1,234 research outputs found

    A survey of instabilities within centrifugal pumps and concepts for improving the flow range of pumps in rocket engines

    Get PDF
    Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential

    The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    Get PDF
    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor

    Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations

    Get PDF
    This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side

    Experimental campaign tests on ultra micro gas turbines, fuel supply comparison and optimization

    Get PDF
    The increasing demand for miniaturized radio-controlled vehicles inspired the following research. The uses of these unmanned miniaturized/micro vehicles range from aero-modeling to drones for urban control and military applications too. The common characteristic of these vehicles is the need for a light and compact propulsion system. The radio-controlled (RC) turbines for modeling are ideally suited for this purpose, guaranteeing the necessary thrust with compactness and lightness. This device is a miniaturized turbojet, and it is generally composed of three basic elements: compressor, combustion chamber and turbine. The main goal of the paper is to evaluate the turbojet performance for considering the possibility of its use as a range extender in a hybrid vehicle. Considering the total volume constraints, it will be important to evaluate the specific fuel consumption. Also from the environmental point of view, the possibility of feeding the device with gas has been considered and, consequently, the needed device modifications performed. The test bench has been realized and assembled at the University Department Laboratory. Several different experimental configurations are reproduced and reported here, to obtain performance maps. The experiments results have been compared to previous tests results, as well as numerical simulations. Therefore, it has been possible to make a comparison between the two different fuels. The results show that this device can be used as a range extender for a hybrid vehicle. Moreover, the various tests have shown that, acting on the control unit, it is possible to feed the device with gas (mixture of propane and butane), obtaining a further benefit from the economic point of view. Surely, an in-depth study of the turbine management logic would produce a further advantage in terms of fuel consumption

    A micro gas turbines for UK domestic combined heat and power

    Get PDF
    Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency

    Experimental rotordynamics and flow visualization approach for periodically reversed flows of a Francis - Type Pump - Turbine in generating mode at off - design operating conditions

    Get PDF
    A non-conventional tufting visualization method along with an image processing development and specific applied technique adapted to the flow conditions is proposed and implemented on a reduced scale model of a Francis-type reversible pump-turbine in three different turbine stages such as turbine mode, runaway mode and turbine break mode, in order to visualize rotating stall phenomenon -- Fluorescent monofilament wires along with high speed image processing and pressure sensors were installed in the narrow and vane less gap between the impeller blades and guide vanes -- Pressure fluctuations were analyzed along with tuft visualization to describe the flow with and without rotating stal

    A numerical approach for predicting flow-induced acoustics at near-stall conditions in an automotive turbocharger compressor

    Full text link
    Se realiza un modelo CFD-3D de un compresor centrífugo. Se determina la configuración numérica adecuada para simular puntos de funcionamiento cercanos a bombeo. Se validan los resultados frente a ensayos experimentales realizados en cámara anecoica. Se analizan los resultados, justificando las características del ruido emitido por el compresor a partir de los patrones de flujo encontrados. En particular, se analiza el flujo en la holgura entre los álabes y la carcasa del compresor y en la parte posterior del rodete. Por último, se analiza la influencia de las geometrías aguas arriba del compresor en el ruido producido por éste.Navarro García, R. (2014). A numerical approach for predicting flow-induced acoustics at near-stall conditions in an automotive turbocharger compressor [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/44114TESISPremios Extraordinarios de tesis doctorale
    corecore