17 research outputs found

    IR-Level Versus Machine-Level If-Conversion for Predicated Architectures

    Get PDF
    If-conversion is a simple yet powerful optimization that converts control dependences into data dependences. It allows elimination of branches and increases available instruction level parallelism and thus overall performance. If-conversion can either be applied alone or in combination with other techniques that increase the size of scheduling regions. The presence of hardware support for predicated execution allows if-conversion to be broadly applied in a given program. This makes it necessary to guide the optimization using heuristic estimates regarding its potential benefit. Similar to other transformations in an optimizing compiler, if-conversion inherently su↵ers from phase ordering issues. Driven by these facts, we developed two algorithms for if-conversion targeting the TI TMS320C64x+ architecture within the LLVM framework. Each implementation targets a di↵erent level of code abstraction. While one targets the intermediate representation, the other addresses machine-level code. Both make use of an adapted set of estimation heuristics and prove to be successful in general, but each one exhibits di↵erent strengths and weaknesses. High-level if-conversion, applied before other control flow transformations, has more freedom to operate. But in contrast to its machine-level counterpart, which is more restricted, its estimations of runtime are less accurate. Our results from experimental evaluation show a mean speedup close to 14 % for both algorithms on a set of programs from the MiBench and DSPstone benchmark suites. We give a comparison of the implemented optimizations and discuss gained insights on the topics of ifconversion, phase ordering issues and profitability analysis

    Global predicate analysis and its application to register allocation

    Get PDF
    Abstract To fully utilize the wide machine resources in modern high-performance microprocessors it is necessary to exploit parallelism beyond individual basic blocks. Architectural support for predicated execution increases the degree of instruction level parallelism by allowing instructions from dtgerent basic blocks to be converted to straight-line code guarded by boolean predicates. However; predicated execution also presents signijcant challenges to an optimizing compiler For example, in live range analysis, a predicated definition does not necessarily end the live range of a virtual register This paper describes techniques to analyze the relations among predicates in order to improve the precision and effectiveness of various compiler analysis and transformation phases in the presence of predicated code. Our predicate analysis operates globally to obtain relations among predicates. Moreover we analyze control flow and predication in a single unifiedframework. The result can be queried by subsequent optimization and analysis phases. Based on this framework, we extend a traditional method to a predicate-aware register allocator which takes global predicate relations into account. We have implemented the proposed algorithms to effectively reduce register pressure. Our experimental results show 24.6% of a large test suite obtain, on average, 20.71% better register allocation due to the algorithms presented in this paper

    Future value based single assignment program representations and optimizations

    Get PDF
    An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF

    Vectorization system for unstructured codes with a Data-parallel Compiler IR

    Get PDF
    With Dennard Scaling coming to an end, Single Instruction Multiple Data (SIMD) offers itself as a way to improve the compute throughput of CPUs. One fundamental technique in SIMD code generators is the vectorization of data-parallel code regions. This has applications in outer-loop vectorization, whole-function vectorization and vectorization of explicitly data-parallel languages. This thesis makes contributions to the reliable vectorization of data-parallel code regions with unstructured, reducible control flow. Reducibility is the case in practice where all control-flow loops have exactly one entry point. We present P-LLVM, a novel, full-featured, intermediate representation for vectorizers that provides a semantics for the code region at every stage of the vectorization pipeline. Partial control-flow linearization is a novel partial if-conversion scheme, an essential technique to vectorize divergent control flow. Different to prior techniques, partial linearization has linear running time, does not insert additional branches or blocks and gives proved guarantees on the control flow retained. Divergence of control induces value divergence at join points in the control-flow graph (CFG). We present a novel control-divergence analysis for directed acyclic graphs with optimal running time and prove that it is correct and precise under common static assumptions. We extend this technique to obtain a quadratic-time, control-divergence analysis for arbitrary reducible CFGs. For this analysis, we show on a range of realistic examples how earlier approaches are either less precise or incorrect. We present a feature-complete divergence analysis for P-LLVM programs. The analysis is the first to analyze stack-allocated objects in an unstructured control setting. Finally, we generalize single-dimensional vectorization of outer loops to multi-dimensional tensorization of loop nests. SIMD targets benefit from tensorization through more opportunities for re-use of loaded values and more efficient memory access behavior. The techniques were implemented in the Region Vectorizer (RV) for vectorization and TensorRV for loop-nest tensorization. Our evaluation validates that the general-purpose RV vectorization system matches the performance of more specialized approaches. RV performs on par with the ISPC compiler, which only supports its structured domain-specific language, on a range of tree traversal codes with complex control flow. RV is able to outperform the loop vectorizers of state-of-the-art compilers, as we show for the SPEC2017 nab_s benchmark and the XSBench proxy application.Mit dem Ausreizen des Dennard Scalings erreichen die gewohnten Zuwächse in der skalaren Rechenleistung zusehends ihr Ende. Moderne Prozessoren setzen verstärkt auf parallele Berechnung, um den Rechendurchsatz zu erhöhen. Hierbei spielen SIMD Instruktionen (Single Instruction Multiple Data), die eine Operation gleichzeitig auf mehrere Eingaben anwenden, eine zentrale Rolle. Eine fundamentale Technik, um SIMD Programmcode zu erzeugen, ist der Einsatz datenparalleler Vektorisierung. Diese unterliegt populären Verfahren, wie der Vektorisierung äußerer Schleifen, der Vektorisierung gesamter Funktionen bis hin zu explizit datenparallelen Programmiersprachen. Der Beitrag der vorliegenden Arbeit besteht darin, ein zuverlässiges Vektorisierungssystem für datenparallelen Code mit reduziblem Steuerfluss zu entwickeln. Diese Anforderung ist für alle Steuerflussgraphen erfüllt, deren Schleifen nur einen Eingang haben, was in der Praxis der Fall ist. Wir präsentieren P-LLVM, eine ausdrucksstarke Zwischendarstellung für Vektorisierer, welche dem Programm in jedem Stadium der Transformation von datenparallelem Code zu SIMD Code eine definierte Semantik verleiht. Partielle Steuerfluss-Linearisierung ist ein neuer Algorithmus zur If-Conversion, welcher Sprünge erhalten kann. Anders als existierende Verfahren hat Partielle Linearisierung eine lineare Laufzeit und fügt keine neuen Sprünge oder Blöcke ein. Wir zeigen Kriterien, unter denen der Algorithmus Steuerfluss erhält, und beweisen diese. Steuerflussdivergenz induziert Divergenz an Punkten zusammenfließenden Steuerflusses. Wir stellen eine neue Steuerflussdivergenzanalyse für azyklische Graphen mit optimaler Laufzeit vor und beweisen deren Korrektheit und Präzision. Wir verallgemeinern die Technik zu einem Algorithmus mit quadratischer Laufzeit für beliebiege, reduzible Steuerflussgraphen. Eine Studie auf realistischen Beispielgraphen zeigt, dass vergleichbare Techniken entweder weniger präsize sind oder falsche Ergebnisse liefern. Ebenfalls präsentieren wir eine Divergenzanalyse für P-LLVM Programme. Diese Analyse ist die erste Divergenzanalyse, welche Divergenz in stapelallokierten Objekten unter unstrukturiertem Steuerfluss analysiert. Schließlich generalisieren wir die eindimensionale Vektorisierung von äußeren Schleifen zur multidimensionalen Tensorisierung von Schleifennestern. Tensorisierung eröffnet für SIMD Prozessoren mehr Möglichkeiten, bereits geladene Werte wiederzuverwenden und das Speicherzugriffsverhalten des Programms zu optimieren, als dies mit Vektorisierung der Fall ist. Die vorgestellten Techniken wurden in den Region Vectorizer (RV) für Vektorisierung und TensorRV für die Tensorisierung von Schleifennestern implementiert. Wir zeigen auf einer Reihe von steuerflusslastigen Programmen für die Traversierung von Baumdatenstrukturen, dass RV das gleiche Niveau erreicht wie der ISPC Compiler, welcher nur seine strukturierte Eingabesprache verarbeiten kann. RV kann schnellere SIMD-Programme erzeugen als die Schleifenvektorisierer in aktuellen Industriecompilern. Dies demonstrieren wir mit dem nab_s benchmark aus der SPEC2017 Benchmarksuite und der XSBench Proxy-Anwendung

    Combined instruction scheduling and register allocation

    Get PDF
    Master'sMASTER OF SCIENC

    Clustered VLIW architecture based on queue register files

    Get PDF
    Institute for Computing Systems ArchitectureInstruction-level parallelism (ILP) is a set of hardware and software techniques that allow parallel execution of machine operations. Superscalar architectures rely most heavily upon hardware schemes to identify parallelism among operations. Although successful in terms of performance, the hardware complexity involved might limit the scalability of this model. VLIW architectures use a different approach to exploit ILP. In this case all data dependence analyses and scheduling of operations are performed at compile time, resulting in a simpler hardware organization. This allows the inclusion of a larger number of functional units (FUs) into a single chip. IN spite of this relative simplification, the scalability of VLIW architectures can be constrained by the size and number of ports of the register file. VLIW machines often use software pipelining techniques to improve the execution of loop structures, which can increase the register pressure. Furthermore, the access time of a register file can be compromised by the number of ports, causing a negative impact on the machine cycle time. For these reasons we understand that the benefits of having parallel FUs, which have motivated the investigation of alternative machine designs. This thesis presents a scalar VLIW architecture comprising clusters of FUs and private register files. Register files organised as queue structures are used as a mechanism for inter-cluster communication, allowing the enforcement of fixed latency in the process. This scheme presents better possibilities in terms of scalability as the size of the individual register files is not determined by the total number of FUs, suggesting that the silicon area may grow only linearly with respect to the total number of FUs. However, the effectiveness of such an organization depends on the efficiency of the code partitioning strategy. We have developed an algorithm for a clustered VLIW architecture integrating both software pipelining and code partitioning in a a single procedure. Experimental results show it may allow performance levels close to an unclustered machine without communication restraints. Finally, we have developed silicon area and cycle time models to quantify the scalability of performance and cost for this class of architecture

    Predicated execution and register windows for out-of-order processors

    Get PDF
    ISA extensions are a very powerful approach to implement new hardware techniques that require or benefit from compiler support: decisions made at compile time can be complemented at runtime, achieving a synergistic effect between the compiler and the processor. This thesis is focused on two ISA extensions: predicate execution and register windows. Predicate execution is exploited by the if-conversion compiler technique. If-conversion removes control dependences by transforming them to data dependences, which helps to exploit ILP beyond a single basic-block. Register windows help to reduce the amount of loads and stores required to save and restore registers across procedure calls by storing multiple contexts into a large architectural register file.In-order processors specially benefit from using both ISA extensions to overcome the limitations that control dependences and memory hierarchy impose on static scheduling. Predicate execution allows to move control dependence instructions past branches. Register windows reduce the amount of memory operations across procedure calls. Although if-conversion and register windows techniques have not been exclusively developed for in-order processors, their use for out-of-order processors has been studied very little. In this thesis we show that the uses of if-conversion and register windows introduce new performance opportunities and new challenges to face in out-of-order processors.The use of if-conversion in out-of-order processors helps to eliminate hard-to-predict branches, alleviating the severe performance penalties caused by branch mispredictions. However, the removal of some conditional branches by if-conversion may adversely affect the predictability of the remaining branches, because it may reduce the amount of correlation information available to the branch predictor. Moreover, predicate execution in out-of-order processors has to deal with two performance issues. First, multiple definitions of the same logical register can be merged into a single control flow, where each definition is guarded with a different predicate. Second, instructions whose guarding predicate evaluates to false consume unnecessary resources. This thesis proposes a branch prediction scheme based on predicate prediction that solves the three problems mentioned above. This scheme, which is built on top of a predicated ISA that implement a compare-and-branch model such as the one considered in this thesis, has two advantages: First, the branch accuracy is improved because the correlation information is not lost after if-conversion and the mechanism we propose permits using the computed value of the branch predicate when available, achieving 100% of accuracy. Second it avoids the predicate out-of-order execution problems.Regarding register windows, we propose a mechanism that reduces physical register requirements of an out-of-order processor to the bare minimum with almost no performance loss. The mechanism is based on identifying which architectural registers are in use by current in-flight instructions. The registers which are not in use, i.e. there is no in-flight instruction that references them, can be early released.In this thesis we propose a very efficient and low-cost hardware implementation of predicate execution and register windows that provide important benefits to out-of-order processors

    Fast, frequency-based, integrated register allocation and instruction scheduling

    Get PDF
    Master'sMASTER OF SCIENC
    corecore