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ABSTRACT

Radial compressors are found in many systems including automotive engines, air-

conditioning systems, and aircraft axillary power units. The work in this thesis focuses

on the application of automotive turbochargers but the methodology is applicable for

all uses.

Turbocharger compressors increase the power output of an engine. They are limited at

low flow rates by compressor surge. Surge is characterised by low frequency oscillations

in mass flow and pressure, and is often damaging to the compressor.

There have been many attempts to model and predict the point of surge onset, usually

via map-based models. Many of these rely on calibration to experimental or CFD data.

This has two main disadvantages: (i) the model requires calibrating each time a change

in the compressor geometry occurs, and (ii) there is no way to gain insight into the

physical causes of surge.

The work in this thesis aims to address these problems by developing a new model for

surge starting from the fundamental equations of fluid motion, and only including a

minimal number of fitted parameters. All models are developed using mathematical av-

eraging techniques and validated by conducting experiments of a compressor operating

in stable, surge and reverse flow regimes.

The resulting surge model has been able to capture both mild surge, where oscillations

occur without any full flow reversal, and deep surge, where flow is observed travelling

in the reverse direction through the compressor. This is the first time any model has

been able to capture and explain the existence of both types of surge.

During model development, it was discovered that incidence losses at the impeller inlet

and diffuser recirculation were the main factors that determine the location of surge

onset. Also, explanations were found for observed phenomena like the quiet period

that is sometimes observed during surge.

Finally, stability analysis was performed on the reduced order surge model, and the

existence of both supercritical and subcritical Hopf bifurcations were discovered. This

analysis reinforced and explained the behaviour of the model simulations.
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Chapter 1

Introduction

1.1 Thesis Motivation

Turbochargers are a vital component for aiding engine manufacturers to meet the latest

emissions standards. However, turbocharger operation is limited by surge for low mass

flow rates. Surge often comprises of violent pressure oscillations that cause damage to

the turbocharger and its installation. Therefore, for every application, turbochargers

need to be matched in a way that ensures they won’t be required to operate in surge.

Thus, in this thesis, we aim to improve current methods for predicting the onset of

surge.

1.1.1 Overview of Turbochargers

Turbochargers are a boosting mechanism that increases the power output of an engine.

Figure 1-1 shows a schematic of a turbocharged engine. A turbocharger consists of a

compressor and a turbine that are connected via by a common shaft [1]. Exhaust gases

are used to drive the turbine, which in turn drives the compressor. The compressor

raises the pressure and density of inlet air and feeds it to the inlet of the engine [1].

This supplies the engine cylinders with more oxygen per unit volume, meaning more

fuel can be burnt for the same size of engine, which results in a higher power output

[2].

Turbochargers were first developed by Dr. Alfred J. Büchi of Switzerland between

1909 and 1912 [3]. However, his ideas gained little acceptance at the time and it

17



Figure 1-1: Typical arrangement of a turbocharged engine [1]. Pi denotes the pressure
and Ti denotes the temperature at each stage of the cycle.

took until 1925 for the first successful turbocharger application to appear, where two

German ships were fitted with 2000 hp turbocharged diesel engines. Following this, and

throughout the 1930s, turbochargers with axial turbines were used in marine, railway,

and large stationary applications [3].

In the 1940s radial turbines were developed, meaning that radial flow turbochargers

were developed for use on small automotive diesel engines. By the 1950s, major engine

producers such as Cummins, Volvo and Scania began experimenting with turbocharged

engines for trucks [3]. Initially, these early designs were unsuccessful due to the large

size of the turbocharger, but by 1954 German engineer Kurt Beirer developed the

first compact turbo compressor, making turbocharged engines more viable for smaller

applications [4].

Nowadays, both axial and radial (also known as centrifugal) turbochargers are still

used. Typically, axial turbochargers are used in aircraft or marine applications where

large volumes of air need to be compressed [1]. However, centrifugal turbochargers are

common in automotive engines because they maintain relatively high efficiency when

reduced to small sizes, they have a larger operating range, and they are cheaper to

Figure 1-2: Slice through an axial turbocharger [5] (left) and centrifugal turbocharger
[6] (right).
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Figure 1-3: Left: Turbocharger for Wärtsilä RT-flex96C engine for a cargo ship [9].
Right: Garrett GT0632SZ turbocharger suited for use with 1L engines [11].

manufacture [1]. Fig. 1-2 shows the differences between the two types.

As the name suggests, the flow through axial compressors is purely axial. They consist

of pairs of rotating fans and stationary aerofoils. The rotating fans accelerate the flow

and the stationary aerofoils diffuse the flow in order to convert the increased rotational

kinetic energy into pressure [7].

Centrifugal compressors are similar but they turn the flow during the compression.

The axial flow is directed onto a rotating impeller, which imparts kinetic energy to the

flow and changes its direction so that it exits radially [1]. The flow then passes through

a diffuser to slow down the air and increase its pressure, before being collected by a

volute [1, 8].

Turbochargers can come in a huge range of sizes. The left image in Fig. 1-3 shows

the turbocharger for the Wärtsilä RT-flex96C engine, which is currently the worlds

largest and most powerful engine. In 2006, it was installed on the Emma Mærsk cargo

ship that can carry 11000 20ft shipping containers at 31 knots [9]. However, the right

image in Fig. 1-3 shows a Garrett micro turbo. This turbo is ideally suited to two and

three-cylinder diesel engines and petrol engines less that 1L [10].

In the 1970s, turbochargers started being used in Formula 1, which made turbocharged

passenger car engines very popular [12]. However, the real breakthrough in passenger

car turbocharging was achieved in 1978 with the introduction of the first turbocharged

diesel engine passenger car. This resulted in increasing the efficiency of diesel engines

so they were comparable to petrol engines [12].
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Figure 1-4: Schematic by Audi on how synthetic e-fuels are generated and used [14].

Nowadays, the turbocharging of petrol and diesel engines is primarily viewed as a means

of reducing fuel consumption and therefore environmental pollution [12]. Smaller en-

gines are more efficient because they are lighter and have fewer frictional losses. There-

fore, seeing as turbochargers increase the power output of an engine, it is possible to

use a downsized engine alongside a turbocharger to improve efficiency without reducing

power.

We can see this shift towards environmentally-conscious thinking by looking at the

types of new vehicles being bought and registered: from early 2018 to early 2019, there

was a 20% decrease in diesel, 6% increase in petrol and 18% increase in alternative fuel

registrations [13]. Also, during Jan-Mar 2019, 1.9% of all new registrations were for

ultra low emission vehicles (ULEVs), which emit less than 75g of CO2 per kilometre

travelled [13].

Looking further into the future, synthetic e-fuels are a viable possibility to reduce emis-

sions without the need for significant modification to the design of the internal combus-

tion engine. Figure 1-4 shows how e-fuels can be used with our existing infrastructure.

The idea is that renewable energy sources, such as wind, solar, or hydropower, provide

electrical power to break water into hydrogen and oxygen via electrolysis [14]. This

20



can then be combined with carbon dioxide to obtain e-methane, e-diesel, or e-kerosene.

Therefore, these fuels are having a net-zero carbon impact as they utilise carbon that

is already in the atmosphere, rather than adding carbon to the atmosphere that is

currently stored in the ground, e.g. through fossil fuels [14].

The fact that this would allow the internal combustion engine to remain relatively the

same, also means that turbochargers will still be useful in the future for improving

efficiency or power from an engine.

For this thesis, we will focus on automotive turbochargers. The automotive industry

is large and has been continually growing since the end of WWII. At the end of March

2019, there were 38.4 million vehicles licensed in Great Britain: 82.5% were cars, 10.6%

were LGVs, 1.3% were HGVs, and 3.3% were motorcycles [13]. Therefore, focusing on

improvements for automotive applications, particularly cars, has the potential for a

large impact.

Since the majority of cars use relatively small radial turbochargers, we will focus our

attention on these. However, the methodology discussed within this thesis can be used

for larger turbochargers and adapted for other applications.

1.1.2 Operation of Radial Compressors

Figure 1-5 shows the four components of a radial compressor: the inlet pipe, the

impeller, the diffuser and the volute.

The inlet is a simple pipe which directs the flow from above onto the impeller eye.

Some inlets have guide vanes in order to gain some control over the flow behaviour [1].

Figure 1-5: Components of a radial compressor from side and plan view points [15].

21



Figure 1-6: Example compressor map showing the surge and choke limits [16].

The impeller is a rotating set of blades that raise the kinetic energy, and hence velocity,

of the flow. The blades in Fig. 1-5 are straight radial blades, however, it is more

common for blades to be backswept, i.e. curved against rotation. This is because

backswept blades reduce the amount of flow distortion transmitted from the impeller

to the diffuser [1]. It is also common practice to use splitter blades. These are blades

that extend from part way down the impeller to the impeller tip. They still help to

control the air flow, but they reduce the risk of blockage at the impeller eye caused by

having too many blades [1].

The job of the diffuser is to convert the high velocity of the air leaving the impeller

into pressure. The diffuser is a thin gap surrounding the impeller that can be vaned

(as in Fig. 1-5), or vaneless. Even though vaned diffusers have a better peak efficiency,

vaneless diffusers are more commonly used in automotive turbochargers because they

have a larger range of operation [1].

The volute collects air from around the circumference of the diffuser and delivers it to

the exit pipe. The volute is designed in a way to maintain the flow properties from the

diffuser. The spiral shape occurs because the volute will collect more air as it wraps

around the diffuser, so the area increases to accommodate this.

The operating range of a compressor is typically displayed on a compressor map, where

we plot the flow through the compressor against the pressure ratio across it. Figure

1-6 shows an example.

There are essentially three regions on the map: stable, choke and surge. The central

22



stable area is the region of normal operation of the compressor. It is bounded on the

left by the surge line and on the right by a choking region.

The choking region is where the air velocity at some location within the compressor

approaches sonic conditions and so the compressor can’t accept any higher mass flow

rate. In this scenario, the compressor speed is likely to rise substantially with little

change to the mass flow rate [1].

The surge region is where flow instabilities are observed. The dividing line between

stable operation and surge is often difficult to predict as it depends on the whole

compression system, not just the compressor itself.

1.1.3 Surge and its Problems

Surge is an aerodynamic instability that exists when operating a compressor at low mass

flow rates. Normally air flows from regions of high pressure to regions of low pressure.

The compressor generates pressure in the outlet pipe and so the air is travelling against

the pressure gradient.

When operating with a small mass flow, it is possible for flow reversal to occur as the

force applied to the fluid by the pressure gradient is large enough to overcome the fluid

momentum. Once flow reversal occurs, the pressure drops in the outlet pipe and the

air resumes its forward directional flow. This oscillation in mass flow and pressure is

termed surge [1].

Surge is a large amplitude, low frequency oscillation of the averaged flow through the

compressor [17]. However, there are different classifications of surge.

When the oscillations in mass flow are large enough that actual flow reversal is seen,

this is called deep surge [18]. Alternatively, when mass flow and pressure oscillations

are observed but the flow always remains travelling in the forward direction, this is

classed as mild or incipient surge [18].

It is also possible to see a combination of behaviours. For example, Fig. 1-7 illustrates

an observable limit cycle for surge behaviour. It has four operating regimes: (1) The

speed of the flow at the impeller tip increases and the mass flow rate decreases; (2) The

compressor operates in mild surge, so fluctuations in pressure and mass flow grow; (3)

The mass flow reverses and the pressure drastically decreases; (4) The flow recovers

rapidly to the forward direction and the cycle repeats from (1) [19].
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Figure 1-7: Time-resolved behaviour during a surge limit cycle, where ΦC denotes
dimensionless mass flow in the compressor, and Ψ denotes dimensionless pressure [19].

Surge is commonly found to be triggered by some form of stall. There are two main

types of stall.

The first can occur at the inlet to the impeller or a vaned diffuser and is caused by

incidence. This means that, as mass flow decreases, the inlet flow angle increases and

causes a separation of the flow at the blade or vane wall [1].

The second type is often seen in a vaneless diffuser and is caused by recirculation. This

is where friction reduces the radial velocity of the flow near the shroud-side wall of the

diffuser, reducing its spiral angle so that it is swept back into the impeller [1].

It has been discovered that a compressor operating at high impeller speed is more likely

to surge due to stall in the diffuser, and a compressor operating at low impeller speed

is more likely to surge due to stall in the impeller inducer [20].

Operation in deep surge often damages the compressor and surrounding installation,

which can be costly to repair [1]. Surge causes vibrations that can unbalance the

machinery, which can result in contact between the impeller blades and the housing.

This leads to bending or fracture of the impeller blades. Operation in surge also results

in excessive internal temperatures due to extra friction between the components and

energy losses in the air as it recirculates. This rise in temperature can damage the

installation, for example through the melting of plastic connectors [17].
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The mild form of surge is less damaging, but is still very noisy. This causes problems

with customer acceptance because the sound would be off-putting to any driver.

Since surge limits the amount of boost provided at low engine speeds, it is desirable

to operate close to surge without entering it for prolonged periods of time. Therefore,

it is important for designers and manufacturers to create models that can predict the

location of the surge region, as well as aid understanding of the flow dynamics near

that region.

However, due to the unstable nature of surge, and the fact that it depends on the

system pipework, this limit is often difficult to predict. Motivated by this, the work

undertaken in this thesis looks into new approaches for modelling and predicting surge

in radial compressors.

1.2 Literature Review

1.2.1 Existing Models

Models Requiring Turbochargers

There are many reasons why simulating an engine is useful. It allows for the prediction

of performance under different operating conditions, as well as optimisation and devel-

opment of designs of specific components. Therefore, even when turbochargers are not

the main focus of research, it is often important to have a model of them so the entire

engine performance can be studied.

There are many industrially-focused engine simulation software packages available, in-

cluding GT-POWER, Ricardo Wave, and LESoft [21, 22]. GT-POWER is part of

the GT-SUITE by Gamma Technologies. It is able to predict engine performance

quantities, like power and torque, and includes physical models for wave dynamics,

combustion and after-treatment [22].

Most of the systems being analysed are highly complex. For example, Fig. 1-8 shows

schematic of a 4-cylinder turbocharged engine modelled in GT-POWER. Each compo-

nent has its own model, so it is important that individual models are computationally

fast because running the whole system will call on each component multiple times.

This means that the current models for turbochargers in these engine systems are very
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Figure 1-8: Example GT-POWER model for a 4-cylinder turbocharged engine [23].

simplistic. For example, the component model for the turbocharger compressor in GT-

POWER requires the specification of a compressor map [24], which is then extrapolated

into surge and choke regions.

Often, a fictitious compressor is created with no surge or choke limits, resulting in

monotonically decreasing characteristics [23]. Simulations are then run with this hy-

pothetical compressor and compared to actual compressor maps afterwards in order to

select the operating range, i.e. the surge and choke limits [23].

It is possible to specify the surge line into the software and use this as a constraint

when performing calculations like geometry optimisation [25]. This would discount

any simulated point that occurred within the surge region and so the final optimisation

would lie in the correct domain of operation.

Reduced Order Surge Models

When looking directly for compressor surge properties, reduced order surge models are

commonly used. Such models have been around since the 1950s [26]. However, nearly

all models are based on the work by Greitzer in 1976 [17].
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Figure 1-9: Compression system used in Greitzer’s model [17]. The pipes containing
the compressor and throttle have much smaller diameters than the plenum, and have
lengths Lc and LT respectively.

Greitzer simplifies an axial compression system to the model shown in Fig. 1-9. Here,

the compressor (modelled via an actuator disk) is connected to a large exit plenum,

and the air discharges through a throttle (also represented by an actuator disk) [17].

Greitzer considered flows of low inlet Mach number, so the associated pressure rise

is small in comparison to ambient pressure. This, combined with the relatively low

oscillation frequency of surge, meant Greitzer could assume the flow in the compressor

and throttle pipes was incompressible. The one dimensional incompressible momentum

equation is given by

ρ
du

dt
= −∂p

∂x
. (1.2.1)

Integrating this with respect to x in the compressor and throttle pipes gives

Lc
Ac

dṁc

dt
= ρcLc

duc
dt

= pc − pp, (1.2.2)

LT
AT

dṁT

dt
= ρTLT

duT
dt

= pp − pT , (1.2.3)

where subscripts p, c and T denote the plenum, compressor and throttle respectively,

and ṁ = Aρu is the mass flow rate with cross-sectional area, A. [17]

Greitzer assumed the plenum is large enough so that fluid velocities are negligible, but

still smaller than the wavelength of an acoustic wave oscillating at a typical surge fre-

quency. The latter assumption allowed Greitzer to also assume the pressure is constant

in space throughout the plenum at any instant in time. Applying conservation of mass

in the plenum gives us

ṁc − ṁT = Vp
dρp
dt

=
ρambVp
γpamb

dpp
dt
, (1.2.4)
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by assuming the fluid is isentropic and that temperature in the plenum Tp =
pp
Rρp

is

ambient. Here Vp denotes the volume of the plenum and γ is the specific heat ratio.

[17]

Therefore, Greitzer is assuming that all of the kinetic energy of the flow is associated

with the motion of the fluid in the compressor and throttle pipes, and all of the potential

energy is associated with the compression of the gas in the plenum [17].

To close the system we need to know pc and pT . Greitzer decided to use

t̂
dpc
dt

= pcss − pc (1.2.5)

to determine pc, where pcss denotes a steady-state compressor characteristic, and t̂ is a

time constant that describes the growth of stall cells (usually obtained via experiment).

Using this ODE instead of directly assuming pc ≈ pcss allows the model to simulate

the lag in compressor response, which can cause a lag between reaching the stall limit

and observing rotating stall cells or surge. [17]

For pT Greitzer assumed that we have either a variable area nozzle or a valve, so that

the orifice equation

pT =
1

2
ρambu

2
T =

ṁ2
T

2ρambA
2
T

(1.2.6)

holds [17].

Greitzer then nondimensionalised the mass flows with ρambΩAc, the pressures with
1
2ρambΩ

2 and the time variables with 1
ωH

, where ωH = a
√

Ac
VpLc

is the Helmholtz fre-

quency, Ω is the mean rotor velocity, and a is the speed of sound.

Denoting the dimensionless mass flows by Φ, the dimensionless pressure differences by

Ψ, and dimensionless time variables by τ , leads to the system

dΦc

dτ
= B(Ψc −Ψ) (1.2.7)

dΦT

dτ
=
B

G
(Ψ−ΨT ) (1.2.8)

dΨ

dτ
=

1

B
(Φc − ΦT ) (1.2.9)

dΨc

dτ
=

1

τ̂
(Ψcss −Ψc) (1.2.10)

where G = LTAc
LcAT

, and B = Ω
2a

√
Vp
AcLc

[17]. B is often referred to as Greitzer’s parameter
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and can be regarded as the ratio of pressure forces and inertial forces acting in the

compressor pipe [27].

Often, this system of ODEs is simplified further by assuming (i) τ̂ = 0, so the com-

pressor acts in a quasi-steady manor, and (ii) that the pressure at the throttle is set

instantaneously by the pressure in the plenum so we can use

ṁT =
√

2ρambA
2
T pp (1.2.11)

as a direct function instead of the ODE (see, for example, [28], [19], [29]). This would

reduce the above system to just two ODEs, namely:

dΦc

dτ
= B(Ψcss −Ψ) (1.2.12)

dΨ

dτ
=

1

B
(Φc − ΦT ) (1.2.13)

where ΦT is the nondimensional form of the throttle equation. This system is often

referred to as the Moore-Greitzer equations.

Despite the fact Greitzer’s model was derived for axial compressors, this model has also

been used for radial compressors. For example, Arnulfi et al. [27] used a model derived

from Greitzer’s in order to simulate an industrial low-pressure multistage centrifugal

compressor with vaned diffusers. The main difference in Arnulfi’s model was the use

of a discontinuous parameter for τ̂ so that a significant time lag was only introduced

when stalling occurred because this matched observed experiments [27].

Similarly, Elder et al. [20] and Fink et al. [19] used models based on Greitzer’s for vaned

and vaneless radial compressors respectively. However, instead of using experiments

to determine the compressor characteristic, they used meanline or lumped parame-

ter modelling approaches. Furthermore, Fink et al. extended Greitzer’s work to take

into account the effect of impeller inertia and speed variation, but this required the

additional specification of a torque characteristic [19].

There are many examples of these quasi-steady compressor models in literature, how-

ever, the main variation in the work seems to be how the compressor characteristic is

specified. The steady-state behaviour of the compressor is far more complex than that

of the throttle and so a characteristic is more complicated to determine. There have

been three main approaches for obtaining the compressor characteristics.

The first is through complex experimental studies. In 1984, Koff and Greitzer [30]
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Figure 1-10: Axisymmetric compressor characteristic partitioned into three regions: I
- unstalled forward flow, II - reversed flow, and III- low forward flow [30].

developed a technique for estimating the axisymmetric compressor characteristic for

an axial compressor. Figure 1-10 shows the general shape they proposed.

The curve in the reversed flow and unstalled forward flow regimes was found by direct

measurements taken on a test rig because axisymmetric flow is the stable operating

mode in both of these regions. However, when rotating stall appeared the shape was

more difficult to determine, and so transients were analysed and an argument was made

for having a smoothly varying characteristic based on the behaviour of diffuser stall.

This has been done more recently for small centrifugal compressors by Galindo et al.

[31]. In order to take measurements in the low forward flow regime to the left of the

usual surge limit, they used a very small volume downstream of the compressor. Doing

so increases the Helmholtz frequency ωH of the system and hence reduces Greitzer’s

parameter B. According to Fink et al. [19], if B is smaller than a critical value,

the compression system will maintain itself at an overall steady equilibrium point.

Therefore, by keeping the downstream volume small, Galindo et al. were able to avoid

deep surge and take direct measurements of the equilibrium point [31].

In order to measure the compressor map in the reversed flow regime, Galindo et al.

forced compressed air into the outlet of the compressor while maintaining the correct

rotational direction of the impeller [31]. Figure 1-11 shows the resulting characteristics.

The second approach is via curve fitting and extrapolation. The most common tech-
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Figure 1-11: Measured steady-state compressor map extended into the surge and neg-
ative flow zones experimentally [31].

nique is to use the cubic relation proposed by Moore and Greitzer in 1986 [32], i.e.

Ψcss = ψc0 +H

[
1 +

2

3

(
Φ

W
− 1

)
− 1

2

(
Φ

W
− 1

)3
]

(1.2.14)

with parameters ψc0 , H and W found through fitting to experimental compressor map

data. However other curve fitting techniques have been proposed, including ones involv-

ing Chebyshev polynomials in order to capture more features of the characteristics [33],

and ones involving elliptic equations in order to adjust the characteristic for different

settings on a variable-geometry diffuser [34].

The third is via meanline modelling. In a mean-line model the compressor is divided

into sections over which the equations of motion and loss models are evaluated. Most of

the mean-line models follow the meridional path of the compressor and typically split

it into sections for the inlet, impeller, diffuser and volute [20, 35]. However, there are

two-zone models that have primary and secondary flow sections within the impeller in

order to account for slip [36].

The majority of these mean-line models apply empirical loss models to the sections.

Typical collections of loss models for compressors can be found in [37, 38, 39]. These

loss models usually have loss coefficients that need to be tuned to the particular com-

pressor that is being studied, which makes meanline modelling still partially reliant on

experimental data or CFD simulation.
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Computational Fluid Dynamics

When more detailed modelling of a turbocharger is required, engineers typically turn to

numerical simulation software like Ansys-CFX to perform computational fluid dynamics

(CFD). With the advancement in computing power, this has been a growing area of

interest.

In a CFD model, a 3D domain is built in the computer and a mesh is constructed over

it. This mesh divides the domain into millions of control volumes, or cells, within which

the conservation of mass, momentum and energy equations can be solved numerically

using finite differences (FDs) or finite element methods (FEMs) [40].

FEM uses the weak form of the equations of motion. To exemplify this, consider the

1D Poisson’s equation

−d
2w

dx2
= g, w(±1) = 0. (1.2.15)

The weak form is found by multiplying by an arbitrary function v such that v(±1) = 0

and integrating [41]. So we get

∫ 1

−1
vgdx = −

∫ 1

−1
v
d2w

dx2
dx =

�
�
�
�
�>

0

−vdw
dx

∣∣∣∣
1

−1

+

∫ 1

−1

dv

dx

dw

dx
dx. (1.2.16)

From here, we define a finite dimensional basis, {φ1, φ2, ..., φn}, where each function

satisfies the boundary condition φi(±1) = 0, ∀i. We can then find an approximate

solution to w via w ≈∑n
i=1wiφi, which will converge to the exact solution as n→∞

[41]. Writing v =
∑n

j=1 vjφj we get

n∑

j=1

vj

∫ 1

−1
φjgdx =

n∑

j=1

n∑

i=1

vj

(∫ 1

−1

dφj
dx

dφi
dx

dx

)
wi, (1.2.17)

which in vector notation becomes vT c = vTKw where

cj =

∫ 1

−1
φjgdx and Kji =

∫ 1

−1

dφj
dx

dφi
dx

dx. (1.2.18)

Therefore, this just reduces to the matrix solve of Kw = c to find the vector of

coefficients for the approximate solution w.

The simplest basis for FEM are piecewise linear functions φi(xj) = δij where δij is the
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Figure 1-12: Example FEM basis with piecewise linear functions φ2(x) and φ3(x) shown
with solid and dashed lines respectively [41]. Each function φi will only interact with
its two neighbours.

Kronecker delta (see Fig. 1-12). This means that

cj =

∫ 1

−1
φjgdx ≈

n∑

i=1

δijg(xi) = g(xj) (1.2.19)

so the function only needs to be known at the grid points, x1, x2, ..., and we have a

summation over evaluated function points.

This basis has the advantage that K will be tridiagonal, hence the system Kw = c

can be solved very quickly, however convergence to the true solution can be slow and

so often a large n is required for accuracy [41].

Automatic, CFD based geometric optimisations are commonly used by centrifugal com-

pressor designers. However, one major issue that remains unresolved is how to deter-

mine the surge margin of these compressors [42].

Conducting a detailed, fully-unsteady, 3D flow analysis through a compressible large-

eddy simulation would be the most appropriate method for determining the surge

limit. However, since the impeller runs at speeds requiring thousands of revolutions

per second and surge has a period of approximately 0.1 seconds, many iterations of

the CFD model are needed to simulate a single surge cycle. Furthermore, a fine mesh

would be required in order to capture the small scale flow dynamics, like impeller stall,

that influence surge, so this is far too computationally expensive for manufacturing

needs [42].

Therefore, a common method is to run a steady-state CFD simulation iteratively along

a speed line, and define the surge limit as the last converged CFD calculation [42]. This

is not ideal as there could be other reasons why a simulation did not converge, and the

need for multiple iterations still makes this method costly in terms of computation.

Furthermore, running a complex CFD model often doesn’t have the ability to identify
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Figure 1-13: Lagrange polynomial basis [41]. (a) Global basis for SM method, with
φ2 (solid) and φ4 (dashed). (b) Local basis for SEM method, with φ2 (solid) and φ3

(dashed).

key parameters of physical phenomena that lead to certain events. For example, by

defining the surge limit to be the last converged CFD simulation, it is not simple to

identify from previous simulations what physical phenomena are contributing to surge

because there are many variables and interactions to consider.

1.2.2 Alternative Modelling Techniques

Further to the existing compressor and surge related models, there are other mathe-

matical modelling techniques that could be helpful for analysing surge.

Advanced Numerical Approaches

Numerical methods for simulating flows are becoming increasingly common. One such

area of interest are Spectral Methods (SMs) and Spectral Element Methods (SEMs).

These work in a similar way to the FEM described above. They also require a weak

form of the problem, and expand the solution in terms of a basis [41]. The key difference

is in the choice of basis. While FEM resulted in a summation of evaluated function

values, SMs and SEMs approximate a solution as a summation of functions.

SMs are those where each function in the basis spans the entire domain (i.e. a global

basis) whereas SEMs are similar to the FEM in that they are only non-zero over

a small portion of the domain (i.e. a local basis) [41]. Common basis choices for

SMs are trigonometric functions (see [43] for example), or Lagrange polynomials [41].

Restricting Lagrange polynomials to certain parts of the domain would result in a SEM.

Figure 1-13 shows Lagrange polynomials as a global basis and a local basis.

Since SMs require a basis that is defined over the entire domain while still satisfying
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the boundary conditions, these methods are only suitable when the domain comprises

of simple geometries. For more complicated geometries, SEMs are needed.

The choice of the basis functions is important when considering computational cost.

Not only will a large basis (i.e. n � 1) increase computational cost, but a poorly

conditioned matrix K will also cause these methods to be costly [41].

SMs and SEMs have been used for solving the Navier-Stokes fluid equations. For ex-

ample, Lomtev and Karniadakis [44] develop a discontinuous spectral method with a

hierarchical basis formed from Jacobi polynomials. This formulation sees good conver-

gence even on a highly distorted mesh, and high computational efficiency [44]. There-

fore, it would be possible to extend works like this to improve the efficiency of CFD

codes used for simulating compressor surge.

Statistical Approaches

Another mathematical approach to consider is statistical regression modelling. This

is where experimental data is used to predict how a variable is dependent on other

known parameters. So, in the context of surge, we could find a statistical model for

the location of the surge limit by considering geometric dimensions of the compressor

and test rig, and operating parameters like impeller speed. This approach could also

be used to create a function for the compressor characteristic that depends on known

geometry.

One such approach is to fit a Generalised Additive Model (GAM). Suppose that we

want to estimate a formula for the random variable Wi and we have a set of observed

data wi along with known parameters v1i, v2i, v3i, ... then a GAM takes the form

g0(E(Wi)) = g1(v1i) + g2(v2i) + g3(v3i) + ... (1.2.20)

for functions gi, where E is the expectation over many realisations of the variable at

fixed parameter values [45]. We can find the best fit for the functions gi by expanding

them in terms of a basis. For example, suppose we wish to understand how the wear

of a car engine depends on its size. Labelling wi = wear and vi = size, means we wish

to fit the GAM:

wi = g(vi) + εi, (1.2.21)
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Figure 1-14: GAM fit of engine wear vs size for a basis of size k = 6 [45].

where ε represents noise in the observed data. To find g we can write

g(x) =
k∑

j−1

φj(x)ϑj , (1.2.22)

where φj are basis functions, and ϑj are unknown parameters that we can find via a

least squares fit to the observed data [45]. For this example with a piecewise linear

basis for size k = 6 we get the resulting function in Fig. 1-14.

Choosing the basis size k automatically from the data is difficult, so instead k is usually

set to equal the number of data points and

||w − V ϑ||+ λsϑ
TSϑ (1.2.23)

is minimised to penalise the sinuousness of the fitting [45]. Here, ϑTSϑ are the squared

differences and λs is referred to as the smoothing parameter. This is determined by

minimising the Generalised Cross Validation (GCV), which is a measure of how well

the fitted function approximates each data point in turn [45]. The resulting GAM fit

for this is shown in Fig. 1-15

As can be seen, even simple piecewise linear GAM fits can produce reasonable models

for estimating a variable. The main downside to statistical approaches is the require-

ment of a large amount of data that spans the parameters of interest. For example, for

surge we would need test data for different types and sizes of turbochargers, as well as

different rigs and operating conditions.
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Figure 1-15: Left: Generalised Cross Validation score used to identify smoothing pa-
rameter λ ≡ λs [45]. Right: GAM fit of engine wear vs size for this smoothing parameter
[45].

Reduced Modelling

Finally, we will discuss reduced modelling approaches. These are techniques where we

reduce the complexity (usually via reduction in the dimension) of the problem but still

retain the dominant behaviours in the solution. There are numerous approaches that

fit in this category; some follow formal procedures and others have a more flexible,

ad-hoc method.

One approach is called averaging. As the name suggests, this is where we replace the

original functions of the system with the average over one or more dimensions.

Averaging over time is commonly used in dynamical systems to give asymptotic ap-

proximations to the original time-dependent system [46]. For example, suppose we

have a periodic system dependent on some small parameter ε,

ẋ = εg(x, t, ε), g(x, t, ε) = g(x, t+ T, ε). (1.2.24)

Since ε is small, the change in x with time is slow in comparison to the period of oscil-

lation T . Often we are interested in the overall dynamic behaviour and less interested

in the small fluctuations with time. Therefore, we can compute the time average of the

function g by

ḡ(x) =
1

T

∫ T

0
g(x, s, 0) ds. (1.2.25)

It has been shown that the solution w to ẇ = εḡ(w) will be within O(ε) of the true
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solution x(t) for t < 1
ε , so we can use w to give us insight to the overall dynamic

behaviour of the system [46].

It is possible to use averaging with systematic asymptotic methods in order to capture

more of the solution complexity. For example, suppose we have flow down a straight

pipe in the x direction, then the average flows in the y and z directions would be zero.

We could write the flow velocity as

u(t, x, y, z) = ū(t, x)ex + ũ(t, x, y, z), (1.2.26)

where ũ is the deviation of the flow from the average flow. This deviation is likely to be

largest at the pipe walls, and so Boundary Layer Theory (see for example [47]) could

be applied to understand more of the flow dynamics and help quantify the error of the

averaging approximation.

Another reduced modelling approach is Galerkin truncations. This is where variables

are expanded in terms of basis functions. That way, model reduction can be achieved

by selecting the first few dominant terms.

To see this, suppose we wish to understand the behaviour of convection currents in

fluids. This requires the coupled incompressible Navier-Stokes and thermal convection

equations:

ut + u · ∇u = −∇p+ σp∆u + raσpϕk̂, (1.2.27)

∇ · u = 0, (1.2.28)

ϕt + u · ∇ϕ = u3 + ∆ϕ, (1.2.29)

where subscript t denotes differentiation with respect to time, ra is the Rayleigh num-

ber, and σp is the Prandtl number, and u = u1î + u2ĵ + u3k̂ with unit vectors î, ĵ, k̂

[48].

The incompressibility condition (Eq. 1.2.28) allows us to define a stream function ψ

where u1 = 0,

u2 =
∂ψ

∂z
, and u3 = −∂ψ

∂y
. (1.2.30)
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This transforms the system into

ζt + J = σp∆ζ + raσpϕy, (1.2.31)

ϕt + J = ∆ϕ− ψy, (1.2.32)

ζ = −∆ψ, (1.2.33)

where J is the Jacobian of (ζ, ψ) with respect to (y, z) [48].

We can now expand the stream function, ψ, and the temperature function, ϕ, in terms

of a Fourier-Galerkin expansion to get

ψ(y, z, t) =
∑

m,n∈C
wn,mexp(inπz)exp(imπy) (1.2.34)

ϕ(y, z, t) =
∑

m,n∈C
vn,mexp(inπz)exp(imπy). (1.2.35)

where i =
√
−1 and C denotes complex numbers [48].

This is where we can choose the number of terms we wish to take in the expansion to

form a reduced model. Here, we will choose to take one term in the stream function

and two in the temperature function. This results in

ψ(y, z, t) = w(t) sin(πz) sin(kπy) (1.2.36)

ϕ(y, z, t) = v1(t) sin(πz) cos(kπy) + v2(t) sin(2πz), (1.2.37)

where k is the wave number [48].

We can substitute these formulae into the above PDEs. This is then simplified further

by multiplying by sin(πz) sin(kπy) and integrating over the y and z directions. This

leaves us with three ODEs:

wt = −σpπ(1 + k2)w(t)− kπ

π(1 + k2)
σprav1(t) (1.2.38)

v1t = −kπ2w(t)v2(t)− π(1 + k2)v1(t)− kπw(t) (1.2.39)

v2t =
π2

k
w(t)v1(t)− π2v2(t) (1.2.40)

[48]. This system is far simpler than the original, and is of the form of the known
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Lorenz system:

Xt = c1(Y −X) (1.2.41)

Yt = −Y + c2X −XZ (1.2.42)

Zt = −c3Z +XY, (1.2.43)

for constants ci, which has been frequently studied via dynamical systems analysis as

it is known to exhibit chaotic behaviour [48]. Therefore, it is possible to gain under-

standing of convection currents in fluids by studying the far simpler Lorenz equations.

1.2.3 Discussion of Approaches

Numerical

The accuracy of numerical simulations of flows has increased dramatically over the past

decade due to the rapid growth in high speed computing power. Spectral, or spectral

element, methods may be more computationally efficient than standard CFD codes,

but they are both typically run on high-performance super computers with parallel

code in order to achieve maximum accuracy in the shortest amount of time.

Since surge cycles often experience local or small scale phenomena like rotating stall, re-

circulation, and eddy currents, full unsteady 3D simulations are required to completely

capture the dynamics. CFD can struggle when modelling large scale phenomena that

depend on small scale effects because it is too computationally expensive to perform

this direct numerical simulation with the required fineness of mesh [40]. SM or SEM

methods with a hierarchical basis are better able to deal with different scales within

the simulation, so it is possible to use these methods for improvements to numerical

surge simulation.

However, CFD is a well established tool and so new numerical models are unlikely to

be taken up by companies. The industry is more likely to make use of less accurate

but very quick models that can help give insight into the behaviour of surge during the

early design stages, as they currently tend to rely heavily on experiments for this.
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Experimental or Statistical

The advantage of using a predominantly experimental approach for surge studies is

its simplicity because reading data or evaluating polynomial-like expressions are very

quick computationally. However, surge is not always easy to measure experimentally.

This is partially due to its damaging nature, which means a compressor cannot be

operated in this region for long periods of time, and partially its complexity. For

example, sometimes the surge limit can be recorded at different locations for the same

experimental set-up, meaning it can be very sensitive to initial conditions.

Also, since surge is a system level phenomenon, the experimental results are often lim-

ited to the particular experimental set-up and not any compressor installation. This

means that a large variety of tests would need to be performed in order to understand

what behaviour is specific to that set-up and what can be applied universally. Conduct-

ing experiments are expensive in both equipment and time requirements; so approaches

that require a large amount of experimental data are less desirable [49].

Furthermore, forming functions based mostly on experiment makes it difficult to gain

intuition into why the system behaves as it does. This information is vital because if

we can understand what causes the system to surge, it can help control the system to

prevent it from occurring.

Reduced Modelling

Since numerical modelling would be too computationally expensive, and experimental

data doesn’t give us the required insight into the surge phenomenon, creating a reduced

model appears to be the best way forward.

Of the methods discussed in the previous section, averaging is the approach that is

easiest to compare back to the original physics. This not only makes any resulting

simulations easier to understand but gives us the freedom to incorporate some empiri-

cally generated physical models into the system. Furthermore, it is possible to extend

this approach at a later date to include asymptotics or Galerkin truncations on the

perturbation from the average flow.

The strength of having a mathematically simple model is that it is relatively simple to

perform analysis like stability analysis and bifurcation theory (see [28] for an example

of this analysis applied to Greitzer’s model). These are powerful tools which would
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allow us to gain insight into how the dynamics of surge changes when parameters, such

as geometrical dimensions, are varied.

To model surge in a compression system, we could average the Navier-Stokes equations

for fluid motion in order to reduce the dimension from 3D in space to just 1D in space.

Doing this in a way that minimises the number of fitted parameters, would result in a

model with a high predictive ability.

Fast running, simple models that can predict the onset of surge for any turbocharger

and test rig set up would hugely benefit the turbocharger industry. It would speed up

the early design stages, due to less reliance on time consuming CFD, and reduce costs

because of a reduced need for experimental testing.

Greitzer’s model falls into this category of reduced models as it has integrated out the

spatial dependence, making it only dependant on time. The use of Greitzer’s model

in this from has been relatively unchanged over the past 30 years. Therefore, using

more analytical methods to develop a model similar to Greitzer’s could provide some

improvements.

Firstly, the derivation of Greitzer’s model relied on the specific set up of a test rig. In

particular, it required that the system contained a large exit plenum. However, a lot of

systems do not include such a plenum, so using the averaging technique on the specific

test rig or engine set up could improve accuracy of the model results.

Also, Greitzer’s ODEs are simplified ODEs with nonlinearity only appearing through

the assumed compressor and throttle characteristics. In contrast, by applying averaging

methods to the nonlinear Navier Stokes equations we could systematically retain all

required nonlinear terms and thus generate more accurate simulations.

Moreover, if we average to reduce the unsteady Navier Stokes equations from 3D to

1D spatially, we could evaluate the resulting PDE of time and space to simulate the

pressure and mass flow waves travelling through the system pipework. How these

waves interact with, say, their reflections, could provide some useful understanding of

the system level surge phenomena. Also, the PDE system being only 1D in space would

still run very quickly in comparison to CFD.

It is also important to note that systems like Greitzer’s rely on the specification of a

steady-state compressor characteristic. We could create a reduced model for this by

also using the technique of averaging on the steady Navier Stokes equations to reduce

the system to 1D in space. The benefit of using the same mathematical technique for
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both parts of the surge model is that we would have consistency of assumptions with

both models.

Also, a reduced model for the compressor characteristic that is 1D in space would pro-

vide more detail than the meanline modelling approach. It would allow for simulation

of the steady-state flow throughout the compressor, rather than at the specific regions

that a meanline models evaluate over. Furthermore, as it would be developed directly

from the Navier Stokes equations, it can be created in a way that reduces the amount

of dependence on empirical loss models which would improve its predictive capability

and remove the need to tune the characteristic to a particular compressor.

1.3 Aims of Thesis

This thesis aims to:

� Create a predictive model for the onset of compressor surge.

This model will need to balance the model accuracy with computational efficiency.

Therefore, we aim to develop a model that is as simple as possible, while still

capturing the main dynamics of surge.

� Gain further understanding of surge dynamics.

This includes understanding the routes into surge, the pressure wave dynamics in

the compression system, and the stability of the system. Insight will be obtained

from both the development of, and the analysis of, any reduced order surge

models.

1.4 Structure of Thesis

Chapter 2 describes the initial formulation for a reduced order model for surge. It begins

by understanding the fundamental equations of fluid motion, and then uses averaging

techniques to develop a model to capture surge in a simple compression system.

The resulting model depends on the specification of compressor and throttle character-

istics. Therefore, equations for these are developed, again using averaging techniques

on the fundamental fluid equations.
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Special care is taken during the creation of the compressor characteristic to ensure

that only the most essential dynamics are included. Thus keeping the characteristic as

computationally efficient as possible, but retaining the ability to capture all relevant

surge dynamics.

Chapter 3 takes a more detailed look into the dynamics of the system when the flow

in the compressor is reversed. The compressor characteristic is altered to ensure it

captures the reserve flow dynamics correctly, and is validated via experiments.

Chapter 4 extends the model for the compressor characteristic to allow the reduced

order surge model to capture both mild and deep surge oscillations. Also, the surge

model is studied in its PDE form and solved numerically in order to simulate mass

flow and pressure waves travelling through the system. The generated simulations are

validated through experimental surge tests.

Chapter 5 performs stability analysis on the ODE form of the reduced order surge

model. Linear stability analysis is used to determine what variables influence the loca-

tion of the surge limit, and bifurcation theory is used to explain some of the dynamics

observed in model simulations and experimental data.

Finally, Chapter 6 summaries the work undertaken in this thesis. It highlights the key

insights into the physics behind the surge phenomenon gained during the development

and analysis of the surge models. Suggestions for how this research could be extended

in the future are also made.

This thesis follows the alternative thesis format and so Chapters 2, 3, and 4 contain

papers that are published or submitted for publication.
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Chapter 2

Reduced Model for Surge with

Cubic-shaped Compressor

Characteristics

Following from the discussion in Chapter 1, we shall address the thesis aims via the

creation of a new reduced order model for compressor surge. We shall develop this

by performing averaging techniques on the fundamental equations for fluid motion.

Starting from these fundamental equations allows us to keep track of any assumptions

being made, and ensure they are consistent throughout the model development.

2.1 Equations of Fluid Motion

There are three fundamental fluid equations that come from conservation laws. Namely,

conservation of mass, momentum and energy. In this section, we will derive these

equations so that we can gain a physical understanding of the individual terms.

2.1.1 Conservation of Mass

Consider a volume V (t) of fluid moving with time. The mass of this volume is given

by

m(t) =

∫

V (t)
ρ dV (2.1.1)
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where ρ is the density [50]. Since V (t) is a closed system and matter cannot be created

or destroyed, m(t) is constant in time, i.e.

dm

dt
=

d

dt

∫

V (t)
ρ dV = 0. (2.1.2)

We can use the Reynolds’ Transport Theorem to take the differential through the

integral sign. This gives us

∫

V (t)

∂ρ

∂t
+∇ · (ρu) dV = 0. (2.1.3)

The first term is the change in mass with time within the volume V (t), and the second

is the mass flux into and out of the volume.

Since V (t) is a arbitrary volume of fluid, this implies that the integrand must be zero.

Hence, the conservation of mass can be written as

∂ρ

∂t
+∇ · (ρu) = 0. (2.1.4)

2.1.2 Conservation of Momentum (in a Rotating Frame)

Suppose that we have a continuum of fluid with velocity u(x, t) = (u1(x, t), u2(x, t), u3(x, t))T ,

density ρ(x, t) and volume V (x, t), where x = (x1, x2, x3)T denotes position. The rate

of change of a quantity of interest, say g(x, t), as we follow the fluid is given by

Dg

Dt
=
∂g

∂t
+

3∑

i=1

∂g

∂xi

dxi
dt

=
∂g

∂t
+ (u · ∇)g (2.1.5)

where D
Dt is termed the total derivative [51].

Now, Newton’s Second Law of motion states that the total force acting on a system

is equal to its mass multiplied by its acceleration. Since mass m = ρV , we can divide

through by volume to get

ρ
Du

Dt
= F̃ (2.1.6)

where F̃ is the force acting on fluid per unit volume [52].

By expanding the total derivative, adding conservation of mass (Eq. 2.1.4) multiplied
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by u, and noticing

(ρu · ∇)u + u∇ · (ρu) = ∇ · (ρ(u⊗ u)), (2.1.7)

Eq. 2.1.6 becomes
∂

∂t
(ρu) +∇ · (ρ(u⊗ u)) = F̃. (2.1.8)

This is now in a similar form to the conservation of mass, where the first term is the

change of momentum within the volume V and the second is the flux of momentum.

To find F̃, we need to consider three types of forces acting on the fluid: (i) gravitational,

(ii) internal stresses, and (iii) rotational.

For (i), Newton’s second law tells us the force applied to the fluid will be mg, where g

is acceleration due to gravity. Therefore, on division by volume, F̃(i) = ρg.

For (ii), note that the force applied to the fluid is a stress, Π, acting on an area. Using

the Divergence theorem, this becomes

∫

A
Π · dA =

∫

V
∇ ·Π dV, (2.1.9)

and so the force per unit volume is F̃(ii) = ∇·Π. It is normal to decompose the stresses

into normal stresses (i.e. pressures) and shear stresses. Hence, Πij = −pδij + τij where

δij is the Kronecker delta and τ is the deviatoric stress tensor, and so F̃(ii) = −∇p+∇·τ
[53].

Finally, for (iii), suppose that a particle of fluid is in a rotating field of angular velocity

Ω. Let S denote the stationary frame and R the rotating frame of reference. Then

if the particle moved in the rotating frame, an observer in stationary frame would see

this motion of the particle as well as the motion of the field. So if the particle has

position x, then (
dx

dt

)

S

=

(
dx

dt

)

R

+ Ω× x (2.1.10)

[54]. Differentiating this again, and noticing d2x
dt2

= Du
Dt , gives us

(
Du

Dt

)

S

=

(
Du

Dt

)

R

+
dΩ

dt
× x + 2Ω× u + Ω× (Ω× x) (2.1.11)

[50]. Therefore, assuming the angular velocity is constant, Newton’s second law gives

us

F̃ = ρ

(
Du

Dt

)

R

= ρ

(
Du

Dt

)

S

− 2ρΩ× u− ρΩ× (Ω× x). (2.1.12)
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This means that the momentum in the rotating frame has two extra forces, F̃(iii) =

−2ρΩ× u− ρΩ× (Ω× x), than if the flow field was stationary. The term 2ρΩ× u is

called the Coriolis force and ρΩ× (Ω× x) is called the centrifugal force [51].

Putting all these together, we get that

F̃ = ρg −∇p+∇ · τ − 2ρ(Ω× u)− ρ(Ω× (Ω× x)) (2.1.13)

is the total force acting on fluid per unit volume. Thus, the conservation of momentum

in a rotating frame becomes

∂

∂t
(ρu) +∇ · (ρ(u⊗ u)) + 2ρ(Ω× u) + ρ(Ω× (Ω× x)) = ρg −∇p+∇ · τ . (2.1.14)

2.1.3 Conservation of Energy

The first law of thermodynamics states that

DQ

Dt
=
DU

Dt
+
DW

Dt
, (2.1.15)

where Q is the heat energy supplied, U is the internal energy and DW
Dt is the work done

by the system.

There are two ways in which work is done on the fluid. The first is pressure causing a

change in volume, i.e.

p
D

Dt

(
1

ρ

)
. (2.1.16)

This can be written as p
ρ∇ · u because conservation of mass in total derivative form

gives us
Dρ

Dt
= −ρ(∇ · u). (2.1.17)

The second is the work done on adjacent layers of a fluid by the action of shear forces

[55], i.e.

1

ρ
τ : ∇u =

1

ρ

3∑

i=1

3∑

j=1

τij
∂ui
∂xj

. (2.1.18)

Therefore, on multiplication by ρ, the equation for thermal energy is given by

ρ
DQ

Dt
= ρ

DU

Dt
+ p∇ · u− τ : ∇u. (2.1.19)
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Now, taking the dot product of u with the conservation of momentum (Eq. 2.1.6 with

2.1.13) results in

ρu · Du

Dt
= ρu · g− u · ∇p+ u · (∇ · τ )− 2ρu · (Ω× u)− ρu · (Ω× (Ω× x)). (2.1.20)

Notice that, u · (Ω× u) = 0,

u · (Ω× (Ω× x)) = −(Ω× x) · (Ω× u) = − D

Dt

( |Ω× x|2
2

)
, (2.1.21)

and

u · g = −D(gh̃)

Dt
, (2.1.22)

where h̃ is vertical height as u · g is the component of velocity acting in the direction

of gravity [52]. Therefore, we can write Eq. 2.1.20 in terms of total derivatives by

ρ
D

Dt

( |u|2
2

+ gh̃− |Ω× x|2
2

)
= −u · ∇p+ u · (∇ · τ ). (2.1.23)

Finally, since −u · ∇p = p(∇ · u)−∇ · (pu), we have that

p(∇ · u) = ρ
D

Dt

( |u|2
2

+ gh̃− |Ω× x|2
2

)
+∇ · (pu)− u · (∇ · τ ). (2.1.24)

Combining this with Eq. (2.1.19), and using u · (∇ · τ ) + τ : ∇u = ∇ · (τ · u), we get

ρ
DQ

Dt
= ρ

D

Dt

( |u|2
2

+ gh̃− |Ω× x|2
2

+ U

)
+∇ · (pu)−∇ · (τ · u). (2.1.25)

Define E to be the total specific energy in a rotating frame, i.e.

E =
|u|2

2
+ gh̃+ U − |Ω× x|2

2
. (2.1.26)

Then, the conservation of energy becomes

ρ
DE

Dt
+∇ · (pu)−∇ · (τ · u) = ρQ̇, (2.1.27)

or, on expansion of the total derivative and addition of conservation of mass (Eq. 2.1.4)

multiplied by E,

∂

∂t
(ρE) +∇ · (ρuE + pu)−∇ · (τ · u) = ρQ̇. (2.1.28)
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2.1.4 Initial Assumptions

Since we are looking in particular at air flow, we can make some initial assumptions.

Firstly, we will assume that we have a perfect gas, so U = cvT for a constant cv, and

an ideal gas so

p = ρRT. (2.1.29)

We can also assume that gravitational effects are negligible, because air density is

relatively small and we are assuming our turbochargers are not too far off the ground.

Finally, for the sake of model simplicity, we will assume we have no heat transfer and

no viscous dissipation, i.e. the terms Q̇ and ∇ · (τ · u) are neglected. However, we will

still consider dissipative losses like friction.

2.2 Reduced Model for Surge

The next step in modelling surge is to apply the fundamental equations of fluid motion

to a situation where we know surge is observed.

In order to find the surge limit for turbochargers experimentally, they are usually in-

stalled on a gas stand where the compressor and turbine sections are independently

controlled. Different amounts of hot, compressed air can be fed into the turbine sec-

tion to set the rotor speed to a desired value. Figure 2-1 shows the compressor-side

installation, where the compressor is connected to a valve via a simple pipe. As the

valve is shut, the amount of air going through the compressor is restricted and surge

can be observed.

Let us model the air in the pipe between the compressor and throttle valve. The

equations of motion give us:

∂ρ

∂t
+∇ · (ρu) = 0, (2.2.1)

∂

∂t
(ρu) +∇ · (ρ(u⊗ u)) = −∇p+∇ · τ , (2.2.2)

∂

∂t
(ρE) +∇ · (ρuE + pu) = 0, (2.2.3)

where

E =
|u|2

2
+ cvT (2.2.4)
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Figure 2-1: Schematic of compressor installation used for reduced order surge model.
The impeller rotational speed, Ω is set by the turbine rotor. The inlet to the compressor
is assumed to be ambient air. The outlet is assumed to be a constant area pipe ending
in a throttle valve.

as Ω = 0 because we are in a stationary frame of reference. Notice that, since p = ρRT ,

we can write

E =
|u|2

2
+
cv
R

p

ρ
=
|u|2

2
+

1

γ − 1

p

ρ
(2.2.5)

where γ is the specific heat ratio.

For simplicity, let’s assume that we have no shear stress forces (including friction)

acting on the flow, so ∇·τ = 0. Therefore, the energy equation in total derivative form

(Eq. 2.1.27) after expanding ∇ · (pu) becomes

ρ
D

Dt

( |u|2
2

+
1

γ − 1

p

ρ

)
= −p∇ · u− u · ∇p. (2.2.6)

Similarly, the momentum equation in total derivative form (Eq. 2.1.6) becomes

ρ
Du

Dt
= −∇p. (2.2.7)

Taking the dot product of this with u gives us

ρ
D

Dt

( |u|2
2

)
= ρu · Du

Dt
= −u · ∇p, (2.2.8)

so subtracting this from Eq. 2.2.6 leaves us with

ρ
D

Dt

(
1

γ − 1

p

ρ

)
= −p∇ · u. (2.2.9)

51



Finally, using conservation of mass (Eq. 2.1.17), we get that

ρ
D

Dt

(
1

γ − 1

p

ρ

)
=
p

ρ

Dρ

Dt
, (2.2.10)

which reduces to
D

Dt

(
ln

(
p

ργ

))
= 0. (2.2.11)

Integrating this, and rearranging, gives p = κργ for some constant κ. When the energy

equation collapses to this form, the system is called isentropic.

Suppose we are in Cartesian coordinates with the pipe sitting along the x-direction.

Then, since we are primarily interested in how the dynamics change along the length of

the pipe, we can average the system over the y and z-directions. Therefore, the average

of a function G will be

Ḡ(x) =
1

A

∫∫

A
G(x, y, z) dydz, (2.2.12)

where A is the cross-sectional area of the pipe.

Notice that we can write the conservation of mass as

∂ρ

∂t
+
∂ρux
∂x

+∇yz · (ρu) = 0, (2.2.13)

where

∇yz · (ρu) =
∂ρuy
∂y

+
∂ρuz
∂z

(2.2.14)

is the divergence purely in the y and z direction. Therefore, integrating the conservation

of mass gives us

∫∫

A

∂ρ

∂t
dydz +

∫∫

A

∂ρux
∂x

dydz +

∫∫

A
∇yz · (ρu) dydz = 0. (2.2.15)

For the first two terms, the derivative can be pulled out of the integral because A does

not depend on t or x and the definition of the average (Eq. 2.2.12) can be used. For

the final term, we can use the Divergence theorem in the 2D y-z plane. This gives us

∂

∂t
(Aρ̄) +

∂

∂x
(Aρux) +

∫

∂A
(ρu) · n̂ dS = 0, (2.2.16)

where n̂ is the outward pointing unit normal and S is the surface of the pipe.

The flux leaving the pipe through the walls is u · n̂. Therefore, we will assume u · n̂ = 0
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so no air can escape the pipe through the walls. This leaves us with

∂

∂t
(Aρ̄) +

∂

∂x
(Aρux) = 0. (2.2.17)

Similarly for the x-component of the conservation of momentum, we can integrate

∂ρux
∂t

+
∂ρu2

x

∂x
+∇yz · (ρuux) = −∂p

∂x
, (2.2.18)

and pass the integrals through the derivatives of t and x to get

∂

∂t
(Aρux) +

∂

∂x

(
Aρu2

x

)
+

∫

∂A
ρuxu · n̂ dS = − ∂

∂x
(Ap̄) . (2.2.19)

Thus, using the fact that u · n̂ = 0, we have

∂

∂t
(Aρux) +

∂

∂x

(
Aρu2

x

)
= − ∂

∂x
(Ap̄) . (2.2.20)

For the y and z components of the conservation of momentum write uyz = (uy, uz)
T .

Then we have

∂ρuyz
∂t

+
∂

∂x
(ρuxuyz) +∇yz · (ρuyz ⊗ uyz) = −∇yzp. (2.2.21)

Following the same procedure as above, this gives us

∂

∂t
(Aρuyz) +

∂

∂x
(Aρuxuyz) = −

∮

∂A
p dS (2.2.22)

because the no-flux boundary condition means that
∫
∂A ρuyzuyz · n̂ dS = 0. If we

assume that the pressure is the same at every point on the pipe surface, then

∮

∂A
p dS = 0, (2.2.23)

and writing in component form we have

∂

∂t
(Aρuy) +

∂

∂x
(Aρuxuy) = 0. (2.2.24)

∂

∂t
(Aρuz) +

∂

∂x
(Aρuxuz) = 0. (2.2.25)

A common problem with the method of averaging is that we end up with more unknown
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quantities than equations. In our case we have eight variables but only five equations

because we do not have relations for ρu2
x, ρuxuy, and ρuxuz. Therefore, a closure rule

is required in order to find a unique solution to the PDEs.

The simplest closure rule is to say

ab ≈ āb̄, ∀a, b. (2.2.26)

Notice that we can write a = ā+εã where ā is the average of a and εã is the remainder.

By adding the assumption that ||ã||L2 is of the same order as ||ā||L2 , we enforce that ε

is of the order of magnitude of the deviation of the variable a from its mean value ā.

Similarly, we can write b = b̄+ δb̃ for ||b̃||L2 = O(||b̄||L2). Therefore, taking the average

of the product ab gives us

ab = āb̄+ εãb̄+ δb̃ā+ εδãb̃ = āb̄+ εδãb̃ (2.2.27)

because ã = b̃ = 0. So this closure rule is a good approximation, especially if one of ε

or δ are small which implies that a or b do not vary too much from their mean.

Other closure rules are possible that will push the approximation error to higher order.

For example, to find an equation for ρu2
x we can multiply the x-component of the

momentum equation by ux to get

ux
∂

∂t
(ρux) + ux∇ · (ρuxu) = −ux

∂p

∂x
. (2.2.28)

Noticing that

ux
∂

∂t
(ρux) + ux∇ · (ρuxu) = ρux

∂ux
∂t

+ ρuxu · ∇ux + u2
x

∂ρ

∂t
+ u2

x∇ · (ρu)
︸ ︷︷ ︸

=0

(2.2.29)

due to conservation of mass, we get

(
ux

∂

∂t
(ρux) + ux∇ · (ρuxu)

)
+

(
ρux

∂ux
∂t

+ ρuxu · ∇ux
)

= −2ux
∂p

∂x
, (2.2.30)

which can be simplified to

∂

∂t
(ρu2

x) +∇ · (ρu2
xu) = −2ux

∂p

∂x
. (2.2.31)
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Therefore, we can average this to get

∂

∂t
(Aρu2

x) +
∂

∂x
(Aρu3

x) = −2A

(
ux
∂p

∂x

)
. (2.2.32)

This means we have an evolution equation for the ρu2
x and now only require a closure

rule for higher order terms, for example,

ρu3
x =

ρuxρu2
x

ρ̄
(2.2.33)

which should give a more accurate approximation than Eq. 2.2.26.

However, the system is more complex because we have another PDE that needs solving,

and we would have to include a closure rule for ux
∂p
∂x as well. Therefore, we will close

our system by using Eq. 2.2.26 because we are aiming to find a mathematically simple

system that captures the main surge dynamics.

This means that Eqs. 2.2.24 becomes

∂

∂t
(Aρ̄ūy) +

∂

∂x
(Aρ̄ūxūy) = 0. (2.2.34)

Since we expect the momentum to change down the length of the pipe, we need to

allow ρ̄ūx to vary with x. Therefore, the only way to satisfy this equation is to assume

ūy = 0. The same argument applied to Eq. 2.2.25 leads to ūz = 0.

Therefore, the conservation of mass, momentum and energy for our system becomes

∂

∂t
(Aρ) +

∂

∂x
(Aρu) = 0, (2.2.35)

∂

∂t
(Aρu) +

∂

∂x
(Aρu2) = − ∂

∂x
(Ap), (2.2.36)

p = κργ , (2.2.37)

where we have used u ≡ ux and dropped the bars for notational ease.

Using Eq. 2.2.37 and the definition of mass flow rate ṁ = Aρu, we can re-write this
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system as

∂p

∂t
= −γκ

1
γ

A
p
γ−1
γ
∂ṁ

∂x
(2.2.38)

∂ṁ

∂t
= −A∂p

∂x
− κ

1
γ

A

∂

∂x

(
ṁ2

p
1
γ

)
. (2.2.39)

These PDEs simulate the averaged mass flow and pressure in any constant-area, fric-

tionless pipe. It is only with the specification of boundary conditions that this becomes

specific to the compression system in Fig. 2-1.

A common way to specify these is to have steady-state characteristics for the compressor

and the throttle, usually pc(ṁ) for the compressor and ṁT (p) for the throttle. These

functions give relations between the mass flow and pressure if the component was

operating in a steady manor. Therefore, using these as boundary conditions creates a

quasi-steady model which assumes the components operate in a steady manor at each

instant in time.

When surge occurs, oscillations in mass flow and pressure are usually observed at all

locations in the pipe. Therefore, we could simplify Eqs. 2.2.38 and 2.2.39 further by

averaging over the length of the pipe and still have the ability to identify unsteady

behaviour.

Let L be the length of the pipe and label quantities at x = 0 and x = L as 1 and 2

respectively. Then integrating Eqs. 2.2.38 and 2.2.39 in x between 0 and L gives

∂p̄

∂t
=
γκ

1
γ

AL
p̄
γ−1
γ (ṁ1 − ṁ2), (2.2.40)

∂ṁ

∂t
=
A

L
(p1 − p2) +

κ
1
γ

AL


ṁ

2
1

p
1
γ

1

− ṁ2
2

p
1
γ

2


 . (2.2.41)

With the equations in this form, we can directly incorporate the boundary conditions

discussed above to get

∂p̄

∂t
=
γκ

1
γ

AL
p̄
γ−1
γ (ṁ1 − ṁT (p2)), (2.2.42)

∂ṁ

∂t
=
A

L
(pc(ṁ1)− p2) +

κ
1
γ

AL


 ṁ2

1

pc(ṁ1)
1
γ

− ṁT (p2)2

p
1
γ

2


 . (2.2.43)
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To complete this system we need to specify ṁ1 and p2. Since we wish them to be freely

influenced by the air in the pipe, we set these to equal the average ¯̇m and p̄ respectively.

This choice means that information travels instantaneously down the pipe, i.e. the mass

flow near the compressor is instantly impacted by any change in the average flow caused

by the throttle valve, rather than there being time for this information to propagate

as a wave down the pipe. However, this does not impact its ability to detect unsteady

behaviour, it may just reduce the accuracy of timescales (like oscillation frequency)

observed in the system.

Therefore, on dropping the bars, we get the following ODEs describing the compression

system:

dp

dt
=
γκ

1
γ

AL
p
γ−1
γ (ṁ− ṁT (p)), (2.2.44)

dṁ

dt
=
A

L
(pc(ṁ)− p) +

κ
1
γ

AL

(
ṁ2

pc(ṁ)
1
γ

− ṁT (p)2

p
1
γ

)
. (2.2.45)

Notice that we can obtain the Moore-Greitzer formulation by linearising this. For Eq.

2.2.44, removing the nonlinear terms simply gives

dṁ

dt
=
A

L
(pc(ṁ)− p) (2.2.46)

which is equivalent to Eq. 1.2.12. For Eq. 2.2.45, we can use the fact that the speed of

sound a is given by

a2 =
dp

dρ
= κγργ−1 = γκ

1
γ p

γ−1
γ . (2.2.47)

Therefore, this equation is linearised by replacing a with its average, ā =const., to give

dp

dt
=

ā2

AL
(ṁ− ṁT (p)), (2.2.48)

which is equivalent to Eq. 1.2.13.

This means that our model generated by averaging the fundamental equations of motion

will improve on the well used Moore-Greitzer formulation by capturing some of the

nonlinear dynamics of surge.

Regardless of whether we use the PDE, ODE or Moore-Greitzer form of our reduced

order surge model, we require the specification of steady-state characteristics for the

throttle and compressor. In the following sections, we will derive these in a similar
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manor to above to ensure we have consistency across the entire model.

2.3 Throttle Characteristic

In order to model the throttle, we shall assume that in steady-state it behaves like an

orifice (see Fig. 2-2) where the pipe area changes instantly from one side of the throttle

valve to the other.

The fundamental equations of motion for steady flow (i.e. ∂
∂t ≡ 0) with no shear forces

(i.e. ∇ · τ = 0) gives us

∇ · (ρu) = 0 (2.3.1)

∇ · (ρ(u⊗ u)) = −∇p (2.3.2)

∇ · (ρuE + pu) = 0. (2.3.3)

Similarly to Section 2.2, let’s suppose we are in Cartesian coordinates with the orifice

sitting along the x-direction. Then we can follow exactly the same procedure as above

and average over the y and z directions.

Notice that averaging Eqs. 2.3.1 and 2.3.2 are identical to Eqs. 2.2.17 and 2.2.20 re-

spectively, without the ∂
∂t terms.

For Eq. 2.3.3, notice that it can be written as ∇ · ((ρE + p)u) = 0. This is of the same

form as Eq. 2.3.1, and so we can follow the same averaging argument.

Figure 2-2: Schematic of orifice used to derive the steady-state throttle characteristic.
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The resulting averaged equations, once the bars are dropped, are

∂

∂x
(Aρux) = 0 (2.3.4)

∂

∂x

(
Aρu2

x

)
= − ∂

∂x
(Ap) (2.3.5)

∂

∂x
(A(ρE + p)ux) = 0, (2.3.6)

where

E =
u2
x

2
+

1

γ − 1

p

ρ
. (2.3.7)

Now, Eq. 2.3.4 tells us that ṁ = Aρux is constant. Similarly, Eq. 2.3.6 implies

A(ρE + p)ux = const.. (2.3.8)

Dividing through by ṁ and substituting in E transforms this into

u2
x

2
+

γ

γ − 1

p

ρ
=

ṁ2

2A2ρ2
+

γ

γ − 1

p

ρ
= const.. (2.3.9)

Therefore, labelling quantities by 1 or 2 for either side of the orifice (see Fig. 2-2), we

get
ṁ2

1

2A2
1ρ

2
1

+
γ

γ − 1

p1

ρ1
=

ṁ2
1

2A2
2ρ

2
2

+
γ

γ − 1

p2

ρ2
(2.3.10)

because ṁ2 = ṁ1 by conservation of mass. Rearranging for ṁ1 gives

ṁ1 = ±
√

2γ

γ − 1

A2
1A

2
2ρ1ρ2

|A2
2ρ

2
2 −A2

1ρ
2
1|
|ρ2p1 − ρ1p2|, (2.3.11)

where absolute values have been used to ensure the square-root is always real.

To determine which sign we take, let’s set the positive direction of flow to be from 1 to

2. We know that air will flow from regions of high pressure to regions of low pressure.

Therefore, when ṁ > 0, we have p1 > p2 and so

ρ2p1 − ρ1p2 = ρ1ρ2

(
p1

ρ1
− p2

ρ2

)
> 0 (2.3.12)

Similarly, when ṁ < 0 we have (ρ2p1 − ρ1p2) < 0.

Suppose also that the throttle restricts the pipe so it effectively reduces the area from
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Figure 2-3: (a) Steady-state throttle characteristic to be used in reduced order surge
model. The intercept occurs when the flow in the pipe has identical conditions to that
on the other side of the throttle valve (in this case ambient). (b) Incompressible version
of throttle characteristic commonly used in literature.

A to µA, for some fraction µ, and the air after going through the throttle is at ambient

conditions.

Then, the throttle characteristic is given by

ṁT = sgn(pρamb − pambρ)

√
2γ

γ − 1

µ2A2ρρamb
|µ2ρ2

amb − ρ2| |pρamb − pambρ|. (2.3.13)

As we saw in Section 2.2, the fact that we have no stress terms means the isentropic

relation holds (see Eq. 2.2.11). Hence, we can simply use that ρ =
( p
κ

) 1
γ , to make this

a function only of p. Figure 2-3(a) shows the resulting characteristic in the mass flow

- pressure plane.

Our formula for the throttle characteristic is slightly different to those typically used

in literature because the orifice equation is usually derived from the incompressible

form of conservation of energy. We decided to derive the compressible form of the

orifice equation to ensure consistency across the model, i.e. the model for the pipes,

compressor and throttle will all assume compressible flow.

As we can see from Fig. 2-3(b), the compressible throttle characteristic is different

from the incompressible version because it has a horizontal asymptote at zero pressure,

which makes sense because pressure is always positive and only zero if a vacuum is

achieved. However, since this mainly affects the case where air is flowing backwards

through the orifice, we could use the incompressible version in studies where the air is

always travelling in a forward direction through the throttle.
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Figure 2-4: Standard impeller and diffuser geometry (left) and geometry used in model
where air no longer turns from axial to radial but enters radially (right) in the cylindrical
polar coordinate system.

2.4 Compressor Characteristic

Modelling the compressor in steady state is more complex than modelling the throttle

valve as we are dealing with a rotating impeller and a stationary diffuser, both of which

have changing cross-sectional areas.

There is also the volute to consider, but since its primary objective is to collect the air

from around the diffuser and deliver it to the outlet pipework, we shall assume that

this happens instantaneously and just focus on the impeller and diffuser.

Therefore, since air in a the impeller and diffuser predominately travels radially outward

from the impeller eye, it makes sense to work in the cylindrical-polar coordinate system

(i.e. (r, θ, x)) where the axis of rotation is in the axial, x, direction.

For simplicity, we shall also assume an impeller geometry where the air does not enter

axially and turn to exit radially, but enters and exits in a purely radial direction (see

Fig. 2-4).

Let Ω be the speed of rotation around the x-axis. Then, in cylindrical-polar coordinates,
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the steady-state component form of the fundamental fluid equations are:

1

r

∂

∂r
(rρur) +

1

r

∂

∂θ
(ρuθ) +

∂

∂x
(ρux) = 0 (2.4.1)

1
r
∂
∂r (rρu2

r) + 1
r
∂
∂θ (ρuruθ) + ∂

∂x(ρurux)− ρu2θ
r − 2ρΩuθ − ρΩ2r = −∂p

∂r + [∇ · τ ]r (2.4.2)

1

r

∂

∂r
(rρuruθ) +

1

r

∂

∂θ
(ρu2

θ) +
∂

∂x
(ρuθux) +

ρuruθ
r

+ 2ρΩur = −1

r

∂p

∂θ
+ [∇ · τ ]θ (2.4.3)

1

r

∂

∂r
(rρuxur) +

1

r

∂

∂θ
(ρuθux) +

∂

∂x
(ρu2

x) = −∂p
∂x

+ [∇ · τ ]x (2.4.4)

1

r

∂

∂r
(rur(ρE + p)) +

1

r

∂

∂θ
(uθ(ρE + p)) +

∂

∂x
(ux(ρE + p)) = 0 (2.4.5)

where

E =
|u|2

2
+

1

γ − 1

p

ρ
− Ω2r2

2
. (2.4.6)

2.4.1 Isentropic Formulation

Similarly to the previous two sections, we begin by simplifying the system by assuming

there are no shear stress forces, i.e. ∇ · τ = 0. This means that we have isentropic flow

and the relation p = κργ holds. This can be proven by a similar argument to that of

Eq. 2.2.6 - 2.2.11 with the rotational terms included.

Now, since the impeller and diffuser are distinct components in the centrifugal com-

pressor, we will consider them separately in the model formulation.

Impeller

Let us assume we have straight radial blades, so uθ = 0 in the impeller channels. This

results in:

1

r

∂

∂r
(rρur) +

∂

∂x
(ρux) = 0 (2.4.7)

1

r

∂

∂r
(rρu2

r) +
∂

∂x
(ρurux)− ρΩ2r = −∂p

∂r
(2.4.8)
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2ρΩur = −1

r

∂p

∂θ
(2.4.9)

1

r

∂

∂r
(rρuxur) +

∂

∂x
(ρu2

x) = −∂p
∂x

(2.4.10)

1

r

∂

∂r
(rur(ρE + p)) +

∂

∂x
(ux(ρE + p)) = 0. (2.4.11)

Notice that this has removed all mention of θ apart from in the second momentum

equation (Eq. 2.4.9). This equation specifies that there will be a pressure gradient in

the tangential direction due to the Coriolis force. We can therefore make the simplifying

assumption that all variables (except p) are constant with θ and can be considered as

a function of r and x only.

Using this, we can integrate Eq. 2.4.9 to get

p(r, θ, x) = −2Ωrρur(r, x)θ + p̃(r, x) (2.4.12)

where p̃ is the constant of integration chosen so that it corresponds to the pressure in

the centre of a channel. This means the channel walls are at

(π + 2πk)

nb
, k = 0, .., nb − 1 (2.4.13)

where nb is the number of blades. Therefore, assuming each impeller channel behaves

identically, we can take the average of this over the θ direction by

p̄(r, x) =
1

2π

nb∑

i=1

∫ π
nb

− π
nb

p(r, θ, x) dθ. (2.4.14)

This results in p̄ = p̃(r, x) because

−Ωrρur(r, x)

π

nb∑

i=1

∫ π
nb

− π
nb

θ dθ = 0. (2.4.15)

Therefore, by approximating p(r, θ, x) by its value at the centre of the impeller channel,

we no longer need Eq. 2.4.9 and we have a system that is only dependent on r and x.

Since we want to understand the dynamics as we travel through the compressor, it

makes sense to average the flow over the x-direction so we end up with a 1D model for

flow in the radial direction.
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Define the average of a variable G by

Ḡ =
1

h(r)

∫ h(r)

0
G dx. (2.4.16)

Since the integral limits are a function of r, we will need to use the Leibniz rule for

differentiating integrals, i.e.

∂

∂r

(∫ h(r)

0
G dx

)
=

∫ h

0

∂G

∂r
dx+G

∣∣∣
h

∂h

∂r
. (2.4.17)

To average conservation of mass (Eq. 2.4.7), we integrate between 0 and h(r) in x. We

apply the Leibniz rule to the first term and directly integrate the second to get

1

r

∂

∂r

(∫ h

0
rρur dx

)
− ρur

∣∣∣
h

∂h

∂r
+ ρux

∣∣∣
h

0
= 0. (2.4.18)

Using the definition of the average, and grouping the terms at the boundaries x = 0

and x = h(r), gives us

1

r

∂

∂r
(rhρur) +

(
−ρur

∂h

∂r
+ ρux

) ∣∣∣∣
h

− ρux
∣∣∣
0

= 0. (2.4.19)

Notice that at x = 0,

−ρux = ρ

(
ux

ur

)
·
(
−1

0

)
(2.4.20)

is the flux leaving the impeller in the −x direction, and so this is zero as no air can

escape through the base of the impeller.

At x = h(r), notice that the outward pointing unit normal n̂ is given by

n̂ =
1√

1 + (h′)2

(
1

−h′

)
(2.4.21)

because, at any given point, it is perpendicular to the tangent vector (h′, 1)T as shown

in Fig. 2-5. Therefore,

−ρur
∂h

∂r
+ ρux = ρ

(
ux

ur

)
·
(

1

−h′

)
(2.4.22)

is the flux leaving the impeller through the casing at h(r), and so is again zero.
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Figure 2-5: Height of impeller blade given by the function x = h(r). The outward
pointing unit normal, n̂, at any point r∗ is perpendicular to the tangent at that point.

This means that the average of Eq. 2.4.7 is

1

r

∂

∂r
(rhρur) = 0. (2.4.23)

Following exactly the same approach for Eqs. 2.4.8, 2.4.10, and 2.4.11, gives

1

r

∂

∂r
(rhρu2

r)− hρ̄Ω2r = − ∂

∂r
(hp̄) + p

∣∣∣
h

∂h

∂r
, (2.4.24)

1

r

∂

∂r
(rhρurux) = −p

∣∣∣
h

0
, (2.4.25)

1

r

∂

∂r
(rhρurE + rhurp) = 0. (2.4.26)

Similarly to the approach in Section 2.2, we assume that ab = āb̄,∀a, b.

We will also assume that the pressure is constant in the x direction, so

p
∣∣∣
h

= p
∣∣∣
0

= p̄. (2.4.27)

This means that Eq. 2.4.25 reduces to

1

r

∂

∂r
(rhρ̄ūrūx) = 0, (2.4.28)

and so we need to assume ūx = 0 so no restrictions are placed on how ρ̄ūr varies with

r through this equation.
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Thus, on dropping bars, the averaged equations of motion for steady flow through the

impeller are

1

r

∂

∂r
(rhρur) = 0 (2.4.29)

1

r

∂

∂r
(rhρu2

r)− hρΩ2r = −h∂p
∂r

(2.4.30)

1

r

∂

∂r

(
rhρur

(
u2
r

2
+

γ

γ − 1

p

ρ
− Ω2r2

2

))
= 0 (2.4.31)

where

E =
u2
r

2
+

1

γ − 1

p

ρ
− Ω2r2

2
. (2.4.32)

In order to simplify this system, we can replace the energy equation (Eq. 2.4.31) with

the isentropic condition p = κργ , and integrate Eq. 2.4.29 to give

q = rhρur, (2.4.33)

where q is a constant. Notice also that q = ṁ
2π because the cross sectional area of the

impeller is A = 2πrh.

Therefore, substituting these in Eq. 2.4.30 and dividing through by hρ, gives

q

rhρ

∂ur
∂r
− Ω2r = −γκργ−2∂ρ

∂r
. (2.4.34)

Noticing that q
rhρ = ur and integrating results in

u2
r

2
− Ω2r2

2
= − κγ

γ − 1
ργ−1 + c1, (2.4.35)

which, when written entirely in terms of ρ, becomes

q2

2r2h2ρ2
+

κγ

γ − 1
ργ−1 =

Ω2r2

2
+ c1, (2.4.36)

for constant of integration c1 that can be found by using the boundary condition that

ρ = ρamb at the impeller inlet.

Equation 2.4.36 can therefore be solved to find the density ρ, and hence p = κργ , at

each mass flow ṁ = 2πq for a chosen impeller speed setting, Ω.
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Diffuser

In the diffuser, we can assume that the flow is independent of θ as a vaneless diffuser

is axisymmetric. Also, Ω = 0 since the diffuser is not a rotating part. Therefore, the

fundamental equations of motion give us

1

r

∂

∂r
(rρur) +

∂

∂x
(ρux) = 0 (2.4.37)

1

r

∂

∂r
(rρu2

r) +
∂

∂x
(ρurux)− ρu2

θ

r
= −∂p

∂r
(2.4.38)

1

r

∂

∂r
(rρuruθ) +

∂

∂x
(ρuθux) +

ρuruθ
r

= 0 (2.4.39)

1

r

∂

∂r
(rρuxur) +

∂

∂x
(ρu2

x) = −∂p
∂x

(2.4.40)

1

r

∂

∂r
(rur(ρE + p)) +

∂

∂x
(ux(ρE + p)) = 0 (2.4.41)

This system is already a function of r and x only. Therefore, as before, we average over

the axial height to get a 1D model for the flow in the radial direction.

In the diffuser, the channel height remains constant, so we can perform averaging

without needing the Leibniz rule. Also, our no-flux boundary conditions simply become

ux
∣∣
0

= ux
∣∣
h

= 0. (2.4.42)

Therefore, the five averaged equations of motion are

1

r

∂

∂r
(rhρur) = 0, (2.4.43)

1

r

∂

∂r
(rhρu2

r)−
hρu2

θ

r
= −h∂p̄

∂r
, (2.4.44)

1

r

∂

∂r
(rhρuruθ) +

hρuruθ
r

= 0, (2.4.45)

1

r

∂

∂r
(rhρurux) = −p

∣∣∣
h

0
, (2.4.46)

1

r

∂

∂r
(rh(ρurE + urp)) = 0, (2.4.47)

respectively.

As with the impeller, we assume that ab = āb̄ and that the pressure, p, is constant in

x. Hence, Eq. 2.4.46 requires us to assume ūx = 0 in order to not apply additional
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restriction on ρ̄ūr through this equation.

Therefore, on dropping the bars, the equations of motion in the diffuser are

1

r

∂

∂r
(rhρur) = 0 (2.4.48)

1

r

∂

∂r
(rhρu2

r)−
hρu2

θ

r
= −h∂p

∂r
(2.4.49)

1

r

∂

∂r
(rhρuruθ) +

hρuruθ
r

= 0 (2.4.50)

1

r

∂

∂r

(
rhρur

(
u2
r

2
+
u2
θ

2
+

γ

γ − 1

p

ρ

))
= 0 (2.4.51)

where

E =
u2
r

2
+
u2
θ

2
+

1

γ − 1

p

ρ
. (2.4.52)

To simplify this system, we can again replace the energy equation (Eq. 2.4.51) with the

isentropic relation p = κργ . We can also integrate Eq. 2.4.48 to get q = rhρur, where

q is constant.

Therefore, we can take out q = rhρur from the differential in Eq. 2.4.50 and divide

through by hρur to get
∂uθ
∂r

+
uθ
r

= 0. (2.4.53)

This can be integrated to give

uθ =
c

r
(2.4.54)

for a constant c that can be found by using the boundary condition of uθ = Ωr at the

impeller tip, ie. c = Ωr2
tip.

Substituting these relations for q, uθ, and p into Eq. 2.4.49 and dividing by hρ results

in

ur
∂ur
∂r
−

Ω2r4
tip

r3
= −γκργ−2∂ρ

∂r
(2.4.55)

because ur = q
rhρ . Therefore, integrating this and writing ur in terms of q, gives us

q2

2r2h2ρ2
+

κγ

γ − 1
ργ−1 = −

Ω2r4
tip

2r2
+ c2, (2.4.56)

where c2 is a constant of integration that can be found by applying the boundary

condition that density is continuous at the impeller - diffuser interface.

Therefore, this can be solved to find the density, ρ, through the diffuser at each mass
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Figure 2-6: Compressor characteristics computed using isentropic formulation of equa-
tions of motion. Impeller speeds in krpm are indicated on each line.

flow, for a chosen impeller speed Ω.

Model Results

Solving Eq. 2.4.36 and Eq. 2.4.56 for multiple mass flows at six different impeller speeds

gives the characteristics shown in Fig. 2-6.

This models a compressor that operates in an ideal way, i.e. the more flow we add, the

more pressure we can generate. However, this is not physical. As we saw in Section

1.2.1, compressor characteristics found via experiment show that the pressure decreases

with higher flow rates. Therefore, this model does not capture the main physics and

so is not suitable.

To improve on this, it appears that friction is needed. Friction causes losses for higher

mass flows and so should reduce the pressure at these values.

2.4.2 Addition of Friction

To include frictional losses into the compressor, we go back to the fundamental fluid

equations (Eq. 2.4.1 - 2.4.5) and assume that the only effect of the stress tensor is as a

result of friction. This means we can write

∇ · τ = F, (2.4.57)
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where F is a friction function. Notice that this is friction per unit volume because,

during derivation of the fundamental fluid equations, all terms were divided by volume.

We will assume that F relates to skin fiction, rather than the internal friction of the

fluid. This is defined as the shearing stress exerted by the fluid on the surface over

which it flows [56]. Therefore,

F = −τwS (2.4.58)

where τw is the wall shearing stress, and S is the surface area (per unit volume). This

can be written as

F = −1

2
fρu|u|S (2.4.59)

where f is the fanning friction factor [57]. Notice that u|u| ensures that the friction

always acts against the flow.

For ease of solving the system ODEs, we will simplify this further to

F = −1

2
fρu|ur|S (2.4.60)

and assume that the friction factor f encompasses the difference, i.e.

f ∝

√
u2
r + u2

θ

ur
. (2.4.61)

In the impeller this f is equivalent to the fanning friction factor as uθ = 0, however

it will be slightly different in the diffuser. In practice, we will fit the friction factor to

experimental data in order to find an accurate value for simulations.

To generate a model for the steady state operation of the compressor we can follow

exactly the same procedure as in Section 2.4.1 with the addition of F in the momentum

equations to give

1

r

∂

∂r
(rhρur) = 0 (2.4.62)

1

r

∂

∂r
(rhρu2

r)− hρΩ2r = −h∂p
∂r

+ hFr (2.4.63)

1

r

∂

∂r

(
rhρur

(
u2
r

2
+

γ

γ − 1

p

ρ
− Ω2r2

2

))
= 0 (2.4.64)
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for the impeller and

1

r

∂

∂r
(rhρur) = 0, (2.4.65)

1

r

∂

∂r
(rhρu2

r)−
hρu2

θ

r
= −h∂p

∂r
+ hFr, (2.4.66)

1

r

∂

∂r
(rhρuruθ) +

hρuruθ
r

= hFθ, (2.4.67)

1

r

∂

∂r

(
rhρur

(
u2
r

2
+
u2
θ

2
+

γ

γ − 1

p

ρ

))
= 0, (2.4.68)

for the diffuser, where the bars have been dropped for ease.

To simplify these systems of ODEs, note that we no longer satisfy the isentropic relation

because of the additional frictional losses. Therefore, for the impeller, we integrate Eqs.

2.4.62 and 2.4.64 to get q = rhρur and

u2
r

2
+

γ

γ − 1

p

ρ
− Ω2r2

2
= EI (2.4.69)

respectively, where q and EI are both constants. Rearranging Eq. 2.4.69 for p and

substituting into Eq. 2.4.63 along with q and

Fr = −1

2
fρ|ur|urSI , SI = 2

(
nb

2πr
+

1

h

)
, (2.4.70)

for number of impeller blades nb, results in

∂ρ

∂r
=
−ρq2

(
1
r + 1

h
∂h
∂r

)
− Ω2r3h2ρ3 + γfρ|q|q

(
nb
2πr + 1

h

)
(
γ+1

2

)
q2 − (γ − 1)

(
Ω2r2

2 + EI

)
r2h2ρ2

, (2.4.71)

which is an ODE that can be solved quickly via numerical methods, like Runga-Kutta,

for the density ρ.

Similarly, for the diffuser, we integrate Eqs. 2.4.65 and 2.4.68 to get q = rhρur and

u2
r

2
+
u2
θ

2
+

γ

γ − 1

p

ρ
= ED, (2.4.72)

and substitute these along with

Fr = −1

2
fρ|ur|urSD, SD =

2

h
, (2.4.73)
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into Eq. 2.4.66 to get

∂ρ

∂r
=
−ρq2

r − r2h2ρ3
(
γ
u2θ
r + (γ − 1)uθ

∂uθ
∂r

)
+ γ fhρ|q|q(

γ+1
2

)
q2 + (γ − 1)

(
u2θ
2 − ED

)
r2h2ρ2

. (2.4.74)

Finally, Eq. 2.4.67 is given by

1

r

∂

∂r
(rhρuruθ) +

hρuruθ
r

= −h1

2
fρ|ur|uθSD (2.4.75)

because the friction Fθ opposes the momentum of the fluid. Therefore, taking q = rhρur

out of the derivative and dividing by hρur gives us

∂uθ
∂r

+
uθ
r

= −f
2

sgn(ur)uθSD. (2.4.76)

Using the fact that SD = 2
h and integrating results in

uθ =
c

r
e−sgn(ur)( fh)r (2.4.77)

where sgn(ur) = ±1 depending on the sign of ur, and c is the constant of integration.

Since ur and uθ have the same sign, we could also write this as

uθ =
c

r
e−sgn(uθ)( fh)r. (2.4.78)

Finally, we know that

c = Ωr2
tipe

( fh)rtip (2.4.79)

because the tangential velocity is assumed to be continuous at the impeller - diffuser

interface (i.e. uθ = Ωr at r = rtip).

This means that Eq. 2.4.74 is an ODE purely for density ρ and can be solved numerically

in the same manor as Eq. 2.4.71.

Model Results

Solving Eqs. 2.4.71 and 2.4.74 for multiple mass flows at six different impeller speeds

results in the compressor characteristics shown in Fig. 2-7.
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Figure 2-7: Compressor characteristics map computed by averaging the fundamental
fluid equations with the inclusion of skin friction. Impeller speeds in krpm are indicated
on each line.

This model is now able to capture a cubic-like shape similar to that seen in experiments

(see Section 1.2.1). This means that friction plays a vital role in the operation of a

compressor, and so cannot be left out of any model.

However, this model still is missing some important dynamics. Using this characteristic

in the reduced order surge model developed in Section 2.2 (both the nonlinear ODEs

and the Moore-Greitzer version) we only ever see stable behaviour. Figure 2-8 shows

this at a low mass flow value where we would expect to see surge.

In Section 1.2.1, we saw that the characteristics observed experimentally had a local

minimum at zero mass flow, rather than the point of inflection we have obtained. This

Figure 2-8: Stable operation using the Moore-Greitzer model. Left: Trajectory of
compressor operation in mass flow-pressure plane. Right: Pressure and mass flow
traces of compressor operation with time.
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Figure 2-9: Determination of shape of compressor characteristics by looking at different
losses [1]. The characteristic (A-D) is created by subtracting the loss curves shown at
the bottom of the graph.

suggests that the reason our characteristic behaves stably is that it is monotonically

decreasing.

Therefore, to achieve a compressor characteristic that exhibits surge behaviour, we

need to include some losses that occur for small mass flow rates. According to Watson

and Janota [1], the pressure drop observed at low mass flow rates are due to incidence

losses (see Fig. 2-9).

2.4.3 Addition of Incidence Loss

Incidence losses occur when the flow entering the impeller does not perfectly match the

blades. Figure 2-10 shows that flow entering the impeller channel at an angle larger

than the blade angle can cause the flow to separate. This separation can be modelled

as a blockage in the channel.

To represent this blockage we create a stall function, ξ, where ṁ = ξAρur. This means

that ξA represents the area of the channel that is available for the flow to pass through.

Suppose β is the angle of the flow entering the impeller and βB is the impeller inlet

blade angle. Then for β ≤ βB, we assume there are no incidence losses and so ξ = 1.

For β > βB, we can find the stall function by considering the velocity as a function of

the mass flow, i.e. ur(ṁ) = ṁ
ξAρ .
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Figure 2-10: Left: Flow matches the blades perfectly, so zero incidence loss. Right:
Flow enters the impeller channel at an angle β > βB, so we have incidence losses. Here
the flow separates and we assume the stalled flow causes a blockage in the channel.

We would like ξ to be a smooth function, therefore we will make the velocity continu-

ously differentiable at β = βB, i.e.

ur(ṁB) =
ṁB

Aρ
, (2.4.80)

dur
dṁ

(ṁB) =
1

Aρ
. (2.4.81)

Also, at zero mass flow, we would expect the velocity to be zero. So we have another

condition of

ur(0) = 0. (2.4.82)

We desire a free parameter in the stall function in order to set the strength of this stall

based on experimental data. Therefore, with three conditions and a free parameter,

the simplest function we can use to describe the stalled velocity is a cubic:

ur = aṁ3 + bṁ2 + cṁ+ d. (2.4.83)

Differentiating this gives

dur
dṁ

= 3aṁ2 + 2bṁ+ c. (2.4.84)
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Then, condition 2.4.82 immediately gives us d = 0, and conditions 2.4.80 and 2.4.81

gives us

ṁB

Aρ
= aṁ3

B + bṁ2
B + cṁB, (2.4.85)

1

Aρ
= 3aṁ2

B + 2bṁB + c, (2.4.86)

respectively. Choosing a as our free parameter and solving these for b and c gives us

b = −2aṁB, (2.4.87)

c =
1

Aρ
+ aṁ2

B. (2.4.88)

Therefore, our stalled velocity is given by

ur(ṁ) = aṁ3 − 2aṁBṁ
2 +

(
1

Aρ
+ aṁ2

B

)
ṁ. (2.4.89)

Using the fact that ur = ṁ
ξAρ and rearranging for ξ results in

ξ(β) =
1

1 + â
(

1− tanβB
tanβ

)2 , (2.4.90)

where â = aAρṁ2
B, because

ṁ

ṁB
=

tanβB
tanβ

. (2.4.91)

Note that this doesn’t change any of the ODEs in Section 2.4.2 because it only influences

the definition of the constant q. Previously, q = ṁ
2π whereas to incorporate the stalling

we can change this to be

q =
ṁ

2πξ(β)
. (2.4.92)

The resulting compressor characteristic and its behaviour when integrated into the

nonlinear reduced order surge model are presented in the paper included in the following

section.
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Modeling Axisymmetric
Centrifugal Compressor
Characteristics From First
Principles
Turbochargers are a vital component for aiding engine manufacturers in meeting the latest
emissions standards. However, their range of operation is limited for low mass flows by
compressor surge. Operation in surge results in pressure and mass flow oscillations that
are often damaging to the compressor and its installation. Since surge is a highly
complex flow regime, full unsteady three-dimensional models are generally too computa-
tionally expensive to run. The majority of current low-dimensional surge models use a
cubic compressor characteristic that needs to be fitted to experimental data. Therefore,
each time a compressor is studied using these models, costly experimental testing is
required. In this paper, a new technique for obtaining an axisymmetric centrifugal compres-
sor characteristic is presented. This characteristic is built using the equations of mass,
momentum, and energy from first principles in order to provide a more complete model
than those currently obtained via experimental data. This approach enables us to explain
the resulting cubic-like shape of the characteristic and hence to identify impeller inlet
stall as a route into surge. The characteristic is used within a quasi-steady, map-based
surge model in order to demonstrate its ability to predict the onset of surge while only pro-
viding geometric data as input. Validation is provided for this model by a discussion of the
qualitative flow dynamics and a good fit to experimental data, especially for low impeller
speeds and pressure ratios. [DOI: 10.1115/1.4047616]

Keywords: centrifugal compressors, compressor stall, surge, modeling

Introduction
There are a huge number of applications for centrifugal compres-

sors [1]. Although the methodology presented in this paper is appli-
cable to all centrifugal compressors (via the extension of models by,
for example, Macdougal and Elder [2] who developed a one-
dimensional (1D) map-based model for process plant applications),
we will focus on the application to turbocharger compressors for the
automotive industry.
Turbocharger compressors are normally used to increase the

power output of smaller engines, so they can be used in place of
larger naturally aspirated ones, making the vehicle more environ-
mentally friendly [3]. They need a wide stable operating range,
but this range is limited by surge at low mass flow rates and
choke at high mass flow rates.
Surge is an instability that results in audible mass flow and pres-

sure oscillations that would be off-putting to any driver. Moreover,
these oscillations, in combination with an increase in temperature,
often damage the compressor or its installation.
Surge is commonly found to be triggered by some form of stall.

There are two main types of stall. The first can occur at the inlet to
the impeller or a vaned diffuser and is caused by incidence. This
means that, as mass flow decreases, the inlet flow angle increases
and causes a separation of the flow at the blade or vane wall [4].
In the impeller, this stall can pass between neighboring channels
to become a rotating stall. The second type is often seen in a

vaneless diffuser and is caused by recirculation. This is where fric-
tion reduces the radial velocity of the flow near the shroud-side wall
of the diffuser, reducing its spiral angle so that it is swept back into
the impeller [4].
The stalling of the impeller and diffuser can occur individually or

simultaneously but are not independent as stall in one component
influences the behavior of stall in the other. There is extensive liter-
ature on the stall and surge behavior of compressors, for example,
Refs. [5–9].
Since surge limits the amount of boost provided at low engine

speeds, there is a desire to operate close to surge without entering
it for prolonged periods of time. Therefore, it becomes essential
to create models that can predict the location of the surge region
as well as aid understanding of the flow dynamics near that region.
A very common numerical modeling approach is computational

fluid dynamics (CFD). In a CFD model, a 3D domain is built in
the computer, and a mesh is inserted into it. This mesh divides the
domain into millions of control volumes, or cells, within which the
conservation of mass, momentum, and energy equations can be
solved numerically [10]. The accuracy of CFD computations has
increased dramatically over the past decades due to the rapid
growth in high-speed computing power. However, CFD can struggle
when modeling large scale phenomena that depend on small scale
effects because it is too computationally expensive to perform this
direct numerical simulation with the required fineness of mesh
[10]. Since surge cycles often experience local or small scale phe-
nomena like rotating stall, recirculation, and eddies, full unsteady
3D CFD is required to completely capture the dynamics. However,
the computational cost of this is not suitable for industrial needs [11].
Map-based models provide a popular alternative to CFD for mod-

eling surge. All of these models take as an input a compressor map
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that has been extended beyond the surge point and into reversed
flows. The speed lines on these extended compressor maps are
often referred to as compressor characteristics.
Usually, these models assume that at any given time, the compres-

sor is operating in steady-state, and so are quasi-steady in nature.
There are many examples of these models in the literature for
various compressor types and applications [6,12–15]. However,
there has been some work on unsteady 1D models that incorporate
the compressor map as a boundary condition [16,17].
The majority of these models are based on a nonlinear model by

Greitzer [18]. Greitzer modeled an axial compression system by use
of two actuator disks, one to represent the compressor and the other
to represent the throttle valve. These are connected together by a
pipe and a large plenum. The flow is considered incompressible
within the pipe and to have negligible kinetic energy within the
plenum. This generates a set of ordinary differential equations
(ODEs) to model the behavior of flow in the compression system,
for example, the Moore-Greitzer model [18,19]

dΦ
dt

= B(ψc − Ψ) (1)

dΨ
dt

=
1
B
(Φ − ψ−1

T ) (2)

for nondimensional mass flow,Φ, and pressure, Ψ, where ψc and ψT
are compressor and throttle characteristics, respectively.
For the throttle characteristic ψT, the Orifice equation [19]:

ψT = ξT0 +
1

ξ2T
Φ2 (3)

is typically used.
There have been three main approaches for obtaining the com-

pressor characteristics. The first is through complex experimental
studies, for example, Koff and Greitzer [20] proposed a cubic-like
shape after experimentally testing an axial compressor in various
flow regimes. The curve was reasonably straightforward to deter-
mine in backflow and steady forward flow regimes. However,
when rotating stall appeared, the shape was more difficult to deter-
mine, and so transients were analyzed and an argument was made
for having a smoothly varying characteristic based on the behavior
of diffuser stall. This has been done more recently for small centrif-
ugal compressors by Galindo et al. [21], also producing a cubic-like
curve.
The second approach is via curve fitting and extrapolation. The

most common technique is to use the cubic relation proposed by
Moore and Greitzer [22], i.e.

ψc = ψc0 + H 1 +
2
3

Φ
W

− 1

( )
−
1
2

Φ
W

− 1

( )3
[ ]

(4)

with parameters H and W found through fitting to experimental
compressor map data. However, other curve fitting techniques
have been proposed, including ones involving Chebyshev polyno-
mials in order to capture more features of the characteristics [23],
and ones involving elliptic equations in order to adjust the charac-
teristic for different settings on a variable-geometry diffuser [24].
The third is via mean-line modeling. In a mean-line model, the

compressor is divided into sections over which the equations of
motion and loss models are evaluated. Most of the mean-line
models follow the meridional path of the compressor and typically
split it into sections for the inlet, impeller, diffuser, and volute
[25,26]. However, there are two-zone models that have primary
and secondary flow sections within the impeller in order to account
for slip [27]. Themajority of thesemean-linemodels apply empirical
loss models to the sections. Typical collections of loss models for
compressors can be found in Refs. [28–30]. These loss models
usually have loss coefficients that need to be tuned to the particular
compressor that is being studied, which makes mean-line modeling
still partially reliant on data or CFD simulation.

The advantage of the purely experimental approach for finding
compressor characteristics is its simplicity because reading data
or evaluating polynomial-like expressions is very quick computa-
tionally. However, map-based surge models are sensitive to the
shape of the compressor characteristic, so it is vital to understand
this fully, and an experimental approach does not give us any
insight into the reason why we get this shape of the curve. In addi-
tion, since surge is a system phenomenon, experimentally measured
surge can be limited to the particular experimental setup and not, as
would be desirable, any compressor installation.
The mean-line model approach can provide some understanding

of the characteristic’s shape because it is based in part on the phys-
ical equations of motion, and a tuned mean-line model produces
some good results. However, this model usually still requires com-
pressor specific data to tune the loss coefficients. Ideally, we would
like a model that works for every type of compressor using only
known information, like geometry; therefore, any parameters in
the model need to be universal.
In this paper, compressor characteristics are generated through

simulations of a physical model for the compressor. This physical
model is derived from first principles and uses inputs solely from
geometry. It has been designed to be as simple as possible while
still capturing the dynamics of surge. Therefore, it contains a
minimal number of parameters and has found relations for these
that make them universally applicable. The strength of having a
mathematically simple model is that it can be used for things like
bifurcation analysis, which is a powerful tool to study the dynamics
of surge as parameters, such as geometrical dimensions, are changed.
Since the model has been built from physical principles and is

theoretical in nature, it gives us a new understanding of the stall
and surge phenomena, which in turn will help in the design of
future compressors. To the authors’ knowledge, this is the first
time that such a model has been created, and it makes an important
step in updating the low-dimensional surge models that have
remained relatively unchanged over the past 30 years. This novel
approach will enable low-dimensional surge models to be a useful
tool for turbocharger designers, as it will provide insight into the
surge limitations of a new design while reducing the need for
testing during preliminary design stages.

Equations of Motion
The key physical laws needed for deriving a model for a com-

pressor from first principles are conservation of mass

∂ρ
∂t

+ ∇ · (ρu) = 0 (5)

conservation of momentum in a rotating frame

∂
∂t
(ρu) + ∇ · (ρ(u⊗ u)) + 2ρ(Ω × u) + ρ(Ω × (Ω × r)) = ρg

−∇p + ∇ · τ (6)

and conservation of energy

∂
∂t
(ρE) + ∇ · (ρuE + pu) − ∇ · (τ · u) = ρQ̇ (7)

In the inertial frame of reference,

E =
|u|2
2

+ U (8)

where U is the specific internal energy. However, when we are in a
rotating frame of reference, E becomes the relative specific energy,
so

E +
Ω2r2

2
=
|u|2
2

+ U (9)

to take into account the energy added to the flow by the rotation.
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We also need the ideal gas law

p = ρRT (10)

and the assumption of a perfect gas so that

U = cvT =
1

γ − 1
p

ρ
(11)

where cv and γ are assumed constant.
Since we are dealing with gases, it seems reasonable to assume

gravitational and viscous effects are negligible; however, we will
include a term, F, in the momentum equation to account for fric-
tional losses. We will also assume that the flow is adiabatic
because the time scale of heat-transfer is much longer than that of
the flow velocities associated with turbochargers. Finally, we are
looking for a steady-state characteristic, so we will remove the
time dependence.

Model Derivation
The main components in a compressor are the impeller and the

diffuser. It is easiest to consider these separately, so different sim-
plifying assumptions can be made.

Impeller. Figure 1 shows a comparison of a typical impeller
geometry to the impeller geometry, and we will assume in this
model.
This simplified geometry allows us to assume that air flows

through the compressor in a predominantly radial direction. Due
to the straight radial blades, we can assume that uθ = 0 in the rotat-
ing frame of reference. Therefore, after writing in cylindrical polar
coordinates, Eqs. (5)–(7) become

1
r

∂
∂r

(rρur) +
∂
∂x

(ρux) = 0 (12)

1
r

∂
∂r

(rρu2r ) +
∂
∂x

(ρurux) − ρΩ2r = −
∂p
∂r

+ Fr (13)

2ρΩur = −
1
r

∂p
∂θ

+ Fθ (14)

1
r

∂
∂r

(rρuxur) +
∂
∂x

(ρu2x ) = −
∂p
∂x

+ Fx (15)

1
r

∂
∂r

(rur(ρE + p)) +
∂
∂x

(ux(ρE + p)) = 0 (16)

where

E =
u2r
2
+
u2x
2
+

1
γ − 1

p

ρ
−
Ω2r2

2
(17)

Defining the average of a quantity, G, by

�G =
1

h(r)

∫h(r)
0

Gdx (18)

where h is the height of the impeller blade, and using the Leibniz
rule for differentiation under the integral sign, we can average
Eqs. (12), (13), and (16) to get

1
r

∂
∂r

(rhρur) = 0 (19)

1
r

∂
∂r

(rhρu2r ) − h�ρΩ2r = −
∂
∂r

(h�p) + p|h
∂h
∂r

+ hFr (20)

1
r

∂
∂r

(rhρurE + rhurp) = 0 (21)

subject to no-flux boundary conditions.
At this point, further assumptions are necessary. First, we assume

that we can approximate averaged products by ab = �a �b, which
requires one of the variables to not deviate much from its mean
value. Second, we assume that

p|h = �p (22)

and, finally, we take �ux as small, so

�E =
u2r
2
−
Ω2r2

2
+

1
γ − 1

�p

�ρ
(23)

This means that a 1D model for the flow in the impeller is given
by

1
r

∂
∂r

(rhρur) = 0 (24)

1
r

∂
∂r

(rhρu2r ) − hρΩ2r = −h
∂p
∂r

+ hFr (25)

Fig. 1 (a) A typical impeller from a centrifugal compressor. It has backswept blades and turns the
flow from the axial direction to the radial direction as it compresses. (b) The simplified impeller
geometry used in the model derivation. Here, the flow travels radially from the center of the impel-
ler to the outlet. It has straight radial blades but does have an inlet blade angle, so the model can
account for the effects of poor inlet flow alignment.
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1
r

∂
∂r

rhρur
u2r
2
+

γ

γ − 1
p

ρ
−
Ω2r2

2

( )( )
= 0 (26)

where the bars have been dropped for convenience.

Diffuser. The diffuser is non-rotating, so Ω= 0, and we return to
the inertial frame of reference. It is also assumed that the compres-
sor has a vaneless diffuser, which allows the assumption that all var-
iables are independent of θ.
Therefore, in this case, Eqs. (5)–(7) become

1
r

∂
∂r

(rρur) +
∂
∂x

(ρux) = 0 (27)

1
r

∂
∂r

(rρu2r ) +
∂
∂x

(ρurux) −
ρu2θ
r

= −
∂p
∂r

+ Fr (28)

1
r

∂
∂r

(rρuruθ) +
∂
∂x

(ρuθux) +
ρuruθ
r

= Fθ (29)

1
r

∂
∂r

(rρuxur) +
∂
∂x

(ρu2x ) = −
∂p
∂x

+ Fx (30)

1
r

∂
∂r

(rur(ρE + p)) +
∂
∂x

(ux(ρE + p)) = 0 (31)

where

E =
u2r
2
+
u2x
2
+

1
γ − 1

p

ρ
(32)

Averaging Eqs. (27)–(29) and (31) subject to no-flux conditions
as before, gives

1
r

∂
∂r

(rhρur) = 0 (33)

1
r

∂
∂r

(rhρu2r ) −
hρu2θ
r

= −h
∂�p
∂r

+ hFr
(34)

1
r

∂
∂r

(rhρuruθ) +
hρuruθ

r
= hFθ (35)

1
r

∂
∂r

(rhρurE + rhurp) = 0 (36)

Therefore, using the same assumptions as we did for the impeller,
so that ab = �a �b and

�E =
u2r
2
+
u2θ
2
+

1
γ − 1

�p

�ρ
(37)

we get the following system of equations for the diffuser (after drop-
ping the bars):

1
r

∂
∂r

(rhρur) = 0 (38)

1
r

∂
∂r

(rhρu2r ) −
hρu2θ
r

= −h
∂p
∂r

+ hFr (39)

1
r

∂
∂r

(rhρuruθ) +
hρuruθ

r
= hFθ (40)

1
r

∂
∂r

rhρur
u2r
2
+
u2θ
2
+

γ

γ − 1
p

ρ

( )( )
= 0 (41)

Friction. Skin friction is the only type of frictional loss that is
considered in this model. It is defined as the shear stress exerted
by the fluid on the surface over which it flows [31]. Therefore, if
τw denotes the wall shear stress

F = −τwS (42)

⇒ F = −
1
2
f ρu2r S (43)

where S denotes the total surface area of the contact faces between
the walls and the fluid per unit volume, and

f =
τw

1
2
ρu2r

(44)

is the Fanning friction factor [32].
Therefore, in the impeller, we have

Fr = −
1
2
f ρu2r SI (45)

where

SI = 2
nb
2πr

+
1
h

( )
(46)

and for the diffuser, we have

Fr = −
1
2
f ρu2r SD (47)

Fθ = −
1
2
f ρuruθSD (48)

where

SD =
2
h

(49)

Stalling. The mass flow rate is defined as ṁ = A ρur for a cross-
sectional area A. In the diffuser, the area is simply A= 2πrh.
However, in the impeller, we can get stalling at the inlet. As seen
in Fig. 2, low inlet velocities lead to large flow angles, β, which
result in flow separation. This region of stalled flow effectively
blocks part of the channel, and so reduces the area of the channel
available to the unstalled flow.
Therefore, defining the impeller area as A= θrh for

θ =

2π

1 + α 1 −
tan βB
tan β

( )2
( ) β > βB

2π otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(50)

where βB is the inlet blade angle of the impeller, allows us to take
into account this stalling. The parameter α is used to control the
strength of the stalling, for example, if A0 is the area of the entire
channel, then the maximum blockage results in an area of (1/(1+
α))A0.
It is not uncommon to use blockage as a way to represent stalled

flow regimes. Day et al. [33] developed a model for rotating stall in
an axial compressor. They noted that stall cells had negligible axial
velocity, whereas the unstalled regions had a higher axial velocity
than expected. This led to them including a stall cell blockage
parameter in their model to simulate this.
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It is possible to also include diffuser stall in a similar fashion. For
a vaneless diffuser, we would argue that the shroud-side area of the
impeller and diffuser is blocked due to recirculation. Therefore, we
could create a similar blockage formula that involves the diffuser
inlet flow angle and a critical angle at which recirculation occurs.
We would also be able to account for impeller backsweep in this
stall model by considering its effect on the diffuser inlet angle.
If instead we were working on a vaned diffuser, we would use an

area blockage argument that follows very closely to that of the
impeller using the inlet diffuser flow angle and the angle of the
vanes.

Numerical Implementation and Results
In order to implement this numerically, it is possible to reduce

each system of ODEs for the impeller and diffuser into just one
ODE for density, ρ. After rearranging, we get

∂ρ
∂r

=
−ρq2

1
r
+
1
h

∂h
∂r

( )
− Ω2r3h2ρ3 + γf ρq2

nb
2πr

+
1
h

( )
γ + 1
2

( )
q2 − (γ − 1)

Ω2r2

2
+ EI

( )
r2h2ρ2

(51)

for the impeller and

∂ρ
∂r

=
−
ρq2

r
− r2h2ρ3 γ

u2θ
r
+ (γ − 1)uθ

∂uθ
∂r

( )
+ γ

f

h
ρq2

γ + 1
2

( )
q2 + (γ − 1)

u2θ
2
− ED

( )
r2h2ρ2

(52)

for the diffuser, where

rhρur = q = const (53)

u2r
2
+

γ

γ − 1
p

ρ
−
Ω2r2

2
= EI = const (54)

u2r
2
+
u2θ
2
+

γ

γ − 1
p

ρ
= ED = const (55)

uθ =
Ωr2tip
r

e−( f /h)(r−rtip) (56)

Observing that

q =
ṁ

θ
(57)

where θ is defined as before to take into account inlet stalling, we
can write

q =

ṁ

2π
1 + α 1 −

tan βB
tan β

( )2
( )

β > βB

ṁ

2π
otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(58)

These ODEs can be solved quickly in MATLAB using ode45 to
simulate flow through the compressor in steady-state. Figure 3
shows how the properties of the flow change, as it passes through
the impeller and diffuser.
We observe that the tangential velocity is increasing in the impel-

ler with radial distance due to the fixed impeller angular speed.
However, in the diffuser, there is no forced rotation, and the tangen-
tial velocity decreases due to diffusion and frictional forces.
The radial velocity is generally decreasing due to diffusion and

friction. In the impeller, there is a balance between diffusion, as
the channel is increasing in area, and centrifugal forces, which
accelerate the flow radially. The centrifugal forces dominate at
large tangential velocities, which is why the velocity begins to
increase near the impeller exit.
Since we have diffusion in both the impeller and diffuser,

the pressure and density rise occurs in both components.

Fig. 3 Simulated gas properties as air passes through a small
compressor. This shows a stable operating point, with the impel-
ler spinning at 130 krpm and a mass flow of 0.1 kg/s. All black
lines indicate that the flow is in the impeller and all gray lines indi-
cate that the flow is in the diffuser.

Fig. 2 Impeller channels in (a) unstalled and (b) stalled condi-
tions. The stalled channel is caused by a low inlet radial velocity
that leads to a large inlet flow angle β in comparison to the blade
angle βB. The unstalled channel is shown with an inlet flow angle
that matches the blade angle βB perfectly.
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The temperature also rises throughout the compressor because of
friction. In the diffuser, friction is acting against both the radial
and tangential component of velocity, whereas in the impeller, the
tangential velocity is dictated by the impeller rotation and so friction
only acts against the radial velocity. Therefore, we see a sharper rise
in temperature in the diffuser.
The particle path shows us that the flow is traveling in an Archi-

medean spiral in the impeller due to the radial blades and the forced
rotation. This turns into an approximately logarithmic spiral in the
diffuser. If there was no friction in the diffuser, we would have a
true logarithmic spiral as the path would be that of a free vortex.
Running this simulation for multiple impeller speeds and mass

flows and plotting the outlet static pressure produce compressor
characteristics, as seen in Fig. 4. Notice that because we also
know the outlet density and velocity, we can compute the total pres-
sure characteristic (and hence the total-to-total pressure ratio at each
point).
By varying factors within the simulation, it is easy to discover

why we get this cubic-like shape. The local minimum at low
mass flows (Fig. 4(a)) is caused by stalling in the impeller and
changes with values of the stall parameter α. The negative slope
to the right of the local maximum (Fig. 4(b)) is due to friction
and changes with the value of the friction factor f. Finally, in
reversed flow, the compressor acts as a restrictor, and so, the char-
acteristic has a negative slope because it follows a shape similar to
that of an orifice.

Parameter Fitting. In order for the model to be predictive, rela-
tionships for the two parameters in the model, f and α, need to be
determined. These relationships must only depend on the known
model variables, such as mass flow or impeller speed.
We shall demonstrate this process via the use of two datasets; one

for finding the relationship and the other for checking this relation-
ship holds across different compressors. For ease, let us label these
datasets as A and B. Each dataset is from an experimental study per-
formed on the gas stand at the University of Bath and consists of a
compressor map, detailing the total-to-total pressure ratio at

different mass flows and impeller speeds, and surge data, including
the peak static pressure oscillation amplitude for each impeller
speed. Table 1 gives geometric details of the compressors associ-
ated with each dataset, where Fig. 5 can be used for reference.
Consider the friction parameter, f. Using dataset A, we can find a

value for f at each impeller speed by performing a least squares fit
from the model line to the compressor map data. For this, we are
careful to only use the points in the dataset that are truly steady
(i.e., show no form of oscillation above the normal noise level in
the data) because our compressor characteristics only output
steady-state compressor behavior. This provided us with a linear
relationship between the friction parameter and impeller speed
given by

f = 0.14 + 5 × 10−6Ω (59)

where Ω is in radians/s. To validate this relationship, we perform a
least squares fit for each speed line in dataset B (again using steady
points only). Figure 6 shows the linear relationship found from
dataset A (crosses) alongside the desired values of f for dataset B
(circles). Dataset B also appears to share the linear relationship,
but the fit would be better if there was a minor shift to the intercept.
Implementing this shift has no visible effect on the resulting charac-
teristics, so the original relationship is used.

Fig. 4 Simulated static pressure compressor characteristics for six different impeller
speeds, labeled on each line in krpm. The points (a) and (b) correspond to locations
where stalling and friction are dominant effects, respectively. The point (c) identifies
the local maximum that is used in Fig. 9.

Table 1 Geometric details of the compressors used for
parameter fitting and validation

Dataset A Dataset B

Number of blades 6+ 6 6+ 6
Hub diameter 12.8 mm 10 mm
Shroud diameter 33.5 mm 29.6 mm
Wheel tip diameter 49 mm 40 mm
Diffuser height 3.4 mm 3 mm
Diffuser length 15.1 mm 15.7 mm
Diffuser area ratio 1.6 1.8

Note: Figure 5 can be referred to for explanation of the dimensions.
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In reality, there would be 3D flow effects, such as eddy currents,
that would add to the losses in the compressor at higher rotational
speeds. These features cannot be captured by this 1D model, and
so are being encompassed into the friction parameter via this
relationship.
For determining the stalling parameter α, we can look at the peak

static pressure amplitude observed while operating at surge for each
speed line in dataset A. The left-hand-side graph in Fig. 7 shows
how the value of α impacts the relationship between the observed
peak surge amplitude and the impeller speed for the model. Exploit-
ing this, we can determine that

α = 10.3 − 1.5 × 10−4Ω (60)

The right-hand-side graph in Fig. 7 shows the resulting trend in
the impeller speed—surge amplitude relationship, along with the
surge amplitude data for dataset B. This fit is very good across
the different compressors.

Quasi-Steady Model
We can now use the compressor characteristics developed above

by creating a model for the flow between the compressor and a
throttle valve. Ideally, we should end up with a system of ODEs
similar to that of Eqs. (1) and (2).
The compressors corresponding to datasets A and B were both

tested on a rig that had a pipe without a plenum connecting it to
the throttle value. Therefore, using the equations of mass and
momentum in the inertial frame (Eqs. (5) and (6) with Ω= 0),
along with the assumption of an isentropic gas

p = κργ (61)

allows us to obtain the following system of equations for the flow in
the compression system:

dṁ

dt
=
A

L
( pc(ṁ) − p) +

κ1/γ

AL

ṁ2

pc(ṁ)1/γ
−
ṁT (p)2

p1/γ

( )
(62)

dp

dt
=
γκ1/γ

AL
p(γ−1)/γ(ṁ − ṁT (p)) (63)

where ṁT is the throttle characteristic and pc is the steady-state com-
pressor characteristic developed within this paper.

For the throttle characteristic, we can use

ṁ2
T (p) =

2γ
γ − 1

λ2A2ρρamb

λ2ρ2amb − ρ2

( )
(ρpamb − ρambp) (64)

where λ is the fraction, the throttle is open. This has come from the
steady-state forms of conservation of mass and energy (Eqs. (5) and
(7)) applied to two points: one before the throttle, which has
unknown density, pressure, and mass flow values, and one after
the throttle, which is assumed to be at ambient conditions.
This system can then be solved numerically to identify the time-

dependent behavior of the compression system. The operating point
of the system is the intersection of the throttle characteristic ṁT and
the compressor characteristic pc in the mass flow—static pressure
plane. There are two observed behaviors with this system.
The first is steady behavior where pressure and mass flow remain

constant with time. The second is oscillating behavior as shown in
Fig. 8(a). In this case, we get a trajectory in time that tracks the neg-
atively sloped regions of the compressor characteristic closely, trav-
eling quickly between them. It causes oscillations in mass flow and
pressure of about 6 Hz, which is good as surge typically is a low-
frequency phenomena.
The dynamics of this oscillating state depends on the geometry of

the pipework between the compressor and the throttle. Figures 8(b)
and 8(c) show an example of what happens when the length, L, and
the cross-sectional area, A, of the pipe change. The pipe length
influences the frequency of the simulated oscillations because if L
increases, the frequency decreases (and vice versa). The cross-
sectional area has a more complex effect on the dynamics. It influ-
ences the frequency in the same way as L (larger area results in a
decreased frequency and vice versa), but it has the additional

Fig. 5 Diagram indicating the dimensions given in Table 1

Fig. 6 Line indicating the discovered linear relationship
between friction parameter, f, and impeller speed, Ω. The
crosses are for the compressor in dataset A, and the circles
are for the compressor in dataset B.
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effect that as A becomes small, the shape of the limit cycle becomes
smoother and does not track the compressor characteristic as close.
What is clear from all the limit cycles in Fig. 8 is that the shape of

the compressor characteristic is key to the dynamics. Therefore,
changing things like the inlet blade angle will alter the location of
the point in which we see oscillations, i.e., our surge line. It also
means that as the shape of the compressor characteristic becomes
more accurate by, say, adding in a diffuser stall, we will be able
to capture more of the surge dynamics.

It is good that our model can capture changes in the simulated
surge dynamics for different pipe geometries and compressor char-
acteristics because it means that it is able to simulate the testing of
different compressors on different test rigs.

Model Validation. In order to evaluate our model more quantita-
tively, we can run this quasi-steady model at different throttle open-
ings and compute a time average of the pressure andmassflows. This

Fig. 7 (a) Computed relationship between impeller speed and amplitude of surge oscillations in
the model for different values of the stalling parameter, α. The amplitude data from dataset A are
shown as crosses for comparison. (b) Result when using the discovered relationship for stalling
parameter α. The crosses are from dataset A, and the circles are from dataset B.

Fig. 8 Three simulated cases: (a) 3 m length of 3 in. diameter pipe, (b) 6 m length of 3 in. diameter pipe, and (c) 3 m length of 1.5 in.
diameter pipe. For each case, the top graph is a simulated surge limit cycle in the mass flow-static pressure plane, with the com-
pressor and throttle characteristics identified in gray, and the bottom graph is the corresponding simulated pressure and mass
flow oscillations.
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can be used to produce a time-averaged compressor map, which is
essentially what we get through testing. Figure 9 shows this time-
averaged map with experimental data points for both datasets A
and B.
We have chosen to classify the data into two categories: those

that only show oscillations at the average noise level (which
changes from about 100 Pa to 1000 Pa, as the impeller speed
increases) are considered steady, and those that show oscillations
greater than that are considered unsteady. In Fig. 9, we have
plotted the steady data as circles and the unsteady data as crosses.
For the simulated compressor map, we have plotted bars that

identify the range of values seen when computing the time-average
solution. From this, we can see a clear line that indicates the onset
of oscillations in our model. We call this the simulated surge line
and have shown this with comparison to the data underneath each
map.
Our simulated surge line is very close to the local maximum of

the compressor characteristics (see Fig. 4(c)), which is shown
with a gray dashed line in the figure. Since the gradient of the char-
acteristic (and hence the location of local maximum and minimum)

is determined by the impeller inlet stall, we can deduce that this stall
is triggering our simulated compressor into surge.
We can also see that our simulated surge line is close to the

point in the data where it switches from steady behavior to mild
oscillation. It appears to predict an earlier surge onset for lower
impeller speeds, but it is possible that this is due to the fact that
distinguishing between noise and mild oscillations is difficult for
these points.
At high speeds, our surge line is within the region of mild oscil-

lation (or mild surge) and, for compressor A, is getting close to the
deep surge limit (the left-most data point). This suggests that the
trigger for mild surge at these points is likely to be something
other than impeller inlet stall, and that it is this in combination
with the impeller inlet stall that causes deep surge.
The simulated amplitude of the oscillations is increasing as mass

flow decreases, which is very promising as in experiments, the oscil-
lations typically grow toward the deep surge limit (where testing is
stopped to prevent damage to the compressor). However, as mass
flow is reduced, there becomes a point in our simulated map that
the oscillations stop and the flow becomes stable again. This may

Fig. 9 Comparison between the simulated total-to-total compressor map and the data for datasets A
and B. The simulated map has been plotted as lines with bars showing the max and min simulated
values. The data are shown with circles if it is steady and crosses if it showed oscillations larger than
the average noise level. The speed in krpm is indicated on each line. For clarity, a single speed line
from the middle of the map is shown separately below. Finally, situated at the bottom, the simulated
surge line is shown (in solid black) in comparison to the data. The dashed gray line shows the location
of the local maximum of the compressor characteristics (Fig. 4(c)) for comparison.
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indeed be true because Koff and Greitzer [20] found during their
experimental study of the compressor map that the flow can
become stable again close to shut-off. However, we have some
unsteady data points that lie in this part of our curves, so our
region of stability is currently larger than is observed experimentally.
When examining the fit of the data to the simulated average

total-to-total pressure ratio curves, we can see that for speeds
under 200 krpm, the points follow the steady portion of the curve
closely, and for speeds under 180 krpm, the time-averaged unsteady
points are also a reasonable fit. From the single speed line plots, it is
clear to see that, as mass flow decreases, our model predicts steady
flow behavior with an increasing pressure ratio until the simulated
surge line, and unsteady flow behavior with a decreasing average
pressure ratio after that point. When the data approach the surge
line, it seems to flatten out instead but usually remains within the
simulated range of oscillation.
From the single speed line for dataset B, we can see that the

model is not always able to simulate the pressure ratios for high
mass flows. This is because at high mass flows, we approach the
choked flow region, and the Mach number for the flow increases
toward 1. Our model does not include any form of shock loss that
would occur as the flow approaches the speed of sound, and so
does not contain all the physics required to capture the choked
flow behavior.
Above speeds of 200 krpm, the fit is not as good, meaning that

our model is missing some important physical dynamics for the
higher impeller speeds. Diffuser stall is a phenomenon that is
usually triggered first at higher impeller speeds; therefore, incorpo-
rating this into the model is expected to improve the fit and surge
dynamics at these higher speeds.
Overall, this model has been able to predict a surge line for a

compressor by only considering its geometry. There are inaccura-
cies in the model, but we have made a choice to compromise on
accuracy for the sake of having a predictive model, and these inac-
curacies can be improved upon as more dynamics are added.

Summary and Conclusions
A new method for producing compressor characteristics has been

presented, updating the work on low-dimensional surge models
developed during the 1970s. An original steady-state compressor
model was developed from the mass, momentum, and energy con-
servation laws, along with two factors to model friction and stalling.
Creating the model this way allowed for insight into various fea-
tures observed in a compressor characteristic. For example, stalling
creates a local minimum and maximum in low forward mass flows.
Since the location of this feature correlates to the location of the
surge line in our model, we were able to identify impeller inlet
stall as a route into surge.
The model equations were reduced and simplified to form ODEs

that are quick to solve. If full 3D CFD was used to model flow in a
compressor near surge, this highly complex problem becomes very
computationally expensive. Low-dimensional surge models are a
viable alternative because the need for quick evaluations outweighs
the need for high accuracy, and so, it is vital that this speed of com-
putation is maintained.
Relationships for the friction parameter and stalling parameter

with impeller speed were found by comparison to test data.
These relationships hold across multiple compressor geometries,
allowing the model to be fully deterministic. Therefore, the
model has the ability to be a predictive tool for surge limits of
new compressor designs because it only needs geometric measure-
ments as inputs.
The model showed promising results when compared with com-

pressor map data, and is able to capture reasonably realistic surge
frequencies when included in a low-dimensional surge model. It
is able to identify when oscillations in mass flow and pressure are
likely to appear, and is able to capture a growing amplitude in oscil-
lations as the mass flow is further reduced.

Further work is planned to include diffuser recirculation or stall
into this model. It is generally agreed that diffuser stall can
trigger surge at higher impeller speeds, which will hopefully
improve the accuracy of the model’s surge limit.
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Nomenclature
Mathematical Symbols

f = friction factor
g = acceleration due to gravity
h = channel height
ṁ = mass flow
p = static pressure
q = mass flow per radian
r = radius
u = velocity
A = cross-sectional area
B = Greitzer’s parameter
E = specific energy
F = friction
L = length
Q̇ = specific heat energy
R = specific gas constant
S = surface area
T = temperature
U = specific internal energy
cv = specific heat at constant volume
nb = the number of impeller blades
α = stalling factor
β = flow angle
βB = blade angle
γ = specific heat ratio
κ = isentropic constant
λ = fraction throttle is open
ξT = throttle parameter
ρ = density
τ = stress
Φ = nondimensional mass flow
Ψ = nondimensional pressure
Ω = angular velocity

Subscripts

amb = ambient
c = compressor
D = diffuser
I = impeller
r = radial direction
T = throttle
tip = impeller tip
x = axial direction
θ = tangential direction
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Figure 2-11: Behaviour of stall function, ξ, as mass flow decreases from stall point, ṁB.
We have a monotonically decreasing function which takes a minimum value at ṁ = 0.

2.6 Discussion of Paper 1

As we can see in Fig. 4 of the paper, including incidence losses gives is a cubic-shaped

characteristic with a minimum near zero mass flow.

All the stall function ξ does is change the effective velocity of the system. Without the

stall function, the velocity was ur = ṁ
2πρA and so was linear with mass flow. Whereas,

with the stall the velocity becomes

ur =
ṁ

2πξ(ṁ)ρA
, ξ(ṁ) =

1

1 + â
(

1− ṁ
ṁB

)2 . (2.6.1)

We can deduce from Section 2.4.2, that the pressure is monotonically decreasing with

velocity (as it is monotonically decreasing with unstalled mass flow). Therefore, the

local minimum we see in Paper 1, Fig. 4 must coincide with a local maximum of the

velocity.

Figure 2-11 shows the behaviour of the stall function with mass flow. As mass flow

decreases from the initial stall point, the stall function decreases monotonically.

Therefore, since ur ∝ ṁ
ξ(ṁ) , both the numerator and denominator decrease with a

reduction in mass flow. This balance of behaviours explains why the maximum velocity,

and hence minimum pressure, occurs away from the ṁ = 0 axis.
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Furthermore, as was shown in Paper 1, Fig. 8, this new shape of characteristic can

simulate surge-like behaviour when combined with the nonlinear reduced order model

presented in Section 2.2.

This surge-like behaviour coincides with the positive gradient of the compressor charac-

teristic (between the local minimum (a) and local maximum (c) as labelled in Paper 1,

Fig. 4). This positive gradient only occurs because of our inclusion of incidence losses

into the model. Therefore, incidence loss and the resulting impeller inlet stall is a vital

mechanism for surge.

As we can see from Paper 1, Fig. 8, the mass flow oscillations stay positive for all time.

Therefore this is technically classed as mild surge. However, the simulated amplitudes

of oscillation imply this should be deep surge. This means that the current stall function

may not be using the correct assumptions.

2.6.1 Improvement of Stall Function

From Paper 1, Fig. 8, it appears that the intercept value is too high for our limit cycles

to enter the negative flow regime. The limit cycle appears to retain an almost constant

pressure from the local maximum until it intersects the characteristic just before the

axis. If the intercept value was lower, then it’s possible for the limit cycle to enter the

negative mass flow region before intersecting the characteristic.

This implies that we may have had the wrong condition at ṁ = 0. Since ṁ = 2πξAρur,

we assumed that ṁ = 0 results in ur = 0. However, there is the possibility that ξ = 0

instead. This would mean that at zero flow, incidence losses are at a maximum as the

entire impeller channel has stalled. This agrees with the suggestion from Watson and

Janota [1] shown in Fig. 2-9 where the incidence losses increase monotonically from the

optimal case of flow angle matching the blade angle.

In Section 2.4.3 we derived the form of the stall function using

ṁ

ξAρ
= ur(ṁ) = aṁ3 + bṁ2 + cṁ+ d. (2.6.2)

By no longer requiring ur = 0 at ṁ = 0, we do not assume d = 0, but the other
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conditions:

ṁB

Aρ
= aṁ3

B + bṁ2
B + cṁB + d, (2.6.3)

1

Aρ
= 3aṁ2

B + 2bṁB + c, (2.6.4)

remain valid. As before, we can solve this system for b and c to give

b = −2aṁB −
d

ṁ2
B

, (2.6.5)

c =
1

Aρ
+ aṁ2

B −
2d

ṁB
. (2.6.6)

Substituting these into Eq. 2.6.2 and rearranging for ξ results in

ξ =
1

â
(
ṁ
ṁB

)2
−
(

2â+ d̂
)

ṁ
ṁB

+
(

1 + â− 2d̂
)

+ d̂
(
ṁB
ṁ

) (2.6.7)

where â = aAρṁ2
B and d̂ = d

(
Aρ
ṁB

)
. From this we can see that ξ → 0 as ṁ → 0

provided d 6= 0, and so we have a relatively free choice of d.

If the behaviour of the stall function dominates the behaviour of the velocity, we know

that the stall function decreasing results in an increase of velocity. Since the channel

being fully stalled is a maximum condition, it makes sense that the velocity is also at

a maximum condition here. Therefore, we will assume

dur
dṁ

(0) = 0, (2.6.8)

which is equivalent to choosing d̂ = 1+â
2 .

Therefore, the resulting stall function becomes

ξ =
1

1
2

(
tanβ

tanβB
+ tanβ

tanβB

)
+ â

(
1 + 1

2
tanβ

tanβB

)(
tanβB
tanβ − 1

)2 (2.6.9)

A full derivation of this can be found in Section 3.2 (Paper 2, Appendix A). As we can

see from Fig. 2-12, this new assumption has not dramatically changed the shape of the

stall function. It appears very similar to the original, but now satisfies the ξ(0) = 0

condition as desired.
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Figure 2-12: Behaviour of revised stall function, ξ, as mass flow decreases from stall
point, ṁB. We have a monotonically decreasing function which satisfies ξ(0) = 0.

Figure 2-13 shows the compressor characteristics if we use this new stall function. We

observe that we have a discontinuity at zero flow. This is problematic because it is

unclear how we should define the compressor characteristic at ṁ = 0. Furthermore,

numerical software for solving ODEs can have problems resolving discontinuities so

special care would need to be taken around this point. (See Gear and Osterby [58] for

a discussion of solving ODEs with discontinuities.)

To understand why we have a discontinuity, recall (from Eq.2.4.69 and 2.4.72) that we

Figure 2-13: Resulting compressor characteristic for new stall function. A discontinuity
occurs at ṁ = 0 due to a jump in velocity at this point.
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have

p =
γ − 1

γ

(
EIρ−

ρu2
r

2
+
ρΩ2r2

2

)
(2.6.10)

p =
γ − 1

γ

(
EDρ−

ρu2
r

2
− u2

θ

2

)
(2.6.11)

in the impeller and diffuser respectively.

The new stall function implies that at ṁ = 0 we have a velocity ur 6= 0 as ξ = 0.

However, in reverse flow we have no stall function and so ur = 0 at zero flow. This

jump in velocity explains the jump in pressure.

As we saw in Section 1.2.1, all the previously proposed compressor characteristics have

been smooth with no discontinuities. If we believe this to hold for our characteristic,

then that means energy is lost in some way in the reverse flow regime so that EI and

ED can balance the jump in velocity at zero flow.

Therefore, it is worth taking a more detailed look into the behaviour of flow travelling

in the reversed direction through the compressor. This is the topic of the next chapter.

2.7 Conclusions

In this chapter, we have derived a reduced order model for compressor surge, along

with a throttle and compressor characteristic.

Through the derivation of the steady-state compressor characteristic, we have learned

that friction and incidence losses are key dynamics in order to achieve realistic simula-

tions of a compressor.

Since we have developed loss functions to incorporate the dynamics of friction and

impeller inlet stall, the resulting model depends on two parameters that control the

strength of these losses. In order for this model to be fully predictive, universal rela-

tions need to be found for these parameters. Paper 1 found some relations that are

promising, however due to limits of the amount of available data, we cannot conclude

these relations will hold universally across a variety of compressor sizes.

In Paper 1, we also observed that our model may be too simplistic to predict the surge

line accurately for all impeller speeds. We saw that our model was predicting surge

onset at lower mass flows than the experimental data suggested for the higher impeller
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speeds, and deduced that the inclusion of diffuser recirculation may be needed.

We also noticed that our current model was only capturing mild surge dynamics as

the mass flows remained positive for all times, despite the pressure oscillations having

amplitudes reminiscent of deep surge.

We have proposed an alternative stall function that assumes the impeller channels

are fully stalled at zero flow. This gives a more promising shape of characteristic for

ṁ > 0. However, it results in a discontinuity at ṁ = 0 and so we concluded that a

more detailed look into reverse flow was required.
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Chapter 3

Reverse Flow Region in

Compressor Characteristics

As we discovered in Section 2.6.1, it is important to consider the dynamics of flow

travelling backwards through the compressor. This is an area of research that tends

to be overlooked, but it is important as the shape of the characteristic for ṁ < 0 will

influence the behaviour of deep surge cycles.

3.1 Reverse Flow Model Development

From now on, we will construct the compressor characteristic by two separate models.

The first will be the model developed in the previous chapter, with the new stall

function suggested in Section 2.6.1, for positive mass flows. The second we will develop

in this chapter and will be for negative mass flows.

Figure 3-1 shows how the model developed in Section 2.5 modelled reversed flow. These

are plots with radius so they need to be read from right to left (as the flow is travelling

from the diffuser outlet to the impeller inlet).

There are two main points to note. Firstly, the direction of flow in the diffuser does

not follow the shape of the volute. Instead it is in the same direction as positive flow.

Secondly, the tangential velocity is increasing monotonically until it matches the speed

of the impeller at the impeller-diffuser interface.
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Figure 3-1: Properties of flow at a ṁ = −0.02kg/s for the model developed in Section
2.5. Black lines denote flow in the impeller and grey lines denote flow in the diffuser.

These two points suggest the behaviour of reversed flow simulated by this model is

more reminiscent of a local flow recirculation. Figure 3-2(a) illustrates this.

Suppose the global flow is travelling forwards through the compressor, but some trajec-

tories cannot escape the diffuser or volute, and so recirculate. The blue lines show the

forward flow trajectory. Once this portion of air get sucked back into the diffuser (grey

line), it is being hit by other forward flowing trajectories and hence will be accelerated

to match their speed (assuming no losses due to the collision of air particles). Since the

forward flowing air is faster nearer the impeller, the recirculated air is being accelerated

continually as it travels inwards. Finally, once it enters the impeller (black line) it is

swept up by the impeller blades.

This theory is problematic for a number of reasons. Firstly, there are flaws to the

physics. If air particles are colliding we would expect frictional losses, and hence a rise

in temperature. Also, the centrifugal force of the impeller and the forward travelling

particles would be driving the recirculated particles out of the impeller and diffuser

again, so it is unlikely this recirculated air would ever reach the inlet.

Furthermore, we are looking for the flow dynamics of a global flow reversal. This is

where the pressure is so high at the volute outlet that it drives the air towards the

impeller. This is the case illustrated in Fig. 3-2(b).
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Figure 3-2: (a) Reverse flow behaviour suggested by model developed in Section 2.5.
The blue trajectory is a forward flow simulation, and the grey/black trajectory shows
what happens if this then reverses. (b) Flow behaviour we expect to see for a global
flow reversal.
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In order to simulate this global flow reversal, a different boundary condition needs to be

used for tangential velocity. The previous model assumed that the tangential velocity

at the impeller-diffuser interface would be equal to that of the rotating impeller, but

this need not be the case. Instead we will look for a boundary condition that depends

on the shape of the volute so we know at what angle the flow would enter the diffuser.

Moreover, noticing that we expect there to be a large a jump in tangential velocity at

the impeller-diffuser interface, we can expect shear losses to play an important role for

reverse flow. These shear losses would provide a way to balance the pressure drop at

ṁ = 0 seen in forward flow due to the new stall function (presented in Section 2.6.1).

The paper in the next section derives a new model for reversed flow, including the two

main changes suggested above. It also presents the resulting compressor characteristics

and compares them with experimental data for the reversed flow regime.
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ABSTRACT

Turbochargers are widely used to help reduce the environ-
mental impact of automotive engines. However, a limiting factor
for turbochargers is compressor surge. Surge is an instability
that induces pressure and flow oscillations that often damages
the turbocharger and its installation.

Most predictions of the surge limit are based on low-order
models, such as the Moore-Greitzer model. These models tend to
rely on a characteristic curve for the compressor created by ex-
trapolating the constant speed lines of a steady-state compressor
map into the negative mass flow region. However, there is little
validation of these assumptions in the public literature.

In this paper, we develop further the first-principles model
for a compressor characteristic presented in Powers et al. [1],
with a particular emphasis on reverse flow. We then perform ex-
periments using a 58mm diameter centrifugal compressor pro-
vided by Cummins Turbo Technologies, where we feed air in
the reverse direction though the compressor while the impeller
is spinning in the forwards direction in order to obtain data in
the negative mass flow region of the compressor map.

This demonstrated experimentally that there is a stable op-
erating region in the reverse flow regime. The recorded data
showed a good match with the theoretical model developed in
this paper. We also identified a change in characteristic be-
haviour as the impeller speed is increased which, to the authors
knowledge, has not been observed in any previously published
experimental work.

NOMENCLATURE
A Cross-sectional area
â Stalling factor
B Greitzer’s parameter
det Determinant
E Specific energy
f Friction factor
F Skin friction
g Acceleration due to gravity
h Channel height
J Jacobian
L Length
ṁ Mass flow
nb Number of impeller blades
p Static pressure
Q̇ Heat transfer
q Mass flow per radian
R Specific gas constant
S Surface area per unit volume
T Temperature
tr Trace
u Velocity
β Flow angle
βB Blade angle
δ Thickness of shear layer
γ Specific heat ratio
κ Isentropic constant
λ Second viscosity coefficient
µ Dynamic viscosity

1 Copyright c© 2020 by ASME
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ν Parameter for shear loss
ξ Stall parameter
ξT Throttle parameter
ρ Density
τ Stress
Φ Nondimensional mass flow
Ψ Nondimensional pressure
Ω Angular velocity

Subscripts:
c Compressor
D Diffuser
I Impeller
r Radial direction
s Stalled flow
T Throttle
u Unstalled flow
x Differentiation w.r.t. x
y Differentiation w.r.t. y
θ Tangential direction

Abbreviations:
ODE Ordinary differential equation

FIGURE 1. DIAGRAM INDICATING THE DIMENSIONS GIVEN
IN TABLE 1 [1, 2].

INTRODUCTION
Turbochargers are components that use energy from engine

exhaust gases to compress air prior to entering the engine. Using
compressed air means there is more oxygen per unit volume in
the engine cylinders, so more fuel can be burnt to increase the
power output of that size of engine. Often turbochargers are used

FIGURE 2. SCHEMATIC OF THE COMPRESSION SYSTEM
THAT GREITZER BASED HIS MODEL OF SURGE ON [10].

in combination with a downsized engine because smaller engines
are more environmentally friendly. [2, 3]

With increasingly strict emissions regulations, the perfor-
mance and efficiency of turbochargers is becoming a primary
concern for manufacturers. For automotive turbochargers to per-
form effectively, they require a wide range of mass flows in
which they can operate stably. However, this range is limited
by compressor surge at low mass flows.

During operation at low mass flow rates, it is possible for
a system level flow reversal to occur. When this happens, the
average flow reverses direction and travels from the high pres-
sure region at the compressor outlet to the low pressure region at
the inlet. This flow reversal results in a drop in pressure at the
compressor outlet, and so creates a condition that allows the flow
to travel in the forward direction again. This oscillation in mass
flow and pressure is termed surge [2]. Surge is an aerodynamic
instability that is not only loud and off-putting to drivers, but is
often damaging to the compressor and its installation.

Map based models are a popular method for predicting
surge. These models use a function to describe the steady state
behaviour of a compressor, usually from extending a compres-
sor map beyond the surge point into negative mass flows. There
are many examples of these in the literature [4–9]. The majority
of these are based on a model by Greitzer [10] and Moore [11].
This model consisted of a compressor linked to a throttle via a
pipe and a plenum (see Fig. 2).

The Moore-Greitzer model [10–12] can be written as a sys-
tem of ODEs to represent the pressure and mass flow in the
pipework between the compressor and the throttle:

dΦ
dt

= B(ψc−Ψ) (1)

dΨ
dt

=
1
B
(Φ−ψ−1

T ) (2)

where Φ and Ψ are the nondimensional mass flow and pressure
respectively. The term ψT represents the pressure drop over the
throttle. Typically the orifice equation
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FIGURE 3. CUBIC FUNCTION AND ITS PARAMETERISATION
THAT MOORE AND GREITZER USED AS A COMPRESSOR
CHARACTERISTIC [11].

ψT = ξT 0 +
1

ξ 2
T

Φ2, (3)

[12] is used.
The term ψc is the compressor characteristic, which repre-

sents the pressure rise over the compressor in steady-state con-
ditions. This characteristic is difficult to determine. Koff and
Greitzer [13] performed an experimental study on an axial com-
pressor to determine its shape. They discovered that it was ap-
proximately cubic, so Moore and Greitzer [11] proposed using a
cubic polynomial with parameters that can be fitted to compres-
sor map data, i.e.

ψc = ψc0 +H

[
1+

2
3

(
Φ
W
−1
)
− 1

2

(
Φ
W
−1
)3
]

(4)

where the parameters are explained in Fig. 3. In 2008, Galindo
et al. [14] did a similar experimental study for a small centrifugal
compressor, also producing a cubic-like curve.

Since the compressor map data is contained within the pos-
itive mass flow region, using a cubic effectively extrapolates the
trend into the negative flow region, meaning error can easily be
induced here.

There have been some more theoretical approaches to deter-
mine the compressor characteristic. The majority of those seen
in the literature have involved mean-line or lumped parameter
modelling, e.g. [15–17], but recently Powers et al. [1] developed
a model from first principles. However, there is little evidence
to validate these compressor characteristics in the reverse flow
regime.

The reverse flow region is important because it contributes
to the behaviour of the flow during deep surge cycles. Therefore,
understanding the physics in the reversed flow region better could
help us understand the nature of surge cycles and help mitigate
their damaging behaviour.

Also, a more accurate representation of reverse flow will im-
prove the accuracy of surge models. Surge models are vital for
turbocharger and engine designers because they need to under-
stand the operating regimes of the turbocharger and, more specif-
ically, the limits in which they can operate safely.

The aim of this paper is to perform a more detailed study into
the reversed flow region of the compressor characteristic. Firstly,
we will further develop the model presented by Powers et al. [1],
taking more care over the reversed flow region. Then we will
perform experiments using a 58mm compressor in order to map
this region and look at how the characteristic shape changes over
different operating regimes. Finally, we will compare the experi-
mental results to physical models for compressor characteristics,
focusing in particular on the model developed here.

MATHEMATICAL MODEL
Powers et al. [1] developed a model for the compressor char-

acteristics starting from the fundamental equations for conserva-
tion of mass, momentum (in a rotating frame) and energy:

∂ρ
∂ t

+∇ · (ρu) = 0, (5)

∂
∂ t (ρu)+∇ · (ρ(u⊗u))+2ρ(ΩΩΩ×u)+ρ(ΩΩΩ× (ΩΩΩ× r)) = ρg−∇p+∇ · τ, (6)
∂
∂ t

(ρE)+∇ · (ρuE + pu)−∇ · (τ ·u) = ρQ̇ (7)

respectively, along with the ideal gas law p = ρRT and the as-
sumption of a perfect gas (so the specific heat ratio, γ , is assumed
constant).

This was reduced to a system of 1D ODEs in the radial di-
rection by assuming:

(i) radial impeller blades, so uθ = 0 in the rotating frame, and
(ii) a vaneless diffuser with axisymmetric flow, so ∂

∂θ = 0,

and then averaging over the axial direction.
The resulting ODEs for the impeller were

1
r

∂
∂ r

(rhρur) = 0, (8)

1
r

∂
∂ r

(rhρu2
r )−hρΩ2r =−h

∂ p
∂ r

+hFr, (9)

1
r

∂
∂ r

(
rhρur

(
u2

r

2
+

γ
γ−1

p
ρ
− Ω2r2

2

))
= 0, (10)
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and for the diffuser were

1
r

∂
∂ r

(rhρur) = 0, (11)

1
r

∂
∂ r

(rhρu2
r )−

hρu2
θ

r
=−h

∂ p
∂ r

+hFr, (12)

1
r

∂
∂ r

(rhρuruθ )+
hρuruθ

r
= hFθ , (13)

1
r

∂
∂ r

(
rhρur

(
u2

r

2
+

u2
θ
2

+
γ

γ−1
p
ρ

))
= 0, (14)

where

Fr =
f
2

ρu2
r S (15)

Fθ =
f
2

ρuruθ S (16)

represent skin friction.
A relationship for the friction parameter was found from per-

forming a least squares fit to data:

f = 0.14+5×10−6Ω. (17)

This was validated against different compressor geometries to
show its potential as a universal relationship.

Powers et al. [1] also created a stall function to take into
account how the compressor responds to incidence losses and
any resulting local recirculation. We have deviated from their
work and propose a new stall function, ξ .

Writing

ṁ = ξ Aρur, (18)

we see that ξ A represents the area of the channel that is not
blocked due to stall. Therefore, at ξ = 1 the flow is not stalled
and at ξ = 0 the flow is completely stalled.

We shall assume that, like Powers et al., when the flow stalls,
the velocity is continuous with a continuous gradient. However,
instead of forcing the unstalled flow velocity to be zero at zero
mass flow, we shall assume that the velocity of the unstalled flow
increases with stalling and will be a maximum when the system
is fully stalled.

It may sound counter-intuitive to allow a non-zero velocity
for the unstalled portion of the flow when the average flow is
zero. However, let subscripts u and s denote unstalled and stalled
portions respectively, then

ṁ = Asρ��>
0

us + ���
0

Auρuu = 0. (19)

FIGURE 4. RELATIONSHIP BETWEEN IMPELLER SPEED AND
DEEP SURGE AMPLITUDE FOR STALL PARAMETER â = 1.7.
TEST DATA INDICATED AS CIRCLES HAS BEEN ADDED FOR
COMPARISON.

This shows us that at ṁ = 0, all of the flow is stalled and so have
an average velocity of zero, and none of the flow is unstalled so
it is a valid to have a non-zero velocity at that point.

These assumptions result in

ξ =
1

1
2

(
tanβB
tanβ + tanβ

tanβB

)
+ â
(

1+ 1
2

tanβ
tanβB

)(
tanβB
tanβ −1

)2 , (20)

where â is the parameter that controls the level of stalling (see
Appendix A for full derivation).

Since this is a different function to the stall parameter from
Powers et al. we cannot use their correlation. Surge tests were
performed using the same turbocharger as in the reverse flow
tests below. Using the amplitude of the pressure oscillations dur-
ing a deep surge cycle, we determined that â = 1.7 for this com-
pressor (see Fig. 4). Unlike Powers et al. this is not a universal
relation and so further work is needed to develop a relationship
for the stall parameter so the model developed can remain pre-
dictive.

The stall function created by Powers et al. [1] had a local
minimum in the positive flow region, which implied that the flow
would recover from surge and be stable at a low enough forward
mass flow. However, this new function effectively shifts the lo-
cal minimum in the characteristic so that it is at zero mass flow,
meaning that, once the flow is surging, it will continue to surge
as the mass flow is reduced to zero, and only once the flow is
reversed will it stabilise.

Reverse flow
We shall now make a few small changes to this model to

make it suitable for the reverse flow case. First, it is important to
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note that Powers et al. [1] changed the sign of the friction param-
eter for negative mass flows, even though this wasn’t explicitly
stated, because friction will always oppose motion. Therefore,
for reverse flow the ODEs are

1
r

∂
∂ r

(rhρur) = 0 (21)

1
r

∂
∂ r

(rhρu2
r )−hρΩ2r =−h

∂ p
∂ r

+h f ρu2
r

(
1
h
+

nb

2πr

)
(22)

1
r

∂
∂ r

(
rhρur

(
u2

r

2
+

γ
γ−1

p
ρ
− Ω2r2

2

))
= 0 (23)

for the impeller and

1
r

∂
∂ r

(rhρur) = 0 (24)

1
r

∂
∂ r

(rhρu2
r )−

hρu2
θ

r
=−h

∂ p
∂ r

+h
f
h

ρu2
r (25)

1
r

∂
∂ r

(rhρuruθ )+
hρuruθ

r
= h

f
h

uruθ (26)

1
r

∂
∂ r

(
rhρur

(
u2

r

2
+

u2
θ
2

+
γ

γ−1
p
ρ

))
= 0 (27)

for the diffuser.
The main changes we suggest are related to the boundary

conditions. Powers et al. used the same conditions as forward
flow, i.e. having a known mass flow, ambient pressure, and ambi-
ent density at the impeller inlet, but these will be unrealistic for
the reversed flow regime.

In reality, the density of the air exiting the impeller inlet need
not be the same as ambient air. Instead we can use the condi-
tion that the temperature of the air being fed into the compressor
(i.e. at the diffuser outlet) is constant. This now means we have
to solve a boundary value problem, which can be done via the
shooting method.

Another condition we need to provide is the value for the
tangential velocity entering the diffuser, uθD. The absolute ve-
locity in the volute is given by

u =
√

u2
r +u2

θ . (28)

In forward flow, the volute is designed purely to collect the
air around the diffuser. The area increase in the volute is to ac-
count for the increase in mass being added to the volute as this
happens, therefore the properties of the gas in the volute, e.g. ve-
locity and density, are reasonably constant. Therefore, it seems
reasonable to assume that the velocity and density are unchanged

in the volute in reverse flow conditions too, and so ρ = const. and

u =
√

u2
rD +u2

θD. (29)

We know that, from Eqn. 24, the mass flow at the outermost
radius of the diffuser is given by

ṁ = 2πrDhDρurD = ADρurD. (30)

We also know at the critical area of the volute, A∗, all of
the mass has been collected and will pass through this area with
velocity u. Therefore,

ṁ = A∗ρu. (31)

Equating these gives us

u =
AD

A∗
urD (32)

=⇒ u2
rD +u2

θD =

(
AD

A∗

)2

u2
rD (33)

=⇒ u2
θD =

[(
AD

A∗

)2

−1

]
u2

rD (34)

=⇒ uθD = urD

√(
AD

A∗

)2

−1. (35)

For the geometry of the compressor used for testing in the
following sections, this gives us a flow angle into the diffuser
from the volute of

θ = tan−1
(

uθD

urD

)
= tan−1



√(

AD

A∗

)2

−1


= 39.3o. (36)

However, it is interesting to note that the resulting pressure sim-
ulated in the reverse flow case is not very sensitive to this angle.
Changing the angle between 20o to 60o resulted in a maximum
difference of 5%.

The final change we suggest is the need to account for shear
losses as we go from the diffuser to the impeller. We are consid-
ering flow reversal in the situation where the impeller still rotates
in the conventional direction but the air is travelling from the vo-
lute backwards through the compressor (see left-hand diagram of
Fig. 5). This will result in a shear layer at the impeller-diffuser
interface because of a huge change in tangential velocity. The
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FIGURE 5. SHEAR LAYER OF THICKNESS δ AT THE IMPELLER-DIFFUSER INTERFACE DURING REVERSE FLOW IN STANDARD
GEOMETRY (LEFT) AND AN x-y CO-ORDINATE SYSTEM (RIGHT).

air not only changes direction but is accelerated to the large rota-
tional speed of the impeller in a very short radial distance. This
will result in a large amount of viscous dissipation, which was
considered small and so neglected during the derivation of the
ODEs for the impeller and diffuser.

To see what happens over this shear layer, let’s consider the
impeller-diffuser interface in the x-y coordinate system shown in
Fig. 5. In this case, we can assume that all variables are indepen-
dent of x. This means that conservation of mass, momentum and
energy become

(ρv)y = 0 (37)

ρvuy =−px +µuyy (38)
ρvvy =−py +µvyy (39)

ρvey =−pvy +λv2
y +µu2

y +2µv2
y (40)

respectively, where subscripts have been used to denote differen-
tiation [18]. Let’s assume that the flow across the shear layer is
incompressible, so conservation of mass leads to vy = 0. Then
conservation of energy becomes

ρv
∂e
∂y

= µ
(

∂u
∂y

)2

(41)

=⇒ ρv
γ−1

∂
∂y

(
p
ρ

)
= µ

(
∂u
∂y

)2

(42)

=⇒ v
γ−1

∂ p
∂y

= µ
(

∂u
∂y

)2

. (43)

We can approximate these derivatives by assuming the shear
layer has a thickness δ to give,

v
γ−1

∆p
δ

= µ
(

∆u
δ

)2

(44)

=⇒ ∆p =
µ(γ−1)

vδ
(∆u)2. (45)

Therefore, returning to previous notation we have a pressure
jump of

pI = pD−ν(uθ I−uθD)
2, (46)

at the impeller-diffuser interface, where

ν =
µ(γ−1)

urδ
(47)

is our shear loss parameter.
For the model presented here, we will assume that the pa-

rameter ν is always finite. For this to be the case, ur 6= 0 and
so some form of transport always occurs across the impeller-
diffuser interface. We believe this is a reasonable assumption
because, due to turbulent flow, we would expect some flux across
the boundary even when the average mass flow is zero. However,
there is scope for further research into the form of this shear loss.

To determine ν we will assume that the width of the shear
layer δ is such that there is continuity in static pressure at zero
mass flow between the forward flow and reverse flow models.
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FIGURE 6. RELATIONSHIP FOR SHEAR PARAMETER WITH
IMPELLER SPEED. THE POINTS IDENTIFY THE PARAMETER
VALUE OBTAINED WHERE THE STATIC PRESSURE AT ZERO
FLOW IN THE FORWARD FLOW MODEL AND REVERSE FLOW
MODEL ARE EQUATED.

This tells us

ν ∝ u2
θ (48)

(see Fig. 6), which makes sense because it is likely that shear
losses increase with the turbulent kinetic energy of the system.

FIGURE 7. IMPROVED COMPRESSOR CHARACTERISTIC
FROM FIRST PRINCIPLES. THE THROTTLE CHARACTERISTIC
FROM POWERS ET AL. [1] IS ALSO SHOWN.

All of the above modifications gives us the compressor char-
acteristic shown in Fig. 7.

Quasi-steady model
These compressor characteristics can be used within quasi-

steady models for surge. For example, Powers et al. [1] devel-
oped the following model:

dṁ
dt

=
A
L
(pc(ṁ)− p)+

κ
1
γ

AL

(
ṁ2

pc(ṁ)
1
γ
− ṁT (p)2

p
1
γ

)
, (49)

d p
dt

=
γκ

1
γ

AL
p

γ−1
γ (ṁ− ṁT (p)), (50)

where ṁT is the throttle characteristic and pc is the steady-state
compressor characteristic.

It is important to understand that the compressor character-
istic, though important, is not the only ingredient needed to un-
derstand the surge phenomenon. We know that surge is a system
level phenomenon and so depends on the geometry of the test
rig pipework, but it is only here in the quasi-steady model that
this comes into play. In this case, the terms A and L are the
cross-sectional area and length of the pipework between the tur-
bocharger and the throttle valve, but it is possible to adopt quasi-
steady models that take into account inlet geometry as well.

PROCEDURE
To validate this model a turbocharger with dimensions given

in Table 1 was tested using the gas stand facilities at the Univer-
sity of Bath.

In the facility, compressed air was supplied through two sep-
arate electrically heated flow paths. Gate valves were used to

TABLE 1. GEOMETRIC DETAILS OF THE COMPRESSOR USED
FOR TESTING. FIGURE 1 CAN BE REFERRED TO FOR EXPLA-
NATION OF THE DIMENSIONS.

Number of blades 6+6

Hub diameter 13.5 mm

Shroud diameter 41 mm

Wheel tip diameter 58 mm

Diffuser height 3.15 mm

Diffuser length 16.7 mm

Diffuser area ratio 2.48

Critical area of housing 7 cm2
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FIGURE 8. SCHEMATIC OF THE GAS STAND USED TO TEST
THE COMPRESSORS.

control the flow. One flow was used to drive the turbine and
was in the conventional direction, entering at the turbine inlet.
This was the predominant means of controlling the speed of the
turbocharger. The other compressed air stream was fed in the re-
verse flow direction through the compressor, entering at the com-
pressor outlet. See Fig. 8 for a schematic of the test rig set-up.

To run the experiment, air was let into the turbine side to
drive the rotor. The valve feeding air to the compressor outlet
remained closed so there was no air going through the compres-
sor side. This led to surging behaviour with an audible pulsating
flow. The turbine speed was limited to approximately 20,000 rpm
so not to cause damage to the compressor.

Compressed air was then fed into the compressor side in the
reverse direction by opening the valve. This stopped the surging
behaviour and stabilised the flow.

The turbine speed was then increased to the desired values.
The compressor side valve was adjusted to keep the flow in the
stable backflow regime throughout the testing. At fixed speeds,
the compressor side mass flow was slowly increased from 15g/s
to 80g/s to map out the reversed flow characteristic. This was
repeated multiple times and for multiple different speeds.

A high-frequency pressure measurement was recorded to
check the steadiness of the flow. Since the flow was found to
be steady, measurements were taken at 10Hz of the mass flow,
temperature and pressure on the compressor side. A V-cone was
used to measure the mass flow, PRTs for the temperature, and
pneumatically averaged pressure transducers for static and to-

tal pressure measurements. The locations and accuracy of these
measurements are indicated in Fig. 8.

RESULTS AND DISCUSSION
The first interesting observation was that the flow was surg-

ing when the valve feeding air into the compressor was fully
closed. A snapshot of this is shown in Fig. 9. Therefore, it is
highly probable that the flow dynamics are continually unsteady
between zero flow and the surge line in forward flow. Combining
this with the fact that the flow dynamics at negative mass flows
was observed to be steady, shows us that a switch of stability has
to occur at zero mass flow. Therefore, this supports our new stall
function with a local minimum at zero flow.

The next important result to recognise is that the flow is
steady in the reverse flow region. Consider the Moore-Greitzer
model (Eqns. 1 & 2) [12]:

dΦ
dt

= B(ψc−Ψ) = f (Φ,Ψ), (51)

dΨ
dt

=
1
B
(Φ−ψ−1

T ) = g(Φ,Ψ). (52)

Computing the Jacobian, J, allows us to determine regions of
stability for this model:

J =

[
d f
dΦ

d f
dΨ

dg
dΦ

dg
dΨ

]
=


B dψc

dΦ −B
1
B − 1

B

(
dψT
dΦ

)−1


 . (53)

FIGURE 9. SURGING BEHAVIOUR OF THE COMPRESSOR
WHEN OPERATING AT ZERO MASS FLOW.
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FIGURE 10. RECORDED COMPRESSOR MAPPINGS IN NEGATIVE MASS FLOW REGION AT DIFFERENT IMPELLER SPEEDS. LEFT
SHOWS THE RAW DATA AND THE RIGHT SHOWS A COMPARISON BETWEEN THE DATA AND THE MODEL. THEORETICAL ASYMP-
TOTES FOR THE DATA HAVE BEEN ADDED IN GREY TO THE RIGHT HAND PLOT. THE SPEEDS INDICATED ON EACH LINE ARE IN
KRPM.

The system is stable if detJ > 0 and trJ < 0 [19]. In our case,

detJ = 1− dψc

dΦ

(
dψT

dΦ

)−1

, (54)

trJ = B
dψc

dΦ
− 1

B

(
dψT

dΦ

)−1

. (55)

The surge models in literature all have a throttle characteris-
tic with a positive gradient (see Fig. 7). Also, as most models are
based on the cubic characteristic of Moore and Greitzer (Eqn. 4)
they tend to assume a negative gradient of the compressor char-
acteristic. The model we developed above also has this feature
of a negative slope in the reverse flow region.

This means that

dψT

dΦ
> 0>

dψc

dΦ
(56)

=⇒ dψc

dΦ

(
dψT

dΦ

)−1

< 1 (57)

=⇒ detJ > 0 (58)

and

dψT

dΦ
> 0,

dψc

dΦ
< 0 (59)

=⇒ trJ = B
dψc

dΦ
− 1

B

(
dψT

dΦ

)−1

< 0 (60)

so having a negative gradient of the compressor characteristic re-
sults in a mathematically stable system and hence steady flow. So
observing experimentally stable flow supports compressor char-
acteristics having a negative gradient in the negative mass flow
region.

The left-hand plot of Fig. 10 shows the raw test data obtained
in the pressure-mass flow plane at different impeller speeds. The
right-hand plot shows how this data compares to the model devel-
oped in the previous sections. We can see that we achieve a good
quantitative fit to our model for all points, except the near-zero
points at higher impeller speeds.

The 85krpm and 95krpm speed lines also have a good qual-
itative fit because they share the same quadratic-like shape that
our model predicts. Therefore, the model we developed above
must capture the predominant physics going on in reverse flow.

Looking closely at the raw data, we can see a gradual change
in shape of the reverse flow characteristic as the impeller speed
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FIGURE 11. POSSIBLE DEEP SURGE TRAJECTORY FOR HIGH
IMPELLER SPEEDS.

increases. We can see that, for 105krpm and 115krpm, the data
points appear to be tending to a vertical asymptote close to zero
flow. These possible asymptotes have been added in grey to the
right-hand plot in Fig. 10. This is the first time something like
this has been recorded in literature.

We note here that the V-cone used to measure the mass flow
was within the measurement range but reaching the lower limit
at which we would see ±0.5% accuracy. However, the pressure
sensor will still be accurate in this range so the characteristic
shapes observed are valid with some possible variation in the
location of this vertical asymptote.

This asymptote suggests that, at high impeller speeds, there
is a minimum reverse mass flow required to overcome the op-
eration of the compressor in steady state. This is effectively
a rotor head because pressure is created due to the rotation of
the impeller. This rotor head will be larger for higher rotational
speeds. This explains why the theoretical asymptote for 115krpm
crosses 1bar pressure at a larger negative flow rate than 105krpm:
a higher fluid momentum is required to overcome the rotor head.

It is possible that a different form of the shear loss to Eqns.
46-47 would allow the model to capture this asymptotic be-
haviour. For example, we assumed ν to be finite but relaxing
this assumption would allow for the possibility of asymptotes
developing near zero flow.

Having this vertical asymptote at near-zero mass flow would
likely cause the deep surge cycles to have large pressure ampli-
tudes since the trajectories of surge cycles tend to track the math-
ematically stable regions of the compressor characteristic closely
(see e.g. [1,10,12]). Therefore, the trajectory tracking the reverse
flow part of this observed compressor characteristic will include

FIGURE 12. REPEATED RUNS OF TESTING FOR DIFFERENT
IMPELLER SPEEDS. TWO IDENTICAL COMPRESSORS WERE
TESTED (ONE SHOWN IN GREY AND ONE IN BLACK). THERE
ARE NATURAL VARIATIONS IN THE PRODUCT WHICH RESULT
IN A SHIFT, BUT THE CHANGE IN CHARACTERISTIC SHAPE IS
VISIBLE IN BOTH. THE TEMPERATURE (IN K) FOR EACH OF
THESE IS SHOWN IN THE PLOTS UNDERNEATH.

transient dynamics passing through near atmospheric pressure
values, as shown in Fig. 11. This large amplitude pressure os-
cillation would explain why surge cycles can be far more violent
at higher speeds than lower ones.

Being able to model this reverse flow phenomenon is really
important because modelling is the first step in the management
of a system. From there it might be possible to optimise the
system to reduce the violence of deep surge cycles.

Figure 12 shows multiple runs overlayed for the 85krpm
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and 115 krpm speed lines, the temperature at each of these runs
is shown below them. These runs were performed on different
days, with the test cell starting cold and starting warm. For low
impeller speeds the repeatability was good. However, the vari-
ability in the repeats increased with impeller speed.

From looking at the plots of temperature, we believe that this
is not the cause of the variability. There is a large variability in
the temperature of the points at both speeds, but only minimal
change in the repeat runs for 85krpm. If it were the tempera-
ture, we would expect to see the variability in both 85krpm and
115krpm.

During testing, we noticed that the main cause of variation
seemed to be the starting condition. We usually started at low
mass flows and swept gradually upwards to larger ones, but start-
ing part way up this sweep gave us different results initially. This
could mean that either (i) the system itself is sensitive, or (ii) the
two types of dynamics creating the change in characteristic shape
are interacting or can be observed at the same mass flow depen-
dent on the starting conditions.

It is interesting to note that the highest temperatures
recorded for 115krpm coincide with the points at which we get
this transition from the quadratic-like shape to the asymptotic
behaviour. Therefore, any physical phenomenon that causes this
transition appears to result in a large rise in temperature.

We tested two identical turbochargers during these reversed
flow experiments and we have plotted the results from both on
Fig. 12. There is standard manufacturing variability between
the two turbochargers, but it is interesting to note that both tur-
bochargers observed this change in characteristic shape with im-
peller speed.

We would have liked to obtain results at higher impeller
speeds. However, pushing the turbine to higher speeds while
maintaining the reversed flow conditions in the impeller leads to
catastrophic failure of the turbocharger (see Fig. 13). We also
decided not to test at larger negative mass flows due to the risk
of causing a failure, because the temperature of the system was
reaching values over 200oC.

FIGURE 13. TURBOCHARGER FAILURE AS A RESULT OF
TESTING AT 135 KRPM.

CONCLUSIONS
The majority of surge models for turbochargers rely on a

steady-state compressor characteristic that is extrapolated into
the reverse flow region. We have conducted experiments to mea-
sure the characteristic in the region of negative mass flows. We
have shown that the flow operates stably in this case, which pro-
vides supporting evidence for the models like the Moore-Greizter
model.

We further developed the model by Powers et al. [1], tak-
ing care of the dynamics and boundary conditions that hold in
reversed flow conditions. We suggested a new stall function that
results in a characteristic with a local minimum at zero flow, and
have provided supporting experimental evidence for this.

We experimentally identified a change in characteristic
shape as the impeller speed increases. This is the first time such
a change has been recorded, and it suggests that the physical dy-
namics of the flow change at high impeller speeds at near-zero
flow.

The model in the reverse flow regime showed excellent
agreement to the experimental data. However, the model doesn’t
currently capture the change in characteristic shape. This phe-
nomenon is likely to be caused by a rotor head, and further work
is planned to incorporate this into the mathematical model by
using a different form of shear loss at the impeller-diffuser inter-
face.
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Appendix A: Derivation of Impeller Stall Function
When impeller inlet stall occurs, we assume this causes a

blockage within the channel (see Fig. 14). To represent this
blockage we create a stall function, ξ , where ṁ = ξ Aρur. This
means that ξ A represents the area of the channel that is not
blocked due to the stall, and so is the area that is available for
the flow to pass through.

FIGURE 14. IMPELLER CHANNELS IN UNSTALLED (LEFT)
AND STALLED (RIGHT) CONDITIONS [1].

If β is the angle of the flow entering the impeller, and βB is
the impeller inlet blade angle, then we assume stall occurs in the
impeller only for β > βB and is smoothly increasing in severity
until a maximum at zero flow. This implies that ξ = 1 when
β = βB and ξ = 0 when ṁ = 0 (i.e. the entire channel is blocked
due to stall, so the effective area is zero).

We can find the stall function by considering the velocity as
a function of the mass flow, i.e. ur(ṁ) = ṁ

ξ Aρ . For ξ to result in
a smooth function, we assume that at β = βB

ur(ṁB) =
ṁB

Aρ
, (61)

dur

dṁ
(ṁB) =

1
Aρ

. (62)

For the velocity to reach a maximum at zero flow, we get that

dur

dṁ
(0) = 0. (63)

We desire a free parameter in the stall function in order to set
the strength of this stall based on experimental data. Therefore,
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with three conditions and a free parameter, the simplest function
we can use to describe the stalled velocity is a cubic:

ur = aṁ3 +bṁ2 + cṁ+d. (64)

Differentiating this gives

dur

dṁ
= 3aṁ2 +2bṁ+ c. (65)

Therefore, Eqn. 63 leads to c = 0 and Eqn. 62 gives us

3aṁ2
B +2bṁB =

1
Aρ

(66)

=⇒ b =
1

2AρṁB
− 3

2
aṁB. (67)

Finally, Eqn. 61 gives us

aṁ3
B +

(
1

2AρṁB
− 3

2
aṁB

)
ṁ2

B +d =
ṁB

Aρ
(68)

=⇒ d =
ṁB

2Aρ
+

a
2

ṁ3
B. (69)

Therefore, the stalled velocity has the form

ur(ṁ) = aṁ3 +
(

1
2AρṁB

− 3
2 aṁB

)
ṁ2 +

(
ṁB
2Aρ + a

2 ṁ3
B

)
(70)

=⇒ ṁ
Aρξ = aṁ3 +

(
1

2AρṁB
− 3

2 aṁB

)
ṁ2 +

(
ṁB
2Aρ + a

2 ṁ3
B

)
(71)

=⇒ 1
ξ = (aAρṁ2

B)
ṁ2

ṁ2
B
+
(

ṁ
2ṁB
− 3

2 (aAρṁ2
B)

ṁ
ṁB

)
+
(

ṁB
2ṁ +

(aAρṁ2
B)

2
ṁB
ṁ

)
. (72)

Let â = aAρṁ2
B, then

1
ξ
= â

ṁ2

ṁ2
B
+

(
1
2
− 3

2
â
)

ṁ
ṁB

+

(
1
2
+

1
2

â
)

ṁB

ṁ
(73)

=⇒ 1
ξ = 1

2

(
ṁ

ṁB
+ ṁB

ṁ

)
+ â
(
1+ 1

2
ṁB
ṁ

)( ṁ
ṁB
−1
)2
. (74)

Finally notice that

ṁ
ṁB

=
Aρur

AρuB
r
=

ur

Ωr
Ωr
uB

r
=

tanβB

tanβ
, (75)

so the stall function becomes

ξ =
1

1
2

(
tanβB
tanβ + tanβ

tanβB

)
+ â
(

1+ 1
2

tanβ
tanβB

)(
tanβB
tanβ −1

)2 . (76)
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Figure 3-3: (Corrected) Relationship for shear parameter with impeller speed. The
points identify the parameter value obtained assuming continuous static pressure at
ṁ = 0. This follows a quadratic trend, implying shear losses are proportional to
turbulent kinetic energy.

3.2.1 Paper 2 Addendum

Please note that there is a sign error in Eq. 46, this should read

pI = pD + ν(uθI − uθD)2. (3.2.1)

.

Also, there was a computational error in the parameter fitting for the shear loss shown

in Fig. 6. Figure 3-3 shows the correct values. These values are slightly larger than

the ones presented in the paper, but the trend is still the same so does not affect the

results or conclusions of the paper.

3.3 Discussion of Paper 2

Figure 3-4 shows the flow properties for the new reversed flow model. We now observe

the behaviour we would expect for a global flow reversal.

Again, these plots need to be read from right to left as the flow is travelling from large

radii to small radii. The flow now enters the diffuser at an angle determined by the

shape of the volute. Therefore, at the impeller-diffuser interface the tangential velocity

changes from a small negative value to a large positive value as contact is made with
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Figure 3-4: Properties of flow at a ṁ = −0.02kg/s for the model developed in Section
3.2. Black lines denote flow in the impeller and grey lines denote flow in the diffuser.

the impeller blades.

There is also a shear layer that acts instantaneously at the impeller-diffuser interface.

The shear losses produce extra heat, which is why there is a sudden rise in temperature.

There is also a jump in pressure because the flow satisfies the state equation p = ρRT .

One of the interesting things about the reversed flow regime, is that it is stable despite

being an off-design condition with complex flow dynamics.

Figure 3-5 shows our model simulating the experimental reversed flow testing performed

in Paper 2. For a typical surge experiment, the throttle valve would exit into ambient

air, and so the intercept of the throttle curve is approximately 1 bar. However, since we

are feeding compressed air into the compressor outlet, this is equivalent to having a very

high pressure at the outlet of the throttle valve. Therefore, the throttle characteristic

has shifted vertically to account for this.

We can see that this system is stable because the trajectory moves to the operating

point (the intersection between the compressor and throttle characteristic) and stays

there for all time.

In Paper 2, we showed that the mathematical stability of the system depended on the

gradient of the compressor and throttle characteristics. However, the mathematical
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Figure 3-5: Simulation of stable reverse flow: the trajectory tends towards the stable
operating point and stays there for all time. The throttle characteristic has an intercept
value equal to that of the compressed air feed used to supply the compressor outlet.

stability does not take into account the stress being applied to the components of the

turbocharger. Thus, despite the system being mathematically stable, it is often not

possible to operate in this region because the stress applied to the shaft connecting the

compressor impeller and the turbine rotor is enough to cause failure.

The other interesting result is the potential for asymptotic behaviour occurring for

higher speeds. This is the first time such behaviour has been observed. However,

experimentally measuring the reverse-flow region of the compressor characteristic is a

very uncommon process, so there is little data available for comparison.

As discussed in Section 1.2.1, Galindo et al. [31] performed this experiment but for a

much smaller centrifugal compressor. We saw in Fig. 1-11 that they measured cubic-

shaped characteristics. However, looking closely at the spread of data points, the

smallest measured negative mass flow point is further from ṁ = 0 for higher speeds.

This suggests that Galindo et al. also had difficulty obtaining points close to ṁ = 0 for

higher impeller speeds. So there is some support for there being a minimum negative

mass flow required to overcome the centrifugal force of the impeller.

However, this asymptotic behaviour may not be fundamentally caused by the shape of

the compressor characteristic, and be more of a system level phenomenon.
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3.4 Conclusions

In this chapter we have derived a model for flow travelling in the reverse direction

through a centrifugal compressor. We recognised that the model in Section 2.5 treated

flow reversal in a way that is similar to local flow recirculation, but we were after the

properties of the compressor for when global flow reversal occurred.

We created a new boundary condition for tangential velocity, based on the geometry

of the volute. We also incorporated a shear layer at the impeller-diffuser interface.

We combined this new reverse flow model with the forward flow model from Section

2.5 using the new form of stall function developed in Section 2.6.1. This has resulted

in a cubic-shaped compressor characteristic with a local minimum at zero flow. This

characteristic is very similar in shape to those commonly used in literature (see Section

1.2.1) but has the advantage of being made from first-principles.

We also discovered possible asymptotic behaviour in the negative flow regime while

undertaking experimental work. This could mean the compressor characteristic itself

should contain an asymptote, or that there is some system level phenomenon that

changes the behaviour of simulations for low mass flows.

The assumption that our compressor characteristic is continuous at zero flow is actively

included in the model developed in Section 3.2 via the choice of the shear loss parameter

ν. Therefore, it is possible to develop a model for the compressor with a different

assumption, which would allow asymptotes to occur.

However, having a continuous curve means we do not have to deal with discontinuous

ODEs while simulating surge. Furthermore, the majority of centrifugal compressor

characteristics proposed in literature are smooth. Therefore, for the next chapter, we

will continue to use this assumption.
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Chapter 4

Surge Model with Quintic-shaped

Compressor Characteristics and

Spatial Effects

As discussed in Section 2.5, we believe that including diffuser recirculation into the

model for the compressor characteristic may improve the prediction of the surge limit

for higher impeller speeds. Hence, the main focus of this chapter is on including this into

our reduced surge model, and evaluating its performance in comparison to experimental

data.

In order to get a realistic comparison to experimental data, we need to model the

experimental test rig in space and time so we can simulate the behaviour of mass flow

and pressure at locations equivalent to the sensor locations. Therefore, this will require

us to solve a Partial Differential Equation (PDE) system.
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4.1 PDE Form of the Reduced Surge Model

Recall that, in Section 2.2, we derived two PDEs (Eqs. 2.2.38 and 2.2.39) that simulated

the mass flow and pressure of any constant-area, frictionless pipe. These were

∂p

∂t
= −γκ

1
γ

A
p
γ−1
γ
∂ṁ

∂x
, (4.1.1)

∂ṁ

∂t
= −A∂p

∂x
− κ

1
γ

A

∂

∂x

(
ṁ2

p
1
γ

)
. (4.1.2)

One way to solve these PDEs is by the Method of Lines (see for example [59]), where

a discretisation to the x variable is applied. This results in a system of ODEs for mass

flow and pressure at every point in the spacial discretisation. These ODEs can then be

solved numerically as before using Runga-Kutta methods.

Suppose we have a regular grid of K points in the x direction, with grid spacing ∆x.

Applying a centred difference discretisation to our PDEs results in

∂pj
∂t

=
γκ

1
γ

A
p
γ−1
γ

j

ṁj−1 − ṁj+1

2∆x
, (4.1.3)

∂ṁj

∂t
= A

pj−1 − pj+1

2∆x
+
κ

1
γ

A

1

2∆x


ṁ

2
j−1

p
1
γ

j−1

−
ṁ2
j+1

p
1
γ

j+1


 , (4.1.4)

for j = 2, ...,K − 1. To compute
∂ṁj
∂t and

∂pj
∂t at j = 1 and j = K we would use first

order differences, for example,

∂p1

∂t
=
γκ

1
γ

A
p
γ−1
γ

1

ṁ1 − ṁ2

∆x
, (4.1.5)

so we do not require values from outside the domain.

Notice that Eq. 4.1.3 states that p only depends on the neighbouring grid points through

ṁ. Similarly, Eq. 4.1.4 states that the linear contribution to ṁ depends on p only at its

neighbours. Therefore, it makes sense to set up a staggered grid to numerically solve

these PDEs.

Suppose K is even, and we have boundary conditions for p1 and ṁK . Then solving

on a staggered grid would work by solving Eq. 4.1.3 for p on j = 2, 4, ...,K and Eq.

4.1.4 for ṁ on j = 1, 3, ...,K − 1. To be able to compute Eq. 4.1.4, the values of ṁ on

j = 2, 4, ...,K − 2 are found by linearly interpolating the neighbouring points.
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Figure 4-1: Model set up for simulating surge behaviour. Both the inlet and outlet
pipes are modelled using the specified boundary conditions. The numerical solution is
computed on a staggered grid: white points indicate locations where the pressure PDE
is solved and grey points indicate where the mass flow PDE is solved.

The specification of boundary conditions informs us of whether we require K to be

odd or even, and which of Eq. 4.1.3 or 4.1.4 are solved on the even or odd grid points.

Table 4.1 summaries this.

Figure 4-1 shows a simple schematic of the test facility we used to experimentally record

surge behaviour. Measurements we taken at locations both in the inlet pipe and outlet

pipe to the compressor, so we need to model both pipes.

Suppose the inlet pipe is from j = 1, ..,M and the outlet pipe is from j = M + 1, ..., N .

In the test facility, the inlet pipe was open to the room, and so we can set the boundary

condition as p1 = pamb. We also know that the compressor sits between M and M + 1,

meaning that

pM+1 = pc(ṁM+1, pM ), (4.1.6)

where pc is the steady-state compressor characteristic. We could use this expression to

set a constraint on either pM+1, pM or ṁM+1.

Boundary conditions K Eq. 4.1.3 Eq. 4.1.4

p1 and ṁK Even j = 2, 4, ...,K j = 1, 3, ...,K − 1
p1 and pK Odd j = 2, 4, ...,K − 1 j = 1, 3, ...,K
ṁ1 and pK Even j = 1, 3, ...,K − 1 j = 2, 4, ...,K
ṁ1 and ṁK Odd j = 1, 3, ...,K j = 2, 4, ...,K − 1

Table 4.1: Requirements on number of points, K, in the discretisation, as well as which
equations are solved on which grid points, for each possible pair of boundary conditions.
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Notice that, if we picked an arbitrary pM+1 (for a given pM ), we could identify multiple

ṁM that would result in this pressure. Therefore, it is best that we do not invert this

function, and so use this condition to set pM+1.

Furthermore, to allow the compressor to operate freely, we wish to keep ṁM+1 and pM

as free variables so the boundary condition we specify at M has to be a restriction on

ṁM . We know that a compressor operating in steady-state has a constant mass flow

across it. Therefore, we can set ṁM = ṁM+1.

Finally, at N , we have the throttle and so

ṁN = ṁT (pN ) (4.1.7)

holds. The throttle characteristic is a bijection (i.e. each mass flow maps to a unique

pressure and vice versa), and so it does not matter whether this boundary condition is

used to constrain mass flow or pressure.

Referring to Tab. 4.1, these boundary conditions require Eq. 4.1.3 (Eq. 4.1.4) to be

solved on even (resp. odd) grid points for both pipes. We also have the requirement

that M is even, but N can be any integer due to the flexibility of condition 4.1.7.

Another advantage of using a staggered grid is that this system can be related to

previously mentioned ODE systems. Suppose we do not have the inlet pipe, so M = 0

and pM = pamb. Then if we set N = 3, ∆x = 1
2L2 we get

∂ṁ1

∂t
=

2A

L2
(pc(ṁ1)− p2) +

2κ
1
γ

AL2


 ṁ2

1

pc(ṁ1)
1
γ

− (ṁ1 + ṁ3)2

4p
1
γ

2


 , (4.1.8)

∂p2

∂t
=
γκ

1
γ

AL2
p
γ−1
γ

2 (ṁ1 − ṁ3), (4.1.9)

∂ṁ3

∂t
=

2A

L2
(p2 − pT (ṁ3)) +

2κ
1
γ

AL2


(ṁ1 + ṁ3)2

4p
1
γ

2

− ṁ2
3

pT (ṁ3)
1
γ


 , (4.1.10)

which are equivalent to the ODEs in Greitzer’s 1976 paper [17], once the nonlinearity
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is removed (see Eqs. 1.2.7 - 1.2.9). Furthermore, taking N = 2, ∆x = L2 we get

∂ṁ1

∂t
=

A

L2
(pc(ṁ1)− p2) +

κ
1
γ

AL2


 ṁ2

1

pc(ṁ1)
1
γ

− ṁT (p2)2

p
1
γ

2


 , (4.1.11)

∂p2

∂t
=
γκ

1
γ

AL2
p
γ−1
γ

2 (ṁ1 − ṁT (p2)). (4.1.12)

which is identical to the ODE form of the reduced order surge model developed in

Section 2.2.

4.2 Compressor Characteristic with Diffuser Recircula-

tion

Diffuser recirculation is a local flow reversal within the compressor. The air close to the

stationary housing that covers the rotating impeller can leak between impeller channels

and usually exits the impeller more tangentially than the bulk flow. At high impeller

rotational speeds, and low mass flows, this flow can become so tangential that it can’t

escape from the diffuser and gets swept back into the impeller.

Similarly to impeller incidence, this can be modelled as a blockage. Therefore, we

define a stall function of the form (Eq. 2.6.9) to represent this blockage, i.e.

η =
1

1
2

(
tanα
tanα∗ + tanα

tanα∗
)

+ b̂
(
1 + 1

2
tanα
tanα∗

) (
tanα∗
tanα − 1

)2 , (4.2.1)

where α is angle of the bulk flow entering the diffuser, and α∗ is the angle of the bulk

flow at which this flow recirculation initialises. Notice that η restricts the area in the

axial direction, whereas the stall due to impeller incidence losses, ξ(β), restricts the

area in the tangential direction.

The main difficulty with including diffuser recirculation into the model is the interaction

between the two stall functions, ξ and η. Since the flow in the impeller will impact the

flow in the diffuser, it is clear that impeller stall will affect the amount of diffuser stall.

However, the impact of diffuser recirculation on the impeller inlet flow angle is not

obvious. Therefore, for simplicity, we will only assume a one-way interaction. Figure

4-2 shows how this one-way interaction can be implemented.

In this case, the impeller inlet stall is determined, and the impeller is run with this
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Figure 4-2: Flow chart showing how both impeller inlet stall and diffuser stall are
implemented in the steady-state model for the compressor. Impeller incidence has the
ability to affect diffuser recirculation, but not vice versa. Subscript 0 denotes an initial
value.

stalled area to determine the flow angle into the diffuser. The diffuser stall is then

determined and the stalled area recomputed to account for this. The entire system

(both impeller and diffuser) are then run with this stalled area As to simulate the

dynamics.

It is possible to allow the diffuser stall to impact the impeller inlet angle and iteratively

solve to find the stalled area, but this would add extra complexity and computation

time.

The paper in the next section presents the resulting compressor characteristics once

diffuser recirculation is incorporated into the model. It considers how to define the

critical angle α∗, and the stall factor b̂. It also extends the compressor model to

include some effects of the volute in order to improve the choked-flow properties.

Finally, the paper looks at simulated dynamics of the entire compression system when

this characteristic is incorporated into the PDE model above, and compares these to

experimental data.
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Abstract

Centrifugal compressors are used in many applications, including micro-gas
turbines, automotive turbochargers, and air-conditioning. Compressor surge
is an instability that occurs at low flow rates that is often damaging to the
compressor and its installation. In particular, the incipient surge regime is
known to produce noise characteristics that cause problems with customer
acceptance. It is therefore important to be able to predict both incipient
and deep surge onset which has historically only been possible to assess
experimentally.

Powers et al. [1, 2] have developed a model for the compressor charac-
teristic from first-principles so that surge could be predicted without the
reliance on costly testing. In this paper, we will extend their work to include
diffuser recirculation and show a new quintic-like shape for the compressor
characteristic that is able to differentiate between incipient and deep surge.

We will then use this model to simulate the surge behaviour observed on
a test rig. We develop a model that allows variations in both space and time
to capture the wave dynamics in the pipework. We explore how the system
evolves from stable operation, through incipient surge, into deep surge. This
model is validated via experiment conducted at the University of Bath.

1Please address all correspondence to this author. Email: k.h.powers@bath.ac.uk

Preprint submitted to Elsevier 24th February 2021
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The potential of this model to predict both surge regimes will allow en-
gineers to better design centrifugal compressors, and match them to partic-
ular applications to avoid problematic surge behaviour, in advance of exper-
imental tests.

Keywords: Surge, Centrifugal/Radial Compressors, Compressible Fluids,
Reduced order modelling, Ordinary Differential Equations

Nomenclature

A Cross-sectional area
â Impeller inlet stall parameter
B Greitzer’s parameter
b̂ Diffuser stall parameter
c Speed of sound
E Specific energy
F Friction function
f Friction coefficient
fq Frequency
g Acceleration due to gravity
h Channel height
L Length
ṁ Mass flow
ˆ̇m Effective mass flow
nb Number of impeller blades
ODE Ordinary differential equation
p Pressure
q Mass flow per radian
Q̇ Heat flux
R Specific gas constant
r Radius
S Surface area per unit volume
s Distance

t Time
T Temperature
u Velocity
x Distance
α Wheel exit flow angle
α∗ Critical wheel exit flow angle
αB Impeller backsweep angle
β Impeller inlet flow angle
βB Impeller inlet blade angle
γ Specific heat ratio
∆x Grid spacing
η Diffuser stall function
κ Isentropic constant
λ Throttle setting
ν Shear loss parameter
ξ Impeller inlet stall function
ξT Throttle parameters
ρ Density
τ Deviatoric stress tensor
Φ Nondimensional mass flow
Ψ Nondimensional pressure
Ω Angular rotation
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Subscripts/superscripts:

amb Ambient
c Compressor
D Diffuser
I Impeller
r Radial direction

T Throttle
tip Impeller wheel tip
V Volute
θ Tangential direction
∗ Critical

1. Introduction

Centrifugal compressors have wide range of applications because com-
pressed air is such an important commodity. Compressed air is an important
medium for energy transfer in many processes, from pneumatics, to vehicle
propulsion and breaks, to refrigeration. In this paper, we will discuss the
centrifugal compressor in the context of automotive turbochargers, but the
methodology presented is applicable to many more uses.

Nowadays most road vehicles have downsized turbocharged engines. There
is a drive to reduce pollutants, especially greenhouse gasses, and downsized
engines are more environmentally friendly [3]. It is the turbocharger that
allows us to use downsized engines because they increase the power output
of that engine making it comparable to the previously used larger naturally
aspirated engines [4].

Surge is an aerodynamic instability that exists when operating the tur-
bocharger compressor at low mass flows [4]. Therefore, surge limits the com-
pressor operating regime and hence limits the amount of boost provided at
low engine speeds. As a result, being able to predict the onset of surge is
vital for engine manufacturers.

Surge causes oscillations in mass flow and pressure. There are different
classes of surge. When the oscillations in mass flow are large enough that ac-
tual flow reversal is seen, this is called deep surge [5]. Operating in deep surge
often causes damage to the impeller blades within the compressor because
the oscillations unbalance the machinery and results in contact between the
blades and the housing. The temperature rises significantly as a result of os-
cillating flow and can sometimes causes connections between the compressor
and its installation to fail.

However, when mass flow and pressure oscillations are observed but the
flow always remains travelling in the forward direction, this is classed as
incipient surge [5]. This form of surge is less damaging, but is still very
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noisy. This causes problems with customer acceptance because the sound
would be off-putting to any driver. Furthermore, the pressure oscillations
may influence downstream component performance.

Models for the compressor surge have been around since the 50s [6]. The
first such model was proposed by Huppert and Benser in 1953 [7], closely
followed by Emmons et al. in 1955 [8], both of whom used lumped parameter
models. However, nearly all models are based on the work by Greitzer in 1976
[9] where he developed a quasi-steady model for surge that incorporated a
characteristic for the compressor and throttle. In its most basic form, this
can be written as

dΦ

dt
= B(ψc −Ψ), (1)

dΨ

dt
=

1

B
(Φ− ψ−1T ), (2)

where Φ and Ψ are nondimensional mass flow and pressure respectively, and
ψc and ψT are the compressor and throttle characteristics [10, 9]. It is gener-
ally agreed that the orifice equation is a good approximation for the steady-
state behaviour of the throttle

ψT = ξT0 +
1

ξ2T
Φ2, (3)

[10]. However, the steady-state behaviour of the compressor is more complex
and so a characteristic is more complicated to determine.

It was Koff and Greitzer [11] who performed the first experimental study
to determine the shape of the compressor characteristic. They observed a
cubic-like shape, which lead to Moore and Greitzer [12] proposing the use of
a cubic which can be fitted to experimental data,

ψc = ψc0 +H

[
1 +

2

3

(
Φ

W
− 1

)
− 1

2

(
Φ

W
− 1

)3
]
, (4)

where ψc0 , H and W are parameters that are found via fitting to compressor
map data. The study by Koff and Greitzer was done using an axial com-
pressor, but a more recent study by Galindo et al. [13] of a small centrifugal
compressor came to the same conclusion of a cubic-like shape.

Since then, there have been some theoretical approaches to finding the
compressor characteristic. The majority of these use a meanline modelling
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Figure 1: The only two possible behaviours of cubic-like compressor characteristic in quasi-
steady model: stable (a) and limit cycle involving reversed flow (b). These simulations
use the model from Powers et al. [2].

approach where the compressor is broken down into sections and the equa-
tions of motion are applied across these along with multiple loss models
[14, 15, 16]. In 2019, Powers et al. [1] developed a model from first prin-
ciples with a minimal number of parameters so that the surge limit could
be predicted. All of these models also result in a cubic-like shape for the
characteristic.

However, this cubic-like shape is only able to capture deep surge oscilla-
tions. The quasi-steady system with a cubic characteristic is either stable,
or a limit cycle which involves flow reversal (see Fig. 1). Therefore, the a cu-
bic shaped characteristic cannot be capturing all of the dynamics near surge
because we know that incipient surge exists, and it is equally important to
capture in a model.

When testing turbochargers to find their surge limit, it can be the case
that incipient surge is observed but if you push through this the system
stabilises again before deep surge occurs. This quietening period doesn’t
always occur, and it can make it difficult for turbocharger manufacturers
to define the location of their surge limit. This unknown behaviour makes
it difficult to predict how a turbocharger will respond once it is introduced
into a vehicle system. So understanding the physics could have a significant
impact on how manufacturers interpret the surge characteristics observed
through testing on a gas stand.

The aim of this paper is to create an improved model for the flow near
and in surge conditions, including incipient surge. We will extend the model
by Powers et al. [1, 2] to include diffuser recirculation. Then, we will develop
a model of the test rig to simulate surge in this system and validate this via
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experimental data.

2. Mathematical Model for Compressor Characteristics

In 2019, Powers et al. [1] developed a compressor characteristic from first
principles. The fundamental equations for air flow through a compressor are
conservation of mass, momentum (in a rotating frame) and energy:

∂ρ

∂t
+∇ · (ρu) = 0, (5)

∂
∂t

(ρu) +∇ · (ρ(u⊗ u)) + 2ρ(Ω× u) + ρ(Ω× (Ω× r)) = ρg −∇p+∇ · τ, (6)

∂

∂t
(ρE) +∇ · (ρuE + pu)−∇ · (τ · u) = ρQ̇ (7)

respectively. Powers et al. assumed:

(i) An ideal gas: p = ρRT ,

(ii) A perfect gas: specific heat ratio γ = const.,

(iii) Radial impeller blades: uθ = 0 in the rotating frame,

(iv) Vaneless diffuser with axisymmetric flow: ∂
∂θ

= 0,

(v) Small variations in axial direction:
∫
ab dx ≈

∫
a dx

∫
b dx,

so that the fundamental equations could be reduced to a system of 1D ODEs
in the radial direction.

The ODEs they obtained for the impeller are

1

r

∂

∂r
(rhρur) = 0, (8)

1

r

∂

∂r
(rhρu2r)− hρΩ2r = −h∂p

∂r
+ hFr, (9)

1

r

∂

∂r

(
rhρur

(
u2r
2

+
γ

γ − 1

p

ρ
− Ω2r2

2

))
= 0, (10)
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and for the diffuser are

1

r

∂

∂r
(rhρur) = 0, (11)

1

r

∂

∂r
(rhρu2r)−

hρu2θ
r

= −h∂p
∂r

+ hFr, (12)

1

r

∂

∂r
(rhρuruθ) +

hρuruθ
r

= hFθ, (13)

1

r

∂

∂r

(
rhρur

(
u2r
2

+
u2θ
2

+
γ

γ − 1

p

ρ

))
= 0, (14)

where

Fr =
f

2
ρu2rS (15)

Fθ =
f

2
ρuruθS (16)

represents skin friction.
In 2020, Powers et al. [2] developed this further. They suggested a stall

function of

ξ =
1

1
2

(
tanβB
tanβ

+ tanβ
tanβB

)
+ â

(
1 + 1

2
tanβ
tanβB

)(
tanβB
tanβ

− 1
)2 , (17)

to take into account incidence losses. This works by writing ṁ = ξAρur so
that ξA represents the area of the impeller channel that is not blocked due
to stall (see Fig. 2). Therefore, when the flow angle β is equal to the blade
angle βB, ξ = 1 and there is no stalling. However, as β → 90o, ξ → 0 and
the channel becomes fully stalled.

The authors also looked in depth at the reverse flow part of this charac-
teristic. In this case, air is travelling from the volute through to the impeller
inlet but the impeller wheel is still rotating in the forward direction as this
is controlled by the turbine. In this case, the angle at which air enters from
the volute into the diffuser has to be specified, and Powers et al. [2] argued
that this should be

θ = tan−1
(
uθD
urD

)
= tan−1



√(

AD
A∗

)2

− 1


 (18)
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Figure 2: Flow dynamics in an impeller channel with blade angle βB . Left: The flow
enters at angle β = βB , and the channel has no stall. Right: The flow enters at angle
β > βB and we have stall that effectively blocks the channel. The flow can only travel
through an area of ξA.

from geometry considerations. Here, AD = 2πrh is the cross-sectional area
of the diffuser and A∗ is the critical area of the housing.

Another important addition for the reverse flow case is the existence of a
shear layer between the diffuser and the impeller. When the air comes into
contact with the impeller it is suddenly accelerated in the opposite direction,
and so there is a large change in tangential velocity in a short radial distance.
The shear layer causes a loss in pressure due to viscous dissipation. Powers
et al. [2] decided to use an instantaneous loss at the interface,

pI = pD + ν(uθI − uθD)2, (19)

where the shear loss parameter ν was found by assuming the characteristic
is continuous at zero flow.
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Figure 3: Left: Volute and adaptor included in compressor model. Right: Traditional
volute identifying the critical radius, r∗.

2.1. Additional model improvements

The first improvement we make is to add a model for the volute and
adaptor to the outlet pipe.

We choose to model the volute by assuming it is a simple pipe which
instantly contains all the air rather than collecting it as it curves round the
diffuser (see Fig. 3). We quadratically reduce the area until we reach the
critical area of the volute, and then quadratically increase the area until
we reach the area of the outlet pipe. Using quadratic functions allows the
gradient at the critical area to equal to zero for both the volute and adaptor
sections of the pipe, meaning the area is continuously differentiable from the
diffuser outlet to the pipe.

The ODEs for this volute-adaptor model are given by

∂

∂s
(Aρu) = 0, (20)

∂

∂s
(Aρu2) = −A∂p

∂s
− A

2
fρu2S, (21)

∂

∂s

(
Aρu

(
u2

2
+

γ

γ − 1

p

ρ

))
= 0, (22)

where s is the distance down the pipe, u =
√
u2r + u2θ is the velocity of fluid

going down the pipe, A is the cross-sectional area as described above, and S
is the surface area per unit volume.
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The crucial part of this addition is that it allows us to take the critical
area of the housing into account. This has improved the choke region of
the compressor characteristic significantly because, in reality, the flow often
chokes in the housing, especially for high impeller speeds.

Another improvement we made was to capture some of the effects of
backswept blades into the model. In order to keep the impeller ODEs simple
and efficient to solve, we wish to keep the assumption of radial blades within
the impeller. However, we can easily take into account the effect backsweep
has on the angle at which the flow exits the impeller into the diffuser by

uθ
∣∣
tip

= Ωrtip − ur
∣∣
tip

tan(αB) (23)

where αB is the backsweep angle.
Since the flow angle into the diffuser effects how long flow remains in the

diffuser, this addition is able to capture some of the pressure drop backswept
blades cause. It will also allow us the capture how backsweep affects the
stability of the system when considering diffuser recirculation in the next
section.

2.2. Diffuser Recirculation

Diffuser recirculation occurs when air exits the impeller in a predomin-
antly tangential direction. When this happens, some of the air does not
escape from the diffuser, and instead gets drawn back into the impeller. Due
to leakage flow over the top of the blades, the air exiting the impeller at the
shroud-side is usually more tangential than the main flow. Therefore, the
recirculation usually occurs here.

This can be accounted for by considering the recirculation as a blockage,
in a similar way to the impeller inlet stall developed by Powers et al. [1, 2].
This idea is shown in Fig. 4.

In reality, the exit angle of the flow depends on the axial height. There-
fore, the critical angle for stall in the diffuser will be the angle at which the
main body of the flow has to exit for the shroud-side portion of the flow to
recirculate. To get an estimate for this angle, we looked at CFD simulations
for four different compressors near surge (as this is where diffuser stall is
likely to occur). The results are shown in Fig. 5. This shows us that the
critical angle is likely to be in the range of 70o to 75o. In literature, this angle
is often given between 75o and 85o [17, 18]. Therefore, we shall use 75o for
our critical angle.
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Since we are treating diffuser recirculation as a blockage, we can develop
a stall function in the exactly same way as Powers et al. [2]. This gives us a
function,

η =
1

1
2

(
tanα∗
tanα

+ tanα
tanα∗

)
+ b̂
(
1 + 1

2
tanα
tanα∗

) (
tanα∗
tanα

− 1
)2 , (24)

where α is the flow angle and α∗ is the critical angle. As with impeller inlet
stall, we have η = 1 implies no stall and η → 0 when the recirculation blocks
the entire channel.

It’s important to notice that, since we have two forms of stalling that
effectively restrict the area inside the compressor, there will be interactions
between the two. There is a natural impact of the impeller stall on the diffuser
stall because impeller inlet stall will influence the impeller exit velocity, and
hence angle α. However, the impact of the diffuser stall on the impeller is
not obvious. Here we assume for simplicity that it doesn’t affect the angle
of the incoming flow and so the impeller stall is unaffected by the diffuser
stalling.

2.3. Parameter fittings

With these additions to the compressor model, we now have three un-
known parameters: (i) f the friction coefficient, (ii) â the stall factor for
impeller inlet stall, and (iii) b̂ the stall factor for diffuser recirculation.

Figure 4: Diffuser stall causing shroud-side recirculation due to air exiting the impeller
at an angle greater than a critical angle α > α∗. The recirculation effectively causes a
blockage: ηA is the effective area available to the flow.
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Figure 5: CFD data of the average flow angle at the wheel exit close to the surge limit for
four different turbochargers, the tip diameter of which are included in the legend. Each
compressor was run at five different impeller speeds - the higher speeds correspond to the
points with higher pressure ratio.

For friction, Powers et al. [1, 2] showed that there existed a linear rela-
tionship between the friction factor and the impeller speed. This is because
3D losses that are more prominent for higher speeds cannot be captured by
our 1D model, and so are being encompassed into the friction factor. For our
model, we will use

f = 0.013 + 1.15× 10−5Ω. (25)

This was found by comparing our model to experimental data for steady
points.

For impeller inlet stall, Powers et al. [2] showed that a constant stall
factor was able to capture the behaviour. Similarly, in this paper we use a
constant factor of â = 5. This value was calculated by comparing our model
with the amplitude of deep surge oscillations observed in experiments.

Finally, for diffuser recirculation, we have tuned the stall parameter by
comparing our model with the amplitude of incipient surge oscillations from
experimental data. See Table 1 for the results. Here, we did not find a re-
lationship that can be explained physically, which means that the real-life
system is more complex than our model predicts. For example, our assump-
tion that the critical angle α∗ is constant with impeller speed and it’s just
the flow angle that changes could be too simplistic. Figure 5 suggests that
the critical angle could decrease with impeller speed, meaning that stalling
occurs earlier (so b̂ is larger)for higher impeller speeds.
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Figure 6: The variation in the diffuser stall function, η, with stall factor b̂.

Moreover, the computed values for b̂ only span a small range of the pos-
sible values, and they only has a small effect on the stall function. Figure 6
shows how the stall function changes with b̂. It only affects the gradient, i.e.
whether stall initially occurs quickly and then slows, or is initially slow and
speeds up.

Universal relations need to be found to make this compressor model fully
predictive. This can be done by regression analysis on a large dataset from
a wide range of turbochargers. However, due to a limit of resources available
to the authors, this is out of scope for this paper.

Table 1: Tuned values for diffuser recirculation stall factor b̂.

Ω b̂
85 krpm 0
115 krpm 0.5
135 krpm 1.6
155 krpm 1.2
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Figure 7: Resulting compressor characteristics when both impeller stall and diffuser recir-
culation are included. The impeller speeds in krpm are labelled on each line.

2.4. Resulting characteristic

Similarly to Powers et al. [1, 2], we can reduce the above systems of
equations to the following ODEs:

Impeller:
∂ρ

∂r
=
−ρq2

(
1
r

+ 1
h
∂h
∂r

)
− γΩ2r3h2ρ3 + γfρq2

(
nb
2πr

+ 1
h

)
(
γ+1
2

)
q2 − (γ − 1)EIr2h2ρ2

, (26)

Diffuser:
∂ρ

∂r
=
−ρq2

r
− r2h2ρ3

(
γ
u2θ
r

+ (γ − 1)uθ
∂uθ
∂r

)
+ γ f

h
ρq2

(
γ+1
2

)
q2 + (γ − 1)

(
u2θ
2
− ED

)
r2h2ρ2

, (27)

Volute:
∂ρ

∂s
=

ṁ2ρfS − 2ρṁ2 dA
ds

(3− γ)ṁ2 − 2(γ − 1)EV ρ2A2
, (28)
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where

EI =
u2r
2

+
γ

γ − 1

p

ρ
= const., (29)

ED =
u2r
2

+
u2θ
2

+
γ

γ − 1

p

ρ
= const., (30)

uθ =
Ωr2tip
r

e−
f
h(r−rtip), (31)

EV =
u2

2
+

γ

γ − 1

p

ρ
= const., (32)

and q = ṁ
2π

is mass flow per radian.
The stalling is taken into account through calculating ṁ and q. Notice

that only the effective mass flow, ˆ̇m = ξηAρu, is known, so the stall functions
are included in the above equations via

ṁ =
ˆ̇m

ξη
and q =

ˆ̇m

2πξη
.

Figure 7 shows the new compressor characteristics. By including diffuser
stall we get a quintic-like curve for higher impeller speeds instead of the
well-known cubic-like characteristics.

This occurs because, for the high impeller speeds, the diffuser stall is
triggered first and we get a drop in pressure. Then, when the mass flow is
reduced further, the impeller inlet also stalls which has the effect of initially
reducing the diffuser stall and the pressure starts to recover. This is because
the impeller stall causes an increase in the radial velocity component, which
means the air exits the impeller straighter and so lessens the amount of
diffuser recirculation. As the mass flow is reduced further still, this recovery
stops and the pressure drops quickly as both the impeller and diffuser stall
are having a negative impact on the compressor.

The lower impeller speeds still have a cubic-like shape because diffuser
recirculation has a minimal, if any, effect on them. Diffuser recirculation is a
lot stronger for high rotational speeds because the air exiting the wheel will
have a much larger tangential component. Therefore, the pressure drop seen
for the lower speeds is caused predominantly by impeller inlet stall.
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Figure 8: Schematic for mathematical test rig model. It is composed of an inlet and outlet
pipe for the compressor. There is also a throttle valve at the exit of the outlet pipe. The
boundary conditions used for the two pipes are also shown.

3. Mathematical Model for Test Rig

Surge is a system level phenomenon. Therefore, to study this behaviour
we need to model the system around the compressor as well as the compressor
itself. Since we will validate this model by comparing it to experimental data
gathered on a test rig, we shall create a model consisting of straight inlet and
outlet pipes, with a throttle valve on exit. See Fig. 8 for details.

The fluid in these pipes will obey the standard conservation of mass (Eq.
5) and conservation of momentum (Eq. 6) equations. We shall assume that we
have an isentropic flow in the pipes, i.e. p = κργ, to replace the conservation
of energy equation. Written in 1D for mass flow and pressure, with direction
along the pipe denoted by x, this gives:

∂p

∂t
+
γκ

1
γ

A
p
γ−1
γ
∂ṁ

∂x
= 0, (33)

∂ṁ

∂t
+ A

∂p

∂x
+
κ

1
γ

A

∂

∂x

(
ṁ2

p
1
γ

)
+
fSκ

1
γ

2A

ṁ2

p
1
γ

= 0, (34)

where f is a friction factor. Although, f is part of a skin friction term, this
term will encompass the losses due to dissipation. The flow on exit from the
compressor will be more turbulent than the air prior to it and so we expect
there to be more dissipation losses in the outlet pipe. Therefore, we shall use
f = 0.05 in the inlet pipe and f = 0.1 in the outlet pipe.

In order to reduce this to a system of ODEs that can be solved within
MATLAB, we use a centred-difference discretisation in x. Therefore, for a
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location xj within the pipes, and grid spacing ∆x, we have:

∂pj
∂t

=
γκ

1
γ

A
p
γ−1
γ

j

ṁj−1 − ṁj+1

2∆x
, (35)

∂ṁj

∂t
= A

pj−1 − pj+1

2∆x
+
κ

1
γ

A

1

2∆x


ṁ

2
j−1

p
1
γ

j−1

− ṁ2
j+1

p
1
γ

j+1


− fSκ

1
γ

2A

ṁ2
j

p
1
γ

j

. (36)

At each end point of the pipe, we cannot use central differences because
it would require a point outside of the domain of the pipe. Therefore, we use
a first-order difference instead. We also need to specify boundary conditions
for each end of the pipes. Figure 8 shows the boundary conditions we use.

For the inlet pipe we have a fixed ambient pressure at (1) because this
pipe is left open to the room. At (2), we have a constraint that the mass
flux into the compressor must be the same as that leaving the compressor at
point (3).

For the outlet pipe, we apply the compressor characteristic developed in
Section 2 at (3), which requires both the mass flux through the compressor
as well as the inlet pressure to compute the outlet pressure. Finally, we apply
the throttle characteristic at (4). We use the same throttle characteristic as
Powers et al. [1] but assume constant density for simplicity, namely:

ṁ = sgn(p− pamb)
√

2γ

γ − 1
ρambA2

λ2

1− λ2 |p− pamb|. (37)

where λ is the fraction the throttle is open, and sgn(x) = x
|x| returns the sign

of variable x.

4. Experiments

To provide some validation for this model, we tested a turbocharger using
the gas stand facilities at the University of Bath. The turbocharger tested
had dimensions given in Table 2, and the layout of the test facility is shown
in Fig. 9.

For the turbine section, compressed air was supplied through electrically
heated flow paths and gate valves were used to control the flow. For the
compressor section, the inlet pipe was left open so the compressor could draw
air in freely from the test cell room. The amount of flow passing through the
compressor was controlled by a gate valve in the outlet pipe.
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Figure 9: Layout of gas-stand test facility at the University of Bath. The table lists the
components with their measurement accuracy where applicable.

To run the experiment, the compressor outlet pipe valve was opened fully
to ensure the turbocharger would initially operate in a non-surge region.

Table 2: Geometric details of the tested compressor.

Number of blades 6 + 6
Hub diameter 13.5 mm
Shroud diameter 41 mm
Wheel tip diameter 58 mm
Diffuser height 3.15 mm
Diffuser area ratio 2.48
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Figure 10: (a) Calibration of hotwire sensor to V-cone velocities. A check of the calibration
was also done with a hot rig. The line where points would lie if the two sensors agreed,
along with ±5% error, is shown in grey. (b) Experimental data that contains the highest
velocities (155krpm deep surge operating point) and the calibration limit. A very small
portion of the data lies outside the calibration and so will have lower accuracy. However,
this will have minimal impact on the overall result.

Then hot, compressed air was let into the turbine side to drive the rotor.
Once the desired rotor speed was reached, the compressor outlet valve was
shut gradually while adjusting the turbine-side valves in order to keep the
rotor speed constant.

The manufacturer supplied compressor map was used as a guide to identify
a near surge location. Starting from this point, high-frequency pressure and
flow velocity signals were recorded approximately every 0.002kg/s as the com-
pressor outlet valve was closed until the compressor entered deep surge. This
was repeated for four different rotor speeds.

A hotwire was used to measure the velocity (and hence, with measured

Figure 11: Grey: Original mass flow data using hotwire sensor. Black: Smoothed signal
using a 100-point moving average.
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density and cross-sectional area values, calculate the mass flow) close to the
compressor inlet at a frequency of 10kHz, and pressure transducers were
used to measure the pressure in the inlet and outlet pipes, also at 10 kHz.
Measurements were also recorded at 10Hz for pressure, temperature, and
mass flow using pneumatically averaged pressure sensors, PRTs, and a V-
cone respectively. The location and accuracy of these sensors are shown in
Fig. 9.

During set-up, the hotwire needed to be calibrated. Therefore, measure-
ments from the V-cone were assumed to be the true velocities so this data
could be used to calibrate the sensor. Since the hotwire is sensitive to tem-
perature, the calibration points were checked again once the rig was hot.
Figure 10 shows the results. We get a good match between the hot-rig data
and the initial calibration, and all results remain within a 5% error band. We
have a larger error at higher velocities, but the only time such high velocities
were observed was for the 155krpm deep surge point. As seen in Fig. 10(b),
only a small portion of the peak of this surge pulse is affected, meaning the
overall accuracy of the signal is still good.

The hotwire sensor was very sensitive and picked up high-frequency tur-
bulent flow variations. Since we are more interested in the behaviour of the
bulk flow, we smoothed the signal using a 100-point moving average (see Fig.
11). The pressure signals seemed reasonable, so we used the original output
signals to compare to model simulations.

5. Results

5.1. Surge Lines

For turbocharger and engine manufacturers, it is extremely useful to be
able to predict the on-set of both incipient and deep surge for a compressor.
Therefore, the first comparison we make between our mathematical model
and the experimental data are the surge lines. Figure 12 shows the results.

The surge lines for our mathematical model were simple to determine by
identifying the smallest operating point required to observe incipient or deep
surge oscillations in the simulated dynamics. However, a difficulty arises
when we observe a region where the dynamics follow a combination of incip-
ient surge cycles and deep surge cycles, as it is not clear whether to class this
region as incipient or as deep surge. Therefore we have identified the onset
to all three regions in Fig. 12. (See Section 5.4 for more details on the three
regions.)
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Figure 12: A comparison to the model predicted surge lines (black) and the surge lines from
experimental data (grey). The impeller speeds (in krpm) are labelled on each compressor
characteristic.

To determine the surge line for the data, we needed to identify the mass
flow of the operating point, i.e. the average mass flow going through the
throttle. We decided to use the V-cone measurements for this as being further
from the compressor, it shouldn’t be influenced as much by the instantaneous
flow dynamics.

For steady operation, the V-cone mass flow gives us the operating point,
and for incipient surge, the oscillations are relatively small so the average
mass flow is close to the operating point. However, for deep surge, the mass
flow oscillations vary a lot and are often far from the operating point. Fur-
thermore, the V-cone sensor cannot distinguish between forward and reverse
flow as it only identifies the magnitude of the flow, meaning that taking a
direct average of this sensor would not be appropriate.

All we know for certain is that the operating point will have a smaller
mass flow than the previous operating point, and so we chose to use a mass
flow that was approx. 0.002kg/s smaller than the previous one. For example,
for the 155krpm speed line, steady operation was observed for 0.174kg/s
through to 0.118kg/s. Mild surge was first observed when the flow was re-
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duced further from 0.118kg/s and registered an average flow of 0.106kg/s.
Mild surge continued to register through to an average flow of 0.102kg/s.
Reducing the flow further resulted in deep surge oscillations which registered
an average flow of 0.109kg/s. Since we know the deep surge was observed
after a reduction in flow from the previous mild surge point, we chose the
location of the deep surge line to be at a mass flow of 0.1kg/s.

Comparing the incipient surge lines, we see a good match throughout. We
correctly predict that there is no incipient surge for the lowest two speeds,
and we can predict the onset of incipient surge to within 5% for the top two
speeds.

Notice that the existence of simulated incipient surge dynamics coincides
with quintic-shaped characteristics (not cubic-shaped ones). This implies
that incipient surge is caused by the interaction of impeller inlet stall and
diffuser recirculation. Since this is the first time a quintic-like characteristic
has been captured by any model of a centrifugal compressor, it is the first
time anyone has suggested a reason for the observed behaviour of incipient
surge.

Looking at the experimental deep surge line, we can see that is it much
closer to the point at which we simulate a mix of deep and incipient surge,
rather than the point at which we simulate full deep surge. This makes
sense because it is possible for the experimental noise to tip the system from
switching between incipient and deep surge cycles into solely deep surge
cycles, and so this mixed region becomes deep surge.

Moreover, since most compressor mappings are performed in a way to
prevent damage occurring, they are likely to back off at the first sign of
deep surge irrespective of whether this is mixed with incipient oscillations.
Therefore, it is likely that most compressor designers would classify this
mixed surge region as deep surge because large pressure oscillations occur.

Therefore, assuming the mixed surge region is classified as deep surge, we
get a good prediction for the deep surge line as well. We predict deep surge
onset slightly early for low speeds and slightly late for high speeds, but the
error has stayed within 20%.
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(a) 85krpm

(b) 115krpm

Figure 13: Comparison of deep surge between model (black) and experimental data (grey)
for different impeller speeds.The hotwire sensor only records magnitude and not direction,
so the absolute value of the simulated mass flow is shown as a dotted line for comparison
to this.
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(c) 135krpm

(d) 155krpm

Figure 13: Comparison of deep surge between model (black) and experimental data (grey)
for different impeller speeds [cont.]. The hotwire sensor only records magnitude and not
direction, so the absolute value of the simulated mass flow is shown as a dotted line for
comparison to this.
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5.2. Deep surge

As seen above there is a difference between the simulated full deep surge
line and the observed deep surge line in experimental data. Here, we put
aside this shift and directly compare a deep surge simulation to the deep
surge time-resolved data for that speed line, e.g. for 155krpm, we compare a
simulation for ṁ = 0.066kg/s to data at ṁ ≈ 0.1kg/s. The results are shown
in Fig. 13.

Case (a), which is for the 85krpm speed line, has a miss-match with
oscillation frequency. The simulation predicts a 9Hz oscillation, whereas the
observed data has a 8Hz oscillation. The qualitative agreement between the
two signals is still good, and the rest of the speeds (cases (b)-(d)) have a
remarkable fit between the simulation and the data.

If we consider the simulation of outlet pressure for the four cases, we
can observe a small change in shape for the signal: it appears to becomes
smoother, more rounded, as speed increases. The experimental data appears
to keep a smooth, almost sinusoidal, shape for all speeds. However, there is
a very close fit between the two and it is possible that damping associated
with the pressure sensor itself could stop experimental data picking up sharp
features.

The mathematical simulation gives us some insight into why we observe
oscillating flow in the outlet pipe. We can identify that the peak pressure
occurs just before the flow reverses, so the compressor is causing the pressure
to continually rise until there is so much pressure in the outlet pipe to cause a
flow reversal. The pressure then drops quite rapidly and becomes a minimum
while the flow has reversed.

The inlet pressure simulation has a great resemblance to the observed
data. We are able to pick out the peaks and troughs of the signal very
clearly. Again, the mathematical model can give us some understanding of
the signal shape. The peak inlet pressure occurs when we have flow reversal,
so high pressure air has travelled backwards through the compressor and
caused a pressure rise in the inlet pipe. The trough occurs just as the flow
returns to the forward direction. This causes a rapid change in mass flow
as the compressor suddenly draws in a lot of air from the inlet pipe and so
generates a low pressure here.

The mass flow signal plots are slightly more complicated to understand.
The hotwire could only detect the magnitude of the flow, not the direction, so
can’t differentiate between forward and reverse flow. Therefore, we added the
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plot |ṁ| for the simulated flow as a dotted line in order to compare with the
data collected. Looking at case (b), with impeller speed 115krpm, gives the
best comparison between the simulation and the data. It follows the dotted
line very closely, and so the data was able to identify both the forward and
reverse flow signals. For all cases, the data and simulation are a good match
for the forward flow peaks. However, for case (d) the hotwire did not appear
to pick up the reverse flow and so shows as near zero during this period.

5.3. Incipient surge

We now do a similar comparison for incipient surge. The results are shown
in Fig. 14.

This time, for both cases we have a miss-match of oscillation frequency.
The data has an oscillation of approximately 12Hz, whereas our model pre-
dicts a frequency of 13Hz instead. This is still very good because we are
able to simulate surge behaviour within a frequency of the expected order of
magnitude.

Overall, the fits are not as good as for the deep surge cases, but our model
is still able to capture a remarkable amount of the features seen in the data.
For example, for mass flow, we are able to pick out a signal with the correct
amplitude and even pick out the double-peak or trough that is observed in
the data.

For the outlet pressure, our simulation has a higher average pressure and
a slightly larger amplitude than observed in the data. However, the shape of
the signal is very triangular which agrees with the shape of the data signal.

Finally, for the inlet pressure, our model seems to be predicting a higher
peak inlet pressure for both signals and, as with the outlet pressure, seems
to have a higher average pressure. However, we are still able to capture a
significant amount of the signal shape, especially for case (b).
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(a) 135krpm

(b) 155krpm

Figure 14: Comparison of incipient surge between model (black) and experimental data
(grey) for different impeller speeds.
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(1) 155krpm compressor characteristic

(2) Simulated amplitudes and frequencies of pressure oscillations for an initial condition far from the
operating point

Figure 15: Detailed look at the 155krpm speed line. Sections a-g highlight different modes
of operation observed for our mathematical model.The location of the fully-deep surge line
is shown by a thick solid line, the mixed mild-deep surge line by a thick dotted line, and
incipient surge by a thick dashed line.
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(3) Simulated amplitudes and frequencies of pressure oscillations for an initial condition close to the
operating point

Figure 15: Detailed look at the 155krpm speed line (cont.). Sections a-g highlight different
modes of operation observed for our mathematical model.The location of the fully-deep
surge line is shown by a thick solid line, the mixed mild-deep surge line by a thick dotted
line, and incipient surge by a thick dashed line.

5.4. Transition from steady to deep surge

In this section, we take a detailed look at the mathematical model we’ve
developed for the top speed line, 155krpm, in order to show the simulated
behaviours our model predicts as the compressor is operated in and around
surge. Figure 15 shows the compressor characteristic and a summary of the
behaviours observed. Each plot has been divided into sections where different
behaviours occur.

The behaviour observed in section (a) is completely stable. We do not
see any oscillation for any of the operating points within this region, which
is why the amplitude is shown as zero and there is no frequency data. This
is the normal operating region for the compressor.

In section (b), we observe resonant behaviour. The length of the outlet
pipe is L = 1.86m, and the speed of sound (based on the average pressure) is
c = 397m/s. Therefore, the resonant frequency of the outlet pipe is approx-
imately

fq =
c

4L
= 53Hz. (38)
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Figure 16: Resonance observed in simulation (black) and experimental data (grey). This
corresponds to section (b) of Fig. 15.

Figure 16 shows the simulated results at this point, along with a com-
parison to experimental data. Our simulation shows a small amplitude oscil-
lation with a frequency of approximately 50Hz. This oscillation causes our
simulation to jump into deep surge cycles every now and again, which is why
a deep surge amplitude is observed in Fig. 15 for this section. The observed
data shows that the system is indeed oscillating at a very small amplitude,
but unlike the simulation, this doesn’t trigger a deep surge cycle. The data
has a frequency in the same order of magnitude as the simulation, but at
approximately 40Hz instead of 50Hz.

In section (c), we have less resonance and are stable again. The incipient
surge line separates section (c) from section (d), where mild surge behaviour
is observed and we get the oscillations as shown in Fig. 14(b).

The region of incipient surge is not large and we soon reach the mixed
surge line and enter section (e). The dynamics here follow a combination
of incipient surge cycles and deep surge cycles. For example, Fig. 17 shows
the flow tracking one incipient cycle, then one deep cycle, repeatedly. This
section ends with the full deep surge line.

The combination of incipient and deep cycles changes throughout section
(e) as we transition from incipient surge to full deep surge. Therefore, near
the mixed surge line it is possible to see a combination with more incipient
cycles than deep cycles, whereas the opposite holds near the deep surge line.

Section (f) is the only section where the behaviour depends on the initial
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Figure 17: Simulated mass flow and pressure for the transition period between incipient
and deep surge.This corresponds to section (e) of Fig. 15.

condition of the simulation. We have two possible behaviours in this region.
The first is full deep surge as seen in Fig. 15(2), and the second is steady
behaviour as seen in Fig. 15(3).

We can plot these two behaviours in the mass flow - pressure plane (see
Fig. 18) to get a better understanding of what is happening. This shows
us that there is a region (shaded grey) close to the operating point (the
intersection between throttle and compressor characteristics) that if we start
the simulation within we will see stable behaviour. Outside of this region,
we will observe deep surge.

Having two possible dynamics occur at the same operating point can
cause some really interesting behaviour. If region (f) is observed as stable, it
effectively moves the deep surge line to the beginning of section (g). There-
fore, it explains why quiet periods can occur between incipient and deep
surge.

Figure 19 show some experimental data from Cummins Turbo Technolo-
gies where this quiet period is observed. However, it is not always observed
and sometimes repeat tests will give different answers, which can cause diffi-
culties when trying to determine the deep surge limit. This is the first time
that this observed behaviour has been predicted and explained by surge mod-
elling. Furthermore, being aware of the existence of two possible behaviours
in region (f) is of key importance as it will help designers to determine more
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Figure 18: Stable operation and deep surge limit cycle observed for the same throttle
setting in the mass flow-pressure plane (corresponding to section (f) of Fig. 15). The
domain of attraction for stable operation is shown in grey. Using an initial condition for
the simulation outside of this region results in deep surge.

accurate surge limits with more confidence.
It is interesting to note that region (f) corresponds to the local region of

negative gradient in the compressor characteristic (see Fig. 15(1)), which is
the result of the interaction between diffuser recirculation and impeller inlet
stall. Therefore, this suggests that having both forms of stall present in the
system and working against one another, could actually result in stabilised
operation.

Finally, for section (g), we only observe deep surge behaviour and get
oscillations as shown in Fig. 13(d).
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Figure 19: Experimental data showing the amplitude of inlet pressure oscillations decrease
between incipient and deep surge, implying a quiet period exists.

6. Conclusions

We have further developed the first-principles model for a centrifugal
compressor by Powers et al. [1, 2]. This new model is able to capture the
dynamics of both incipient and deep surge, which is very important for engin-
eers when designing and matching a compressor to an engine. This has been
done by including both impeller inlet stall and diffuser recirculation. The in-
teraction between these two phenomena results in a quintic-like compressor
characteristic for high impeller speeds.

This is the first time any model has been able to capture both classes of
surge, and thus, the first time an explanation for the existence of mild surge
has be suggested. We have proposed that incipient surge is caused by the
interaction between impeller inlet stall and diffuser recirculation.

The benefit of a first-principles model is that it can be used to predict the
performance of a compressor solely on geometric data and a minimal number
of parameters. In this paper, we have three parameters f , â, and b̂, that need
universal relations to be found in order for this model to be fully predictive.
This was out of scope for this project, but would be useful future work.

However, it is positive that we only need to calibrate three constants
in order to get a good agreement to experimental results. The commonly
used meanline modelling approach typically has multiple loss models and
associated loss parameters that require fitting to data (for example, [19] has
9 loss models), which not only make the calibration process more difficult
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but also reduces the models predictive ability as it has a higher dependence
on experimental or CFD data.

We then developed a non-linear test-rig model in which we can use the
compressor characteristics developed in this paper, and this was validated
via experiments conducted at the University of Bath.

We have shown a great fit between simulation and data for incipient and
deep surge oscillations, for all impeller speeds. We are able to capture a lot
of the details in the experimental data signals for mass flow and pressure.
There is some minor miss-match with frequency of ±1Hz, but the oscillation
frequency always remains in the correct order of magnitude.

At low impeller speeds, diffuser recirculation is not triggered and we re-
turn to the cubic-like shape of compressor characteristic commonly seen in
literature. Since incipient surge is only simulated with the quintic-like shape,
we do not simulate mild surge for the lower speeds. This agrees with the data,
as incipient surge was only observed for high impeller rotational speeds.

We have shown the range of behaviours that can be simulated by our test
rig model for the 155krpm speed line. We were able to capture resonance,
incipient surge, transitions between mild and deep surge, deep surge, and the
potential for a quiet period between incipient and deep surge.

Observing that our model can simulate both stable operation and deep
surge for the same throttle setting, helps to explain the quietening phe-
nomenon where a stable region is sometimes observed between incipient and
deep surge operation. The behaviour of the mathematical model in this
region depends on the initial conditions given to it, which explains why re-
peated experiments can result in observing different surge behaviour for this
region.

This model has huge potential for helping centrifugal compressor man-
ufacturers. The mathematical models have a great predictive ability and
are able to capture the dynamics observed in and around surge to remark-
able detail. Also, by extending the test-rig model to a model of an engine,
it is possible to use the compressor characteristics to predict the on-engine
performance of a compressor and the location of the surge limits for that
pipework.

Furthermore, this is the first time incipient surge and the potential for
a quiet periods have been predicted in a model. This has allowed us to
propose explanations for the existence of such phenomena where one did not
exist before.
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Figure 4-3: Mild and deep surge dynamics shown in the mass flow - pressure plane.
They track different branches of the compressor characteristic, meaning a quintic-like
shape is required for both behaviours to exist. This simulation was run with N = 4
discrete points.

4.4 Discussion of Paper 3

As can be seen in Fig. 7 of the paper, the inclusion of diffuser stall has resulted in a

quintic-shaped characteristic for the higher impeller speeds. This is the first time this

shape has been suggested for compressor characteristics. It is significant because it is

the existence of multiple maxima that allow both mild and deep surge cycles to be

simulated.

As can be seen in Fig. 4-3, mild surge cycles track the compressor characteristic around

the first (ṁ 6= 0) local minimum, whereas deep surge cycles tack the characteristic

around the minimum at ṁ = 0. Note that the trajectories do not follow the compressor

characteristic as closely as seen in Paper 1 (see Section 2.5) because of the influence of

the inlet pipe.

Unlike the model in Section 2.5, the surge lines do not coincide precisely with the

maxima of the compressor characteristics (see Paper 3, Fig. 12). The mild surge line is

relatively close to the first (or, for low impeller speeds, only) maxima of the characteris-

tics, but deep surge cycles can be observed well before the ṁ 6= 0 local minimum. So the

stability is dependent on something other than the sign of the compressor characteristic

gradient.

However, there is a good agreement between the experimental and simulated surge

lines, so our model shows a good predictive ability.
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In the paper, the PDEs for the compression system (Eqs. 33 and 34) have an additional

term to the ones we derived in Section 4.1. This is because, on programming Eqs. 4.1.1-

4.1.2, we observed high-frequency growing oscillations that are often found in numerical

solutions to PDEs. To remove these unphysical oscillations, we needed to incorporate

some form of damping.

Therefore, we chose to include some viscous dissipation into the model. Recall from

Section 2.1, that the fundamental equations of motion with stresses and viscous dissi-

pation are

∂ρ

∂t
+∇ · (ρu) = 0, (4.4.1)

∂

∂t
(ρu) +∇ · (ρ(u⊗ u)) = −∇p+∇ · τ, (4.4.2)

∂

∂t
(ρE) +∇ · (ρuE + pu)−∇ · (τ · u) = 0. (4.4.3)

Recall also that viscous dissipation can be decomposed into two parts

∇ · (τ · u) = u · (∇ · τ)− τ : ∇u. (4.4.4)

By assuming τ : ∇u = 0 and just including dissipation in the form of the first term,

we can retain the isentropic flow assumption.

To see this, notice that subtracting conservation of momentum dotted with u from the

conservation of energy will cause the u · (∇ · τ) terms to cancel so we can follow the

same procedure as in Section 2.2 (Eqs. 2.2.6 - 2.2.11) to obtain the isentropic relation

p = κργ .

When modelling the steady-state behaviour of the compressor, we have chosen to model

∇·τ as a friction term, F . Therefore, to be consistent with this approach, so we decided

to include a viscous dissipation term of

∇ · (τ · u) = u · (∇ · τ) =
f

2
ρ|u|3S, (4.4.5)

which resulted in Eqs. 33 and 34 in the paper.

The simulation results of this PDE model with dissipation have a remarkable fit to the

experimental data. This is especially true for simulating deep surge (Paper 3, Fig. 13)

where we are able to capture the shapes of the mass flow, outlet pressure, and inlet

pressure traces to considerable detail.
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Figure 4-4: Pressure and mass flow dynamics with time at all locations within the inlet
and outlet pipes.
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Moreover, the advantage of having a model that has both a time and spacial dimension,

is that we can capture the wave dynamics within the pipework. Figure 4-4, shows how

the pressure and mass flow at all spatial locations within the pipework vary with time.

Here, we can see a series of triangles. These are waves travelling from one end of the

pipe to the other at the speed of sound, a. We can see from this that the period of a

surge oscillation is an integer multiple of the time it takes for these waves to travel, i.e.
L
a , where L is the length of the pipe.

To try and understand the period (and hence frequency) of the simulated surge oscil-

lations, consider the simple case where N = 4 and the system is a linearised, so

∂ṁ1

∂t
=

A

L1
(pamb − p2), (4.4.6)

∂p2

∂t
=

a2
1

AL1
(ṁ1 − ṁ3), (4.4.7)

∂ṁ3

∂t
=

A

L2
(pc(ṁ3)− p4), (4.4.8)

∂p4

∂t
=

a2
2

AL2
(ṁ3 − ṁT (p4)), (4.4.9)

where a1, a2 are constant values for speed of sound for the inlet and outlet pipes

depending on the average of p2 and p4 respectively.

As seen in Fig. 4-5(a), fast and slow dynamics are observed when plotting inlet mass

flow against outlet pressure. The slow dynamics occur when the trajectory follows

the compressor characteristic closely, and the fast dynamics occur when the trajectory

switches from one branch of the compressor characteristic to another.

Thus, a reasonable approximation for the period of oscillation is the sum of the time

taken for the slow dynamics (i.e. T↑ and T↓ in Fig. 4-5(b)). The slow dynamics occur

when the change in mass flow is small and so Eqs. 4.4.7 and 4.4.9 dominate. Eliminating

ṁ3 in these gives:

d

dt

(
p4 +

a2
2L1

a2
1L2

p2

)
=

a2
2

AL2
(ṁ1 − ṁT (p4)). (4.4.10)

We can get an approximation to T↑ by replacing the mass flow values with their average
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Figure 4-5: (a) Deep surge trajectory in the mass flow - pressure plane. The dynamics is
very fast when moving between branches of the compressor characteristic. (b) Diagram
used to find an approximation for the period of surge oscillation.

(ṁ↑ and ṁT in Fig. 4-5(b)), and approximating the derivative. This gives

∆P +
a22L1

a21L2
∆Pin

T↑
≈ a2

2

AL2
(ṁ↑ − ṁT ), (4.4.11)

and so, on rearranging for T↑, we have

T↑ ≈
(
AL2∆P

a2
2

+
AL1∆Pin

a2
1

)
1

ṁ↑ − ṁT
(4.4.12)

where ∆P is the change in outlet pressure shown in Fig. 4-5(b), and ∆Pin is the

change in inlet pressure. This is typically a lot smaller than ∆P (e.g. Fig. 4-4 shows

us ∆P ≈ 1bar and ∆Pin ≈ 0.4bar), but will still impact the period of oscillation.

Similarly, for T↓ we have

T↓ ≈ −
(
AL2∆P

a2
2

+
AL1∆Pin

a2
1

)
1

ṁ↓ − ṁT
. (4.4.13)

Therefore, combining these for the period T ≈ T↑ + T↓ results in

T ≈ (ṁ↑ − ṁ↓)
(ṁ↑ − ṁT )(ṁT − ṁ↓)

(
A∆P

a2

L2

a2
+
A∆Pin
a1

L1

a1

)
. (4.4.14)

Notice that L1
a1

and L2
a2

are the lengths of time it takes for information to travel down

the inlet and outlet pipes respectively. Therefore, the true period is likely to be an

integer linear combination of these that is the close to the above approximation.
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Furthermore, assuming there is no inlet pipe (and hence ∆Pin = 0) will result in a

smaller period (higher frequency). So the inlet pipework actually lowers the observed

frequency of oscillation, and explains why models without the inlet pipework can strug-

gle to match the observed surge dynamics.

This relation also tells us that the larger the surge amplitude, both in pressure, ∆P ,

and mass flow, ∆ṁ = ṁ↑ − ṁ↓, results in a longer period (as hence lower frequency).

This agrees with the observation of mild surge having a higher frequency than deep

surge.

Also, this relation tells us that an increase in pipe cross-sectional area, or length, will

result in a longer period (lower frequency). This agrees with what we saw in Section

2.5.

Finally, notice that we can approximate the change dynamic pressure 1
2∆(ρu2) by

1

2
∆(ρu)ū =

1

2

∆ṁ

A
ū, (4.4.15)

where ū is the average velocity in the pipe. Therefore, we could write the period as

T ≈ 1

2∆ṁT
2

(
1

Ma2

∆P
1
2∆(ρu2)

L2

a2
+

1

Ma1

∆Pin
1
2∆(ρu2

in)

L1

a1

)
(4.4.16)

where

∆ṁT =

√(
ṁ↑ − ṁT

ṁ↑ − ṁ↓

)(
ṁT − ṁ↓
ṁ↑ − ṁ↓

)
(4.4.17)

is the geometric mean of the distance between ṁ↑, ṁ↓ and the throttle mass flow.

Therefore, we can expect the period of oscillation to be impacted by the throttle setting,

the Mach number in both pipes, and the ratio of static to dynamic pressure in each

pipe.

These approximations show us that the frequency of observed compressor surge is a

complex process that is influenced by many variables. Therefore, it is not surprising

that our model cannot always accurately predict the frequency of oscillation observed

in experimental measurements of surge.
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Figure 4-6: Reverse flow test data (black circles) shown with simulated compressor
characteristic with inlet pressure (p0) of 1.5bar. Also, surge test data (grey) shown
with characteristic with inlet pressure 1bar. All experimental data was collected for
impeller speed of 115krpm.

4.4.1 Return to Reverse Flow

The compressor tested in this paper is the same as that used for the reverse flow tests

in Paper 2 (see Section 3.2). Figure 4-6 shows the resulting experimental deep surge

cycle alongside the reverse flow test for the impeller speed of 115krpm.

Since the data and our simulated mass flows were closely aligned, we used the sign of

our simulated mass flow to distinguish between forward flowing and backward flowing

air in the data.

Recall that, during the reverse flow tests, compressed air was being fed into the com-

pressor outlet. Therefore, in this experiment, the air exiting the impeller inlet was

compressed air and only dispersed to ambient pressure once it exited the compressor

inlet pipe. Therefore, the compressor inlet pressure for the reverse-flow tests was higher

than ambient.

Here we can see that the surge cycle appears to track the compressor characteristic, and

so does not track the asymptotic branch of the reverse flow test. Thus, the behaviour

as proposed in Paper 2, Fig. 11 appears unlikely.

This behaviour supports the assumption made in Section 3.2, and in this chapter, that
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we have a continuous compressor characteristic. It also suggests that the asymptotic

behaviour seen in the reversed flow tests is likely to be linked to the behaviour of the

system as a whole. For example, as seen in Fig. 3-5, the throttle characteristic has a

very steep gradient, and so the behaviour could be explained if the system switches

from following the compressor characteristic to following the throttle characteristic for

small negative mass flows.

4.5 Conclusions

In this chapter we have further developed the steady-state compressor characteristic so

that it includes diffuser recirculation. This has resulted in a quintic-shaped character-

istic that has the ability to capture both mild and deep surge.

We also used the PDE form of the reduced order surge model created in Section 2.2

and solved this over a staggered grid. The staggered grid formulation provided us with

a simple way to transform between the PDEs and the ODE system used in the previous

two chapters.

We get excellent agreement to experimental data for mass flow and pressure traces at

a variety of different impeller speeds. We have some difficulty in accurately predicting

the correct frequency of oscillation. However, after a more detailed look into what

affects the period of a surge oscillation, it is clear that this is sensitive to many factors

and so it is unsurprising that a simple reduced model would have difficulty capturing

this.

We also see a good ability of the model to predict the onset of both mild and deep

surge. This implies that our reduced order model now contains the most important

dynamics to simulate this physical phenomena.

We have seen that the addition of inlet pipework has some interesting effects on the

simulated dynamics. Figure 4-3 shows us that the trajectories do not follow the com-

pressor characteristic as closely when the inlet pipe is modelled. The inlet pipe also

reduces the simulated frequency of oscillation.

Another thing to note is that, while exploring the effect inlet pressure has on the

compressor characteristics, the following relation was discovered:

pM+1 = pc

([
pamb
pM

]
ṁM+1, pamb

)
pM
pamb

. (4.5.1)
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Since this was discovered by simulation, mathematical investigation is needed to vali-

date this result. However, this result is interesting because it means that the compres-

sor characteristic ODEs only need to be computed using ambient inlet pressure. This

would help with computational efficiency of the PDE model presented in the paper, as

the compressor characteristic ODEs need not been solved each time the pc boundary

condition is implemented.

Finally, we compared the results from the surge tests conducted in this Section 4.3 to

the reverse flow test in Section 3.2. Since the surge results have such a good fit while

using a continuous characteristic, it appears likely that the deviation of the reverse flow

tests from the characteristic is related to a system level phenomenon, rather than the

shape of the characteristic itself.

Now we have developed a model which captures the dynamics of surge with good

results, we can start to dig deeper into the mathematical properties of the model itself.

In particular, looking into conditions for the switch of stability is vital information

when trying to predict the location of surge limits.
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Chapter 5

Stability Analysis of Surge Model

In all three papers (Sections 2.5, 3.2 and 4.3) we have observed that the stability of the

system appears to be dependent on the gradient of the compressor characteristic. In

particular, when the gradient of the compressor characteristic is negative, the system

appears to always be stable.

In order to understand this dependence further, we can perform more formal stability

analysis on our surge model.

5.1 Selected Model for Analysis

We wish to analyse a system which captures the main dynamics of surge, but is simple

enough that the analytical calculations are manageable. Therefore, we shall return to

the ODE model developed in Section 2.2:

dṁ

dt
=
A

L
(pc(ṁ)− p) +

κ
1
γ

AL

(
ṁ2

pc(ṁ)
1
γ

− ṁT (p)2

p
1
γ

)
≡ f(ṁ, p), (5.1.1)

dp

dt
=
γκ

1
γ

AL
p
γ−1
γ (ṁ− ṁT (p)) ≡ g(ṁ, p). (5.1.2)

The results from analysing this model will still be applicable to the PDE model in

Section 4.1 since this is the case where N = 2 and we have no inlet pipe.

As noted in Section 4.4, the inlet pipe does influence the behaviour of the system, and
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is therefore likely to have some influence on the system stability. However, surge is

still observed in the case with no inlet pipe and so we should be able to identify the

key variables which control the onset of surge instabilities without including this in the

stability analysis.

For the compressor characteristic, we shall use the model developed in Section 4.3 as

this will enable us to understand both mild surge and deep surge stability.

For the throttle characteristic, we shall use an incompressible version of that developed

in Section 2.3, i.e.

ṁT = sgn(p− pamb)
√

2γ

γ − 1
A2ρamb

µ2

1− µ2
|p− pamb|, (5.1.3)

to make analytical computations involving this simpler. For our analysis, we shall

only consider p > pamb as this means the compressor is functioning as expected and

generating pressure within the pipework. Therefore this can be written as

ṁT = (σf(µ)(p− pamb))
1
2 (5.1.4)

for a constant

σ =
2γ

γ − 1
A2ρamb, (5.1.5)

and function

f(µ) =
µ2

1− µ2
, (5.1.6)

where µ is the throttle parameter.

We have observed that by closing the throttle, we can see a switch of stability that

corresponds to the onset of surge. Therefore, we wish to understand how our system

changes with the behaviour of the parameter µ.

Let x = (ṁ, p)T and F(·) = (f(·), g(·))T . Then our system can be written as ẋ = F(x)

where ẋ denotes differentiation with respect to t.

5.2 Equilibrium Points

The first step in stability analysis is finding the equilibrium (or stationary) points of

the system. These are points which remain unchanged by the differential equations, so
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if the system was given an initial condition of an equilibrium point, it would remain

there for all time.

Let x∗ be an equilibrium point. Then ẋ∗ = F(x∗) = 0, which implies f(ṁ∗, p∗) =

g(ṁ∗, p∗) = 0.

For our system, if g(ṁ, p) = 0 then either p = 0 or ṁ = ṁT (p).

Now, p = 0 is outside our domain of interest as pamb > 0. However, there is no

equilibrium point here as f →∞ as p→ 0 because, from Eq. 5.1.4, we have

ṁ2
T

p
1
γ

= σf(µ)

(
p
γ−1
γ − pamb

p
1
γ

)
→ −∞ (5.2.1)

as p→ 0.

If ṁ = ṁT (p), then f(ṁ, p) = 0 when

A

L
(pc(ṁ)− p) +

ṁ2κ
1
γ

AL

(
1

pc(ṁ)
1
γ

− 1

p
1
γ

)
= 0, (5.2.2)

which is true when p = pc(ṁ).

Therefore, the system has an equilibrium point at (ṁ∗, p∗) where ṁ∗ = ṁT (p∗) and

p∗ = pc(ṁ
∗).

As seen in previous chapters, the intersection between the compressor characteristic and

the throttle characteristic is the operating point of the compression system. Therefore,

this tells us the operating point is an equilibrium point. This makes sense because

when the system is stable it tends to the operating point, and once there it remains

there for all time.

The next step is therefore to determine when this equilibrium is stable, which would

mean the compression system operates in a stable manner.
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5.3 Linear Stability Analysis

To determine the stability of an equilibrium point, we want to study the behaviour of

nearby points, i.e. x = x∗ + y for small y. Differentiating gives ẋ = ẏ and

ẋ = F(x∗ + y) =���
�:0

F(x∗) +DF(x∗)y +O(|y|2) (5.3.1)

by Taylor expanding around x∗, where the matrix of partial derivatives, DF, is termed

the Jacobian [60]. Therefore, studying the linear system

ẏ = DF(x∗)y (5.3.2)

will give us a reasonable idea of the behaviour of y = x− x∗ [60].

In the case of a non-singular Jacobian, the solution of Eq. 5.3.2 is

y(t) =
n∑

i=1

yie
λit, (5.3.3)

where (λi,yi) are eigenvalue - eigenvector pairs of the system. This tells us that, in

the direction of eigenvector yi, the solution is either growing or shrinking exponentially

dependent on the sign of λi [61]. Therefore:

� If all eigenvalues have negative real part, y→ 0, and so x→ x∗ and the equilib-

rium point is stable.

� If all eigenvalues have positive real part, y → ∞, so x grows away from x∗ and

the equilibrium point is unstable.

� If we have a mix of positive and negative real parts, y will shrink exponentially in

some directions and grow exponentially in others. This is called a saddle point,

and the equilibrium point is unstable.

Moreover, if the eigenvalue has a non-zero imaginary part, the behaviour is oscillatory

in nature [61]. So we will have growing or shrinking spiral behaviour.
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5.3.1 Computing the Jacobian

For our case, denote the Jacobian by J , then

J∗ =

(
∂f
∂ṁ

∂f
∂p

∂g
∂ṁ

∂g
∂p

)∣∣∣∣∣
(ṁ∗,p∗)

. (5.3.4)

Differentiating Eqs. 5.1.1 and 5.1.2 gives

∂f

∂ṁ
=
A

L

dpc
dṁ

+
κ

1
γ

AL

(
2ṁ

pc(ṁ)
1
γ

− ṁ2

γpc(ṁ)
γ+1
γ

dpc
dṁ

)
, (5.3.5)

∂f

∂p
= −A

L
− κ

1
γ

AL

(
2ṁT (p)

p
1
γ

dṁT

dp
+
ṁT (p)2

γp
γ+1
γ

)
, (5.3.6)

∂g

∂ṁ
=
γκ

1
γ

AL
p
γ−1
γ , (5.3.7)

∂g

∂p
=
γκ

1
γ

AL

(
γ − 1

γ

(ṁ− ṁT (p))

p
1
γ

− p
γ−1
γ
dṁT

dp

)
, (5.3.8)

so evaluating at (ṁ∗, p∗) results in

(
∂f

∂ṁ

)∗
=

(
A

L
− κ

1
γ

γAL

ṁ∗2

p
∗ γ+1

γ

)
dpc
dṁ

(ṁ∗) +
2κ

1
γ

AL

ṁ∗

p
∗ 1
γ

, (5.3.9)

(
∂f

∂p

)∗
= −2κ

1
γ

AL

ṁ∗

p
∗ 1
γ

dṁT

dp
(p∗)−

(
A

L
− κ

1
γ

γAL

ṁ∗2

p
∗ γ+1

γ

)
, (5.3.10)

(
∂g

∂ṁ

)∗
=
γκ

1
γ

AL
p
∗ γ−1

γ , (5.3.11)

(
∂g

∂p

)∗
= −γκ

1
γ

AL
p
∗ γ−1

γ
dṁT

dp
(p∗). (5.3.12)

In Section 2.2, we determined that the system was isentropic so p = κργ (see Eq.

2.2.37). We can also write a2 = γp
ρ due to Eq. 2.2.47, and u = ṁ

Aρ by definition of mass

flow rate. Therefore, the above can be simplified to get

(
∂f

∂ṁ

)∗
=
A

L

(
1− u∗2

a∗2

)
dpc
dṁ

(ṁ∗) +
2u∗

L
, (5.3.13)
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(
∂f

∂p

)∗
= −2u∗

L

dṁT

dp
(p∗)− A

L

(
1− u∗2

a∗2

)
, (5.3.14)

(
∂g

∂ṁ

)∗
=
a∗2

AL
, (5.3.15)

(
∂g

∂p

)∗
= −a

∗2

AL

dṁT

dp
(p∗). (5.3.16)

5.3.2 Determinant-Trace Argument

Since this is a 2D system, we can use the determinant and trace of J∗ to give us stability

criteria. Consider the matrix

A =

(
a b

c d

)
. (5.3.17)

The eigenvalues are solutions of the characteristic polynomial

0 = det(A− λI) =

∣∣∣∣∣
a− λ b

c d− λ

∣∣∣∣∣ = λ2 − (trA)λ+ detA, (5.3.18)

where trA = a+ d and detA = ad− bc, are the trace and determinant, respectively.

Let λ1 and λ2 be the eigenvalues, then

λ1,2 =
trA±

√
trA2 − 4detA

2
. (5.3.19)

We can also get from this that λ1 + λ2 = trA and λ1λ2 = detA [61].

From this we know:

� detA < 0 means the eigenvalues have opposite signs and we have a saddle.

� detA > 0 and trA < 0 means the eigenvalues have negative real part and we have

stability.

� detA > 0 and trA > 0 means the eigenvalues have positive real part and the

system is unstable.

� 4detA > trA2 means we have complex eigenvalues and observe either stable or

unstable oscillatory behaviour.

This is summarised in Fig. 5-1.
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Figure 5-1: Stability of an equilibrium point in the detA - trA plane, where A is the
corresponding Jacobian [62].

For our Jacobian, the determinant is given by

detJ∗ =
1

L2
(a∗2 − u∗2)

(
1− dpc

dṁ
(ṁ∗)

dṁT

dp
(p∗)

)
, (5.3.20)

and the trace is

trJ∗ =
A

L

(
1− u∗2

a∗2

)
dpc
dṁ

(ṁ∗) +
2u∗

L
− a∗2

AL

dṁT

dp
(p∗). (5.3.21)

We can see from this that the gradient of both the compressor and throttle characteristic

will play an important role in the stability of the system. Therefore, we will now look

for relations in terms of the gradient of the compressor characteristic, dpc
dṁ , and the

gradient of the throttle characteristic,

dpT
dṁ

=

(
dṁT

dp

)−1

, (5.3.22)

with the mass flow as the dependent variable. This is because we usually plot charac-

teristics with mass flow on the x-axis and pressure on the y-axis, so the gradients are

easier to understand in this form.

Suppose we have subsonic flow (i.e. u∗ < a∗), then we have stable behaviour when
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detJ∗ > 0 and trJ∗ < 0, which means

dpT
dṁ

(ṁ∗) >
dpc
dṁ

(ṁ∗) (5.3.23)

and

dpT
dṁ

(ṁ∗) <
a∗2

A2
(

1− u∗2
a∗2

)
dpc
dṁ (ṁ∗) + 2Au∗

(5.3.24)

respectively.

Similarly, for supersonic flow, stable behaviour occurs if

dpT
dṁ

(ṁ∗) <
dpc
dṁ

(ṁ∗) (5.3.25)

and
dpT
dṁ

(ṁ∗) <
a∗2

2Au∗ −A2
(
u∗2
a∗2 − 1

)
dpc
dṁ (ṁ∗)

. (5.3.26)

Finally, we can classify the behaviour as a stable focus if, in addition, 4detJ∗ > (trJ∗)2

holds.

Using the fact that (a+ b)2 = (a− b)2 + 4ab, we can write

(trJ∗)2 =
(
A
L

(
1− u∗2

a∗2

)
dpc
dṁ −

[
2u∗
L − a∗2

AL
dṁT
dp

])2
+ 4

L2 (a∗2 − u∗2)
[

2Au∗
a∗2

dpc
dṁ −

dpc
dṁ

dṁT
dp

]
. (5.3.27)

Therefore, 4detJ∗ > (trJ∗)2 can be written as

4

L2
(a∗2 − u∗2)

(
1− 2Au∗

a∗2
dpc
dṁ

)
>

(
A

L

(
1− u∗2

a∗2

)
dpc
dṁ
− 2u∗

L
+
a∗2

AL

dṁT

dp

)2

. (5.3.28)

Taking square-roots gives us that either of the following hold:

A

L

(
1− u∗2

a∗2

)
dpc
dṁ
− 2u∗

L
+
a∗2

AL

dṁT

dp
> −

√
4

L2
(a∗2 − u∗2)

(
1− 2Au∗

a∗2
dpc
dṁ

)
(5.3.29)

A

L

(
1− u∗2

a∗2

)
dpc
dṁ
− 2u∗

L
+
a∗2

AL

dṁT

dp
<

√
4

L2
(a∗2 − u∗2)

(
1− 2Au∗

a∗2
dpc
dṁ

)
. (5.3.30)
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Therefore, on rearranging for the throttle gradient, we have either of

dpT
dṁ

(ṁ∗) >
a∗2

2Au∗ −A2
(

1− u∗2
a∗2

)
dpc
dṁ + 2A

√
(a∗2 − u∗2)

(
1− 2Au∗

a∗2
dpc
dṁ

) , (5.3.31)

dpT
dṁ

(ṁ∗) <
a∗2

2Au∗ −A2
(

1− u∗2
a∗2

)
dpc
dṁ − 2A

√
(a∗2 − u∗2)

(
1− 2Au∗

a∗2
dpc
dṁ

) , (5.3.32)

hold if we observe a focus.

5.3.3 Results

All of the stability criteria depends on three things: (i) the gradient of the throttle

characteristic, (ii) the gradient of the compressor characteristic, and (iii) the velocity

of the flow in comparison to the speed of sound.

Figure 5-2 shows how the stability of the system depends on the gradient of the charac-

teristics. The plots were constructed assuming u∗ and a∗ were constant, but the cases

of subsonic and supersonic flow are considered separately.

For subsonic regimes, a negative gradient of the compressor characteristic is almost

always stable, and surge (unstable focus/node) occurs mostly in the positive gradient

region. This is why in Section 2.5 we observed that the switch of stability coincided

with the maximum of the compressor characteristic.

However, our analysis also tells us that, for shallow throttle characteristic gradients,

the switch of stability will occur after the maxima. At higher impeller speeds, the surge

limit occurs at a higher positive mass flow value. Therefore, the gradient of the throttle

characteristic intersecting this point will be shallower than those at lower speeds. This

means we expect surge to occur after the maxima for higher speeds.

Moreover, our analysis tells us the opposite also holds true, i.e. that at lower impeller

speeds the onset of surge can be observed before the maximum of the compressor

characteristic.

For supersonic regimes, we can see that the system is only stable if the compressor

characteristic has a positive gradient. We are only likely to see supersonic flows in the

compression system if we are operating the compressor in choke (i.e. sonic flows are

occurring within the compressor). However, the gradient of the compressor character-
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Figure 5-2: Stability analysis as the gradient of throttle and compressor characteristics
vary, for constant u∗, a∗ values. (a) shows the subsonic case (u∗ < a∗), and (b) the
supersonic case (u∗ > a∗).

istic tends to negative infinity when operating in choke (see Fig. 1-6 and Fig. 4-5, for

example). Therefore, we would observe a saddle.
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5.4 Hopf Bifurcation

In Fig. 5-2, we can see that the stability of the system switches from stable to unstable

through the trJ∗ = 0 line. When the system is unstable, we observe surge and so we

expect stable limit cycles to be present in this region.

One way in which limit cycles appear in the system is through a Hopf bifurcation. This

is when an equilibrium point switches its stability at the point where a periodic solution

comes into existence. There is a theorem that can be used to prove the existence of

Hopf bifurcations (see, e.g. [63]).

Theorem 5.1. Hopf Bifurcation Theorem

Consider the planar system ẋ = Fµ(x), written in component form as

ẋ = fµ(x, y),

ẏ = gµ(x, y),

where µ is a parameter. Suppose ∃x∗ such that F(x∗) = 0 and denote the eigenvalues

of the Jacobian DFµ(x∗) by

λ± = α(µ)± iβ(µ).

Suppose further that ∃µ∗ such that

1. Non-hyperbolicity condition: α(µ∗) = 0, β(µ∗) = ω 6= 0, where sgn(ω) = sgn(gx).

2. Transversality condition: dα
dµ

∣∣∣∣
µ∗

= dH 6= 0.

3. Genericity condition: When the system is written in the form

(
x

y

)
=

(
0 −ω
ω 0

)(
x

y

)
+

(
f̂(x, y)

ĝ(x, y)

)

we have that aH 6= 0, where aH = 1
16(f̂xxx + f̂xyy + ĝxxy + ĝyyy) + 1

16ω (f̂xy(f̂xx +

f̂yy)− ĝxy(ĝxx + ĝyy)− f̂xxĝxx + f̂yy ĝyy).

where the notation

fxy =
∂2fµ
∂x∂y

∣∣∣∣
µ∗

(x∗)

has been used.
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Then:

� a unique curve of periodic solutions bifurcates from x∗ into the region µ > µ∗

(µ < µ∗) if aHdH < 0 (resp. aHdH > 0).

� x∗ is a stable fixed point for µ > µ∗ (µ < µ∗) and an unstable fixed point for

µ < µ∗ (µ > µ∗) if dH < 0 (resp. dH > 0).

� the periodic solutions have opposite stability to x∗ on the side of µ = µ∗ where

they exist.

Furthermore, the amplitude of the periodic orbits grows like
√
−dH
aH

(µ− µ∗) whilst their

periods tend to 2π
|ω| as |µ| → µ∗.

We will use this theorem to look for the existence of Hopf bifurcations for our system

as the parameter in the throttle characteristic, µ, varies.

5.4.1 Non-hyperbolicity

For the non-hyperbolicity condition of Theorem 5.1, recall that the eigenvalues of the

system are

λ1,2 =
trJ∗ ±

√
(trJ∗)2 − 4detJ∗

2
. (5.4.1)

and so we require trJ∗ = 0 and detJ∗ > 0.

From Eq. 5.3.21, trJ∗ = 0 gives us

dṁT

dp
(p∗) =

A2

a∗2

(
1− u∗2

a∗2

)
dpc
dṁ

(ṁ∗) + 2A
u∗

a∗2
. (5.4.2)

Substituting this into Eq. 5.3.20 and simplifying, we get

detJ∗ =

(
a∗

L

)2

−
(
A

L

(
1− u∗2

a∗2

)
dpc
dṁ

+
u∗

L

)2

. (5.4.3)

The non-hyperbolicity condition is satisfied provided this is greater than zero, i.e.

(
A

L

(
1−Ma2

) dpc
dṁ

+
u∗

L

)2

<

(
a∗

L

)2

, (5.4.4)
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which, on rearranging for the compressor characteristic gradient, becomes

− a∗

A(1−Ma)
<
dpc
dṁ

<
a∗

A(1 + Ma)
(5.4.5)

where Ma = u∗
a∗ is the Mach number.

5.4.2 Transversality

For the transversality condition, we require the derivative of trJ∗ with respect to the

throttle parameter µ to be non-zero at the point where Eq. 5.4.2 holds.

In terms of ṁ∗ = ṁT (p∗) and p∗, we have

trJ∗ =

(
A

L
− κ

1
γ

γAL

ṁ∗2

p
∗ γ+1

γ

)
dpc
dṁ

(ṁ∗) +
2κ

1
γ

AL

ṁ∗

p
∗ 1
γ

− γκ
1
γ

AL
p
∗ γ−1

γ
dṁT

dp
(p∗). (5.4.6)

Using the fact that the only variable depending on µ is ṁT , we can differentiate this

to get

d

dµ
(trJ∗) = − 2κ

1
γ

γAL

ṁT

p
∗ γ+1

γ

dṁT

dµ

dpc
dṁ

+

(
A

L
− κ

1
γ

γAL

ṁ2
T

p
∗ γ+1

γ

)
d2pc
dṁ2

dṁT

dµ

+
2κ

1
γ

AL

1

p
∗ 1
γ

dṁT

dµ
− γκ

1
γ

AL
p
∗ γ−1

γ
d

dµ

(
dṁT

dp

)
. (5.4.7)

Recall from Eq. 5.1.4 that ṁT = (σf(µ)(p− pamb))
1
2 for a constant σ and function

f(µ) = (µ−2 − 1)−1. Therefore, we can use the fact that

f ′(µ) = 2µ−3(µ−2 − 1)−2 =
2

µ(1− µ2)
f(µ), (5.4.8)

to determine

dṁT

dµ
=

1

2
σ(p− pamb)f ′(µ)(σf(µ)(p− pamb))−

1
2 =

ṁT

µ(1− µ2)
. (5.4.9)

Similarly, differentiating

dṁT

dp
=

1

2
σf(µ) (σf(µ)(p− pamb))−

1
2 (5.4.10)
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with respect to µ and using the relation for f ′(µ) gives us

d

dµ

(
dṁT

dp

)
=

1

µ(1− µ2)

dṁT

dp
. (5.4.11)

Substituting these into Eq. 5.4.7 and grouping terms results in

d
dµ(trJ∗) = trJ∗

µ(1−µ2)
− 1

µ(1−µ2)

[
A
L + κ

1
γ

γAL
ṁ∗2

p
∗ γ+1
γ

]
dpc
dṁ +

(
A
L − κ

1
γ

γAL
ṁ∗2

p
∗ γ+1
γ

)
ṁ∗

µ(1−µ2)
d2pc
dṁ2 . (5.4.12)

Therefore, evaluating this at µ∗ (the critical value of µ for which trJ∗ = 0), and writing

this back in terms of u∗ and a∗, we have

dH =
1

µ∗(1− µ∗2)

[
A

L

(
1− u∗2

a∗2

)
ṁ∗

d2pc
dṁ2

− A

L

(
1 +

u∗2

a∗2

)
dpc
dṁ

]
. (5.4.13)

Thus, the transversality condition of dH 6= 0 holds provided the compressor character-

istic does not have a point of inflection.

5.4.3 Genericity

Let us write ṁ = x and p = y. The Taylor expansion of ẋ = f(x, y) and ẏ = g(x, y)

are

ẋ = f∗xx+ f∗y y + 1
2f
∗
xxx

2 + f∗xyxy + 1
2f
∗
yyy

2 + 1
6f
∗
xxxx

3 + 1
2f
∗
xxyx

2y + 1
2f
∗
xyyxy

2 + 1
6f
∗
yyyy

3, (5.4.14)

ẏ = g∗xx+ g∗yy + 1
2g
∗
xxx

2 + g∗xyxy + 1
2g
∗
yyy

2 + 1
6g
∗
xxxx

3 + 1
2g
∗
xxyx

2y + 1
2g
∗
xyyxy

2 + 1
6g
∗
yyyy

3, (5.4.15)

where the subscript x or y denotes differentiation with respect to that variable, and ∗
denotes evaluation at the equilibrium point x∗ and critical parameter value µ∗.

From Eq. 5.3.5 or 5.3.6 we can see that fxy = 0, and thus fxyy = fxxy = 0. Similarly

Eq. 5.3.7 gives us gxx = 0, and so gxxx = gxxy = 0. Finally, from the non-hyperbolicity

condition we know trJ∗ = 0, which means f∗x = −g∗y . This means Eqs. 5.4.14 and

5.4.15 can be reduced to

ẋ = −g∗yx+ f∗y y +
1

2
f∗xxx

2 +
1

2
f∗yyy

2 +
1

6
f∗xxxx

3 +
1

6
f∗yyyy

3, (5.4.16)

ẏ = g∗xx+ g∗yy + g∗xyxy +
1

2
g∗yyy

2 +
1

2
g∗xyyxy

2 +
1

6
g∗yyyy

3. (5.4.17)
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We also know from the non-hyperbolicity condition that, at trJ∗ = 0 the eigenvalues

are given by

λ1,2 = ±
√

detJ∗ i = ±
√
−g∗2y − f∗y g∗x i, (5.4.18)

so we have ω =
√
−g∗2y − f∗y g∗x.

Since,

− 1

ωf∗y

(
g∗y −f∗y
−ω 0

)(
−g∗y f∗y
g∗x g∗y

)(
0 f∗y
ω g∗y

)
=

(
0 −ω
ω 0

)
,

we can change variables to (u, v)T where

(
x

y

)
=

(
0 f∗y
ω g∗y

)(
u

v

)
(5.4.19)

and can write our system in the form

(
u̇

v̇

)
=

(
0 −ω
ω 0

)(
u

v

)
+

(
f̂(u, v)

ĝ(u, v)

)
, (5.4.20)

where

f̂(u, v) = g∗xyf
∗
yuv +

g∗yf
∗
y

2ω
(2g∗xy − f∗xx)v2 +

(g∗yyf
∗
y − fyy∗g∗y)
2ωf∗y

(ωu+ g∗yv)2

+
g∗xyyf

∗
y

2ω
(ωu+ g∗yv)2v −

f∗xxxg
∗
y(f
∗
y )2

6ω
v3 +

(g∗yyf
∗
y − fyy∗g∗y)
6ωf∗y

(ωu+ g∗yv)3

(5.4.21)

ĝ(u, v) =
f∗xxf

∗
y

2
v2 +

f∗yy
2f∗y

(ωu+ g∗yv)2 +
f∗yyy
6f∗y

(ωu+ g∗yv)3 +
f∗xxx(f∗y )2

6
v3 (5.4.22)

Therefore, after differentiation and evaluating at (u, v)T = (0, 0)T , the genericity con-

dition becomes

aH =
f∗y
16

[2g∗xyyg
∗
y + f∗xxxf

∗
y − g∗yyyg∗x] +

f∗y
16ω2

[(f∗yyg
∗
x + g∗xyf

∗
y )(f∗xxg

∗
y + g∗xyg

∗
y − g∗yyg∗x)

+ g∗yf
∗
y

(
(g∗xy)

2 − (f∗xx)2
)

+ g∗yyg
∗
y(2g

∗
xyg
∗
y − g∗yyg∗x)]. (5.4.23)

By differentiating our system (Eqs. 5.1.1 and 5.1.2) and evaluating at the equilibrium

183



point x∗, we get

f∗y =
A

L
(1−Ma2)

dpc
dṁ

+
2u∗

L
(5.4.24)

g∗x =
a∗

AL
(5.4.25)

g∗y = − a∗

AL

dṁT

dp
(5.4.26)

f∗xx =
A

L
(1−Ma2)

d2pc
dṁ2

+
A

L

γ + 1

γ

Ma2

p∗

(
dpc
dṁ

)2

− 4
A

L

Ma2

ṁ∗
dpc
dṁ

+
2u∗

Lṁ∗
(5.4.27)

f∗yy = −2u∗

L

d2ṁT

dp2
− 2u∗

Lṁ∗

(
dṁT

dp

)2

+
γ + 1

γ

A

L

Ma2

p∗
(5.4.28)

g∗xy =
(γ − 1)u∗

ṁ∗L
(5.4.29)

g∗yy = −2(γ − 1)u∗

Lṁ∗
dṁT

dp
− a∗2

AL

d2ṁT

dp2
(5.4.30)

f∗xxx =
A

L
(1−Ma2)

d3pc
dṁ3

+ 3
A

L

γ + 1

γ

Ma2

p∗
d2pc
dṁ2

dpc
dṁ
− 6

A

L

Ma2

ṁ∗
d2pc
dṁ2

− (2γ + 1)(γ + 1)

γ2

A

L

Ma2

p∗2

(
dpc
dṁ

)3

+ 6
γ + 1

γ

A

L

Ma2

ṁ∗p∗

(
dpc
dṁ

)2

− 6
A

L

Ma2

ṁ∗2
dpc
dṁ

(5.4.31)

g∗xyy = −(γ − 1)
A

L

Ma2

ṁ∗2
(5.4.32)

g∗yyy = −a
∗2

AL

d3ṁT

dp3
− 3(γ − 1)u∗

Lṁ∗
d2ṁT

dp2
+ 3(γ − 1)

A

L

Ma2

ṁ∗2
dṁT

dp
. (5.4.33)

Therefore, the genericity condition of aH 6= 0 is satisfied provided Ma 6= 1,

dpc
dṁ
6= − 2u∗

A(1−Ma2)
, (5.4.34)

and we do not have any hyperflex points (i.e. points where at least the first three

derivatives are zero) in either characteristic.

5.4.4 Results

The above calculations tell us that Hopf bifurcations exist in our model when
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1. dpc
dṁ > − a∗

A(1−Ma) , dpc
dṁ 6= − 2u∗

A(1−Ma2)
and dpc

dṁ < a∗
A(1+Ma) ,

2. pc(ṁ) does not have a point of inflection,

3. Neither pc(ṁ) nor ṁT (p) have hyperflex points,

4. The flow is not sonic (Ma 6= 1).

The resulting Hopf bifurcation is supercritical (subcritical) when the periodic orbit

generated at this bifurcation point is stable (resp. unstable). Since aH changes sign

dependent on the derivatives of the compressor and throttle characteristics, we have the

potential to observe both subcritical and supercritical Hopf bifurcations in our system.

5.5 Interpretation of Results

We will now look at the stability of our system for our specific compressor and throttle

characteristics in the mass flow - pressure plane. We shall consider mass flow values

between 0.005kg/s and 0.14kg/s, and pressure values between 1.25bar and 2.3bar.

The first thing we need to determine is whether the flow in the compression system

is subsonic or supersonic. This will tell us which of the analyses in Fig. 5-2 applies.

Figure 5-3 shows the Mach number within the area we are considering. This is well

below one, so we are dealing with subsonic flow.

Next, we need to compute the first three derivatives for the compressor and throttle

characteristics at each point in the plane.

Figure 5-3: Mach number at each point in the mass flow - pressure plane.
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Consider the throttle characteristic

ṁ = ṁT (p, µ) =
√
σf(µ)(p− pamb). (5.5.1)

We can directly calculate the derivatives of the throttle characteristic for different values

of pressure and throttle parameter, i.e.

∂iṁT

∂pi
(p, µ), for i = 1, 2, 3. (5.5.2)

However, we require the value of the gradient in terms of mass flow and pressure.

Therefore, we have to invert the throttle characteristic to find

µ = ṁ−1
T (ṁ, p). (5.5.3)

Similarly, we can numerically compute the derivatives of the compressor characteristic

for different mass flow and impeller speed values, i.e.

∂ipc
∂ṁi

(ṁ,Ω), for i = 1, 2, 3. (5.5.4)

Therefore, we have to compute the inverse

Ω = p−1
c (ṁ, p) (5.5.5)

in order to calculate the derivates at points in the mass flow - pressure plane.

Since the inverses of the two characteristics are unknown, we numerically invert them

on a grid in the mass flow - pressure plane. This inversion process is the main source

of numerical error in the following analysis.

Having computed the derivatives, we can now compute detJ∗ and trJ∗ in order to

check the linear stability criteria. Figure 5-4 shows the results. Notice that detJ∗ > 0

everywhere, so we do not observe saddle points.

This also means that trJ∗ is the only function that determines the stability of the

system. Whenever trJ∗ < 0 the system is stable and trJ∗ > 0 the system is unstable.

Therefore, using Eq. 5.3.21 to compute trJ∗ = 0 is a quick way to determine the

location of the surge limit.

Also, since detJ∗ > 0, we know that whenever trJ∗ = 0 we get a Hopf bifurcation. In
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Figure 5-4: Surface plots of the determinant (left) and trace (right) of the Jacobian in
the mass flow - pressure plane, wherever the gradients of characteristics are defined.

order to determine the form of these bifurcations, we need to compute parameters dH

and aH at the trJ∗ = 0 lines.

The shaded region in Fig. 5-5 shows the area in the mass flow - pressure plane where

dH < 0, and the three black lines identify where trJ∗ = 0. Notice that we do not get

clean lines or edges of the shaded regions because of the numerical error introduced by

inverting the characteristics on a grid. However, starting from high mass flow rates, we

can identify that the first line occurs in the dH < 0 region, the second in dH > 0 and

the third in dH < 0. This means that the middle Hopf bifurcation is in the opposite

direction to the other two.

Figure 5-5: Region (grey) in mass flow - pressure plane where dH < 0. Lines indicating
where trJ∗ = 0 are added in black.
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Figure 5-6: Region (grey) in mass flow - pressure plane where aH < 0. Lines indicating
where trJ∗ = 0 are added in black.

Figure 5-6 shows a similar plot but for parameter aH . This shows us, again starting

from high mass flows, that the first trJ∗ = 0 line occurs in the aH < 0 region, but the

following two occur in aH > 0 region.

This means that we have one supercritical and two subcritical Hopf bifurcations. Figure

5-7 shows the resulting bifurcations as the throttle parameter µ changes. The line of

zero amplitude shows the stability of the equilibrium point. We can see the switch in

stability at each trJ∗ = 0 point.

For large µ, the equilibrium point is stable and the system is steady. As the throttle

is gradually shut (µ decreasing), we see stable limit cycles and the system is unsteady.

Figure 5-7: Bifurcation diagram showing three Hopf bifurcations as the throttle pa-
rameter µ changes. A stable (unstable) equilibrium point or period orbit is show with
a solid (resp. dashed) line.
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Figure 5-8: Suggested global bifurcation diagram for our system based on evidence
from numerical simulation.

As we reduce µ further, we have unstable limit cycles. We would need to look at a

global picture to fully understand the behaviour of the system at this point.

Figure 5-8 shows an estimate of a global bifurcation diagram. Here we are predicting

saddle node bifurcations from the unstable Hopf bifurcations that result in stable period

orbits.

These stable periodic orbits do not have to grow with the bifurcation parameter µ, so

can explain why deep surge appears to be a fixed amplitude oscillation. Our estimate

for the location of these saddle nodes was deduced by studying Paper 3, Fig. 15 (Section

4.3).

This simulation showed us that we had a region of mild surge, followed by a region

where a combination of mild and deep surge limit cycles were observed. This implies

that a large amplitude periodic orbit (relating to deep surge) could be observed within

the first region where the equilibrium point becomes unstable. It also implies that

there must be a relatively small basin of attraction for both stable periodic orbits as

we can jump between them within a single simulation.

Paper 3, Fig. 15 then showed us that we have region where the simulation is either

stable, or a large amplitude periodic orbit, depending on the initial condition. So
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again, we must have two stable behaviours. The unstable periodic orbit separates

these two stable behaviours. Since there is a larger distance between the stable and

unstable behaviour, it explains why the system does not jump between these two stable

behaviours within a simulation. It would require a larger deviation between calculated

points than that caused by numerically solving the ODEs or PDEs.

Finally, Paper 3 Fig. 15 observes a region where the only stable behaviour is a large

amplitude periodic orbit corresponding to deep surge. We observe this after the final

(smallest µ) bifurcation point.

Further investigation is needed in order to verify this global bifurcation picture. One

possibility would be to use a numerical continuation software, like AUTO [64].

Another area needing further investigation is the effect of including an inlet pipe into

the system. As seen in Fig. 5-5 or 5-6, the trJ∗ = 0 lines coincide with the turning

points of the compressor characteristic. This location of the surge line agrees with what

we observed in Section 2.5, when we had no inlet pipe. However, in Section 4.3, we

observed that the surge limits were further to the left than this. Therefore, performing

stability analysis on the system of 4 ODEs that take into account the inlet pipe may

produce different criteria for the location of the surge lines.

5.6 Conclusions

In this chapter we analysed the mathematical stability of our reduced order surge model.

We discovered that the operating point of the system is an equilibrium point, and so

the stability of the compression system depends on the stability of that equilibrium.

We performed linear stability analysis and discovered that the gradient of the compres-

sor and throttle characteristics were key factors in determining the stability. We also

noticed that the stability of the system changes dramatically if the flow in the pipework

is supersonic instead of subsonic.

Furthermore, we discovered that Hopf bifurcations exist whenever the trace of our

Jacobian is zero. For our compressor and throttle characteristics, we discovered that

we get three successive Hopf bifurcations: one supercritical and two subcritical.

We proposed a global bifurcation diagram based on our analysis and numerical simu-

lations of our model. This proposes an explanation for the multiple stable phenomena
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observed in simulations (e.g. a stable equilibrium and stable limit cycle), and suggests

they are separated by an unstable limit cycle generated from a Hopf bifurcation.

A similar analysis was conducted by Hös et al. [28] for a linearised system. In their

work, the Mach number of the fluid did not appear in calculations, meaning the switch

of stability due to sonic flow only occurs due to the nonlinearity in our model.

They obtained a similar stability analysis picture to Fig. 5-2(a), but with the trJ∗ = 0

line entirely in the region of positive compressor gradient. Therefore, using a linearised

system may predict the onset of surge later than observed experimentally for lower

impeller speeds.

Furthermore, they used a cubic polynomial for the compressor characteristic, and this

resulted in one Hopf bifurcation. The stability of the resulting periodic orbit depended

on the parameter for the intercept of the throttle characteristic, which we know relates

to the value of ambient pressure.

For low impeller speeds where we observe a cubic-shaped, rather than quintic-shaped,

characteristic, we observe a single supercritical Hopf bifurcation. This is similar to the

results in Hös et al. [28] for smaller values of their intercept parameter.

Finally, we noted that it would be useful to undertake further work into the global

bifurcations occurring of our model, and on a stability analysis for a model that incor-

porates an inlet pipe.

191



192



Chapter 6

Conclusions

The work undertaken in this thesis was motivated by the problem of identifying surge

limits in radial compressors, with a particular emphasis on automotive turbochargers.

In Chapter 2, we developed a reduced order model for a compression system that in-

cluded a compressor and a throttle valve. We then developed steady-state throttle and

compressor characteristics to be incorporated into the reduced order surge model. All

models were developed using averaging to reduce the dimension of the 3D fundamental

equations of motion.

We also included two more empirical loss functions into the compressor characteristic to

take into account friction and incidence losses. These introduced two parameters into

the model that need universal relations in order for the model to be fully predictive.

In Chapter 3, we looked in more detail at the behaviour of air when it is travelling back-

wards through the compressor. We developed a model for reverse flow that took into

account shear losses at the interface between the impeller and the diffuser. The shear

loss parameter was calibrated by assuming the compressor characteristic is continuous.

During experimental validation of the reversed flow model, the resulting data appeared

to imply the existence of an asymptote near zero mass flow as we approach from ṁ < 0.

However, the surge study carried out in Chapter 4 shows that an asymptote is unlikely

to exist in a characteristic and so this behaviour was more likely caused by a system

level phenomenon.

In Chapter 4, we included a further loss function into the compressor model relating to

diffuser recirculation. This resulted in a new shape of compressor characteristic never
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derived before in literature. Combining this characteristic with the reduced order

model for surge allowed us to capture both mild and deep surge oscillations, as well as

phenomena like an observed mid-surge quiet period.

We also used the PDE form of the reduced order surge model and solved this numeri-

cally using a staggered grid method. This allowed us to capture wave dynamics in the

compression system pipework.

Furthermore, we modelled a compression system with both an inlet and outlet pipe

in order to compare to experimental data. This gave us insight into the role the inlet

pipe has on the system, including frequency, and stability (when comparing to results

in Chapter 5).

Finally, in Chapter 5, we performed stability analysis on our model to mathematically

determine the location of the surge limit. We discovered that the gradients of the

compressor and throttle characteristics were key for determining stability.

We also discovered that we observe Hopf bifurcations whenever we have a switch in

stability. We obtain both supercritical and subcritical Hopf bifurcations, and have

suggested a global bifurcation diagram that would explain the simulated dynamics

observed from our model.

6.1 Key Insights

Throughout this research project, we have learned many things about the dynamics of

surge and the key physical phenomena involved. We list the key points below.

1. Friction is needed to simulate operation of a radial compressor.

We derived the steady-state compressor characteristic by starting with the sim-

plest possible dynamics, and included additional physical phenomena based on

the results. In the isentropic formulation we discovered that the simulated com-

pressor generated more pressure for higher flow rates, whereas the opposite holds

true in experiments. It was only with the addition of friction that we were able

to simulate realistic behaviour of a compressor.

2. Incidence loss is a key phenomenon for simulating surge.

Similarly to point 1, we observed that a model with friction but no other losses

could not simulate unsteady behaviour reminiscent of surge. With the inclusion
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of incidence losses, we observed the existence of limit cycles. Once we had the

stall function tending to zero as the flow tends to zero, we were able to relate

these limit cycles to deep surge cycles.

3. Shear losses are important for reverse flow conditions.

We studied flow travelling in the reverse direction through a radial compressor.

We noticed that there is a large jump in tangential velocity at the impeller -

diffuser interface that would cause losses. This explained why we were observing

higher than expected pressure values at small negative mass flow rates. By in-

cluding this loss, we were able to regain a continuous compressor characteristic

that could simulate deep surge cycles.

4. Diffuser recirculation is vital for observing mild surge.

We noticed that for high impeller rotational speeds, we were not capturing the

location of surge onset as well as for lower speeds. This prompted us to add

diffuser recirculation into the steady-state compressor characteristic model. We

used the same form of the stall function as with incidence losses, and this resulted

in a characteristic with two local minima, instead of just one. Having this extra

minima allowed our reduced order surge model to simulate two different limit

cycles, and we related each cycle to mild or deep surge depending on the amplitude

of oscillation. This was the first time any model had been able to capture and

explain the existence of both mild and deep surge.

5. Mid-surge quiet period is explained by interaction between the two types of stall.

We observed that our model simulated a region of stable operation after mild

surge had been triggered but prior to a deep surge cycle. This area typically

coincided with a region of negative gradient for the compressor characteristic.

This negative gradient is caused by the interaction between impeller inlet stall

(caused by incidence losses) and diffuser stall (caused by local flow recirculation).

Diffuser stall is triggered first and causes a pressure drop. When impeller stall

was triggered, this straightened the flow entering the diffuser and so reduced

the pressure drop caused by diffuser stall. This recovery of pressure causes the

negative gradient in that region of the compressor characteristic.

6. Stability is dependent on Mach number and gradients of characteristic curves.

We performed mathematical stability analysis on the reduced order surge model.

Using the fact that the operating point of the system is an equilibrium, we calcu-

lated the Jacobian matrix at this point to understand the linear stability of the

system. By considering the determinant and trace of the Jacobian, we were able
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to identify relations for when the system switches stability that depended only on

the Mach number and the gradients of the compressor and throttle characteristics.

7. Hopf bifurcations exist in the system.

Using the Hopf bifurcation theorem, we were able to identify the existence of

Hopf bifurcations whenever the system changed stability. This is where a pe-

riodic orbit comes into existence at the bifurcation point. We identified that,

for characteristics with two minima, we observed three Hopf bifurcations. The

first of which is supercritical, i.e. the resulting periodic orbit is stable, and the

remaining two are subcritical.

8. Simulated behaviour is explained by the existence of multiple stable attractors.

Using the results of the stability analysis, and understanding from simulations of

the model, we were able to propose a global bifurcation diagram. This suggested

that a saddle node bifurcation occurs for both of the unstable periodic orbits

generated by subcritical Hopf bifurcations. This saddle node bifurcation would

lead to a stable limit cycle of larger amplitude. The co-existence of this limit

cycle with other stable attractors, such as a stable periodic orbit or equilibrium

point, explains why simulations can observe multiple behaviours depending on

initial conditions of the system.

6.2 Future Work

While undertaking this work, we encountered areas of research that would be interesting

to pursue but lack of resources or time prevented us from doing so.

The first of these is finding universal relations for the three unknown parameters in

the steady-state model for the compressor. These were the friction factor and the two

stall parameters. To do this, a large amount of data would be required across a diverse

range of radial compressors.

Consider the friction factor. This can be determined by performing a least squares fit

between compressor map data and each individual speed line of the compressor. The

fitted friction factor values can then be compared to independent variables, like impeller

speed, impeller wheel size, and critical area of the housing, to find any relations. For

example, in Section 2.5, we discovered that the friction factor increased linearly with

impeller speed.
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Using statistical regression, like the Generalised Additive Model approach described in

Section 1.2.2, we can formalise this and find relations for parameters in cases where

the interactions between independent variables are important.

The second area to explore is the form of the stall functions used for impeller incidence

and diffuser recirculation. In Section 2.6.1 we had a free choice of the parameter d

provided it was non-zero. Therefore, exploring different possibilities for d, and its effect

on the resulting compressor characteristic and surge dynamics, would be interesting and

may allow us to capture the surge limit to higher accuracy.

Moreover, in Section 4.3 the fitted value for the diffuser stall parameter was not constant

and did not appear to have a relationship to independent variables (like impeller speed)

that could be explained physically. It would be useful to explore the form of the stall

function in this case because it is possible that it is not capturing the physical dynamics

of diffuser recirculation. For example, we identified that the critical angle at which local

flow reversal occurs, α∗, may need a model itself as it is a complex phenomena that

could depend on many factors of the flow.

The final area to explore in relation to the compressor characteristic is the effect of

inlet pressure. As discovered in Section 4.5, changing the inlet pressure appears to

cause a simple shift and stretch of the characteristics at ambient pressure. Formally

deriving this relation would help us understand exactly how the inlet pipe influences

the compressor system.

Furthermore, knowing the exact form of this relation would help us to incorporate the

effect of the inlet pipe into the stability analysis conducted in Chapter 5. For example,

if we understand how the inlet pressure varies with mass flow, and know the effect this

has on the compressor characteristic, we could use

dpc
dṁ

(ṁ, p0) =
∂pc
∂ṁ

+
∂pc
∂p0

dp0

dṁ
(6.2.1)

in the derived formulae to understand the effect inlet pressure has on the location of

the surge line.

There are other ways in which we could incorporate the effect of the inlet pipe into

the dynamical systems theory and stability analysis performed in Chapter 5. One way

would be to analyse the 4D system found by the PDE form of the reduced order surge

model with N=4 (see Section 4.1). This would result in a 4x4 matrix for the Jacobian,

and therefore make the analytical formulae far more complex and difficult to derive. It
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is likely that numerical computation would be the most efficient way forward in this

case.

Another approach is to perform dynamical systems analysis on a discrete-time map.

Consider the linearised PDEs for flow in a pipe,

∂p

∂t
+
a2

A

∂ṁ

∂x
= 0, (6.2.2)

∂ṁ

∂t
+A

∂p

∂x
= 0. (6.2.3)

If we change variables to

v+ = p+
a

A
ṁ, (6.2.4)

v− = p− a

A
ṁ (6.2.5)

then

dv+

dt
(x, t) = 0 on

dx

dt
= a, (6.2.6)

dv−
dt

(x, t) = 0 on
dx

dt
= −a. (6.2.7)

This means that a map can be found for the pressure and mass flow at different locations

in the pipe. Fig. 6-1 shows how this works for the pressure at the midpoint of the outlet

pipe. Here the difference in time between pn and pn+1 is L2
a .

The boundary conditions allow the inclusion of the effects of the inlet pipe, and the

fact we have no averaging over the length of the pipe means wave dynamics will still

occur in this system.

Another area to explore is the behaviour of the reversed-flow tests at low mass flow

rates (see Section 3.2). The results from the experiments seemed to suggest that the

compressor characteristic had an asymptote near zero flow for high impeller speeds.

However, the surge tests for the same compressor (conducted in Section 4.3) imply

that this asymptotic behaviour is more likely due to a system level phenomenon.

It would be very interesting to repeat the reverse flow tests with the focus of under-

standing this behaviour. It would also be interesting if the behaviour could be captured

by modelling the reverse flow experimental procedure in a similar manner to our PDE

form of the surge model in Section 4.3. A new form of the throttle characteristic would

probably have to be developed in order to capture the true behaviour of high pressure
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Figure 6-1: Derivation of a map between mass flow and pressure at time 0 and time
L2
c where c is the speed of sound. The derivation uses the fact that v, v̂ are constant

on lines of constant speed c.

air being forced into the outlet of the compressor.

The final three suggestions for future work are ways in which the work presented here

could be taken forward to help answer other open questions in this field. The first is

related to simulating and capturing dynamics observed in rotating stall.

Rotating stall occurs when the stall in the impeller channel influences the inlet angle

of the flow entering neighbouring channels. Therefore, in order to capture its dynamics

it would be possible to couple multiple versions of our compressor impeller channel

model together. With careful consideration of the boundary conditions allowing flow

from one channel to influence the neighbouring ones, it may be possible to simulate

rotating stall and understand important factors in what causes and maintains it.

The second is related to capturing on-engine dynamics near the surge limit. Surge is

a system level phenomenon and so depends on the shape and size of its installation

pipework. It would be possible to extend the PDE form of the reduced order surge

model that was designed to match results on a steady gas stand to that of an engine

inlet manifold. This would require capturing the wave dynamics throughout the inlet

manifold for example, those caused by opening and closing of valves.
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In doing this, it might be possible to predict the surge limit for specific on-engine

applications. This would remove the need for an estimated surge margin on compressor

maps which takes into account the uncertainty of how a compressor will operate when

installed for a particular application, rather than the gas stand there the map was

initially generated.

The last is looking into a way to control or mitigate surge behaviour. Once a global

bifurcation analysis has been performed, it would be possible to identify domains of

attraction of stable behaviour and use this insight to design control strategies. These

strategies are likely to involve mechanisms for flow management that could prevent or

quickly respond to the existence of surge-like behaviour in a system.
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