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Abstract

The pervasive interconnection of systems all over the world has given computer services a significant

socio-economic value, which can be affected both by accidental faults and by malicious activity. It would

be appealing to address both problems in a seamless manner, through a common approach to security

and dependability. This is the proposal of ’intrusion tolerance’, where it is assumed that systems remain

to some extent faulty and/or vulnerable and subject to attacks that can be successful, the idea being to

ensure that the overall system nevertheless remains secure and operational.

In this paper, we report some of the advances made in the European project MAFTIA, namely in what

concerns a basis of concepts unifying security and dependability, and a modular and versatile archi-

tecture, featuring several intrusion-tolerant middleware building blocks. We describe new architectural

constructs and algorithmic strategies, such as: the use of trusted components at several levels of ab-

straction; new randomization techniques; new replica control and access control algorithms. The paper

concludes by exemplifying the construction of intrusion-tolerant applications on the MAFTIA middle-

ware, through a transaction support service.

1 Introduction

The generalized use of computer networks for communication, access to commercial services, re-

search, or simply for entertainment became a reality during the last decade. Some facts emerging from

∗This work was partially supported by the EC, through project IST-1999-11583 (MAFTIA), and by the FCT, through

LASIGE and projects POSI/1999/CHS/33996 (DEFEATS) and POSI/CHS/39815/2001 (COPE).
†Currently at Victoria U., New Zealand.

1



this scenario deserve notice: the explosion of the number of users; the explosion of the number of ser-

vices provided and/or implemented in a distributed way; the pervasive interconnection of systems all

over the world.

Some of these services have significant criticality, not only economic (transactions, e-commerce, in-

dustry), but also societal (utilities, telecommunications, transportation), demanding well-defined levels

of quality of service. However, this objective may be impaired both by accidental faults and by malicious

activity: viruses, worms, direct hacker attacks. . . 1

The scenario just described is causing a renewed interest in distributed systems security and depend-

ability, which have taken separate paths until recently. The classical approach to Security has mostly

consisted in trying to prevent bad things from happening. In other words, the objective has been to try

and develop “perfect” systems, systems without vulnerabilities, and/or to detect attacks and intrusions

and deploy ad-hoc countermeasures before the system is affected.

It would be appealing to consider an approach where security and dependability would be taken com-

monly. After all, the problems to be solved are of similar nature: keeping systems working correctly,

despite the occurrence of mishaps, which we could commonly call faults (accidental or malicious); en-

sure that, when systems do fail (again, on account of accidental or malicious faults), they do so in a non

harmful/catastrophic way. This is the proposal of intrusion tolerance, a new approach that has emerged

during the past decade, and gained impressive momentum recently. The idea can be explained very

simply [4]:

• to assume and accept that the systems remain to some extent vulnerable;

• to assume and accept that attacks on components can happen and some will be successful;

• to ensure that the overall system nevertheless remains secure and operational.

In this paper, we report some of the advances made in the European project MAFTIA 2. The path to

understanding and conceiving intrusion-tolerant systems starts with revisiting the basic dependability

concepts and “reading” them under a security-related perspective, incorporating specific security prop-

erties, fault classifications, and security methods. Under the light of these revised concepts, the words

“dependence” and “dependability” relate strongly to notions like “trust” and “trustworthiness”, giving

the latter a powerful and precise meaning: pointing to generic properties and not just security; defining

clear relationships between them. These issues are discussed further in Sections 2 and 3.

Surprising as it may seem, intrusion tolerance is not just another instantiation of accidental fault toler-

ance. Architecting intrusion-tolerant systems, to arrive at some notion of intrusion-tolerant middleware

for application support, presents multiple challenges, primarily because several of the paradigms and

1See, e.g., the CERT Coordination Center statistics at http://www.cert.org/stats/.
2MAFTIA portal: http://http://www.newcastle.research.ec.org/maftia.
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models used in accidental fault tolerance are not adequate for malicious faults: potential for maliciously

caused common-mode faults makes probabilistic assumptions risky (number of “independent” faulty

components, fault types); error propagation is the rule rather than the exception (error detection de-

lay, progressive intrusion); typical severity of malicious faults (Byzantine behavior, attacks on timing,

contamination of runtime support environment). In addressing these challenges, we devised new archi-

tectural constructs and algorithmic strategies, for example, programming models based on the use of

trusted components at several levels of abstraction; new randomization and cryptographic techniques;

new replica and access control algorithms.

Through the rest of the paper, we start by presenting the rationale behind the main architectural options

in MAFTIA, and its blocks and functionality, in Section 3. Section 4 describes different strategies that

can be followed in such modular and versatile architectures, to create several instances of the MAFTIA

middleware. In Sections 5 through Section 7, we digress through instantiations of these strategies in

several MAFTIA middleware building blocks, reporting on mechanisms and algorithms researched and

prototyped in the project, described with detail in other publications. Finally, in Section 8 we exemplify

the construction of intrusion-tolerant applications on the MAFTIA middleware, through a transaction

support service that appears to the user as a CORBA-style service, intrusion tolerance being achieved

transparently.

2 Basic Concepts

The idea that the tolerance approach could be applied to intrusions dates back to the 1980’s in some

early work on the combination of concepts of dependability and fault-tolerance with security [24, 31, 22].

The sequels of this work [1, 6, 30], which we designate hereafter as the core dependability concepts, and

contributions from the security and intrusion detection communities [17, 29, 38] have been fundamental

in establishing the conceptual and terminological framework that has guided the design process of the

MAFTIA architecture. In this section, we outline the main elements of this framework [5].

2.1 Faults, errors and failures

Fundamental to the core dependability concepts is the idea that, at a given level of system abstraction

or decomposition, there are three causally related impairments to system dependability that need to be

considered. A system failure is an event that occurs when the service delivered by the system deviates

from correct service. An error is that part of the system state that may cause a subsequent failure,

whereas a fault is the adjudged or hypothesized cause of an error. The notion is recursive in that a failure

at one level can be viewed as a fault at the next higher level (e.g., a component failure is a fault seen

from the containing system).

The labels given to these concepts conform to standard usage within the dependability community,

but the important point we would like to stress is not the words but the fact that there are three concepts.
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First, it is essential to be able to distinguish the internally observable phenomenon (error) from the

externally observable one (failure), which tolerance techniques aim to avert. Indeed, any tolerance

technique must be based on some form of detection and recovery acting on internal perturbations before

they reach the system’s interface to the outside world. The alternative viewpoint, in which any detectable

anomaly is deemed to make the system “insecure” in some sense, would make intrusion-tolerance an

unattainable objective.

Second, the distinction between the internally observable phenomenon (error) and its root cause (fault)

is vital since it emphasizes the fact that there may be various plausible causes for the same observed

anomaly, including not only an intentionally malicious fault, but also an accidental fault, or an atypical

usage profile.

These three notions also have an interesting interpretation in terms of a security policy, which we

consider as comprising both goals and rules. The goals are intended to capture security requirements

whose violation would be considered as a security failure. Typically, those goals are defined in terms

of confidentiality, integrity and availability properties on system services, data or metadata. The rules

defined in a security policy are lower level constraints on system behavior that aim to ensure that the

goals are fulfilled. Violations of the rules do not correspond to security failures but are indicative of

errors that could lead to security failures if no precautions are taken.

2.2 Attacks, vulnerabilities and intrusions

We consider an intrusion to be a deliberately malicious software-domain operational3 fault that has

two underlying causes (we refer thus to a composite fault model):

• A malicious act or attack that attempts to exploit a potential weakness in the system,

• At least one weakness, flaw or vulnerability.

Vulnerabilities are the primordial faults within the system, in particular design or configuration faults

(e.g., coding faults allowing stack overflow, files with root setuid in Unix, naı̈ve passwords, unprotected

TCP/IP ports). Vulnerabilities may be introduced during development of the system, or during operation.

They may be introduced accidentally or deliberately, with or without malicious intent. As a step in his

overall plan of attack, an attacker might introduce vulnerabilities in the form of malicious logic [29].

Attacks may be viewed either at the level of human activity (of the attacker), or at that of the resulting

technical activity that is observable within the considered computer system. Attacks (in the technical

sense) are malicious faults that attempt to exploit one or more vulnerabilities (e.g., port scans, email

viruses, malicious Java applets or ActiveX controls). An attack that successfully exploits a vulnerability

results in an intrusion. This further step towards failure is normally characterized by an erroneous state

in the system that may take several forms (e.g., an unauthorized privileged account with telnet access, a

3As opposed to faults in the hardware domain, e.g., physical sabotage, or to faults introduced during system development,

e.g., trapdoors.
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system file with undue access permissions for the attacker). Such erroneous states may be corrected or

masked by intrusion tolerance but if nothing is done to handle the errors resulting from the intrusion, a

security failure will probably occur.

We only qualify the human/technical nature of attacks when necessary; in the absence of qualification,

we consider “attack” in its technical sense. Attacker is always taken in its human sense, i.e., the malicious

person or organization at the origin of attacks. When a technical attack is perpetrated on behalf of the

attacker by some piece of code, we refer to the latter as an attack agent. Attack agents can be classified

according to the following dimensions:

• dissemination: propagating (i.e., as in virus or worm); non-propagating (one-off result of an intru-

sion);

• trigger conditions: continuously activated (e.g., an illicit sniffer); serendipitous activation by un-

suspecting victim (e.g., Trojan horse); other conditions (specific time, input value, etc.) (i.e., a

bomb or a zombie);

• target of attack: local (e.g., a bomb or a Trojan horse) or distant (i.e., a zombie);

• aim of attack: disclosure (confidentiality); alteration (integrity), denial of service (availability).

A security failure at one level of decomposition of the system may be interpreted as an intrusion

propagating to the next upper level. Depending on the adopted viewpoint at that level, the propagated

intrusion may also be viewed as an attack, as the installation of a vulnerability, or as an attack agent.

Indeed, the propagated intrusion may manifest itself as a further attack (the attacker directly exploits his

successful attack in order to proceed towards his final goal); by the creation of new vulnerabilities (e.g.,

a system file with undue access permissions for the attacker, or malicious logic creating a trapdoor) or

by the insertion of malicious logic that can act as an agent for the attacker sometime in the future (e.g.,

a zombie).

Finally, when we consider intrusions from an authorization policy viewpoint, we note that they can

be subdivided into two types, according to whether an intrusion corresponds to an unauthorized increase

in the privilege (set of access rights) of the attacker (or his agent) or to an improper use of authorized

operations. We refer to these respectively as theft and abuse of privilege. Note that theft and abuse of

privilege are more general concepts than the often-used notions of “outsider” vs. “insider” intrusions,

since (a) a complete “outsider” in an open Internet setting is somewhat difficult to imagine, and (b) an

“insider” can attempt both types of intrusions.

2.3 Security methods

The methods underpinning the development of a dependable computing system are classified in the

core dependability concepts according to four categories:
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• fault prevention: how to prevent the occurrence or introduction of faults,

• fault tolerance: how to deliver correct service in the presence of faults,

• fault removal: how to reduce the number or severity of faults,

• fault forecasting: how to estimate the present number, the future incidence, and the likely conse-

quences of faults.

Fault prevention and fault removal are sometimes grouped together as fault avoidance; fault toler-

ance and fault forecasting constitute fault acceptance. Note that avoidance and acceptance should be

considered as complementary rather than alternative strategies.

It is enlightening to equate “fault” in these definitions with the notions of attack, vulnerability and

intrusion defined above. Taking “attack” in both its human and technical senses leads to ten distinct

security-building methods out of a total of sixteen (cf. Table 1).

The focus in this paper is on intrusion-tolerance techniques, which should be seen as an additional

defense mechanism rather than an alternative to the classic set of techniques grouped under the heading

intrusion-prevention on Table 1.

2.4 Intrusion-tolerance primitives

In the core dependability concepts, fault-tolerance is defined in terms of error detection and subsequent

system recovery, the latter consisting of error handling (aimed at eliminating errors from the system state)

and fault handling (aimed at preventing faults from being activated again).

By definition, error-detection (and error handling) need to be applied to all errors irrespectively of the

specific faults that caused them. However, the design of an error-detection technique needs to take into

account the hypothesized fault model. For example, detection of errors caused by physical faults requires

physical redundancy; detection of those caused by design faults requires diversification redundancy; etc.

Detection of errors due to intrusions similarly needs an independent reference to which system activity

can be compared. One or more of the following may provide that reference:

• normal activity profiles, as in anomaly-detection or behavior-based techniques for intrusion detec-

tion [20, 27];

• undesired activity profiles, as in misuse-detection or knowledge-based techniques for intrusion

detection [20, 27];

• rules contained within the system’s security policy;

• activity of peer entities in trust distribution approaches to intrusion-tolerance such as secret-

sharing [48], fragmentation-redundancy-scattering [24], etc.

Error-handling may take three forms:
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Attack

(human sense)

Attack

(technical sense)

Vulnerability Intrusion

Prevention

(how to prevent

occurrence or

introduction of. . . )

deterrence, laws,

social pressure,

secret service. . .

firewalls, authenti-

cation, authoriza-

tion. . .

semi-formal and

formal specifi-

cation, rigorous

design and man-

agement. . .

= attack & vulnera-

bility prevention &

removal

Tolerance(how to

deliver correct ser-

vice in the pres-

ence of. . . )

= vulnerability prevention & removal,

intrusion tolerance

= attack prevention

& removal, intru-

sion tolerance

error detection

& recovery, fault

masking, intrusion

detection and

response, fault

handling

Removal(how to

reduce number or

severity of. . . )

physical counter-

measures, capture

of attacker

preventive &

corrective main-

tenance aimed at

removal of attack

agents

1. formal proof,

model-checking,

inspection, test. . .

2. preventive &

corrective mainte-

nance, including

security patches

⊆ attack & vul-

nerability removal,

i.e., preventive &

corrective mainte-

nance

Forecasting(how

to estimate present

number, future

incidence, likely

consequences

of. . . )

intelligence gather-

ing, threat assess-

ment. . .

assessment of pres-

ence of latent at-

tack agents, poten-

tial consequences

of their activation

assessment of:

presence of

vulnerabilities,

exploitation dif-

ficulty, potential

consequences. . .

= vulnerability &

attack forecasting

Table 1. Classification of security methods
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• roll-back: state transformation is carried out by bringing the system back to a previously occupied

state, for which a copy (a recovery point, or “checkpoint”) has been previously saved — extreme

examples include operating system reboots, process re-initialization, and TCP/IP connection re-

sets;

• roll-forward: state transformation is carried out by finding a new state from which the system

can operate — replacement of compromised key shares in threshold-cryptography schemes is an

example of this form of error-handling in the context of intrusion tolerance;

• compensation: state transformation is carried out by exploiting redundancy in the data represent-

ing the erroneous state — masking is the most common form of compensation and is ideally suited

for intrusion-tolerance since it can accommodate arbitrarily (e.g., Byzantine) faulty behavior; spe-

cific examples include voting, fragmentation-redundancy-scattering and other trust distribution

approaches (cf. Sections 5- 8).

Fault handling covers the set of techniques aimed at preventing faults from being re-activated. Whereas

error handling is aimed at averting imminent failure, fault handling aims to tackle the underlying causes,

whether or not error handling was successful, or even attempted. Three fault-handling primitives can be

defined: fault diagnosis, fault isolation and system reconfiguration.

Fault diagnosis is concerned with identifying the type and location of faults that need to be isolated

before carrying out system reconfiguration or initiating corrective maintenance. For an intrusion-tolerant

system, an essential aspect of diagnosis is the decision as to whether the underlying cause of detected

errors was a deliberate attack or an accidental fault. According to the composite fault model presented

earlier in this section, fault diagnosis can be further decomposed into:

• intrusion diagnosis, i.e., trying to assess the degree of success of the intruder in terms of system

corruption;

• vulnerability diagnosis, i.e., trying to understand the channels through which the intrusion took

place so that corrective maintenance can be carried out;

• attack diagnosis, i.e., finding out who or what organization is responsible for the attack in order

that appropriate litigation or retaliation may be initiated.

Fault isolation aims to ensure that the source of the detected error(s) is prevented from producing

further error(s). In terms of intrusions, this might involve, for example: blocking traffic from components

diagnosed as corrupt by changing the settings of firewalls or routers; removing corrupted data from the

system; uninstalling software versions with newly-found vulnerabilities; arresting the attacker; etc.

System reconfiguration consists of a redeploying fault-free resources so as to: (a) provide an accept-

able, but possibly degraded service while corrective maintenance is carried out on faulty resources, and

(b) restore nominal service after corrective maintenance. In an intrusion-tolerant system, possible recon-

figuration actions include: software downgrades or upgrades; changing a voting threshold; deployment
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of countermeasures including probes and traps (honey-pots) to gather further information about the in-

truder, and so assist in attack diagnosis.

3 MAFTIA Architecture

The purpose of this section is to introduce the basic models and assumptions underlying the design

of the MAFTIA architecture, and then to present an overview of the architecture itself from various

perspectives. The section details both the functional aspects of the architecture, and the constructs aimed

at achieving intrusion tolerance.

The adjectives “trusted” and “trustworthy” are central to many arguments about the dependability

of a system. In the security literature, the terms are often used inconsistently. The MAFTIA notions

of “trust” and “trustworthiness” point to generic properties and not just security, and there is a well-

defined relationship between them — in that sense, they relate strongly to the words “dependence” and

“dependability”. Trust is the reliance put by a component on some properties of another component,

subsystem or system. In consequence, a trusted component has a set of properties that are relied upon

by another component (or components), i.e., there is an accepted dependence. The term trustworthiness

is essentially synonymous to dependability, but is often the preferred term when the focus is on external

faults such as attacks.

The definitions above have consequences for the design of intrusion tolerant systems [55] since one

can reason separately about trust and trustworthiness. There is separation of concerns between what to do

with the trust placed on a component (e.g., designing algorithms that assume that the component exhibits

given properties), and how to achieve or show its trustworthiness (e.g., constructing and validating the

component that displays the assumed properties). The practical use of these guidelines is exemplified in

later sections.

3.1 Models and assumptions

3.1.1 Failure assumptions

A crucial aspect of any fault-tolerant architecture is the fault model upon which the system architecture

is conceived, and component interactions are defined. A system fault model is built on assumptions

about the way system components fail. Classically, these assumptions fall into two kinds: controlled

failure assumptions, and arbitrary failure assumptions.

Controlled failure assumptions specify constraints on component failures. For example, it may be

assumed that components only have timing failures. This approach represents very well how common

systems work under the presence of accidental faults, failing in a benign manner most of the time.

However, it is difficult to model the behavior of a hacker, so there is a problem of coverage that does not

recommend this approach for malicious faults, unless a trustworthy solution can be found.
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Arbitrary failure assumptions ideally specify no constraints on component failures. In this context,

an arbitrary failure means the capability of generating a message at any time, with whatever syntax and

semantics (form and meaning), and sending it to anywhere in the system. Practical systems based on ar-

bitrary failure assumptions do however specify quantitative bounds on the number of failed components.

Arbitrary failure assumptions are costly to handle, in terms of performance and complexity, and thus are

not compatible with the user requirements of the vast majority of today’s on-line applications.

Hybrid failure assumptions combining both kinds of failures are a way out of this dilemma [33]. For

instance, some nodes are assumed to behave arbitrarily while others are assumed to fail only by crashing.

The probabilistic foundation of such distributions might be hard to sustain in the presence of malicious

intelligence, unless this behavior is constrained in some manner.

With hybrid assumptions some parts of the system are justifiably assumed to exhibit fail-controlled

behavior, whilst the remainder of the system is still allowed an arbitrary behavior. This is an interesting

approach for modular and distributed system architectures such as MAFTIA, but one that is only feasible

when the fault model is substantiated, that is, the behavior assumed for every single subset of the system

can be modeled and/or enforced with high coverage. As a matter of fact, a system normally fails by its

weakest link, and naı̈ve assumptions about a component’s behavior will be easy prey to hackers.

A first step towards our objective is the organization of the diverse causes of security failure into a

composite fault model (see Section 2.2), with a well-defined relationship between attack, vulnerabil-

ity, and intrusion. Such a model allows us to modularize our approach to achieving dependability, by

combining different techniques and methods tackling the different classes of faults defined (see Table 1).

3.1.2 Enforcing hybrid failure assumptions

The second step is the enforcement of hybrid failure assumptions. A composite fault model with hybrid

failure assumptions is one where the presence and severity of vulnerabilities, attacks and intrusions varies

from component to component. Our work might best be described as architectural hybridization, in the

line of precursor works such as [40] where failure assumptions are in fact enforced by the architecture

and the construction of the system components, and thus substantiated.

Consider a component or sub-system for which a given controlled failure assumption is made. How

can we achieve coverage of such an assumption, given the unpredictability of attacks and the elusiveness

of vulnerabilities? The answer lies in the combined use of intrusion prevention techniques and the

implementation of internal intrusion-tolerance mechanisms. The combination of these techniques should

be guided by the composite fault model mentioned above (i.e., removing vulnerabilities that are matched

by attacks we cannot prevent; preventing or tolerating attacks on vulnerabilities we cannot remove, etc.).

In the end, we should justifiably achieve confidence that the component behaves as assumed, failing in a

controlled manner, i.e., that the component can be trusted because it is trustworthy. The measure of this

trust is the coverage of the controlled failure assumption.
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3.1.3 Intrusion tolerance under hybrid failure assumptions

The approach outlined in the previous sections: establishes a divide-and-conquer strategy for building

modular fault-tolerant systems, with regard to failure assumptions; can be applied to achieve different

behaviors in different components; can be applied recursively at as many levels of abstraction as are

found to be useful. We are now ready to implement our system-level intrusion-tolerance mechanisms,

using a mixture of arbitrary-failure and controlled-failure components. By construction, the behavior of

the latter vis-à-vis malicious faults is restricted.

As said earlier, in MAFTIA we trust components or subsystems (we will just use the word component

henceforth) to the extent of their trustworthiness, as perceived at the adequate instances: by the designer,

tester, reviewer, user (human or another component), etc. These components can subsequently be used

in the construction of fault-tolerant protocols under architectural hybrid failure assumptions.

This is an innovative aspect in MAFTIA that we explore in the following sections. Note that the

soundness of the approach does not depend on our making possibly naı̈ve assumptions about what a

hacker can or cannot do to a component. In properly designed systems, the trust placed on a component

should be qualitatively and/or quantitatively commensurate to its trustworthiness. Likewise, although the

accurate provision of such quantification is currently beyond the state-of-the-art, research here is very

active, and constitutes one of the most interesting challenges in intrusion-tolerant system architecture

and design.

This approach allows us to construct implementations of fault-tolerant protocols that are more ef-

ficient than protocol implementations that have to deal with truly arbitrary failure assumptions for all

components, and more robust than designs that make controlled failure assumptions without enforcing

them.

In our architectural experiments, we devised three main instances of trusted components. The first

is based on a Java Card, and is a local component designed to assist the crucial steps of the execution

of services and applications. The second is a distributed component (named Trusted Timely Computing

Base), based on appliance boards with private network adapters, that is designed to assist crucial steps of

the operation of middleware protocols. Whereas these two instances could be best seen as low-level run-

time support components, the third instance concerns distributed trusted components in the middleware,

recursively built over the low-level trusted components, through distributed fault-tolerance mechanisms.

3.1.4 Arbitrary failure assumptions considered necessary

Notice that the hybrid failure approach, no matter how resilient, relies on the coverage of the fail-

controlled assumptions. Definitely, there will be a significant number of operations whose value and/or

criticality is such that the risk of failure due to violation of these assumptions cannot be incurred.

In consequence, an important area of research we pursued is related to arbitrary-failure resilient build-

ing blocks, namely communication protocols of the Byzantine class, which do not make assumptions
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on the existence of trusted or controlled-failure components. They reason in terms of admitting any

behavior from the participants, and allow the corruption of a parameterizable number of participants,

say f . The system works correctly as long as there exist n > 3f participants. These protocols do not

make assumptions about timeliness either, and are in essence time-free. This has implications on the

operational aspects, which will be further discussed in Section 5.

3.2 Architecture description

In this section, we provide an overview of the MAFTIA architecture and discuss the various options

that it offers at the hardware, local executive and distributed software levels. The MAFTIA architecture

is highly modular. This is an accepted design principle for building distributed fault tolerance into

systems. It facilitates the definition of different redundancy strategies for different components, and the

placement of the relevant replicas.

3.2.1 Main architectural options

The structure of a MAFTIA host relies on a few main architectural options, some of which are natural

consequences of the discussions in the previous section:

The notion of trusted — versus untrusted — hardware. Most of MAFTIA’s hardware is considered

to be untrusted, but small parts of it are considered to be trusted to the extent of some quantifiable

measure of trustworthiness, for example, being tamper-proof by construction. Note that this notion does

not necessarily imply proprietary hardware, but for example COTS hardware whose architecture and

interface with the rest of the system justifies the aforementioned assumption.

The notion of trusted support software. This particular kind of trusted component materializes the

notion of a fail-controlled subsystem in the run-time support. It is trusted to execute a few functions

correctly (which, given the scope of MAFTIA, will normally be security-related) albeit immersed in an

environment subjected to malicious faults. The use of trusted hardware may help to substantiate this

assumption.

The notion of run-time environment, extending operating system capabilities and hiding heterogene-

ity amongst host operating systems by offering a homogeneous API and framework for protocol com-

position. Functions supplied by the above-mentioned trusted support software are offered through the

run-time API.

Modular and multi-layered middleware, with a neat separation between: the multipoint network ab-

straction, the communication support services, and the activity support services. A given middleware

layer may implement another instantiation of a trusted MAFTIA component: a trusted distributed com-

ponent that overcomes the faulty behavior of lower layers and provides certain functions in a trustworthy

way, characterized by a given failure semantics (resilience in number and severity of faults).
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Figure 1. MAFTIA architecture dimensions

The MAFTIA architecture can be depicted in at least three different dimensions (see Figure 1). First,

there is the hardware dimension, which includes the host and networking devices that make up the phys-

ical distributed system. Second, within each node, there are the local support services provided by the

operating system and the run-time platform. These may vary from host to host in a heterogeneous sys-

tem, and some services may even not be available on some hosts or may have to be accessed via the

network using protocols providing an appropriate degree of trust. However, at a minimum, the local

services include typical operating system functionality such as the ability to run processes, send mes-

sages across the network, access local persistent storage (if it exists), etc. Third, there is the distributed

software provided by MAFTIA: the layers of middleware, running on top of the run-time support mech-

anisms provided by each host; and MAFTIA’s native services, depicted in the picture — authorization,

intrusion detection, and trusted third party services. Applications built to run on top of MAFTIA use the

abstractions provided by the middleware and the application services to operate securely across several

hosts, and/or be accessed securely by users running on remote nodes, even in the presence of malicious

faults.

3.2.2 Hardware

We assume that the hardware in individual MAFTIA hosts is untrusted in general. Most of a host’s op-

erations run on untrusted hardware, e.g., the usual machinery of a PC or workstation, connected through

the normal networking infrastructure to the Internet, which we call the payload channel. However, some

hosts (see Figure 1) may have pieces of hardware that are trusted to the extent of being regarded as

tamper-proof, i.e., we assume that intruders do not have direct access to the inside of the component.

Some hosts, for example, servers, will have trusted hardware components. Currently, we consider two
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incarnations of such hardware, both readily available as COTS components. One is a Java Card reader,

connected to the machine’s hardware, and interfaced by the operating system. The Java Card stores keys

and executes software functions to which an attacker does not have access. The other type of trusted

hardware is an appliance board with processor. Such a board is a common accessory in the PC family

that has its own resources and is interfaced by the operating system. The board has a network adapter

to a private network, which we call a control channel (to differentiate it from the payload channel). We

assume that an attacker does not have access either to the interior of the board or to the information

circulating in the control channel.

Note that, contrary to the traditional security view of the term “tamper-resistance” to denote a down-

graded version of “tamper-proof-ness”, we separate concerns between what is assumed (“tamper- proof-

ness”) and the merit of that assumption (its coverage), which may be imperfect. For example, the Java

Card is assumed in MAFTIA terminology to be tamper-proof, but this quality is trusted to the extent we

believe it is worthy of that trust. The next section shows that trust to be a limited one.

3.2.3 Local support

The local support dimension of the architecture (see Figure 1) consists essentially of the operating system

augmented with appropriate extensions. We have adopted Java as a platform-independent and object-

oriented programming environment, and thus our middleware, service and application software modules

are constructed to run on the Java Virtual Machine (JVM) run-time environment. The MAFTIA run-time

support also includes the APPIA protocol kernel [34] which supports the construction of middleware

protocols from the composition of micro-protocols. The run-time support thus includes abstractions

of typical local platform services such as process execution, inter-process communication, access to

local persistent storage, and protocol management, enhanced with specialized functions provided by the

trusted support software, implemented in two components, the Java Card Module (JCM) and the Trusted

Timely Computing Base (TTCB).

The Java Card Module (JCM) is used to assist the operation of a reference monitor, which supports

the MAFTIA Authorization Service (see Section 7). The reference monitor checks all accesses to local

objects, whether persistent or transient, and autonomously manages all access rights for local transient

objects. The JCM runs partly on the operating system kernel (the reader interface part) and partly on

the Java Card (the function’s logic and the data structures, e.g., keys). Software components interact

with it through the run-time support (the JVM). The Java Card is trusted to the following extent: the

effort, in means or time, necessary to subvert it is incommensurate with the consequences of violating

the assumption of JCM resilience.

The Trusted Timely Computing Base (TTCB) is a distributed trusted support component responsible

for providing a basic set of trusted services related to time and security, to middleware protocols (com-

munication and activity support). The TTCB is designed to act as an assistant for parts of the execution
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of the protocols and applications supported by the MAFTIA middleware, and consequently it can be

called from any level of the middleware dimension of the architecture. It aims to support malicious-fault

tolerant protocols of any synchrony built to a fail-controlled model, such as reliable multicast, by supply-

ing reliable failure-detection and other control information dissemination. In essence, this component

implements some degree of distributed trust for low-level operations. That is, protocol participants es-

sentially exchange their messages in a world full of threats, some of them may even be malicious and

cheat, but there is an oracle that correct participants can trust, and a channel that they can use to get in

touch with each other, even for rare moments. Moreover, this oracle also acts a point of synchroniza-

tion for all participants, which limits the potential for Byzantine action (inconsistent value faults) by

malicious protocol participants. The other important characteristic is that the TTCB is synchronous, in

the sense of having reliable clocks and being able to execute timely functions. Furthermore, the control

channel provides timely (synchronous) and ordered communication among TTCB modules, providing

simple ways to work around the FLP impossibility result. A local TTCB runs partly on the operating

system kernel (the appliance board interface part), and partly on the appliance board itself. Software

components interact with it through the run-time support (the JVM). The TTCB component is trusted

to the following extent: it is assumed to be not feasible to subvert the TTCB, but it may be possible

to interfere in its interaction with software components through the JVM. Whilst we let a local host be

compromised, we make sure that it does not undermine the distributed TTCB operation.

The TTCB would normally be built on dedicated hardware modules, with a dedicated network. How-

ever, we have also designed simpler configurations not requiring dedicated trusted hardware for the

TTCB. The software-based solution consists of a small secure real-time kernel running on the bare

machine hardware, inside which the TTCB is built, and on top of which the regular operating system

runs (and all the rest of the host software) [19]. Note that the coverage expected of this configuration

cannot be worse than security-hardened versions of known commercial operating systems. It might

actually be better, since it only addresses the inner kernel and not the operating system as a whole.

It may thus constitute a very attractive implementation principle, for MAFTIA and in general, for its

cost/simplicity/resilience trade-off. The control channel can also assume several forms exhibiting dif-

ferent levels of timeliness and resilience, as detailed in [19]: it may or may not be based on a physically

different network from the one supporting the payload channel; secure virtual private networks linking

all TTCB modules together can be built over alternative networks, such as ISDN or GSM/UMTS.

3.2.4 Middleware

The distribution dimension impacts on the protocol design but not on the services provided by each

host. These are constructed on the functionality provided by the several middleware modules, repre-

sented in Figure 1. These interactions occur through the run-time environment. The several profiles

for building protocols, which will be detailed in the sections ahead, are achieved by composition of
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the micro-protocols necessary to achieve the desired quality of service. The middleware hides these

distinctions from the application programmer by providing uniform APIs that are parameterized with

functional and non-functional guarantees. The design of these APIs is explained in more detail in [35].

As mentioned earlier, a middleware layer may host a trusted distributed component that overcomes

the fault severity of lower layers and provides certain functions in a trustworthy way. These are in

turn trusted by the layers above, in a recursive way. For example, a (distributed) transactional service

trusts that a (distributed) atomic multicast component ensures the typical properties (agreement and total

order), regardless of the fact that the underlying environment may suffer Byzantine malicious attacks.

Figure 2 details the middleware layers. We distinguish between site and participant parts, depend-

ing on whether the functionality provided is host-global or not, respectively. The site part has access

to and depends on a physical networking infrastructure, not represented for simplicity, and multiplexes

host-global services to any participant-level module. The participant part offers support to local partic-

ipants (e.g., user applications) engaging in distributed computations. The lowest layer is the Multipoint

Network module, MN, created over the physical infrastructure. Its main properties are the provision of

multipoint addressing, basic secure channels, and management communications. The MN layer hides

the particularities of the underlying network to which a given site is directly attached, and is as thin as

the intrinsic properties of the former allow. It also provides a run-time (JVM and APPIA) compliant

interface for the protocols to be used (e.g., IP, IPSEC, SNMP).

The Communication Support Services module, CS, implements basic cryptographic primitives, Byzan-

tine agreement, group communication with several reliability and ordering guarantees, clock synchro-

nization, and other core services. The CS module depends on the MN module to access the network. The

Activity Support Services module, AS, implements building blocks that assist participant activity, such

as replication management (e.g., state machine, voting), leader election, transactional management, au-

thorization, key management, and so forth. It depends on the services provided by the CS module.

The block on the left of the figure implements failure detection and membership management. Site

failure detection is in charge of assessing the connectivity and correctness of sites, whereas partici-

pant failure detection assesses the liveness of local participants, based on local information provided

by sensors in the operating system and run-time support. Membership management, which depends on

failure information, creates and modifies the membership (registered members) and the view (currently

active, or non-failed, or trusted members), of sets of sites and of participant groups. Both the AS and CS

modules depend on this information.

4 Intrusion Tolerance Strategies in MAFTIA

The goal of MAFTIA is to support the construction of dependable trustworthy applications, imple-

mented by collections of components with varying degrees of trustworthiness. This is achieved by rely-

ing on distributed fault and intrusion-tolerance mechanisms. Given the variety of possible MAFTIA ap-

16



Multipoint
Network (MN)Site Failure

Detector (SF)

Participant Failure
Detector  (PF)

Activity Support 
Services (AS)Participant

Membership (PM)

Communication
Support

Services (CS)
Site

Membership (SM)

Participant level
Site level

Particip.
     nParticip.

     m
Particip.
      p

Applications

Network

Figure 2. Detail of the MAFTIA middleware

plications, several different architectural strategies are pursued in order to achieve the above-mentioned

goal. These strategies are applied at several levels of abstraction of the architecture, most importantly,

in the implementation of the middleware and application services. In this section, we describe these

strategies: fail-uncontrolled or arbitrary; fail-controlled with local trusted components; fail-controlled

with distributed trusted components.

The conventions used for the figures in the following sections are as follows: grey means untrusted

(the darker, the “less trusted”); white means trusted; the presence of a clock symbol means a synchronous

environment; a crossed out clock symbol means an asynchronous environment; a warped clock symbol

means a partially-synchronous environment; a key means a secure environment; dashed arrows means

IPC or communication that can be interfered with; continuous arrows denote trusted paths of communi-

cation.

4.0.5 Fail-uncontrolled

The fail-uncontrolled or arbitrary failure strategy is based on the no-assumptions attitude discussed in

Section 3. When very large coverage is sought of given mechanisms in MAFTIA, we resort to making

no assumptions about time, following an asynchronous model, and we make essentially no assumptions

about the faulty behavior of either the components or the environment. Of course, for the system as a

whole to provide useful service, it is necessary that at least some of the components are correct. This

approach is essentially parametric: it will remain correct if a sufficient number of correct participants

exist, for any hypothesized number of faulty participants f .

Figure 3 shows the principle in simple terms. The hosts and the communication environment are not

trusted, and are fully asynchronous. For a protocol to be able to provide correct service, it must cope
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with arbitrary failures of components and the environment. For example, component Ck is malicious,

but this may be because the component itself or host C have been tampered with, or because an intruder

in the communication system simulates that behavior.

Some protocols used by the MAFTIA middleware follow this strategy, in order to be resilient to

arbitrary failure assumptions. They are of the probabilistic Byzantine class, and require a number of

hosts n > 3f , for f faulty components. The MAFTIA middleware provides different qualities of service

in this asynchronous profile (see Section 5), achieved by composition of several micro-protocols on top

of basic binary Byzantine agreement, in order to achieve: reliable broadcast, atomic broadcast; multi-

valued Byzantine agreement.

4.0.6 Fail-controlled with local trusted components

Figure 4 exemplifies a fail-controlled strategy. It consists of assuming that, as for the fail-uncontrolled

strategy, hosts and communication environment are not trusted, and asynchronous. However, hosts

have a local trusted component (LTC), which supports functions they can trust for certain steps of their

operation. In MAFTIA, this strategy is implemented through a Java Card that equips some hosts. As

such, we can construct protocols that cope with a hybrid of arbitrary and fail-silent behavior, depending

on whether a component is interacting with the other components or with the local trusted component

(LTC).

Ci

Host A

LTC

Cj

Host B
Ck

Host C
Cl

Host D

LTC LTC LTC

Hybrid Failure Protocols

Figure 4. Fail-controlled with local trusted components

In the example, component Ck may be arbitrarily malicious, either because the component itself
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or host C has been tampered with, or because an intruder in the communication system simulates that

behavior. However, unlike the fail-uncontrolled strategy, the impact of this behavior on the other compo-

nents (i.e., error propagation) may be limited, if the protocol makes components perform certain checks

and validations with the LTC (for example, signature validation), which will prevent Ck from causing

certain failures in the value domain (for example, forging). An additional proviso must be made: since

the host environment is untrusted, IPC between a component and its LTC may be interfered with, though

in a controlled way. For example, if host B is contaminated, component Cj may behave erroneously, but

protocols can be designed in a way that prevents Cj from behaving in an arbitrary (e.g. Byzantine) way

towards the other hosts.

This strategy is followed in the construction of the MAFTIA authorization service, described in Sec-

tion 7. Components run distributed fault-tolerant authorization protocols based on capabilities that ex-

press the access control for objects. These protocols run among the authorization server replicas and

the hosts running a MAFTIA application. Given the criticality of the authorization service, it is also

worthwhile noting that the trust put on the Java Card LTC for this application is not absolute, in the

sense that the higher-level protocols are ready to cope with the possibility of subversion of some Java

Card modules and still ensure globally correct operation of the service. This is an excellent example of

the innovative approach we take to trustworthy computing: components are trusted to the extent of their

trustworthiness.

4.0.7 Fail-controlled with distributed trusted components

The “fail-controlled with distributed trusted components” strategy amplifies the scope of trustworthiness

of the local component support, by making it distributed. As such, certain global actions can be trusted,

despite a generally malicious communication environment. This strategy is implemented in MAFTIA

through the TTCB (Trusted Timely Computing Base), which builds trust on global (distributed) time-

related and security-related properties (such as global time, distributed durations, block agreement). One

main impact of relying on the TTCB is that timed behavior can be supported globally in an intrusion-

resilient way, as suggested by the warped clocks in Figure 5: the system is assumed to be partially

synchronous, that is, anywhere in the interval ranging from time-free to fully synchronous, depending on

the environment. This strategy assumes, as for the preceding strategies, that the hosts and communication

environment are not trusted.

The distributed trusted component (DTC) is implemented by the local TTCBs interconnected by a

control network. As with the “fail-controlled with local trusted components” strategy, in order for a

protocol to be able to provide useful service, it has to cope with a hybrid of arbitrary and fail-silent

behavior, depending on whether a component is interacting with the other components or with the TTCB.

Consider the example of Figure 5, where again component Ck or host C may be arbitrarily malicious.

Like the “fail-controlled with local trusted components” strategy, the impact of the faulty behavior of
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these components may be limited by enforcing certain validations with the local TTCB. However, the

fact that the TTCBs are interconnected and can exchange information and perform agreement in a secure

way — through the control channel — further limits the potential damage of malicious behavior: the

DTC ‘knows’ directly what each of the components in different hosts ‘say’, unlike the solution with

LTCs, where an LTC only ‘knows’ what a remote component ‘says’, through the local component. To

achieve this, the TTCB allows the set-up of secure channels with any local component, and offers a low-

level block consensus primitive. For example, components Ci through Cl could set up secure IPC with

the TTCB, through which they would run such a consensus as part of the execution of some protocol.

The other relevant aspect of the TTCB strategy is time. The TTCB supports timed behavior in an

intrusion-resilient way. As discussed in Section 3, timed systems are fragile in that timing assumptions

can be manipulated by intruders. The TTCB supplies constructs that enable protocols to tolerate this

class of intrusions. These are obviously related to the trusted time-related services briefly described ear-

lier, namely absolute time, duration measurement and timing failure detection. As suggested in Figure 5,

the TTCB DTC is a fully synchronous subsystem. It supplies its services to the payload system, which

can have any degree of synchronism, as suggested by the warped clock. The TTCB does not make the

payload system “more synchronous”, but allows it to take advantage of its possible synchronism, in the

presence of faults, both accidental and malicious. As such, the TTCB can assist an application running

on the payload system to determine useful facts about time: for example, be sure it executed something

on time; measure a duration; determine it was late doing something, etc. Then, the payload system,

despite being imperfect (it suffers timing faults, some of which may result from attacks), can react (im-

plement fault-tolerance mechanisms) based on reliable information about the presence or absence of

errors (provided by the TTCB at its interface).

Depending on the type of application, it is not necessary that all sites have a local TTCB. Consider

the development of a fault-tolerant TTP (Trusted Third Party) based on a group of replicas that collec-

tively ensure the correct behavior of the TTP service vis-à-vis malicious faults. The nodes hosting these

replicas have TTCBs that support the execution of the group communication and replica management

protocols under a timed model.
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Several of the MAFTIA middleware protocols follow the “fail-controlled with TTCB” strategy. These

protocols are group-oriented, deterministic, and can provide timeliness guarantees. The MAFTIA mid-

dleware provides different qualities of service in this timed profile by composing several micro-protocols

on top of basic unreliable multicast. For example, this is the way in which reliable multicast and atomic

multicast protocols described in Section 6 are achieved.

5 Byzantine Agreement: the arbitrary approach

As discussed before, an established way for enhancing the fault tolerance of a server is to distribute

it among a set of servers and to use replication algorithms for masking faulty servers. Thus, no single

server has to be trusted completely and the overall system derives its integrity from a majority of correct

servers.

In this section, we describe a configuration of the MAFTIA architecture for distributing trusted ser-

vices among a set of servers that guarantees liveness and safety of the services despite some servers be-

ing under control of an attacker or failing in arbitrary malicious ways. In this configuration, the system

model does not include timing assumptions and is characterized by a static set of servers with point-

to-point communication and by the use of modern cryptographic techniques. Trusted applications are

implemented by deterministic state machines replicated on all servers and initialized to the same state.

Client requests are delivered by an atomic broadcast protocol that imposes a total order on all requests

and guarantees that the servers perform the same sequence of operations; such an atomic broadcast can

be built from a randomized protocol to solve Byzantine agreement. We use efficient and provably secure

agreement and broadcast protocols that have recently been developed.

In the first part of this section, we provide a detailed discussion of these assumptions, compare them to

related efforts from the literature, and argue why we believe that these choices are adequate for trusted

applications in an Internet environment. In the second part, a brief overview of the architecture and

protocols is given. Our main tool is a protocol for atomic broadcast, which builds on reliable broadcast

and multi-valued Byzantine agreement in an asynchronous network.

5.1 Model

In our model, the system consists of a static set of n servers, of which up to t may fail in completely

arbitrary ways, and an unknown number of possibly faulty clients. All parties are linked by asynchronous

point-to-point communication channels. Without loss of generality we assume that all faulty parties are

controlled by a single adversary, who also controls the communication links and the internal clocks of all

servers. The adversary is an arbitrary but computationally bounded algorithm. Faulty parties are called

corrupted, the remaining ones are called honest. Furthermore, there is a trusted dealer that generates and

distributes secret values to all servers once and for all, when the system is initialized. The system can

process a practically unlimited number of requests afterwards.
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This model falls under the impossibility result of Fischer, Lynch, and Paterson [23] of reaching con-

sensus by deterministic protocols. Many developers of practical systems seem to have avoided this model

in the past for that reason and have built systems that are weaker than consensus and Byzantine agree-

ment. However, Byzantine agreement can be solved by randomization in an expected constant number of

rounds only [13]. Although the first randomized agreement protocols were more of theoretical interest,

some practical protocols have been developed recently. For example, the randomized agreement proto-

col of [10] is based on modern, efficient cryptographic techniques with provable security and withstands

the maximal possible corruption.

In our system, we use Byzantine agreement as a primitive for implementing atomic broadcast, which

in turn guarantees a total ordering of all delivered messages. Atomic broadcast is equivalent to Byzan-

tine agreement in our model and thus considerably more expensive than reliable broadcast, which only

provides agreement of the delivered messages, but no ordering (see Section 5.2).

Below we elaborate on the three key features of our model: cryptography, asynchronous communica-

tion, and a static server set.

Cryptography. Cryptographic techniques such as public-key encryption schemes and digital signa-

tures are crucial already for many existing secure services. For distributing a service, we need distributed

variants of them from threshold cryptography.

Threshold cryptographic schemes are non-trivial extensions of the classical concept of secret sharing

in cryptography. Secret sharing allows a group of n parties to share a secret such that t or fewer of them

have no information about it, but t + 1 or more can uniquely reconstruct it. However, one cannot simply

share the secret key of a cryptosystem and reconstruct it for decrypting a message because as soon as a

single corrupted party knows the key, the cryptosystem becomes completely insecure and unusable.

A threshold public-key cryptosystem looks similar to an ordinary public-key cryptosystem with dis-

tributed decryption. There is a single public key for encryption, but each party holds a key share for

decryption (all keys were generated by a trusted dealer). A party may process a decryption request for a

particular ciphertext and output a decryption share together with a proof of its validity. Given a cipher-

text resulting from encrypting some message and more than t valid decryption shares for that ciphertext,

it is easy to recover the message. A threshold cryptosystem must be secure against adaptive chosen-

ciphertext attacks [50], which means that the adversary cannot obtain any information from a ciphertext

unless at least one honest server has generated a decryption share.

In a threshold signature scheme, each party holds a share of the secret signing key and may generate

shares of signatures on individual messages upon request. The validity of a signature share can be

verified for each party. From t + 1 valid signature shares, one can generate a digital signature on the

message that can later be verified using the single, publicly known signature verification key. In a secure

threshold signature scheme, it must be infeasible for the adversary to produce t+1 valid signature shares

that cannot be combined to a valid signature and to output a valid signature on a message for which no
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honest party generated a signature share.

Another important cryptographic algorithm is threshold coin-tossing scheme, which provides a source

of unpredictable random bits that can be queried only by a distributed protocol. It is the key to circum-

venting the FLP impossibility result [23] and used by the randomized Byzantine agreement protocol.

Threshold-cryptographic protocols have been used for secure service replication before, e.g., by Re-

iter and Birman [46]. However, a major complication for adopting threshold cryptography to our asyn-

chronous distributed system is that many early protocols are not robust and that most protocols rely

heavily on synchronous broadcast channels. Only very recently, non-interactive schemes have been de-

veloped that satisfy the appropriate notions of security, such as the threshold cryptosystem of Shoup and

Gennaro [50] and the threshold signature scheme of Shoup [49]. Both have non-interactive variants that

integrate well into our asynchronous model.

No Timing Assumptions. We do not make any timing assumptions and work in a completely asyn-

chronous model. Asynchronous protocols are attractive because the alternative is to specify timeout

values, which is very difficult when protecting against arbitrary failures that may be caused by a mali-

cious attacker.

It is usually much easier for an intruder to block communication with a server than to subvert it.

Prudent security engineering also gives the adversary full access to all specifications, including time-

outs, and excludes only cryptographic keys from her view. Such an adversary may simply delay the

communication with a server longer than the timeout and the server appears faulty to the others.

Time-based failure detectors [16] can easily be fooled into making an unlimited number of wrong

failure suspicions about honest parties like this. The problem arises because one crucial assumption

underlying the failure detector approach, namely that the communication system is stable for some

longer periods when the failure detector is accurate, does not hold against a malicious adversary. A

clever adversary may subvert a server and make it appear working properly until the moment at which it

deviates from the protocol — but then it may be too late.

Of course, an asynchronous model cannot guarantee a bound on the overall response time of an

application. But the asynchronous model can be seen as an elegant way to abstract from time-dependent

peculiarities of an environment for proving an algorithm correct such that it satisfies liveness and safety

under all timing conditions. By making no assumption about time at all, the coverage of the timing

assumption appears much bigger, i.e., it has the potential to be justified in a wider range of real-world

environments. For our applications, which focus on the security of trusted services, the resulting lack of

timeliness seems tolerable.

Static Server Set. Distributing a trusted service among a static set of servers leverages the trust in the

availability and integrity of each individual server to the whole system. In our model, this set remains

fixed during the whole lifetime of the system, despite observable corruptions. The reason is that there
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are no protocols to replace corrupted servers in a secure distributed way, since all existing threshold-

cryptographic protocols are based on fixed parameters (e.g., n and t) that must be known when the key

shares are generated.

The alternative to a static server set is to remove apparently faulty servers from the system. This

is the paradigm of view-based group communication systems in the crash-failure model [41]. They

offer resilience against crash failures by eliminating non-responding servers from the current view and

proceeding without them to the next view. Resurrected servers may join again in later views. But with the

partial exception of Rampart [45], there is no group communication system that uses views and tolerates

arbitrary failures (also Rampart cannot tolerate an attacker that has access to the failure detector).

The problem with Byzantine faults is that a corrupted server cannot be resurrected easily because

the intruder may have seen all its cryptographic secrets. With the use of specialized “proactive” proto-

cols [12], one could in principle achieve this by refreshing all key shares periodically. But such proactive

cryptosystems for asynchronous networks have only recently been developed [8], after the formulation

of this architecture, and further work would still be needed to build a fully asynchronous system with

dynamic groups that tolerates Byzantine faults.

5.2 Secure Asynchronous Agreement and Broadcast Protocols

This section presents a short overview of the agreement and broadcast protocols used in this architec-

ture configuration. Detailed descriptions can be found in related papers [10, 9, 11].

We need protocols for basic broadcasts (reliable and consistent broadcast), atomic broadcast, and

secure causal atomic broadcast; they can be described and implemented in a modular way as follows,

using multi-valued Byzantine agreement and randomized binary Byzantine agreement as primitives, as

shown in Figure 6.

Byzantine agreement requires all parties to agree on a binary value that was proposed by an honest

party. The protocol of Cachin et al. [10] follows the basic structure of Rabin’s randomized protocol [42],
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which is to check if the proposal value is unanimous and to adopt a random value, called a common

random coin, if not. It terminates within an expected constant number of asynchronous rounds and

uses a robust cryptographic threshold coin-tossing protocol, whose security is based on the so-called

Diffie-Hellman problem. It requires a trusted dealer for setup, but can process an arbitrary number of

independent agreements afterwards. Threshold signatures are further employed to decrease all messages

to a constant size.

The other agreement primitive is multi-valued Byzantine agreement, which provides agreement on

values from large domains. Multi-valued agreement requires a non-trivial extension of binary agreement.

The difficulty in multi-valued Byzantine agreement is how to ensure the “validity” of the resulting value,

which may come from a domain that has no a priori fixed size. Our approach to this is a new, “external”

validity condition, using a global predicate with which every honest party can determine the validity of

a proposed value. The protocol guarantees that the system may only decide for a value acceptable to

honest parties. This rules out agreement protocols that decide on a value that no party proposed. Our

implementation of multi-valued Byzantine agreement uses only a constant expected number of rounds;

details can be found in [9].

A basic broadcast protocol in a distributed system with failures is reliable broadcast, which provides

a way for a party to send a message to all other parties. Its specification requires that all honest parties

deliver the same set of messages and that this set includes all messages broadcast by honest parties. How-

ever, it makes no assumptions if the sender of a message is corrupted and does not guarantee anything

about the order in which messages are delivered. The reliable broadcast protocol of our architecture is

an optimization of the elegant protocol by Bracha and Toueg [7]. We also use a variation of it, called

consistent broadcast, which is advantageous in certain situations. It guarantees uniqueness of the deliv-

ered message, but relaxes the requirement that all honest parties actually deliver the message — a party

may still learn about the existence of the message by other means and ask for it. Our implementation

relies on non-interactive threshold signatures, which reduces the communication compared to previous

implementations.

An atomic broadcast guarantees a total order on messages such that honest parties deliver all messages

in the same order. Any implementation of atomic broadcast must implicitly reach agreement whether

or not to deliver a message sent by a corrupted party and, intuitively, this is where Byzantine agree-

ment is needed. The basic structure of our protocol follows the atomic broadcast protocol of Chandra

and Toueg [16] for the crash-failure model: the parties proceed in global rounds and agree on a set of

messages to deliver at the end of each round, using multi-valued agreement. For agreement every party

proposes the messages that it wants to deliver in the current round. The agreement protocol decides on

a list of messages and all messages in it are delivered according to a fixed order. The external validity

condition ensures that all messages that are agreed-on list are appropriate for the current round. Details

of this protocol are in [9].

A secure causal atomic broadcast is an atomic broadcast that also ensures a causal order among all
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broadcast messages, as put forward by Reiter and Birman [46]. It can be implemented by combining

an atomic broadcast protocol that tolerates a Byzantine adversary with a robust threshold cryptosystem.

Encryption ensures that messages remain secret up to the moment at which they are guaranteed to be

delivered. Thus, client requests to a trusted service using this broadcast remain confidential until they

are scheduled and answered by the service. The threshold cryptosystem must be secure against adaptive

chosen-ciphertext attacks to prevent the adversary from submitting any related message for delivery,

which would violate causality in our context. Maintaining causality is crucial in the asynchronous en-

vironment for replicating services that involve confidential data. Our protocol for secure causal atomic

broadcast follows the basic idea of Reiter and Birman’s protocol. But because we use our atomic broad-

cast protocol and the non-interactive threshold cryptosystem of Shoup and Gennaro [50], we obtain the

first provably secure implementation of secure causal atomic broadcast in an asynchronous network with

Byzantine faults.

All our broadcast and agreement protocols work under the optimal assumption that n > 3t.

6 Reliable multicast: using trustworthy components

This section discusses MAFTIA architecture configurations following the strategy based on dis-

tributed trusted components (DTC). We solve a reliable multicast problem to exemplify the theory and

the principles of construction of this kind of protocols.

The properties and correctness discussion of our protocols rely on the wormholes model, which pos-

tulates the existence of enhanced subsystems (wormholes) capable of providing a few simple privileged

services to other components, with “good” properties otherwise not guaranteed by the “normal” weak

environment in a distributed system [56]. For example, they can provide timely or secure functions in,

respectively, asynchronous environments or systems with Byzantine failures. In MAFTIA the worm-

holes metaphor is materialized by the Trusted Timely Computing Base (TTCB) introduced in Section 3,

a DTC providing a few timeliness- and security-related functions. Protocols built with a wormhole are

run in a part of the system that might experience arbitrary delays or failures (asynchronous Byzantine

environment). However, during their execution, they can call the wormhole services to perform correctly

(small) crucial steps. In contrast to the rest of the system, the services only return trustworthy results.

We say that such protocols are “wormhole-aware”.

6.1 Model

Figure 7 shows a representation of the system in this configuration. Each node contains the typical

software layers such as the operating system and runtime environments, and an extra component, the

TTCB wormhole. The wormhole is distributed, with a local part in each node and a control channel.

The local parts, or local wormholes, are computational components with activity, and the control channel

is a private communication channel or network. The multicast protocol is executed by a group P =
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Figure 7. Architecture with a TTCB (payload subsystem is displayed in dark and the TTCB in white)

{p1, ..., pn} of n processes. Processes run outside the wormhole and they communicate by sending

messages through the payload network. At certain points of their execution, they can, however, request

some services of the wormhole by calling its interface.

With the exception of the wormhole, the system is assumed to be asynchronous. Consequently, there

can be no assumptions about the relative speed of processes, no bounds on message delivery delays (on

the payload network), and no bounds on the invocations of wormhole services (since they are initiated

and terminated in the asynchronous part of the system). The wormhole is assumed to be synchronous and

capable of timely behavior. This means that once a request arrives at the wormhole interface, it will take

a well defined interval until that answer is available at the same interface. In practical implementations

these synchrony guarantees can be ensured because the wormhole has complete control over all resources

in the node that are needed to perform its tasks, including the control channel (for details see [52, 14, 19]).

The payload part of the system, which includes the processes, can suffer from Byzantine faults. For

instance, processes can stop working, skip some steps in the protocol, give invalid information to the

wormhole or other processes, or collude with other malicious processes in an attempt to break the pro-

tocol. Byzantine faults can also affect the communication through the payload network and the service

calls to the local wormhole. We assume that the payload network has an associated omission degree

(Od), which implies that no more than Od messages are corrupted/lost in a reference interval of time.

By making this assumption, a message only needs to be retransmitted Od + 1 times to ensure its recep-

tion in absence of attacks. In a Byzantine setting, however, for sufficiently strong adversaries one can

envision attacks that will corrupt more than Od + 1 successive retransmissions. Whenever this happens,

we take the approach of considering the receiver process as faulty (which is indeed the end result, since

that process is unable to communicate). Nevertheless, the reader should notice that Od is just a parame-

ter of the protocol: conservatively large values of Od basically simulate a reliable channel. Incidentally,

if a process is systematically prevented from calling the local wormhole, then it will also be considered
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as faulty.

The wormhole subsystem, which includes the control network, is assumed to fail only by crashing.

Therefore, a local wormhole either provides its services as expected or it simply stops running. This

assumption should hold even if malicious adversaries manage to attack and compromise a node with a

local wormhole (for implementation details see [19]).

6.2 Wormhole services and interface

A wormhole provides a small number of services that can be accessed through calls to its local inter-

face. Distinct protocols can utilize different services in different ways. However, in all cases, protocols

are designed to run on the payload subsystem and use the wormhole infrequently, imposing a compara-

tively small load on it. The TTCB (Trusted Timely Computing Base), is just one example of wormhole,

the one implemented in MAFTIA, whose most important services are briefly described ahead (a detailed

description can be found in [35]).

The Local Authentication service (this is a component-oriented, rather than a high-level authentication

service) makes the necessary initializations and authenticates the local wormhole component before the

process. A timestamp with the current global time is returned by the Timestamping service. The Trusted

Block Agreement service applies an agreement function to a set of values proposed by the processes and

returns a value. By using different functions, this service can be configured to deliver results with diverse

characteristics. Perhaps a good way to understand the service is through the description of its interface

parameters:
tag,error←TTCB propose(eid, elist, tstart, decision, value)

value,prop-ok,prop-any,error←TTCB decide(eid, tag)

A process calls TTCB propose to propose a value. The parameters have the meaning: eid is the

unique identification of a process before the wormhole, obtained using the Local Authentication Service.

elist is a list with the eids of the processes involved in the agreement. tstart is a timestamp and

corresponds to the latest instant when the agreement will start (it might be initiated earlier if all proposals

arrive before tstart). A proposal made after tstart is rejected and an error is returned. decision defines

the agreement function (the TTCB offers a limited set). value is the proposed value, and it can only

have a small number of bytes (20 in the current implementation). The function returns an error code

and a unique identifier of this agreement, called the tag. Processes call TTCB decide to get the result of

the agreement. The result is a record with four fields: the decided value, a mask prop-ok with one bit

set per each process that proposed the decided value, a mask prop-any with one bit set per process that

proposed any value, and an error code.
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6.3 Designing wormhole-aware protocols

We use a reliable multicast protocol as an example to illustrate the principles of building wormhole-

aware protocols (more details can be found in [18]). A reliable multicast protocol guarantees that all

correct processes deliver the same messages, and if a correct sender transmits a message then all cor-

rect processes deliver this message. No assurances, however, are provided about the order of message

delivery. Formally, a reliable multicast protocol has the following properties [26] 4.

• Validity: If a correct process multicasts a message M, then some correct process in group(M)

eventually delivers M.

• Agreement: If a correct process delivers a message M, then all correct processes in group(M)

eventually deliver M.

• Integrity: For any message M, every correct process p delivers M at most once and only if p is in

group(M), and if sender(M) is correct then M was previously multicast by sender(M).

One achievement related to our model is that the protocol requires that, out of a total of n processes,

no more than f = n − 2 processes are allowed to fail (the problem is of obviously little interest with

less than two correct processes). The asynchronous Byzantine system model augmented with the TTCB

wormhole allows us to lower the known limit of f = (n− 1)/3 processes [18].

Basic principles. Wormhole-aware protocols can be depicted as running on a dual space-time diagram

(see Figure 8): the payload subsystem’s, seen in evidence in the figure; and the TTCB subsystem’s,

whose timelines are collapsed in the thick gray bar for simplicity. A correct use of the wormholes prin-

ciple mandates that most of the protocol execution takes place in the payload subsystem. The wormhole

services are only invoked when there is an obvious trade-off between what is obtained from the worm-

hole service and the complexity/cost of implementing it in the payload subsystem (e.g., related with hard

reliability, synchrony, or security requirements). This will become evident from the examples to come.

As usual, the protocols starts with the sender multicasting a message through the payload channel.

Since the sender might be malicious or the network might be attacked or have omission failures, the

protocol needs to ensure the reception of the message by all correct processes and the integrity of the

message contents.

In asynchronous Byzantine environments this may entail some complexity and/or delay [44, 28]. The

wormhole has thus an opportunity to come into play: the sender and all recipients send a hash of the

message just sent/received, to the wormhole, which runs an agreement on the hashes in its protected

environment, returning to all the sender’s hash as result. If all goes well, processes see that: all proposed

4The predicate sender(M) gives the message field with the sender, and group(M) gives the “group” of processes in-

volved, i.e., the sender and the recipients (note that we consider that the sender also delivers).
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the same hash; and that the agreed hash corresponds to the message received. Thus, they terminate at

the end of this phase, in an extremely fast manner.
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Figure 8. Reliable Multicast with a Wormhole: (a) omissions and delays; (b) malicious sender.

Detecting and recovering from errors. If this condition is not verified, then either one or more pro-

cesses did not get the correct message or some of them were late when proposing to the wormhole (after

tstart). Such a situation is depicted in Figure 8a, and it requires a second phase: P3 is going to propose

late and thus be rejected; P4 suffers an omission. Detecting these errors is another difficult task in asyn-

chronous Byzantine environments, and here we see another contribution of the wormhole: reliable error

detection (performed concurrently with the agreement on the hash). Processes detect the errors imme-

diately, because they spot “holes” in the prop-ok and prop-any masks (see Section 6.2), respectively for

processes that proposed wrongly or did not propose at all.

In the second phase, processes try to remedy for the above-mentioned “holes”, using classical re-

transmission and forwarding techniques. As shown in Figure 8a, processes retransmit the message until

either all acknowledge the arrival of the message or the Od + 1 threshold is reached. The ‘bounded

omission degree’ technique for synchronous environments [54] can be used here for termination in an

asynchronous environment, due to the synchronous distributed error detection channel provided by the

TTCB wormhole.

Each multicast is retransmitted at most Od + 1 times in order to resist a number of network failures

(Od = 1 in the setting of the example). After a few forwardings and acknowledgements, we see that all

processes end-up converging and deliver the message. In terms of protocol principle, the reader should

see these operations as recovery measures that end-up asserting the missing bits in the masks. Figure 8b

depicts the more serious situation where the sender is Byzantine: it sends a different message M ′ to P3,

who obviously proposes hash H(M ′) and is deemed wrong. The remedy is used again: correct recipients

forward M to P3, who asserts its bit in its own prop-ok mask and acknowledges. The other recipients do

the same in reaction to the acknowledgement, and all deliver.
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Payload-wormhole synchronization. The role of tstart deserves mention, since it can be generalized

to other protocols as well. tstart reveals an interesting way of performing synchronization between the

asynchronous payload and the synchronous TTCB wormhole protocols.

To the latter, such a quantity is a real time instant or interval in the global timeline maintained by

all wormhole modules. It allows wormhole protocols to perform essentially all timed operations. To

the former, the time-free payload protocols, it is merely an integer quantity. These ‘synchronizers’

can be used as constants or variables, and establish a sound basis for decoupling the logic and timing

aspects of the design of protocols [51]. Time-free modules can safely synchronize with each other by

exchanging and/or agreeing on these values, adding quantities to them, and so forth, since all timing

aspects (including timing failure, a.k.a timeout, detection) are dealt with in the wormhole. These values

can be bound to real time when desired, by using the Timestamping service [53].

In this particular case, tstart is set to the current time plus a delay. To prevent the service execution

from being maliciously postponed, the Trusted Block Agreement service rejects proposals that arrive

after tstart. Therefore, the selection of the tstart value presents a tradeoff: if it is too large, the first

phase may take longer than what is required; if the value is too small, a correct recipient may not

receive the message before tstart and the second phase will have to be executed unnecessarily (i.e.,

the opportunity to terminate the protocol early is lost). Note however that the value of tstart only

affects performance, and not safety or liveness. A good heuristics for selecting the delay is to make it

proportional to an estimate of the message transmission time. Incidentally, in another work we have

studied the dependable dynamic adaptation of timing parameters such as message transmission times, in

systems using wormholes [15].

Acknowledgement protection. The acknowledgements, as the data messages, have to be protected

from forgeries. To accomplish this task, we use a vector of Message Authentication Codes (MACs)

through the payload, instead of relying on the services of the wormhole. This is a good example of a

situation where the trade-off for using the wormhole does not occur: what is going to be used poten-

tially massively (acknowledgements), and could be easily and efficiently achieved through the payload

(MACs), should not go through the wormhole.

A MAC is a cryptographic checksum obtained with a hash function and a symmetric key [32]. Al-

though MACs are not as powerful as signatures based on public-key cryptography, they are sufficient

for our needs, and more importantly, they are several orders of magnitude faster to calculate. Since ac-

knowledgements are multicasted to all processes, they do not take a single MAC but a vector of MACs

with an entry per process.
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7 Authorization

Authorization aims to ensure that only legitimate actions are carried out in the system, or, equivalently,

to prevent illegitimate actions from being carried out. As such, authorization, and its implementation

by access control mechanisms, participates in error detection (by detecting attempts to run illegitimate

actions) and in error confinement (by preventing illegitimate actions), whether these errors are due to

accidental faults or attacks. Authorization is thus of tremendous importance for Internet applications.

Currently, the most common authorization scheme used on the Internet is based on the client-server

paradigm: a server satisfies or rejects client requests at its discretion, according to what it knows about

the client (e.g., the identity claimed by the client, history of previous transactions, etc.). Unfortunately,

the client-server model is not rich enough to cope with complex transactions involving more than two

participants. For example, an electronic commerce transaction requires usually the cooperation of a

customer, a merchant, a credit card company, a bank, a delivery company, etc. Each of these participants

has different interests, and thus distrusts the other participants. Moreover, such a model is necessarily

privacy intrusive, since it enables the server to record a lot of personal information about clients: identity,

usual IP address, postal address, credit card number, purchase habits, etc.

MAFTIA proposes a new authorization scheme that can grant fair rights to each participant, while

distributing to each one only the information strictly needed to execute its own task, i.e., a proof that the

task has to be executed and the parameters needed for this execution, without unnecessary information

such as participant identities. This scheme is based on two levels of access control:

An authorization server is in charge of granting or denying rights for transactions involving several

participants; if a transaction is authorized, the authorization server distributes authorization proofs (i.e.,

capabilities) for all the elementary operations that are needed to carry it out.

On each participating host, a reference monitor is responsible for fine-grain authorization, i.e., for

controlling the access to all local resources and objects according to the capabilities that accompany each

request. To enforce hack-proofing of such reference monitors on off-the-shelf computers connected to

the Internet, critical parts of the reference monitor are based on a MAFTIA trusted component, the Java

Card Module, as described in Section 3.

7.1 Authorization Server

In [37], a generic authorization scheme had been proposed for distributed object systems. In this

scheme, an application can be viewed at two levels of abstraction: composite operations and method

executions. A composite operation corresponds to the coordinated execution of several object methods

towards a common goal. For instance, printing file F3 on printer P4 is a composite operation involving

the execution of a printfile method of the spooler object attached to P4, which itself has to request the

execution of the readfile method of the file server object managing F3, etc. In the MAFTIA context,

composite operations can be assimilated to transactions.
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A request to run a transaction is authorized or denied by an authorization server, according to symbolic

rights stored in an access control matrix managed by the authorization server. More details on how the

authorization server checks if a transaction is to be granted or denied are given in [36] and [2]. If the

request is authorized, capabilities are created by the authorization server for all the method executions

needed to perform the transaction. These capabilities are simple method capabilities if they are used

directly by the object requesting the execution of the transaction, i.e., used by this object to directly call

another object’s methods. Alternatively, the capabilities may be indirect capabilities or vouchers, if they

cannot be used by the calling object but must be delegated to another object that will invoke other object

methods to participate in the transaction. In fact, the notion of transaction is recursive, and a voucher

can contain either a method capability or the right to execute a nested transaction.

This delegation scheme is more flexible than the usual “proxy” scheme by which an object transmits

to another object some of its access rights for this delegated object to execute operations on behalf of the

delegating object. Our scheme is also closer to the “least privilege principle”, since it helps to reduce

the privilege needed to perform delegated operations. For instance, if an object O is authorized to print

a file, it has to delegate a read-right to the spooler object, for the latter to be able to read the file to be

printed. To delegate this read-right with the proxy scheme, O must possess this read-right and could

thus abuse this right by making copies of the file and distributing them. In this case, the read-right is a

privilege much higher than a simple print-right. In our scheme, if O is authorized to print a file, O will

receive a voucher for the spooler to read the file, and a capability to call the spooler. The voucher, by

itself, cannot be used by O. With the capability, O can invoke the spooler and transmit the voucher to

the spooler. The spooler can then use the voucher as a capability to read the file.

Since only transactions are managed by the authorization server, system security is relatively easy to

manage: the users and the security administrators have just to assign the rights to execute predefined

transactions, they do not have to consider all the elementary rights to invoke object methods. Moreover,

since only one request has to be checked for each transaction, the communication overhead can be

reduced.

The authorization server is a trusted third party (TTP), which could be a single point of failure, in

case of both accidental failure or successful intrusion (including by a malicious administrator). To

prevent this, with the MAFTIA authorization architecture, the authorization server is made fault- and

intrusion-tolerant [2]: an authorization server is made of diversely-designed and implemented security

sites, operated by independent persons. Faults and intrusions affecting security sites can be tolerated

without degrading the service, as long as only a few security sites are affected.

In order to tolerate the failure of one or a small number of the sites composing the authorization server,

two main protocols are used:

Mutual agreement: all non-faulty sites agree on the decision to grant or deny the authorization cor-

responding to a given request. This guarantees a correct decision as long as there is only a minority of

faulty sites. In practice, the number f of faulty sites may have to be much less than half the total number
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n of sites, depending on the fault assumptions. For instance, (n ¿ 3f) must be guaranteed if Byzantine

faults are to be taken into account.

Threshold signature: the capabilities and vouchers are globally signed by the authorization server,

using a threshold signature scheme. Each of the sites composing the authorization server generates a

signature share (depending on its own private key share) so that if at least t valid signature shares are

available (t being the threshold), it is possible to combine these shares to generate a unique signature that

can be verified with a global public key. This guarantees that if a capability (or a voucher) has a correct

signature, the corresponding operation is indeed authorized (the signed capability cannot be forged, even

by a cooperation of f faulty sites, as long as f is strictly less than the threshold t).
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Figure 9. Authorization architecture.

These protocols are presented with more detail in [3]. The global architecture is given by Figure 9. The

dialogue between a MAFTIA object and the authorization server is typically as follows (see Figure 10).

Object O asks the authorization server for the authorization to carry out an operation in the system.

This operation may be the simple invocation of a particular method of a particular object O ′ or may be

a transaction that requires the collaboration between several objects in the system.

In the first case, if object O is authorized to carry out the operation, it receives a capability, encrypted

by the public key of the host where O ′ is located, and then signed using the threshold scheme described

above. This capability will be presented and checked by the reference monitor located on the site of the

invoked object O′.

In the second case, the user may receive several capabilities and vouchers. Capabilities are directly

used by object O to invoke particular methods of particular objects, and are encrypted and signed as in

the first case. Vouchers are not used by object O but are forwarded by object O to other objects that

are involved in the execution of the transaction (e.g., a capability for O ′ to invoke a method m of an
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Figure 10. Protocol between a MAFTIA object and the authorization server.

object O′′, as a part of the transaction). These vouchers will thus be transferred by object O to other

objects, which will then execute their part of the transaction thanks to these vouchers. A voucher may

be a capability (in which case they are encrypted and signed as above), or the right to execute a nested

transaction (in which case the voucher is just signed). In the latter case, this voucher is a token that has to

be presented to the authorization server to obtain directly all the authorization proofs needed to execute

the nested transaction, without consultation of the access control matrix.

7.2 Reference Monitor

There is a reference monitor on each host participating in a MAFTIA-compliant application. The

reference monitor is responsible for granting or denying local object method invocations, according to

capabilities and vouchers distributed by the authorization server. In the context of wide-area networks

(such as the Internet), the implementation of such a reference monitor is complicated since, due to the

heterogeneity of connected hosts, it would be necessary to develop one version of the reference monitor

for each kind of host. Moreover, since the hosts are not under the control of a global authority, there

is no way to ensure that each host is running a genuine reference monitor, or the same version thereof.

This is one reason we have chosen to implement them by using Java Cards.

We assume that any software, even that within an operating system or a JVM, can be copied and

modified by a malicious user who possesses all privileges on a local host. In particular, on the Internet,

any hacker can easily have these privileges on his own computer! The capability checks only provide

assurance to non-faulty hosts, who can be sure that any remote request to execute a MAFTIA-application

is genuine (if the capability is correct), and that a genuine MAFTIA request can only be executed on a

host for which the capability is valid.

However, if a host is faulty or has been corrupted by a hacker, there is no assurance at all about

the operations it executes locally. Nevertheless, we do trust the local Java Card Module to protect the
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integrity of a corrupt host’s private key. This means in particular that we exclude the possibility of a

corrupt host being able to impersonate a non-faulty host since it is unable to sign messages correctly.

Thus, the privileges gained by a hacker on a corrupt host give him no privilege outside that host unless

the hacker is able to tamper with the local Java Card Module.

We consider the Java Card Module to be sufficiently tamperproof, as discussed in Section 3, in order

to sufficiently delay the attacker’s progress in corrupting further hosts. Global properties can thus be

maintained by fault-tolerance mechanisms unless, say, more than f hosts are compromised in a given

”window of vulnerability” [59]. The fact that the authorization scheme prevents a hacker from gaining

privileges outside a corrupted host unless he successfully tampers with the Java Card Module means that

the difficulty of violating such a global property is linear in f .

The capability checks carried out by the Java Card Module are based on strong cryptographic func-

tions. Several cryptographic keys must be included in the Java Card:

PKm, the MAFTIA public key. This key is associated to the MAFTIA private key SKm, which is not

stored in the Java Card. The Java object classes are signed off-line by this key SKm, and this signature

is checked at load time by the local JVM of the host5, using PKm stored in the Java Card.

SKj , PKj , a private/public key pair specific to the Java Card, thus specific to the host.

PKas, the authorization server public key. This key is associated to all the private key shares of all the

sites composing the authorization server.

Each capability is encrypted by the authorization server, using the public key PK j of the site where

the invoked object is located. Then the capability is signed by the authorization server with a threshold

signature protocol. Consequently, the capability signature must first be verified using the authorization

server’s public key PKas, and then decrypted (by the cryptographic functions of the Java Card) using

the private key SKj , which is stored only in the Java Card. Each access to a method of an object

on a MAFTIA host is first intercepted by a Dispatcher, which is a Java object, located in the local

JVM interfacing the Java Card. For each access to a local object method, the dispatcher checks if the

invocation is carrying a capability, then sends this capability to the Java Card for verification. This

verification corresponds to step 2 of Figure 11.

Other information can be stored in the Java Card, for instance for the authentication of the user owning

the Java Card if the host is a personal workstation, or for the authentication of the administrator who has

been assigned this Java Card if the host is a server. In the latter case, it may be possible to have several

administrators for the same server, each administrator having his personal Java Card for this server,

and all server administrator Java Cards sharing the same pair SKj , PKj . More details on the Java Card

implementation of the reference monitor can be found in [21].

5Since version 1.2, the Java Development Kit includes software that allows classes to be signed and the signatures to be

checked at load time.

36



� � � � � � 
 �� � � � � � 
 �

" 	 � � � + 	

�

�

�

,

- - .

� 	 � 	 
 	 � � 	

 � � � � � 


� / " ) � � / � �

� / 0 ) � � / 0

� � � " 	 � � � + 	 � � � 
 
 � � � + � � � � � # � $ � � � 	 � � � � � � � � � � � 	 
 � � � � � 
 	 � 	 � � 	 � � # � � � � 	 � $ � � � $ �

� � � � � � � � 	 
 � % , & �

� � � " 	 � � � � � � � � - � � � � � � � � ! 	 � � � � � 	 � � � 	 � � � � � # � $ � � � � � � � � � 
 � � � � + � � � � � � � � � 	 � � � � � � � # 	 	 � � � 	 
 � � � 	 � �

# � � � � 	 � � � � � � � � 
 � � � 
 � � � � � � � � � � � � � � �

� ' � 	 � " 	 � � � + 	 � � � $ � � � � � � � � � � 	 
 � � � � � � � � � � � 	 � � � � � # � $ � � � � � � 
 � - � � � � � � � � ! 	 � � � " 	 � � � � � � � � - . � � ' � � � �

� � � � # � $ � � � � � � � � � 	 � ! 	 � � # � � � � 	 � 
 	 � 	 
 	 � � 	 � " � � � � � 
 � � � � � � 	 � � � � 	 � � � � - . �

� � � � � � 
 �� � � � � � 
 �

" 	 � � � + 	

�

�

�

,

- - .

� 	 � 	 
 	 � � 	

 � � � � � 


� / " ) � � / � �

� / 0 ) � � / 0

� � � � � � 
 �� � � � � � 
 �

" 	 � � � + 	

�

�

�

,

- - .

� 	 � 	 
 	 � � 	

 � � � � � 


� / " ) � � / � �

� / 0 ) � � / 0

� � � " 	 � � � + 	 � � � 
 
 � � � + � � � � � # � $ � � � 	 � � � � � � � � � � � 	 
 � � � � � 
 	 � 	 � � 	 � � # � � � � 	 � $ � � � $ �

� � � � � � � � 	 
 � % , & �

� � � " 	 � � � � � � � � - � � � � � � � � ! 	 � � � � � 	 � � � 	 � � � � � # � $ � � � � � � � � � 
 � � � � + � � � � � � � � � 	 � � � � � � � # 	 	 � � � 	 
 � � � 	 � �

# � � � � 	 � � � � � � � � 
 � � � 
 � � � � � � � � � � � � � � �

� ' � 	 � " 	 � � � + 	 � � � $ � � � � � � � � � � 	 
 � � � � � � � � � � � 	 � � � � � # � $ � � � � � � 
 � - � � � � � � � � ! 	 � � � " 	 � � � � � � � � - . � � ' � � � �

� � � � # � $ � � � � � � � � � 	 � ! 	 � � # � � � � 	 � 
 	 � 	 
 	 � � 	 � " � � � � � 
 � � � � � � 	 � � � � 	 � � � � - . �

Figure 11. Example of a voucher corresponding to a capability.

8 Transactions: providing IT to applications

This section describes the MAFTIA transactional support service. The transactional support service

is intended to support both applications built using the MAFTIA middleware and other activity support

services, for example it can be used to guarantee the atomicity of updates to a replicated authorization

server. The transaction support service appears to the user as a CORBA-style transaction service. Its in-

trusion tolerance is a non-functional property of the service implementation, transparent to the interface.

8.1 Overview

The MAFTIA transaction service provides a mechanism for implementing application-level intrusion

tolerance and is itself intrusion-tolerant. To do this we apply the general MAFTIA architectural principle

of distributing trust by replicating the servers implementing the transaction service and optionally the

resource managers.

Our approach is to make use of standard group communication primitives, allow for heterogeneous

resources, apply error compensation techniques to improve intrusion tolerance, to allow for multi-party

transactions consider failure atomicity and allow recovery without reliance upon durable storage. This

differentiates our work from approaches that make use of new or modified group communication primi-

tives (for example, optimistic broadcast) [25, 47, 57]. Also, unlike other approaches, our focus is not on

availability but on intrusion tolerance. This has resulted in us not being able to use techniques such as

passive replication that are widely used by the database community. Passive replication is more efficient

than active replication, and does not require deterministic replicas. However, the problem with adopting

passive replication is its reliance on a leader-follower model. The updates occur at the leader and the

followers are informed of the results. Whereas this is adequate in a crash-failure fault model, it is in-
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appropriate for malicious faults, because the leader becomes a single point of failure: the leader can be

corrupted and start sending corrupted updates to the leaders. By adopting an active replication approach

we avoid this problem as there is no single point of failure and more that fmembers of the group must

be corrupted before the group as a whole is compromised.

The approach that is closest to our is that of GroupTransactions [39] although our model of multi-

party clients is different: our multiple parties are pre-existing and are not created within the context of a

group transaction. Our model is also more general, since their system model assumes a LAN and does

not explicitly consider malicious faults. However, they do address nested transactions whereas we only

implement a flat transaction model.

8.2 Architecture

An overview of the transaction service architecture is shown in Figure 12. We have implemented

the transaction service using the Appia framework [34]. Each major component and constituent Appia

protocol layers are shown. As in a traditional distributed transaction service, the architecture is made

up of clients, resource managers and transaction managers. Multiple clients interact with replicated

transaction and resource managers. Our architecture differs from a traditional architecture in several

ways: the transaction manager and resource manager components are replicated; each component uses

intrusion-tolerant group communication protocols to provide intrusion tolerance; managers avoid the

need for durable storage for recovery; and our service supports multi-party transactions.

Client

ResourceManager

ResourceRecovery

ResourceManager

LockManager

OpenGroup

Multicast

Multicast

Client

AtomicBroadcast

TransactionManager

TransactionRecovery

OpenGroup

Multicast

TransactionManager

AtomicBroadcast

Figure 12. Overview of MAFTIA Transaction Service

Clients use the transaction manager to begin and end transactions and within the scope of a transaction

the clients operate on resources via resource managers. There may be multiple clients participating in

the same transaction or multiple clients participating in different transactions. The transaction manager
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is primarily a protocol engine. It implements the two-phase commit protocol and recovery protocol.

It also allows the creation of new transactions and the marking of transaction boundaries. In order to

participate in transactions, resource managers are required to register themselves with the transaction

manager. A resource manager is a wrapper for resources that allows the resource to participate in two-

phase commit and recovery protocols coordinated by a transaction manager. The resource may or may

not be persistent. In our implementation concurrency control is pessimistic but an optimistic scheme

could also be implemented with minimal change to the interfaces of the resource manager.

Although appearing to clients as standard transaction and resource managers, the components of the

MAFTIA transaction service are replicated. When a client makes a request it is processed by all the

replicas and the client is delivered the result returned by the majority of replicas. To prevent an adversary

manipulating the order of delivery of requests and therefore the outcome, we rely upon the MAFTIA

intrusion-tolerant group communication service.

Assuming that failure can be reliably detected then a recovery mechanism is required to allow the

resumption of transaction processing. Unlike in a traditional distributed transaction service, the local

durable log cannot be used to recover because it may have been compromised. So, in the MAFTIA

transaction service the recovery for transaction managers and resource managers relies upon a recovering

replica querying the group to determine the state of the log.

We support multi-party transactions with a clear semantics on how clients share the decision for

aborting or committing a transaction. In our model a single client begins a transaction, and passes

the transaction identifier to other clients so that they can cooperate within the transaction scope too.

Individual clients can unilaterally force a transaction abort but all clients must unanimously agree to

attempt a transaction commit. These semantics are based upon those of Coordinated Atomic Actions

(CAA) [58, 43] where participants must either agree on a normal or exceptional outcome, or abort the

entire action. The general notion is to provide clear semantics for the termination of join action but to

allow parties to share resources freely within the context of a transaction. Note that unlike CAA our

model of multi-party transactions does not currently consider agreement upon exceptions.

8.3 Reliance on MAFTIA middleware

The MAFTIA transaction service both supports application-level intrusion tolerance by providing er-

ror confinement for multi-party interactions and is itself intrusion-tolerant because it provides correct

service in the presence of compromised transaction and resource managers. Correct service is achieved

through the application of the principle of error compensation that is implemented using active or “state

machine” replication [40]. The transaction service is composed of replicated and diverse resource man-

ager and transaction manager servers. We rely upon the MAFTIA middleware’s communication services

to implement the replication. Therefore, in order for the transaction service to tolerate intrusions, we

need the communication services to be intrusion tolerant.
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Two different strategies can be used to make the communication services intrusion tolerant. The

“fail-uncontrolled” strategy can be used to provide fault-tolerant atomic broadcast for systems where

Byzantine behavior by users is possible and we cannot make timing assumptions. The fault-tolerance

provided by this strategy depends upon the use of time-free probabilistic Byzantine protocols. The “fail-

controlled with distributed trusted components” strategy can be used to provide fault-tolerant atomic

broadcast where a TTCB is present. The tamper-proof construction of the local TTCB and the control

channel prevents the host engaging in Byzantine behavior or being vulnerable to timing attacks.

As discussed above, we replicate transaction managers and resource managers. These form server

groups that are distributed across sites. Server groups are a set of n servers, of which up to f may fail

in completely arbitrary ways. All members of the service group handle requests and the majority result

is returned to the user of the service. This means that as long as no more than f servers fail, the overall

service remains trustworthy. To allow voting on results the servers are assumed to be deterministic. In

the arbitrary model, 3f + 1 servers are sufficient to provide correct service in the face of f expected

failures. In the TTCB model, depending upon the implementation of atomic broadcast that is used then

as few as 2f +1 servers may be sufficient. Note that it is assumed that the groups have static membership

and sufficient diversity of implementation, platform etc. to give assurance that the servers do not share a

common failure mode.

Recovery in our implementation does not depend upon local durable storage as an attacker may com-

promise this. Instead, a recovering group member will contact other group members to determine what

its state should be. Such an approach assumes that there is some mechanism that ensures that a recov-

ering member can be successfully reinitialized without compromising the security of the group. For

example, when using the asynchronous timing assumptions then recovery may require the trusted dealer

to redistribute keys so that the security of the group is maintained.

Interacting with the transaction managers and resource managers are an unknown number of possibly

faulty clients. Clients are outside our control and can be implemented in any way. Therefore they can

fail in arbitrary ways. Currently we do not make clients intrusion-tolerant or the transaction service

tolerant of misbehaving clients. For example, clients may block the progress of transactions or access to

resources managed by resource managers. We have avoided using timeouts to resolve these problems as

they introduce a vulnerability that could be exploited by an attacker.

8.4 Implementation

As the Appia framework was the standard implementation framework for the MAFTIA middleware

then this simplified integration with the MAFTIA communication services. Because both the arbitrary

(cf. Section 5) and TTCB-based (cf. Section 6) communication services were implemented using the

same framework, the transaction service can run under either configuration. Integration with other

frameworks would simply require the substitution of the AtomicBroadcast layer.
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As future work, the existing transaction service could be integrated with the authorization service.

This would enhance intrusion-tolerance, for example, for example participation in transactions could

be restricted to trusted clients. Enhancing our current use of a transaction identifier by treating it as

a capability could do this. In this model, capabilities for participating in transactions and accessing

resources would be issued by the distributed authorization server, and checked by the transaction and

resource managers.

On another tone, the transaction service could use the TTCB functionality directly, as now done by

the communication protocols. For example, the TTCB provides a basic service that allows for consen-

sus on a limited amount of state. Invoking this service directly instead of via the Atomic Broadcast

protocols could provide considerably better performance, at the cost of tying the transaction service

implementation to a particular intrusion tolerance strategy.

9 Conclusion

We presented the approach taken in MAFTIA to architect and build intrusion-tolerant systems, i.e.,

systems that are assumed to remain to some extent faulty and/or vulnerable and subject to attacks that

can be successful, the idea being to ensure that the overall system nevertheless remains secure and

operational, using notions pertaining to the generic ‘tolerance’ paradigm.

We started by revising the basic dependability concepts under a security-related perspective, incorpo-

rating specific security properties, fault classifications, and security methods. Under the light of these

revised concepts, the term trustworthiness, often preferred when the focus is on malicious activity, is

essentially synonymous to dependability, and has a powerful and precise meaning: it points to generic

properties and not just security; it has a well-defined relationship with the notion of trust. This relation

supports an important design principle in MAFTIA: a trusted component has a set of properties that are

trusted to the extent of the component’s trustworthiness.

In the course of developing the MAFTIA architecture and intrusion-tolerant middleware, we were

faced with a multitude of challenges that we shared with the reader, since they are common to any

endeavor in distributed, malicious-fault tolerant architectures. As a result, we devised new architec-

tural constructs and algorithmic strategies. We introduced architectural hybridization as a means to

substantiate the notion of ‘trustworthy trusted component’ in a malicious-fault environment. We de-

vised programming models based on the modular use of trusted components, taking advantage of their

fault prevention potential to recursively assist and augment the power of fault-tolerance mechanisms.

We developed protocols that reason in terms of the availability of such trusted components, to achieve

efficient operation whilst preserving resilience. On the alternative track of fail-arbitrary asynchronous

environments, satisfying safety under any conditions for highly critical security uses, we devised prov-

ably secure protocols employing efficient cryptographic techniques with randomization. We proposed a

new authorization scheme that overcomes privilege amplification or privacy violation problems in multi-
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participant transactions, based on innovative access control protocols. Finally, we introduced replication

and transaction control mechanisms built on top of the mentioned protocols, in an illustration of the

recursive, component-based overall strategy for intrusion tolerance in MAFTIA explained in the paper.

The rationale behind these protocols, whose algorithmics is detailed in other publications, was presented

as a proof of concept of the several strategies to achieve intrusion tolerance in and with the MAFTIA

architecture and middleware.

Finally, the notion of handling a wide set of faults encompassing intentional and malicious faults in

order to preserve system properties (security or other), if successfully achieved, as we hope to have

demonstrated, has two striking effects: (a) it leads us to x-tolerant system frameworks, common system

design principles where “any fault set” can be handled, instead of (as presently) changing framework

depending on the fault model and application; (b) it presents a great advance on the ability to design

accidental fault-tolerant systems in complex and unpredictable settings (presently a research subject).
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