
Solving Atomic Multicast when Groups Crash

Nicolas Schiper† Fernando Pedone†

†Faculty of Informatics
University of Lugano

6900 Lugano, Switzerland

University of Lugano
Faculty of Informatics

Technical Report No. 2008/002
July 2008

Abstract

In this paper, we study the atomic multicast problem, a fundamental abstraction for building fault-
tolerant systems. In the atomic multicast problem, the system is divided into non-empty and disjoint
groups of processes. Multicast messages may be addressed to any subset of groups, each message pos-
sibly being multicast to a different subset. Several papers previously studied this problem either in local
area networks [3, 9, 20] or wide area networks [13, 21]. However, none of them considered atomic
multicast when groups may crash. We present two atomic multicast algorithms that tolerate the crash of
groups. The first algorithm tolerates an arbitrary number of failures, is genuine (i.e., to deliver a message
m, only addressees of m are involved in the protocol), and uses the perfect failures detector P . We show
that among realistic failure detectors, i.e., those that do not predict the future, P is necessary to solve gen-
uine atomic multicast if we do not bound the number of processes that may fail. Thus, P is the weakest
realistic failure detector for solving genuine atomic multicast when an arbitrary number of processes may
crash. Our second algorithm is non-genuine and less resilient to process failures than the first algorithm
but has several advantages: (i) it requires perfect failure detection within groups only, and not across the
system, (ii) as we show in the paper it can be modified to rely on unreliable failure detection at the cost of
a weaker liveness guarantee, and (iii) it is fast, messages addressed to multiple groups may be delivered
within two inter-group message delays only.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/20643324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Mission-critical distributed applications typically replicate data in different data centers. These data centers
are spread over a large geographical area to provide maximum availability despite natural disasters. Each
data center, or group, may host a large number of processes connected through a fast local network; a
few groups exist, interconnected through high-latency communication links. Application data is replicated
locally, for high availability despite the crash of processes in a group, and globally, for locality of access and
high availability despite the crash of an entire group.

Atomic multicast is a communication primitive that offers adequate properties, namely agreement on
the set of messages delivered and on their delivery order, to implement partial data replication [16, 22]. As
opposed to atomic broadcast [15], atomic multicast allows messages to be addressed to any subset of the
groups in the system. For efficiency purposes, multicast protocols should be genuine [14], i.e., only the
addressees of some message m should participate in the protocol to deliver m. This property rules out the
trivial reduction of atomic multicast to atomic broadcast where every message m is broadcast to all groups
in the system and only delivered by the addressees of m.

Previous work on atomic multicast [3, 20, 9, 13, 21] all assume that, inside each group, there exists at
least one non-faulty process. We here do not make this assumption and allow groups to entirely crash. To
the best of our knowledge, this is the first paper to investigate atomic multicast in such a scenario.

The atomic multicast algorithms we present in this paper use oracles that provide possibly inaccurate
information about process failures, i.e., failure detectors [6]. Failure detectors are defined by the properties
they guarantee on the set of trusted (or suspected) processes they output. Ideally, we would like to find the
weakest failure detector Damcast for genuine atomic multicast. Intuitively, Damcast provides just enough
information about process failures to solve genuine atomic multicast but not more. More formally, a failure
detector D1 is at least as strong as a failure detector D2, denoted as D1 � D2, if and only if there exists an
algorithm that implements D2 using D1, i.e., the algorithm emulates the output of D2 using D1. Damcast

is the weakest failure detector for genuine atomic multicast if two conditions are met: we can use Damcast

to solve genuine atomic multicast (sufficiency) and any failure detector D that can be used to solve genuine
atomic multicast is at least as strong as Damcast, i.e., D � Damcast (necessity) [5].

We here consider realistic failure detectors only, i.e., those that cannot predict the future [10]. Moreover,
we do not assume any bound on the number of processes that can crash. In this context, Delporte et al.
showed in [10] that the weakest failure detector Dcons for consensus may not make any mistakes about the
alive status of processes, i.e., it may not stop trusting a process before it crashes.1 Additionally, Dcons must
eventually stop trusting all crashed processes. In the literature,Dcons is denoted as the perfect failure detector
P . Obviously, atomic multicast allows to solve consensus: every process atomically multicasts its proposal;
the decision of consensus is the first delivered message. Hence, the weakest realistic failure detector to solve
genuine atomic multicast Damcast when the number of faulty processes is not bounded is at least as strong
as P , i.e., Damcast � P . We show that P is in fact the weakest realistic failure detector for genuine atomic
multicast when an arbitrary number of processes may fail by presenting an algorithm that solves the problem
using perfect failure detection.

As implementing P seems hard, if not impossible, in certain settings (e.g., wide area networks), we
revisit the problem from a different angle: we consider non-genuine atomic multicast algorithms. For this
purpose, as noted above, atomic broadcast could be used. This solution, however, is of little practical interest
as delivering messages requires all processes to communicate, even for messages multicast to a single group.
The second algorithm we present does not suffer from this problem: messages multicast to a single group

1Intuitively, consensus allows each process to propose a value and guarantees that processes eventually decide on one common
value.

2

g may be delivered without communication between processes outside g. Moreover, our second algorithm
offers some advantages when compared to our first algorithm, based on P: Wide-area communication links
are used sparingly, messages addressed to multiple groups can be delivered within two inter-group message
delays, and perfect failure detection is only required within groups and not across the system. Although this
assumption is more reasonable than implementing P in a wide area network, it may still be too strong for
some systems. Thus, we discuss a modification to the algorithm that tolerates unreliable failure detection, at
the cost of a weaker liveness guarantee. The price to pay for the valuable features of this second algorithm
is a lower process failure resiliency: group crashes are still tolerated provided that enough processes in the
whole system are correct.

Contribution In this paper, we make the following contributions. We present two atomic multicast algo-
rithms that tolerate group crashes. The first algorithm is genuine, tolerates an arbitrary number of failures,
and requires perfect failure detection. The second algorithm is non-genuine but only requires perfect fail-
ure detection inside each group and may deliver messages addressed to multiple groups in two inter-group
message delays. We present a modification to the algorithm to cope with unreliable failure detection.

Road map The rest of the paper is structured as follows. Section 2 reviews the related work. In Section 3
our system model and definitions are introduced. Sections 4 and 5 present the two atomic multicast algo-
rithms. Finally, Section 6 concludes the paper. The proof of correctness of the algorithms can be found in
the Appendix.

2 Related Work

The literature on atomic broadcast and multicast algorithms is abundant [8]. We briefly review some of the
relevant papers on atomic multicast.

In [14], the authors show the impossibility of solving genuine atomic multicast with unreliable failure
detectors when groups are allowed to intersect. Hence, the algorithms cited below consider non-intersecting
groups. Moreover, they all assume that groups do not crash, i.e., there exists at least one correct process
inside each group.

These algorithms can be viewed as variations of Skeen’s algorithm [3], a multicast algorithm designed for
failure-free systems, where messages are associated with timestamps and the message delivery follows the
timestamp order. In [20], the addressees of a messagem, i.e., the processes to whichm is multicast, exchange
the timestamp they assigned to m, and, once they receive this timestamp from a majority of processes of
each group, they propose the maximum value received to consensus. Because consensus is run among the
addressees of a message and can thus span multiple groups, this algorithm is not well-suited for wide area
networks. In [9], consensus is run inside groups exclusively. Consider a message m that is multicast to
groups g1, ..., gk. The first destination group of m, g1, runs consensus to define the final timestamp of m
and hands over this message to group g2. Every subsequent group proceeds similarly up to gk. To ensure
agreement on the message delivery order, before handling other messages, every group waits for a final
acknowledgment from group gk. In [13], inside each group g, processes implement a logical clock that
is used to generate timestamps, this is g’s clock (consensus is used among processes in g to maintain g’s
clock). Every multicast message m goes through four stages. In the first stage, in every group g addressed
by m, processes define a timestamp for m using g’s clock. This is g’s proposal for m’s final timestamp.
Groups then exchange their proposals and set m’s final timestamp to the maximum among all proposals. In
the last two stages, the clock of g is updated to a value bigger than m’s final timestamp and m is delivered

3

when its timestamp is the smallest among all messages that are in one of the four stages. In [21], the authors
present an optimization of [13] that allows messages to skip the second and third stages in certain conditions,
therefore sparing the execution of consensus instances. The algorithms of [13, 21] can deliver messages in
two inter-group message delays; [21] shows that this is optimal.

To the best of our knowledge, this is the first paper that investigates the solvability of atomic multi-
cast when groups may entirely crash. Two algorithms are presented: the first one is genuine but requires
system-wide perfect failure detection. The second algorithms is not genuine but only requires perfect failure
detection inside groups.

3 Problem Definition

3.1 System Model

We consider a system Π = {p1, ..., pn} of processes which communicate through message passing and do not
have access to a shared memory or a global clock. Processes may however access failure detectors [6]. We
assume the benign crash-stop failure model: processes may fail by crashing, but do not behave maliciously.
A process that never crashes is correct ; otherwise it is faulty . The maximum number of processes that may
crash is denoted by f . The system is asynchronous, i.e., messages may experience arbitrarily large (but
finite) delays and there is no bound on relative process speeds. Furthermore, the communication links do
not corrupt nor duplicate messages, and are quasi-reliable: if a correct process p sends a message m to a
correct process q , then q eventually receives m . We define Γ = {g1, ..., gm} as the set of process groups in
the system. Groups are disjoint, non-empty and satisfy

⋃
g∈Γ g = Π. For each process p ∈ Π, group(p)

identifies the group p belongs to. A group g that contains at least one correct process is correct; otherwise g
is faulty.

3.2 Atomic Multicast

Atomic multicast allows messages to be A-MCast to any subset of groups in Γ. For every message m, m.dst
denotes the groups to which m is multicast. Let p be a process. By abuse of notation, we write p ∈ m.dst
instead of ∃g ∈ Γ : g ∈ m.dst ∧ p ∈ g. Atomic multicast is defined by the primitives A-MCast and
A-Deliver and satisfies the following properties: (i) uniform integrity: For any process p and any message
m, p A-Delivers m at most once, and only if p ∈ m.dst and m was previously A-MCast, (ii) validity: if a
correct process p A-MCasts a message m, then eventually all correct processes q ∈ m.dst A-Deliver m, (iii)
uniform agreement: if a process p A-Delivers a message m, then all correct processes q ∈ m.dst eventually
A-Deliver m, and (iv) uniform prefix order: for any two messages m and m′ and any two processes p and
q such that {p, q} ∈ m.dst ∩m′.dst, if p A-Delivers m and q A-Delivers m′, then either p A-Delivers m′

before m or q A-Delivers m before m′.

Let A be an algorithm solving atomic multicast. We define R(A) as the set of all admissible runs of A. We
require atomic multicast algorithms to be genuine [14]:

• Genuineness: An algorithm A solving atomic multicast is said to be genuine iff for any run
R ∈ R(A) and for any process p, in R, if p sends or receives a message then some message m is
A-MCast and either p is the process that A-MCasts m or p ∈ m.dst.

4

4 Solving Atomic Multicast with a Perfect Failure Detector

In this section, we present the first genuine atomic multicast algorithm that tolerates an arbitrary number of
process failures, i.e., f ≤ n. We first define additional abstractions used in the algorithm, then explain the
mechanisms to ensure agreement on the delivery order, and finally, we present the algorithm itself.

4.1 Additional Definitions and Assumptions

Failure Detector P We assume that processes have access to the perfect failure detector P [6]. This failure
detector outputs a list of trusted processes and satisfies the following properties2: (i) strong completeness:
eventually no faulty process is ever trusted by any correct process and (ii) strong accuracy: no process stops
being trusted before it crashes.

Causal Multicast The algorithm we present below uses a causal multicast abstraction. Causal multicast is
defined by primitives C-MCast(m) and C-Deliver(m), and satisfies the uniform integrity, validity, and uniform
agreement properties of atomic multicast as well as the following uniform causal order property: for any
messages m and m′, if C-MCast(m)→ C-MCast(m′), then no process p ∈ m.dst ∩m′.dst C-Delivers m′

unless it has previously C-Delivered m.3 To the best of our knowledge, no algorithm implementing this
specification of causal multicast exists. We thus present a genuine causal multicast algorithm that tolerates
an arbitrary number of failures in the Appendix.4

Global Data Computation We also assume the existence of a global data computation abstraction [12].
The global data computation problem consists in providing each process with the same vector V , with
one entry per process, such that each entry is filled with a value provided by the corresponding process.
Global data computation is defined by the primitives propose(v) and decide(V) and satisfies the following
properties: (i) uniform validity: if a process p decides V , then ∀q : V [q] ∈ {vq,⊥}, where vq is q’s proposal,
(ii) termination: if every correct process proposes a value, then every correct process eventually decides one
vector, (iii) uniform agreement: if a process p decides V , then all correct processes q eventually decide V ,
and (iv) uniform obligation: if a process p decides V , then V [p] = vp. An algorithm that solves global
data computation using the perfect failure detector P appears in [12]. This algorithm tolerates an arbitrary
number of failures.

4.2 Agreeing on the Delivery Order

The algorithm associates every multicast message with a timestamp. To guarantee agreement on the message
delivery order, two properties are ensured: (1) processes agree on the message timestamps and (2) after a
process pA-Delivers a message with timestamp ts, p does not A-Deliver a message with a smaller timestamp
than ts. These properties are implemented as described next.

For simplicity, we initially assume a multicast primitive that guarantees agreement on the set of messages
processes deliver, but not causal order; we then show how this algorithm may incur into problems, which

2Historically, P was defined to output a set of suspected processes. We here define its output as a set of trusted processes, i.e., in
our definition the output corresponds to the complement of the output in the original definition.

3The relation→ is Lamport’s transitive happened before relation on events [17]. Here, events can be of two types, C-MCast or
C-Deliver. The relation is defined as follows: e1 → e2 ⇔ e1, e2 are two events on the same process and e1 happens before e2 or
e1 = C-MCast(m) and e2 = C-Deliver(m) for some message m.

4The genuineness of causal multicast is defined in a similar way as for atomic multicast.

5

can be solved using causal multicast. To A-MCast a message m1, m1 is thus first multicast to the addressees
of m1. Upon delivery of m1, every process p uses a local variable, denoted as TSp, to define its proposal for
m1’s timestamp, m1.tsp. Process p then proposes m1.tsp in m1’s global data computation (gdc) instance.
The definitive timestamp of m1, m1.ts

def , is the maximum value of the decided vector V . Finally, p sets
TSp to a bigger value thanm1.ts

def and A-Deliversm1 when all pending messages have a bigger timestamp
than m1.ts

def —a message m is pending if p delivered m but did not A-Deliver m yet.
Although this reasoning ensures that processes agree on the message delivery order, the delivery se-

quence of faulty processes may contain holes. For instance, p may A-Deliver m1 followed by m2, while
some faulty process q only A-Delivers m2. To see why, consider the following scenario. Process p delivers
m1 and m2, and proposes some timestamp tsp for these two messages. As q is faulty, it may only deliver m2

and propose some timestamp tsq bigger than tsp as m2’s timestamp—this is possible because q may have
A-Delivered several messages before m2 that were not addressed to p and q thus updated its TS variable.
Right after deciding in m2’s gdc instance, q A-Delivers m2 and crashes. Later, p decides in m1 and m2’s
gdc instances, and A-Delivers m1 followed by m2, as m1’s definitive timestamp is smaller than m2’s.

To solve this problem, before A-Delivering a message m, every process p addressed by m computes
m’s potential predecessor set, denoted as m.pps. This set contains all messages addressed to p that may
potentially have a smaller definitive timestamp than m’s (in the example above, m1 belongs to m2.pps).5

Message m is then A-Delivered when for all messages m′ in m.pps either (a) m′.tsdef is known and it is
bigger than m.tsdef or (b) m′ has been A-Delivered already.

The potential predecessor set ofm is computed using causal multicast: To A-MCastm,m is first causally
multicast. Second, after p decides in m’s instance and updates its TS variable, p causally multicasts an ack
message to the destination processes ofm. As soon as p receives an ack message from all processes addressed
by m that are trusted by its perfect failure detector module, the potential predecessor set of m is simply the
set of pending messages.

Intuitively, m’s potential predecessor set is correctly constructed for the two following facts: (1) Any
message m′, addressed to p and some process q, that q causally delivers before multicasting m’s ack mes-
sage will be in m.pps (the definitive timestamp of m′ might be smaller than m’s). (2) Any message causally
delivered by some addressee q of m after multicasting m’s ack message will have a bigger definitive times-
tamp thanm’s. Fact (1) holds from causal order, i.e., if q C-Deliversm′ before multicastingm’s ack message,
then p C-Delivers m′ before C-Delivering m’s ack. Fact (2) is a consequence of the following. As p’s failure
detector module is perfect, p stops waiting for ack messages as soon as p received an ack from all alive
addressees of m. Hence, since processes update their TS variable after deciding in m’s global data com-
putation instance but before multicasting the ack message of m, no addressee of m proposes a timestamp
smaller than m.tsdef after multicasting m’s ack message.

4.3 The Algorithm

AlgorithmA1 is composed of four tasks. Each line of the algorithm, task 2, and the procedure ADeliveryTest
are executed atomically. Messages are composed of application data plus four fields: dst, id, ts, and stage.
For every message m, m.dst indicates to which groups m is A-MCast, m.id is m’s unique identifier, m.ts
denotes m’s current timestamp, and m.stage defines in which stage m is. We explain Algorithm A1 by
describing the actions a process p takes when a message m is in one of the three possible stages: s0, s1, or
s2.

5Note that the idea of computing a message’s potential predecessor set appears in the atomic multicast algorithm of [20]. How-
ever, this algorithm assumes a majority of correct processes in every group and thus computes this set differently.

6

To A-MCast m, m is first C-MCast to its addressees (line 8). In stage s0, p C-Delivers m, sets m’s
timestamp proposal, and adds m to the set of pending messages Pending (lines 10-12). In stage s1, p
computes m.tsdef (lines 17-19) and ensures that all messages in m.pps are in p’s pending set (lines 20-
23), as explained above. Finally, in stage s2, m is A-Delivered when for all messages m′ in m.pps that
are still in p’s pending set (if m′ is not in p’s pending set anymore, m′ was A-Delivered before), m′ is in
stage s2 (and thus m′.ts is the definitive timestamp of m′) and m′.ts is bigger than m.ts (lines 4-6). Notice
that if m and m′ have the same timestamp, we break ties using their message identifiers. More precisely,
(m.ts,m.id) < (m′.ts,m′.id) holds if either m.ts < m′.ts or m.ts = m′.ts and m.id < m′.id. Figure 1
illustrates a failure-free run of the algorithm.

p1

px

...g1

q1

qy

...g2

r1

rz

...g3

C-MCast(m)

m.ts← TS

GDC

propose(m.id, m.ts)

decide(m.id, V)

m.ts← max(V)

TS ← max(TS, m.ts + 1)

C-MCast(ACK, m.id, -)

ADeliveryTest()

Figure 1: Algorithm A1 in the failure-free case when a message m is A-MCast to groups g1 and g2.

5 Solving Atomic Multicast with Weaker Failure Detectors

In this section, we solve atomic multicast with a non-genuine algorithm. The Algorithm A2 we present
next does not require system-wide perfect failure detection and delivers messages in fewer communication
steps. We first define additional abstractions used by the algorithm and summarize its assumptions. We then
present the algorithm itself and conclude with a discussion on how to further reduce its delivery latency and
weaken its failure detection requirements.

5.1 Additional Definitions and Assumptions

Failure Detector 3P We assume that processes have access to an eventually perfect failure detector
3P [6]. This failure detector ensures the strong completeness property of P and the following eventual
strong accuracy property: there is a time after which no process stops being trusted before it crashes.

Reliable Multicast Reliable multicast is defined by the primitives R-MCast and R-Deliver and ensures all
properties of causal multicast except uniform causal order.

7

Consensus In the consensus problem, processes propose values and must reach agreement on the value
decided. Consensus is defined by the primitives propose(v) and decide(v) and satisfies the following proper-
ties [15]: (i) uniform validity: if a process decides v, then v was previously proposed by some process, (ii)
termination: if every correct process proposes a value, then every correct process eventually decides exactly
one value, and (iii) uniform agreement: if a process decides v, then all correct processes eventually decide v.

Generic Broadcast Generic broadcast ensures the same properties as atomic multicast except that all mes-
sages are addressed to all groups and only conflicting messages are totally ordered. More precisely, generic
broadcast ensures uniform integrity, validity, uniform agreement, and the following uniform generalized or-
der property: for any two conflicting messages m and m′ and any two processes p and q, if p G-Delivers m
and q G-Delivers m′, then either p G-Delivers m′ before m or q G-Delivers m before m′.

Assumptions To solve generic broadcast, either a simple majority of correct processes must be correct, i.e.,
f < n/2, and non-conflicting messages may be delivered in three message delays [2] or a two-third majority
of processes must be correct, i.e., f < n/3, and non-conflicting message may be delivered in two message
delays [18]. Both algorithms require a system-wide leader failure detector Ω [5], and thus the eventual perfect
failure detector 3P we assume is sufficient. Moreover, inside each group, we need consensus and reliable
multicast abstractions that tolerate an arbitrary number of failures. For this purpose, among realistic failure

Algorithm A1 Genuine Atomic Multicast using P - Code of process p
1: Initialization
2: TS ← 1, Pending ← ∅

3: procedure ADeliveryTest()
4: while ∃m ∈ Pending : m.stage = s2

∀id ∈ m.pps : ∃m′ ∈ Pending : m′.id = id ⇒
m′.stage = s2 ∧ (m.ts,m.id) < (m′.ts,m′.id) do

5: A-Deliver(m)
6: Pending ← Pending \ {m}

7: To A-MCast message m {Task 1}
8: C-MCast m to m.dst

9: When C-Deliver(m) atomically do {Task 2}
10: m.ts← TS
11: m.stage← s0
12: Pending ← Pending ∪ {m}

13: When ∃m ∈ Pending : m.stage = s0 {Task 3}
14: m.stage← s1
15: fork task ConsensusTask(m)

16: ConsensusTask(m) {Task x}
17: Propose(m.id, m.ts) � global data computation among processes in m.dst
18: wait until Decide(m.id, V)
19: m.ts← max(V)
20: TS ← max(TS,m.ts+ 1)
21: C-MCast(ACK, m.id, p) to m.dst
22: wait until ∀q ∈ P ∩m.dst : C-Deliver(ACK, m.id, q)
23: m.pps← {m′.id |m′ ∈ Pending ∧ m′ 6= m}
24: m.stage← s2
25: atomic block
26: ADeliveryTest()

8

detectors, P is necessary and sufficient for consensus [10] and sufficient for reliable multicast [1].6 Note
that in practice, implementing P within each group is more reasonable than across the system, especially if
groups are inside local area networks. We discuss below how to remove this assumption.

5.2 Algorithm Overview

The algorithm is inspired by the atomic broadcast algorithm of [21]. We first recall its main ideas and then
explain how we cope with group failures—[21] assumes that there is at least one correct process in every
group. We then show how local messages to some group g, i.e., messages multicast from processes inside g
and addressed to g only, may be delivered with no inter-group communication at all.

To A-MCast a message m, a process p R-MCasts m to p’s group. In parallel, processes execute an
unbounded sequence of rounds. At the end of each round, processes A-Deliver a set of messages according
to some deterministic order. To ensure agreement on the messages A-Delivered in round r, processes proceed
in two steps. In the first step, inside each group g, processes use consensus to define g’s bundle of messages.
In the second step, groups exchange their message bundles. The set of message A-Delivered by some process
p at the end of round r is the union of all bundles, restricted to messages addressed to p.

In case of group crashes, this solution does not ensure liveness however. Indeed, if a group g crashes
there will be some round r after which no process receives the message bundles of g. To circumvent this
problem we proceed in two steps: (a) we allow processes to stop waiting for g’s message bundle, and (b) we
let processes agree on the set of message bundles to consider for each round.

To implement (a), processes maintain a common view of the groups that are trusted to be alive, i.e., groups
that contain at least one alive process. Processes then wait for the message bundles from the groups currently
in the view. A group g may be erroneously removed from the view, if it was mistakenly suspected of having
crashed. Therefore, to ensure that message m multicast by a correct process will be delivered by all correct
addressees of m, we allow members of g to add their group back to the view. To achieve (b), processes agree
on the sequence of views and the set of message bundles between each view change. For this purpose, we
use a generic broadcast abstraction to propagate message bundles and view change messages, i.e., messages
to add or remove groups. Since message bundles can be delivered in different orders at different processes,
provided that they are delivered between the same two view change messages, we define the message conflict
relation as follows: view change messages conflict with all messages and message bundles only conflict with
view change messages. As view change messages are not expected to be broadcast often, such a conflict
relation definition allows for faster message bundle delivery.

Processes may also A-Deliver local messages to some group g without communicating with processes
outside of g. As these messages are addressed to g only, members of g may A-Deliver them directly after
consensus, and thus before receiving the groups’ message bundles.

We note that maintaining a common view of the alive groups in the system resembles what is called
in the literature group membership [7]. Intuitively, a group membership service provides processes with a
consistent view of alive processes in the system, i.e., processes “see” the same sequence of views. Moreover,
processes agree on the set of messages delivered between each view change, a property that is required for
message bundles.7 In fact, our algorithm could have been built on top of such an abstraction. However, doing
so would have given us less freedom to optimize the delivery latency of message bundles.

6In [1], the authors present the weakest failure detector to solve reliable broadcast. Extending the algorithm of [1] to the multicast
case using the same failure detector is straightforward.

7Some group membership specifications also guarantee total ordering of the messages delivered between view changes.

9

5.3 The Algorithm

AlgorithmA2 is composed of five tasks. Each line of the algorithm is executed atomically. On every process
p, six global variables are used:Rnd denotes the current round number, Rdelivered and Adelivered are
the set of R-Delivered and A-Delivered messages respectively, Gdelivered is the sequence of G-Delivered
messages, MsgBundle stores the message bundles, and View is the set of groups currently deemed to be
alive.

In the algorithm, every G-BCast message m has the following format: (rnd , g, type,msgs), where rnd
denotes the round in which m was G-BCast, g is the group m refers to, type denotes m’s type and is either
msgBundle , add , or remove, and msgs is a set of messages; this field is only used ifm is a message bundle.

To A-MCast a message m, a process p R-MCasts m to p’s group (line 5). In every round r, the set of
messages that have been R-Delivered but not A-Delivered yet are proposed to the next consensus instance
(line 9), p A-Delivers the set of local messages decided in this instance (line 12), and global messages,
i.e., non local messages, are G-BCast at line 14 if group(p) belongs to the view. Otherwise, p G-BCasts a
message to add group(p) to the view.

Process p then gathers message bundles of the current round k using variable MsgBundle: Process p
executes the while loop of lines 17-24 until, for every group g, MsgBundle[g] is neither ⊥, i.e. p is not
waiting to receive a message bundle from g, nor >, a value whose signification is explained below. The first
messagemk

g of round k related to g of type msgBundle or remove that pG-Delivers “locks” MsgBundle[g],
i.e., any subsequent G-Delivered message of round k concerning g is discarded (line 21). If mk

g is of type
msgBundle , p stores g’s message bundle in MsgBundle[g] (line 24). Otherwise, mk

g was G-BCast by some
process q that suspected g to have entirely crashed, i.e., failure detector 3P at q did not trust any member
of g (lines 31-33), and thus p sets MsgBundle[g] to ∅ (line 23). Note that q sets MsgBundle[g] to > after
G-BCasting a message of the form (k, g, remove, -) to prevent q from G-BCasting multiple “remove g”
messages in the same round.

While p is gathering message bundles for round k, it may also handle some message of type add con-
cerning g, in which case p adds g to a local variable groupsToAdd (line 22). Note that this type of message
is not tagged with a round number to ensure that messages A-MCast from correct groups are eventually
A-Delivered by their correct addressees. In fact, tagging add messages with the round number could prevent
a group from being added to the view as we now explain. Consider a correct group g that is removed from
the view in the first round. In every round, members of g G-BCast a message to add g back to the view. In
every round however, processes G-Deliver message bundles of groups in the view before G-Delivering these
“add g” messages, and they are thus discarded.

After exiting from the while loop, p A-Delivers global messages (line 26), the view is recomputed as the
groups g such that MsgBundle[g] 6= ∅ or g ∈ groupsToAdd (line 28), and p sets MsgBundle[g] to either⊥,
if g belongs to the new view, or ∅ otherwise (p will not wait for a message bundle from g in the next round).
Figure 2 illustrates a failure-free run of the algorithm.

5.4 Further Improvements

Delivery Latency In Algorithm A2, local messages are delivered directly after consensus. Hence, these
messages do not bear the cost of a single inter-group message delay unless: (a) they are multicast from a
group different than their destination group or (b) they are multicast while the groups’ bundle of messages
are being exchanged, in which case the next consensus instance can only be started when message bundles
of the current round have been received. Obviously, nothing can be done to avoid case (a). However, we
can prevent case (b) from happening by allowing rounds to overlap. That is, we start the next round before

10

p1

px

...g1

q1

qy

...g2

r1

rz

...g3

R-MCast(m)

Consensus

propose(1, {m})

Consensus

propose(1, ∅)

Consensus

propose(1, ∅)

decide(1, {m})

decide(1, ∅)

decide(1, ∅)

G-BCast(1, g1, msgBundle, {m})

G-BCast(1, g2, msgBundle, ∅)

G-BCast(1, g3, msgBundle, ∅)

A-Deliver(m)

Round 1

Figure 2: Algorithm A2 in the failure-free case when a message m is A-MCast to groups g1 and g2.

receiving the groups’ bundle of messages for the current round. Note that to ensure agreement on the relative
delivery order of local and global messages, processes inside the same group must agree on when global
messages of a given round are delivered, i.e., after which consensus instance. For this purpose, a mapping
between rounds and consensus instances can be defined. To control the inter-group traffic, we may also
specify that message bundles are sent, say every κ consensus instance. Choosing κ presents a trade-off
between inter-group traffic and delivery latency of global messages.

Failure Detection To weaken the failure detector required inside each group, i.e., P in Algorithm A2, we
may remove a group g from the view as soon as a majority of processes in g are suspected. This allows to
use consensus and reliable multicast algorithms that are safe under an arbitrary number of failures and live
only when a majority of processes are correct. Hence, the leader failure detector Ω becomes sufficient. Care
should be taken as when to add g to the view again: this should only be done when a majority of processes
in g are trusted to be alive. This solution ensures a weaker liveness guarantee however: correct processes
in some group g will successfully multicast and deliver messages only if g is maj-correct, i.e., g contains
a majority of correct processes. More precisely, the liveness guaranteed by this modified algorithm is as
follows (uniform integrity and uniform prefix order remain unchanged):

• weak uniform agreement: if a process p A-Delivers a messagem, then all correct processes q ∈ m.dst
in a maj-correct group eventually A-Deliver m

• weak validity: if a correct process p in a maj-correct group A-MCasts a message m, then all correct
processes q ∈ m.dst in a maj-correct group eventually A-Deliver m.

6 Final Remarks

In this paper, we addressed the problem of solving atomic multicast in the case where groups may entirely
crash. We presented two algorithms. The first algorithm is genuine, tolerates an arbitrary number of process

11

Algorithm A2 Non-Genuine Atomic Multicast - Code of process p
1: Initialization
2: Rnd ← 1, Rdelivered ← ∅, Adelivered ← ∅, Gdelivered ← ε
3: View ← Γ, MsgBundle[g]← ⊥ for each group g ∈ Γ

4: To A-MCast message m {Task 1}
5: R-MCast m to group(p)

6: When R-Deliver(m) {Task 2}
7: Rdelivered ← Rdelivered ∪ {m}

8: Loop {Task 3}
9: Propose(Rnd , Rdelivered \Adelivered) � consensus inside group

10: wait until Decide(Rnd , msgs)

11: localMsgs ← {m |m ∈ msgs ∧ m.dst = {group(p)}}
12: A-Deliver messages in localMsgs in some deterministic order � A-Deliver local messages
13: Adelivered ← Adelivered ∪ localMsgs

14: if group(p) ∈ View then G-BCast(Rnd , group(p),msgBundle,msgs \ localMsgs)
15: else G-BCast(-, group(p), add , -)
16: groupsToAdd ← ∅

17: while ∃g ∈ Γ : MsgBundle[g] ∈ {⊥,>}
18: if 6 ∃(rnd , g, type,msgs) ∈ Gdelivered : (rnd = Rnd ∨ type = add) then
19: wait until G-Deliver(rnd , g, type,msgs) ∧ (rnd = Rnd ∨ type = add)
20: (rnd , g′, type,msgs)← remove first message in Gdelivered s.t. (rnd = Rnd ∨ type = add)
21: if MsgBundle[g′] ∈ {⊥,>} then
22: if type = add then groupsToAdd ← groupsToAdd ∪ {g′}
23: else if type = remove then MsgBundle[g′]← ∅
24: else MsgBundle[g′]← msgs
25: globalMsgs ← {m | ∃g ∈ Γ : MsgBundle[g] = msgs ∧ m ∈ msgs}
26: A-Deliver messages in globalMsgs addressed to p in some deterministic order � A-Deliver global messages
27: Adelivered ← Adelivered ∪ globalMsgs

28: View ← {g |MsgBundle[g] 6= ∅} ∪ groupsToAdd
29: foreach g ∈ Γ : MsgBundle[g]←⊥ (if g ∈ View) or ∅ (otherwise)
30: Rnd ← Rnd + 1

31: When ∃g ∈ View : MsgBundle[g] = ⊥ ∧ ∀q ∈ g : q 6∈ 3P {Task 4}
32: G-BCast(Rnd , g, remove, -)
33: MsgBundle[g]← >

34: When G-Deliver(type,m) {Task 5}
35: Gdelivered ← Gdelivered ⊕ (rnd , g, type,msgs)

failures, and requires perfect failure detection. We showed, in Section 1, that if we consider realistic failure
detectors only and we do not bound the number of failures, P is necessary to solve this problem. The second
algorithm we presented is not genuine but requires perfect failure detection inside each group only and may
deliver messages addressed to multiple groups within two inter-group message delays. We showed how this
latter algorithm can be modified to cope with unreliable failure detection, at the cost of a weaker liveness
guarantee.

Figure 3 provides a comparison of the presented algorithms. The best-case message delivery latency is
computed by considering a message A-MCast to multiple groups in a failure-free scenario when the inter-
group message delay is δ and the intra-group message delay is negligible. Note that we took 4δ and 2δ as
the best-case latency for causal multicast (cf. Appendix) and global data computation [12] respectively.

12

Algorithm genuine? resiliency required failure detector(s) best-case latency
A1 yes f ≤ n system-wide P 10δ
A2 no f < n/3 group-wide P and system-wide 3P 2δ

f < n/2 (modification of algorithm with weaker liveness 3δ
tolerates unreliable failure detection)

Figure 3: Comparison of the presented algorithms.

References
[1] M. K. Aguilera, S. Toueg, and B. Deianov. Revising the weakest failure detector for uniform reliable broadcast. In Proceedings

of DISC’99, pages 19–33. Springer-Verlag, 1999.
[2] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic broadcast. In Proceedings of DISC’00, pages

268–283. Springer-Verlag, 2000.
[3] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM Trans. Comput. Syst., 5(1):47–76,

1987.
[4] Kenneth P. Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and atomic group multicast. ACM Transactions

on Computer Systems, 9(3):272–314, August 1991.
[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal of the ACM,

43(4):685–722, July 1996.
[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225–267,

March 1996.
[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive study. ACM Comput.

Surv., 33(4):427–469, 2001.
[8] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Taxonomy and survey. ACM Comput.

Surv., 36(4):372–421, 2004.
[9] C. Delporte-Gallet and H. Fauconnier. Fault-tolerant genuine atomic multicast to multiple groups. In Proceedings of

OPODIS’00, pages 107–122. Suger, Saint-Denis, rue Catulienne, France, 2000.
[10] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. A realistic look at failure detectors. In Proceedings of DSN’02, pages

345–353. IEEE Computer Society, 2002.
[11] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared Memory vs Message Passing. Technical report, EPFL, 2003.
[12] C. Delporte-Gallet, H. Fauconnier, J.-M. Helary, and M. Raynal. Early stopping in global data computation. IEEE Transactions

on Parallel and Distributed Systems, 14(9):909–921, 2003.
[13] U. Fritzke, Ph. Ingels, A. Mostéfaoui, and M. Raynal. Fault-tolerant total order multicast to asynchronous groups. In Proceed-

ings of SRDS’98, pages 578–585. IEEE Computer Society, 1998.
[14] R. Guerraoui and A. Schiper. Genuine atomic multicast in asynchronous distributed systems. Theoretical Computer Science,

254(1-2):297–316, 2001.
[15] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Sape J. Mullender, editor, Distributed Systems,

chapter 5, pages 97–145. Addison-Wesley, 1993.
[16] Udo Fritzke Jr. and Philippe Ingels. Transactions on partially replicated data based on reliable and atomic multicasts. In

Proceedings of ICDCS’01, pages 284–291. IEEE Computer Society, 2001.
[17] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558–565,

July 1978.
[18] F. Pedone and A. Schiper. Handling message semantics with generic broadcast protocols. Distributed Computing, 15(2):97–

107, 2002.
[19] M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a simple way to implement it. Information

Processing Letters, 39:343–350, 1991.
[20] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic multicast. In Proceedings of IC3N’98. IEEE, 1998.
[21] N. Schiper and F. Pedone. On the inherent cost of atomic broadcast and multicast in wide area networks. In Proceedings of

ICDCN’08, pages 147–157. Springer, 2008.
[22] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys,

22(4):299–319, December 1990.

13

A Appendix

A.1 Solving Causal Multicast

Several papers investigated the problem of ensuring causal order. However, either the broadcast case is
considered [15], messages are not allowed to be multicast to remote groups [4], or messages may only be
sent to a single process [19]. We here present the first causal multicast algorithm that allows messages to
be addressed to any subset of groups. We solve causal multicast in two steps. Algorithm A3 transforms
reliable multicast into a primitive that is called fifo multicast . Fifo multicast ensures the same properties as
causal multicast except that uniform causal order is replaced by uniform fifo order: if a process p F-MCasts
a message m before F-MCasting a message m′, then no process in m.dst ∩m′.dst F-Delivers m′ unless it
has previously F-Delivered m. Algorithm A4 then transforms fifo multicast into causal multicast.

A.1.1 Transforming Reliable Multicast into Fifo Multicast

Algorithm A3 is similar to the fifo broadcast algorithm of [15]. It nevertheless differs from the broadcast
algorithm in several aspects as messages are not necessarily addressed to all processes.

As in [15], every message is tagged with information on m’s sequence number, denoted as m.nbCast.
Messages from some process q are then F-Delivered in the sequence number order. To do so, every process
p keeps track of the last message from q that p F-Delivered. This information is stored in a variable denoted
as nbDel[q]p. Since messages may be addressed to a subset of the groups, messages do not carry a single
sequence number, as in [15], but an array of sequence numbers, one for each group (lines 5-9).

Now consider the following problematic scenario specific to fifo multicast. Some process p F-MCasts a
message m1 to some group g1. Later, p F-MCasts a message m2 to groups g1 and g2 and crashes. Message
m2 is received by processes in g2, and sincem2 is the first message F-MCast from p to g2, m2 is F-Delivered
by processes in g2. On the contrary, m1 is never received by any process. Note that this can happen because
p crashes and links are quasi-reliable. From the uniform agreement property of fifo multicast, processes in
g1 eventually F-Deliver m2. However, they cannot F-Deliver m1 before m2 as m1 was lost, violating the
uniform fifo order property.

To solve this problem, a process p ∈ m.dst R-MCasts an acknowledgment for m when p F-Delivered
all messages m.sender F-MCast before m (line 13 or 19). Processes F-Deliver m when they R-Deliver
an acknowledgment from at least one correct process of every destination group of m (lines 14-15). To do
so, processes use a failure detector denoted as Θ [1]. This failure detector satisfies the strong completeness
property defined in Section 4.1 as well as the following accuracy property: if there exists a correct process
then, at every time, every process trusts at least one correct process. Let g by any group. We denote by Θg

the failure detector Θ restricted to the scope of processes in g. Note that if we restrict the universe of failure
detectors to realistic ones and we do not bound the number of process failures, then Θ is equivalent to the
perfect failure detector P [11].

A.1.2 Transforming Fifo Multicast into Causal Multicast

Algorithm A4 is inspired by the blocking transformation of fifo broadcast into causal broadcast of [15]. As
we explain below however, solving causal multicast introduces problems nonexistent in causal broadcast.

As in [15], every process p maintains information about how many messages, C-MCast from some
process q and addressed to group(p), p C-Delivered since the beginning, and this for every process q. As
opposed to [15], this accounting is done on a group basis. This information is thus stored in a vector of
vectors, i.e., one vector per group, denoted as nbDelp; we explain below how p maintains nbDel[g]p for

14

Algorithm A3 FIFO Multicast - Code of process p
1: Initialization
2: nbCast[g]← 0, for each group g � nb. of msgs. F-MCast to g
3: nbDel[q]← 0, for each process q � nb. of msgs. F-Delivered originating from q
4: msgSet← ∅ � set of messages A-Delivered but not yet F-Delivered

5: To F-MCast message m {Task 1}
6: m.nbCast← nbCast
7: R-MCast (m) to m.dst

8: foreach g ∈ m.dst do
9: nbCast[g]← nbCast[g] + 1

10: When R-Deliver(m)
11: msgSet← msgSet ∪ {m}
12: if m.nbCast[group(p)] = nbDel[m.sender] then
13: R-MCast(ACK, m.id, p) to m.dst

14: When ∃m ∈ msgSet : ∀q ∈
S

g∈m.dst Θg : R-Deliver(ACK, m.id, q) ∧
m.nbCast[group(p)] = nbDel[m.sender]

15: F-Deliver(m)
16: nbDel[m.sender]← nbDel[m.sender] + 1
17: msgSet← msgSet \ {m}
18: if ∃m′ ∈ msgSet : m′.nbCast[group(p)] = nbDel[m′.sender] then
19: R-MCast(ACK, m′.id, p) to {q | q ∈ m′.dst}

groups g different than group(p). To C-MCast a message m, p F-MCasts m along with nbDelp. Upon F-
Delivering m, p inserts m in a list of messages msgLstp and C-Delivers m as soon as it is the first message
in msgLstp such that nbDel[group(p)]p ≥ m.nbDel[group(p)].8

Now consider the following causal relation between two messages m and m′ addressed to some group
g that we denote as blind for g: C-MCast(m) → C-MCast(m′), m.sender 6= m′.sender, and there exists
no message m′′ such that g ∈ m′′.dst and C-MCast(m)→ C-MCast(m′′)→ C-MCast(m′). Note that blind
causal relations can be of two types:
• Type a: m is addressed to at least two groups g and g′ such that there exists a process in g′ that

C-Delivers m before C-MCasting a message m′′ and C-MCast(m′′)→ C-MCast(m′).

• Type b: there exists a message m′′ such that m.sender C-MCasts m′′ after m and
C-MCast(m′′)→ C-MCast(m′).

These blind causal relations are problematic with the above sketched algorithm because processes in g may
C-Deliverm andm′ in different orders as for all processes q,m.nbDel[group(p)][q] = m′.nbDel[group(p)][q].
We handle blind causal relations of type (a) and (b) by storing extra information on messages and processes
to be able to differentiate messages m and m′, as we now explain.

Type a: Every process p keeps track of, for every process q and group g (and not only for group(p)
as before), the number of messages addressed to g C-MCast from q that were C-Delivered in the causal
history.9 To do so, nbDelp is piggybacked on C-MCast messages as before and after every message m p
C-Delivers, for every group g of the system, p does two things:

1. Process p stores, for every process q, the maximum value between nbDel[g][q] and m.nbDel[g][q]
(line 20).

8Given any two vectors v1 and v2, we write v1 ≥ v2 instead of ∀q ∈ Π : v1[q] ≥ v2[q] for simplicity.

15

2. If g ∈ m.dst, p updates nbDel[g][m.sender] to the number of messages C-MCast to g that were C-
Delivered in the causal history (m.nbCast), including m (line 22). Note that m.nbCast is introduced
below.

Type b: Every process p stores, for every process q and group g, the number of messages q C-MCast to
a given group g in the causal history.9 This information is kept in a matrix denoted as nbCastp. Every
time p C-MCasts a message m, p piggybacks nbCastp on m and increments nbCast[g][p] for every group g
addressed by m (lines 7-10). When p C-Delivers m, for every process q and group g, p stores the maximum
value between nbCast[g][q] and m.nbCast[g][q] (line 19). To C-Deliver m, we add the condition that
nbDel[group(p)]p ≥ m.nbCast[group(p)] (line 12).

Algorithm A4 Causal Multicast - Code of process p
1: Initialization
2: nbCast[g][q]← 0, for each group g and process q � nb. msgs. q C-MCast to g in causal history
3: nbDel[g][q]← 0, for each group g and process q � nb. msgs. q C-MCast to g C-Delivered in causal history
4: msgLst← ε � list of messages F-Delivered but not yet C-Delivered

5: To C-MCast message m {Task 1}
6: m.nbDel← nbDel
7: m.nbCast← nbCast
8: F-MCast (m) to {q | q ∈ m.dst}
9: foreach g ∈ m.dst do

10: nbCast[g][p]← nbCast[g][p] + 1

11: Function IsDeliverable(m)
12: return m.nbDel[group(p)] ≤ nbDel[group(p)] ∧

m.nbCast[group(p)] ≤ nbDel[group(p)]

13: When F-Deliver(m)
14: msgLst← msgLst⊕m
15: When ∃m′ ∈ msgLst : IsDeliverable(m′)
16: Let m′ be the first message in msgLst s.t. isDeliverable(m′)

17: C-Deliver(m′)
18: foreach g ∈ Γ do
19: nbCast[g]← max(m′.nbCast[g], nbCast[g])
20: nbDel[g]← max(m′.nbDel[g], nbDel[g])
21: if g ∈ m′.dst then
22: nbDel[g][m′.sender]← max(nbDel[g][m′.sender],m′.nbCast[g][m′.sender] + 1)
23: msgLst ← msgLst 	m′

A.2 The Algorithms’ Proofs

In the proofs below, we denote the value of a variable V on a process p at time t as V t
p . Furthermore, for

events of the type C-MCast and C-Deliver, we sometimes add a subscript to denote on which process this
event occurred. Note that we use the following definition of is a prefix of : S1 is a prefix of S2 ⇔ ∃α :
S1 ⊕ α = S2.

9Let m be a message. An event C-MCast(m)/C-Deliver(m) is in the causal history of p either if p C-MCasts/C-Delivers m or if
there exists a message m′ such that p C-Delivers m′ and C-MCast(m)→ C-MCast(m′).

16

A.2.1 The Proof of Algorithm A1

Definition A.1 For any message m, we define m.tsdef
p as the definitive timestamp of m on a process p, i.e.,

it is m’s timestamp after p executed line 19 in AlgorithmA1. If p never executes line 19 for m, then m.tsdef
p

is undefined.

Proposition A.1 (Uniform Integrity) For any process p and any message m, (a) p A-Delivers m at most
once, and (b) only if p ∈ m.dst and (c) m was previously A-MCast.

Proof:

• (a) Follows directly from the uniform integrity property of causal multicast and from the fact that a
message is removed from Pendingp after it has been A-Delivered.

• (b) Follows directly from the algorithm.

• (c) Process p A-Delivers m only if p C-Delivered m. From the uniform integrity property of causal
multicast, m was C-MCast. Consequently, m was A-MCast. �

Lemma A.1 For any correct process p and any message m, if p C-Delivers m, then m eventually reaches
stage s2 on p.

Proof: By the uniform agreement property of causal multicast, all correct processes q ∈ m.dst eventually
C-Deliver m and fork the consensus task for m. By the termination property of global data computation, q
eventually decides and C-MCasts (ACK, m.id, q). By the strong completeness property of P , eventually no
faulty process is ever trusted by any correct process. Therefore, by the validity property of causal multicast,
q eventually C-Delivers(ACK, m.id,-) for all processes in P ∩m.dst. Therefore, m eventually reaches stage
s2 on q, and in particular on p. �

Lemma A.2 For any correct process p and any message m, if p C-Delivers m, then p eventually A-Delivers
m.

Proof: By Lemma A.1, m eventually reaches stage s2 on p. Consider the transitive relation on messages
in-pps defined as follows: m1 in-pps m2 if and only if m1 ∈ m2.pps. Let PPS(m) be the set of messages
m′ such that m′ in-pps m. By Lemma A.1, all m′ ∈ PPS(m) eventually reach stage s2 on p. Because
the identifiers of messages are unique, the relation < on messages’ timestamps and identifiers defines a
total order. Hence, messages in PPS(m) are delivered according to the order defined by < and thus, since
|PPS(m)| is finite, p eventually A-Delivers m. �

Proposition A.2 (Uniform Agreement) If a process p A-Delivers a message m, then all correct processes
q ∈ m.dst eventually A-Deliver m.

Proof: If p A-Delivers m, p C-Delivered m. By the uniform agreement property of causal multicast, all
correct processes q ∈ m.dst eventually C-Deliver m. By Lemma A.2, q eventually A-Delivers m. �

Proposition A.3 (Validity) If a correct process p A-MCasts a message m, then eventually all correct pro-
cesses q ∈ m.dst A-Deliver m.

Proof: If p A-MCasts m, then p C-MCasts m. By the validity property of causal multicast, all correct
processes q ∈ m.dst eventually C-Deliver m. By Lemma A.2, q eventually A-Delivers m. �

17

Lemma A.3 For any two messages m1, m2, and any two processes p and q such that {p, q} ∈ m1.dst ∩
m2.dst, if p A-Delivers m1, q A-Delivers m2, and (m1.ts

def
p ,m1.id) < (m2.ts

def
q ,m2.id), then q A-

Delivers m1 before m2.

Proof: Let t1 and t2 be the times at which p gathered ACK messages for m1 and q gathered ACK messages
for m2 respectively. Either (a) t1 ≤ t2 or (b) t1 > t2.

• In case (a), by the strong accuracy property of P , p C-Delivers (ACK, m1.id, q). Hence, q C-Delivers
m1 before t1 (and t2). Consequently, q adds m1 to Pendingq before A-Delivering m2. At the time q
computes m2’s potential predecessor set (line 23), either (a-i) m1 ∈ Pendingq or (a-ii) not.

– In case (a-ii), because a message is removed from Pending only after being A-Delivered (line 6),
q A-Delivers m1 before m2.

– In case (a-ii), from line 23, m1 ∈ m2.pps. From line 4, q does not A-Deliver m2 before m1

reaches stage s2. Since q A-Delivers m2, m1 reaches stage s2 on q. By the uniform agreement
property of global data computation, when m1 reaches stage s2 on q, m1.ts

def
q = m1.ts

def
p .

Since (m1.ts
def
p ,m1.id) < (m2.ts

def
q ,m2.id), (m1.ts

def
q ,m1.id) < (m2.ts

def
q ,m2.id). Conse-

quently, from the condition of line 4, q A-delivers m1 before m2.

• In case (b), by the strong accuracy property of P , q C-Delivers (ACK, m2.id, p).

We now show that p C-Delivers m1 before C-MCasting (ACK, m2.id, p). Suppose, by way of con-
tradiction, that (*) p does not C-Deliver m1 before C-MCasting (ACK, m2.id, p). Since p A-Delivers
m1, p C-Delivers m1. From (*), p does so after p executes line 20 in the consensus task of m2.
Since p C-MCasts (ACK, m2.id, p), p decides in m2’s global data computation instance. By the uni-
form agreement property of global data computation, (**) m2.ts

def
p = m2.ts

def
q (line 19). Since p

A-Delivers m1, p decides in m1’s global data computation instance. By the uniform obligation prop-
erty of global data computation, p decides on vector V such that V [p] = vp. Because p sets TSp to
max(m2.ts

def
p + 1, TSp) at line 20, from (*) and (**), m2.ts

def
q < vp ≤ m1.ts

def
p , a contradiction to

the fact that (m1.ts
def
p ,m1.id) < (m2.ts

def
q ,m2.id).

Consequently, p C-Delivers m1 before C-MCasting (ACK, m2.id, p). Hence, C-Mcast(m1)
→ C-Deliver(m1)p → C-MCast(ACK, m2.id, p)p → C-Deliver(ACK, m2.id, p)q. Therefore, from
the causal order property of causal multicast, q C-delivers m1 and adds m1 to Pendingq, before A-
Delivering m2. A similar argument as in (a) is then used to conclude the proof. �

Proposition A.4 (Uniform Prefix Order) For any two messages m and m′ and any two processes p and
q such that {p, q} ∈ m.dst ∩m′.dst, if p A-Delivers m and q A-Delivers m′, then either p A-Delivers m′

before m or q A-Delivers m before m′.

Proof: Since p A-Delivers m and q A-Delivers m′, m.tsdef
p and m′.tsdef

q are both defined. Either
(m.tsdef

p ,m.id) < (m′.tsdef
q ,m′.id) or (m.tsdef

p ,m.id) > (m′.tsdef
q ,m′.id). By Lemma A.3, either q

A-Delivers m before m′ or p A-Delivers m′ before m. �

A.2.2 The Proof of Algorithm A2

In the proof below, a message of round k concerning a group g is any G-BCast message of the form (k, g, -,
-).

18

Definition A.2 • We define MessageBundlek
p as the value of variable MessageBundle on p before p

executes line 25 in round k. If p does not execute line 25 in round k, then globalMsgsk
p is undefined.

• We define Viewk
p as the value of variable View on p after p executes line 28 in round k. If p does not

execute line 28 in round k, then Viewk
p is undefined.

• We define LMk
p as the last message process p removes from the sequence Gdelivered at line 20 before

p computes the set of global messages of round k at line 25. If p never executes line 25 in round k,
then LMk

p is undefined.

Lemma A.4 For any k, any two processes p and q such that group(p) = group(q) = g and any two messages
(k, g,msgBundle, msgsp) and (k, g,msgBundle, msgsq) respectively G-BCast by p and q at line 14, msgsp =
msgsq .

Proof: From the uniform agreement property of consensus, p and q decide on the same set of messages in
round k and compute the same set localMsgs at line 11. Consequently, msgsp = msgsq . �

Lemma A.5 For any two processes p and q and any k:

1. if MessageBundlek
p and MessageBundlek

q are both defined, then MessageBundlek
p = MessageBundlek

q .

2. if Viewk
p and Viewk

q are both defined, then Viewk
p = Viewk

q .

Proof: In the proof below, we denote as groupsToAddk
p the value of variable groupsToAdd on process p

before p executes line 25 in round k. We proceed by simultaneous induction on 1 and 2.

• Base step (k = 1):

1. We show that for any group g, MsgBundle1
p[g] = MsgBundle1

q [g]. Suppose, by way of con-
tradiction, that (*) MsgBundle1

p[g] 6= MsgBundle1
q [g]. From the condition of line 17, either (a)

MsgBundle1
p[g] = ∅ or (b) MsgBundle1

p[g] 6= ∅.
– In case (a), since MsgBundlep[g] is initialized to ⊥, the first message concerning g that p

removes from the Gdelivered sequence is a message of the form (1, g, remove, -). Let mp

be this message. Since MsgBundleq[g] is initialized to ⊥, the first message concerning g
that q removes from the Gdelivered sequence is a message of the form (1, g,msgBundle , -).
Let mq be this message. From the uniform generalized order property of generic broadcast,
either (a-i) p G-Delivers mq before mp or (a-ii) q G-Delivers mp before mq. We show that
both (a-i) and (a-ii) lead to a contradiction.
∗ In case (a-i), from the algorithm, MsgBundle1

p 6= ∅, a contradiction to hypothesis (a).

∗ In case (a-ii), from the algorithm, MsgBundle1
q = ∅, a contradiction to (*).

– In case (b), a similar argument as in (a) is used where every occurrence of remove , msgBundle ,
6=, and = are respectively replaced by msgBundle , remove, =, and 6=.

2. From 1, MsgBundle1
p = MsgBundle1

q . Therefore, it is sufficient to show that groupsToAdd1
p =

groupsToAdd1
q . We prove that, for any group g, g ∈ groupsToAdd1

p ⇔ groupsToAdd1
q .

19

– (⇒) Process p G-Delivers a message of the form (-, g, add , -). Let madd−g
p be this message.

Suppose, by way of contradiction, that (*) there exists a group g in groupsToAdd1
p that is not

in groupsToAdd1
q . From the algorithm, LM1

p cannot be of the form (-, -,add , -). Therefore,
(**) p G-Delivers madd−g

p before LM1
p and LM1

p is either (a) of the form (1, g′, remove, -)
or (b) of the form (1, g′,msgBundle , -) for some group g′.

∗ In case (a), from 1, MsgBundle1
p = MsgBundle1

q , therefore the first message q G-

Delivers concerning g′ is a message of the form (1, g′, remove, -). Let mremove−g′
q be

this message. From the uniform generalized order of generic broadcast, either (a-i) p G-
Delivers mremove−g′

q before madd−g
p or (a-ii) q G-Delivers madd−g

p before mremove−g′
q .

· In case (a-i), p G-Delivers a message concerning g′ before LM1
p . Therefore, from

(**), LM1
p cannot concern g′ (MsgBundle1

p[g′] is locked before p removes LM1
p

from the Gdelivered sequence), a contradiction.
· In case (a-ii), g ∈ groupsToAdd1

q , a contradiction to (*).
∗ In case (b), a similar argument as in (a) is used where every occurrence of remove is

replaced by msgBundle .

– (⇐) A similar argument as in (⇒) is used where every occurrence of p and q are respectively
replaced by q and p.

• Induction step: Suppose that Lemma A.5 holds for k − 1, we show that Lemma A.5 also holds for k.

1. We show that for any group g, MsgBundlek
p[g] = MsgBundlek

q [g]. From the induction hypoth-
esis, Viewk−1

p = Viewk−1
q , therefore when p and q execute line 29 in round k − 1, p and q

respectively set MsgBundlep[g] and MsgBundleq[g] either (a) to ⊥ or (b) to ∅.
– In case (a), a similar argument as in the base step of 1 is used where every occurrence of 1

is replaced by k.
– In case (b), from the algorithm, MsgBundlek

p[g] = MsgBundlek
q [g] = ∅

2. A similar argument as in the base step of 2 is used where every occurrence of 1 is replaced by k.
�

Proposition A.5 (Uniform Integrity) For any process p and any message m, (a) p A-Delivers m at most
once, and (b) only if p ∈ m.dst and (c) m was previously A-MCast.

Proof:

• (a) Process p A-Delivers m either (a-i) at line 12 or (a-ii) at line 26.

– In case (a-i), m was A-MCast by a process in group(p) and m.dst = {group(p)}. Let k be
the round in which p A-Delivers m for the first time. By the uniform agreement property of
consensus, in round k, all processes q in group(p) that decide on consensus, decide on the same
set of messages msgs . From the algorithm,m ∈ msgs . Consequently, all q A-Deliverm in round
k for the first time. Moreover, all q add m to Adelivered at line 13 in round k. Therefore, no
process in group(p) proposesm to consensus in a round bigger than k, and p does not A-Deliver
m a second time.

20

– In case (a-ii), let g be the group from which m was A-MCast. Moreover, let k be the first
round in which p A-Delivers m. From the algorithm, (*) MsgBundlek

p[g] = msgs for some
set of messages msgs such that m ∈ msgs . By Lemma A.5, for all processes q such that
MsgBundlek

q is defined MsgBundlek
q [g] = msgs . Consequently, all q that start round k + 1

add m to Adelivered at line 27 in round k and no process in g proposes m to consensus in a
round k′ > k. Therefore, there exists no k′ > k such that m ∈MsgBundlek

′
p [g] and p does not

A-Deliver m a second time.

• (b) follows directly from the algorithm

• (c) Process p A-Delivers m only if p R-Delivers m. From the uniform integrity of reliable multicast
m was R-MCast. Consequently, m was A-MCast. �

Proposition A.6 (Uniform Prefix Order) For any two messages m and m′ and any two processes p and
q such that {p, q} ∈ m.dst ∩m′.dst, if p A-Delivers m and q A-Delivers m′, then either p A-Delivers m′

before m or q A-Delivers m before m′.

Proof: Let k and k′ be the rounds in which p A-Delivers m and q A-Delivers m′ respectively. Either (a)
k < k′, (b) k = k′, or (c) k > k′.

• In case (a), either p A-Delivers m (a-i) at line 12 or (a-ii) at line 26.

– In case (a-i), m.dst = {group(p)} and group(p) = group(q). Since k < k′ and q A-Delivers
m′ in round k′, q decides in instance k of consensus. Because p A-Delivers m at line 12 in
round k, in consensus instance k, p decides on a set of messages msgs such that m ∈ msgs .
From the uniform agreement property of consensus, q decides on msgs in consensus instance k.
Therefore, q A-Delivers m before m′.

– In case (a-ii), there exists a group g and a set of messages msgs such that m ∈ msgs and
MsgBundlek

p[g] = msgs . Since k < k′, MsgBundlek
q is defined. By Lemma A.5,

MsgBundlek
p[g] = MsgBundlek

q [g]. Therefore, q A-Delivers m before m′.

• In case (b), either (b-i) bothm andm′ are A-Delivered at line 12, (b-ii) bothm andm′ are A-Delivered
at line 26, or (b-iii) m and m′ are not A-Delivered at the same line.

– In case (b-i), m.dst = m′.dst = {group(p)}. Moreover, in consensus instance k, p and q decide
on sets msgs and msgs ′ respectively such that m ∈ msgs and m′ ∈ msgs ′. By the uniform
agreement property of consensus, msgs = msgs ′. Therefore, since messages in msgs are A-
Delivered at line 12 in a deterministic order, either p A-Delivers m′ before m or q A-Delivers m
before m′.

– In case (b-ii), there exist groups g and g′ as well as sets of messages msgs and msgs ′ such
that m ∈ msgs , m′ ∈ msgs ′, MsgBundlek

p[g] = msgs , and MsgBundlek
q [g′] = msgs ′. By

Lemma A.5, MsgBundlek
p = MsgBundlek

q . Therefore, since messages are A-Delivered in a
deterministic order at line 26, either p A-Delivers m′ before m or q A-Delivers m before m′.

– In case (b-iii), either p A-Delivers m (b-iii-*) at line 12 or (b-iii-**) at line 26.

21

∗ In case (b-iii-*), m.dst = {group(p)} and in consensus instance k, p decides on a set of
messages msgs such that m ∈ msgs . Moreover, since q A-Delivers m′ at line 26, q decides
in consensus instance k. From the uniform agreement property of consensus, q decides on
msgs . Therefore, q A-Delivers m before m′.
∗ In case (b-iii-**), the same argument as in (b-iii-*) is used where every occurrence of m,
m′, p, and q are respectively replaced by m′, m, q, and p.

• In case (c), a similar argument as in (a) is used where every occurrence of p, q, m, m′, k, and k′ are
respectively replaced by q, p, m′, m, k′, and k. �

Lemma A.6 For any correct process p and any k, p eventually A-Delivers the global messages of round k
at line 26.

Proof: We proceed by induction on k.

• Base step (k = 1): Suppose, by way of contradiction, that p never executes line 26 in round 1.
Therefore, (*) there exists a group g such that MsgBundlep[g] ∈ {⊥,>} forever in round 1. From
the termination property of consensus, p eventually decides in consensus instance 1 and executes the
while loop of lines 17-24. Hence from (**), p never G-Delivers a message of the form (1, g, type, -)
where type is equal to remove or msgBundle at line 35. Either (a) g is correct or (b) g is faulty.

– In case (a), since View is initialized to Γ, there exists a correct process q in g that G-BCasts
a message of the form (1, g,msgBundle , -) at line 14. From the validity property of generic
broadcast p eventually G-Delivers this message, a contradiction to (**).

– In case (b), from the strong completeness property of 3P , p eventually stops trusting processes
in g and G-BCasts a message of the form (1, g, remove , -) at line 32. From the validity property
of generic broadcast, p eventually G-Delivers this message, a contradiction to (**).

• Induction step: Suppose that Lemma A.6 holds for k − 1, we show that Lemma A.6 also holds for k.
From the induction hypothesis, p eventually starts consensus instance k. By the termination property
of consensus, p eventually decides and executes the while loop of lines 17-24 in round k. Suppose,
by way of contradiction, that (*) there exists a group g such that MsgBundlep[g] ∈ {⊥,>} forever in
round k. Hence, (**) p never G-Delivers a message of the form (k, g, type, -) where type is equal to
remove or msgBundle at line 35. Either (a) g ∈ Viewk−1

p or (b) g 6∈ Viewk−1
p .

– In case (a), either (a-i) g is correct or (a-ii) g is faulty.

∗ In case (a-i), there exists a correct process q ∈ g. From hypothesis (a), g ∈ Viewk−1
p .

By Lemma A.5, Viewk−1
p = Viewk−1

q and thus g ∈ Viewk−1
q . Therefore, q G-BCasts a

message of the form (k, g,msgBundle , -) at line 14. From the validity property of generic
broadcast p eventually G-Delivers this message, a contradiction to (**).
∗ In case (a-ii), from the strong completeness property of 3P , p eventually stops trusting

processes in g and G-BCasts a message of the form (k, g, remove, -) at line 32. From the
validity property of generic broadcast, p eventually G-Delivers this message, a contradiction
to (**).

– In case (b), p sets MsgBundlep[g] to ∅ at line 29 in round k − 1. Therefore, there is a time at
which MsgBundlep[g] 6∈ {⊥,>} in round k, a contradiction to (*).

22

Proposition A.7 (Uniform Agreement) For any message m, if a process p A-Delivers m, then all correct
processes q ∈ m.dst eventually A-Deliver m.

Proof: Let k be the round in which p A-Delivers m and let g be the group from which m is A-MCast. Either
(a) m.dst = {g} or (b) m.dst 6= {g}.

• In case (a), in consensus instance k, p decides on a set of messages msgs such that m ∈ msgs . Since
q is correct, by Lemma A.6, q eventually A-Delivers the global messages of round k − 1 at line 26.
Consequently, q starts consensus instance k, and by the termination property of consensus, q decides
in that instance. By the uniform agreement property of consensus, q decides on msgs in consensus
instance k. Therefore, q eventually A-Delivers m.

• In case (b), from the algorithm, MsgBundlek
p[g] = msgs for some set of messages msgs such that

m ∈ msgs . Since q is correct, by Lemma A.6, q eventually A-Delivers the global messages of round
k at line 26 and thus MsgBundlek

q is defined. By Lemma A.5, MsgBundlek
p[g] = MsgBundlek

q [g].
Therefore, q eventually A-Delivers m. �

Lemma A.7 For any correct processes p and q, there exists a round k such that for all k′ ≥ k, group(p) ∈
Viewk′

q .

Proof: By the eventual strong accuracy of 3P , there is a time after which no process stops being trusted
before it crashes. Since p is correct, there exists a time after which processes always trust p. Therefore,
(*) there exists round kno−rmv such that for all k′ ≥ kno−rmv no process G-BCasts a message of the form
(k′, group(p), remove, -). Since process p and processes q are correct, by Lemma A.6, processes p and q
execute an infinite number of rounds. From the algorithm, for any round k′ such that group(p) 6∈ Viewk′−1

p ,
pG-BCasts a message of the form (-, group(p), add , -). Since p is correct, by the validity property of generic
broadcast all such messages are eventually G-Delivered by all correct processes. Hence, from (*), there exists
a round k ≥ kno−rmv such that group(p) is in Viewk

p and group(p) is never removed from Viewp anymore,
i.e., for all k′ ≥ k, group(p) ∈ Viewk

p . Thus, by Lemma A.5, for any k′ ≥ k, group(p) ∈ Viewk′
q . �

Proposition A.8 (Validity) If a correct process p A-MCasts m, then all correct processes q ∈ m.dst even-
tually A-Deliver m.

Proof: Suppose, by way of contradiction, that there exists a correct process r ∈ m.dst that never A-Delivers
m. By Proposition A.7, no correct process q ∈ m.dst A-Delivers m (otherwise r would A-Deliver m). If
p A-MCasts m, then p R-MCasts m to group(p). Since p is correct, by the validity property of reliable
multicast, all correct processes s ∈ group(p) eventually R-Deliver m and add m to Rdelivereds at line 7.
Since no correct process q ∈ m.dst A-Delivers m, after t, m ∈ Rdelivereds \ Adelivereds forever. Hence,
there exists a round k1 such that for all k′ ≥ k1, processes s always propose m to consensus instance k′

and thus by the uniform integrity and uniform agreement properties of consensus, (*) processes in group(p)
decide on a set of messages msgs such that m ∈ msgs in consensus instance k′. Either (a) m.dst =
{group(p)} or (b) m.dst 6= {group(p)}.

• In case (a), r A-Delivers m in round k1 at line 12, a contradiction.

• In case (b), by Lemma A.7, there exists a round k2 such that for any k′ ≥ k2, group(p) ∈ Viewk′
q .

Hence, from (*), there exists a round k′ = max(k2, k1) such that: (1) group(p) ∈ Viewk′
q and (2)

processes in group(p) G-BCast a message at line 14 of the form (k′, group(p),msgBundle,msgs)
such that m ∈ msgs . Therefore, r A-Delivers m in round k′ at line 26, a contradiction. �

23

A.3 The Proof of Algorithm A3

Proposition A.9 (Uniform Integrity) For any process p and any message m, (a) p F-Delivers m at most
once, and (b) only if p ∈ m.dst and (c) m was previously F-MCast.

Proof:

• (a) Follows directly from the uniform integrity property of reliable multicast and from the fact that a
message is removed from msgSetp after it has been F-Delivered.

• (b) Follows directly from the algorithm.

• (c) Process p F-Delivers m only if p R-Delivered m. From the uniform integrity property of reliable
multicast, m was R-MCast. Consequently, m was F-MCast. �

Proposition A.10 Uniform Fifo Order If a process p F-MCasts a messagem before F-MCasting a message
m′, then no process in m.dst ∩m′.dst F-Delivers m′ unless it has previously F-Delivered m.

Proof: Let q be any process in m.dst ∩ m′.dst that F-Delivers m′, we show that q F-Delivers m be-
fore. If q F-Delivers m′, then there is a time t before q F-Delivers m′ at which nbDel[m.sender]tq =
m′.nbCast[group(q)]. By the definition of m, m.nbCast[group(q)] < m′.nbCast[group(q)]. From
line 14-16, q must have F-Delivered m before t, and thus before q F-Delivers m′. �

Definition A.3 We define the binary relation pred on messages as follows, m1 pred m2 iff:

1. m1.sender = m2.sender,

2. m1.sender F-MCasts m1 before m2, and

3. There exists at least one correct group in m1.dst ∩m2.dst

Moreover, let Gpred(m) = (V,E) be a finite DAG constructed as follows:

1. add vertex m to V

2. while ∃m1 ∈ V : ∃m2 6∈ V : m2 pred m1 do:
add m2 to V and add directed edge m2 → m1 to E

Finally, let mk be any message in Gpred(m) such that the longest path from mk to m is of length k.

Lemma A.8 For any messagem, if for all messagesm′ in Gpred(m) all correct processes inm′.dst R-Deliver
m′, then all correct processes p ∈ m.dst eventually F-Deliver m.

Proof: Assume that for all messages m′ in Gpred(m) all correct processes in m′.dst R-Deliver m′. We prove
that, for any k ≥ 0, all messages mk in Gpred(m) are eventually F-Delivered by all correct processes in
mk.dst. Since m0 = m, this shows the claim. Let x be the largest integer such that mx is in Gpred(m). We
proceed by induction on k, starting from k = x.

• Base step (k = x): From the definition of mx, (*) there exists no message mx+1 such that m.sender
F-MCasts mx+1 before mx and there exists at least one correct group in mx.dst ∩mx+1.dst. Since
for all messages m′ in Gpred(m), all correct processes in m′.dst eventually R-Deliver m′, all correct
processes in mx.dst eventually R-Deliver mx. Let q be any correct process in mx.dst. By (*), mx is

24

the first message F-MCast bym.sender such that q ∈ mx.dst, and hence,mx.nbCast[group(q)] = 0.
Therefore, all correct processes q in mx.dst eventually R-MCast (ACK, mx.id, q) and by the validity
property of reliable multicast, all q eventually R-Delivers that message. By the strong completeness
property of Θ, q eventually stops trusting faulty processes. Consequently, all q eventually F-Deliver
mx.

• Induction step: Suppose the claim holds for k (0 < k ≤ x), we show it holds for k − 1. Let q be
any correct process in mk−1.dst. By the induction hypothesis, q F-Delivers mk. From the algorithm,
(*) there exists a time t at which nbDel[m.sender]tq = mk−1.nbCast[group(q)]. Since for all mes-
sages m′ in Gpred(m), all correct processes in m′.dst eventually R-Deliver m′, all correct processes
in mk−1.dst eventually R-Deliver mk−1. Consequently, from (*), all q R-MCast (ACK, mk−1.id, q),
either at line 13, if q R-Delivers mk−1 after F-Delivering mk, or at line 19 otherwise. By the validity
property of reliable multicast all q eventually R-Deliver that message. By the strong completeness
property of Θ, q eventually stops trusting faulty processes. Consequently, all q eventually F-Deliver
mk−1. �

Lemma A.9 For any message m and any process p, if p R-MCasts (ACK, m.id, p), then p F-Delivered all
messages m′ such that p ∈ m′.dst and m.sender F-MCast m′ before m.

Proof: If m is the first message m.sender F-MCasts to group(p), the claim holds trivially. Otherwise, let
mx be the message such that p ∈ mx.dst and m.sender F-MCasts mx just before m. Since p R-MCasts
(ACK, m.id, p), there exists a time t at which nbDel[m.sender]tp = m.nbCast[group(p)]. From lines 14-
16, p must have F-Delivered mx before t. By applying Proposition A.10 multiple times, before t, p also
F-Delivered all messages addressed to group(p) that m.sender F-MCast before mx. �

Proposition A.11 (Uniform Agreement) If a process p F-Delivers a message m, then all correct processes
q ∈ m.dst eventually F-Deliver m.

Proof: We first show that, for any k ≥ 0 such that mk exists in Gpred(m): (1) mk is R-Delivered by all
correct processes in mk.dst and (2) for each correct group g ∈ mk.dst, there is a correct process q in g that
R-MCasts (ACK, mk.id, q). We proceed by induction on k.

• Base step (k = 0):

– (1) Since p F-Delivers m, p R-Delivered m. By the uniform agreement property of reliable
multicast, all correct processes in m.dst eventually R-Deliver m.

– (2) Since p F-Delivers m, from the algorithm and the accuracy property of Θ, for every correct
group g inm.dst, p R-Delivers a message (ACK,m.id, q) for some correct process q in g. Hence,
by the uniform integrity property of reliable multicast, q R-MCasts (ACK, m.id, q).

• Induction step: Suppose that (1) and (2) hold for k− 1 (k > 0), we show that (1) and (2) also hold for
k.

– (1) Because k > 0, from the definition of mk, there exists a message mk−1 in Gpred(m) such that
there is an edge from mk to mk−1. From the definition of Gpred(m), mk pred mk−1, and thus
mk.sender F-MCasts mk before mk−1 and there exists a correct group in mk.dst ∩ mk−1.dst.
By the induction hypothesis, for each correct group g inmk−1 there exists a correct process q in g
that R-MCasts (ACK,mk−1.id, q). Hence, there exists a correct process q inmk−1.dst ∩mk.dst

25

such that q R-MCasts (ACK, mk−1.id, q). By Lemma A.9, q F-Delivered mk. From the algo-
rithm, q R-Delivered mk. By the uniform agreement property of reliable multicast, all correct
processes in mk.dst eventually R-Deliver mk.

– (2) Using the same argument as in (1), there exists a message mk−1 in Gpred(m) such that
mk.sender F-MCasts mk before mk−1 and there exists a correct group in mk.dst ∩ mk−1.dst.
By the induction hypothesis and the definition of mk−1, there exists a correct process r ∈
mk.dst ∩ mk−1.dst such that r R-MCasts (ACK, mk−1.id, r). By Lemma A.9, r F-Delivered
mk. From the algorithm and the accuracy property of Θ, for each correct group g ∈ mk.dst r
R-Delivered (ACK, mk.id, q) for some correct process q ∈ g. By the uniform integrity property
of reliable multicast, q R-MCasts (ACK, mk.id, q).

Hence, from (1), all messages m′ ∈ Gpred(m) are R-Delivered by all correct processes in m′.dst. There-
fore, by Lemma A.8, all correct processes in m.dst F-Deliver m. �

Proposition A.12 (Validity) If a correct process p F-MCasts a message m, then eventually all correct pro-
cesses q ∈ m.dst F-Deliver m.

Proof: Since p is correct, by the validity property of reliable multicast, for all messages m′ ∈ Gpred(m), all
correct processes in m′.dst R-Deliver m. By Lemma A.8, all correct processes q ∈ m.dst F-Deliver m. �

A.4 The Proof of Algorithm A4

Proposition A.13 (Uniform Integrity) For any process p and any message m, (a) p C-Delivers m at most
once, and (b) only if p ∈ m.dst and (c) m was previously C-MCast.

Proof:

• (a) Follows directly from the uniform integrity property of fifo multicast and from the fact that a
message is removed from msgLstp after it is C-Delivered.

• (b) Follows directly from the algorithm.

• (c) Process p C-Delivers m only if p F-Delivered m. From the uniform integrity property of fifo
multicast, m was F-MCast. Consequently, m was C-MCast. �

Lemma A.10 For any any message m such that m.nbDel is defined, any group g, and any integer k, if
m.nbCast[g][m.sender] = k, then m is the k + 1-th message m.sender C-MCasts to g.

Proof: From the algorithm, m.sender increments nbCast[g][m.sender]m.sender at line 10 only (m.sender
does not increment nbCast[g][m.sender]m.sender at line 19). Moreover, m.sender does so after every
message C-MCast to g. Therefore, since nbCast[g][m.sender] is initialized to 0, m is the k+ 1-th message
m.sender C-MCasts to g. �

Lemma A.11 For any two processes p and q, and any group g:

1. nbDel[g][q]p is monotonically increasing with time.

2. nbCast[g][q]p is monotonically increasing with time.

Proof:

26

1. Holds trivially from line 20 and line 22.

2. Holds trivially from line 10 and line 19. �

Lemma A.12 For any two messages m and m′ such that C-MCast(m) → C-MCast(m′), and any group
g ∈ m.dst ∩m′.dst, m.nbDel[g] ≤ m′.nbDel[g].

Proof: If m.sender = m′.sender, from Lemma A.11, Lemma A.12 holds trivially. Now suppose that
m.sender 6= m′.sender. Since C-MCast(m)→ C-MCast(m′), there exist processes p1, ..., pk and messages
m1, ..., mk = m′ (k ≥ 2) such that:

1. p1 = m.sender

2. pi C-MCasts mi for all 1 ≤ i ≤ k

3. either (a) m = m1 or (b) p1 C-MCasts m before m1, and

4. pi C-Delivers mi−1 before C-MCasting mi for all 2 ≤ i ≤ k

We first show that m.nbDel[g] ≤ m1.nbDel[g]. From 3, either (a) m = m1 or (b) p1 C-MCasts m before
m1.

• In case (a), the claim holds trivially as m = m1.

• In case (b), from Lemma A.11, for any process q, nbDel[g][q]p1 is monotonically increasing with time
and thus the claim holds.

To conclude the proof, we show that for all 1 ≤ i < k, mi.nbDel[g] ≤ mi+1.nbDel[g]. We proceed by
induction on i.

• Base step (k = 1): From 4, p2 C-Deliversm1 before C-MCastingm2. From line 12, there exists a time
t before p2 C-MCasts m2 at which nbDel[g]p2 ≥ m1.nbDel[g]. From Lemma A.11, for any process
q, nbDel[g][q]p2 is monotonically increasing with time. Therefore, m1.nbDel[g] ≤ m2.nbDel[g].

• Induction step: Suppose that the claim holds for all i, we show it also holds for i+ 1 (1 ≤ i < k− 1).
We use the same argument as in the base step to show that mi+1.nbDel[g] ≤ mi+2.nbDel[g]. �

Lemma A.13 For any two messages m and m′ such that C-MCast(m) → C-MCast(m′), and any group
g ∈ m.dst ∩ m′.dst:
m.nbCast[g][m.sender] < m′.nbDel[g][m.sender] orm.nbCast[g][m.sender] < m′.nbCast[g][m.sender].

Proof: Since C-MCast(m) → C-MCast(m′), either (a) there exists a process p that C-Delivers m and p
C-MCasts a message m′′ such that C-MCast(m′′) → C-MCast(m′) or (b) m.sender C-MCasts m before
m′.

• In case (a), after p C-Delivers m, p sets nbDel[g][m.sender]p to at least m.nbCast[g][m.sender] + 1
at line 22. From Lemma A.11, nbDel[g][m.sender]p is monotonically increasing with time, and thus
m.nbCast[g][m.sender] < m′′.nbDel[g][m.sender]. Since C-MCast(m′′) → C-MCast(m′), from
Lemma A.12, m′′.nbDel[g][m.sender] ≤ m′.nbDel[g][m.sender], and thus
m.nbCast[g][m.sender] < m′.nbDel[g][m.sender].

27

• In case (b),m.sender increments nbCast[g][m.sender] at line 10 after F-MCastingm. From Lemma
A.11, nbCast[g][m.sender]m.sender is monotonically increasing with time. Therefore,
m.nbCast[g][m.sender] < m′.nbCast[g][m.sender]. �

Lemma A.14 For any process p and q, and any integer k, if there exists a time t at which nbDel[group(p)][q]tp =
k, then, before t, p C-Delivered the first k messages q C-MCasts to group(p).

Proof: If there exists a time t at which nbDel[group(p)][q]tp = k, then from line 22, before t, p C-Delivered
a message mk q C-MCast such that mk.nbCast[group(p)][q] = k − 1. From Lemma A.10, mk is the
k-th message q C-MCasts to group(p). Let mi be the i-th message q C-MCast to group(p). We show
that for all 1 ≤ i < k, p C-Delivered mi before mk. From the definition of mi and Lemma A.10,
(*) mi.nbCast[group(p)][q] < mk.nbCast[group(p)][q]. Since C-MCast(mi) → C-MCast(mk), from
Lemma A.12, (**) mi.Del[group(p)][q] ≤ mk.nbDel[group(p)][q]. From the uniform fifo order prop-
erty of fifo multicast, p F-Delivers mi before mk. Hence, p adds mi to msgLstp before F-Delivering mk.
Therefore, from line 16, (*), and (**), p C-Delivered mi before mk. �

Proposition A.14 Uniform Causal Order For any messages m and m′, if C-MCast(m)→ C-MCast(m′),
then no process p ∈ m.dst ∩m′.dst C-Delivers m′ unless it has previously C-Delivered m.

Proof: Let q be any process in m.dst ∩ m′.dst that C-Delivers m′, we show that q C-Delivered m be-
fore. In the proof below, we denote group(q), m.sender and m′.sender as gq, sm, and sm′ respectively. By
Lemma A.13, m.nbCast[gq][m.sender] < m′.nbDel[gq][m.sender] or
m.nbCast[gq][m.sender] < m′.nbCast[gq][m.sender]. Since q A-Delivers m′, from line 12, there exists
a time t before q A-Delivers m′ at which
m′.nbDel[gq][sm] ≤ nbDel[gq][sm]tq and m′.nbCast[gq][sm] ≤ nbDel[gq][sm]tq. Let k and k′ respec-
tively be m.nbCast[gq][sm] and nbDel[gq][sm]tq. From the above, (*) k < k′. By Lemma A.10, m is the
k+ 1-th message sm C-MCasts to group(q). By Lemma A.14, before t, q C-Delivered the first k′ messages
sm C-MCast to group(q). From (*), q C-Delivers m before m′. �

Definition A.4 Let m be a message, we define the finite DAG Gpred(m) = (V,E) as follows:

1. add vertex m to V

2. while ∃m1,m2 s.t. m1 ∈ V ∧ C-MCast(m2)→ C-MCast(m1) ∧ m1.dst ∩m2.dst 6= ∅ do:
add m2 to V and add directed edge m2 → m1 to E

Moreover, we define mk as any message in Gpred(m) such that the longest path from mk to m is of length k.

Lemma A.15 For any two processes p and q:

1. p increments nbDel[group(p)][q]p at line 20 or line 22 only when C-Delivering a message m such
that group(p) ∈ m.dst.

2. p increments nbCast[group(p)][q]p at line 19 only when C-Delivering a messagem such that group(p) ∈
m.dst.

Proof:

1. Variable nbDel[group(p)][q]p is updated either (a) at line 20 or (b) at line 22.

28

• In case (a), suppose, by way of contradiction, that group(p) 6∈ m.dst. From the algorithm,
there must exist a message m′ such that C-MCast(m′) → C-MCast(m), group(p) ∈ m′.dst,
m′.sender = q, and
m′.nbCast[group(p)][q] = m.nbCast[group(p)][q]. By Proposition A.14, p must have C-
Deliveredm′ beforem. Therefore, from line 22, nbDel[group(p)][q]p ≥ m.nbCast[group(p)][q]+
1 when p C-Deliversm′, and thus p does not increment nbDel[group(p)][q]p when C-Delivering
m, a contradiction.

• In case (b), from the condition of line 21, group(p) ∈ m.dst.

2. Suppose, by way of contradiction, that m 6∈ group(p). From the algorithm, there must exist a
message m′ such that C-MCast(m′) → C-MCast(m), group(p) ∈ m′.dst, m′.sender = q, and
m′.nbCast[group(p)][q] = m.nbCast[group(p)][q]. By Proposition A.14, p must have C-Delivered
m′ before m. Therefore, from line 19, nbCast[group(p)][q]p ≥ m.nbCast[group(p)][q] when p
C-Delivers m′, and thus p does not increment nbCast[group(p)][q]p when C-Delivering m, a contra-
diction. �

Lemma A.16 For any message m, if for all messages m′ ∈ Gpred(m) all correct processes in m′.dst F-
Deliver m′, then all correct processes in m.dst eventually C-Deliver m.

Proof: We prove that, for any k ≥ 0, all messages mk in Gpred(m) are eventually C-Delivered by all correct
processes in mk.dst. Since m0 = m, this shows the claim. Let x be the largest integer such that mx is in
Gpred(m). We proceed by induction on k, starting from k = x.

• Base step (k = x): From the definition ofmx, (*) there exists no messagem′ such that C-MCast(m′)→
C-MCast(mx) andm′.dst ∩mx.dst 6= ∅. Let g be any group inmx.dst and let p be any process. From
(*), mx.sender never updated nbDel[g][p]mx.sender at line 20 nor at line 22. Moreover, mx.sender
never updated nbCast[g][q]mx.sender at line 19 and mx is the first message mx.sender C-MCasts to
g. Therefore, (**) m.nbDel[g][p] = 0 and m.nbCast[g][p] = 0. By Lemma A.11, for any process
q, nbDel[g][p]q is monotonically increasing with time. If all correct processes in mx.dst eventually
F-Deliver mx, from (**) and line 12, all correct processes in mx.dst eventually C-Deliver mx.

• Induction step: Suppose that for any l such that x ≥ l > k ≥ 0 the claim holds, we show the claim
holds for k. If there exists no correct process in mk.dst, then the claim holds trivially. Otherwise,
let q be any correct process in mk.dst and let p be any process. We show that there exist times
t1, t2 at which (a) nbDel[group(q)][p]t1q ≥ mk.nbDel[group(q)][p] and (b) nbDel[group(q)][p]t2q ≥
mk.nbCast[group(q)][p].

– (a) Let mp be the message that mk.sender C-Delivered which set nbDel[group(q)][p]mk.sender

to mk.nbDel[group(q)][p]. We argue that q eventually C-Delivers mp and thus sets
nbDel[group(q)][p]q to at least mk.nbDel[group(q)][p] at line 20. By Lemma A.15, mp is such
that group(q) ∈ mp.dst. From the definition of mp, C-MCast(mp) → C-MCast(mk). Hence,
since group(q) ∈ mp.dst, there exists a k′ > k such that mk′ ∈ Gpred(m) and mp = mk′ . By
the induction hypothesis, q eventually C-Delivers mp.

– (b) Either (b-i) p = mk.sender or (b-ii) not.

∗ In case (b-i), from Lemma A.10, if mk.nbCast[group(q)][mk.sender] = k, then mk is the
k+1-th messagemk.sender C-MCasts to group(q). If k = 0, then the claim holds trivially

29

since nbDel[group(q)][p]q is initialized to zero. Otherwise, let mk−1 be the k-th message
mk.sender C-MCasts to group(q). From Lemma A.10,
mk−1.nbCast[group(q)][mk.sender] = k − 1. By the induction hypothesis, q eventually
C-Delivers mk−1 and sets nbDel[group(q)][mk.sender]q to at least k at line 22.
∗ In case (b-ii), there must exist a messagemp such thatmp.sender = p, group(q) ∈ mp.dst,

C-MCast(mp)→C-MCast(mk), andmp.nbCast[group(q)][p] = mk.nbCast[group(q)][p].
From Lemma A.10, ifmp.nbCast[group(q)][mk.sender] = k, thenmp is the k+1-th mes-
sage p C-MCasts to group(q). If k = 0, then the claim holds trivially since
nbDel[group(q)][p]q is initialized to zero. Otherwise, let mk−1 be the k-th message p C-
MCasts to group(q). From Lemma A.10, mk−1.nbCast[group(q)][mk.sender] = k − 1.
By the induction hypothesis, q eventually C-Delivers mk−1 and sets
nbDel[group(q)][mk.sender]q to at least k at line 22.

Since (a) and (b) hold, if all correct processes in mk.dst eventually F-Deliver mk, by Lemma A.11
and line 12, all correct processes in mk.dst eventually C-Deliver mk. �

Proposition A.15 (Uniform Agreement) If a process p C-Delivers a message m, then all correct processes
q ∈ m.dst eventually C-Deliver m.

Proof: We show that for any message mk ∈ Gpred(m) all correct processes in mk.dst F-Deliver m′. By
Lemma A.16, all correct processes q ∈ m.dst eventually C-Deliver m. We proceed by induction on k.

• Base step (k = 0): From the definition of mk, m0 = m. Since p C-Delivers m, p F-Delivers m. From
the uniform agreement property of fifo multicast, all correct processes in m.dst eventually F-Deliver
m.

• Induction step: Suppose the claim holds for k, we show the claims holds for k + 1. From the def-
inition of Gpred(m), message mk+1 is such that mk.dst ∩ mk+1.dst 6= ∅ and C-MCast(mk+1) →
C-MCast(mk). From the induction hypothesis, all correct processes in mk.dst eventually C-Deliver
mk. Hence, by Proposition A.14, all processes in mk+1.dst must have C-Delivered mk+1 before mk.
�

Proposition A.16 (Validity) If a correct process p C-MCasts a message m, then eventually all correct
processes q ∈ m.dst C-Deliver m.

Proof: We show that for any message mk ∈ Gpred(m) all correct processes in mk.dst F-Deliver m′. By
Lemma A.16, all correct processes q ∈ m.dst eventually C-Deliver m. We proceed by induction on k.

• Base step (k = 0): From the definition ofmk,m0 = m. From the algorithm, p F-MCastsm. Since p is
correct, from the validity property of fifo multicast, all correct processes inm.dst eventually F-Deliver
m.

• Induction step: Suppose the claim holds for k, we show the claims holds for k+1. The same argument
as in the induction step of Proposition A.15 is used. �

30

