and broadcasting it back to the m ulticasting group. The

ABCAST is a three-round protocol in which the sender sends a message to all

members and then waits to receive a timestamp back from all the nodes. From

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Connected sites with communication cost.

(b) Communication Structure A. (c) Communication Structure B.

Figure 8.1: Example 1 - a set of connected sites and possible communication

structures.

these returning timestamps, it calculates the final timestamp and sends it back to

all members. Therefore, in calculating the delay encountered in message delivery

under ABCAST, we note that it will vary between 2*{the shortest path between

the sender and the farthest process in the group}, which is the cost for delivery at

sender, and 3*{the shortest path between the sender and the farthest process in

the group}, which is the cost of delivery a t this site. For example, consider table

8.1 and figure 8.1, with the assumption tha t px wants to send a message m to the

group.

Message m will be sent by p x to all members of the group, which requires four

units of tim e to arrive at the farthest node (U). The nodes send a reply with a

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multicast Protocol X send Z send W send Average

Structure A

BUS 0 to 4 1 to 6 3 to 7 1 to 6

BUS-TO 1 to 6 1 to 6 5 to 9 2 to 7

Structure B

BUS 0 to 4 0 to 6 3 to 7 1 to 6

BUS-TO 2 to 6 2 to 6 5 to 9 3 to 7

CBCAST 1 to 7 1 to 8 2 to 7 1 to 7

ABCAST 8 to 12 6 to 9 8 to 12 7 to 10

Central Protocol (X central) 0 to 4 2 to 6 4 to 8 2 to 6

Central Protocol (Y central) 1 to 4 1 to 4 3 to 6 1 to 4

Table 8.1: Number of Hops for Example 1.

tim estam p assigned to the message, which takes a maximum of four more units

before these two rounds of messages are completed. Therefore, after eight units,

p x can assign a final timestamp and send it to all group members. At this point,

px can also deliver m locally (first delivery occurs after eight units). However, pw

will not deliver m until it receives the final tim estam p after twelve units. On the

other hand. CBCAST, which ensures a causal-order delivery, is modeled through

the tree with the shortest span over the group members. The central node achieves

total order through two rounds of messages from the sender to the central node

and then from the central node to the group.

Figures 8.2 and 8.3 show connection graphs and associated costs for each con­

nection. Examples 8.1 and 8.3 show partially connected sites; example 2 shows

fully connected sites. All three examples have the same sites with different connec­

tivity; however, they keep the same communication cost for similar edges. These

examples are constructed this way so tha t the behavior of the different protocols

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

(a) Connected sites with communication cost.

fbl Communication Structure A. Cci Communication Structure B.

Figure S.2: Example 2 - a set of connected sites and possible communication

structures.

can be compared with variations in connectivity.

As we stated before, structure A is built w ithout regard for resiliency and

the effects of site failure (i.e., several TFM s are allowed to run on the same

site). For example, in Figure 8.1 structure A runs two TFM s on site U. Struc­

ture B is constructed to increase the level of system resiliency because no more

than one TFM process runs per site. Tables 8.1, 8.2, and 8.3 show the expected

first and last delivery of the messages sent from different processes (p w , p x , P z)•

Each entry in the table shows the first and last delivery of the message as follows

(f i r s t delivery , last delivery). We assume th a t the messages target the whole

group. This assumption favors the evaluation of the ABCAST, CBCAST, and

centralized protocols because the hierarchical protocols target subgroups with a

lower cost than the other protocols.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multicast Protocol X send Z send W send Average

Structure A

BUS 2 to 4 1 to 4 1 to 3 1 to 4

BUS-TO 2 to 4 2 to 4 1 to 3 2 to 4

Structure B

BUS 3 to 6 1 to 6 0 to 3 1 to 5

BUS-TO 5 to 8 3 to 6 2 to 5 3 to 6

CBCAST 3 to 7 2 to 7 3 to 7 3 to 7

ABCAST 6 to 9 6 to 9 6 to 9 6 to 9

Central Protocol (X central) 0 to 4 2 to 4 3 to 6 2 to 3

Central Protocol (Y central) 1 to 3 1 to 3 2 to 4 1 to 3

Table 8.2: Number of Hops for Example 2.

Both the BUS, the Central, and the CBCAST protocols enforce a causal order;

the BUS-TO and the ABCAST protocol ensure a to tal order between multicasted

messages. The BUS-TO protocol outperforms the ABCAST for all cases. The main

reason for this difference in performance (which can be clearly seen in Tables S.l,

8.2, and 8.3) is due to the three rounds of messages necessary to achieve this order in

the ABCAST protocol. The BUS-TO protocol achieves total order through a more

distributed protocol than ABCAST; this approach achieves a higher performance

and resiliency.

Tables 8.1 and 8.2 clearly show tha t the BUS-TO protocol is outperformed by

the central protocol; however, the BUS-TO protocol achieves a higher performance

in the example shown in Table 8.3. The results in Tables 8.1 and 8.2 are not unex­

pected because of the ex tra levels the message m ust pass to get to its LCA before

it is multicasted to its group. These extra levels are not necessary with the central

protocol because the message must move only one level in the hierarchy. Note

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u

(a) Connected sites with communication cost.

(b) Communication Structure A. (c) Communication Structure B.

Figure 8.3: Example 3 - a set of connected sites and possible communication

structures.

the change in behavior in Table 8.3 in favor of the BUS-TO protocol; this change

is due to the selection of the central node. The BUS-TO protocol outperforms

the central protocol when either X or Y is used as the central node; this obser­

vation is reversed when W is used instead. The selection of the central node and

the TFM sites are crucial to the performance of the protocol. This dependence

may be a disadvantage of the hierarchical protocols in a highly dynamic group-

membership environment because the cost of restructuring the hierarchy may be

a burden to the protocol. The importance of the optimization algorithm (which

builds the communication structure) on the performance of the protocol is also

evident. The centralized protocol should achieve the best performance over any

total-order protocol, given a wise selection of the central node. The performance of

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M ulticast Protocol X send Z send W send Average

Structure A

BUS 3 to 6 1 to 6 0 to 3 1 to 5

BUS-TO 3 to 6 3 to 6 0 to 3 2 to 5

Structure B

BUS 3 to 6 1 to 6 0 to 3 1 to 5

BUS-TO 5 to 8 3 to 6 2 to 5 3 to 6

CBCAST 3 to 7 1 to 9 2 to 8 2 to S

ABCAST 10 to 15 10 to 15 6 to 9 9 to 13

Central Protocol (X central) 0 to 5 5 to 10 3 to 8 3 to 8

Central Protocol (Y central) 5 to 10 1 to 6 2 to 7 3 to S

Central Protocol (W central) 3 to 5 2 to 5 0 to 3 2 to 4

Table 8.3: Number of Hops for Example 3

the BUS-TO protocol falls between ABCAST and the central protocol. However,

the central protocol suffers a lower site-failure resiliency than the BUS-TO. Also,

with the central protocol the high traffic directed to the central node may cause a

bottleneck, which could result in a longer delay in message delivery.

Also notice tha t the BUS protocol outperforms the CBCAST protocol in exam­

ples 2 and 3. In example 1, the CBCAST protocol outperforms the BUS protocol

in some cases (sender pw for structures A and B in Table 8.1) but is outperformed

by the BUS protocol in some other cases. However, the average performance in­

dex generally indicates that the BUS protocol achieves a faster delivery than the

CBCAST protocol. The delivery tim e in this case relies on where the message is

sent from in relation to the TFM sites.

The results show tha t both the centralized and hierarchical protocols are sen­

sitive to the central site and the TFMs. This sensitivity is evident if the results

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from structure A and structure B in Tables 8.1, 8.2, and 8.3 are compared. The

results from the use of different central nodes for the centralized protocol can also

be compared.

The three examples presented clearly show th a t the hierarchical protocols

achieve a much faster delivery with structure A than with B. W ith structure B,

the message encountered greater delays in delivery because of the extra hops the

message must go through to reach its LCA (because no two TFM s run on the same

site). As mentioned earlier, the intention of these examples is not to estim ate the

performance of the BUS and the BUS-TO protocols bu t to provide a sense of the

expected improvement in delivery tim e and lowered communication cost.

8.3 The Point-to-Point M odel

The first models assume a point-to-point network like the ARPANET. In a similar

network, a process p th a t sends a message m to n processes actually sends n

messages. When process p sends a message m, we expect th a t some processing

cycles P will be added to send out m . Then, m will take tim e L to reach its

destination (network delivery time). Obviously, both P and L are subject to

different param eters such as the relative location of the sender and receiver, site

load, and network load. However, for simplicity we will assume th a t P and L are

constant at an average or worst-case value.

Let us consider first the number of messages N required to deliver an ordered

m ulticast from process p to n destinations. The ISIS two-phase protocol [12]

requires ji messages to get the message to the recipients, then another n messages

to return the local tim estam ps to the sender. The sender then sends the final

tim estam p to all recipients. This results in 3n messages for the two-phase protocol.

The centralized protocol requires tha t a single message be sent first from the

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sender to the central site; n — 1 messages are sent from the central site to the

recipients. If extra nodes exist in the path from the central sites to the nodes,

then the number of messages becomes n + E , where E is the expected number of

ex tra nodes.

The network delivery time, which is the second item in our performance index,

can be calculated similarly. For the two-phase approach, which requires three

rounds of execution, the delay will be L + n P in the first round for the message

to be received by all destinations. The to tal delay for the second round, in which

the sender receives the returning destination tim estam ps, will be L + P. The third

round, in which the final tim estam p is sent back to the destination, requires a delay

of L + nP . The total cost is 3L + (2n + 1)P for the two-phase protocol. The delay

in the centralized protocol is L + P to transport the message from the sender to

the central node and then L + (n — l)P for the message to go from the central node

to all destinations including the sender. The total cost for the centralized protocol

is 2L + nP . For our hierarchical approach, the cost of the protocol depends on

the length of the longest path from the LCA to the group member tha t is farthest

away (at depth dd) and the path from the sender to the LCA (at depth du). The

delay from the source to the LCA is (du + dd)(L + P). The delay from the LCA

to the group members at depth d in a worst-case scenario would be dL + dP. The

total cost for the hierarchical approach is 2d(L + P) + nP . A comparison of the

performance indexes is shown in Table 8.4.

The performance of the hierarchical protocol depends on the value of d. In

most cases of interest, d is relatively small because it tends to be on the order of

logx (n). where x is the order of the tree.

In a comparison of the results in table 8.4, we can clearly see tha t for N (the

num ber of messages) the hierarchical approach is significantly more efficient than

the two-phase approach because d is a small number (< logx(n)).

171

with permission of the copyright owner. Further reproduction prohibited without permission.

Centralized Two-phase Hierarchical

of messages n 3 n n + (du + dd)

Delivery tim e 2 L + n P 3L + (2n + l)P (du + dd)(L -f P) + nP

Table 8.4: Performance Index for Point-to-Point Model

If the number of levels the message must pass through d is less than 2, then

the hierarchical protocol will encounter less delay than the two-phase protocol. If

d is greater than 2, then the hierarchical protocol may incur more delay than the

two-phase protocol. However, we expect d to be smaller than 2 for smaller groups.

Small groups are much more common in ordered m ulticasting applications such

as replica control, in which only a few copies are kept at a small number of sites

because the cost of maintaining replicated copies is high. Also note tha t if the

processing cost P becomes more significant than L, then the hierarchical approach

will perform better than the two-phase model. Also, if the hierarchical approach

maps the physical connection and the TFMs are run a t the gateway, a significant

improvement will result in delivery tim e because all hops tha t the message takes

to reach its LCA will be part of the route it would normally take to the rest of the

group; therefore, no extra hops are taken.

Figures S.4-8.8 show different performance curves for the centralized, two-

phase, and hierarchical protocols under the point-to-point model. Figures 8.4,

8.5, and 8.6 are evaluated for a total number of nodes N — 1000 for different group

sizes (1000, 100, 50, and 20, respectively). Figure 8.4 shows the delivery time of

the three protocols for a group size of 1000. This group size should result in a

similar performance between the hierarchical and the centralized protocols. This

similarity results because when the group size is equal to N , then we have a tree

of only one level, which makes the hierarchical communication structure resemble

tha t of the centralized structure. This similarity can be seen in Figure 8.4, where

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perform ance for p o in t-to-poin t m odel
Number of processes=1000, group size=1000

14500
X Two — phase
•A Hierarchical
® Centralized

12500es
o- 10500

8500

6500

4500

2500

500
100 100001000

I/P

Figure 8.4: Performance curves for group size equal to 1000 with point-to-point

model.

the curves for the centralized and the hierarchical protocols match. This arrange­

ment is a best-case performance for our protocol. Both the hierarchical and the

centralized protocols out-perform the two-phase protocol with this configuration.

Figure 8.5 shows the delivery times for the three protocols for a group size of 100

processes. The performance curve for the hierarchical protocol falls between the

curves for the centralized and the two-phase protocol, the hierarchical protocol

achieves a performance similar to tha t of the centralized protocol for small values

of L /P and performs more like the two-phase protocol for larger values of L /P .

Figure 8.6 shows the same curves for a group of size 50. The same observation is

seen in Figure 8.5; however, the two-phase protocol outperforms the hierarchical

protocol for L / P > 2048.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perform ance for p o in t-to -p o in t m odel
Number of processes^1000, group size=100

14500

X Two - phase
* Hierarchical
® Centralized

12500
C
S
CL. 10500

S
8500

6500Q>
Q

4500

2500

500
100 1000 10000

I/P

Figure 8.5: Performance curves for group size equal to 100 with point-to-point

model.

The curves shown in Figures 8.4, 8.5, and 8.6 clearly show th a t the group

size affects the performance of the hierarchical protocol. Here, we have assumed

tha t the message is directed to all the processes; this assumption favors both the

centralized and two-phase protocols over the hierarchical protocol. Figure 8.8

shows the hierarchical protocol performance with different group sizes. The figure

plots curves for N = 100, 1000, and 10000 for different group sizes. The figures

shows a shorter delivery tim e for larger group sizes. It also shows a shorter delivery

tim e for smaller values of N.

In general, we conclude that the hierarchical protocol in its best-case perfor­

mance for the provided model can achieve a performance similar to tha t of the

centralized protocol. It outperforms the two-phase protocol for all group sizes

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perform ance for point-to-point m odel
Number of processes=1000, group size=50

8500
X Two — phase

Hierarchical
® Centralized

7500C5
CL 6500
0>
£ 5500

4500

0)
Q 3500

2500

1500

500
100001000100

U P

Figure 8.6: Performance curves for group size equal to 50 with point-to-point

model.

greater than 25 for an L /P ratio of magnitude of order 3. For group sizes smaller

than 25, the two-phase protocol outperforms the hierarchical protocol for higher

ratios of L /P . For example, Figure 8.7 shows the outperformance of two-phase

protocol over the hierarchical protocol for L /P values greater then 512. As the

group size decreases, this intersection shifts toward a lower value of L /P .

Also note tha t both the model chosen here and the assumption of message

direction to all groups favors the centralized and two-phase protocols. Also, the

hierarchical protocol requires fewer protocol messages than the two-phase protocol,

which provides a lower probability of message loss and, thus, a lower recovery cost.

In addition to the result shown above, if the physical and the logical structures

are aligned, the performance of the hierarchical protocol will improve to a greater

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perform ance for p o in t-to-poin t m odel
Number of processes=1000, group size=20

X Two — phase
Hierarchical

® Centralized

10500

s3
0m 8500
U
E

s*
ha0)>

Q

6500

4500

2500

500
100001000100

U P

Figure S.7: Performance curves for group size equal to 20 with point-to-point

model.

extent.

8.4 The M ulticast M odel

The second model assumes a multicast environment in which messages can be

multicasted to all group members at once with a m ulticasting address. The desti­

nation sites m ust verify members of the multicasting address. This verification can

be accomplished a t the software level; however, some network interfaces provide

this flexibility at the hardware level.

We must calculate the same two performance indexes for this model. The num­

ber of extra messages N for the two-phase protocol is different than tha t calculated

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perform ance for point-to-point m odel

s3
<U
s

S*faW>
•mm

"a
Q

12 X n = 100
n = 1000

• n = 1000010

8

6

4

2

0
25 30 35 40 45 50

Group S ize

Figure 8.8: Performance curves for different group sizes with point-to-point model.

in the previous section. The sender multicasts one message to n members of the

group (recipients), n messages from the recipients to the sender, and one message

from the sender to the recipients. The total number of messages in this case is

n + 2 for the two-phase protocol. The centralized protocol requires one message

from the sender to the central site and one multicast message from the central site

to the recipients: a total of two messages. The hierarchical protocol forwards the

message from the sender to the LCA of the message; a multicast is initiated at

each level of the communication structure tha t the message passes. As it arrives at

its LCA, the message is directed down the hierarchy to the remaining recipients.

The total number of messages is 3d, where d is the expected path length from the

sender to the LCA.

To calculate the second performance index, we must estim ate the delay encoun-

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Centralized Two-phase Hierarchical

of messages 2 n + 2 3d

Delivery tim e 2 L (:n + 2)L [dd + du)L

Table S.5: Performance Index for Multicast Model

tered in moving the message from its sender to its recipients. Assume tha t the

message requires L units of time to travel from the sender to some of the recipients.

This tim e includes processing time, network delay in delivering the message, and

site checks to identify if it is a member of the multicasting address. If we multiply

the number of messages calculated previously by L, we can estim ate the delay of

message delivery for both the centralized and the two-phase protocol.

For the hierarchical protocol, the total delay for message delivery will vary

between the tim e needed for the message to get to its LCA and the tim e needed

for the message to reach those recipients tha t are farthest from the LCA. After the

message arrives at the LCA (it takes a total num ber of hops d), it can be delivered

to any recipients tha t are directly connected to the message LCA [(d + 1)L]. As it

travels down the hierarchy, the message is delivered to all recipients with a worst-

case delay of (du + dj)L. where dj is the path length from the message LCA to the

farthest recipient in the targeted group. Both dd and du have an upper lim it of

d = logx[n), where x is the order of the hierarchical structure and n is the number

of nodes in the structure. Note tha t d is an upper limit for dd and du because the

message is never directed to the root of the tree unless the message is directed to

the whole multicasting group; d will be the num ber of levels in the tree. We adopt

a worst-case scenario have and assume tha t the delay tim e is 2dL.

The performance indexes clearly show th a t the centralized approach performs

better than both the two-phase and the hierarchical approach. However, in the

centralized approach the central node may become a bottleneck because of high

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message traffic. This may result in an increase in the value of L, which, conse­

quently, will increase message delay. In a comparison of both the two-phase and

hierarchical protocols, a breakpoint occurs a t d = n f 2 + 1. In other words, if d

is greater than n /2 + 1, the two-phase protocol will outperform the hierarchical

protocol. Because we are considering a communication structure tha t is based

on a tree structure of order x, d is on the order of logx (n), so tha t d is smaller

than n /2 + 1. Therefore, the two-phase protocol is comparable to the hierarchical

protocol only when n is small; for larger value of n, the hierarchical protocol will

outperform the two-phase protocol.

8.5 Rem arks

When the TFM is running a t the gateway (although this is not necessary), a better

performance results because messages tha t are leaving the LAN are redirected to

the gateway by default. Therefore, if the TFM process runs on the gateway, then

the number of hops tha t the message must make to leave the LAN decreases.

8.6 Conclusion

The hierarchical protocol is a viable option for ordered m ulticasting in both point-

to-point and m ulticast networks. The simplified models shown here validate this

assertion in term s of both extra protocol messages used and message delivery

delay. However, the hierarchical protocol has one drawback in the extra cost

needed to build the communication structure. This cost can be acceptable if

changes in the group membership are not frequent and if the number of messages

propagated during the lifetime of the groups is large. Another im portant issue is

the im portance of optimizing the communication structure; the performance of the

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocols examined here are highly affected by this structure.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hap ter 9

R elia b ility and Fault T olerance

9.1 Introduction

Fault tolerance is concerned with how well the system continues to function in the

event of failure. It is a major concern because of the tremendous effect failure

has on the functionality of all protocols. A higher probability of failure in an

interconnected LAN environment increases the necessity of improving protocol

resiliency. We must identify the types of failures tha t may be encountered before

we can address protocol resiliency. Two types of failures are of interest here:

• Transient failure: This type of failure causes some messages to be lost because

of a buffer overflow or link failure.

• Persistent failure: This type of failure causes network partitions, in which

a group of hosts is disconnected from the other broadcast groups. This

failure results in a total loss of messages multicasted by sites from the other

partitions.

Recovery from a persistent failure is more costly than a recovery from a transient

failure because it essentially requires message retransmissions to multiple destina-

181

with permission of the copyright owner. Further reproduction prohibited without permission.

tions [39].

Another m ethod for classifying failures is based on the way they occur and the

level of synchrony in the system. Based on this method, some researchers have

classified failures into two types: omission failures and timing failures [43, 27, 62,

44]. Omission failures consist of crash, send omission, and receive omission failures

of processes, as well as link omission failures. Timing failures consist of omission,

clock, and performance failures. Certain types of failures are characteristic of

certain networks; individual processes and links generally commit failures from

the same class. Thus, a network with omission failures is not subject to clock,

performance, or arbitrary failures. Similarly, one with timing failures is not subject

to arbitrary failures [44].

As presented earlier, distributed systems are either synchronous or asynchronous.

Asynchronous systems have recently gained attention for several reasons: they have

simple semantics; the applications tha t are programmed under them are easier to

port; and, in practice, variable workloads are sources of asynchrony (thus, assump­

tions of synchrony are at best probabilistic). Informally, a distributed system is

asynchronous if no bounds exist on message delay, clock drift, or tim e necessary

to execute a step. Thus, in order to say th a t a system is asynchronous, no tim ing

assumptions can be made whatsoever.

Although the asynchronous model is attractive, the Atomic Broadcast cannot

be solved deterministically on an asynchronous system tha t is subject to even

a single crash failure [37, 34]. Essentially, the impossibility results for Atomic

Broadcast stem from the inherent difficulty is determining whether a process has

actually crashed or is very slow. To overcome the impossibility results, previous

research focused on the use of randomization techniques [16, 8], or the study of

several models of partial synchrony [34, 35]. Nevertheless, the impossibility of

deterministic solutions to many agreement problems such as Atomic Broadcast

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remains a m ajor obstacle.

No protocol that currently exists is resilient to network partitioning when mes­

sages are lost (i.e., the possibility always exists tha t some sites will block messages

when networks become partitioned [71]). Failure properties of the described net­

work are characterized by the following set of assumptions:

1. Benign Failures. Process and link failure are benign. Benign failures are

synonymous to omission failures in asynchronous networks and to timing

failures in synchronous networks. In a system with only benign failures,

processes do not commit arbitrary failures. Thus, a faulty process does not

change its state arbitrarily or send a message tha t it was not supposed to

send. Our failures fall under benign failures because of their practicality

and the availability of autom atic methods tha t increase the fault tolerance

of an algorithm. Fault tolerance is achieved by a set of algorithm s that can

translate any algorithm tha t is tolerant to a certain type of failure to an

algorithm tha t can tolerate a more severe type of failure [15, 6].

2. No partitioning. Every two correct processes are connected via a path that

consists entirely of correct processes and links (partitioning will be discussed

later in this chapter along with diiferent methods of handling it).

9.2 The R eliab ility M odel

Our model is similar to the work presented in references [43] and [27] and is an

extension to the model presented in reference [44].

9.2.1 M u lticast N etw ork

In a multicast network, messages can be multicasted to all group members at

once with a multicasting address. The destination sites m ust verify tha t they

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are members of this multicasting address. Normally, this verification is done at

the software level; however, some network interfaces provide this flexibility a t the

hardware level.

1. Networks w ith No Failures

A m ulticast network allows each of its processes to multicast a message m

to a group address X , where X represents a set of processes that is the

target of all messages multicasted to its address. In such a network, any set

of processes tha t is a member of a group can communicate by multicasting

and receiving messages, as described below. In this section, we assume tha t

processes and links do not fail.

• Properties of Processes:

Each process is capable of executing certain operations, such as writing

a local variable or sending a message. The execution of an operation by

process p is a step of p. We do not assume that the steps are atomic;

a step consists of a sequence of atomic events, indicated by a start and

an end event. The fact that steps are not atomic will permit us in

the next section to model failures tha t interrupt the execution of an

operation in the middle. Hence, the execution of a process p is modeled

as a sequence of events grouped into steps, such that the start event

of each step (except the first one) immediately follows the end event of

the previous step. If this sequence includes the start event of a step, we

say th a t p has started tha t step; if it includes the end event of a step,

we say tha t p completed that step. Associated with each process p is

an autom aton whose transition relation describes the legal sequences of

events for p. We assume that:

a. Every process com pletes an infinite number of steps.

184

with permission of the copyright owner. Further reproduction prohibited without permission.

This implies tha t every process eventually completes every step th a t it

starts.

• P ro p e r t ie s o f M u ltic a s t a n d R eceive:

Let X = {x i ,X 2 ,...,Xk} be a group of processes connected by a mul­

ticast network. Associated with this network are the communication

primitives “multicast” and “receive”, which are among the operations

that can be executed by members of X . The operation multicast takes

a message and a group ID as parameters; receive returns a message.

The execution of the multicast primitive with param eter m and X is a

step denoted by multicast(m ,X); the execution of the receive prim itive

with return value m is a step denoted as receive(m). We say th a t X{

multicasts m to group X s tarts the step multicast(m,X); we say th a t xj

receives m if xj completes the step receive(m).

Associated with each process in the multicast group is an outgoing mes­

sage buffer, denoted omb(x), and an incoming message buffer, denoted

imb(x). Informally, when X{ multicasts a message m to X , X{ inserts m

in omb(xi)j the multicast network transports m to all members of X .

Therefore, m will be entered into imb(xj), where Xj £ X , and Xj receives

m from imb(xj). More precisely, the multicast and receive primitives

associated with a group X satisfy the following three properties:

b . I f Xi co m p le te s th e m u ltic a s t o f m to X , th e n m is e v e n tu a lly

in s e r te d in to omb(xi).

c. I f m is in s e r te d in to om6(z,), th e n m is ev en tu a lly in s e r te d

in to imb(x), V x € X .

d. I f m is in se r te d in to imb(xj), th e n Xj e v en tu a lly rece iv es m.

These three properties imply that:

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- I f x, m u ltic a s ts m to X , th e n V x € X, x e v e n tu a lly rece iv es

m.

We also assume that:

b '. m is in s e r te d in to om6(x,) a t m o s t o n ce a n d o n ly if x,- sen d s

m to X .

c'. m is in s e r te d in to imb(x), V x £ X , a t m o s t on ce a n d o n ly

if m is in omb(xi).

d '. x j rece iv es m a t m o s t once , a n d o n ly if m is in imb(xj).

Properties (b ')-(d') imply uniform integrity, which means tha t for any

message m, V x € X , x receives m at most once from x t- and only if x,-

previously sent r a to X .

The preceding definition of a multicast network assumes th a t no failures

occur. In the next section, we consider some of the failures th a t can affect

processes and links. These failures will be defined as violations of properties

(a) and (b')-(d'). We will not allow the violation of properties (b')-(d'); thus,

uniform integrity holds even in networks with failures. We will also not allow

violation of the postulated property in regard to messages sent by a process

to itself.

2. N e tw o rk s w ith O m iss io n F ailu res

Failures can be defined as deviations from correct behavior. In networks with

omission failures, processes and links may violate properties (a) and (b')-(d').

The violation of property (a) is described below.

To model a violation of property (a), we introduce a special event called a

crash. Every process p can execute a crash a t any time, and after doing so

it stops executing further events. This is modeled by the addition of a new

terminal state to the autom aton associated with p, and a transition from

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

every other s ta te of p to that term inal state. The event associated with such

a transition is defined as a crash. We say th a t p commits a crash failure if it

executes a crash event.

Because no event can follow a crash, a process tha t crashes can execute only

a finite number of events, and, therefore, completes only a finite num ber

of steps. Thus, a process tha t crashes violates property (a). We assume,

however, tha t only processes tha t crash violate tha t property. T hat is, a

process tha t does not crash completes an infinite number of steps.

The violation of properties (b), (c), and (d) of multicast and receive is de­

scribed below.

• Process Xi commits a multicast omission failure on m if x,- completes

7nulticast(m , X) but m is never inserted into o m i(it), where x,- € X

(violation of property (b)).

• The multicast network commits an omission failure on m if m is inserted

into omb(x{) following a m ulticast(m . X) , but m is never inserted into

imb(x), fo r any x 6 X (violation of property (c)).

• Process Xj commits a receive omission failure on m if m is inserted

into imb(xj) but Xj never receives m and does not crash (violation of

property (d)).

If a process or a multicast network commits a failure, we say th a t it is

fa u l ty . Recall tha t in networks with no failures, if x,- multicasts m to X ,

then x, Vx € X , eventually receives m. The properties of multicast networks

with omission failures imply valid ity , which means tha t if x,- m ulticasts m to

X and fo r any x € X , x does not receive m, then one of the following holds:

1. Xi does not complete the multicast of m, or

2. Xi commits a multicast-omission failure on m, or

3. the multicast network commits an omission failure on m, or

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. x, where x € X , commits a receive-omission failure on m, or

5. x, where x £ X , crashes.

9.2.2 P o in t-to -P o in t N etw ork

In a point-to-point network, a pair of processes connected by a link can communi­

cate by means of send and receive primitives. From a reliability perspective, the

point-to-point network can be seen as a specialization to the multicast network.

Here, the m ulticast group will have a single process as a member.

A point-to-point network can be modeled as a directed graph with nodes tha t

represent processes and edges tha t represent communication links between pro­

cesses. In such a network, any two processes tha t are connected by a link can

communicate with each other by sending and receiving messages. The same rules

presented in Section 9.2.1 will still apply, with some minor changes because of the

simple model represented. Receive omission failures are easier to represent and to

recover from because they involve a single process and not a group of processes.

We will not repeat the model description here; however, more details about similar

models can be found in reference [44].

9.3 R eliability Approaches for our Protocols

We will show in the next several subsections how our protocol tracks these failures

and how recovery should be conducted.

9.3.1 N etw ork O m ission Failure

Our protocols rely on the assignment of a tim estam p to the message rrik a t the

sender pjx. This tim estam p is added to M T S mk, which accompanies the message

on its journey for delivery. The protocols use a set of reliability procedures built

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in to the protocol to track send omission, receive omission, and multicast omission

failures, as well as out-of-order messages. These tracking mechanisms are made

available through the tim estam p vector tha t accompanies the message (M T S m\})

and the tim estam p vector tha t exists a t each active process and at the TFMs

(/3T'5p[]). These tracking mechanisms are part of the procedures presented in

Chapters 4. 5. 6, and 7.

The message m*, as it leaves pJX and is directed to its TFM (Tx), will be

checked on its arrival a t Tx for lost or delayed messages; Tx can detect lost or

delayed message from pJX because of the entry in PTrx tha t represents the last

message tha t arrived from pjx and was timestamped. Because all pjx messages are

directed toward Tx, any lost or delayed messages can be tracked by the arrival of

another message th a t arrives from the same sender. This process makes Tx aware

of any lost or delayed messages; in this case, is held to wait for rrik-1 - Any

send/m ulticast omission failures and network/link omission failures tha t concern

sender-receiver interaction can be tracked with this approach.

Another tim estam p entry tha t is provided by the protocols to check for net­

work omission between TFM s is the OLDTS. The O L D T S tx tim estam p is used to

provide a reliable delivery scheme between two consecutive level processes while a

message is traveling up in the hierarchy. To clarify the functionality of O L D T S tx,

assume tha t a message is sent from Tx to Tw (the TFM of Tx). The message

rrik is tim estam ped at Tx before it is forwarded to Tw with L T S rz• This times­

tamp from Tx, which is assigned to M T S mk[l], is used at Tw to be compared with

P T S tw [Tx] to check th e message order. In order for this process to be effective,

all messages tha t are tim estam ped at Tx would have to be forwarded to Tw so

that P T S rw[%:] would have the same sequence as L T Srx- However, this would

not normally be the case because the message that has Tx as its LCA would not

forward to Tw: therefore, PTS%,[TX] would be missing those messages with Tx as

189

with permission of the copyright owner. Further reproduction prohibited without permission.

their LCA. As a result, L T Srx cannot be used for this comparison. This problem

forces us to introduce the O L D T S as a tim estam p variable a t each TFM process.

The OLDTS keeps the tim estam p of the last message forwarded to the next high­

est level TFM from this process. When message is forwarded up the hierarchy,

the first entry in the vector M T S mk carries a copy of O L D T S . This entry is re­

sponsible for ensuring the ordered delivery of m* from the sender Tx to its TFM

Tm. The value assigned to M T Sm^O] should be in sequence with P T S tw[Tx] unless

a delayed message exists. The O LD TSrx tim estam p is then adjusted by assigning

the tim estam p value given to by Tx.

The question here is whether or not this tracking and detection mechanism

actually accomplishes its purpose. In spite of the fact tha t this mechanism fits

the asynchronous definition for no crash failure, the performance of the system is

affected. For example, in the case of message m* sent from pjx to Tx, where is

lost and pjx did not send any other messages after to Tx for a period of tim e,

a long delay results before this lost message is detected.

Several options are available to resolve this problem. One is the use of a

timeout mechanism to detect lost messages and to decrease this delay effect. W ith

this feature, the active processes try to m aintain a message exchange with their

TFMs. Furthermore, the TFM s in the communication hierarchy try to act similarly

between TFM s that report to each other. As a result, if no traffic occurs for a

certain period of tim e between two processes th a t normally interact with each

other, then the initiator pi will send a Status Information Packet (SIP) to the

receptor pT to check the messages status. The SIP will carry with it the part

of the pi tim estam p structure that pertains to pT; pT can then decide if any lost

messages exist and respond to p fs SIP message with a Status Information Packet

Reply{SIPR). The SIPR will be a null message (if no lost messages exist) to simply

inform p,- tha t pr is alive but has no message to send. If one or more lost messages

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exist, then pT will begin to retransm it the lost messages along with the SIPR.

The possibility exists th a t pt- will have to send multiple SIP messages to a

specific process before an SIPR is returned because the SIP or the SIPR messages

may be lost. Therefore, p, will adopt a tim eout scheme before it retransm its

another SIP. Another possibility, if p, receives no reply, is th a t pr experienced a

crash. A crash can be detected with the SIP algorithm or with a more sophisticated

algorithm tha t uses one of the known failure detector algorithms. This algorithm

signals a pT crash and stops the SIP requests tha t are traveling to p,.

The approach we adopt can be initiated in two different ways: with the TFM

or with the active process. The TFM initiation approach relies on the assumption

th a t the TFM is sending the SIP message when a communication link timeout.

The active process initiation approach assigns the task of sending the SIP message

to the active process. Both approaches will be discussed in more detail in Section

9.3.5 because we use these approaches to track site failures.

9.3 .2 R eceive O m ission Failure

A receive omission failure results when rule (d) is violated. Our tim estam p mech­

anism allows the TFM , as well as the active process, to detect the receive omission

failure. A lost message m* th a t is traveling from p to q is detected when the next

message m; th a t comes from p is delivered to q because q will check the tim estam p

vector added to m* by p. This vector will reflect a tim estam p difference between

M TS„H[l] and P T S q[p}, which indicates a missing message.

This detection is adequate in a high-traffic environment because the period

between the tim e that m t and ra; are delivered will be short. In an environment

with a lower traffic volume, a failure detector or a tim eout mechanism (as described

in Sections 9.3.1 and 9.3.4) will have to be relied upon. The retransmission request

will still be handled as described in Sections 9.3.1 and 9.3.4.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.3.3 M u ltica st/S en d O m ission Failure

A multicast omission failure happens as a violation of rule (b). When the send

operation is completed, the tim estam p structure at the sender (p) is modified as

a sequence to the multicast/send operation. However, the message is not inserted

in the oiJib(p); thus, it will not be inserted in imb(q). This omission failure can be

handled as a network/link omission failure, as described in Section 9.3.1.

Multicast omission failures require more than just a single message recovery.

Because the multicast operation directs the message to a multicast group, in order

to meet the requirements of rule (b) and (c), the message must be delivered to all

members of the group. The message timestamp vector is still valid because each

member of the group can track a message loss with the same mechanism described

in Section 9.3.1.

9.3 .4 R etransm ission Buffers

The TFM process may be the best candidate for the retransmission site for a

number of reasons, such as:

• The TFM process is the center of all group messages, which provides a good

pool for piggybacking retransmission requests.

• It can provide a potential low cost garbage-collection algorithm for cleaning

retransmission buffers.

• It provides a faster method for honoring retransmission requests for other

CUs.

The failure of the TFM may mean the loss of the retransmission buffers. How­

ever, under the fail-stop assumptions presented in reference [71], in the event of

a failed process crash, all correct processes are informed of the crash and have

192

with permission of the copyright owner. Further reproduction prohibited without permission.

access to any information w ritten by the faulty process in its stable storage. This

fail-stop assumption provides an inexpensive solution to this problem.

However, if we assume the unavailability of such stable storage or the possi­

bility of network partitions tha t disconnect the retransmission site, then another

approach is necessary.

The possibility of TFM failure, where the TFM is the main retransmission-

request server, requires a secondary retransmission repository. The secondary

repository is responsible for honoring retransmission requests in case of TFM fail­

ures or overload. As a result, our retransmission buffer is resilient up to the main

and no secondary or any number of secondary within the same unit. Actually,

we developed a distributed secondary retransmission buffer tha t provides more re­

siliency and better performance. It also provides a means of granting send omission

failure retransmission requests.

The possibility of retransmission requests makes it necessary for each process

to keep old messages to honor the retransmission requests. This may need a large

storage unless we use a reasonable garbage-collection algorithm. Messages can be

eliminated from the retransmission buffers once they are no longer subject to any

retransmission requests [29]. A simple garbage-collection protocol is shown below

to provide a main retransmission buffer. When a message m,- is sent from process

Pjx to Tj of cuj, the following steps occur:

• message m,- is kept in the sender (pjx) retransmission buffer; the sender does

not release it until it receives the multicast version of the message from Tj.

• Tj is responsible for keeping the copy of the message for retransmission re­

quests. After multicasting it to the group, it will hold m,- in its retransmission

buffer (which is better than keeping the retransmission buffer at the sender

because the message will not have to be redirected from the TFM process

to the sender). Furthermore, it also has a better chance of benefiting from

193

with permission of the copyright owner. Further reproduction prohibited without permission.

piggybacking.

• Each process pjx (where pjxecuj) will send the last message received to; with

each message to its TFM Tj. This step will allow Tj to release copies of

message m y : m y < mi in case they are received by all members of cuj.

A problem is encountered when messages are not sent; extra messages are held

for longer periods of tim e. To eliminate this problem, null messages can be sent

to inform the TFM process of the last message received.

The secondary retransmission buffer will be distributed among the members of

the group. This gives the retransmission algorithm more resiliency and improves

performance because it eliminates overloading one site. In addition, we believe

tha t the use of the sender’s retransmission buffer as the m ain buffer and the TFM

as the secondary buffer may provide a better solution in a majority of cases with

high traffic. The algorithm relies on holding to* a t pjx (the sender of to/,) until

all destinations receive m^. Only then can pjx remove m* from its retransmission

buffer. The reception of to* a t all destinations can be publicized to the active

processes by their TFM s. The TFM s can detect the delivery of to*, at its destination

by analyzing M T S m[j . where to is any later message th a t passes by the TFM. This

identification can be done because to carries (in M T S mQ) the tim estam p of the

last messages received from each process.

Another possible m ethod is the use of a recording site to log all traffic. This

site can be used either to rebuild the lost retransmission buffer or to answer the

retransmission requests if no buffer is kept.

9.3.5 S ite Failure

The detection of a site (process) failure initiates a reformation protocol that de­

pends on whether the failed process is a TFM process or a participant.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Participant failure

The failure of a participant is detected by the TFM by a Still-A live protocol

tha t is initiated after a period of silence from the participant. The Still-Alive

protocol can be initiated from the participant or the TFM .

1. Participant Still-Alive initiator

If the participant has not sent any messages to its TFM for a period of

time, then the participant sends a Still-Alive Packet (SAP) to inform

the TFM that it is still alive. If the TFM is timed out for a participant

message, before it assumes th a t the participant has failed it will initiate

an Alive Information Packet (AIP). The reason for using this message

is the possibility of the loss of the SAP. If the TFM is timed out, it will

assume the participant failure.

2. TFM Still-Alive initiator

In this protocol, if the TFM does not receive a message from any of

the CU members for a certain period of tim e, then the TFM will send

an AIP. If the TFM tim eout for a participant reply, it will assume tha t

either its message or the participant’s message is lost and will send a

second request. After a predetermined number of retries, a failure is

assumed.

The reformation phase of the process initiates a new group by eliminating the

failed process from the CU membership. The TFM of the CU th a t contains

the failed process will m ulticast a reformation message (R x) th a t contains

the new membership to the subgroup, and the reformation protocol ends.

The reformation message is handled as a normal message from an ordering

perspective. In other word, Rx is timestamped at the TFM and is delivered

to the members in its order with other reformation and normal messages.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The members use Rx to update the CU membership list (CUML).

• TFM failure

If the failed process is a TFM , then we face two main problems:

1. We must create a new TFM process.

2. We must restore the lost information that is kept in the TFM structure,

including primarily the tim estam p values and the retransmission buffers.

— The new TFM process sends a request to each member of the group

for status information. Membership information is already available at

the process from the CUML. It also sends a message to the higher level

TFM for its election to request the last sequence number sent from the

previous TFM and the tim estam p vector for the higher level.

— Upon delivery of the information tha t declares the TFM failure, the CU

members discard all messages sent from the old TFM.

— The CU members reply assists the new TFM in restoring the sequence

numbers for its communication with the members. The replies contain

the messages tha t the members have forwarded to the TFM for broad­

casting tha t have not yet been multicasted by the TFM . The members

also send their retransmission buffers to help build the new TFM re­

transmission buffer.

— The TFM , upon receiving these messages, begins to build its structure.

First, the tim estam p vector of the higher level TFM s is restored from

the upper subgroup TFM . Second, the subgroup tim estam p is restored

by using the largest tim estam p value received from the members of the

group. T hat is, the new TFM assigns a value for the tim estam p by

obtaining the maximum tim estam p known to the group members.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— The TFM , once its structure is complete, will retransm it all the mes­

sages received from its CU members. The timestamp vector sent from

each member will identify the messages tha t need retransmission. These

messages are retransm itted because some messages may have been ready

to be sent to their destinations when the TFM went down. The pro­

cesses are assumed to reject any duplicates.

— Any messages tha t were directed to the failed TFM for a higher level

process (if the failure occurred before the messages were multicasted) are

retransm itted. These messages will be recovered because retransmission

occurs for all messages with a tim estam p greater than the tim estam p

of the upper level node.

- In order to rebuild the retransmission buffer, the new TFM needs the

messages from backup sites. As discussed earlier, each process has a

secondary retransmission buffer for the messages that originate from

it as a backup for its TFM retransmission buffer. These messages are

released after the TFM release, which allows the new TFM to build its

retransmission buffer with these backups.

- The TFM takes on its normal tasks by multicasting the new group

formation.

9.3.6 N etw ork Partitions

Our work on partitions relies on the use of a failure-detector algorithm tha t reports

to a set of membership servers, which provides members with an updated mem­

bership list. The membership server’s task is extended to monitor the operational

status of group members. For group members, those that are operational are regis­

tered with the membership servers; in a failed process, they are then unregistered.

197

with permission of the copyright owner. Further reproduction prohibited without permission.

Failure detectors have been the target of various research efforts to overcome the

impossibility result reported in reference [37]. The conclusion drawn in this study

is that the consensus problem cannot be solved in an asynchronous system that is

subject to process failures. This conclusion is often taken to mean that software

must operate with some risk of inconsistent failure detection. A related result

exists for the database commit problem in the presence of partitions [71].

In our work here, we will not introduce a new failure detector algorithm, but

we will use a combination of the currently available failure-detectors algorithms,

namely, the combination reported in references [66, 18]. The algorithm relies on

a membership service tha t monitors the status of group processes and excludes

any process tha t is suspected to have failed. All communications tha t come from

processes that are not registered with the servers will be discarded. If the excluded

process did not crash and was wrongly suspected, we have two approaches that

can be adopted:

• When a suspected process is mistakenly assumed to have failed and is ex­

cluded from the membership list, it can be added again when discovered to

be alive. A similar failure-detector is presented in reference [17].

• When a suspected process is mistakenly assumed to have failed and is ex­

cluded from the membership list, it cannot be added back to the group view;

it will be assumed to have failed. The process can similarly join the group

back by using a normal join operation. Ricciardi [66] presents a similar failure

detector.

The failed process will be informed of its exclusion from the group membership

as soon as it recovers.

When physical partitions occur, the membership service will keep the system

logically connected. However, the members will function under some stricter rules.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The membership service will identify two types of partitions: the main and the

secondary partitions. The main partition will be the one th a t assumes full working

capability (as the original system); the secondary partition will function under a

restricted execution. This restricted execution allows the algorithm to provide

consistent system behavior even when partitions exist. If no partition can be

assumed, as a main partition, then all partitions will be assumed to be secondary

partitions and will be allowed a restricted execution. Actually, some applications

do not require similar strict correctness and can allow all partitions to proceed with

full execution after the reformation phase (e.g., conferencing systems, air-traffic-

control m onitor updates, and stock exchange screens). We allow applications to

identify what level of correctness they require in similar failures, and the protocol

will allow either strict or full execution to the partitions. Also, some applications

may require a single partition execution and a halt s ta te to the secondary partition.

An example of similar applications is replica control. This approach allows several

partitions to operate simultaneously. Here, we adopt the approach presented by

Ricciardi in reference [66] to provide the partitions with a consistent scenario.

Another approach [2] can be adopted here th a t provides a less restricted execu­

tion. This approach allows multiple membership views to exist simultaneously and

requires neither atom icity nor uniformity in com m itting new views. This approach

maintains more replicated data availability while it provides a weaker consistency.

We have adopted the first approach, with some modification, to cope with

network partitions. For the remainder of this section, we describe the algorithm

but do not provide a proof. Readers are referred to reference [65] for a similar

proof.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Group M anagem ent Protocol

W ith this algorithm, we attem pt to provide a virtual, centralized site th a t can

provide a membership service to the group. This site is the main authority in

defining operational sites tha t still belong to the group. We define a set of processes

called the View Maintainers (VM). This set cooperates in defining the Global View

(GV) of the group. The VMs must create the illusion of a single fault-tolerant

process that requires them to agree on the group membership, as well as the VM

list (VML). The VML contains all the VMs of the group.

When a process p suspects a failure of a process q (because of a timeout or by

running a failure-detector algorithm), it will m ulticast a fa u l ty p(q) message to the

VML members. After the fa u lty p(q) message is sent, p multicasts the rem ovep(q)

message to the VML members; the members perform the actual removal of q

from the views of all VML members th a t p believes to be operational. Similar to

fa u l ty p(q) and rem ovep(q), p can execute operatingp(q) (p believes q is functional)

and addp(q) (p adds q to the view at the VM in the VML).

The protocol tries to create a single process illusion in regard to the VM in

order to guarantee a global consistency. The GV is defined if, and only if, local

views of all its functional members agree.

The algorithm works as follows:

• An elected VML member, denoted m gr , coordinates updates among all the

local views of the VML members.

• When m gr suspects an outer members’ failure (or tha t a subset of the outer

members has failed), it initiates a two-phase update algorithm that operates

as follows:

- Phase I

The m gr proposes q:s removal by m ulticasting rem ove — req (-q) to the

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

members of its local view. The m gr then waits for each member to

respond or to decide if a member is faulty. In this way, a t the end of

phase I, all core members that m gr does not believe to be faulty know

that q may be faulty.

— Phase II

If m gr receives responses from a m ajority subset of its current local view,

then it multicasts a com m it message co m m it(-q). If the m gr does not

receive a majority response, a minority partition may exist. If this

is the case and the protocol allows the secondary partition to resume

with a restricted or full execution, then the algorithm identifies this

grouping as a secondary partition and informs the core members of their

membership in this partition. The core members inform their active

processes of the new secondary partition and execution is resumed. If

the protocol does not allow execution in the secondary partitions, then

the m gr must block if it does not receive a majority response. If the

local views are identical at the beginning of this protocol, because m gr

is a single process local views are identical a t the end of it.

The remove message coordinates belief among the core that q may be faulty;

the commit message tells outer members tha t the group has reached agree­

m ent on (jr’s failure and that they should now remove q from their local views.

However, because m gr does not receive a response from outer members it

believes to be faulty, it cannot know whether these members received its re­

moval message. From m gr's perspective, these members may not be aware of

the current update to the group view, which would render core-wide agree­

ment on the new view, contingent upon the subsequent removal of these

faulty members. The gossip approach used ensures tha t operational outer

processes become aware of such contingencies.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the group view is being added, m gr sends the new process(es) p a

sta te — tra n s fe r message tha t gives p permission to join and informs p of

all relevant system states. The m gr awaits a reply and then multicasts the

commit message to the entire new group.

Reconfiguration A lgorithm

When m gr is believed to have failed, the outer members execute a reconfiguration

algorithm to select a new coordinator and, if necessary, reestablish the group view.

Local view agreement may be lost, for example, when m gr fails in the middle of

a com m it multicast. The local views will differ, which will result in an undefined

group view.

Successful reconfiguration involves the solution to two problems:

1. Determination of which process(es) should initiate the reconfiguration and

which should assume the m gr role.

2. Determination of which update should a reconfiguration initiator propose to

resolve core member inconsistencies.

A reconfigurer must be able to determine the last defined group view and prop­

agate the correct proposal for the succeeding group view. The most difficult aspect

of reconfiguration involves invisible commits. An invisible commit occurs when the

only processes tha t receive a commit message fail or are believed to be faulty by

the rest of the group. This is significant for reconfiguration: although no sub­

sequent reconfigurer will know whether these processes com mitted the change to

their local views, we require tha t if an invisible commit occurs, the remaining core

members must behave consistently. So, every invisibly com m itted update must be

detectable by every configurer. We can ensure this only if all initiators (whether

a m gr or a reconfigurer) attem pt to install the x th group view for the requisite

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ajority responses from among th e same set of processes.

T he A lgorithm

The reconfiguration algorithm requires three phases in the worst-case scenario.

• Phase I

The initiator / multicasts a reconfiguration message reco n fig (v iew (I)) to its

local view. The reconfigurer then awaits responses from the outer processes.

Upon receipt of recon fig (view (I)), a core member tha t is lagging behind I

adopts 7’s local view as its own. Every core member, whether or not it has

updated its local view, responds to the reconfigurer with its current local

view.

If a m ajority of core members respond, then / uses the information it receives

to determ ine an updated value (u) and version number (x), whose execution

would result in a new group view.

• Phase II

The reconfigurer multicasts the predetermined values as a reconfiguration

submit message recsubm it(< v ,x >). The core members acknowledge the

recsubm it(< v ,x >); a m ajority reply is required.

• Phase III

After the recsubmit(< v ,x >) acknowledgment is received, / multicasts a

reconfiguration commit message reccom m it(< v ,x >).

The Initiator Selection

One way to select the initiator and the new m gr is to use a deterministic approach,

based on seniority in the group view. For example, older core members can be

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ranked higher. Whenever a process is removed from the group view, the ranks of all

higher ranked processes are decreased by one. A process initiates a reconfiguration

when it believes all other higher ranked processes are faulty.

The Secondary Partition

As described earlier, a network partition may result in primary and secondary

partitions or just secondary partitions. The application correctness criteria will

determ ine if any form of execution can exist in the secondary partition. If any

similar execution would be perm itted, then additional steps be performed.

In the group management update algorithm, we have described how the algo­

rithm will inform the members wether the partition is a primary or a secondary

partition. The partition type indicates wether the members should proceed with a

full or a restricted execution. The reconfiguration algorithm must also be modified

because the m gr failure detection m ay be the result of a network partition that

does not contain the m gr as one of its members. When the reconfigurer discovers

tha t it does not have a m ajority of processes, it assumes a secondary partition

and try to create a new core quorum. The new quorum will be marked as a sec­

ondary quorum and after the reconfiguration algorithm is executed the members

are informed th a t they are in a secondary partition under a restricted execution.

This approach allows different partitions to resume execution if this execution

does not violate the correctness criteria of the applications.

9.4 Conclusion

In this chapter, we have discussed the different failures tha t our protocol should

expect. We have presented different approaches to tolerate such failures. Our

failure model assumes that all failure are benign. Among the failures discussed

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are m ulticast/send omission, receive omission, and network omission failures. We

have shown how the protocols detect these failures through the tim estam p scheme

used. We have also presented different approaches to detect failures by using either

simple tim eout procedures or failure detection algorithms. We have also presented

an approach to handle retransmission requests and retransmission buffers. Our

approach assumes the possibility of both TFM and active processes. Recover

from a TFM failure involves a reformation phase for the group and a new TFM

election. Our fault-tolerance module is also resilient to network partitioning. We

have presented an approach that allows execution to continue in different partitions

based on the application’s correctness criteria. Our protocol is resilient to a failure

of (n — l) /2 active processes, where n is the number of processes.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 10

C onclusion

Ordered reliable multicasting is a common activity in distributed computing. Groups

of processes tha t perform a distributed application interact by multicasting intra­

group and inter-group messages. If the physical communication layer is comprised

of a set of interconnected LANs, then members of one process group m ay not

belong to a single LAN. Different process groups may adopt different ordering cri­

teria for delivering messages to group members. Also, due to performance and

reliability constraints, an application carried out by a given process group may

dictate a specific multicasting protocol for intra-group messages. Unfortunately,

protocols tha t are capable of handling all of these problems are beyond the cur­

rent state of the art. In this thesis, we have investigated the subject of reliable

ordered multicasting in a heterogeneous interconnected group of LANs, in which

both intra-group and inter-group messages bridge several LANs. Our research ef­

forts have resulted in the development of a protocol suite tha t supports a reliable

ordered delivery service for both local and global messages. Characteristic to our

protocol is a communication structure th a t can be aligned with the actual routing

topology, which largely minimizes the num ber of protocol messages tha t need to be

sent. The protocols depend on forcing the communication between the processes

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to follow the communication structure. The benefits of this structure are twofold.

F irst, it enables the communication structure to be potentially aligned with the

internet routing topology, which minimizes the number of protocol messages. Sec­

ond, because of this alignment, the protocol can exercise control over its routing

scheme, which decreases the actual number of multicasted messages. The protocol

suite developed honors a multiorder message delivery, which allows each group

to select its own ordering criteria. It also provides an interoperability framework

th a t allows the interchange of messages with local m ulticasting protocols while it

honors a predetermined order between global and external messages.

Protocol Causal Total Different Multiple Interoperability

Token

ISIS
Propagation
Consensus

Psync
Trans—Total

INTER

✓

✓

✓

✓

✓

✓

Figure 10.1: Comparison between existing reliable m ulticasting protocols.

In this chapter, we review the different protocols developed and summarize the

main contributions. We also outline several directions for future work.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1 M ulticasting Protocols

In this section, we briefly describe the developed protocols and summarize the key

features of each.

10.1.1 B U S and B U S-T O P rotocols

The Bottom-Up Stamping (BUS) protocol is a reliable ordered m ulticasting proto­

col developed to target the needs of distributed applications th a t are executed in

an interconnected network. The BUS protocol ensures causal-order delivery among

multicasted messages and relies on the communication structure presented earlier.

This protocol is useful for many distributed applications tha t do not require total

order.

The Bottom-Up Stamping - Total Order (BUS-TO) protocol is a reliable or­

dered m ulticasting protocol tha t is based on an idea similar to the BUS protocol.

The BUS-TO protocol guarantees a total order for message delivery tha t honors

the potential causality of the messages. The protocol is a tool for distributed ap­

plications that require total ordering to achieve correct execution. Among these

applications are replica control and stock exchange, in which a to tal order is re­

quired to relax some of the design constraints on the distributed system. The

BUS-TO protocol is subject to a higher message delivery delay than the BUS

protocol. It is also subject to delays in the delivery of local messages because

earlier global messages have traveled to their LCAs for tim estam ping and have not

returned.

The third protocol, the Top-Down Stamping (TDS) protocol, eliminates the

message blocking in the BUS-TO protocol and guarantees both total and causal

order. The protocol improves the message delivery tim e of both local and global

messages. The TDS protocol uses the same communication structure presented

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

earlier but uses a different approach by directing the message immediately to its

LCA; the message is then m ulticasted down the hierarchy.

The TDS protocol clearly achieves a lower delay than the BUS-TO protocol

and is best suited to applications in which total order is required. However, in

cases for which the total order is not needed, the BUS protocol can be used.

This protocol ensures a lower delivery time, and fewer messages are required for

delivery. The BUS-TO protocol can be used with the BUS protocol within the

same communication structure among a group of processes. The combination of

the BUS and BUS-TO protocols allows a multiorder among multicasted messages,

based on the recipient’s needs. The allowance of both to tal and causal order within

the same group is useful for those applications in which total order is necessary for

some but not all of the subgroups. The possibility of interfacing both protocols to

achieve this ordering scheme may help maintain the site autonomy tha t is involved

in multicasting.

The preliminary performance study conducted showed tha t the BUS and BUS-

TO protocols provide a viable option for ordered m ulticasting in both point-to-

point and multicast networks. The simplified models th a t are provided in this work

clarify this assertion by comparing the extra protocol messages tha t are required

and the message delivery delay incurred for a number of protocol types. The one

drawback to our approach is the extra cost needed to build the communication

structure.

10.1.2 T he M LM O P rotoco l

The Multi-LAN Multi-Order (MLMO) protocol is developed to support multicas­

ting in heterogeneous distributed systems. Our protocol insists on a hierarchical

structure in the communication topology. The protocol uses the same commu­

nication model outlined in Chapter 3, with the communication hierarchy shown

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 6.1. Members of one group can be individual processes and/or other

groups. The protocol does not restrict the members of a group to the same LAN.

Additionally, the protocol allows each group to determ ine a causal or total ordering

criterion. Therefore, our multicasting environment contains two types of groups:

the causal groups tha t enforce a causal order and the total groups th a t enforce a to­

tal order. Our protocol can circulate messages tha t have some destinations in total

groups and other addressees in causal groups yet can still observe the particular

ordering criterion for each addressee’s group. Note tha t a given group’s ordering

criterion pertains to members that are individual processes and not members that

are groups because the later would, by definition, have their own criteria.

The protocol relies on a modified version of the BUS and BUS-TO protocols.

It achieves a degree of latency, depending on the ordering criteria adopted. For

example, groups that adopt causal order under MLMO do not incur unnecessary

delay in message delivery because other groups adopt total order. The proto­

col performance is affected by the ratio of intra-group to inter-group traffic; the

protocol performs better for larger ratios.

10.1.3 T h e IN T E R Layer

The INTER layer is a new approach for allowing interoperability between our

protocol suite and existing multicasting protocols. The INTER interface is built

around the assumption tha t different CUs, each with a different ordering criterion,

can coexist. It is added as a layer between the applications and the multicasting

layer. The added layer achieves an order among messages going to and from a CU,

independent of the particular multicasting protocol tha t is running. These local

protocols effectively handle all messages they receive as local messages to their CU.

Therefore, a local protocol can function autonomously in performing multicasting

in its own CU.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The INTER layer provides an interoperability framework tha t allows message

interchange with local multicasting protocols, while it honors a predetermined or­

der between global and external messages. W hether this predetermined order is

causal or total is selected based on the needs of the application. This INTER layer

can accommodate the coexistence of multiple heterogeneous intra-group m ulticast­

ing protocols. Specifically, it is an encapsulation protocol th a t effectively connects

any protocol tha t is performing multicasting in a process group to the MLMO.

An added feature with INTER is the elimination of the necessity to alter the local

multicasting protocols. This essentially enables MLMO to achieve interoperability

of multiple intra-group multicasting protocols, such th a t full autonomy remains

upheld.

A comparison between INTER and the relevant atomic broadcast protocols

reported in the literature presented in Section 2.4 is shown in Figure 10.1. In

the figure, the m ajor features of seven protocols are compared, including order

achieved (total or causal), the capability of achieving different orders for inde­

pendent message stream s, the possibility of interacting with other reliable m ulti­

casting protocols, and capability of multiple-order coexistence between dependent

messages based on recipient groups. The figure shows the features provided by

INTER in achieving m ultiple order and interoperability. These features although

required by our environment, are not provided by the existing protocols.

10.2 Future E xtension

Our research has uncovered a number of im portant areas for future work in mul­

ticasting in interconnected LANs. In this section, we outline some of these areas.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2.1 B uild ing th e C om m unication Structure

An algorithm tha t builds the communication structure by considering the cost

and frequency of communication between processes needs to be devised. The

dynamic characteristics of the communication need to be considered. This will

require a dynamic algorithm th a t can reconfigure the CU membership, as well as

the hierarchical structure, during execution.

We also see a need for some development and improvement in the area of build­

ing the communication hierarchy. We believe that improvement can be achieved

by studying the communication patterns between the groups and allowing this

factor to influence the construction of the structure. The algorithm must be able

to restructure the communication hierarchy to provide adaptability that can cope

with the variations in communication pattern.

We have introduced a solution to multicasting to intersected groups by changing

the definition of the LCA (the LCA is the node tha t manages all the nodes in the

intersecting targeted groups). Additional research may be required to identify

w hether or not dynamic restructuring will introduce a more effective approach to

solve this problem.

10.2.2 P rototyp e o f th e P rotocols

Among the chief issues still to be addressed as a follow-on to our work is the

implementation. The development of prototype protocols is a m ajor task that

would provide a new' platform for the development of applications and for extending

the applicability domains of existing ones. During the different phases of our

research, we considered several implementation issues that would ease some of the

pre-implementation tasks. Prototyping will provide a testbed for the proposed

approach and will enable conduct of an accurate performance study to test the

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applicability of the protocols.

10.2.3 M ulti-O rder Support

An interesting question we received in regard to our research [80, 79] was why

we didn’t incorporate more order to the MLMO protocol (i.e., why didn’t we

provide for no order7.) Specific distributed applications require the relaxation of

the ordering restrictions and the use of the multicasting criteria of our protocol

to interact with existing groups. We realize that several other orders, such as no

order, FIFO, and FIFO Atomic, maybe required to co-exist along with total and

causal order. This diversity is dictated by the needs of the distributed applications

and the autonomy of the system and will require the development of more protocols

tha t can use our communication structure and can provide an interface to fit within

the MLMO environment.

10.2.4 In teroperab ility and th e Interface

An investigation of the use of the MLMO protocol with its interface as a p la t­

form to provide interoperability between several external protocols is called for.

The INTER interface in its current form can provide this interoperability service.

However, we believe tha t if the combination of INTER and MLMO were dedicated

to providing an interoperability framework, then the design of a special interface

for each local protocol could provide a more efficient interface than the general

protocol we provided. The interoperability framework we have provided will al­

low a similar interface to be incorporated. These interfaces could, by utilizing the

knowledge about the local protocol and the data structure, be capable of achieving

a higher performance than our general interface.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2.5 N etw ork P artitions

The management of network partitions is one of the major areas tha t needs more

research. We believe that the definition of atomicity can be modified based on

specific application needs. The research in this area has resulted in a set of mul­

ticasting protocols tha t either stop in the event of partitions or allow execution

to proceed in one partition and halt activity in the remaining partitions. These

approaches may be adequate for applications tha t require a consensus among the

whole group to achieve a correct execution, such as replica control. The approach

we adopted to handle partitions allows the larger partition to proceed while all

minor partitions resume a restricted execution after group reformation. A large

number of distributed applications do not require similar correctness criteria. In

this case, reforming the group membership in each partition and allowing an un­

restricted execution will allow a similar operability in the event of m ultiple par­

titions. This approach will be acceptable if a m ajority is not required over the

original group membership to achieve correct execution, such as group chat and

e-mail. Some of these applications require notification that the group has been

reformed and notification of new membership.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B ib liography

[1] A. E. Abbadi. D. Skeen, and F. Cristian. “An Efficient Fault Tolerant Pro­

tocol for Replicated Data Management” . Proc. o f the ACM 4th Annu. Conf.

Principles Database Syst., 1985.

[2] A. E. Abbadi and S. Toueg. “M aintaining Availability in Partitioned Repli­

cated Databases” . ACM Trans, on Database Systems, 14(2):264-290, Jun.

1989.

[3] H. Abdel-Wahab and M. Feit. “XTV: A Framework for Sharing X Window

Clients in Remote Synchronous Collaboration” . Proceedings o f the IEEE Tri-

Comm 91, Apr. 1991.

[4] L. Aguillar. “D atagram Routing For Internet M ulticasting” . A C M Computer

Communications Review, 14(2):58-63, 1984.

[5] ('. Alaettinoglu, K. Dussa-Zieger, I. M atta, and A.U. Shankar. “MaRS (Mary­

land Routing Simulator) - Version 1.0 User’s M anual” . Technical Report

UM1ACS-TR-91-80, CS-TR-2687, Departm ent of Computer Science, Univer­

sity of Maryland, College Park, Jun. 1991.

[6] R. Bazzi and G. Neiger. “Simulating Crash Failures with many Faulty Pro­

cessors ” . A. Segal and S. Zaks, editors, Proceedings Proceedings o f the Sixth

International Workshop on Distributed Algorithms, Nov. 1992.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] P. A. Bernestein and N. Goodman. “Multiversion Concurrency Control” .

AC M Trans, on Database Systems, 8(4), Dec. 1983.

[8] 0 . Biran. S. Moran, and S. Zaks. “A Combinatorial Characterization of

the Distributed Tasks th a t are Solvable in the Presence of one Faulty Proces­

sor”. Proceedings o f the Seventh ACM Symposium on Principles o f Distributed

Computing, pages 263-275, Aug. 1988.

[9] I\. Birman. “The Process Group Approach to Reliable D istributed Comput­

ing”. Technical Report 1216, Dept, of Com puter Science, Cornell Univ., 1993.

[10] K. Birman. Private communication. Nov. 1990.

[11] K. P. Birman and T. A. Joseph. “Exploiting V irtual Synchrony in Distributed

Systems” . Proceedings o f ACM Symposium on Operating System Principles,

pages 123-138, 1987.

[12] K. P. Birman and T. A. Joseph. “Reliable Communication in the Presence of

Failures” . AC M Transactions on Computer Systems, 5(1):47—76, Feb. 1987.

[13] K. P. Birman and T. A. Joseph. “Exploiting Replication in Distributed Sys­

tem s”. S. Mullender (editor), Distributed Systems, AC M press, pages 319-368,

1989.

[14] A. D. Birrell, R. Levin, R. M. Needham, and M. Schroede r. “Experience

with Grapevine: The Growth of a D istributed System” . A C M Transactions

on Computer Systems, pages 2-23, Feb. 1984.

[15] G. Bracha. “Asynchronous Byzantine Agreement Protocols ” . Information

and Computation, 75(2): 130—143, Nov. 1987.

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16] M. Bridgland and R. W atro. “Fault-Tolerant Decision Making in Totally

Asynchronous D istributed Systems”. Proceedings o f the Sixth ACM Sympo­

sium on Principles o f Distributed Computing, 1987.

[17] T. Chandra. “Unreliable Failure Detectors For Asynchronous Distributed

Systems.” . Technical report, Dept, of Computer Science, Cornell Univ., May

1993. Ph.D. Thesis.

[IS] T. Chandra, V. Hadzilacos, and S. Toueg. “The Weakest Failure Detector for

Solving Consensus” . Submitted fo r Publication. Apr. 1994.

[19] .]. M. Chang and N. F. Maxemchuck. “Reliable Broadcast Protocols”. Reliable

Broadcast Protocols. ACM Transactions on Computer Systems, 2(3):251-273,

Aug. 1984.

[20] D. Cheriton. Private communication. Dec. 1990.

[21] B. Chor and C. Dwork. “Randomization in Byzantine Agreement” . Advances

in Computer Research, 5:443-497, 1989.

[22] D. Comer. “Internetworking with T C P /IP Principles, Protocols, and Archi­

tecture”. Prentice Hall., 1988.

[23] D. Comer. “Internetworking with T C P /IP ”, volume II. Prentice Hall, second

edition, 1990.

[24] John Corbin. “The Art o f Distributed Applications”. Springer-Verlag, 1990.

[25] P. J. Courtois. “Decomposability: Queueing and Computer System Applica­

tions”. Academic Press, New York, 1977.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[26] F. Cristian. “Reaching Agreement on Processor Group Membership in Syn­

chronous Distributed Systems”. Technical Report RJ5964, IBM Research

Report, Mar. 1988.

[27] F. Cristian, H Aghili, H. Raymond, and D. Dolev. “Atomic Broadcast: From

Simple Message Diffusion to Byzantine Agreement” . Proceedings o f the Fif­

teenth International Symposium on Fault-Tolerant Computing, Jun. 1985.

[28] F. Cristian, H. Aghili, R. Strong, and D. Dolev. “Atomic Broadcast:

From Simple Message Diffusion to Byzantine Agreement” . Technical Report

R.J5244, IBM Research Report, Jul. 1986.

[29] P. Danzig. “Finite Buffers and Fast M ulticast” . Proceedings o f the ACM

Conference on Measurement and Modelling o f Computer Systems, Aug. 19S9.

[30] S. B. Davidson. “Optimism and Consistency in Partitioned Distributed

Database Systems” . ACM Transactions on Database Systems, 9(3):456-481,

May 1984.

[31] S. Deering and D. Cheriton. “Multicast Routing in Datagram Internetworks

and Extended LANs” . ACM Trans, on Comp. Sys., pages 85-110, May 1990.

[32] S. E. Deering. “M ulticast Routing in Internetworks and Extended LANs ” .

AC M Computer Communications Review, 18(4):55-64, 1988.

[33] R. Dirvin and A. Miller. “The MC68824 Token Bus Controller: VLSI for the

Factory LAN” . IEEE Micro Magazine, 6:15-25, Jun. 1986.

[34] D. Dolev, C. Dwork, and L. Stockmeyer. “On the Minimal Synchronizm

Needed for D istributed Consensus” . J. ACM , 34(l):77-97, Apr. 1987.

[35] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the Presence of

Partial Synchrony” . J. ACM , 35(2):288-323, Aug. 1988.

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[36] A. D. Fekete. “Asynchronous Approximate Agreement” . Information and

Computation, To Appear, 1994.

[37] M. Fischer, N. Lynch, and M. Paterson. “Impossibility of Distributed Con­

sensus with One Faulty Process” . J. AC M , 32(2):374-382, Apr. 1985.

[38] A. Frank, L. W ittle, and A. Bernstein. “Multicast Communication on Network

Computers” . IEEE Software, 2(3):49-61, May 1985.

[39] H. Garcia-Molina and B. Kogan. “An Implementation of Reliable Broad­

cast Using an Unreliable M ulticast Facility” . Technical Report CS-170-88,

Princeton Univ., 1988.

[40] H. Garcia-Molina and B. Kogan. “Node Autonomy in Distributed Systems”.

Proceedings o f the IE E E International Symposium on Databases in Parallel

and Distributed Systems, pages 15S-166, Dec. 1988.

[41] H. Garcia-Molina and A. Spauster. “Ordered and Reliable Multicast Com­

munications” . ACM Transactions on Computer Systems, 9(3), Aug. 1991.

[42] I. Greif. “Computer-Supported Cooperative Work: A Book o f Readings”. Mor­

gan Kaufman Pub. Co., 1988.

[43] V. Hadzilacos. “Issues of Fault Tolerance in Concurrent Computations” . Tech­

nical Report TR11-84, Dept, of Computer Sc., Harvard University, Jun. 1984.

[44] V. Hadzilacos and S. Toueg. “A Modular Approach to Fault-Tolerant Broad­

casts and Related Problems” . Submitted fo r Publication, June 1994.

[45] M. Herlihy. “Optim istic Concurrency Control for A bstract D ata Types” . Pro­

ceedings o f the 5th Symposium on Principles o f Distributed Computings, pages

206-217. 1986.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[46] A. Heybey. “The Network Simulator”. Lab. of Comp. Sc., Massachusetts

Institute of Technology, Oct. 1989.

[47] H. Ishidaand L. Landweber. “Introduction, Special Issue on Internetworking”.

ACM Communications, pages 28-30, Aug. 1993.

[48] L. Kleinrock. “Scheduling, Queueing, and Delays in Time-Shared Systems

and Computer Networks” . N. Abramson and F. F. Kuo (eds.), Computer

Communications Network, Prentice-Hall, pages 95-141, 1973.

[49] Hisashi Kobayashi. “Modeling and Analysis: An Introduction to System Per­

formance Evaluation M e th o d o lo g y Addison-Wesley, 1979.

[50] L. Lamport. “Using Time Instead of Timeout for Fault-Tolerant Distributed

Systems” . AC M Transactions on Computer Systems, 6(2):254-280, Apr. 1984.

[51] T. LeBlanc and R. Cook. “High-Level Broadcast for Local Area Networks” .

IEEE Software, 2(3):40-48, May 1985.

[52] B. Liskov, D. Curtis, P. Johnson, and R. Scheifier. “Implementation of Argus” .

Proceedings o f the 11th Symposium on Operating System Principles, pages

111-122, Nov. 1987.

[53] S. Luan and V. Gligor. “A Fault-Tolerant Protocol for Atomic Broadcast” .

IEEE Transactions on Parallel and Distributed Systems, 1 (3):271—2S5, Jul.

1990.

[54] N. Lynch, B. Blaustein, and M. Siegel. “Correctness Conditions for Highly

Available Replicated Databases” . Proceedings o f 5th A C M Symposium on

Principles o f Distributed Computing, pages 11-28, Aug. 1986.

[55] E. Mayer. “An Evaluation Framework for M ulticast Ordering Protocols” . In

SIGCOM M '92, pages 177-187, Baltimore, Maryland, Aug. 1992.

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[56] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. “Broadcast Protocols

for Distributed Systems”. IE E E Transaction on Parallel and Dist. systems,

pages 17-25, Jan. 1990.

[57] R. Metcalf and D. Boggs. “Ethernet: Distributed Packet Switching for Local

Computer Networks ” . Communication ACM, 19:395-404, Jul. 1976.

[58] L. E. Moser, P. Melliar-Smith, and V. Agrawala. “On the Impossibility of

Broadcast Agreement Protocols” , submitted for publication.

[59] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. “Asynchronous Fault-

Tolerant Total Ordering Algorithms”. Submitted fo r Publications.

[60] S. Mullender, editor. “Distributed System s”. ACM press, second edition, 1993.

[61] C. H. Papadimitrio. “The Serializability of Concurrent D atabase Updates” .

J. ACM , 26(4):631-633, Oct. 1979.

[62] K. J. Perry and S. Toueg. “Distributed Agreement in the Presence of Pro­

cessor and Communication Faults” . IEEE Transaction on Software Eng.,

SE-12(3):447-482, Mar. 1986.

[63] L. Peterson, N. C. Buchholz, and R. D. Schilichting. “Preserving and Using

Context Information in Interprocess Communication” . AC M Transactions on

Computer Systems, 7(3):217-246, Aug. 1989.

[64] B. Rajagopalan. “Reliability and Scaling Issues in Multicast Communication” .

In SIGCOMM ’92, pages 188-198, Baltimore, Maryland, Aug. 1992.

[65] A. Ricciardi. “The Group Membership Probelm in Asynchronous Systems”.

(Ph.D. Thesis, 92-1313), 1992.

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[66] A. Ricciardi and K. Birman. “ Process Membership in Asynchronous Envi­

ronments” . Technical Report 93-1328. Dept, of Com puter Science, Cornell

Univ.. 1993.

[67] A. Ricciardi, A. Schiper, and K. Birman. “Understanding Partitions and the

No Partitions Assumptions” . Technical Report 93-1355, Dept, of Computer

Science, Cornell Univ., 1993.

[68] F. B. Schmuck. “The Use of Efficient Broadcast Protocols in Asynchronous

Distributed Systems” . (Ph.D. Thesis. TR88-928), 1988.

[69] M. D. Schroeder. “A State-of-the-Art Distributed System: Xomputing with

BOB” . S. Mullender (editor), Distributed Systems, AC M press, pages 1-16,

1993.

[70] A. Sheth and J. Larson. “Federated Database Systems for Managing Dis­

tributed Heterogeneous and Autonomous Databases” . AC M Computing Sur­

veys, 22(3). Sep. 1990.

[71] D. Skeen. “A Formal Model for Crash Recovery in a D istributed System.” .

IEEE Trans. Software Eng., SE-9(3):219-228, May 1983.

[72] A. Tanenbaum. “Computer Networks”. Prentice Hall, second edition, 1988.

[73] R.H. Thomas. “A M ajority Consensus Approach to concurrency Control for

Multiple Copy Databases” . ACM Trans, on Database Systems, 4:180-209,

Jun. 1979.

[74] K. S. Trivedi. “Probability & Statistics with Reliability, Queuing, and Com­

puter Science Applications”. Prentice-Hall, 1982.

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[75] V. L. Wallace and R. S. Rosenberg. “Markovian Models and Numerical Anal­

ysis of Computer Systems Behavior” . Proceedings o f A F IP S Spring Joint

Computer Conference, pages 141-148, 1966.

[76] M. Willet. “Token-Ring Local Area Networks - An Introduction” . IEEE

Network Magazine, 1:8-9, Jan. 1987.

[77] 0 . ZeinElDine and H. Abdel-Wahab. “A M ulticasting Protocol Suite for

Interconnected LANs”, in preparation.

[78] 0 . ZeinElDine, M. EUoweissy, and H. Abdel-Wahab. “BUS: A Multicasting

Protocol for Interconnected LANs”. IEEE Proceedings o f the 5th International

Conference on Computing and Information, May, 1993.

[79] 0 . ZeinElDine, A. Wadaa, and H. Abdel-Wahab. “A New Approach for Order­

ing M ulticasted Messages in Heterogeneous Distributed Systems”. Proceedings

o f the 6th International Conference on Computing and Information. Also to

appear in Journal o f Computing and Information , May 1994.

[SO] 0 . ZeinElDine, A. Wadaa, and H. Abdel-Wahab. “MLMO: A Multi-LANs

M ulti-Order Multicasting Protocol” . Proceedings o f the 32nd ACM Southeast

Conference, Mar. 1994.

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GLOSSARY

• Deliver Queue (DQ): The queue a t which the messages are buffered for de­

livery to the process.

• Local Wait Queue (LWQ): The queue a t which the local messages are kept

waiting for the messages th a t are assigned smaller tim estam ps to arrive if

any are missing.

• Global Wait Queue (GWQ): The queue at which the global messages are

kept waiting for the messages th a t are assigned smaller tim estam ps to arrive

if any are missing.

• Out-of-Order Queue (0 0 Q): The queue a t which the messages tha t arrive

out of order from the same process are kept until the late or lost message(s)

arrive. In the case of a TFM process, the messages kept in this queue have

not been assigned a tim estam p from the receiving TFM yet.

• M T S mx[]: The tim estam p vector tha t accompanies the message m x and

carries the tim estam ps assigned to it by the sender and the different TFM

processes it passes.

• P T S Vx[]: The tim estam p vector th a t is used by the process px to keep track

of the message tim estam p last delivered from the different TFMs.

• L T S Px: The local tim estam p variable used by process px to stam p the mes­

sages sent, received, or passing by.

• O L D T SPx: The tim estam p variable tha t records the tim estam p of the last

message sent from px to its TFM Tx.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• T W L t x : A list th a t contains the messages tim estam ped by the TOCU-TFM

before they gain their LCA’s timestamp.

• LC AM rx and C L C A M rx. The Least Common Ancestor Messages (LC A M rx)

contains all messages for which LCAM%. acts as their LCA. The LCAM is a

temporary list on which messages reside until they are committed for delivery.

The messages in LC AM-jx are waiting for messages tha t have received smaller

timestamps from Tx and have not come back with LCA timestamps. The

Committed LCAM list (C LC A M rx) contains those messages of the LCAM

that have been com m itted by Tx; The C L C A M tz is carried with any message

traveling down its one-way path.

• T SU Lrx• The Timestamp Updater List (TSUL) is added at each TOCU-

TFM. Any message on its way down the hierarchy as it passes by any of its

O W A paths, is assigned a timestamp. The message adds an entry to the

TSUL after it has been timestamped. This list is used for messages traveling

along their TW or O W B paths to adjust P T S Px[].

• SENDER(mfc): The protocol procedure th a t is activated when a process

sends a message m^.

• The Timestamping, Multicasting, and Forwarding (TFM) process.

• RECETV E(m *): The protocol procedure th a t is activated when a message

is received at any of the processes involved in multicasting.

• TFM(mfc): The protocol procedure tha t is activated when a message is sent

or received at any of the TFM processes.

• V M : The View M aintainer is a process tha t maintains a view of the group

membership. This process along with the other VMs cooperate in defining

the Global View of the group.

225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• GV: The Global View is the view agreed upon by all VMs to describe the

membership of the group at a certain point in time.

• VML: The VM list contains all the VMs of the group.

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Fall 1995

	Atomic Broadcast in Heterogeneous Distributed Systems
	Osman ZeinElDine
	Recommended Citation

	tmp.1550589071.pdf.eJAEV

