5,614 research outputs found

    Unconventional machine learning of genome-wide human cancer data

    Full text link
    Recent advances in high-throughput genomic technologies coupled with exponential increases in computer processing and memory have allowed us to interrogate the complex aberrant molecular underpinnings of human disease from a genome-wide perspective. While the deluge of genomic information is expected to increase, a bottleneck in conventional high-performance computing is rapidly approaching. Inspired in part by recent advances in physical quantum processors, we evaluated several unconventional machine learning (ML) strategies on actual human tumor data. Here we show for the first time the efficacy of multiple annealing-based ML algorithms for classification of high-dimensional, multi-omics human cancer data from the Cancer Genome Atlas. To assess algorithm performance, we compared these classifiers to a variety of standard ML methods. Our results indicate the feasibility of using annealing-based ML to provide competitive classification of human cancer types and associated molecular subtypes and superior performance with smaller training datasets, thus providing compelling empirical evidence for the potential future application of unconventional computing architectures in the biomedical sciences

    Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer

    Get PDF
    We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements, and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.Comment: 7 pages; expanded and update

    Optimizing Photonic Nanostructures via Multi-fidelity Gaussian Processes

    Get PDF
    We apply numerical methods in combination with finite-difference-time-domain (FDTD) simulations to optimize transmission properties of plasmonic mirror color filters using a multi-objective figure of merit over a five-dimensional parameter space by utilizing novel multi-fidelity Gaussian processes approach. We compare these results with conventional derivative-free global search algorithms, such as (single-fidelity) Gaussian Processes optimization scheme, and Particle Swarm Optimization---a commonly used method in nanophotonics community, which is implemented in Lumerical commercial photonics software. We demonstrate the performance of various numerical optimization approaches on several pre-collected real-world datasets and show that by properly trading off expensive information sources with cheap simulations, one can more effectively optimize the transmission properties with a fixed budget.Comment: NIPS 2018 Workshop on Machine Learning for Molecules and Materials. arXiv admin note: substantial text overlap with arXiv:1811.0075

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer

    Get PDF
    The D-Wave adiabatic quantum annealer solves hard combinatorial optimization problems leveraging quantum physics. The newest version features over 1000 qubits and was released in August 2015. We were given access to such a machine, currently hosted at NASA Ames Research Center in California, to explore the potential for hard optimization problems that arise in the context of databases. In this paper, we tackle the problem of multiple query optimization (MQO). We show how an MQO problem instance can be transformed into a mathematical formula that complies with the restrictive input format accepted by the quantum annealer. This formula is translated into weights on and between qubits such that the configuration minimizing the input formula can be found via a process called adiabatic quantum annealing. We analyze the asymptotic growth rate of the number of required qubits in the MQO problem dimensions as the number of qubits is currently the main factor restricting applicability. We experimentally compare the performance of the quantum annealer against other MQO algorithms executed on a traditional computer. While the problem sizes that can be treated are currently limited, we already find a class of problem instances where the quantum annealer is three orders of magnitude faster than other approaches
    corecore