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Abstract 

Instruction-level parallelism (ILP) is a set of hardware and software techniques 

that allow parallel execution of machine operations. Superscalar architectures rely 

most heavily upon hardware schemes to identify parallelism among operations. 

Although successful in terms of performance, the hardware complexity involved 

might limit the scalability of this model. VLIW architectures use a different 

approach to exploit ILP. In this case all data dependence analyses and scheduling 

of operations are performed at compile time, resulting in a simpler hardware 

organization. This allows the inclusion of a larger number of functional units 

(FUs) into a single chip. In spite of this relative simplification, the scalability 

of VLIW architectures can be constrained by the size and number of ports of 

the register file. VLIW machines often use software pipelining techniques to 

improve the execution of loop structures, which can increase the register pressure. 

Furthermore, the access time of a register file can he compromised by the number 

of ports, causing a negative impact on the machine cycle time. For these reasons, 

we understand that the register file required by a wide-issue unclustered machine 

could compromise the benefits of having parallel FUs, which have motivated the 

investigation of alternative machine designs. 

This thesis presents a scalable VLIW architecture comprising clusters of FUs 

and private register files. Register files organized as queue structures are used 

as a mechanism for inter-cluster communication, allowing the enforcement of 

fixed latency in the process. This scheme presents better possibilities in terms 

of scalability as the size of individual register files is not determined by the total 

number of FUs, suggesting that the silicon area may grow only linearly with 

respect to the number of FUs. However, the effectiveness of such an organization 

depends on the efficiency of the code partitioning strategy. We have developed an 

algorithm for a clustered VLIW architecture integrating both software pipelining 

and code partitioning in a single procedure. Experimental results show it may 

allow performance levels close to an unclustered machine without communication 

constraints. Finally, we have developed silicon area and cycle time models to 

quantify the scalability of performance and cost for this class of architecture. 
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Chapter 1 

Introduction 

Performance of computer systems has evolved continuously since the first ma-

chine was built. The availability of faster machines encourages the development 

of new and sophisticated applications, leading to ever increasing performance re-

quirements. Advances in computer design and implementation technology have 

allowed those improvements. Computer systems in 1998 are based on micropro-

cessors, which have grown in performance at an annual rate of over 50% [45]. 

One of the latest trends in microprocessor architecture design is called Very Long 

Instruction Word (VLIW). Machines of this kind are able to exploit parallelism 

at the level of machine instructions. This thesis presents a clustered VLIW archi-

tecture model able to achieve high performance and exhibiting a good potential 

for scalahility. It was developed using a hardware/ software codesign process to 

design a number of features, including a novel register file organization based on 

queues, register allocation schemes, a clustered organization, and algorithms for 

code scheduling and partitioning. 

1.1 Work Context 

The microprocessor technology of 1998 relies on two basic approaches to im-

prove performance. One is to increase clock rates, resulting in faster execution 

of machine operations. The other is instruction-level parallelism (ILP), a set 

of hardware and software techniques that allows parallel execution of machine 

operations [84]. Superscalar architectures [51] rely most heavily upon hardware 

schemes to identify parallelism among operations. Although this approach of-

fers advantages in terms of code compatibility, the hardware complexity involved 

poses some limitations in terms of scalability. Increasing the number of functional 

units (FUs) in current superscalar microprocessors would require even more soph-

isticated schemes to find and schedule independent operations. Using a VLIW 

1 



architecture is another possibility to exploit ILP. In this case all data dependence 

analyses and scheduling of operations are performed at compile time, resulting 

in a simpler hardware organization. This allows the inclusion of a larger number 

of FUs into a single chip, increasing the possibilities of parallelism exploitation. 

In spite of this relative simplification, the scalability of VLIW machines can he 

constrained by the complexity and size of the required register file (RF). Ideally, 

a VLIW machine would have a number of parallel functional units connected to 

a common register file able to perform two reads and one write operation per FU 

in each cycle [14]. This implies that each FU requires three access ports to the 

register file. 

The available processing power of a very wide issue machine can be fully ex-

ploited when executing loop structures, which in many cases accounts for the 

largest share of the total execution time of a program. Several compiling tech-

niques have been developed to schedule loops in ILP machines. Software pipelin-

ing [16], for instance, is a scheme that allows the initiation of successive loop 

iterations before prior ones have completed. In this scheme, consecutive data 

values produced by the same operation may coexist, requiring distinct storage 

locations and thus increasing register pressure [64]. High register pressure results 

in register file requirements that are difficult to realize, taking into account cur-

rent technology trends. The size of shared register files grows in proportion to the 

square of the number of ports, and hence also the number of FUs [13]. If software 

pipelining is performed it can grow in proportion to the cube of the number of 

FUs (Section 2.3.2). The size of the register file alone can be a problem in the ma-

chine design. Furthermore, the access time of such an RF can be compromised by 

the number of ports, causing a negative impact on the cycle time of the machine. 

For these reasons we understand that the register file required by a wide-issue 

unclustered machine can compromise the benefits resulting from aggressive ILP 

scheduling. This has motivated us to investigate alternative machine designs. 

1.2 Work Overview 

This thesis proposes a scalable VLIW architecture comprising clusters of func-

tional units and private register files, using queue structures to implement a mech-

anism for inter-cluster communication. We believe this scheme presents better 

possibilities in terms of scalability as the size of individual RFs is not influenced 

by the total number of FUs, suggesting that the silicon area may grow only lin-

early with respect to the number of FUs. Technology trends indicate the future 
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possibility of building systems integrating powerful processors and main memory 

on a single chip [53]. This may address some design issues concerning the memory 

subsystem of our machine model, a problem also common to other microarchi-

tectures. However, the effectiveness of such an organization also depends on the 

scheduling and code partitioning strategy. We have developed a scheme to pro-

duce software pipelined code for a clustered VLIW machine model aiming to 

achieve performance levels similar to an unclustered machine without commu-

nication constraints. The main developments and contributions of this research 

work are outlined in the next subsections. 

1.2.1 Queue Register Files 

Software pipelining generally increases register pressure in VLIW machines. The 

register file required in such cases may compromise scalahility, which has motiv-

ated us to develop a Queue Register File (QRF). Register files organized by means 

of FIFO queues, with limited read and write access, are believed to be less com-

plex than conventional organizations. That should be the case because it could 

be implemented using simple dual-ported individual register cells, and a possibly 

less complex address decoding logic. On the other hand, this simplification in 

hardware imposes new constraints on the register allocator, requiring new tech-

niques to efficiently exploit this organization. Software pipelined loops generate 

a regular pattern of production and consumption of lifetimes. We have taken 

advantage of this fact to deduce and prove a Q-Compatibility Test to decide which 

lifetimes can share a given storage queue, based on their relative production and 

consumption order. The Q-Compatibility Test enables efficient register allocation 

to the QRF. Analytical models show that QRFs are in general more efficient than 

conventional organizations in terms of silicon area and access time. 

1.2.2 Unclustered VLIW Architectures 

We developed a VLIW machine model organized as a single cluster of functional 

units, all of them connected to a common register file. This model allow us 

to quantify the achievable ILP for the architecture and compilation techniques 

employed. Two types of register files have been used: a conventional RF, and 

a QRF. The advantage of using a QRF with software pipelined loops has been 

confirmed through experimental analysis. Nonetheless, it has also been confirmed 

that unclustered machines do not scale well, mainly due to the size and number of 

ports of the shared register file. In this case, all benefits achieved by an aggressive 

ILP scheduling can be lost due to a long register file cycle time. 
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1.2.3 Clustered VLIW Architectures 

Including additional functional units in a unclustered VLIW architecture is not a 

straightforward design issue. New register file access ports can severely comprom-

ise the machine cycle time. This thesis proposes a VLIW architecture comprising 

clusters of functional units and private conventional register files. Each cluster 

should have a small number of FTJ5 to avoid increasing the register file complex-

ity. Clusters are interconnected using a bi-directional communication ring. We 

developed a scheme using QRFs to implement data communication between adja-

cent clusters. In this case a communication queue register file (CQRFs) is placed 

between two clusters. Sending. a value from one cluster to another requires only 

one write and one read operation to the appropriate CQRF. We found through 

experimental analysis that the silicon area required to implement this scheme 

may grow only linearly with respect to the number of FUs. 

1.2.4 Distributed Modulo Scheduling Algorithm 

A clustered organization can address some of the issues related to the hardware 

complexity of a VLIW architecture. However, a single thread of control im-

plies that operations scheduled in distinct clusters may he data dependent with 

each other, requiring inter-cluster communication. This might impose additional 

constraints on the scheduler and register allocator, possibly compromising the 

machine performance. We developed a software pipeline scheduling algorithm 

targeting clustered VLIW architectures. The scheme, called Distributed Modulo 

Scheduling, performs in a single step both scheduling and partitioning of opera-

tions among clusters. The objective is to produce code achieving performance 

levels close to a single cluster machine without communications constraints. Sev -

eral experiments investigated the effectiveness of the scheme for machine con-

figurations up to 10 clusters, and a total of 30 functional units. Furthermore, 

the scalability of the proposed clustered architecture was assessed, taking into 

account performance and cost aspects, along with future technology trends. 

1.3 Thesis Structure 

The thesis structure presented in this section generally reflects the chronological 

order in which this research work was carried out. Some of the findings and ex-

periments performed in early stages of the work are omitted, being replaced by 

later developments. A number of hardware and software issues have been ad-

dressed, however the interrelation among them requires that they are presented 



together. We tried to produce a single presentation format for the work meth- 

odology, design considerations, experimental results and discussions. Finally, a 

summary of the main objectives and contents of each chapter is described below: 

• Chapter 1: Motivation and work overview. 

• Chapter 2: Bibliographic survey related to this thesis. Topics discussed 

include ILP, hardware support for ILP, VLIW architectures, register file 

organizations, compilation and scheduling techniques for VLIW, and similar 

architectures developed elsewhere. 

• Chapter 3: Description of the experimental framework used to perform 

quantitative analyses throughout the work. A basic machine model is 

defined, along with the benchmark loops employed. A software pipeline 

scheduling algorithm is at the core of the compilation process. A number 

of figures regarding performance and machine resources are generated. 

• Chapter : A queue register file is proposed as an alternative organization to 

deal with high register pressure. A novel technique is presented to perform 

register allocation, which includes a theorem (Q-Compatibility Test) and 

the corresponding proof. Comparisons with conventional organizations are 

made in terms of silicon area and access time. 

Chapter 5: Defines an unclustered VLIW machine, using either a RF or 

QRF. The potential to exploit ILP, and the implications of using a shared 

register file are investigated by means of experimental analysis. 

• Chapter 6: A clustered VLIW machine and the corresponding scheduling 

algorithm is proposed to address scalability issues. The main motivation is 

to keep register files small enough to result in a short cycle time. Queue 

register files are used to implement a communication mechanism between 

clusters. 

• Chapter 7: Presents DMS, an integrated scheduling/partitioning algorithm 

targeting a clustered VLIW machine. The scheme is able to deal efficiently 

with communication constraints for a range of machine configurations. 

• Chapter 8: Analyses the scalability of performance and cost of clustered 

VLTW machines. Compares several configurations of the proposed architec-

ture, trying to predict its viability according to current technology trends. 

• Chapter 9: Final conclusions and suggestions for future work. 
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Chapter 2 

Background 

2.1 Instruction-Level Parallelism 

Instruction-level parallelism is a set of processor and compiler design techniques 

that allows a sequence of machine operations to he parallelized for execution on 

multiple pipelined functional units. The operations are similar to the ones usu-

ally found in a RISC microprocessor, such as memory loads and stores, additions, 

multiplications, and branch instructions. The main advantage of ILP is the pos-

sibility of exploiting parallelism with no need of code rewriting, working with 

existing programs. Sequential programming style still dominates the software 

base currently in use, and also new. developments. This is unlikely to change in 

the foreseeable future, which emphasizes the commercial value of ILP. 

Several studies have pointed out the existence of large amounts of available ILP 

to be exploited in existing programs. Some studies concluded that the available 

ILP is modest, ranging between 2 and 5. However those studies did not consider 

program transformations able to expose ILP [84], such as loop interchange, trace 

scheduling, loop unrolling, and software pipelining, among others [7]. Wall car-

ried out an extensive study, using speculative execution, memory disambiguation 

and other techniques to enhance ILP [94]. He concluded the available parallel-

ism ranges between 2 and 60, depending on the execution model employed. A 

new version of this study was later conducted, considering a much larger set of 

techniques to expose ILP [95]. That report presents simulations of test programs 

under 375 models of available parallelism. It was found that relying only on 

the technology available at the time (1993), it was possible to consistently ob-

tain ILP between 4 and 10 for most of the programs. Using branch prediction 

with speculative execution the range would shift to 7-13. It was also concluded 

that vectorizable programs could attain much higher levels. Another study on 

available ILP focused on methods to eliminate control flow barriers [55]. It was 

[1 



found that the parallelism in non-numeric programs ranges between 18 and 400. 

Numeric applications could go even further. It is expected that new compiler 

optimizations will expose even larger amounts of parallelism to he exploited by 

aggressive machine configurations. 

On the other hand, continuous improvements in VLSI design enables the in-

tegration of more functional units into a single chip. Furthermore, higher clock 

speeds may result in more deeply pipelined functional units. These factors con-

tribute to increase the available hardware parallelism. The task of keeping an ILP 

processor busy can rely most heavily either on hardware or software schemes. This 

constitutes the basis upon which modern ILP processors can be classified, which 

is discussed in the next subsections. 

2.1.1 Hardware-Centric ILP: Superscalar 

Superscalar processors [51] have complex hardware structures to decide at run-

time which operations have no dependences with each other, so they can be ex-

ecuted in parallel. Dynamic scheduling of operations are also performed by hard-

ware. Scoreboarding [92] is a dynamic scheduling technique that allows instruc-

tions to execute out-of-order. Another approach, called Tomasulo Algorithm [93] 

combines out-of-order execution with register renaming. These and other related 

techniques try to avoid stalls in the pipeline by preventing data hazards. Hard-

ware branch prediction schemes can also be implemented to avoid control haz-

ards [90]. As a side effect, increasing the number of operations in flight (issued 

but not yet completed) can make the number of architectural visible registers 

insufficient, requiring register renaming techniques [98]. 

The possibility of having object code compatibility is one of the main advant-

ages of superscalar processors, allowing applications to run in faster machines 

without recompilation. For this reason, general purpose superscalar processors 

have reached the mainstream market. The drawback of this approach is that 

implementing those and other hardware schemes can be expensive in terms of 

silicon area and clock cycle. Contemporary machines of 1998 can issue about 

four operations per cycle [75, 37]. However, there is a general perception that 

hardware complexities may prevent the expected performance gains if the cur-

rent instruction issue rate is increased by a significant factor. For this reason new 

ILP designs, in the form of VLIW processors, move into the compiler some of the 

tasks performed by hardware in superscalar architectures. 



2.1.2 Software-Centric ILP: VLIW 

VLIW machines provide hardware parallelism in the form of multiple and deep 

pipelined functional units. However, they have a relatively simple control logic, 

releasing more silicon area to implement functional units. This should result in 

higher levels of hardware parallelism than found in superscalar machines. Sim-

pler hardware may result in lower cost per chip and less power consumption, 

important features for embedded computing and portable devices, among oth-

ers. The counterpart of these advantages is the need of sophisticated compiler 

techniques to identify parallelism and schedule operations among functional units. 

The program for a VLIW machine specifies precisely which functional unit should 

execute a given operation, and when an operation should be issued in order to 

enforce dependence constraints [84]. Comparing to dynamic scheduling schemes, 

a compiler can work with a larger window of candidate operations to be paral-

lelized. This improves the possibilities of keeping the available functional units 

busy. However, the compiling techniques involved are complex, still evolving and 

presenting challenges. 

Detailed description of the target processor is necessary to achieve the best 

performance with static scheduling. In this case object code compatibility may 

not he possible among distinct machine generations, requiring program recom-

pilation. Complexity and program size can result in long compilation times. To 

alleviate this problem the compiler can subdivide a program, performing tasks 

of manageable sizes [44]. The nature of some application fields make them less 

sensitive to this problem, such as scientific programs and digital signal processing 

(DSP) [23]. However, this is an important issue for general purpose computers 

and applications. A research group at IBM proposed a solution for this prob-

lem, organizing operations into tree-instructions [72]. Another work proposed 

dynamic scheduling of operations for VLIW machines [77]. Although a number 

of compiling issues are still open, VLIW architectures are beginning to estab-

lish itself in some niche markets, specially in the DSP area. The technology can 

also be effective to support multimedia applications, an area of increasing in-

terest [761. However, to have a broad impact on the mainstream market, VLIW 

processors must accelerate the non-vectorizable scalar code prevalent in most ap-

plications [86]. An indication of the viability of this technology is the announce-

ment by Intel of the first general purpose VLIW-like processor [43], to he released 

in late 1999. The next sections of this chapter discuss VLIW architectures and 

related compilation issues, followed by a brief presentation of some commercial 

VLIW machines. 
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2.2 VLIW Architecture 

A VLIW architecture is characterized by a wide instruction word controlling the 

action of all functional units. A single control unit can issue a new instruction 

every cycle. Data dependences and scheduling of instructions are resolved stat-

ically at compiling time, so the hardware has to perform no further checking 

to ensure program correctness. The first VLIW architecture was proposed by 

Fisher at Yale University [33]. Since then a growing interest in this technology 

has motivated a number of hardware and software developments to support the 

new paradigm. 

The ideal VLIW machine has a number of concurrent FUs, connected to a 

register file able to perform two reads and one write operation per functional unit 

in each cycle [14, 211. A control unit, instruction and data caches complete the 

basic VLIW design, as seen in Figure 2.1. The diagram shows a hypothetical 

machine with functional units capable to perform memory load and store ac-

cess (L/S), arithmetic and logic operations (ADD), multiplication and divisions 

(MUL), and a branch unit (BR). Static scheduling and a single thread of control 

impose strict synchronization constraints among functional units, which should 

operate in lockstep [45, 40]. This may result in one single cache miss stalling all 

FUs, stressing the importance of the memory subsystem. However, the pattern of 

memory access of some DSP applications may result in a high rate of cache misses, 

motivating the use of alternative designs such as local memories or prefetching 

buffers [23]. Future trends suggest that it will be possible to integrate processing 

elements and main memory in a single chip [53], greatly simplifying this issue. 

A long instruction word should contain, for each functional unit, the operation 

code, the source and the destination registers used, as shown in the example in 

Figure 2.2. No-operations (NOPs) may be inserted in the long instruction if there 

are not enough operations to be issued in parallel in a given cycle. Practical 

VLIW machines have been implemented using instruction words up to 1024 bits 

wide [83, 661. Uncompressed encodings explicitly store NOPs in the instruction 

word. This simplifies the hardware organization, but at the expense of poor 

memory utilization due to increase in code size. Compressed encodings do not 

store NOPs, using variable size instructions, allowing greater effective memory 

bandwidth [17]. 

The need to execute some time-critical instructions might be known only at 

run time, which is often associated with the outcome of a branch operation. Nev-

ertheless, the compiler can schedule those instructions speculatively, as long as 

some hardware support is provided to ignore the effects of executing unnecessary 



VLIW Processor 

L Control Un itj 

Instruction Cache 

Jr 

Jr Jr Jr Jr I Jr Jr 
Multiported Register File 

Jr 
Data Cache 

Figure 2.1: Basic structure of a VLIW processor 

Single instruction word controlling all functional units 

US 	US 	ADD 	ADD 	MULl 	MUL2 BR 

I LD R3, O(RI) I LD R5, O(R2) I ADD RIO, R8, R9 I NOP  I MUlL R20, R17, R18 j NOP 	JR R30 

Figure 2.2: Example of an instruction word for a VLIW processor 

operations [21, 83, 52]. Predicated execution determines the execution of an oper-

ation according to a Boolean input [47]. Some schemes employ extra poison bits to 

indicate if the contents of a register is valid [45]. Other methods buffer the result 

of an speculative instruction until deciding if it is needed or not. Branches can he 

eliminated from an acyclic region of a control flow graph using if-conversion [4] 

and predicated execution, as showed by Dehnert [18]. These and other special 

hardware features can be used to optimize the performance of a VLTW machine. 

2.3 Register Files for VLIW Machines 

Performance reasons dictate that operations other than memory access should 

be register-register [45]. Those operations use destination and source operands 

stored in the on-chip register file. Memory operations can be made through load 
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and store operations. All functional units of a VLIW machine operate in lockstep. 

If one of them stalls due to a memory operation, all the others must also stop 

executing. Data communication among functional units should always take place 

thorough a centralized register file. A VLIW processor should provide a register 

file with enough capacity and bandwidth to support the intended instruction issue. 

Occasional on-chip cache access to deal with spill code could he tolerated, however 

frequent cache misses can seriously compromise the machine performance. For 

this reason the design of the register file is one of the crucial aspects of a VLIW 

machine, being able to determine the machine cycle time [25]. 

In this section we show that register file requirements for wide-issue VLIW 

machines are high and complex. As a result, conventional designs may not be 

well suited to address the problem. Thus, performance and scalability issues may 

lead to alternative hardware organizations and compilation techniques 

2.3.1 Register File Requirements 

There are two main factors that make register file requirements for VLIW ma-

chines complex: 

• Number of registers 

• Number of access ports 

Compiler optimizations employed to exploit ILP machines often require a large 

number of registers. Predication and speculative execution generate extra data 

values that must be kept without knowing if they are necessary or not. Loop 

unrolling and software pipelining can also increase register pressure dramatically. 

The lifetime of a value is the time span ranging from its definition up to the 

last use of it. It can also be referred to as lifetime length. The precise definition 

of the first and the last cycle of a lifetime depends on architecture details, and is 

not relevant at this point of the discussion. Two types of lifetimes can be found 

in a loop: A loop invariant lifetime spans the whole loop execution. Usually it is 

initialized before entering loop execution and remains fixed until exiting. For this 

reason they need only one storage position. On the other hand, a loop variant 

is a lifetime produced by successive iterations of a loop, usually having its value 

changed. 

Loop unrolling [20] is a well known compiler optimization that replicates the 

body of a loop some number of times. This allows simultaneous scheduling of 

more than one iteration at a time, resulting in a larger number of operations to 
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exploit machine resources. New lifetimes are also generated, possibly requiring 

distinct storage positions, as shown in the example in Figure 2.3. 

LOOP unroiiea . times 

I Lifetime 
	

3 Lifetimes 

I Storage positio 
	

3 Storage positions 

Figure 2.3: Register pressure resulting from loop unrolling 

Software pipelining can also be very demanding due to the overlapping of life-

times produced by the same operation from distinct loop iterations. In this scheme 

a new iteration starts before prior ones have fully completed. A given lifetime 

length can be longer than the time between the initiation of two or more suc-

cessive iterations. In this case an operation produces a new value before previous 

ones have been consumed, thus requiring distinct storage locations (Figure 2.4). 

3 Successive Iterations of a 
Software Pipelined Loop 

3 Lifetimes 

3 Storage positions 
Op2  

Op2  

Figure 2.4: Register pressure resulting from software pipelining 

Register requirements for ILP architectures have been studied by several au-

thors. A theory for assessing register requirements of pipelined processors with 

various issue widths was developed by Mangione-Smith and others [69]. The tech-

nique is intended to help in evaluating trade-offs in machine designs. The study 

concentrates on the execution of innermost loops from scientific programs. Liosa 
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performed a quantitative analysis on register requirements of software pipelined 

loops and their effect on performance [64]. This study focused on loop variants as 

they account for the most significant fraction of register requirements for numeric 

applications. It was found that 64 registers are enough to avoid spill code for 

at least 90% of the loops, however a lot more is required by a few loops [65]. 

Furthermore, those loops account for a significant fraction of the total execution 

time of the benchmark, which emphasizes the relative importance of them. Farkas 

produced a study on register files for dynamically scheduled ILP processors, with 

some findings that can also be extended to VLIW machines [25]. It was concluded 

that a four-issue machine requires at least 80 registers. An eight-issue processor 

would require at least 128 registers. Those and other works have confirmed that 

aggressive exploitation of ILP requires a large number of registers. 

It has been shown that ILP machines executing non-numeric applications 

would require RFs with a small number of access ports [71]. However, numeric 

applications, often the target of wide-issue machines, are much more demanding. 

The number of access ports required by a register file for VLIW architectures 

further complicates its implementation and performance. As already said, each 

functional unit requires 2 read and 1 write register file access ports to sustain the 

achievable issue. The area of shared register files grows in proportion to the square 

of the number of ports, and hence also the number of FUs [13, 25], which has 

motivated a number of alternative organizations, as shown in the next sections. 

2.3.2 Monolithic Register Files 

A monolithic register file can be implemented using a register cell with multiple 

read and write ports. It allows multiple access to the same register in any given 

clock period [58]. This is the organization used by most of the ILP machines 

built until 1998. However it can constitute a barrier for scalability. If software 

pipelining is performed, as often happens in ILP machines, we have found that 

the register file size can grow in proportion to the cube of the number FUs. 

Let us assume that a p ported register file, containing r registers of d bits 

each is fully connected to a collection of f functional units, each having a latency 

of I cycles. The silicon area required to implement such a register file is shown 

diagrammatically in Figure 2.5. It can be inferred that, for some constant value 

K, the expression to calculate the area A of that register file is: 

A = Krdp2  = O(rp2 ) 	 ( 2.1) 
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Register I 
P ports 

Area= xy= K(dp x rp) 

Register r 
P ports 

Port! 	 Port  
d data !1O lines 	d data 110 lines 

Figure 2.5: Area Of a monolithic register file 

In a software pipelined loop each operation in flight reserves n register names, 

where n is the number of software pipe-stages straddled by each lifetime. The 

number of operations in flight is determined by the product of the instruction 

issue width and the pipeline lengths. This equals the number of independent 

functional units, f, multiplied by the number of pipeline stages of each FU, 1. 

Thus, assuming that n is a constant, the number of registers r required to execute 

a software pipelined loop in a VLIW machine is: 

= nfl = O(fl) 	 (2.2) 

To sustain an average issue rate of s instructions per cycle it may be necessary 

to have a register bandwidth of at least 2s reads and s writes per cycle, requiring 

2 read ports and 1 write port per instruction. Under the reasonable assumption 

that s = (f) we can say: 

p=e(f) 
	

(2.3) 

Using equations 2.2 and 2.3 the register file area can be expressed in terms of 

the number of functional units: 

A = e(1f3 ) 	 ( 2.4) 
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We have found that the area of a register file to support software pipelining 

execution is proportional to the cube of the number of functional units. This 

result clearly shows that designs employing a large multiported register file can 

constrain the scalability of VLIW architectures. 

A further complicating factor is the access time of multiported register files: 

it grows approximately linearly with the number of ports [23]. The register file 

may well determine the cycle time of a VLIW machine. One study found that 

when the issue rate scales up from 4 to 8, the performance improvement achieved 

is only 20%. The main reason for this is the complexity of the enlarged register 

file, specially in regard to the number of access ports [25]. 

We have shown that conventional register file organizations may not be suit-

able for ILP architectures. This could be even more problematic for wide-issue 

VLIW machines, which has motivated the development of decentralized architec-

tures, as presented in the next section. 

2.3.3 Partitioned Register Files 

As discussed in Section 2.3.1, exploiting a high degree of parallelism also requires 

parallel access to a possibly large set of registers. A single multiported register 

file is the simplest solution to the problem, however access time and silicon area 

may inhibit its use by wide-issue VLIW machines. The technology available in 

1998 allows one to build register files with around 10-15 ports at reasonable cost 

and speed [23]. This configuration would be suitable for machines with up to 

5 FUs, however higher degrees of hardware parallelism are already possible. To 

overcome this problem, some processor architectures may incorporate distributed 

or partitioned register files, each of them providing access to a smaller set of 

functional units. This reduces the port requirements of individual Us, and 

should also reduce the size of them. Multiple banked register file organizations 

can be used by dynamically scheduled processors. One way to deal with the new 

organization is by using register renaming [96]. Statically scheduled processors 

require complex compiling techniques to distribute operands among RF banks, 

each of them dependent on the architectural model adopted. 

As defined in [58], in a distributed RF configuration each set of functional units 

has direct access to one register file only (Figure 2.6a), resulting in a clustered 

structure [50]. Access to non-local register files may stall the processor or require 

register copy operations, as discussed later in this section. A partitioned register 

file provides less connectivity between FUs and registers (Figure 2.6b), however 

each FU has still direct access to any register [50]. Copy operations are not 
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necessary, although conflict access may arise. This approach has been successfully 

used in vector processors [58]. 

Distributed Register File 

Register File 
	

File 
	

Register File 

Partitioned Register File 

Figure 2.6: Subdividing a monolithic register file 

Significant performance degradation may occur if code partitioning is not 

properly done. According to Faraboschi [23], three distinct architectural scenarios 

may be possible when register files are partitioned or distributed: 

The register file clustering is architecturally invisible. In this case the com-

piler assumes a unified register space. Local register access operations occur 

as usual. However, access to a register file located in another cluster may 

he necessary. In this case, hardware support should he available to stall 

the processor while register contents are moved across non-local elements. 

This approach does not impose extra complexities to the compiler, however 

significant performance penalties may occur due to excessive stalls. 

The register file clustering is architecturally visible, with complete connectiv-

ity between FUs and RFs. In this case local and non-local RF access have 

distinct latencies. A non-local access is actually implemented using a copy 

operation, which must be scheduled together with the operation requiring 

the access to the RF. This creates an indivisible "operation-copy" pair. 

The advantage here is the possibility of minimizing the overhead due to 

copy operations by scheduling them out of the critical path. 
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3. The register file clustering is architecturally visible, with limited connectivity 

between FUs and RFs. This case is similar to the previous one, however 

the compiler must schedule copy operations explicitly, but not necessarily 

together. Better schedules might be produced, at a cost of a more complex 

compilation process. 

Previous works have proposed distributed or partitioned register files for wide-

issue machines. Whatever organization is used, compilation for these type of 

machines is difficult, resulting in severe performance loss if not properly handled. 

The Multiflow Trace VLIW machines were commercially available as general 

purpose systems in the late 1980s. Configurations capable of issuing up to 28 

operations simultaneously were built [66]. The architecture was designed using 

clusters of functional unit and distributed private register files. Global shared 

buses were used to connect non-local register banks, which increases operation 

latencies. The approach used to minimize the amount of data transfer latency is 

derived from the Bottom Up Greedy (BUG) algorithm [22]. It is used as a pre-

scheduling step to assign operations to functional units and register banks [66]. 

The actual latency of an operation is determined by the register bank of the 

destination operand. If it is local, no extra delay is necessary. Otherwise, the 

functional unit has also to perform a sort of copy operation to access the non-

local register file using the global bus. 

Capitanio and others proposed a Limited Connectivity VLIW architecture, 

employing distributed register files [14]. Although originally called "partitioned", 

this structure is more closely related to our definition of "distributed" register 

file. We attribute this denomination conflict to the lack of a widely accepted 

classification of register file organizations. The processor in this machine model 

is partitioned into clusters of functional units fully connected to a private register 

file. Communication between clusters take place through global buses. The com-

piler schedules move operations when non-local register file access is required. 

The compilation process uses a three step scheduling process: code is first gener-

ated for an ideal VLIW, assuming a monolithic register file. Then an algorithm 

is applied to distribute data among clusters, minimizing a given cost function re-

lated to communication delays. Finally the required move operations are inserted 

and the code is recompacted. 

The Transport Triggered Architecture (TTA) is a VLIW machine using parti-

tioned register files [50]. No extra copy or move operations are needed, however 

the register allocator has to prevent access conflicts due to a limited number of 

ports. A conventional register allocator maps architectural registers to machine 
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registers. Further actions must be taken if the number of physical registers is 

insufficient. The register allocator for a TTA must also take into account the 

limited number of ports. The authors proposed several methods for this task. 

Another approach has being reported recently by HP Laboratories [19]. The 

target machine is a clustered VLIW architecture, using distributed register files. 

The code partitioning strategy can be seen as an extension of the techniques used 

by the Multiflow architecture. However, a distinct architecture model allows the 

compiler to explicitly schedule copy operations between clusters. The algorithm 

distributes operations among clusters, trying to avoid the inclusion of copy oper-

ations in the critical path. This should minimize increases in the schedule length 

due to partitioning. Register allocation is also taken into account during the par-

titioning phase, avoiding further complications due to eventually required spill 

code. 

2.3.4 Other Register File Organizations 

Alternative register file organizations have been proposed in addition to the ones 

described above. The Cydra 5 was designed as a VLIW machine to achieve high 

performance when executing innermost loops [83]. A set of rotating register files 

supports the execution of software pipelined loops. The rotating register file is 

addressed using an iteration frame pointer (IFP), which is decremented on each 

iteration [18]. The result is that a particular register reference actually refers to 

a distinct physical register on each iteration. The rotating register file concept 

is an effective technique to deal with overlapped lifetimes produced by software 

pipelining schedules. However, it does not address access conflicts and register 

port requirements, which can be high for wide issue machines. Furthermore, the 

Cydra 5 architecture employed a crossbar interconnection among FUs and RFs, 

which is not a scalable solution. 

The regularity in memory access patterns found in some classes of applica-

tions, like DSP, has motivated the design of other storage structures. Aloqeely 

and Chen proposed queues and stacks to store values not requiring random ac-

cess [5]. They are implemented using chains of shift registers. Storage structures 

resembling FIFO (first-in first-out) or LIFO (last-in first-out) queues may reduce 

the access time and hardware costs. This can be accomplished because there 

is no need of address generation and decoding logic to access intermediate po-

sitions. However, those organizations require register allocation schemes more 

complex than conventional ones. A similar approach was proposed using circular 

queues [9], also using shift registers. This implementation may impose further 
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constraints to the register allocator: values must be written to and read from 

fixed physical locations, at the end points of the storage structure. It can he 

possible that the first logical value in a queue is not stored in the first physical 

location in the queue, requiring extra cycles to perform shift operations. This may 

delay the schedule of an operation dependent on that value. This problem can 

he tackled using a structure called sequential read-write memory (SRWM) [46]. 

A register bit is used to control which memory location should be accessed, elim-

inating the need for global shifts of values. These structures have been reported 

as more efficient in terms of silicon area and power consumption than the ones 

using shift registers [36]. All of those works proposed register allocation schemes 

exploiting particular characteristics of the application programs, enabling the use 

of the non-conventional RF organizations. 

2.4 VLIW Compilation Issues 

The ultimate goal of a compiler is to produce code that minimizes the total 

execution time of a program (runtime). Compiler optimizations for sequential 

RISC processors accomplish this by minimizing the instruction count (number 

of operations executed). For ILP processors the correlation between these two 

factors is not necessarily the same. Some schemes actually increase the number 

of operations executed in order to minimize runtime. Producing code for ILP 

architectures requires knowledge of the available parallelism at both software and 

hardware levels. This allows the compiler to transform the program in order to 

optimize the use of machine resources, reducing the cycle count (number of cycles 

to complete the program execution). 

Programs are often represented as graph structures, which expose data de-

pendence among operations, and also opportunities for parallelism exploitation. 

A target machine model, similar to the actual hardware of the target machine, 

should feed the compiler with the available hardware parallelism. A detailed ma-

chine model description [42] may allow the compiler to produce better quality 

code. However, this exposes one of the drawbacks of statically scheduled ILP 

machines: a new recompilation is required for every distinct configuration of a 

given architecture. 

Compilers for ILP architectures must find enough parallelism to exploit the 

available machine resources. This involves several program analyses and trans-

formations. Some designs focus on optimizing code for numeric applications, of-

ten accelerating loop execution, using techniques such as software pipelining [16]. 
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General purpose machines must deal with non-numeric (scalar) code. Although 

some attempts have produced acceptable results [32], research is far from com-

plete in this area. 

2.4.1 Overview of the Compilation Process 

The quality of compiler parallelization techniques can potentially make a differ-

ence of an order of magnitude in the performance of processors exploiting ILP. 

In order to parallelize a program, three tasks must he performed by a compiler: 

• Analyze the program to determine dependences between instructions. 

e Perform optimizations to remove those dependences. 

• Schedule instructions to he executed in parallel. 

A simplified representation of the phases constituting an optimizing compiler 

for a VLIW machine can be seen in Figure 2.7. The front end takes the source 

code and performs lexical, syntactical, and semantic analysis [3], translating the 

program into an intermediate code. Control and data flow analysis is then per-

formed, providing the information required to apply machine-independent and 

machine-dependent optimization techniques [7]. Parallelism among instructions 

can be represented by a data dependence graph, which is used by sophisticated 

code scheduling techniques. Finally, the code generator produces the object code 

for the target architecture. Optimization techniques can interact with each other, 

so the order in which they are performed can change significantly the final effect. 

For this reason, compiler implementations employing the same optimizations can 

adopt a distinct phase ordering. 

2.4.1.1 Dependence analysis 

Optimizing compilers rely most heavily in a technique called dependence ana-

lysis [8]. A dependence is a relationship between two computations that places 

constraints on their execution order. Dependence analysis is used to determine 

whether a particular program transformation can be applied without changing 

the program behaviour. 

Deciding which operations can execute in parallel requires knowledge about 

which operations must follow other ones. A dependence exists between two oper-

ations if interchanging their order changes the results. In the following examples 

we assume that executing OPi  before 0P2  ensures the correct semantics. De-

pendence analysis can he used to verify whether that ordering can he changed. 
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Figure 2.7: Phases of an optimizing VLIW compiler 

Dependences can be one of two types: data dependence and control dependence [8]. 

Data dependences can be further subdivided into three types: 

• True dependence: It is said that 0P2  has a true dependence on Op, if 

Op, writes a variable that is read by 0P2.  In the following example the 

dependence exists because of R 1 , which must he calculated (Opi)  before it is 

used (Op2).  True dependences are due to the program semantics, imposing 

a serialization in the program execution. However, a technique called data 

value speculation may avoid this constraint by predicting the values that 

flow among data dependent instructions [60, 38]. 

Op, : 	R 1 =R2 *4 

Op2: 	R3 =R 1 +5 
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• Antidependerzce: It is said that 0P2  has a antidependence on Opi  if 0P2 
writes a variable that is read by OPi.  This example shows an antidependence 

because of R 5 , which must be read (Opi)  before it is written over ( 0p2). 
This dependence can he avoided if Op, and 0P2  use two distinct memory 

locations for R5 . 

Gm: 	R4 =R5 -1 

Op2: 	R5 =R6 *2 

• Output dependence: An output dependence refers to two operations Opi  and 

OP2 writing the same variable. The example shows two instructions using 

the same variable (R 7 ), to store the result of both computations. Output 

dependences can also be avoided using distinct memory locations. 

Op, : 	R7 =R8 +1 

Op2: 	R7 =R9 -3 

Scalar variable references explicitly refer to a name, with each statement being 

executed at most once. This simplifies the dependence analysis process. In loops 

each statement may be executed many times, thus a more elaborated dependence 

analysis is required. Dependences between operations from the same iteration are 

called intra-iteration dependences. Other complex dependences may be found in 

loop structures: 

• Loop-carried dependence: They occur between operations from distinct it-

erations. If on a given iteration i the loop refers to an element with index 

i - k, the dependence distance is said to be k. The following example shows 

a simple loop without any dependence within a single iteration. However 

there is a dependence between two iterations: OP2  reads a variable (A[i —2]) 

written by Opi  from the second previous iteration. In this case the depend-

ence distance is said to be 2. 

Do i=1, 100 

OP1: 	A[i] = C[i] + 1 

°P2 : 	B[i] = A[i - 2] - 5 

• Recurrence. This is a particular form of loop-carried dependence. It occurs 

when a variable is defined based on the value of that variable in an earlier 

iteration. The following example shows a recurrence with distance 1. In 

this case °Pi  reads a variable produced by itself one iteration before. 
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Do i=1, 100 

Op, : 	A[i] = A[i - 1] + 5 

The last type of dependence described refers to the program control flow: 

• Control dependence: This type of dependence occurs when a given Op, 

determines whether 0P2  should he executed or not. A typical example of a 

control dependence is the conditional construct if, as the following example 

shows. Control dependences also impose a serialization in the program 

execution, which may he avoided with branch prediction schemes [45]. 

Gm: 	if( R io  =5) 

OP2: 	then R 11  = 

Control dependences can be converted into data dependences, using a trans-

formation called if-conversion [4]. If-conversion can be applied by using pre-

dicated instructions. In this case, an instruction is executed only if the value 

of a third operand is equal to zero. A predicated instruction (in pseudo-

assembly) for the above example is shown below. The instruction copies 

the contents of register R 11  into R 12 , according to the value of R40 . 

CMOVZ R 11 , R 12 , R40  

2.4.1.2 Optimizations 

Optimizing a program often requires some sort of transformation, which may 

involve inclusion, elimination, and reordering of instructions. A compiler must 

perform three steps to apply an optimization [7]: 

• Decide the region of a program to apply a given optimization. 

• Verify that the required transformation does not change the program se-

mantics. 

• Transform the program. 

Optimizations can he classified into machine-independent and machine-dependent. 

They can he further classified into local (within a single basic block) and global 

(across basic blocks). A basic block is a sequence of instructions with no branches 

into or out of the block, apart from the entry and exit boundaries. The goals 
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of these optimizations are to improve the execution speed and reduce the size of 

program. For ILP machines they can also increase the amount of parallelism to 

he exploited by the scheduler. Some of the most common machine-independent 

optimizations [67] are: 

• Constant propagation 

• Forward/ Backward copy propagation 

• Memory copy propagation 

• Arithmetic common subexpression elimination 

• Redundant load/store elimination 

• Dead code removal 

Loop structures can be the most significant factor affecting the total execution 

time for many classes of applications [59]. This has motivated the development of 

several loop-oriented optimizations [7]. Some of them are machine-independent, 

capable of reducing loop overhead, improving register usage and data cache loc-

ality, among other features. A few of them are listed below: 

• Invariant code removal 

e Global variable migration 

• Induction variable strength reduction 

• Induction variable elimination 

Machine-dependent optimizations take into account hardware resources of the 

target machine to make program transformations to further expose parallelism 

and exploit efficiently machine resources. The following are included among these 

optimizations: 

• Static branch predication 

• Speculative Execution 

• Loop unrolling 

• Loop interchange 

• Loop distribution 

• Software pipelining 
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2.4.2 VLIW Scheduling 

Scheduling algorithms can be classified into three types [84], according to the 

control flow graph of the region being scheduled: 

. Local scheduling 

• Global acyclic scheduling 

• Global cyclic scheduling 

2.4.2.1 Local scheduling 

This class of algorithms work with a single basic block at a time. A number of 

efficient techniques have been proposed to schedule basic blocks. One of the most 

popular is list scheduling [2], a scheme that schedule operations according to a 

given priority list, such as highest-level-first. However, local schedulers have a 

fundamental problem that prevents them from being used effectively with ILP 

machines: the size of a basic block. Several studies have confirmed that on 

average the size of a basic block ranges between 5-20 operations, limiting the 

possibilities of parallelism exploitation. It has been found that limiting parallelism 

extraction to a single basic block would yield a maximum speedup between two 

and four [94, 59], an unacceptable limitation for wide-issue VLIW machines. For 

this reason high performance can only be achieved if ILP is exploited across 

multiple basic blocks. 

2.4.2.2 Global Acyclic Scheduling 

Global scheduling operates on multiple basic blocks simultaneously, identifying 

windows of operations to be scheduled. A window is typically composed by entire 

procedures or regions from a procedure [86]. Global acyclic scheduling selects 

regions with no back edges in the control flow, a structure typically found in 

loops. Doing so they target mainly the loop-free stretches of code prevalent in 

many general purpose programs. Possibly the most well known algorithm of this 

class is trace scheduling [32]. A trace scheduler selects regions of code that could 

be taken according to the output of branch operations. These regions are then 

scheduled as if they were a single basic block. The larger the size of a region 

the better the possibilities of finding parallelism. However there is an implicit 

trade-off: a large region requires a long compilation time, and may also result in 

inefficient schedules due to wrong paths speculatively taken. Traces are scheduled 

according to their execution frequency, which can he determined using profile 
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information or static branch prediction. The scheduler attempts to optimize 

the execution time of frequently executed traces, at the expense of the least 

frequent ones. The insertion of compensation code might be necessary in order 

to correct the outcome of wrongly executed paths. That may generate excessive 

code replication, resulting in code size explosion. A detailed implementation of 

thisalgorithm can be found in [22]. 

Superbiock Scheduling is an algorithm derived from trace scheduling [49]. A 

superblock is a trace without control entries into it, except at the top, although 

it still allows intermediate exit points. Intermediate entry points are eliminated 

using tail duplication, a technique that creates a copy of the trace below the entry 

point, redirecting the control path to it if necessary. Each trace in a superhlock 

is scheduled using list scheduling. 

Hyperbiock Scheduling also create structures with a single entry at the top, 

and possibly multiple exits [68]. The control flow is if-converted [4] to remove 

control dependences, resulting in a code with a single entry point and multiple 

exits. Then list scheduling is performed, followed by reverse if-conversion. The 

later may result in code size explosion, as portions of the schedule in which m 

predicates are active yield 2m  versions of the code. 

2.4.2.3 Global cyclic scheduling 

Algorithms of this type use basic blocks taken from multiple iterations of a loop 

structure. Efficient schemes have been proposed to perform cyclic scheduling of 

numeric applications, as most of their execution time is often spent executing 

loops. Trace scheduling [32] can also be used to schedule loops. In this scheme 

back edges in the loop control flow graph are eliminated by performing loop 

unrolling [20] of the loop body. Although effective, this strategy can generate 

code size explosion, and also inefficient processing at the start and end points of 

each series of unrolled iterations. Other acyclic scheduling algorithms can also be 

used in a similar way, however they also show this limitation. 

A scheme specially developed to schedule loop structures for ILP machines is 

software pipelining [16]. The concept is similar to a hardware pipeline: successive 

iterations start before previous ones have completed. This is possible because the 

execution of operations from distinct loop iterations is overlapped, taking advant-

age of the available hardware parallelism. Software pipelining algorithms have to 

deal with machine resource constraints and data dependences among operations 

in the loop body. In this context, generating optimal schedules of loops with 

arbitrary data dependence graphs is known to he a NP-complete problem [54]. 
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Optimal schedules can be generated using integer linear programming, a tech-

nique that employs precise definitions of objectives and constraints of the sched-

ule. Some techniques assume the use of unlimited machine resources [35]. Others 

are realistic enough to model resource constraints and minimize register require-

ments [39]. Although very effective to find the best possible schedule, the com-

plexity of methods based on integer linear programming prevent them from being 

used in production compilers. However, they can be a valuable tool to evaluate 

the effectiveness of other approaches. 

Software pipelining algorithms of practical use must rely on heuristics to pro-

duce near-optimal solutions in most of the cases. Modulo Scheduling is  class of 

software pipelining algorithms targeting innermost loops. A basic schedule of one 

single iteration is generated, which is issued at fixed intervals, called Initiation 

Interval (II). The basic schedule is structured in order to preserve data depend-

ences among operations, even if the II is much smaller than the basic schedule 

length. During the steady state a new iteration starts and another one finishes 

every II cycles. The basic schedule must adhere to the modulo constraint: 

When the basic schedule is initiated at II intervals no machine resource 
should be oversubscribed. It should he noticed that an operation 
holding a given resource at cycle c will hold the same resource at 
regular intervals c + II. This is equivalent to saying that the resource 
is required every c mod II cycles, with mod denoting the modulo 
operator. 

The minimum initiation interval achievable is based on two factors: 

• Machine resources required by the computations of one iteration of the loop 

body. These resources are functional units, buses, and register file ports, 

among others. 

• Recurrence circuits in the loop data dependence graph. A recurrence occurs 

when a given operation has a direct or indirect dependence upon the same 

operation from a previous iteration. 

The first approach to modulo scheduling was proposed in [80]. This algorithm 

was targeted at machines with simple resource usage patterns and loops with no 

recurrence circuits. An extension of this algorithm, able to deal with complex re-

currences and machine usage patterns, is Iterative Modulo Scheduling (IMS) [79]. 

Like several other modulo scheduling algorithms, JMS uses a variation of list 

scheduling to produce the basic schedule of one iteration. The algorithm allows 

27 



backtracking (unschedule and reschedule of operations) to deal with the extra com-

plexity involved. Loops with arbitrary control flow can also be scheduled using 

if-conversion [4], as long as hardware support is available. A detailed description 

of this algorithm is shown in Section 3.3. This approach can also be used to deal 

with further constraints: Slack scheduling, for instance, incorporates heuristics to 

shorten lifetimes, which helps to minimize register requirements [48]. 

An algorithm proposed by Lam uses a hierarchical reduction scheme to con-

vert code fragments containing control constructs into single nodes [54]. This 

allows control flow structures to be modulo scheduled without special hardware 

support for predicate execution. This work also proposed a new optimization 

called modulo variable expansion (mve). The technique allows register allocation 

to be performed without any special hardware support, such as rotating register 

files [18]. 

Another technique, called swing modulo scheduling, produces efficient sched-

ules in terms of initiation interval, stage count and register requirements [63]. It 

also compares favourably against other schemes in terms of complexity, requiring 

low compilation time. 

Loops with conditional branches have been the topic of some research work [18, 

54]. As schedules presenting a single II can be inefficient according to the path 

taken at run time, algorithms to generate schedules with different II have been 

proposed [91, 97]. Finally, an attempt to use modulo scheduling efficiently with 

non-numeric applications is reported in [57]. 

2.4.3 Register Allocation 

Optimizing compilers of the 1990s usually perform register allocation using ef-

ficient techniques such as graph coloring [15]. Ideally, the number of available 

registers should he enough to keep all the live values in on-chip storage. If that 

is not the case, some values should be stored in the main memory and reloaded 

when required, a process called spill code [11]. However, the difference in access 

times between registers and main memory can be very high. For this reason, 

spill code should he minimized or completely avoided in order to achieve high 

performance levels. 

In conventional (sequential) processors, register allocation might be a more 

important step than instruction scheduling. As there is no parallelism involved, 

the performance is determined by the number of operations executed, and not 

the ordering among them. One factor that could compromise the performance is 

an insufficient number of registers [15]. For this reason, register allocation was 
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regarded as a more important step, and usually performed before scheduling in 

early compilers. However, for multiple-issue microprocessors the phase ordering 

between these two steps is not a clear choice [84]. Performing register alloca-

tion before scheduling may minimize the use of spill code. However, this might 

result in the introduction of unnecessary edges in the data dependence graph to 

he scheduled, preventing parallelism exploitation. The alternative is to perform 

register allocation after scheduling, at the expense of possible excessive spill code. 

For statically scheduled processors this can result in a severe performance pen-

alty. Situation may arise when the entire processor has to stall to perform a single 

memory access. 

Multiple-issue machines already strive to find ILP among operations, so ex-

tra dependence constraints should be avoided [94]. On the other hand, these 

machines can generate high register pressure [69]. Both phase-ordering alternat-

ives above described can potentially result in performance degradation. For this 

reason some sort of cooperation between these two tasks has been suggested [73]. 

Some approaches have adopted a multi-pass procedure: pre-scheduling, register 

allocation (introducing spill code if necessary), and final scheduling [66]. 

Performing register allocation before modulo scheduling a loop can place un-

acceptable constraints in the scheduler [81]. For this reason it is often performed 

after the scheduling phase. In the Cydra 5 machine a failure to allocate registers 

would result in incrementing the II and completely rescheduling the loop [18]. 

Dealing with the issue of overlapped lifetimes imposes further complications in 

the process, requiring non-conventional techniques. This can be addressed using 

rotating register files [18], which implements in hardware a sort of register. re-

naming scheme transparent to the compiler. If hardware support is not available, 

modulo variable expansion (mve) can be used [54, 81]. In this case the code of 

the loop body must be unrolled a number of times to ensure that no lifetime is 

longer than the replicated kernel. Register allocation for modulo scheduled loops 

is described in detail in [81]. 

2.4.4 Code Generation 

The generation of modulo scheduled code is affected by a number of issues: if 

the program structure is a do-loop or while-loop, the type of hardware support 

provided, whether the loop has live-in or live-out scalar variables, and the register 

allocation scheme employed. Distinct schemes can be used according to these 

factors, with variable implications in performance and code size [82]. 

The first and last few loop iterations are scheduled in the prologue and epilogue 
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stages, and could also he the only ones for loops with small iteration counts. 

Dealing with them requires a mechanism to enable the execution of subsets of the 

kernel code, as the instruction pipeline is not completely filled in those stages. 

Using a rotating register file along with support for predicate execution allows the 

implementation of a scheme called kernel-only code [82]. In this case a single copy 

of the kernel is sufficient to execute the entire modulo scheduled loop, preventing 

code size explosion. 

Generating code using a machine with a conventional register file may require 

the use of mve [54]. The drawback of this technique is the possibility of code 

size explosion, which can result in a high frequency of instruction-cache misses. 

This can be avoided using a rotating register file [18], or any other scheme able 

to perform a sort of dynamic register renaming. 

2.5 Commercial VLIW Machines 

The first VLIW processors built were the so-called attached array processor, of 

which the best known were produced by Floating Point Systems.[84]. The next 

generation of products were the minisupercomputers Trace and Cydra. A growing 

interest in VLIW architectures has been shown in the late 1990s, particularly 

for specialized applications such as DSP and multimedia [23]. New products 

employing this technology have been released by Philips and Texas Instruments, 

among other companies. 

Multiflow Trace computers were produced from 1984 to 1990. They were 

offered as general purpose machines, relying on a trace scheduling compiler to 

find ILP in a large class of applications [66]. Although successful in finding par-

allelism in systems applications, compilation time limitations made the machine 

best suited for scientific code. The machine was organized into clusters of func-

tional units and register files, with issue-rate ranging from 7 to 28 instructions 

per cycle. 

Cydra 5 was a mini supercomputer developed by Cydrome between 1984 and 

1988. It was designed to serve high-performance scientific computing [18]. It 

can he seen as a heterogeneous multiprocessor system [83]. Interactive processors 

are responsible for all non-numeric computations such as operating system, com- 

pilation, I/O, etc. In addition, a numeric processor is used to execute scientific 

computations. The numeric processor was implemented as a VLIW architecture 

with seven functional units, using software pipelining scheduling techniques [18]. 

Trimedia is a family of programmable multimedia processors from Philips 
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Semiconductors. TM-1000 is the first product from this family, designed to con-

currently process video, audio, graphics, and communication data. The archi-

tecture is based upon a high performance VLIW CPU core [76], consisting of 

27 functional units. However, only 5 instructions can be issued simultaneously, 

mainly due to a limited number of register file ports (15 read and 5 write ports). 

Hardware support to implement guarded instructions is exploited by the compiler 

to eliminate branches, and thus increase ILP identification. 

Texas Instruments Veloc]Ti is a VLIW architecture. The TMS320C601 is 

DSP processor from this family [89]. Its CPU has 8 independent functional units 

running at 200 MHz. The CPU has two identical data paths with four functional 

units each. Each data path has a register file with 10 read and 6 write ports. A 

cross path allows read operations from the other register file. The compiler for 

this architecture performs software pipelining and loop unrolling, among other 

optimizations. 
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Chapter 3 

Basic Experimental Framework 

This chapter describes the basic structure of the experimental framework used 

to develop the VLIW architecture proposed in this thesis. We have adopted a 

hardware/software codesign methodology [34], to develop a machine model and 

compilation techniques to accelerate the execution of loop intensive applications. 

Results and conclusions obtained from experimental analysis have supported all 

stages of the project. The framework organization reflects the main research 

topics in which work was, conducted to complete the thesis, as listed below: 

• VLIW architectures 

• Modulo scheduling 

• Register allocation 

The basic input to the experimental framework is an innermost loop, repres-

ented by operations and the corresponding data dependencies information among 

them. The output produced consists of a modulo schedule, performance and ma-

chine resources analysis. This information is used to guide further improvements 

in hardware or software aspects, restarting the process shown in Figure 3.1. 

The framework was implemented using the C++ language and the LEDA 

library routines [70], which are particularly useful for graph manipulation. This 

chapter describes only those aspects which are common to all the experiments 

reported. Additional capabilities are introduced in the relevant chapter, such as 

new register file organizations and heuristics for the scheduling algorithm. The 

next sections present a detailed description of the components of the experimental 

framework. 
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Figure 3.1: Hardware/ Software codesign process 

3.1 Machine Model 

The machine model used by the experimental framework consists of a collection of 

two basic components: functional units and register files. The framework provides 

enough flexibility to change some characteristics of these elements, allowing dis-

tinct machine configurations to be considered. 

3.1.1 Functional Units 

We call a functional unit (FU) an element of a microprocessor data-path capable 

of performing actual computations or memory access operations. Modern micro-

processors use a technique called pipelining to implement functional units [45]. A 

pipeline is similar to an assembly line, in which a task is subdivided into simpler 

subtasks. Although an operation requires the completion of all steps in succes-

sion, the pipeline can work on distinct operations in parallel. Depending on the 

pipeline organization, it is possible to have as many operations simultaneously in 

flight as the number of pipeline stages. We assume the use of a register-register 

architecture [45], which implies that memory access can only he made through 

load and store operations. For any other operation, the destination and source 

operands are stored in the on-chip register file. A simplified organization of a 

pipeline can be seen in Figure 3.2, showing the five main stages of a pipeline: 
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Instruction Fetch (IF) : Fetch an instruction from memory into the instruc-

tion register. 

Instruction Decode/Register Fetch (ID) : Decode the instruction and read 

the input operands from the register file. These operations can be done in 

parallel. 

Execution (EX) : Execute an instruction, which can be an ALU (arith-

metic and logic unit) computation, memory address calculation, or branch 

operation. 

Memory Access (MEM) : Access to memory (usually cache) is performed 

at this stage, as specified by load and store operations. It also updates the 

PC (program counter). 

Write Back (WB) : Write the result into the register file. 

Pipeline Stages 

IF 	ID 	EX MEM WB 

Figure 3.2: Generic organization of a microprocessor pipeline 

Each pipeline stage, except execution, takes one cycle to complete. Thus, the 

machine cycle may be determined by the slowest of those pipeline stages. Real 

implementations may adopt other organizations, combining or further subdividing 

stages to allow a shorter cycle. The interested reader can refer to [45] for a detailed 

discussion on pipelining techniques, as it is outside the scope of this thesis. 

We define the latency of an operation as the total number of cycles required 

to issue, execute, and make the result available for use. It is possible for a 

functional unit to execute more than one type of operation, each of them possibly 

requiring distinct latencies to complete. RISC and VLIW processors usually use 

a technique called bypassing [1]. Bypassing allows forwarding operands directly 

from the producer to the consumer operation. Doing so, it is possible for an 

operation to use a value before it has actually been written in the register file. 

Real implementations have separate FUs to perform integer and floating point 

operations. For the sake of simplicity our machine model uses the same FUs to 

perform both types of operations. We consider four types of functional units: 
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• L/S: Executes memory load and store operations, transferring values between 

the main memory and the register file. 

• ADD: Adder unit, executing addition, subtraction, type conversion, condi- 

tional branch, compare, const (load immediate), and absolute operations. 

MUL: Multiplier unit, executing multiplication, division, square root and 

modulus operations. 

• COPY: Auxiliary functional unit, used to duplicate and move values between 

register files. It is capable of reading one value from a register file and 

writing it hack to one or two other register locations. Specially designed to 

support architecture features as defined in Sections 4.2 and 7.2. 

All functional units are fully pipelined, being able to start a new operation at 

any cycle. Operations may have distinct latencies, as shown in Table 3.1. This is 

due to the pipeline execution stage, which consists of one or more stages, according 

to the instruction being executed. Those latencies do not include the first two 

pipeline stages as they are common to all operations and do not appear on the 

critical path, except after a misprediction. The presence of bypassing hardware, to 

forward results before the write-back stage, is assumed. Throughout this thesis 

we use the term standard when referring to the functional units usually found 

in other microprocessors: L/S, ADD, and MUL. Although performing a simple 

operation, the Copy FU is not included in that group as it has been specially 

designed for this architecture. 

In order to consider memory operations (loads and stores) with fixed latency, 

we assume a perfect cache hit ratio. Hence we have not considered as yet a 

memory system coupled with the set of functional units and register file. It is 

well known that providing the required memory bandwidth for a large number 

of functional units is one of the main issues in the design of high performance 

microprocessors. However, the issues addressed by this work are scheduling and 

register file organizations. Designing an efficient memory system is a problem 

common to most architecture designs, thus we have avoided increasing the level of 

detail at this stage of the work. Furthermore, current technology trends indicate 

the future possibility of building systems integrating powerful processors and 

main memory on a single chip [53]. This might address some the issues posed by 

wide-issue VLIW machines. 
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Functional Unit Instruction Latency Issue Interval 

L/S Load 2 1 
L/S Store 1 1 

ADD Addition 3 1 
ADD Subtraction 3 1 
ADD Conversion 3 1 
ADD Branch 1 1 
ADD Compare 1 1 
ADD Const 1 1 
ADD Absolute 1 1 

MUL Multiplication 4 1 
MUL Division 17 1 
MUL Modulus 17 1 
MUL Square root 30 1 

COPY Copy values 1 [_1 

Table 3.1: Functional unit characteristics 

3.1.2 Local Register File 

As mentioned earlier, the ideal VLIW machine has a number of concurrent FUs, 

connected to a register file able to perform two reads and one write operation 

per functional unit in each cycle [14, 21]. The simplest design option is to use a 

multiported register file with R read ports and W write ports, an organization 

called a monolithic register file (Section 2.3.2). 

In this basic version of the experimental framework we assume that all func-

tional units are connected to a monolithic register file, called the local register file. 

It should provide the bandwidth required by the functional units (Section 3.1.1). 

Specifically, most FUs require 2 read and 1 write ports. The only exception is 

the COPY functional unit. which requires 1 read and 2 write ports, as shown in 

Table 3.2. 

Functional unit Read Ports 
I

Write Ports 

L/S 2 1 
ADD 2 1 
MUL 2 1 
COPY 1 2 

Table 3.2: Register file access port requirements 
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3.1.3 Unclustered Machine 

The first machine model built in the experimental framework comprises a number 

of functional units connected to a monolithic register file, using the components 

described in Sections 3.1.1 and 3.1.2. We call this hardware organization an 

Unclustered Machine. As an example, a simple VLIW unclustered machine could 

be organized using 1 L/S, 1 ADD, and 1 MUL functional unit, as shown in 

Figure 3.3. The local register file requires 6 read and 3 write ports. 

D  Lis ADD MUL S' C' 
 il 

Local Register File 

Figure 3.3: VLIW unclustered machine 

This organization is the natural choice of design to implement a VLIW ma-

chine. It can be seen as a direct extension of a superscalar processor, without some 

of its complexities. Although it works well for a moderate number of functional 

units, it presents scalability problems, as previously discussed. We have used this 

basic architecture for comparison purposes with the new machine organization 

proposed in this thesis. 

3.2 Workload 

An innermost loop is the basic input to the experimental framework. All eligible 

innermost loops from the Perfect Club Benchmark [10] that are suitable for software 

pipelining are used. The total number of selected loops is 1258. They were 

obtained using the ICTINEO compiler [6], which performed all data dependencies 

analysis and optimizations necessary to use modulo scheduling techniques. The 

compiler generates information regarding loop operations and data dependencies. 

These are in turn taken by the experimental framework, which reconstructs the 

corresponding data dependence graph (DDC) to he used by the modulo scheduling 

algorithm (Figure 3.4). 

37 



Ictineo Compiler 
	 Experimental Framework 

Source Code 
(Perfect Club) 

r Front End 

	 I 
Codesign Process: 

[ 	

Optimizations  j 
	

Machine Model 

II 	 Modulo Scheduler 

r Dependence 

L Analysis 

pDG1 

Register Allocator 

[ Register Alloction & 

Instruction Scheduling 

Figure 3.4: Extracting loops from the benchmark 

3.2.1 Perfect Club Benchmark 

The Perfect Club Benchmark [10] is composed of 13 programs, containing approx-

imately 60,000 lines of code written in Fortran-77. They are numeric intensive 

programs selected from science and engineering applications. Only loops without 

subroutine calls and without conditional exits were selected. Although some tech-

niques have been developed to deal with early exits [57], using them is out of the 

scope of this thesis. The selected 1258 loops represent 78% of the total execution 

time of the benchmark, when executed on a HP-PA 7100 computer [61]. The 

data in Table 3.3 shows the number of loops extracted from each program in the 

benchmark. It also shows the fraction of the total execution time spent in those 

loops. 

Those loops present a varied instruction mix, including all the instructions 

listed in Table 3.1. However the static instruction count reveals that four in- 
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Program 	11 No. Loops Execution Time - % 
ADM 151 79 
SPICE 57 9 
QCD 90 43 
MDG 31 62 
TRACK 49 30 
BDNA 152 69 
OCEAN 74 97 
DYFESM .104 98 
MC3D 80 70 
ARC21) 139 95 
FL052 81 92 
TRFD 25 97 
SPEC77 F 	225 85 

Total 	11 1258 78 

Table 3.3: Loops extracted from the Perfect Club benchmark 

structions are responsible for about 96% of the total instruction count, as seen 

in Table 3.4. This analysis was used to define the type and characteristics of the 

functional units employed by the machine model. 

Instruction Static Count - % 
Load 21 
Store 15 
Addition 24 
Multiplication 36 

Total 96 

Table 3.4: Instruction mix of the selected loops 

3.2.2 Selection of Loops and Compiler Optimizations 

As already said, the loops used by the experimental framework were extracted 

using the ICTINEO compiler [6], a research tool developed at The Universital 

Politeenica de Catalunya. It performs a number of optimizations, including the 

following: 

• Constant value propagation 

• Common subexpression elimination 
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• Strength reduction/ Induction variable recognition 

• Dead code removal 

• Invariant removal 

• Privatization 

• Interprocedural analysis 

All loops suitable for modulo scheduling [79] are identified. Then if-conversion [4] 

is performed to eliminate conditional structures from the loop body. In addition, 

sophisticated data dependence analysis is performed in the innermost loop. This 

includes symbolic analysis of array subscripts, a technique capable of identifying 

loop-carried dependencies. A dependence graph is produced containing inform-

ation about the operation associated with each node, and two edge attributes: 

dependence type and dependence distance. These attributes are described in Sec-

tion 3.2.3. Information regarding loop invariant lifetimes is also supplied, which 

is required to estimate register requirements. 

3.2.3 Data Dependence Graph 

A data dependence graph (DDG) can be used to represent the dependencies among 

loop operations. Let the data dependence graph be represented by DDG(N; E), 

where N is the set of nodes and E is the set of directed edges. Each node v E N 

represents an operation in the loop body. Each edge e = (u, v) E E represents 

a dependence between two operations u, v. It is said that 'u is the source (prede-

cessor), and v is the target (successor) operation. The target operation depends 

on the source operation, as discussed in Section 2.4.1.1. The number of edges 

leaving a node u is called out-degree(u). The number of edges entering a node u 

is called in-degree(u). 

There are two attributes associated with each edge e: A, and 8e  The first 

one, \e,  is the number of time units the source operation u takes to execute, also 

known as the delay. The second attribute, 6e  represents the dependence distance 

between them, as defined in Section 2.4.1.1. 

A circuit in the data dependence graph indicates the existence of a recurrence. 

Every operation on a recurrence circuit must all he part of the same strongly 

connected component (SCC). A SCC is the largest sub-graph of the DDC such 

that a path exists from every node to every other node. Subdividing a DDG into 

5CC can he useful to reduce the computational complexity of some procedures 

usually found in optimizing compilers, reducing the compilation time. 



The example in Figure 3.5 shows an innermost loop (a) and the corresponding 

machine operations (b). The data dependence graph (c) represents the required 

order of execution of those instructions. Each edge has a pair of values, repres-

enting the delay and the distance of each dependence, respectively. The delay 

refers to the latency of the functional unit executing the source operation. In this 

example we use the values as defined in Table 3.1. The only dependence distance 

that is not equal to zero is the one originating in node E. It enforces that the 

load operation (node A) starts executing only after the completion of the store 

operation (node E) from one previous iteration. 

a) Original Loop 	 C) Data Dependence Graph - DDG 

Doi=2,N 

A[i] = ( A[i-1} + B[i] ) * 5 

b) Machine Operations 

A: Load A[i- I] 

13: Load B[i] 

Add 

Mul 

Store A[i] 

Loa
B  

d 

Figure 3.5: Innermost loop and data dependence graph 

3.3 Modulo Scheduling Algorithm 

This section describes the implementation of the code scheduling process adop-

ted by the experimental framework. The core algorithm used is Iterative Modulo 

Scheduling (IMS) [79]. A number of intermediate code optimizations are performed 

by the ICTINEO compiler [6] before an innermost loop can be modulo sched-

uled. These include the elimination of redundant loads and stores, if-conversion 

of branches, and minimization of anti- and output dependencies. Other possible 

optimizations depend on the hardware support available. A more detailed dis-

cussion of this issues can he found in [79]. 
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Given a data dependence graph DDG representing an innermost loop, the 

code scheduling process is summarized by the Algorithm 3.1. The first step cal-

culates the minimum initiation interval, which will he used in the first invocation 

of the IMS algorithm. If the algorithm fails to find a valid schedule, the II is 

increased and IMS is reinvoked. This process is repeated until a valid schedule is 

found. 

The schedule of a single iteration can be divided into stages of II cycles each. 

The number of stages in one iteration is called stage count (SC). During each 

of the first (SC-1) stages, a new iteration starts without the first one having 

ended yet. This phase is called the prologue. From the SC-th stage onwards, 

one iteration starts and another one finishes every II cycles, a phase called the 

kernel or steady state. The last (SC-1) do not start any new iteration, but only 

execute instructions from the last iterations started during the kernel phase. This 

phase is called the epilogue. The last steps of the scheduling algorithm consist 

of generating code for the prologue and epilogue phases. The code for these 

stages can he directly derived from the kernel code produced by IMS. As already 

said, the scheme called kernel-only code prevents code size explosion, however it 

requires hardware support for both predicated execution and register renaming 

of loop variants (such as rotating register files or an equivalent scheme). In this 

work we assume the existence of the required hardware support, thus kernel-only 

code is generated. 

Algorithm 3.1 Modulo Scheduling 

Schedule(DDG) 
Calculate_ MII(MII) 
/ Initialize II to the Mu / 
11= Mu 
completed = 0 
/* Perform IMS until a valid schedule is found / 

/* If necessary, increase the II */ 
While (not completed) 

completed= IMS(II) 
If (not completed) 

11= II + 1 

} 

Generate Prologue 
Generate Epilogue 
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3.3.1 Minimum Initiation Interval - MIT 

The minimum initiation interval, Mu, is a lower bound on the smallest possible 

value of II for which a modulo schedule exists. The MH can be calculated by 

analysing the DDG representing the computations of the loop body. One lower 

bound is derived from the resource usage requirements of these computations, 

ResMil. The other one, RecMII, is defined according to the latency of recurrent 

circuits in the DDG. The MH must be equal to or greater than both lower bounds, 

being calculated using Algorithm 3.2. 

Algorithm 3.2 Calculate Mu 

C alculat eJVII I (MI!) 
/ Based on machine constraints / 

Calculate_ ResMII(ResMII) 
/* Based on recurrence constraints / 

/ Start with the minimum acceptable value, to reduce the compilation time / 

candidate= ResMil 
completed = 0 
While (not completed) { 

completed= Calculate_RecMII(candidate) 
/ Candidate MIT too small / 

If (not completed) 
+ +candidate 

} 

RecMII= candidate 
/* Based on both machine and recurrence constraints / 

MII= max(ResMII, RecMII) 

3.3.1.1 Calculating ResMil 

The ResMilis calculated by totalling the usage of machine resources required by 

one iteration of the loop. In this experimental framework we take into account 

only the usage of functional units, to calculate ResMil. Thus the most heavily 

used FU determines the ResMil, which can be calculated using Algorithm 3.3. As 

we are assuming the use of fully pipelined functional units, each operation holds 

a FU during one cycle only. The II must be an integer, so the value calculated 

for ResMiJis rounded up to next integer. 
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Algorithm 3.3 Calculate ResMIl 

Calculate...ResMII(ResMII) 
/* Compute the number of operations to be issued by each type of FU / 
forall FU of type i do 

usa ge[i]= 0 
forall operation u E DDC { 

if u uses FU of type i 
+ +usage[i] 

} 

ResMII= 0 
forall FU of type i do { 

1* Compute the number FUs of each type / 

resource-count = number of EUs of type i 
1* M11 based on a given type of FU / 

r 	usage[i]  = resource-count
] 

 

if (candidate > ResMIl) 
ResMII= candidate 

} 

3.3.1.2 Calculating RecMII 

The RecMllimposes a lower bound on the II due to recurrence circuits in the loop 

DDG. A loop contains a recurrence if an operation in one iteration has a direct 

or indirect dependence upon the same operation from a previous iteration. An 

elementary circuit in a DDC is a path through the graph which starts and ends 

at the same node, and which does not visit any vertex on the circuit more than 

once. An elementary circuit c indicates a recurrence in the DDG. Let delay(c) be 

the sum of the delays along the circuit c, and distance(c) the sum of distances. 

It can he said that delay(c) is the minimum time interval between the issue of 

an operation on the circuit, and the same operation distance(c) iterations later. 

Considering that all iterations have the same schedule, only delayed by II cycles, 

the elementary circuit imposes the following lower bound on the II: 

delay(c) 	II x distance(c) 	 (3.1) 

The RecMIIis determined by considering the worst-case across all elementary 

circuits in the DDC. We have adopted the approach proposed in [48] to determine 
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the RecMII. The algorithm ComputelklinDist calculates, for every pair of oper-

ations (u, v) E DDG, the minimum time interval between the schedule of both 

operations from the same iteration (Algorithm 3.4). The main data structure of 

the algorithm is the matrix MiriDist[u, v]. An entry [u, vi specifies the minimum 

time interval between operations u and v. If there is no path from u to v in the 

DDG, the value of entry [u, vJ is set to -. If MinDist[n, u] is positive for any 

u, it means that u must be scheduled later than itself, which is impossible. This 

indicates that II is to small. If all diagonal entries are negative, it indicates a slack 

around all recurrence circuits, resulting from a II higher than necessary. The goal 

of the algorithm is to find the minimum II for which there are no positive entries 

and at least one entry equal to zero in the diagonal. 

Algorithm 3.4 Calculate RecMII 

Calculate.RecMII(candidate) 
11= candidate 
/* Initialize the distance matrix with the minimum delay / 

/* between pairs of dependent operations tt and v 

forall operation u E DDG { 
forall operation v E DDG { 

MinDist[u,v]= —00 

forall edge e(u,v) E DDC 
MinDist[n,v]= max(MinDist[u,v], (> - 11 X Se )) 

} 

} 

/ Now consider all possible paths via an intermediate node w 

forall operation w E DDG { 
forall operation u E DDG { 

forall operation v E DDG 
dist= MinDist[u, w] + MinDist[w, v] 
if (dist > MinDist[u,v]) { 

MinDist[u, v]= dist 
1* Candidate II too small-that would result in a impossible / 

/ constraint: a scheduling delay between the same operation / 

if (u==v) and (dist > 0) 
return 0 

} 

} 

} 

return 1 

The algorithm complexity is O(iV 3 ), which is expensive for DDC with a large 

number of nodes. This problem can be minimized if small subsets of the DDG 
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are used. The RecMII can be calculated for each strongly connected component 

of the graph. The highest value computed determines the RecMII of the DDC. 

This strategy is used by the experimental framework to optimize the algorithm 

running time. Several algorithm executions may he necessary until the RecMIIis 

found. The first invocation uses ResMIIas a candidate RecMII. This is acceptable 

as we are interested in finding the JVIII, and not the actual RecMII. 

3.3.2 Iterative Modulo Scheduling - IMS 

Iterative modulo scheduling uses a goal-directed search for a legal schedule at 

the candidate II. The strategy employed is similar to list scheduling using height-

based priorities [2]. However, it is possible that a partial schedule results in a 

dead-end state. In this case no additional operation can be scheduled, unless 

the II is increased, which should be avoided as much as possible. IMS tries to 

break dead-end states using backtracking: previously scheduled operations are 

ejected from the partial schedule. Backtracking allows the scheduling process to 

resume from a different path in the search for a valid schedule. Those unscheduled• 

operations will be rescheduled, possibly in a distinct slot from the previous one. 

Repeatedly scheduling and rescheduling operations lends the term iterative to the 

algorithm [79]. If the search for a valid schedule fails after a large number of steps, 

it is assumed that no solution exists for the candidate II. When this happens, the 

II is increased and IMS reinvoked. The number of scheduling steps attempted 

before increasing the II is controlled by a parameter called budget. We have used 

a budget equal to three times the number of operations in the DDC. This was 

based on an evaluation published in [79] and also our own observations. During 

the early stages of this research work we tried using smaller and larger values 

for the budget parameter. A smaller budget sometimes resulted in unnecessary 

increase of the II. On the other hand, in most of the cases increasing the budget 

was not effective to avoid increasing the II, only causing compilation delays due 

to additional backtracking. The Algorithm 3.5 describes the main steps of IMS, 

followed by a detailed description of those steps. 

IMS uses a structure called Modulo Reservation Table (MRT) to keep track 

of machine resource usage during the scheduling process [54, 79]. MRT records 

when a particular resource is in use by an operation at a given cycle. As already 

said, this experimental framework only keeps track of FU usage. Thus each FU 

of the machine model has a total of II reservation slots, as seen in Figure 3.6. 

This simple representation is possible because of the modulo scheduling nature: 

an operation holding a given resource at cycle c will hold the same resource every 



II cycles. Thus the MRT needs to be only II long. As operations are scheduled, 

the corresponding slots are marked as used. Scheduling an operation in a given 

cycle is legal only if it does not result in an attempt to use a slot more than once. 

MRT for 11=5 

US ADD MUL 

used used 

used 

used 

used 

Figure 3.6: Modulo Reservation Table 

Algorithm 3.5 Iterative Modulo Scheduling 

IMS(II) 
budget= 3 x (No. operations in DDG) 
Create-Priority-List(List) 
While (List not empty) and (budget > 0) { 

Get (List, OP) 
/ mintime is the earliest start time for OP according to / 

/ * currently scheduled predecessors */ 

mintime= Earliest-time(OP) 
1* Select a valid slot *1 
slot= Find_Slot(OP, mintime) 
/* According to the slot chosen, unschedule all operations due to / 

/ * resource and dependence conflicts with scheduled successors 

Backtracking(OP, slot) 
Schedule(OP, slot) 
1* Keep track of machine resources usage / 

Update MRT 
Remove (List, OP) 
budget= budget-1 
If (List is empty) 

Return 1 
If (budget == 0) 

Return 0 

} 
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3.3.2.1 Creating a priority list 

IMS uses a height based priority function [2] to define the order in which opera-

tions are selected for scheduling. An operation with higher priority than another 

means it has less scheduling options to prevent lengthening the schedule. Further-

more, the height-based priority defines a topological sort in which a predecessor 

operation will have higher priority than all of its successors. 

A sorted priority list can be built using Algorithm 3.6. It assumes that two 

pseudo-operations, Start and Stop are included in the DDC. These operations are 

never scheduled, being only used to support the strategy to deal with recurrences 

in the DDC. Start and Stop are respectively made predecessor and successor of 

all original operations in the DDC. In order to deal with recurrence cycles, the 

strong connected components of the DDG are identified. Doing so, each SCC can 

be viewed as a super-vertex, resulting in a acyclic graph. Creating a priority list 

involves a successive calls to the function HeightR (Algorithm 3.7), using the Start 

operation as the first argument. Every operation is assigned a priority, based on 

the distance to the Stop operation. Finally, the list of operations is sorted in 

decreasing order of priorities. 

Algorithm 3.6 Create Priority List 

Create-Priority-List (List) 
/* Identify cyclic regions of the DDG / 

IdentifySCC(DDG) 
/ Initialize operations for the graph traversal process 

forall operation OP E DDG { 
priority[OP]= - 00  

visit ed[OP]= false 
Include(List, OP) 

} 

/ Start graph traversal / 

HeightR (S TART, List) 
/* Sort operations in descendent order of priorities / 

Sort (List) 

The procedure HeighiR computes, for each operation OP, the longest path 

from OP to the end of the graph, a Stop operation with priority zero. The 

height of operations not belonging to a recurrence circuit is computed in a post-

order fashion, by means of a depth-first search (DFS) of a tree rooted at the 

Start operation. On the other hand, dealing with SCC requires to keep track 

of the first vertex (root) visited of each SCC. To facilitate this, the vertices of 



an SCC are collected on a stack during the DFS traverse of the DDG. Once 

all operations belonging to a SCC have been visited, a call to the procedure 

FinalizeSCC (Algorithm 3.8) computes the corresponding priorities. 

Algorithm 3.7 Compute Height 

HeightR(OP, List) 
visit ed[OP]= true 
if OP has no successor 

priority[OP]= 0 
else { 

/ DFS traversal / 

forail successor of OP { 
if (visited[successor] == false) { 

HeightR (successor, List) 

} 

priority[OP]= Max (p riority[OP], (priority[successor] + 

e(OP,successor) - 6e(OP,successor) X II )) 
} 

} 

/ Stack used to keep track of operations belonging to the same SCC / 

If (OP E 8CC2 ) 
Push(OP, stack) 

/* All operations of the SCC have been visited *1 
If (OP is the root of SCC2 ) { 

FinalizeSCC 
/* Update stack / 

While (Top(stack) E SCC) 
Pop (stack) 

} 

Algorithm 3.8 Finalize 8CC 

FinalizeSCC() 
/ Get the fixed-point solution for the heights of all vertices of the SCC */ 

first= deepest op E stack I op E 8CC2  
Repeat { 

For (op= first) to Top-Of-Stack 
forall successor of op 

priority[op]= Max (priority[op], (priority[successor] + 
A e(op,successor) - 8e(op,successor) X II )) 

until no priority[op] changes } 



3.3.2.2 Earliest time to schedule an operation 

The algorithm Earliest-time finds the earliest cycle when an operation OP can 

be scheduled. This procedure enforces correct schedules from the viewpoint of 

dependence constraints. However it takes into account only the currently sched-

uled predecessors of OP, as shown by Algorithm 3.9. Dependence conflicts with 

successors will be addressed by the backtracking process. 

Algorithm 3.9 Earliest time 

Earliest_time(OP) 
mintime= 0 
forall predecessor of OP { 

If (predecessor is scheduled at cycle=c) { 
candidate— c + )'e(predecessor,OP) - ( 11 X 5e(predecessor,OP)) 

if (candidate > mirtime) 
mintime= candidate 

} 

} 

Return mintime 

3.3.2.3 Find slot 

This procedure finds a valid slot to schedule an operation. It enforces correct 

schedules from a resource usage viewpoint, using the MRT structure described 

in Section 3.3.2. Algorithm 3.10 tries to find a resource free slot to schedule 

OP in the range between mintime and maxtime. Mintime is the earliest cycle to 

schedule OP, as described in Section 3.3.2.2. Maxtime is set to (mintirne+II-1). 

The value of maxtime is defined based on the observation that it is redundant 

to consider more than II contiguous time slots. If a resource free slot cannot be 

found in that range, the algorithm will relax this constraint to assign a schedule 

slot for OP. If OP was never scheduled before, the chosen slot will be at cycle 

mintime. Otherwise, it will he one cycle later than it was previously scheduled. In 

this case the operation currently scheduled in the chosen slot will be unscheduled 

during the backtracking process. 
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Algorithm 3.10 Find Slot 

FindSlot(OP, mintime) 
/ Limit range of possible slots / 

maxtime= mintime + II -1 
currtime= mintime 
While (currtime < niaxtime) 

{ 

1* Find a resource free slot *1 
find free slot in MRT at cycle=currtime 
if (slot found) 

Return slot 
else 

+ +curriime 

} 

/ Relax the "resource free" condition / 

If (OP never scheduled) 
/ Choose a slot in the first possible cycle *1 
choose slot in MRT at cycle_-mintime 

else 
/ * Choose a slot one cycle later than previously scheduled / 

choose slot in MRT at cycle= OPPrCVjOUS_SlOt + 1 
Return slot 

3.3.2.4 Backtracking 

Once a slot is found to schedule OF, resource and dependence conflicts may arise, 

which would require some operations to be unscheduled. The backtracking pro-

cedure described by Algorithm 3.11 checks dependence conflicts due to scheduled 

immediate successors of OP. The algorithm calculates the earliest cycle in which 

a successor can be scheduled, which we call correct time. Any successor scheduled 

before the correct time must be ejected from the partial schedule as its operands 

will not be available. There is no need to check for eventual dependence conflicts 

with scheduled predecessors, as this is taken into account by the Earliest-time 

procedure (Section 3.3.2.2). Operations may he also unscheduled due to resource 

usage conflicts, as discussed in Section 3.3.2.3. 
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Algorithm 3.11 Backtracking Process 

Backtracking(OP, slot) 
S= slot cycle 
forall successor of OP { 

/* Compute the correct time in which successors should be scheduled / 

If (successor is scheduled at cycle c) { 
correct= s + )te(Qp,successor) - ( II X Se(OP,successor)) 

if (correct > c) { 
1* Scheduling cycle too early to meet dependence constraints / 
Unschedule (successor) 
Update MRT 
/* Return successor to the list of unscheduled operations / 

Include (List, successor) 

} 

} 

} 

/* Unschedule all operations due to resource conflicts / 

forall op having a resource conflict in slot { 
Unschedule(op) 
Update MRT 
Include (List, op) 

} 

3.3.3 Scheduling Example 

This section shows an example of the scheduling of a simple innermost loop using 

IMS. It is assumed a machine model comprising 3 standard FUs: 1 L/S, 1 ADD, 

and 1 MUL. The loop source code and the corresponding DDG are shown in Fig-

ures 3.7a and 3.7b, respectively. It requires the execution of 3 memory operations, 

1 addition, and 1 multiplication. Hence, the most heavily used function unit is 

the L/S, determining a ResMIIof 3 cycles. One of the multiplication operands is 

the result of the same operation from the previous iteration. This is translated 

into the only recurrent circuit seen in the DDC, an edge starting and ending at 

the multiply operation. Because the latency of the multiply operation is 4 cycles, 

successive executions of this operation requires an interval of at least 4 cycles. 

Thus the RecMIIof the DDC is 4, which also determines the Mu. 

In this example IMS manages to find a valid modulo schedule within the 

Mu. In Figure 3.7c we show the schedule of operations for a single iteration of 

the loop, which takes 11 cycles to complete. It can he verified that starting 
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the same schedule every II cycles does not violate either machine or dependence 

constraints. A compact representation of the kernel code is shown in Figure 3.7d. 

Each operation has a subscript indicating the iteration it belongs to. 

Original Loop 
Do 1=2, N 

R=A[i] + B[iJ 

C[i]=R * C[i-1] 

Corresponding DDG 

dçd 
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Add (D 
4 	
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d) Kernel code - II = 4 

X 1  = Operation X of Iteration i 

Cycle 
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3 

Figure 3.7: Schedule produced by IMS 

3.4 Register Allocation 

Once the scheduling process is completed, register allocation is performed. We 

call lifetime the number of cycles during which a value must be stored during loop 

execution. Lifetimes can be related to one of two types of variables: 

• Loop-Invariants: These variables are used by every loop iteration, but never 

modified. They are also called scalar lifetimes, and can be seen as a single 

value during loop execution. Thus a single physical register may he enough 

to store a loop-invariant lifetime. 
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• Loop-variants: A new value of this type of variable is produced in each 

loop iteration, generating a vector of lifetimes. Loop-variant lifetimes from 

distinct iterations can overlap due to software pipelining, requiring distinct 

storage locations. 

It can be said that the length of a loop-variant lifetime is the number of 

cycles ranging from its production to its last consumption. The lifetime length 

can be calculated in different ways, according to the architectural model in use. 

We have adopted the end-begin definition: A lifetime starts at the last cycle of 

the producing operation, and finishes the cycle before the last consumer starts. 

This definition has been adopted in order to support the functionality of a queue 

register file (Chapter 4). 

The register allocator is not constrained by a finite number of physical re-

gisters. Hence, instead of performing actual register allocation to the RF, we 

compute a lower bound on the number of registers required. We call MaxLive the 

highest number of values that must be stored at any given cycle of the sched-

ule [81]. MaxLive indicates how many physical locations are necessary to keep 

those values. A scheme to calculate MaxLive, considering both, loop variants and 

invariants, is described by Algorithm 3.12. 

Algorithm 3.12 Maximum number of live registers 

MaxLive 0 
/ * Each loop invariant holds a register during every cycle of the schedule */ 

for i= 0 to (II - 1) 
live[i]_— number of loop invariants 
1* Compute the start cycle and length of each loop variant / 
forall OP E DDG { 
if_start= (starting cycle of OP) + (latency of OP) -1 
forall successor using a value produced by OP { 

lf_iength= (starting cycle of successor) - If-start + 
(II X (Se(OP,successor)) 

1* Identify cycles in which a lifetime requires a register */ 

for i= If-start to (if_start + if_length -1) 
++iive[i mod II] 

} 

} 

/* Total number of registers required is defined by the cycle *1 
/ * in which the largest number of registers are needed */ 

MaxLive= max(live[i]) 
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The schedule of 3 consecutive loop iterations of the example presented in 

Section 3.3.3 is shown in Figure 3.8a. It is intended to illustrate a MaxLive 

calculation. The steady state starts with the second iteration. The maximum 

number of lifetimes coexisting at any given cycle occurs in the third cycle of the 

kernel phase. In this cycle the value of MaxLive is 3, which can also be seen in 

the compact notation presented in Figure 3.8h. It should he noticed that a given 

scheduling slot at cycle i corresponds to scheduling slot (i mod II) in the compact 

representation. This example considers only loop variant lifetimes. Each eventual 

loop invariant lifetime would increase MaxLive by one. 

Kernel Phase 

Schedule of 3 consecutive iterations 

US ADD MUL 

Start  ~ 	

Life 
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±!2! 	?W.L 	End c_  
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Register requirements 

me associated 
operation X 

Kernel Phase 

Cycle US ADD MUL 
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B 	I 	I -.-- MaxLive= 3 
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X 1  = Operation X of Iteration i 

Figure 3.8: Register requirements - MaxLive 
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3.5 Output Information 

A standard set of information is produced for each loop scheduled assuming a 

particular machine model. These data can be used individually, or most often by 

means of statistical analysis regarding the full benchmark set. The data generated 

can be divided into two groups, called direct and derived parameters. 

3.5.1 Direct Parameters 

The following parameters are derived directly from the application of IMS on an 

innermost loop: 

• Modulo Schedule 

• II, Mu, ResMil, ReciVill: As previously defined. 

• Schedule length: Number of cycles of the schedule for one iteration. 

Stage Count: As previously defined, and calculated using the following ex-

pression: 

Schedule length1 
II 

• Instruction Count: Number of instructions scheduled. 

• Iteration Count: Total number of times the body of the innermost loop is 

executed. 

3.5.2 Derived Parameters 

Derived parameters provide an insight on the architecture performance and the 

required machine resources. They are calculated using the direct parameters: 

• X. This parameter states the total execution time of a modulo scheduled 

innermost loop. The kernel, prologue and epilogue phases are taken into 

account. It is assumed that kernel-only code is generated. Given a loop i 

in a benchmark set composed of L loops; let Ni be the iteration count, let 

II, be the initiation interval, and let SC1 be the number of stages in the 

software pipeline schedule. The total execution time of loop i, X 1 , is given 

by the following expression: 
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X, = II, x (SC, + N - 1) 	 (3.3) 

• IPCdynam ic : The dynamic issue takes into account the total execution time 

of a loop, including the kernel, prologue, and epilogue stages. The weight of 

a loop is determined by the execution time when IPCdynam ic  is calculated for 

the complete benchmark. The execution time of a loop is mostly determined 

by the II and the iteration count, which is used to calculate the cycle count. 

Given a loop i in a benchmark set composed of L loops; let Ni be the 

iteration count, let Mi  be the initiation interval, let Sci be the number of 

stages in the software pipeline schedule, and let Oi  be the number of useful 

operations in the schedule. Then, IPCdy nam i c  can be calculated as follows: 

'ç-'L N1O 	
(3.4) IPCdynamic = 	

z=1 
L  
i=1 IIi (SC + N - 1) 

• IIspeedup We have defined this parameter to measure the gain in perform-

ance execution of the kernel code when a given machine model A scales up 

to a machine model B. It is calculated using the following expression: 

"machincA 
(3.5) "speedup = "machineB 

• SC?) : This parameter accounts for the stage count variation when distinct 

machine models are used, calculated according to the following expression: 

SCvar  = SCmachineB - SCmachineA 	 (3.6) 

• Register requirements: The basic version of the experimental framework as-

sumes the use of a conventional register file. It is calculated as a lower 

bound for the number of registers required to store loop variant and invari-

ant lifetimes without using spill code. This is done using Algorithm 3.12 

to compute MaxLive. The model assumes that once a value is stored in a 

given register, it remains there until the last use. 
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3.5.3 Results Presentation 

Unless otherwise stated, all data reporting machine resources refers to dynamic 

analysis. The data presented refers to the machine resources required to execute 

the loops accounting for at least 99% of the total execution time of all loops from 

our benchmark set (Section 3.2). The remaining 1% of the execution time is 

usually spent in a few very large loop bodies with a large iteration count. These 

loops cannot be identified beforehand, so they are not discarded before scheduling. 

Hence, the machine resources reported refers to the maximum requirements of the 

loops necessary to make the 99% fraction. In practice, instead of attempting to 

software pipeline large loops, a production compiler could split them into smaller 

ones, using techniques such as loop distribution [7]. Doing so, the new machine 

requirements would possibly he lower. Finally, when static data is presented 

instead, it will refer to the resources accounting for 99% of the loops from the 

benchmark (1246 loops). 
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Chapter 4 

Queue Register Files 

We have shown in Section 2.3 that software pipelining increases register pressure. 

Modulo scheduling algorithms capable of minimizing register requirements have 

already been proposed, presenting some advantages over conventional schemes [48, 

63]. However, the typical number of available registers is still insufficient for some 

loops, thus requiring spill code. Increasing the number of registers in a conven-

tional RF organization requires more address generation and decoding hardware. 

It may also increase the cycle time due to longer wires [5]. Furthermore, re-

gister files for wide-issue ILP architectures require a large number of access ports, 

which may result in a long machine cycle time [25]. It is possible to limit the 

number of access ports, but this may also compromise parallelism exploitation. 

Those factors suggest that new register file organizations may be necessary to 

implement high performance ILP architectures. 

4.1 QRF Organization 

The regular pattern of production and consumption of loop variant lifetimes has 

motivated us to use queue structures as storage elements. A FIFO queue can be 

used to store consecutive loop variants, which are written in the tail and read from 

the head of the queue. If we constrain each definition of a lifetime to a single use, 

there is no need to access intermediate queue positions, simplifying the hardware 

organization [5, 46]. It is possible to transform a multiple use lifetime into several 

single use lifetimes (Section 4.2). In this chapter we propose the use of a queue 

register file (QRF) to support the execution of software pipelined loops in VLIW 

machines. A QRF having one queue of p elements consists of a storage array 

surrounded by supporting circuits to select the current write and read positions. A 

number of data access ports complete the basic structure of the QRF (Figure 4.1). 

A multiple-queue QRF can he built using the same organization. 
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Figure 4.1: QRF block diagram 

During the design of the VLIW architecture proposed in this thesis we have 

found that QRF organizations allow at least three advantages over conventional 

RFs: 

• Silicon area: As previously discussed the hardware complexity of a queue 

register file should be lower than of a conventional RF, and likewise the 

silicon area required. This may also improve the cycle time, which has been 

confirmed using an analytical timing model (Section 4.5). 

• Inter-Cluster communication: We have developed a scheme using QRFs to 

implement data communication between adjacent clusters in a distributed 

VLIW architecture (Section 6.1). This results in a low-latency communica-

tion mechanism, which can be efficiently exploited by the novel partitioning 

algorithm described in Chapter 7. 

• Compilation issues: In a QRF a data value is allocated to a specific queue 

instead of to a specific register. Experimental analysis has shown that the 

shift from register names to queue names reduces dramatically the pressure 

on the size of the register, name space [28]. Furthermore, the functionality 

of a QRF is similar to a rotating register file [82, 831. This may improve 

the machine performance in two aspects: kernel-only code can be used 

(Section 2.4.4), and register allocation can be performed without modulo 

variable expansion (Section 2.4.3). 

The concept of allocating loop variant values to a queue is illustrated in Fig-

ure 4.2. It shows a simple innermost loop, the corresponding DDG, and the 



Original Loop 
Doi=l, N 
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modulo schedule of 3 consecutive iterations (parts a, h, and c, respectively). Val-

ues produced by operation A can be stored in a queue until they are consumed by 

operation C. A single queue (corresponding to a single register name) is enough 

to store those values, as seen in Figure 4.2d. If a conventional register file was 

used instead, two distinct register names would he required because the II is 

smaller than the length of that lifetime. In this case, using the same location to 

store all lifetimes would result in lifetimes being overwritten before being used. 

It can be seen in the figure that successive definitions of lifetimes produced by 

operation A matches successive consumptions by C (Figure 4.2e). This regular 

pattern ensures that the first element in the queue is always the value required 

by the next read operation. 

Storage queue for values produced by operation A 

	

Read from 	A1 	A 2 	A3 	 Write to 

X= Operation 
Consecutive definitions and uses of lifetime A 	 of iteration i 

	

Cycle 

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 

	

Producer 	A 1 	A 2 	A 3  

	

Consumer 	I 	I 	I 	I 	I  Cl I 	I C 	C3  

	

Cycle 	0 	1 	1 	1 	2 	1 	3 	1 	4 	1 	5 	1 	6 	1 	7 	1 	8 	1 	9 

Figure 4.2: Using a queue to store a loop variant lifetime 
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It should be noticed that in a conventional register file organization random 

access to any register is allowed, thus simplifying the register allocation process. 

However, in a QRF this issue is further complicated because of its limited address-

ing capabilities. We have developed a new register allocation strategy for a QRF. 

It is based on the regular access pattern of loop variant lifetimes produced by a 

modulo scheduled loop. This scheme is described in Section 4.4, and is essential 

to take full advantage of a QRF. 

In the next section we address the issue of multiple-use lifetimes, which we 

define as a pre-condition to employ a QRF. Then we discuss register allocation 

schemes for this particular organization. The chapter ends with a possible hard-

ware implementation of a QRF, including analytical models for the silicon area 

and cycle time. These parameters are used to compare a QRF to a conventional 

register file. 

4.2 Transforming Multiple-Use Lifetimes 

The proposed QRF model assumes that access to physical locations is controlled 

by two elements, called the r-pointer and the w-pointer. They determine the 

current read and write positions, respectively. Every time data is written in the 

queue, the w-pointer moves back one position. Similarly, a read operation moves 

the r-pointer to the next read position. This operational mode implies that data 

can be read only once from a QRF. 

A value produced by a given operation may be consumed more than once, as 

shown in the DDG of Figure 4.3a. Once a value is written into a conventional 

register file, it can be read as many times as necessary (Figure 4.3b). However 

the read-once limitation of a QRF requires that multiple-use lifetimes must be 

stored in distinct locations, one for each use (Figure 4.3c). We call this situation 

as replicated writes, which may result in at least two problems: 

• Problem 1: The instruction format should allow a single instruction to spe-

cify an unbounded (possibly large) number of destination queues. 

• Problem : The QRF should allow simultaneous write access to an unboun-

ded number of queues. 

We propose instead the use of copy operations to eliminate the need for rep-

licated writes. A copy operation has one input and two output operands. It is 

capable of reading one register value, and copying it back to two other storage 
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Figure 4.3: Register storage 

locations. Replicated writes can be eliminated by transforming the data depend-

ence graph to include copy operations. One copy operation can transform one 

dual-use lifetime into two single-use lifetimes, as shown by the diagram in Fig-

ure 4.4. In this transformation a new node is inserted in the DDC, referring to 

the copy operation. The two original edges are replaced by three new edges: one 

from the producer to the copy operation, and two others from the copy operation 

to each one of the consumers, respectively. New attributes are set according to 

the delay and distance values of the replaced edges. 

 
DDG Transformation 	 0  

Latency of Copy operation = I cycle I  e51 Copy 1 82 

0 
Figure 4.4: DDC transformation to include a copy operation 

Successively applying this simple transformation allows one to transform any 

multiple-use lifetime into a number of single lifetimes. We have designed an 

algorithm able to generate a balanced subgraph after the inclusion of copy oper-

ations. The root of this subgraph is the original producer, and the leaves are the 

original consumers. This reduces the eventual delay resulting from the inclusion 
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of copy operations in the critical path of the DDG. The scheme is described by 

Algorithms 4.1 and 4.2, which creates a modified DDC from the original one. 

These algorithms assume a latency (delay) of one cycle to execute a copy opera-

tion. An application of the algorithm, transforming a four-use lifetime into four 

single-use lifetimes, is shown by the example in Figure 4.5 

In the experimental framework a consistency check is performed after this 

transformation, comparing the original data dependence graph against the mod-

ified version. This is done to ensure that the semantics of the original program is 

preserved after the DDG transformation. 

Algorithm 4.1 choose Edge 

ChooseEdge(NewDDG, source) 
/ Perform a breadth-first search until until the first edge / 

/* without a copy operation as a target is found / 

Append(NewList, source) 
found= 0 
While not found { 

currentList= NewList 
clear(NewList) 
forall u E currentList { 

forall out_edge(u,e) { 
if (target(e) =A copy) { 

found— 1 
Return (e) 

} 

else 
Append(NewList, target(e)) 

} 

} 

} 



Algorithm 4.2 Inserting Copy Operations 

Insert -Copy (DD G, NewDDG) 
/ Insert original nodes in new DDG / 
forall operation u E DDG 

Insert (New_DDC, u) 
1* Insert edges in new DDG *1 
forall edge e E DDC { 

if out-degree (source (e)) = 1 
1* Single-use lifetime-Copy not necessary *1 

new-edge= e 
Insert (New_DDG, new-edge) 

else { /* Multiple-use lifetime-Insert copy operation *1 
Insert (New_DDG, copy) 
1* Choose the insertion point of the copy operation according to / 
/ the original pair of producer and consumer operations / 

split-edge= ChooseEdge (New_DDG, source (e)) 
1* Edge from the original producer to the copy operation *1 
new-edge= (source(split_edge), copy) 

\e(new_edge) = 'e(sp1it_edge) 

6e(new_edge) = 0 
Insert (New_DDG, new-edge) 
/ Edge from the copy operation to the original consumer 

new-edge= (copy, target (split- edge)) 

)'c(new_edge) = 1 

5e(new_edge) = 6e(split_edgc) 

Insert (New_DDG, new-edge) 
/* Edge from the copy operation to the new consumer *1 
new-edge= (copy, target(e)) 

)'e(new_edge) = 1 

8e(new_edge) = Se 

Insert (New_DDC, new-edge) 

} 

} 
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Figure 4.5: Inserting copy operations in a DDG 

4.3 Overhead Due to Copy Operations 

In terms of hardware, the use of copy operations requires an extra FU, capable 

of copying a value from one register and writing it back to two other storage 

locations. This should be simple to implement. In the experimental framework 

that function is performed by the Copy FU, as described in Section 3.1.1. We 

assume a latency of one cycle for this operation. Although a simple function is 

performed, a significant overhead overhead results from the use of Copy FU: extra 

access ports are required. 

In terms of software the introduction of copy operations may increase the total 

execution time of a loop. That would be the result of a higher stage count or 

initiation interval. Copy operations inserted in the critical path of the DDC will 

increase the schedule length of a single iteration. A longer schedule length may 

result in a higher SC, requiring longer prologue and epilogue phases. It might 

also happen that the required number of copy operations makes the Copy FU 

the most heavily used machine resource, increasing the II. Increasing the II may 

cause a higher impact on the execution time than increasing the SC, specially 

for loops with a large iteration count. This can be inferred from the expression 

for the execution time of a loop (Section 3.5.2). It is also possible that a copy 

r 
S. 
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operation is inserted in a recurrent circuit, increasing the RecMII. 

We have performed a number of experiments to evaluate the effect of intro-

ducing copy operations in the DDG of innermost loops. Machine models and the 

workload used in the evaluation are as described in Chapter 3. In this section we 

only present results referring to an unclustered machine comprising of 4 FUS: 1 

L/S, 1 ADD, 1 MUL, 1 Copy. We have found similar results and conclusions for 

other machine configurations, as reported in [27]. 

The chart in Figure 4.6 shows that around 94% of the loops can be scheduled 

within the same II that would be otherwise possible without using copy oper-

ations. The remaining fraction of loops requires a higher II, an increase of one 

cycle in most of the cases. Similar results were found for the stage count variation 

(Figure 4.7): the value of SC remains the same for 89% of the loops. An eventual 

increase of one stage occurs for 10% of the loops. The average stage count, with 

and without copy operations, is 3.0 and 3.1, respectively. 

0 	1 	2 	3 
	

0 	1 	2 	3 
II Increase 
	

SC Increase 

• 3FUs 
	

• 3FUs 

Figure 4.6: II Variation-Copy Op 	Figure 4.7: SC Variation-Copy Op 

The combined effect of variations in those parameters has been measured by 

calculating the number of cycles required to execute all loops of the benchmark 

using copy operations. This value was compared with the time required to ex-

ecute the same set of loops without using copy operations. For this machine 
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configuration, we have found that copy operations increase the total execution 

time by 1.5%, confirming that the performance penalty due to this transformation 

is acceptable. In the next chapters more extensive analyses of this matter will be 

presented. 

4.4 Allocating Lifetimes to a QRF 

Allocating lifetimes to a queue is more complicated because of the limited ad-

dressing capability. We will focus the discussion on the problem of allocating 

loop variant lifetimes generated by a modulo scheduled loop as this is the main 

motivation to develop a QRF. We have identified two sufficient conditions under 

which two or more lifetimes can share a storage queue in the QRF proposed in 

Section 4.1. We shall call them Q-Compatibility Conditions, which are listed below: 

There can be at most one read and one write access operation to the queue 

at any given cycle. 

Lifetimes must be written and read from a queue in exactly the same order. 

A straightforward solution is to allocate a single lifetime to each queue. In 

this case a queue would act as a buffer, storing successive productions of a given 

lifetime (Figure 4.2). The advantage over a conventional register file is that only 

one register name is required (the name of the queue), even if the lifetime length 

spans more than II cycles. However it is easy to identify situations in which 

a queue can accommodate more than one lifetime, hence optimizing the use of 

machine resources. 

Two or more loop variant lifetimes of the same length may share a single queue. 

It can be verified that the production and consumption order of all lifetimes are 

identical during the kernel stage of a modulo schedule. This is sufficient to meet 

the second Q-Compatibility condition. The first condition can be met if that set of 

lifetimes have distinct starting cycles. Using this condition results in a relatively 

small search space to identify which lifetimes can share a common queue. It only 

involves grouping lifetimes according to their lengths, an approach used in [5]. 

As an example Figure 4.8a shows the kernel code for a hypothetical loop, which 

is repeated every 8 cycles. It can be seen that lifetimes produced by operations 

A and B have the same length (2 cycles), and distinct starting cycles. The 

diagram in Figure 4.8h shows, cycle by cycle, the production and consumption of 

those values. This definition-use pattern is repeated throughout the kernel code 

execution. 
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Figure 4.8: Using one queue to store lifetimes of the same length 

Furthermore, the above example suggests that lifetimes of distinct lengths can 

share a single queue. In Figure 4.9b we show that three lifetimes produced by 

the modulo schedule of Figure 4.9a can share the same queue. Lifetimes A, B 

and C have distinct lifetimes of 2, 2, and 1 cycles, respectively. But they also 

have identical production and consumption orders, and distinct starting cycles, 

meeting both Q-compatibility conditions. 

The allocation scheme shown in the last example can indeed optimize the 

use of machine resources. However a simplistic approach to the problem would 

require working through a huge search space, a complex problem for a large 

number of lifetimes. Therefore, it is important to reduce the size of the search 

space in order to find a practical allocation method. We have developed a set 
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Figure 4.9: Using one queue to store lifetimes of distinct lengths 

of constraints under which two lifetimes can share the same storage queue [26]. 

We also show how this condition can he evaluated through a simple and practical 

compile-time test. We shall call it Q-Compatibility Test, which is formally stated 

and proved in the next section. To the best of our knowledge no other work has 

used a similar approach. Schemes based on rotating register files are the most 

similar to this one. Although a rotating register file can be seen as set of queues, 

each of them can store only distinct instances of the same lifetime. 
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4.4.1 Q-Compatibility Test 

In a modulo-scheduled loop each computation generates a new value every Initi-

ation Interval (II) cycles. Each value has a fixed lifetime which begins at some 

start-point and terminates at some end-point within the schedule. 

Definition 4.4.1 (Lifetimes) On each iteration of a loop every computation a 

produces a new value which exists over a period defined by the pair (S a , Sa + La - 1), 

where Sa is the start-point and Sa + La  1 is the end-point of that value. We say 

that L a  is the lifetime of computation a. 

Definition 4.4.2 (Vector lifetimes) In a modulo-scheduled loop every compu-

tation a produces a vector of lifetimes A: 

A {(a,a + L a  —1): an  = Sa + n.II} >o  

Definition 4.4.3 (Q- Compatibility) Let two computations a and b have start-

points Sa and Sb,  and have lifetimes L a  and L. The values produced by a and b 

can share the same destination queue if the relative order in which they produce 

values is identical to the relative order in which those values are consumed by 

their successor computations, and their start-points are different. 

It is now necessary to formulate a simple way of determining the compatibility 

of any pair of computations. We do this by formulating a proposition which 

encapsulates our definition of Q-Compatibility and then we prove that there exists 

a simple relationship between lifetimes, start-points and Initiation Interval which 

can he used in a scheduler to determine Q-Compati bill ty. The proofs we develop 

use modulo arithmetic and rely on the following four lemmas. 

Lemma 4.4.1 For all integers x, y and n, x y =' [x] 	[y]. 

Lemma 4.4.2 For all integers x, y and n, [x + ny] 	[x]. 

Lemma 4.4.3 For all integers x and n, x > 0 = [x] < X. 

Lemma 4.4.4 For all integers x and n, 0 < x <n = [x], 	X. 

We now formulate a proposition based on Definition 4.4.3 which provides us 

with a formal criterion for queue compatibility. 
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Proposition 4.4.1 The two computations a and b are Q-compatible if, and only 

if.. 

a2  > b3  = a + La > b2  + Lb 	 (4.1) 

A aj<bj =aj+La <bj +Lb 	 (4.2) 

A a2 	 (4.3) 

This proposition, although an accurate formulation of Definition 4.4.3, can-

not be used directly when scheduling a loop as it contains universal quantifi-

ers. These imply a large, possibly unbounded, search space for i and j. The 

following theorem defines an alternative, and computationally efficient, test for 

Q- Compatibility. 

Theorem 4.4.1 (Q-Compatibility Test) Two computations a and b, with start-

times Sa and Sb,  and lifetimes L a  and Lb such that La > Lb, are Q-compatible if 

L a  - Lb < [Sb - Sal ii .  

Proof 

To prove Theorem 4.4.1 we must demonstrate that = P = Q, where 

Q = V 2 ,3 > 0  : R 1  A R2  A I?3 	 (4.4) 

R 1  = a 2  > b3  = a 2  + La  > b3  + Lb 	 (4.5) 

R2 	a2  <b3  = a 2  + La  <b3  + Lb 	 (4.6) 

R3 	a2 	b3 	 (4.7) 

P 	L a  - Lb < [Sb - Saljj 	 (4.8) 

We now show that this formula holds using proof by contradiction: 

Let there exist interpretations of P and Q which render P = Q false. 

Hence, there must exist values of i, J , S, Sb, L a , Lb, and II such that P is 

true and Q is false. 

From the definition of Q in equation (4.4) any one of R 1 , R2  and R3  can be 

false for Q to be false. We consider these cases in steps 3, 4 and 5. 

Let R 1  be false, then there must exist i,j > 0 such that a2  > b 3  and 

a2  + La  < b3  + Lb. Thus: 

a2  + La  -<b3  + Lb 

and so 

L a  - Lb < b3  - a 2  
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But a, > b, so b3  - a, < 0, and hence 

L a  - Lb <b3  - a 2  <0 	 (4.9) 

However, it is assumed that n > La  > Lb, consequently R 1  cannot be false 

if P is true. 

4. Let R2  be false, then there must exist i,j > 0 such that a, < b2  and 

a + La >— b3  + Lb. Thus: 

a + La  >— b + Lb 

and so 

	

L a  - Lb > b1 - a 2 	 (4.10) 

We know from Definition 4.4.2 that a 2  = Sa + i.II and bj  = Sb + J- 11, so 

we may write: 

	

bj —a j =Sb —S a +II(j—i) 	 (4.11) 

By Lemma 4.4.1 and equation (4.11) we may write: 

[b3  - a] 11  = [Sb - S. + II(j - i)]11 	 (4.12) 

By Lemma 4.4.2, equation (4.12) can be reduced to: 

[b - 	= [Sb - Sal ii 	 (4.13) 

Recall that for R2  to be false we must satisfy the following inequalities: 

L a  - Lb > bj  - a 2  > 0 

But since proposition P is assumed to he true, then: 

La - Lb < [Sb - S.III  

Since both equation (4.10) and proposition P must both hold, we can write: 

[SbSa]jj >La L b >bj ai >0 

Eliminating L a  - Lb, we get: 

[Sb - Sa]jj > b3  - a 2  > 0 	 (4.14) 

From equation (4.13) we know that [Sb - Sal = [b - a] 11 , and hence 

substituting for [Sb - Sal il  in equation (4.14) we get: 

[b - a2 ] 11  > b3  - a i  > 0 	 (4.15) 

This contradicts Lemma 4.4.3 so R2  cannot he false. 
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5. Let H3  he false, then 3 jj>o  : a2  = b3  and consequently [b - a2 ] 11  = 0. 

From equation (4.13) we can further deduce that [Sb - Sal =0. However, 

if P is true we can say that: 

LaLb< [5& 5a ] jj =0 

But as an assumption of the theorem we have: 

La - Lb > 0 

This represents a contradiction, so R3  cannot be true when P is true. 

We have thus demonstrated that none of R 1 , R 2  or H3  can be false if P is 

true, which in turn means that Q cannot he false if P is true. 

We have therefore shown that whenever the inequality in Theorem 4.4.1 is sat-

isfied, the condition expressed in Proposition 4.4.1 is also satisfied. This provides 

us with a guarantee that the Q-Compatibility test from Theorem 4.4.1 will always 

indicate incompatibility for a pair of lifetimes that are incompatible. We would 

also like to guarantee that whenever our Q-Compatibility test indicates incom-

patibility, then so does Proposition 4.4.1. This would demonstrate equivalence 

between Theorem 4.4.1 and Proposition 4.4.1 and show that Theorem 4.4.1 is an 

exact test. 

Theorem 4.4.2 (Exactness) Two computations a and b, with start-times 8a 

and Sb,  and lifetimes L a  and Lb such that L a  > L, are Q-compatible if and only 

If L a  - Lb < [Sb - Sa]Jj. 

Proof 

To prove this theorem we must show that = P = Q and = -'P = —'Q, 
for P and Q defined by equations (4.8) and (4.4) respectively. Theorem 4.4.1 

established = P = Q, so it only remains to show = -'P = —'Q. 

1. Let us assume that there exist interpretations of P and Q such that -P = 

-
'Q is false. Therefore P must be false and Q must be true. 

Recall that Q is defined as: 

H 1  A R 2  A H3  

In statements 2, 3 and 4 we consider three cases which cover all possible 

relative values of a, and b. These are a, < b, a, > b, and a2  = b. 
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2. Assume a, <b3 , then R 1  and R3  are both true. However, R2  is only true if: 

	

a + L a  < b3  + 	Lb 	 (4.16) 

Under these conditions we can assert: 

	

L a  - Lb < b - 	 (l 	 (4.17) 

and 

	

b3  - a 2  > 0 	 (4.18) 

From the definition of -'P we know that: 

	

L a  - Lb >— [Sb - Sa]jj 	 (4.19) 

Substituting for [Sb -  S, J I , according to equation (4.13) in equation (4.19) 

we get: 

	

L a  - Lb ~! [b - a 2 ] 11 	 (4.20) 

Combining equations (4.20) and (4.17) yields the following proposition: 

	

- a 2  > La - Lb >— 	[b3  - a 2 ] 11 	(4.21) 

However, every computation in a schedule is executed exactly once per IT 

cycles when the loop is in kernel mode (i.e. after the pipeline is primed, but 

before the shutdown phase). Consequently it is axiomatic that: 

	

b3  - a 2  < II 	 (4.22) 

Equations (4.18) and (4.22) tell us that there exist i and j such that: 

II> b3  - a, > 0 

Hence, by Lemma 4.4.4 we can assert: 

[b - a 2 ] 11 	b - a 	 (4.23) 

Substituting for [b3  - a 2 ] 11  in equation (4.21) using equation (4.23) yields: 

bj  - a 2  > b3  - a 2  

This is a contradiction and so there exist values of i and j for which R2  

cannot he true when - P is true and a 2  < b3 . Under these conditions -'R2  

cannot be false and consequently -'Q cannot he false. 
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Assume a i  > ba, then R2  and R3  are both true. However, R 1  is only true if: 

(Li + La  > b3  + Lb 	 (4.24) 

Under these conditions we can assert: 

L a  - Lb > b - a 1  < 0 	 (4.25) 

From the definition of P in equation (4.8) we know that -P is given by: 

-iP 	L a  - Lb 	[Sb - Saul 
	

(4.26) 

Substituting for [Sb - Sal ij  in equation (4.26) using equation (4.13) we get: 

L a  - Lb >_ [b - ct] ii 	 (4.27) 

As a 1  > b, we know [b - ai ] 11  0, so we may write: 

L a  - Lb 0 0 	 (4.28) 

It is an assumption of the theorem that L a  > Lb. Let us therefore assume 

L a  = Lb, and thus La - Lb = 0. This directly contradicts equation (4.28) 

and we may conclude that if -P is true when a i  > b3  then R 1  must be false. 

Hence -R i  must be true and -'Q cannot he false. 

Assume a i  = b3 . Then R 1  and R 2  are both true but R3  is false. Hence -'Q 

is true. Thus when a i  = b3  and -P is true, -'Q is always true. 

We have shown that whatever the relative values of a i  and b3  it is not 

possible for -'Q to be false when -P is true. Thus = -iP = -'Q. 	0 

4.4.2 Register Allocation Using the Q-Compatibility Test 

In the experimental framework register allocation is performed assuming an un-

limited number of queues and queue positions. However, it tries to minimize the 

usage of the most critical resource (number of queues) by allocating as many life-

times as possible to a single queue. If values are allocated to queues instead of to 

individual registers, the number of distinct queues can be seen as the size of the 

name space. 

The register allocation process starts after the modulo schedule is generated. 

In the first step all loop variant lifetimes are identified, as well as their start time 

and length. Then an interference matrix is built, specifying for every pair of life-

times if it can share the same storage queue (Algorithm 4.3). The Q-Compatibility 
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test presented in Section 4.4.1 is used to create the matrix, operating on each pair 

of lifetimes. 

Algorithm 4.3 Check Compatibility 

Check_Compatibility(lf, compatible, no-If) 
no-If= 0; 
forall op E DDG { 

/* Compute the start cycle and length of each lifetime / 

forall successor of op { 
++noJf 
new(lf/'noJfj) 
lf..startlno_IfJ= (.starting cycle of op) + (latency of op) -1 
lf.length/no_lf]= (starting cycle of successor) - lf.start[no_lf] + 

(II X Sc(op,success6r)) 

} 

} 

/ Initialize the compatibility matrix for every pair of lifetimes / 

for i= 1 to (no-If -1) { 
for j= (i+1) to no-If { 

if (lf.length[i] - lf.length[j]) < ((lf.start[j] - lf.start[i]) mod II) { 
corn patible[i][j]= 1 
compatible[j][i]_— 1 

} 

else { 
compatible[iJ[j]= 0 
compatible[j][i]= 0 

} 

} 

} 

Finally, a single pass procedure is executed, trying to allocate each lifetime to 

a previously assigned queue. If that is not possible clue to incompatibilities, the 

lifetime is assigned to a new queue. This procedure is described in Algorithm 4.4. 
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Algorithm 4.4 Register allocation to a QRF 

QRF_Allocation() 
Check_Compatibility(If, compatible, no-If) 
no-queues= 0; 
/ Allocate every lifetime to a queue / 

for i= 1 to no-1f { 
allocated= 0; 
/* Try to allocate lifetime i to one of the existing queues / 

while not allocated { 
/ Try to allocate lifetime i to queue j *1 
forj= 1 to no-queues { 

conflict— 0 
1* Check compatibility between lifetime i and all other lifetimes *1 

/* previously allocated to queue j *1 
forall lf[k] E queue[j] 

if compatible[i][k] == 0 
conflict= 1 

if not conflict { 1* Allocation possible / 

allocate lf[i] to queue[j] 
allocated= 1 

} 

break 

} 

} 

/* Allocation not possible in any of the existing queues-use a new one 

if not allocated { 
++no_ queues 
allocate lf[i] to queue[no_ queues] 

} 

} 

As already said, the procedure above described assumes the availability of 

an unlimited number of queues, each of them having as many storage positions 

as necessary. If those resources were limited, the algorithm should provide a 

mechanism to balance the distribution of lifetimes among queues. This is specially 

important to prevent having more live values than the actual queue capacity. We 

have found that even employing this simple scheme the required capacity of a 

queue remains low in most of the cases, as shown in Section 5.3.2.4. Effectively 

dealing with a finite number of storage positions would require the introduction 

of spill code [15], however this is out of the scope of this thesis. A discussion on 

spilling mechanisms for software pipelined loops can be found in [65]. 
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4.5 Analytical Model for Register Files 

An accurate comparison between conventional and queue register file organiza-

tions should consider the silicon area required to implement them. A further 

refinement would include the cycle time allowed by those implementations. In 

this thesis we have used the analytical model for multiported register files de-

scribed in [62]. The input parameters taken by that model include the number 

of registers, the number of read and write ports, and the width of the registers 

(64 bits in this thesis). Queue register files can also he analysed using the same 

model. In this case the number and size of each queue is also taken into account. 

A brief overview of the analytical model is presented in the next subsections. 

4.5.1 Silicon Area Model 

We assume the VLSI technology used to implement the register file is scalable 

CMOS. Dimensions can be expressed by means of a technology dependent para-

meter, called A. Modern implementations in 1998 employ .A = 0.25im pro-

cesses [88]. The micron measurement refers to the distance between circuits on a 

microprocessor. Generally, a smaller ) results in a faster microprocessor. 

The overall size of a multiported RF is mainly determined by the size of the 

memory cells, which are replicated and together represent between 85% and 95% 

of the total area. Other components such as decoders and read/write drivers for 

the data lines account for the remaining fraction. The diagram of Figure 4.10 

shows a dual-ported (1R,1W) register cell that could be used to implement a 

multiported register file. One transistor, a select line and a data line is required 

by each port, in order to access the register cell. The area of the cell grows approx-

imately with the square of the number of ports added because each additional 

port increases both dimensions of the cell. The memory portion is a pair of cross-

coupled inverters consisting of four transistors, resulting in a minimum height of 

41). The memory portion can accommodate 3 select lines running horizontally 

across the cell. Thus, the height does not increase until more than 3 ports are 

implemented. After this, each additional port adds 8A to the height. The width 

of the dual-ported cell is 50\. Each additional read port adds 14A to the width, 

while additional write ports add 22A. The analytical model used in this thesis 

also considers the area of other elements of the register file, which can be found 

in [62]. 

A queue cell of N registers can be implemented using a collection of N dual-

ported register cells, like the one described above. To build a multiported QRF, 
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Figure 4.10: Dual-ported register cell 

each queue cell can he considered as the memory portion. For each access port, 

an additional select line is required (Figure 4.11). Note that since each register 

cell of the queue cell only requires two select lines, a N element queue cell can 

accommodate up to N select lines without growing in height. Hence, the cell 

height does not grow until more than N ports are implemented. This usually 

allows for a smaller area in comparison to a multiported conventional register 

file of the same capacity. In that case, each additional port increases the size 

of individual memory cells. Other elements of the queue register file occupy a 

relatively smaller area, which is also taken into account by the model used in this 

work, as described in [62]. 

4.5.2 Cycle Time Model 

The cycle time of register files and queue files is also modelled in [62]. The timing 

model uses the technology parameters of CACTI [99]. The access time to a 

multiported register file is determined by the length of the word-lines, the length 

of the bit lines and, to a lesser extent, by decode time. Other components, such 

as sense amplifier or precharge delays, contribute minimally to the cycle time, 

but are included in the model for completeness and accuracy. The length of each 

word-line depends on the width of the bit-cell, which depends on the number of 

ports, and the number of bits per register. Conversely, the length of each bit-

line depends on the height of the bit-cell, which varies with the number of ports 

and the number of registers. Finally, decoder dimensions are determined by the 

number of registers and the height of the memory array, which in this layout is 
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Figure 4.11: Implementation of a QRF using dual-ported register cells 

computed as the product of the number of registers and the height of a bit-cell. 

They are implemented using a multi-level predecoding scheme. Hence, there is a 

predecoded address bus running parallel to the bit-lines, as in the CACTI model. 

4.5.3 Comparing Register File Organizations 

We have used both models above presented to make a preliminary comparison 

between RF and QRF organizations. We compare structures having the same 

number of storage locations and access ports. The main objective at this point is 

to compare register files with similar storage capacity. Evaluating the effectiveness 

of those structures would require the analysis of performance figures associated 

with those configurations, which will be done in the next chapters. 

In this evaluation we assume that the number of access ports in either case 

is based on the number of functional units sharing the register file. Ten config-

urations ranging from 3 to 30 FUs have been evaluated. Each functional unit 
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FUs Register File Configuration 	 I 
Access RF  QRF 

Read Ports Write Ports Registers Queues Queue Length 
3 6 3 32 4 8 
6 12 6 64 8 8 
9 18 9 96 12 8 
12 24 12 112 14 8 
15 30 15 128 16 8 
18 36 18 144 18 8 
21 42 21 160 20 8 
24 48 24 176 22 8 
27 54 27 192 24 8 
30 60 30 208 26 8 

Table 4.1: Register file configurations 

requires two read and one write ports. The total number of storage locations 

for a conventional register file was arbitrarily chosen. It is an approximation of 

the register requirements of a VLIW machine using a multiported register file, as 

reported in Section 5.3.2. We assume that each queue in the QRF has 8 locations. 

Thus the number of queues is chosen in order to match the total number of stor-

age locations of a RF. The parameter values used in this analysis are summarized 

in Table 4.1. 

It can be seen in Figure 4.12 that the silicon area required to implement a QRF 

is always smaller than the area of a RF. Furthermore, the rate of increase is much 

lower as the number of functional units scales up. Similar results were observed 

when analysing the cycle time resulting from both implementations (Figure 4.13). 

Those results have confirmed that in general a QRF is more efficient than the 

equivalent RF in terms area and cycle time. However the analysis presented did 

not take into account the functionality of those register files. Distinct performance 

levels may be result from from conventional and queue register files. These issues 

are addressed in the next chapters. 
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Figure 4.13: Access time 

4.6 Summary of Results and Conclusions 

The following list summarizes the main results and conclusions of this chapter: 

• A queue register file, as defined in this chapter, presents a number of ad-

vantages to support the execution of modulo scheduled loops. 

• A novel strategy was proposed for the allocation of loop variant lifetimes to 

a QRF. The scheme is based on the Q-Compatibility Test. 

• The proposed QRF requires the introduction of copy operations in the DDC. 

Experimental analysis have shown that the performance penalty due to this 

transformation is acceptable. 

• In general QRFs are more efficient than conventional RFs in terms of silicon 

area and cycle time. However further experiments are required to assess the 

performance level allowed by those implementations. 
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Chapter 5 

Unclustered Architectures 

Our main motivation to design a queue register file is the register requirements 

resulting from the execution of software pipelined loops in a VLIW machine. We 

have shown in Chapter 4 that a QRF organization have some advantages over 

a RF in terms of silicon area and access time. In this chapter we present a 

number of experimental results comparing two types of unclustered architectures, 

which differ only by the register file organization. The basic characteristics of an 

unclustered machine are described in Section 3.1.3. The experiments compare 

the performance and required machine resources of both organizations. Machine 

configurations ranging from 3 to 30 functional units have been considered, which 

connect either to a RF or to a QRF (Figure 5.1). The number of access ports of 

each register file is determined by the number and type of the functional units 

(Section 5.3). 

Figure 5.1: Unclustered machine using a QRF 

It is well known that many programs cannot take full advantage of the avail-

able hardware parallelism. Accordingly, one objective of the experiments was to 
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measure the performance improvement achieved when the benchmark is executed 

in wider-issue machines. As discussed in Section 4.3, the use of a QRF may 

result in some performance degradation due to the introduction of copy opera-

tions in the loop DDG. This set of experiments extends the investigation on that 

issue. Early results suggested that using a QRF instead of a RF favours scalahil-

ity [28, 27], which is possibly complemented by benefits in silicon area and access 

time (Section 4.5). Hence, another objective of the experimental evaluation was 

to quantify the machine resources required to achieve a given performance level. 

Optimizing the use of a wide-issue VLIW machine requires finding large 

amounts of ILP. However, that is not always available in the body of single loop 

iteration.We have used loop unrolling, performed prior to modulo scheduling, to 

address this issue, which is described in the next section. Then the experimental 

framework is updated with the QRF organization and related parameters. The 

chapter finishes presenting experimental results and related conclusions. 

5.1 Increasing ILP with Loop Unrolling 

Requiring that the II be an integer can result in sub-utilization of machine re-

sources. That situation happens because the TI should be rounded up to the next 

integer. As discussed in Section 3.3.1, in this experimental framework the II can 

he determined by the most heavily used functional unit. Consider a resource 

constrained loop with 3 instructions using the L/S functional unit. Assuming 

that the machine model has 2 FUs of this type results in a Mu 1.5, and thus 

II = 2. However this implies in one idle L/S slot every 2 cycles. A particular 

situation occurs when MII < 1. Suppose the same loop is scheduled in a machine 

model with 4  FUs of that type. In this case MII = 0.75, II = 1, and 1 L/S slot 

is idle every 4 cycles. 

Resource constrained loops having MII < 1 do not have enough operations 

in the loop body to use all available functional units. One way to minimize this 

problem is to perform loop unrolling [20] of the loop body prior to modulo schedul-

ing. Loop unrolling replicates the original loop body multiple times, eliminating 

unnecessary branch instructions. This results in a larger basic block, increasing 

the possibilities of finding ILP. 
Returning to the above examples, distinct unroll factors can be used to avoid 

having idle L/S FUs. Unrolling the loop twice for the machine model with 2 L/S 
FUs result in IVIII = 3. On the other hand, for the machine model with 4 L/S 
FUs the loop can be unrolled four times, in which case MII = 3. In both cases 
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the schedule has no idle L/S slots, achieving full processing power. Although both 

schedules have the same II, the execution time of individual iterations is different. 

In the first case 2 iterations are completed every 3 cycles. In the second, 4 

iterations are completed in the same amount of time, because the machine has 

twice as many L/S FUs. These examples are summarized in Figure 5.1. A study 

on the benefits of using loop unrolling with modulo scheduling can he found 

in [56]. 

Scheduling 
Parameters 

Machine Model A 
2 L/S FUs 

Machine Model B 
4 L/S FUs 

Unroll Factor 1 2 1 4 
L/S Operations 3 6 3 12 
MIT 1.5 3 0.75 3 
II 2 3 1 3 
Cycles/ Iteration 2 1.5 1 0.75 

FUs Utilization 75% 100% 75% 100% 

Figure 5.2: Optimizing the use of machine resources with loop unrolling 

This research work has considered wide-issue machine models employing up 

to 30 FUs. For this reason loop unrolling has been used to increase the ILP 

available in small loops. Furthermore, unrolling has also been used to minimize 

the negative effects of rounding the ResMIIup to the next integer [78]. Although 

performance gains can be achieved with unrolling, side effects may also occur, 

which might compromise the achieved benefits. In this work two issues are of 

particular concern, being investigated through experimental analysis: 

• Unrolling may generate a loop containing too many operations and complex 

dependence chains, making it difficult and time consuming to find a valid 

schedule with IMS. 

• Unrolling may further increase the register pressure. 

In the experimental framework loop unrolling is performed only if the ResMIl 

is the dominating factor determining the Mu. The number of times a loop body 

is unrolled is called unroll factor (u). It is chosen according to the performance 

degradation incurred when the ResMIIis rounded up to the next integer. The un-

roll factor u is determined in order to minimize a tolerance value, called Utoierance, 

which can be calculated by means of the following expression [78]: 
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Utojerance = 
fResMil x ul 
ResMil x u 

—1 	 (5.1) 

In general the maximum unroll factor used in this experimental framework is 

10. This avoids creating loops with too many operations. So the unroll factor 

is chosen between 1 and 10, whichever results in the smallest Utoierance.  Unroll 

factors that would result in a DDG with over 250 operations are not considered. 

The reasons for this are twofold: possible performance gains are not so significant 

because the wasted fraction is small compared to the II. Furthermore, a large 

number of operations may result in a higher II due to excessive backtracking, 

which also increases the scheduling time. However, it might happen that for very 

small loops an unroll factor of ten is still insufficient to have ResMil > 1. In this 

cases an unroll factor as high as 40 can be used. Loop unrolling is also used to 

support the partitioning algorithm when small loops are scheduled, as discussed 

in Section 7.1.4. We have found that the criterion used to perform loop unrolling 

does not result in significant performance degradation or excessive use of machine 

resources [27]. Thus we have adopted it as a standard feature of the experimental 

framework, being performed whenever necessary. 

Unrolling an original DDC in times produces a new graph which we shall call 

UDDG. For each vertex u representing an instruction u i  E DDG, UDDC has in 

vertices w corresponding to distinct iterations of the same operation. Likewise, 

for each dependence edge e(u, v) E DDG, in dependences e(u1, mod m E 

UDDG are created. The loop unrolling scheme [85] used by the experimental 

framework is described in Algorithm 5.1. If the number of iterations of the ori-

ginal loop is N, the number of iterations performed by its unrolled version is 

approximately (N - in). So we have defined a new parameter called II j  to 

express the number of cycles required to execute a single iteration of the original 

loop body. This parameter is useful to compare schedules of the same loop having 

distinct unroll factors, and is calculated by means of the following expression: 

"Si = 	 ( 5.2) 
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Algorithm 5.1 Loop Unrolling 

Unroll(DDG, UDDG, m) 
1* Replicate each operation according to the unroll factor m 

forall operation u E DDG { 
for i=O to rn-i { 

U 2  = U 

Insert(UDDG, ui) 

} 

} 

/ * Insert edges in order to preserve the original data dependences *1 
forall edge e(u,v) E DDC { 

for i=O to rn-i { 
new-edge= e(u, v(i+6(u,v)) mod m 

I i+5(u,v) 
Jnew_edge - L m 

Anew-edge  = Ae 

Insert(UDDG, new-edge) 

} 

} 

5.2 Experimental Framework Update 

So far the experimental framework considers only an unclustered machine model 

using a conventional register file, as described in Section 3.1.2. In this section 

that model is extended to consider also the use of a QRF. A machine using a QRF 

requires Copy FUs, and thus extra access ports to the register file (see Table 3.2). 

Only loop variant lifetimes are considered when register allocation is performed 

for a QRF, which is done using the scheme described in Section 4.4.2. Although 

some alternatives have been considered to allocate loop invariants [27], they have 

not been as yet implemented. Furthermore, loop invariants account only for a 

small fraction of the total register requirements, thus this simplification should 

not affect the results significantly. An unclustered machine using a conventional 

register file (RF) to perform register allocation of loop variants only is called U RV. 

A similar architecture using a QRF is called UQV. Whenever necessary the suffix 

nn is used to indicate the number of functional units of a given configuration. 

Copy FUs are not taken into account to compute the total number of FUs as 

they do not perform any useful computation from the user's perspective. Thus, 

although two machines denoted URVnn and UQVnn have the same number of 

standard FUs, UQVnn has also Copy FUs, requiring additional access ports to 
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the QRF. Additional output parameters related to the QRF are generated by the 

experimental framework, including the following: 

• Number of queues: Total number of queues required to allocate loop variant 

lifetimes produced by a modulo schedule. This parameter can also he viewed 

as the size of the register name space for a machine using a QRF. 

• Queue length: Maximum number of live values that must coexist in a queue 

at a given cycle. The length corresponds to a lower bound on the required 

storage capacity of a queue. 

• Queue locations: Total number of storage positions required by a modulo 

scheduled loop. It is calculated summing up all queue lengths resulting from 

the register allocation. Although it may not be necessary to use all locations 

at the same time, the characteristics of a QRF require this capacity. 

• Queue sharing: Number of lifetimes produced by distinct operations sharing 

a queue at any given cycle. 

Some loops allow a higher degree of performance improvement than others as 

the machine model scales up. In the experimental framework this is particularly 

the case for resource constrained loops. Recurrence constrained loops do not 

benefit from extra functional units. The reason for this is that unrolling is not 

performed in loops having ResMil < RecMII. Simply unrolling the loop may 

reduce the impact of rounding the RecMII up to the next integer [56]. However 

this does not help to fully utilize extra machine resources, as happens when 

ResMil <0. Achieving significant performance gains in loops with ResMil < 

RecMII requires sophisticated techniques, such as blocked hack-substitution [87]. 

This technique unrolls a loop m times, reducing the RecMII by the same factor. 

However its implementation is outside the scope of this thesis. 

For this reason we understand that resource constrained loops should he the 

main target of wide-issue machine configurations. We have subdivided the bench-

mark loops into three classes in order to produce a more precise analysis: 

• Class 1: Contains all 1258 loops. 

• Class 2: Contains only resource constrained loops, thus ResMil > RecMII. 

They fully benefit from extra functional units. Although RecMII is a fixed 

parameter, ResMil depends on the number of FUs. Thus the number of 

loops in this set is machine dependent. 



• Class 3: Contains only loops without recurrence circuits, characterized by 

RecMII = 0. The number of loops in this set is constant, regardless of the 

machine configuration. All class 3 loops also belongs to class 2. 

The data in Figure 5.3 shows the number of loops in each class. Class 1 con-

tains 1258 loops, while class 3 contains 753 loops, which is machine independent 

in both cases. The number of class 2 loops ranges from 1102 (for 3 FUs) to 807 

(for 30 FUs). The chart shows that the number of class 2 loops converges to the 

number of class 3. If a very large number of functional units was available the 

condition ResMil < 1 would always hold for those loops. Thus the II would 

always be rounded to 1. A class 3 loop has RecMII = 0, which is also rounded 

to one. Thus for a very large number of functional units the condition to be a 

class 2 loop, ResMil > RecMII, is equivalent to ResMil = RecMII, which 

results in the same loops being, included in both sets. 

Loop Classification 
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0 

P 
S 

3 	6 	9 	12 	15 	18 	21 	24 	27 	30 
Functional Units 

1-All Loops 	- - 2-Res. Const 	-- 3-No Rec. 

Figure 5.3: Number of loops in each class 

When reporting performance results we often present only the results for 

classes 1 and 3. Although we are mostly interested in the loops of class 2, the num-

ber of them is not fixed for distinct machine configurations. We avoid comparing 

sets of distinct sizes by using class 3 loops instead. Nonetheless the conclusions 

obtained should he the same as the characteristics of both sets are the same re-

garding the parameters of interest. Unless otherwise stated the results present 

machine models scaling by increments of 3 standard functional units, plus extra 

Copy FUs if required. 

KE 



5.3 Experimental Results 

This section presents experimental results regarding unclustered architectures, 

using either a conventional or a queue register file. A total of 30 machine con-

figurations were considered: 10 URV and 20 UQV, each group ranging from 3 to 

30 functional units. Two type of TJQV machine models have been used, differing 

only by the number of Copy FUs available. One configuration, called UQV1 has a 

fixed proportion of 1 Copy to 3 standard FUs. The other, called UQV, provides 

at least 1 Copy for each group of 6 standard FUs. The queue register files used 

by these machines are referred as QRF1 and QRF2, respectively. These machine 

configurations are summarized in Table 5.1. 

Unclustered Machine Configurations 

Functional Units URV UQV1 UQV2 
L/S 1-10 1-10 1-10 
ADD 1-10 1-10 1-10 
MUL 1-10 1-10 1-10 
Copy - 1-10 1-5 

Register File RF QRF1 QRF2 
Read ports -60 7-70 7-65 
Write ports [_~3 -30 5-50 5-40 

Table 5.1: Unclustered machine configurations used in experiments 

Innermost loops taken from the Perfect Club Benchmark were used in the 

experiments (Section 3.2). Loop unrolling prior to modulo scheduling was per-

formed according to the criteria described in Section 5.1. We have subdivided the 

presentation of results into two main topics: performance, and machine resources. 

5.3.1 Performance Analysis 

In this section the performance of the machine models defined in Section 5.3 is 

analysed and compared. First the potential for parallelism exploitation is in-

vestigated, followed by an investigation of the impact caused by the use of copy 

operations with a queue register file. The analysis presented in this section is 

focused on scheduling issues, so it assumes a fixed cycle time for all machine con-

figurations. In Section 5.3.2.5 a reasonable estimation for the register file cycle 

time is presented, which is used to calculate the actual execution time of each 

loop. 
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5.3.1.1 ILP Exploitation 

Implementing a wide-issue VLIW machine cannot he justified unless it produces 

significant performance improvements for the target applications. Accordingly, 

this first set of experiments investigates the performance improvement achieved 

by scaling up the number of functional units in URV machine models. We have 

found that the total number of cycles required to execute all loops from a given 

class can be significantly reduced using wider-issue machines, as shown in the 

chart in Figure 5.4. The results are relativized using as a baseline the execution 

time of the corresponding class of loops in a URV03 machine. In this case the 

number of cycles required to execute all loops of classes 1, 2 and 3 is 3.6 x 10 10 ,  

34 x 10' 0 , and 1.3 x 1010,  respectively. 

It should be noticed that the execution time of classes 1 and 2 do not differ 

by a large factor for the smallest configuration, which shows that a large fraction 

of the execution time is spent in resource constrained loops. As the number of 

functional units increases, so does the gap between both curves, showing that class 

2 loops take more advantage of the extra functional units. This is most clearly 

concluded by comparing the achieved speedup for each class of loops (Figure 5.5). 

Classes 2 and 3 can achieve linear speedups as they consist of vectorizable loops. 

The speedup of class 1 is sublinear because the recurrence constrained loops found 

in this class do not take full advantage of extra functional units. 

5.3.1.2 Impact of Copy Operations on Performance 

As previously discussed the use of a QRF may delay loop execution due to the 

introduction of copy operations. In order to further investigate this issue we have 

extended the analysis presented in Section 4.3, now considering additional ma-

chine configurations and performing loop unrolling when necessary. The analysis 

compares performance execution using three machine models: URV, UQV1, and 

UQV2, as previously defined. A comparison of the execution time of all loops 

is shown in Figure 5.6. Small performance degradation in relation to configur-

ation URV is observed when UQV1 is used. If UQV2 is used instead, the total 

execution time increases by a larger factor. This confirms that Copy FUs can he 

the critical resource for some loops, determining the II. The overhead tends to 

increase as the machine configuration scales up. The main reason for this is that 

more loops become recurrence constrained as more functional units are used. In 

this case more loops are affected by the introduction of Copy operations in a re-

currence circuit. Furthermore, a wider-issue machine may require a higher unroll 

factor. Thus, more Copy operations are necessary, possibly increasing the II. A 
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Figure 5.4: Execution time-Fixed cycle Figure 5.5: Loop speedup-Fixed cycle 

smaller overhead is observed when only loops without recurrences are considered 

(Figure 5.7). In this case the extra execution time is only due to loops whose 

critical resource is the Copy FU. 

The value of IPCdy namic also shows small variations between machine models 

for both sets of loops, as seen in Figures 5.8 and 5.9, respectively. However the 

performance loss is larger when UQV2 is used, for the reasons above discussed. A 

linear increase is observed for loops without recurrences, which is also achieved for 

resource constrained loops. When all loops are included, the growth of IPCdynamic 

is sublinear because recurrence constrained loops do not use all the available FUs. 

We have concluded that it is possible to achieve high speedup levels using 

any of the architecture models proposed, specially for loops that are resource 

constrained. It might he possible that additional techniques make it feasible to 

accelerate an even larger class of loops. We have found that using a QRF does not 

result in significant performance degradation, as long as an adequate number of 

Copy FUs is provided. However the inclusion of extra functional units implies new 

access ports, which increases the complexity of the QRF, possibly compromising 

performance. Hence, a trade-off is involved in the performance optimization of 

UQV machines, between scheduling flexibility and number of access ports. 
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5.3.2 Machine Resources Analysis 

The experiments shown in this section compare the machine resources required 

to achieve the performance levels reported in Section 5.3.1. An issue of particular 

interest is the scalability of the model using a queue register file. As defined in 

Section 5.2, all data refer to dynamic measurements, accounting for the loops 

responsible for 99% of the total execution time of the benchmark. 

5.3.2.1 Name Space 

As already discussed, the maximum number of live values at a given cycle determ-

ines the required number of distinct storage locations. In a conventional register 

file each storage location requires a distinct register name. However, in a queue 

register file all registers comprising a given queue are referred to by the same re-

gister name. Thus, the register name space problem is shifted from register names 

to queue names. A smaller name space size may require less bits to specify the 

address of instruction operands, possibly simplifying the instruction word format 

and the register file implementation. 

The data in Figure 5.10 compares the size of the name space of both organiz-

ations. The growth of the name space for a RF is almost linear as the number of 



WC-Dynamic 
	

WC-Dynamic 
All Loops 
	

Loops Without Recurrences 

20 

19-

18-

17 

16-

15-

14 

n 13- 

12- 

r 	11 

10- 

t 	91 

8 1 

4 1  
3 1 
4 
0- 

3 

441 

6 	9 12 15 18 21 24 27 30 
Functional Units 

URV 	- UQV1 	UOV2 

I 

I 

nl 
Si 

r 1 
u 1  
C 

0 

n 
S 

 

3 	6 	9 12 15 18 21 24 27 30 
Functional Units 

URV 	'- UQV1 	-- UQV2 

Figure 5.8: IPC Dynamic-Class 1 	Figure 5.9: IPC Dynamic-Class 3 

functional units scales up. On the other hand, for QRFs the name space increases 

constantly by a small factor across the machine models. It should be noticed that 

the size of the name space is smaller if less Copy FUs are used, as can be inferred 

by comparing the results for UQV1 and UQV2. 

5.3.2.2 Storage Locations 

We define the number of storage locations as the lower bound on the register 

file capacity. For a RF it is determined by MaxLive. However for a QRF it 

is computed according to the longest size of each queue during loop execution. 

The longest size of a queue can he viewed as its MaxLive value. As expected, 

the requirements are higher for a queue register file (Figure 5.11). Although 

register requirements for UQV2 are lower than for UQV1, they are always higher 

than for RF. Multiple-use lifetimes are the main reason for this difference. As 

discussed in Section 4.2, a multiple-use lifetime requires only one storage location 

in a RF. If a QRF is used instead, multiple locations are required. Furthermore, 

a QRF requires copy operations to move data between queues, using additional 

storage locations to implement the data transfer. The somewhat irregular shapes 

of the curves are due to distinct unroll factors. The main criteria determining the 
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extent of unrolling is performance optimization, which depends on the number of 

functional units. Distinct unroll factors may result in large differences in register 

requirements. In any case the experiments have confirmed that a QRF requires 

more storage locations than the equivalent RF. 

5.3.2.3 Queue Sharing 

The chart of Figure 5.12 shows the number of lifetimes produced by distinct oper- 

ations sharing the same queue. It was measured over all the benchmark loops for 

UQV1 configurations. The data is subdivided into three cumulative sets: more 

than one, two, and three distinct lifetimes in a queue. The results are normalized 

based on the total number of cycles in which one or more live values are stored in 

a queue. It can be seen that sharing does occur, being the reason for a reduction 

in the size of the name space of UQV machines. Similar results were observed for 

UQV2 configurations. 
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5.3.2.4 Register File Silicon Area 

We have used the hardware model presented in Section 4.5 to compare the silicon 

area of the register files required to implement the architecture models described 

in this chapter. All results are based on CMOS technology using .A = O.8rni. 

We assume that MaxLive determines the number of registers in a conventional 

RF. Using a similar approach for a QRF would not he appropriate. In a real 

implementation the size of each queue is finite, possibly constant, a constraint 

that is not taken into account when calculating the maximum number of live 

values. We have measured the dynamic length of every queue used by both 

organizations, UQV1 and UQV2, as shown in Figure 5.13. The maximum size of 

each queue ranges between 7 and 10, for those loops accounting for 99% of the 

total execution time. 

We have defined the specification of each register file as follows: The size of 

the name space (Figure 5.10) determines the number of registers for a RF, or the 

number of queues for a QRF. The size of each queue is based on the maximum 

queue length for the corresponding configuration (Figure 5.13). The exact value 

of those parameters can be found in Tables 5.2 and 5.3. It is assumed that each 

register location is 64 bits wide. It is clear that the capacity of QRF configurations 

are more than enough in terms of total storage locations. However, that allows 

flexibility to the scheduler and register allocator. 
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RF Parameters 

Capacity Ports 
FUs Registers Read Write 

3 41 6 3 
6 62 12 6 
9 90 18 9 
12 106 24 12 
15 135 30 15 
18 148 36 18 
21 166 42 21 
24 166 48 24 
27 169 54 27 
30 220 60 30 

Table 5.2: URV register requirements 

W. 



Q RF Parameters 

QRF1  QRF2________ 
Capacity Ports Capacity Ports 

FUs Queues Length Read Write Queues Length Read I Write 
3 25 10 7 5 25 10 7 5 
6 j 	31 10 14 10 26 8 13 8 
9 35 8 21 15 35 7 20 13 
12 40 8 28 20 36 8 26 16 
15 46 8 35 25 42 8 33 21 
18 54 8 42 30 42 7 39 24 
21 61 8 49 35 49 8 46 29 
24 68 8 56 40 51 8 52 32 
27 72 9 63 45 57 8 59 37 
30 81 9 .70 50 60 9 65 40 

Table 5.3: UQV register requirements 

All figures referring to silicon area are presented in A 2  units (Section 4.5). The 

data in Figure 5.14 shows that QRF1 organizations uses more silicon area than 

a conventional RF, although the differences are not large in most of the cases. 

Q RF2 and RF organizations have use areas up to 12 FUs. However, if more 

functional units are used there is an increasing advantage for QRF2. 

5.3.2.5 Register File Cycle Time 

A number of critical paths can determine the cycle time of a wide-issue dynam-

ically scheduled processor. The first one refers to the number of access ports of 

the register file. The second one refers to a number of structures used for dy-

namic instruction-scheduling [24]. As reported in [25], the machine cycle time of 

both superscalar and VLIW processors may he determined by the cycle time of 

the register file. The DEC Alpha 21264, for instance, has a partitioned integer 

register file because it is on a critical timing path [41]. Considering that VLIW 

processors have no hardware for instruction scheduling, it would be reasonable to 

estimate the machine cycle time according to the register files. Thus, we will use 

this approach through the remainder of this thesis. 

The analytical model presented in Section 4.5 was used to estimate the cycle 

time of the machine configurations considered in this analysis. We have found 

that in most of the cases the access time of RF and QRF1 organizations are 

similar (Figure 5.15). Although QRF1 has more access ports than RF, that is 

compensated by the lower complexity of a queue structure. QRF2 allows a shorter 
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Figure 5.15: Cycle time 

cycle time than QRF1 because it has less access ports. However, as shown in 

Section 5.3.1.2 this option results in a higher performance penalty due to a smaller 

number of Copy FUs. Although those results assume a fixed cycle time, that is 

not the case in real implementations. In fact, scheduling for a machine having 

less Copy FUs and less access ports may actually result in a better performance. 

We have used the cycle time values calculated for each configuration to weight 

the execution times reported in Section 5.3.1, which assume a fixed cycle time 

for all machines. This should provide a more accurate insight on the actual 

performance. The results are normalized using as a baseline the total execution 

time of the corresponding set of loops in a URV03 machine, measured in ns. In 

this case, the execution time for all loops of classes 1, 2 and 3 is 2 x 10 11  

1.8 x 1011  ns, and 7 x 1010  ns, respectively. 

The chart in Figure 5.16 shows the total execution time of all benchmark 

loops. The most important finding is that real performance improvement only 

occurs when configuration URV03 scales up to URV06. In this case there is a 

reduction in the total execution time over the previous configuration. URV con-

figurations allow better performance than UQV up to 12 FUs. The performance 

of URV15 and UQV15 are similar, but for more than 15 FUs UQV has a better 
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performance than URV machines. Nonetheless the implementation of any of those 

machines cannot he justified as their absolute performance is worse than URV06 

configuration. Using more than 6 FUs only increases the total execution time. 

This means that the improvements resulting from aggressive ILP scheduling are 

surmounted by a longer cycle time, which is due to high register requirements. 
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Distinct conclusions can he drawn if only loops without recurrences are con-

sidered. Actual performance improvement occurs when the number of FUs in-

creases from 3 to 6 (Figure 5.17). However the lowest execution time is produced 

by the UQV18 machine, although URV06 (a much simpler implementation) has 

similar performance. UQV machines of more than 18 FUs do not allow further 

performance improvements. It should he noticed that, for this class of loops, the 

absolute performance of UQV machines does not degrade by a large factor with 

wider-issue machines, as observed in the other case. It could be said that the 

improvements of ILP scheduling approximately matches the performance penalty 

resulting from a complex register file. Nonetheless, the results suggest once again 

that implementations of unclustered machines with more than 6 FUs are not well 

justified. 
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5.3.3 Summary of Results and Conclusions 

The following list comprises the main conclusions drawn from the experimental 

analysis presented in this chapter: 

• Wide-issue VLIW machines can he efficiently exploited by means of ag-

gressive scheduling of resource constrained loops. This can be done using a 

combination of software pipelining with loop unrolling. 

• Although recurrence constrained loops do not allow the same level of im-

provement, resource constrained loops constitute a significant part of the 

full benchmark set. 

• The introduction of copy operations alone in the loop DDC does not com-

promise the scheduling quality to a large extent. A more important con-

straint is the number of available Copy functional units. 

• QRF organizations have a clear advantage over conventional RFs in terms 

of name space, considering both aspects, absolute value and scalability. 

However, a QRF requires more storage locations as the required size of a 

queue (around 8 locations) is not fully utilized. 

• The number of Copy FUs determines if a QRF is preferable than an RF in 

terms of silicon area and cycle time. Having 1 Copy FU for each 3 standard 

FUs requires too many additional access ports, making the RF a better 

choice. This conclusion is reversed if 1 Copy FU is used for each 6 standard 

FUs. 

• Wide-issue unclustered machines require large and complex register files, 

resulting in much longer cycle times. This can completely overshadow per-

formance gains resulting from aggressive ILP scheduling. 

• There is a significant potential for ILP exploitation in VLIW machines. 

However unclustered designs over 6 FUs fail to deliver the expected per-

formance due to larger register files. 
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Chapter 6 

Clustered Architectures 

We have found in Section 5.3.1 that scheduling techniques targeting wide-issue 

VLIW machines can take advantage of the available ILP found in loops. However 

a centralized register file would be required if all functional units are included in a 

single cluster. The number of registers and access ports of such organization res-

ult in a large access time, which can overshadow the performance gains obtained 

from ILP scheduling. We have shown in Section 5.3.2.5 that unclustered machines 

of more than 6 FUs do not deliver the expected performance, either using con-

ventional or queue register files. Those findings have motivated the development 

of a clustered VLIW architecture. In this organization each cluster should contain 

a number of FUs small enough to result in a short register file cycle time. 

6.1 Clustered Architecture Organization 

The overall structure of the clustered VLIW architecture proposed in this thesis 

is shown in Figure 6.1. It comprises a conventional superscalar CPU, plus a col-

lection of VLIW clusters connected in a bi-directional ring topology. The front-end 

processor is responsible for executing all parts of a program except the innermost 

loops, which are scheduled for parallel execution on the VLIW compute-engine. 

The clustered VLIW processor executes the innermost loops of an application 

compiled using a modified version of IMS Algorithm [79], which is shown in 

Section 6.3. In this thesis we focus exclusively on the performance and cost con-

siderations of the VLIW compute-engine. Optimization of the front-end is also 

important, but plays a lesser role when scalability is the prime concern. 

Each cluster contains an instruction processor capable of issuing instruction 

parcels to the pipelined functional units from a statically compiled loop schedule. 

For convenience the functional units are grouped within a cluster, connecting to 

a conventional register file. 
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Figure 6.1: Clustered machine 

It was shown in Section 4.4 that loop variant lifetimes can be allocated to a 

queue register file. However, loop invariant lifetimes also require a special alloca-

tion scheme, due to the read-once limitation of our QRF model. We believe that 

such scheme can be implemented using copy operations to write a value back to 

its source queue after a read operation. As shown in Section 4.5.3, the silicon 

area and cycle time of conventional and queue register files are similar for con-

figurations up to 6 functional units. Thus, we understand that in these cases the 

small disadvantage of a conventional register file is compensated by the flexibility 

of a standard design. Doing so, the proposed VLIW architecture could also be 

used with other scheduling techniques targeting non-loop structures. This are 

the main motivations to adopt a conventional register file to store values that are 

produced and consumed in the same cluster. Hence, all intra-cluster communica-

tion takes place via a Local Register File (LRF), while inter-cluster communication 

takes place via one of the Communication Queue Register Files (CQRF). 

A CQRF is a queue register file (as defined in Chapter 4) placed between two 

adjacent clusters, providing read-only access to one of them, and write-only access 

to the other (Figure 6.2). Sending a value from one cluster to another requires 

only a pair of write/read operations to the appropriate CQRF. The analytical 

model presented in Section 4.5 shows that the cycle time of QRFs and RFs are 

similar for a small number of FUs. If the machine cycle time is determined by 

one of those components [25] it might be feasible to assume the same latency for 

an operation accessing either the LRF or the CQRF, allowing flexibility to the 

scheduler. 
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Each cluster of the proposed organization has two CQRFs to communicate 

with its two neighbouring clusters (Figure 6.3a). Instruction results can be writ-

ten to the LRF or to the cluster CQRFs. Source operands can he read from the 

LRF and also from the CQRFs of the adjacent clusters (Figure 6.3h). The func-

tional units obtain their operands from the LRF and the CQRFs, via the operand 

multiplexing, comprising a 3-input multiplexer per functional unit read port. We 

have found that the cluster configuration resulting in the lowest cycle time for 

either a LRF or a CQRF comprises 3 standard and 1 Copy FUs (Section 6.4.3.2). 

Hence this is the configuration we have used in the experiments, unless stated 

otherwise. Those four functional units in each cluster would require a maximum 

bandwidth of 5 writes and 7 reads per cycle. This bandwidth requirement may be 

directed at the LRF and/or one or more CQRFs. The only restriction is that in 

each cycle each queue can be read at most once, and written at most once. In this 

study we assume a perfect memory system, capable of servicing each load and 

store operation within the latencies set out in Table 3.1. The code generator maps 

the lifetimes that span a cluster boundary onto the corresponding CQRF. An im-

portant feature of the architecture and its scheduler is that nearest-neighbour 

communication requires no explicit instruction to communicate the value. 

We have adopted a bi-directional ring topology because of the advantages of 

symmetry and strictly nearest-neighbour interconnects, which ensures the same 

latency for any communication operation. Rings also exhibit natural broadcast 

properties that facilitate the implementation of scheduling and partitioning al-

gorithms, which is a crucial aspect in this kind of architecture. Extending the con-

nectivity using other structures such as 2D-Mesh or Torus, for instance, would of-

fer greater flexibility to the scheduler. However, that would increase the hardware 

complexity and silicon area, and also result in variable communication latency due 

to a non-symmetric structure. 

The ring topology lends itself well to a single-chip implementation. Although 

the nearest-neighbour communications require very short wires, the furthest dis-

tance between any two clusters is approximately the width of the chip. This would 
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Figure 6.3: Cluster organization 

make it difficult to operate with a global synchronous clock, and is where we see 

an additional benefit of using buffered inter-cluster communication. Each cluster 

could operate from its own clock, phase-locked to a master clock but potentially 

skewed with respect to the clocks of its neighbouring clusters. Local clock syn-

chronization can be used to bring cluster clocks into sync with each other, or 

alternatively asynchronous data transfer could be used across cluster boundaries. 

In spite of the distribution of functional units among clusters, the proposed 

architecture model still assumes a single thread of control. This will almost cer-

tainly involves data exchange among FUs located in distinct clusters. Compiling 

for a clustered architecture involves code partitioning in order to meet communic-

ation constraints (a bi-directional communication ring, in this case). The ideal 

operation assignment would result in the same II achievable for an unclustered 

architecture. However communication constraints may force an operation to he 

scheduled in a given cluster. It might happen that no available slot exists to 

schedule that operation in the required cluster. In this case the only alternative 
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would be increasing the II, which will delay the loop execution. For this reason 

code partitioning is a crucial issue for the effectiveness of a clustered VLIW ar-

chitecture. In this thesis we propose two schemes to perform this task: a simple 

one, described in this chapter, and a more elaborate one, shown in Chapter 7. 

The remainder of this chapter presents an update to the experimental frame-

work in order to consider the clustered architecture model. Then, a new heuristic 

is presented to perform code partitioning of a modulo scheduled loop. Finally, 

a number of experiments are reported, comparing the performance and machine 

resources of clustered and unclustered architectures. 

6.2 Experimental Framework Update 

As defined in previous chapters the experimental framework considers only Un-

clustered VLIW machines, either using a conventional or a queue register file. In 

this section we extend its capabilities to consider a clustered machine model, as de-

scribed in Section 6.1. In this model groups of functional units and a conventional 

register file (LRF) are grouped into clusters, which in turn are interconnected by 

means of a bidirectional ring of queue register files (CQRFs). 

The use of LRFs allows the allocation of loop invariant values without any 

special scheme. Lifetimes of this type are allocated to the LRF of every cluster 

where they are used. Hence, lifetime duplication may occur. Therefore from 

now on loop invariants are also taken into account when register requirements 

are estimated. Loop variant lifetimes can be allocated to the LRF or to one 

of the CQRFs. If a value is produced and consumed in the same cluster, then 

it is allocated in the LRF. If it is consumed in one of the adjacent clusters, 

then it is allocated in the corresponding CQRF. The code partitioning algorithm 

must ensure the existence of a communication channel between every pair of 

producer/ consumer operations. As will be shown later in Section 7.1.4, the DDG 

transformation to eliminate multiple-use lifetimes simplifies the partitioning task. 

We shall call URF an unclustered machine using a conventional register file 

to perform allocation of both loop variant and invariant lifetimes. Clustered 

architectures will be referred as CQF, also performing register allocation for both 

types of lifetimes. If necessary the suffix nn is used to indicate the number of 

standard functional units, which excludes Copy FUs. Unless otherwise stated it 

should be assumed that each cluster comprises 3 standard FUs (1 L/S, 1 ADD, 

and 1 MUL) and 1 Copy FU. Thus each LRF and CQRF must provide 7 read 

and 5 write ports. 

107 



The machine model description now includes some new parameters: 

• Number of clusters 

• Cluster configuration, which is defined by the number and type of functional 

units, and the type of register file. 

• Communication topology 

• Latency of inter-cluster communication 

The output parameters are the same as described in previous chapters. However, 

machine resources such as number of registers and queues, among others, are now 

estimated individually for each LRF and CQRF. Specific requirements of indi-

vidual register files often differ among clusters. We let the most demanding LRF 

determine the capacity of all other LRFs, using a similar approach to estimate 

the size of CQRFs. 

Finally, it should he noticed that the scheduling algorithm employed so far 

cannot target a clustered machine with limited connectivity. We have enhanced 

the IMS algorithm with new heuristics, making it capable of producing code for 

this kind of architecture, as described in Section 6.3. 

6.3 Partitioning Heuristics 

The original version of Iterative Modulo Scheduling [79] used by the experimental 

framework assumes that all functional units connect to a centralized register file. 

However this is not the case for the clustered machine model defined in Section 6.1. 

The limited connectivity among FUs prevents the assignment of operations to 

some clusters, according to definition and use of lifetimes. 

If two operations with a true data dependence are scheduled in indirectly-

connected clusters it is said that a communication conflict occurs. One way to 

address this problem is to perform code partitioning before modulo scheduling, 

ensuring that no communication conflict arises. This problem can be seen as a 

k-way graph partitioning problem [31], where the cost function to be minimized 

represents the Mu. Once the partitioning is completed, the scheduling process 

can proceed, taking into account the assignment of operations to clusters. 

We have developed an alternative approach, performing both scheduling and 

partitioning in a single step [29]. The main motivation for integrating both 

tasks into one single procedure is the possibility of reducing the compilation 

time without compromising the quality of the schedule. This should he possible 
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because a whole step is eliminated (partitioning), while the additional complex-

ity introduced into the other one (scheduling) is comparatively smaller than of 

its original tasks. The strategy adopted includes further heuristics to the IMS 

algorithm, relying on its backtracking capabilities to break dead-end states. The 

effect of those heuristics is to limit the space of choices to schedule an operation, 

as defined below: 

• An operation is scheduled in a given cluster only if there are no commu-

nication conflicts with previously scheduled operations, i.e. the clusters to 

which the communicating operations belong to must he directly intercon-

nected. We do not as yet consider the introduction of operations to transfer 

a value between indirectly connected clusters, implying that an operation 

can only send or receive data from an operation scheduled either in the 

same cluster or in one of the adjacent ones. 

• Communication conflicts can prevent an operation from being scheduled in 

any of the clusters, leading to a backtracking process to unschedule conflict-

ing operations. The unscheduled operations are then rescheduled, taking 

into account the new communication constraints arising from the new par-

tial schedule. 

These new heuristics require modifications in two of the original procedures 

of the IMS algorithm: Find-Slot and Backtracking (Section 3.3). The updated 

version of those functions are described in Sections 6.3.1 and 6.3.2, and are used 

when scheduling for the clustered machine model described in this chapter. 

6.3.1 Find Slot Function for a Clustered Machine 

The original procedure tries to find a valid slot to schedule an operation OP, 

enforcing correct schedules from a resource usage viewpoint. If a free slot can-

not be found within the range [mintime..maxtime], the algorithm will relax this 

constraint to assign a scheduling slot for OP. In this case the operation currently 

scheduled in the chosen slot will be unscheduled during the backtracking process. 

The new version, called Find_Slot_Clustered includes a further constraint to re-

turn a valid slot: no communication conflict should arise if operation OP is indeed 

scheduled in the returned slot. The scheme is described by Algorithm 6.3.1. Com-

munication conflicts are checked between OP and all of its scheduled predecessors 

and successors. They should be scheduled either in the same or in an adjacent 

cluster to the candidate slot. The checking procedure described by Algorithm 6.2 
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uses a parameter called NrClusters, expressing the number of clusters of the ma-

chine configuration. If a valid slot cannot be found under these conditions, the 

algorithm will relax the constraints, choosing a slot as in the the original ver-

sion. In this case, the backtracking process may also unschedule operations due 

to communication conflicts. 

Algorithm 6.1 Find slot for a clustered machine 

Find-Slot -Clustered (OP, mintime) 
/ Limit range of possible slots / 

maxtime= mintime + II -1 
currtime= mintime 
While (cnrrtime < maxtime) { 

1* Find a resource free slot / 

find free slot in MRT at cycle=currtime 
if (slot found) 

1* Verify if communicating operations would be located *1 
/ * in directly connected clusters / 

conflict= ch eckcommunication_confiict (OP, slot) 
if (conflict == 0) 

Return slot 
else 

++currtime 

} 

/ Resource free slot not found-relax this condition / 

If (OP never scheduled) 
/* Choose a slot in the first possible cycle */ 

choose slot in MRT at cycle=mintime 
else 

/* Choose a slot one cycle later than previously scheduled / 

choose slot in MRT at cycle— OPprCVjOUS-slot + 1 
Return slot 
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Algorithm 6.2 Check Communication 

Check.Communication(OP, slot) 
1* Assuming that OP is scheduled in a slot at a given cluster, verify if *1 
/ * all operations sending and receiving values from OP would be / 
/* located in directly connected clusters / 
conflict= 0; 
Let Ca be the cluster which slot is located in 
forall predecessor of OP { 

if (predecessor is scheduled at cluster C) { 
/* Verify the number of hops between the cluster of OP *1 
/ and its predecessor, assuming a bi-directional ring */ 

gap= abs(Ca  - Cb) 
if (gap> 1) and (gap 	(Nrlusters - 1)) { 

conflict= 1 
Return conflict 

} 

} 

} 

forall successor of OP { 
if (successor is scheduled at cluster C) { 

/* Verify the number of hops between the cluster of OP */ 
/ and its successor, assuming a bi-directional ring / 

gap= abs(Ca - C) 
if (gap> 1) and (gap 	(NrClusters - 1)) { 

conflict= 1 
Return conflict 

} 

} 

} 

Return conflict 

6.3.2 Backtracking Function for a Clustered Machine 

The new version of the backtracking algorithm also unschedules operations due 

to communication conflicts. This will be the case if a conflict free slot could 

not be found by the Find_Slot_Clustered procedure. The scheme described in 

Algorithm 6.3 is a direct extension of the Check- Communication procedure. Every 

predecessor or successor of OP, scheduled in a cluster not directly connected to 

where OP is scheduled, is ejected from the partial schedule. These operations will 

then be rescheduled, possibly in another cluster, trying to avoid communication 

conflicts. 
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Algorithm 6.3 Backtracking for a clustered machine 

Backtracking_Clustered(OP, slot) 
S= slot cycle 
forall successor of OP { 

If (successor is scheduled at cycle c) { 
correct= S + )'e(OP,successor) - ( II X Se(OP,sticcessor)) 

if (correct > c) { 
Unschedule (successor) 
Update MRT 
/ Return successor to the list of unscheduled operations / 
Include (List, successor) 

} 

} 

} 

/ Unschedule pred. and suc. of OP due to communication conflicts / 
Let Ca be the cluster which OP is scheduled in 
forall predecessor of OP { 

if (predecessor is scheduled at cluster Gb) { 
gap= abs(Ga  - Gb) 
if (gap> 1) and (gap 	(NrClusters - 1)) 

/* Clusters non-directly connected /* 

Unschedule (predecessor) 
Update MRT 
Include (List, predecessor) 

} 

} 

} 

forall successor of OP { 
if (successor is scheduled at cluster C) { 

gap= abs(Ca  - C) 
if (gap> 1) and (gap =A (NrGlusters - 1)) 

/* Clusters non-directly connected 1* 
Unschedule (successor) 
Update MRT 
Include (List, successor) 

} 

} 

} 

forall op having a resource conflict in slot { 
Unschedule (op) 
Update MRT 
Include (List, operations) 

} 
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6.3.3 Complexity of the New Heuristics 

The order of complexity of the IMS algorithm is not affected by the introduction 

of new heuristics, as only further constraints are added to the existing ones when 

choosing a valid time slot to schedule an operation. It has been shown that 

the empirical computational complexity of IMS is 0(N 2 ), with N representing 

the number of operations to be scheduled [79]. The new computation involved 

to check communication conflicts consists of simple comparisons between cluster 

identifiers. In practice the number of comparisons is small, as it involves only 

immediate predecessors and successors of an operation. In general there are at 

most two. predecessors. The number of successors may he larger, however we 

have noticed that in most of the cases it is less than 5. Furthermore, using the 

scheduling techniques proposed in this thesis, an operation can have at most two 

successors. This follows from the DDG transformation used to eliminate multiple-

use lifetimes. It is expected that the backtracking frequency may increase in some 

cases, requiring a longer compilation time. Nonetheless, we have not changed 

the budget parameter limiting the number of scheduling steps for a given II. 

Communication conflicts may require a larger II than would be achieved if a 

single cluster machine had been used instead. Small or no variations at all in the 

II would mean that only a tolerable increase occurs in the backtracking frequency. 

Accordingly, we evaluate the effectiveness of the new heuristics by measuring the 

II increase due to code partitioning. This, and other analyses, are presented in 

the next section. 

6.4 Experimental Results 

This section presents experimental results comparing clustered and unclustered 

architectures. A total of 14 machine configurations were considered: 7 URF and 7 

CQF models, each set of seven ranging from 3 to 21 functional units. Unclustered 

machine models have a centralized conventional register file (RF). Clustered ma-

chines can have between 1 and 7 clusters. Each cluster has 3 standard FUs and 1 

Copy FU, 1 local register file (LRF), and 2 communication register files (CQRF). 

Register allocation of both loop variant and invariant lifetimes is performed for 

all models. Those machine configurations are summarized in Table 6.1. 

Innermost loops taken from the Perfect Club Benchmark were used in the ex-

periments (Section 3.2). Loop unrolling prior to modulo scheduling was performed 

according to the criteria described in Section 5.1. The presentation of results is 

subdivided into three main topics: partitioning effectiveness, performance, and 
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Machine Configurations 

Number of Clusters: 1-7 

Functional Units URF CQF Single Cluster 
L/S 1-7 1-7 1 
ADD 1-7 1-7 1 
MUL 1-7 1-7 1 
Copy - 2-7 1 

Register Files URF CQF I Single Cluster 
RF 1 - - 

LRF - 1-7 1 
CQRF - 4-14 2 

Table 6.1: Machine configurations used in experiments 

machine resources. It should be noticed that a clustered machine composed of a 

single cluster is identical to the equivalent unclustered version. Thus, it does not 

include Copy FUs, CQRFs, and does not require transformations in the DDG. 

6.4.1 Partitioning Effectiveness 

In this section we evaluate the effectiveness of the partitioning algorithm investig- 

ating two issues: increase in the II, and distribution of operations among clusters. 

6.4.1.1 Overhead on the II Due to Partitioning 

An ideal algorithm would always produce a valid schedule with minimum II. As 

reported in [79], and confirmed by our experiments, the IMS algorithm achieves 

this objective for a high fraction of loops when targeting a single cluster ma-

chine. The MH should ideally be the same for a single- or multi-cluster machine, 

assuming that both have the same number of standard FUs. Although not al-

ways possible, due to communication constraints, a good scheduling/partitioning 

scheme would minimize the performance degradation incurred. 

We have compared the II of schedules for clustered and unclustered machines. 

The data in Figure 6.4 shows the fraction of loops with an increase in the II due 

to partitioning. The overhead observed for machines with 6 and 9 FUs is only due 

to the introduction of copy operations in the DDG. These machines have 2 or 3 

clusters only, which makes the bi-directional communication ring equivalent to a 

cross-bar. Thus the partitioning process is not constrained by the communication 

system. Only a slightly larger overhead occurs for 12 FUs, showing the algorithm 

is very effective when scheduling for 4 clusters. A more significant increase is 
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observed for 15 FUs, although it is still possible to schedule around 85% within the 

same II. Larger machine configurations are more demanding for the partitioning 

scheme, which is reflected by an accentuated increase in the fraction of loops 

having some performance degradation. The low frequency of loops requiring a 

higher II for configurations up to 5 clusters also shows that the extra backtracking 

is tolerable, when it occurs. 

II Increase 
Due to Partitioning-Static Data 

L 
0 

0 

P 
S 

% 

3 	6 	9 	12 	15 	16 	21 
Functional Units 

• CQF 

Figure 6.4: Loops with a larger II due to partitioning 

We have found that in many cases the II increase is of one cycle only. The 

impact caused by this may be minimal, but may also be significant, depending 

on the II value. The results presented provide an insight into the partitioning 

effectiveness, however they cannot show the actual performance degradation. The 

effect of increasing the II and the SC can be better quantified by analysing the 

execution time and the IPC, which is shown in Section 6.4.2. 

6.4.1.2 Communication Distance 

We define the communication distance to be the number of cluster boundaries each 

value crosses on its way from producer to consumer. A distance of zero refers to 

both operations being executed in the same cluster. A distance of one refers 

to the consumer operation being executed in one of the adjacent clusters to the 

producer. In these cases the communication process involves only access to the 

LRF or the CQRF, respectively. The data in Figure 6.5 shows the distribution 

of communication distances for several machine configurations, measured over all 
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lifetimes created. Local communication occurs most frequently if only 2 clusters 

are used, shown by the higher frequency of distance 0. Equivalent frequencies of 

distances 0 and 1 are observed for 3 clusters. If 4 or more clusters are used the 

frequency of distance 1 is approximately twice as high as the frequency of distance 

zero. Hence, it can be said, empirically, that the probability of a consumer 

operation being located in the producer cluster is half of the probability of being 

located in either one of the adjacent clusters. This shows the algorithm manages 

to balance the distribution of operations among clusters, avoiding concentrating 

too many operations in the same cluster. If this was the case, over-utilization of 

some clusters, and sub-utilization of others would occur, possibly increasing the 

II. 

Communication Distance 
Ref. Def/Use of Lifetimes 
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e 

m 
e 
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% 
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Functional Units 

0-Same Cluster 	tII I -Adjacent Cluster 

Figure 6.5: Communication distance after partitioning 

6.4.2 Performance Analysis 

The actual impact of the partitioning process can be quantified by comparing the 

execution time of both architecture models, clustered and unclustered. The data 

in Figure 6.6 compares the execution time of the full benchmark set, assuming a 

fixed cycle time for all configurations. The results are relativized using as baseline 

the execution time of the corresponding class of loops in a URF03 machine. The 

number of cycles required to execute all loops is 3.6 x 1010,  3.4 x 1010,  and 1.3 x 10 10 ,  

for classes 1, 2, and 3, respectively. 

Small performance degradation with clustering was observed for machine mod- 
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els up to 15 FUs (5 clusters). However for 18 FUs the number of cycles does not 

decrease by a significant factor. Furthermore, it increases if 21 FUs are used. 

This suggests that the proposed partitioning scheme is effective for at most 5 

clusters. Although no increase in the number of cycles was observed if only loops 

without recurrences are considered, some performance degradation was observed 

for 6 and 7 cluster machines (Figure 6.7). However it should be noticed that very 

small differences were observed up to 5 clusters. 

Execution Time 	 Execution Time 
All Loops-Fixed Cycle Time 	 Loops Without Rec.- Fixed Cycle Time 

Figure 6.6: Number of cycles-Class 1 	Figure 6.7: Number of cycles-Class 3 

Similar conclusions can be drawn by analysing the values of IPCdynamic for 

both sets of loops, as seen in Figures 6.8 and 6.9, respectively. Very small per-

formance degradation occurs for machines up to 5 clusters. If only loops without 

recurrences are considered, clustered and unclustered machines present virtually 

the same performance. However, it can he seen once again that the algorithm is 

not appropriate for 6 or more clusters. 

We have concluded that the quality of the schedules produced by the in-

tegrated scheduling/partitioning algorithm is good for machine models up to 5 

clusters. But we have also shown in Section 5.3.2.5 that scheduling quality can 

only translate into actual performance if accompanied by a short machine cycle 

time. It is expected that the small register files required by clustered machines 
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Figure 6.8: IPC Dynamic-Class 1 	Figure 6.9: IPC Dynamic-Class 3 

will minimize this parameter. A more detailed analysis of this issue is presented 

in Section 6.4.3.2. 

6.4.3 Machine Resources Analysis 

In this section we compare the machine resources required to achieve the per-

formance levels reported in Section 6.4.2. We focus on the silicon area and cycle 

time analysis, which is used to estimate the actual performance of both machine 

models. As was done in the last chapter, all data refer to dynamic measurements, 

accounting for the loops responsible for 99% of the total execution time of the 

benchmark. 

6.4.3.1 Register File Area 

The hardware model presented in Section 4.5 was used to compare the silicon area 

of the register files required to implement the architecture models described in 

this chapter. As previously defined, MaxLive determines the number of registers 

in a conventional RF. As seen in Table 6.2, the register requirements for URF 

machines are slightly higher than for URV models (Table 5.2), which is due to 

the allocation of loop invariants. 
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URF Register File Parameters 

Capacity Ports 
FUs Registers Read Write 

3 71 6 3 
6 69 12 6 
9 102 18 9 
12 108 24 12 
15 137 30 15 
18 152 36 18 
21 176 42 21 

Table 6.2: URF register requirements 

In a clustered machine the total area occupied by register files depends on the 

area of the LRF and the CQRFs of each cluster. The capacity of each LRF is de-

termined by the MaxLive value in the corresponding cluster. A similar approach 

to the one employed in Section 5.3.2.4 was used to estimate the size of each CQRF: 

the size of the name space determines the number of queues, and the maximum 

length of any of them determines the length of all other queues. As expected, 

we have found that register requirements are not homogeneous throughout the 

clusters. We have used the highest requirements found to determine the para-

meters of all other register files. Although this approach does not minimize the 

use of machine resources, it allows some flexibility to the scheduling/partitioning 

algorithm. Nonetheless we have not found large differences among the register 

requirements of all clusters. The exact value of the parameters used to calculate 

the area of each LRF and CQRF of a clustered machine is reported in Table 6.3. 

It is assumed that each register location is 64 bits wide. The columns labelled No 

indicate the number of LRFs and CQRFs required by each machine configuration. 

The chart in Figure 6.10 shows the total silicon area required to implement 

the register files of each machine configuration. All figures referring to silicon 

area are presented in \2  units. The area used by register files in an unclustered 

machine of 6 FUs is smaller than required by the equivalent clustered machine. 

Similar space is occupied by configurations of 9 FUs. Clustered machines have 

a clear advantage regarding this parameter for 12 of more FUs, a difference that 

tends to increase as more FUs are used. This is possible because the required 

capacity of LRFs and CQRFs increases by a much smaller factor than it does for 

the RFs of an unclustered machine, as shown in Tables 6.2 and 6.3. 
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F CQF Register File Parameters 

LRF  CQRF  
No Capacity Ports No Capacity Ports 

FUs Registers Read Write Queues Length Read Write 
3 1 71 6 3 0 - - - - 

6 2 63 7 5 4 11 8 7 5 
9 3 45 7 5 6 9 9 7 5 

12 4 38 7 5 8 9 8 7 5 
15 5 34 7 

1 	
5  

1 	
10 9 8 7 5 

18 6 50 7 5 11 13 7 5 
21 7 47 7 5 H14  13 13 7 5 

Table 6.3: CQF register requirements 	 - 
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Figure 6.10: Total silicon area of register files 

6.4.3.2 Register File Cycle Time 

The cycle time of register files can also be estimated using the analytical model 

presented in Section 4.5. The data in Figure 6.11 show the cycle time of RFs, 

LRFs, and CQRFs across distinct numbers of functional units. It can he seen 
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that LRFs and CQRFs have similar cycle times for all machine configurations, 

which is around 6 ns. This confirms our expectations that the inter-cluster com-

munication mechanism using CQRFs does not result in significant delays. It is 

important to notice that the cycle time of LRFs and CQRFs hardly increases for 

larger configurations, which is an important feature in terms of scalability. This is 

not the case for the cycle time of centralized RFs, which has a value always higher 

than LRFs and CQRFs, growing approximately linearly to the number of FUs. 

Although LRFs and CQRFs require extra access ports to support Copy opera-

tions, they are still more efficient than a centralized RF supporting all standard 

functional units. 

We have estimated the cycle time of a clustered machine based on the cycle 

time of LRF and CQRFs, whichever is higher. URF machines have the cycle time 

determined by the RF [25]. The data in Figure 6.12 shows that the cycle time of 

a clustered machine is always lower than the corresponding unclustered version. 
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Figure 6.11: Cycle time of reg. files 	Figure 6.12: Machine cycle time 

The performance results reported in Section 6.4.2 assume a fixed cycle time 

for all machine configurations. Although an unrealistic assumption, it is valid to 

evaluate the scheduling/partitioning effectiveness. However, the actual cycle time 

should be taken into account to have an insight on the real machine performance. 
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We have used the cycle time values calculated for each configuration to weight 

those execution times. The results are normalized using as baseline the total 

execution time of the corresponding set of loops in a URF03 machine, measured 

in ns. In this case, the execution time for all loops of classes 1, 2 and 3 is 2.3 x 10 11  

ns, 2.2 x 1011  ns, and 8.5 x 1010  ns, respectively. 

The chart in Figure 6.13 shows the total execution time of all benchmark 

loops. Real performance gains were observed for machine configurations up to 15 

FUs. This is not the case for unclustered machines, which only allow performance 

gains up to 6 FUs. Similar results were observed if only loops without recurrences 

are considered (Figure 6.14). The only difference is that unclustered machines 

still allow a small performance improvement up to 15 FUs, although the degree 

of improvement is small. 
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Figure 6.13: Execution time-Class 1 	Figure 6.14: Execution time-Class 3 

Those results suggest that clustered machines allow real performance gains 

for configurations up to 5 clusters (15 FUs). No improvements were observed for 

larger configurations, which is due to limitations in the partitioning scheme. For 

the configurations studied we have found that clustered machines have always 

better performance than unclustered organizations. 
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6.4.4 Summary of Results and Conclusions 

The main conclusions obtained from the experimental analysis presented in this 

section are summarized in the following list: 

• The integrated scheduling/partitioning scheme proposed is effective for ma-

chine configurations up to 5 clusters. The resulting overhead on execution 

time and IPC values is minimal for these configurations. 

• The register file requirements of individual clusters are reasonable, only 

growing by a small factor as the machine model scales up. For this reason 

the total silicon area of a clustered machine is smaller than the equivalent 

unclustered organization for 9 or more functional units. 

• The cycle time of LRFs and CQRFs are similar for all of the configurations 

studied. Hence, the proposed communication system using CQRFs between 

adjacent clusters does not cause any significant extra delay. 

• Small register file requirements of individual clusters make the cycle time 

of a clustered machine always shorter than the equivalent unclustered or-

ganization. Furthermore, there is no significant variation in the cycle time 

value across the range of configurations considered. 

• The short cycle time of a clustered machine allows performance gains ob-

tained from aggressive ILP scheduling to be translated into a shorter exe-

cution time. In general this is not the case of unclustered machines. 

• The techniques presented in this chapter have shown the feasibility of a 

VLIW clustered architecture using queue register files as an inter-cluster 

communication mechanism. The proposed model presents distinct advant-

ages in terms of scalability, enabling the use of additional functional units 

without a significant penalty in the machine cycle time. Actual performance 

gains were observed for machine models up to 5 clusters (15 FUs), which 

was achieved using the single scheduling/partitioning procedure. However 

the proposed scheme is not effective for 6 or more clusters. Performance 

improvements beyond that level would require further enhancements to the 

algorithm, or even a new approach to the problem. 
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Chapter 7 

Distributed Modulo Scheduling 

A clustered machine model was proposed in the last chapter in order to reduce 

the size and number of ports of individual register files, and thus improve the 

machine cycle time. A key issue in this architecture model is the partitioning of 

operations among clusters, which must conform to the communication system. 

The scheme proposed in Section 6.3 is a variation of the original IMS algorithm. 

It performs both scheduling and partitioning in a single step, ensuring that no 

communication conflicts are present in the final schedule. Experimental results 

have shown the strategy is effective for machine models up to 5 clusters. In those 

cases the performance degradation due to partitioning is acceptable. Further-

more, the required register files result in short access times, which allows effective 

performance gains through successive machine upgrades. 

However, the proposed scheduling/partitioning scheme is not effective when 

dealing with machine models of 6 or more clusters. The communication system 

allows data dependent operations to be scheduled either in the same or in adjacent 

clusters. Intuitively one should expect an increasing difficulty in balancing the 

distribution of operations among clusters for larger machine configurations. In 

this chapter we present a new algorithm, called Distributed Modulo Scheduling 

(DMS), to deal with the problem [30]. DMS is derived from the modified version of 

IMS described in Section 6.3, targeting the same machine model and compilation 

environment. It can also be classified as a single step scheduling/partitioning 

algorithm. However, the new capabilities allow it to produce efficient schedules for 

a larger number of clusters. This is possible because the algorithm can schedule 

intermediate copy operations between a pair of producer/ consumer operations 

scheduled in non-adjacent clusters. The DMS algorithm, and the corresponding 

experimental analyses, are presented in the next sections. 
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7.1 Overview of the DMS Algorithm 

As already discussed, a clustered machine model introduces new communication 

constraints to the scheduling algorithm, in addition to machine and dependence 

constraints. 

We have used the IMS algorithm as a basic structure to develop a scheme able 

to deal with distributed functional units and register files. As seen in Figure 7.1, 

IMS has one basic strategy to schedule an operation OP, which is described in 

detail in Section 3.3. On the other hand, the DMS algorithm has three basic 

strategies: First it tries to schedule OP in such a way that no communication 

conflict arises with scheduled predecessors and successors of OP. If that is not 

possible, it tries to insert move operations between OP and its scheduled pre-

decessors, using a structure we call a chain. If the partial schedule has enough 

machine resources to schedule the required chains, OP can be scheduled. Other 

operations may be unscheduled due to machine and dependence conflicts. If the 

schedule of chains cannot be completed, OP is simply scheduled in a given slot 

and all conflicting operations are unscheduled. 

IMS 

Schedule OP 

If necessary, unschedule other ops due to: 
Resource conflicts 

Dependence conflicts  

DMS 

No Communication conflicts allowed 

Schedule OP 

If necessary, unschedule other ops due to: 
Resource conflicts 
Dependence conflicts 

If not possible 

Create Chain of Move ops 
to solve Communication conflicts 

Schedule Chains 

Schedule OP 

If necessary, unschedule other ops due to: 
Resource conflicts 
Dependence conflicts 

If not possible 

Schedule OP 

If necessary, unschedule other ops due to: 
Resource conflicts 
Dependence conflicts 

Communication conflicts 

Figure 7.1: Overview of IMS and DMS algorithms 
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A high level description of DMS is shown below (Algorithm 7.1), with further 

details and related algorithms presented in the next sections. 

Algorithm 7.1 Distributed Modulo Scheduling 

DMS(II) 
budget= S x (No. operations in DDG) 
Create-Priority-List (List) 
While (List not empty) and (budget > 0) { 

Get (List, OF) 
/* Earliest start time for OF, according to scheduled predecessors *1 
mintime= Earliest-time(OP) 
1* Select a valid slot, without communication conflicts / 
slot= Find_Slot_Clustered (OF, mintime) 
If (valid slot) { 

/ Unschedule operations due to resource and dependence conflicts / 
Backtracking_ Clustered (OF, slot) 
Schedule (OP, slot) 

} 

else { / Chains required-select cluster for OP according to set of chains / 

Cluster_ OP= Create- Chains (Chain-List) 
If (Cluster-OP 	0) { /* Valid set of chains found / 

Schedule Chains (Chain_List) 
1* Find slot for OP at the chosen cluster / 

mirztime= Earliest-time(OP) 
slot= Find_Slot_DMS(OP, mintime, Cluster-OP) 
/ Unschedule operations due to resource and dependence conflicts *1 
Backtracking- Clustered (OF, slot) 
Schedule (OF, slot) 

} 

else { / Select a valid slot, ignoring communication conflicts / 

slot— Find_Slot (OF, mintime) 
1* Unschedule operations due to resource, dependence, / 

/ * and communication conflicts / 

Backtracking_Clustered (OF, slot) 
Schedule (OF, slot) 

} 

} 

} 

Update MRT; Remove (List, OP); budget= budget-i 
If (List is empty) 

Return i 
If (budget == 0) 

Return 0 
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7.1.1 Chains of Move Operations 

The first part of the DMS algorithm avoids communication conflicts, scheduling 

pairs of producer/ consumer operations in the same or adjacent clusters. However 

we have found that it is increasingly difficult to do that having 5 or more clusters. 

That has led us to consider the use of move operations between data-dependent 

operations located in non-adjacent clusters. All discussions and algorithms re-

garding the introduction of move operations assume that the topology of the 

communication system among clusters is a hi-directional ring (Section 6.1). It is 

also assumed that the machine model has N clusters, sequentially identified by 

an integer in the range [1..N]. 

We define a chain as a. string of move operations scheduled in the clusters 

between OP and one of its predecessors. A move operation simply reads one 

value from a register file, and writes it back to another one. Thus, if it is sched-

uled in the required cluster, it is possible to move operands between a pair of 

producer/consumer operations located in non-directly connected clusters. 

Given a candidate cluster to schedule OP, and the cluster of its predecessor, 

there are two possibilities to create a chain, each of them following opposite direc-

tions (Figure 7.2). The bi-directional ring of queues used to connect the clusters 

allows this flexibility. 

7.1.1.1 Creating a Chain 

Initially every cluster can be considered to schedule OP. Depending on the 

candidate cluster, OP can require at most two chains, as it can have no more than 

two scheduled predecessors. As discussed above, for each candidate cluster there 

are two possibilities to create a chain. Thus, at most four possible chains should 

he considered in each candidate cluster. This ensures that the number of options 

to be investigated is finite and relatively small, scaling linearly with the number of 

clusters. The scheme described in Algorithm 7.2 considers all clusters to schedule 

OP. In the first attempt only clusters having a free slot for OP are considered, 

which is verified with a call to the function Find_S1oLDMS. If a valid slot cannot 

be found, the constraint is relaxed, and thus every cluster is considered, which 

might generate backtracking. All possible chains are evaluated before choosing 

the best one, according to some criteria that we have defined. The chosen set of 

chains defines the cluster in which OP will be scheduled (Cluster-OP). 

A crucial aspect in the implementation of these algorithms are the data struc-

tures used to keep track of machine resource usage. Although we have imple-

mented a simple scheme in our experimental framework, more sophisticated tech- 
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Figure 7.2: Options to create a chain 

niques exist to model machine descriptions. As an example, the scheme pro-

posed in [42] allows efficient low-level representations to be derived from a high-

level language, which is a desirable feature for compiler writers. The low-level 

representation, based on AND/OR trees, is obtained by applying a number of 

transformations on the high-level description. Experiments have shown signific-

ant reductions in both memory requirements and number of resource checks per 

scheduling attempt. 
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Algorithm 7.2 Create Chains 

CreateChains(OP, Chain-List) 
1* Investigate the possibility of creating the necessary chains assuming *1 
/ that OP can be scheduled in anycluster with a resource free slot / 
forall cluster C { 

/ search for a resource free slot for OP / 
slot= FindSlotDMS(OP, C) 
If (free slot found) { 

Candidate_ Chains (OP, C, Candidate_List[C]) 

ii 

/ Define a cluster to schedule OP, according to the chosen set of chains / 
Cluster-OP= 0 
Chain-List= void 
forall cluster C { 

If Better_ Chain (Candidate_List[C], Chain-List) { 
Chain-List= Candidate-List[C] 
Cluster-OP= C 

} 

} 

If (Cluster-OP =h 0) 
Return Cluster-OP 

else { 
1* Not possible to schedule OP in a resource free slot-relax the condition *1 
forall cluster C { 

Candidate- Chains (OP, C, Candidate_List[C]) 
forall cluster C { 

If Better_ Chain (Candidate_List[C], Chain-List) { 
Chain-List= Candidate_List[C] 
Cluster-OP= C 

} 

} 

Return Cluster-OP 

} 

7.1.1.2 Candidate Chains 

For each predecessor pred of an operation OF, two possible chains can be built, 

each of then starting from pred and following opposite directions. Those chains 

are called ChainR (right-hand side), and ChainL (left-hand side). The scheme 
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described in Algorithm 7.3 build, for each predecessor of OF, the corresponding 

ChainR and ChainL, assuming that OP will be scheduled in cluster C. If the 

pair pred/OP is set to he scheduled without communication conflicts, no chain 

is necessary. This can he verified by calculating the gap between both clusters. 

Algorithm 7.3 Candidate Chains 

Candidate..Chains(OP, C, Candidate-List) 
/* Create a set of chains connecting OP with all of its predecessors */ 

/* Investigate both paths for each chain, based on the bi-directional ring / 

Candidate-List= void 
Forall scheduled predecessor of OP { 

C = (Predecessor cluster) 
gap= abs(C - C) 
If (gap> 1) and (gap 	(NrClusters -1)) { 

1* Chain following the right direction, from the predecessor to OP */ 
ChainR= Set of move ops between (Predecessor —+ OF) 
/ Chain following the left direction, from the predecessor to OP */ 
ChainL= Set of move ops between (OP f— Predecessor) 
/ Decide which is the best of both chains, and also if it is valid */ 

/* A valid chain implies in free slots to schedule move operations / 

If Better_Chain(ChainL, ChainR) { 
If (Valid_ Chain (ChainL)) 

Include (Can didate_List, ChainL) 

} 

else { 
If Valid Chain (ChairzR) 

Include(Candidate_List, ChainR) 

} 

II  
} 

7.1.1.3 Choosing the Best Chain 

The process of choosing the best option to schedule a chain depends basically 

on verifying the current state of machine resource usage. First of all, a set of 

chains has to be valid to be considered for scheduling. A set of chains consists of 

all chains that would be required to schedule OP in a given cluster C. A set of 

chains is said to be valid if the partial schedule has enough free resource free slots 

to schedule all of its move operations. The proposed scheme does not unschedule 

operations to release slots for a new chain. During the algorithm development 
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we have found this alternative would increase the backtracking frequency without 

resulting in actual benefits. Verifying if a set of chains is valid can be done using 

Algorithm 7.4. 

Algorithm 7.4 Valid Chain 

Valid Chain(ChainSet) 
/* Verify if there are free slots to schedule all move operations */ 

/* belonging to a set of chains / 

Forall Move ops E Chain-Set 
Assume they are scheduled in the respective cluster 

/* Minimum number of slots for move operations that / 

/* would be left in any cluster / 

bound-free-slots= 00 

Forall cluster C { 
free-slots= (No. remaining Move slots in cluster C) 
If (free-slots < bound-free-slots) 

bound-free-slots= free-slots 

} 

If (bound-free-slots > 0) 
Return 1 

else Return 0 

It might happen that more than one valid set of chains exists to address a 

given communication conflict. In this case the best option is selected according 

to the following criteria: 

Choose the set of chains that, once scheduled, maximizes the number of free 

slots left available for move operations in any cluster. 

If two or more sets of chains are still equivalent regarding the above condi-

tion, choose the one composed by the smallest number of move operations. 

The first of these conditions is intended to facilitate the scheduling of another 

eventually required chain. The second one aims to minimize the number of move 

operations used. We have found that the DMS algorithm is more sensitive to the 

first one, as it reduces the frequency of backtracking. Thus the first condition has 

been assigned a higher priority than the second one. A scheme to compare two 

sets of chains according to these criteria is described by Algorithm 7.5. 
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Algorithm 7.5 Better Chain 

Better_Chain(Chain_Setl, ChainSet2) 
1* Identify the best one between two sets of chains based / 
/ * on machine resources to schedule move operations / 
total_mvl= 0 
/* Total number of move operations required by set 1 / 
Forall Move ops E Chain_Setl { 

Assume they are scheduled in the respective cluster 
total_mvl ++ 

} 

/* Minimum number of free move slots left by set 1 / 

bound_free_slotsl= 00 

Forall cluster C { 
free-slots= (No. remaining Move slots in cluster C) 
If (free-slots < bound_free_slots 1) 

bound_free_slots 1 = free-slots 

} 

total_mv2= 0 
/ Total number of move operations required by set 2 *1 
Forall Move ops E Chain_Set2 { 

Assume they are scheduled in the respective cluster 
total_mv2++ 

} 

bound_free_slots2= 00 

Forall cluster C { 
free-slots= (No. remaining Move slots in cluster C) 
If (free-slots < bound_free_slots2) 

bound_free_slots2= free-slots 

} 

/ * Choose the best set based on the above parameters / 

If (bound_free_slots 1 > bound_free_slots2) 
Return 1 

else { 
If (bound_free_slotsi = bound_free_slots2) { 

If (total_mvl < total_mv2) 
Return 1 

else Return 0 

} 

else Return 0 

II  
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7.1.2 Scheduling Chains and their Consumer Operations 

Once a valid set of chains is chosen, it can be scheduled without concern about 

finding a free slot for each move operation. A valid chain implies that the availab-

ility of machine resources has been verified before. However the data dependence 

graph must he modified to include the new move operations, and also to update 

data dependencies. Inserting a chain between a pair of producer/ consumer op-

erations implies that they are not directly dependent any more. The first move 

operation is directly dependent on the producer operation. Thus, the attributes 

of this dependence are the same as the ones of the original dependence. All other 

move operations are successively dependent on the previous one. The original 

consumer operation is dependent on the last move operation of the chain. These 

DDC transformations are illustrated in Figure 7.3. 

Original dependence 

1 81 

DDG Transformation 
• Latency of Move operation = I cycle 

New dependences after inserting a chain 

Ol€1
I 10  _G) 

Original producer 	Chain of 2 Move operatioms - 	Original consumer 

Figure 7.3: DDG transformation to insert a chain 

The first step required to schedule a set of chains is to update the DDG, as 

described above. Then move operations are sequentially scheduled, starting from 

the first one after the producer operation. This ordering must be enforced in order 

to determine the correct scheduling time of each of them. That ensures correctness 

from the point of view of dependence constraints. As already discussed, resource 

constraints should not arise, thus a free slot should always be available to schedule 

a move operation in the proper cluster. A high level description of this procedure 

is shown by Algorithm 7.6. 
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Algorithm 7.6 Schedule Chains 

Schedule -Chains (Chain List) 
Forall chain E Chain-List { 

Forall move E chain { 
/ Update DDG with move operations / 
Include(DDG, move) 
/* Move operation is scheduled according to immediate successor 

mintime= Earliest_time(move) 
/* A resource free slot for move should always be found */ 

cluster= (cluster which move must be scheduled in) 
slot= Find_Slot_DMS (move, mintime, cluster) 
Schedule(move, slot) 
Update MRT 

} 

} 

A modified procedure, called Find_SlotDMS, is used to find a free slot to 

schedule a move operation. The only difference between this function and the 

version used by the IMS algorithm is that the returned slot is located in a cluster 

specified beforehand. This procedure, described in Algorithm 7.7, is also used to 

find a slot to schedule move operations. In this case the slot returned must be in 

a cluster as defined by the procedure Create-Chains. 

Algorithm 7.7 Find Slot DMS 

Find_SIot_DMS(OP, mintime, cluster) 
maxtime= mintime + II -1 
currtime= mintime 
While (currtime < maxtime) { 

find free slot in MRT belonging to cluster at cycle=c'urrtime 
if (slot found) 

Return slot 
else 

++currtime 

} 

If (OP never scheduled) 
choose slot in MRT belonging to cluster at cycle=mintime 

else 
choose slot in MRT at cycle =previous_slot(OP) + 1 

Return slot 
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7.1.3 Unscheduling Operations 

Special attention must be paid to the process of unscheduling operations. It might 

happen that an operation being ejected from the partial schedule is related to a 

chain. In this case it may be necessary to unschedule other operations in order 

to prevent communication conflicts among the remaining scheduled operations. 

Distinct actions must be taken, according to the type of the operation being 

unscheduled, which can be one of the following: 

The original producer of a chain: Unschedule the operation and all chains 

starting from itself. Unschedule the consumer operation at the end of each 

of those chains. Unschedule all chains leading to this consumer operation. 

A move operation: Unschedule all move operations of the corresponding 

chain. Unschedule the consumer operation at the end of the chain. Un-

schedule all chains leading to this consumer operation. 

The original consumer of a chain: Unschedule the operation. Unschedule 

all chains leading to itself. 

Other types of operations: Unschedule the operation only. 

So far both procedures employed to perform backtracking use a simple func-

tion called Unschedule to eject an operation from the partial schedule. This 

function simply unschedules the operation specified. However, the use of move 

operations may require other operations to be unscheduled, as discussed above. 

We have defined a new function called Unschedule_DMS, capable of unscheduling 

all required operations, as shown in Algorithm 7.8. If a chain of move operations 

is unscheduled, the DDG must be updated, restoring the original data dependen-

cies between the original producer/ consumer pair. Once unscheduled, the chain 

must he removed from the DDC, as it is not known if it will be necessary again. 

Hence, an updated version of Backtracking. Clustered must be used by the DMS 

algorithm. This new version employs the routine UnscheduleDMS instead of 

Unsch edule. 
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Algorithm 7.8 Unscheduling of operations for DAIS 

UnscheduleDMS(op) 
Unschedule (op) 
/ Verify if op is directly on indirectly dependent on a chain / 

/* If so, unschedule all involved operations */ 

If (op = original producer of a chain) { 
Forall chain starting at op { 

Forall move E chain 
Unschedule (move) 

consumer= operation at the end of chain 
Unsch edule (consumer) 
Fôrall chain2 ending at consumer { 

Forall move E chain2 
Unschedule(move) 

} 

} 

} 

If (op = move operation E chain) { 
Forall move E chain 

Unschedule (move) 
consumer= operation at the end of chain 
Unschedule (consumer) 
Forall chain2 ending at consumer { 

Forall move E chain2 
Unschedule(rnove) 

} 

} 

Unschedule (op) 
If (op = original consumer of a chain) { 

Forall chain ending at op { 
Forall move E chain 

Unschedule (move) 

} 

} 
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7.1.4 Complexity of DMS 

The basic structure of the DMS and IMS algorithms is similar. Although the 

worst-case complexity of IMS is exponential in N, the empirical computational 

complexity has been estimated as 0(N 2 ) [79], with N representing the number of 

operations to he scheduled. IMS verifies a set of conditions before scheduling an 

operation, which may lead to other operations being unscheduled. DMS has to 

verify a more complex set of conditions, possibly unscheduling a larger number 

of operations. However these conditions are not dependent on N, but rather in 

the number of clusters and predecessors of the operation being scheduled. The 

extra computational cost involved in the verification of a more complex set of 

conditions is fixed, consisting of numeric comparisons among a finite number of 

elements, as shown in Section 7.1.1.1. 

It is expected that the additional constraints used by DMS could increase 

the number of unscheduled operations. However, we have found through exper-

imental analysis that the overhead on the II due to the partitioning performed 

by DMS is tolerable in most of the cases (Section 7.3.1). Those results suggest 

that on average the backtracking frequency of IMS and DMS is similar for ma-

chine configurations up to 8 clusters. Hence, although we have not performed a 

formal analysis on this issue, the experimental results suggest that the empirical 

complexity of DMS is also 0(N 2 ) for these machine configurations. 

When the backtracking frequency does increase, it is due to an insufficient 

number of slots to schedule the required move operations, a situation occurring 

most often for machines with a large number of clusters. Increasing the number 

of clusters complicates the partitioning process for two reasons: 

• Each additional cluster stretches the maximum possible distance between 

a pair of producer/ consumer operations by 1. Thus, extra move operations 

are necessary to fill the gap. 

• Each additional cluster increases the number of available functional units. 

This results in a smaller II if the loop being scheduled is resource con-

strained. A smaller initiation interval implies less free slots to schedule a 

move operation in any single cluster, reducing the chances of successfully 

scheduling a chain. 

When small loops are scheduled in a wide-issue machine the II is typically 1 

or 2. In those cases the number of available slots for move operations in a single 

cluster is not enough to schedule the required chains. Hence we have used loop 
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unrolling to increase the II, which results in more slots per cluster. This strategy 

allows scheduling of most of those loops without performance degradation. 

We have also found that the DDG transformation to eliminate multiple-use 

lifetimes is an important factor to support both partitioning schemes proposed in 

this thesis. Limiting to 2 the number of predecessors of each operation simplifies 

the task of distributing operations evenly among clusters with limited connectiv-

ity. Multiple-use lifetimes would force the producer and all consumer operations 

to he scheduled in at most 3 adjacent clusters, in order to avoid using move 

operations. If moves are required, there will be a high concentration of them 

around the cluster of the producer operation. Both situations can restrict the 

scheduler, potentially requiring an increase in the II, which can be avoided using 

the transformation described in Section 4.2. 

This restriction is not necessary if they are transformed into several single-use 

lifetimes. 

7.1.5 Using DMS with Other Machine Models 

Although the DMS algorithm has been specially developed targeting the archi-

tecture model described in Section 6.1 we believe it could also be used with other 

clustered VLIW architectures. Although some other issues may arise due to par-

ticular features of an architecture, we understand that it should present three 

basic characteristics in order to use DMS: 

• Directly-connected clusters should communicate through a mechanism able 

to ensure fixed timing constraints, known precisely at compile time. For 

performance reasons this latency should be similar to the cycle time of the 

cluster private register file. In our model this is accomplished by using a 

CQRF between clusters. In addition, each cluster must have at least one 

FU able to perform move operations. 

• The number of possible paths to create a chain should be small, in order 

to avoid considering an excessive number of options. Using a bi-directional 

ring, for instance, limits the number of options in two. By contrast, a 

three dimensional mesh of clusters may present several options, which would 

probably cause a negative impact on the scheduling time. 

• The instruction set we use assumes that an operation can have a true data 

dependence with at most two predecessors. This is the case in most of 

the instruction sets currently in use, with operations taking one or two 
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operands. This ensures that the number of predecessors of OP should be 

limited to two. However the number of successors can he very large. A 

load operation, for instance, can have its target operand used by several 

other arithmetic operations. As discussed in Section 7.1.4, transforming 

all multiple-use lifetimes into single-use ones is an important feature sup-

porting the effectiveness of DMS. Hence we believe that some sort of DDC 

transformation should be made in order to limit the number of immediate 

data dependent successors of any operation. 

7.2 Experimental Framework Update 

As previously defined in Chapter 6, the experimental framework can also consider 

clustered machine models. New heuristics have been also introduced in the IMS 

algorithm, in order to avoid communication conflicts. In this chapter we have 

introduced DMS, a new modulo scheduling algorithm targeting the clustered ma-

chine model defined in Section 6.1. Hence, from now on DMS will be used by 

the experimental framework whenever scheduling is performed for a clustered ma-

chine. The unclustered machine still employs the original version of IMS. As done 

before, machine resources will be estimated taking into account loop variant and 

invariant lifetimes. 

A key feature of DMS is the possibility of using chains of move operations. We 

define a move operation as the process of reading a value from one register location 

and copying it back to another one. In practice it moves a value between distinct 

CQRFs, allowing communication between non-adjacent clusters (Figure 7.4). In 

the experimental framework we assume that those operations are executed by a 

Copy FU (Section 3.1.1). The only difference is that a move operation has only 

one result operand, instead of two in a copy operation. Therefore, no additional 

functional unit or register file access port is required to execute a move operation. 

However, it can increase the utilization rate of Copy FUs, which may require a 

higher II. This and other issues were investigated thorough experimental analyses, 

as presented in the next section. 

Figure 7.4: Typical use of a move operation 
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7.3 Experimental Results 

This section presents experimental results comparing clustered and unclustered 

architectures. This analysis is similar to the one presented in Chapter 6, the 

main difference being the use of the DMS scheduling/partitioning algorithm for 

clustered architectures. The effectiveness of the strategies employed in the last 

chapter limited the analysis to machine configurations up to 7 clusters (21 FUs). 

The results suggested that no further performance gains would be possible beyond 

that level. However better results should he expected by using DMS, so in this 

chapter a total of 20 machine configurations are considered: 10 URF and 10 

CQF models, each set of ten ranging from 3 to 30 functional units. Clustered 

machines can have between 1 and 10 clusters. Each cluster has 3 standard and 1 

Copy FUs, 1 local register file (LRF), and 2 communication register files (CQRF). 

These machine configurations are summarized in Table 7.1. 

Machine Configurations 

Number of Clusters: 1-10  

Functional Units URF CQF Single Cluster 
L/S 1-10 1-10 1 
ADD 1-10 1-10 1 
MUL 1-10 1-10 1 
Copy - 2-10 1 

Register Files URF CQF Single Cluster 
RF 1 - - 

LRF - 1-10 1 
CQRF - 4-20 2 

Table 7.1: Machine configurations used in experiments with DMS 

As in the previous chapters, innermost loops taken from the Perfect Club 

Benchmark were used in the experiments, with loop unrolling performed ac-

cording to the criteria described in Section 5.1. The presentation of results is 

subdivided into three main topics: partitioning effectiveness, performance, and 

machine resources. 

7.3.1 Partitioning Effectiveness 

In this section the effectiveness of the partitioning algorithm is evaluated by ana- 

lysing variations in the II, and also the distribution of operations among clusters. 
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7.3.1.1 Overhead on the II Due to Partitioning 

As already discussed, a good scheduling/partitioning algorithm should minimize 

eventual increases of the II in relation to the values otherwise achieved for the 

corresponding unclustered machine. The data in Figure 7.5 shows the fraction of 

loops scheduled without increasing the II due to DMS partitioning. Overheads 

for machines with 6 and 9 FUs are only due to the introduction of copy oper-

ations in the DDC, because the partitioning process is not constrained by the 

communication system. Over 80% of the loops do not present any overhead for 

machine models up to 24 FUs (8 clusters). This result is considerably better 

than obtained using the simpler heuristics presented in Section 6.4.1, as seen in 

the chart. Furthermore, the overhead increase is less accentuated when DMS is 

used, suggesting the algorithm may adapt well to wider-issue machines. When 

the II increases it is mainly because the Copy FUs became the most heavily used 

resources, due to an excessive number of move operations (Section 7.1-.4). That 

could he improved with additional hardware support. The ultimate effect of in-

creasing the II or the SC can be estimated by analysing the total execution time 

and IPC values, which is presented in Section 7.3.2. 
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Figure 7.5: Loops with a larger II due to DMS partitioning 

7.3.1.2 Communication Distance 

As defined in Section 6.4.1.2, the communication distance is the number of clusters 

boundaries each value crosses on its way from producer to consumer. The data in 
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Figure 7.6 shows the distribution of communication distances for several machine 

configurations, measured over all lifetimes created. Similar results to the ones 

found in Section 6.4.1.2 were observed, with distances 0 and 1 accounting for most 

of the cases. Once again the frequency of distance 1 is approximately twice as high 

as the the frequency of distance 0. In practice this indicates that DMS effectively 

balance the distribution of operations and lifetimes among clusters. An increasing 

number of distances greater than 1 can he observed for 18 or more FUs (6 or more 

clusters). In all those cases this is only possible due to move operations, which are 

scheduled in intermediate clusters between the original producer/ consumer pair. 

This is simply not possible using the heuristics described in Section 6.3, and shows 

the mechanism through which DMS achieves better results than scheme. 
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Figure 7.6: Communication distance after partitioning with DMS 

7.3.2 Performance Analysis 

In this section we compare the total execution time for sets of loops in both ar-

chitecture models, assuming fixed cycle time for all configurations. All results are 

normalized using as a baseline the execution time in a URF03 machine (see values 

in Section 6.4.2. Results for the full benchmark set are shown in Figure 7.7. It 

can he seen that only small performance degradation occurs for up to 21 FUs 

(7 clusters). However, no further improvement can he achieved for wider-issue 

clustered machines. On the other hand, very small performance losses due to 

partitioning were observed for loops without recurrences (Figure 7.8) scheduling 
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in all machine configurations. Minimal differences between clustered and un-

clustered machines occur up to 7 clusters. Furthermore, the results suggests that 

DMS may be effective for even wider-issue machines. 

Execution Time 	 Execution Time 
All Loops-Fixed Cycle Time 	 Loops Without Roc.- Fixed Cycle Time 

Figure 7.7: Number of cycles-Class 1 	Figure 7.8: Number of cycles-Class 3 

Similarly, the value of IPCdynam i c  improves for machines up to 21 FUs, lev -

elling beyond that point (Figure 7.9). Loops without recurrences allow improve-

ments for the whole range of machine models, as seen in Figure 7.10. 

The results presented suggest that the DMS algorithm is effective for machine 

configurations of at least 7 clusters, or even further if a more restricted set of loops 

is used. These conclusions will be extended in Section 7.3.3.2, where the actual 

cycle time of each machine configuration will be used to calculate the execution 

time. 
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7.3.3 Machine Resources Analysis 

In this section we estimate the machine resources required to achieve the per-

formance levels reported in Section 7.3.2, focusing on the silicon area and cycle 

time analysis. All data refer to dynamic measurements, accounting for the loops 

responsible for 99% of the total execution time of the benchmark. 

7.3.3.1 Register File Area 

The value of MaxLive can be used to determine the number of registers in a 

conventional RF, which is used by unclustered machines (Table 7.2). 

Register requirements for clustered machines are estimated as described in 

Section 6.4.3.1. The exact value of the parameters used to calculate the area of 

each LRF and CQRF of a clustered machine is shown in Table 7.3. It is assumed 

that each register location is 64 bits wide. The columns labelled No indicates the 

number of LRFs and CQRFs required by each machine configuration, respectively. 

The chart in Figure 7.11 shows the total silicon area required to implement the 

register files of each machine configuration. Once again the results show that the 

area of an unclustered machine of 6 FUs is smaller than the equivalent clustered 

machine. Both areas are similar for 9 FUs. Clustered machines of 12 or more FUs 
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URF Register File Parameters 

Capacity Ports 
FUs Registers Read Write 

3 71 6 3 
6 69 12 6 
9 102 18 9 
12 108 24 12 
15 137 30 15 
18 152 36 18 
21 176 42 21 
24 178 48 24 
27 172 54 27 
30 221 60 30 

Table 7.2: URF register requirements 

CQF Register File Parameters 

LRF  CQRF  
No Capacity Ports No Capacity Ports 

FUs Registers Read Write Queues Length Read Write 
3 1 71 6 3 0 - - - - 

6 2 63 7 5 4 11 8 7 5 
9 3 45 7 5 6 9 9 7 5 
12 4 38 7 5 8 9 8 7 5 
15 5 34 7 5 10 9 7 7 5 
18 6 33 7 5 12 10 9 7 5 
21 7 30 7 5 14 11 10 7 5 
24 8 29 7  16 9 8 7 5 
27 9 32 7 5 18 12 10 7 5 
30 10 33 7 5 20 13 24 7 5 

Table 7.3: CQF register requirements 

(4 or more clusters) are clearly more efficient in terms of area. The advantage 

tends to increase as the machine model scales up. It can be seen in Table 7.3 that 

register requirements of individual LRFs and CQRFs remain at the same level 

for the whole range of configurations: This suggests that the silicon area may 

grown proportionally to the number of functional units, which is not the case for 

an unclustered machine. 

We have estimated register requirements not taking into account any further 

optimization to minimize resource usage. Hence, it might happen that some con- 

145 



figurations have the capacity of all register files determined by the requirements of 

just a few loops (1 or 2, most often). For instance, it was defined that the size of 

each queue is 24 for a clustered machine having 30 FUs. This is the requirement 

of one loop only. If we do not take it into account, the required queue length 

would be reduced to 12. 

After performing a detailed analysis on the most demanding loops of the 

benchmark we have concluded that it may he possible to achieve similar perform-

ance levels having all CQRFs implemented with 8 queues of 8 locations each. A 

few loops require additional resources, and when it happens it could be minimized 

if a better resource allocation was performed. To address these cases, it may be 

possible to develop a strategy to add some degree of register-pressure sensitivity 

to DMS. Furthermore, spill-code could be used to deal with the remaining cases. 

Thus, we understand that the proposed configuration is a realistic target to be 

pursued, which will result in further improvements in the silicon area and cycle 

time. 

Silicon Area 
Register File Only 

2O 

18 

16 

4 

2 

04,  
3 
	

6 	9 	12 15 18 21 24 27 30 
Functional Units 

Unctustered 	- - Clustered 

Figure 7.11: Total silicon area of register files 
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7.3.3.2 Register File Cycle Time 

Estimates for the expected cycle time of RFs, LRFs, and CQRFs can be found 

in Figure 7.12. It can be seen that LRFs and CQRFs have equivalent cycle times 

for all machine configurations, which is around 6 ns. A significant difference is 

only observed for the CQF30 machine, which is due to CQRFs designed with over-

dimensioned queues. Apart from that, we have found that the cycle times of LRFs 

and CQRFs are very similar for all machine configurations. As previously found, 

the cycle times of centralized RFs are always higher than LRFs and CQRFs, 

growing approximately linearly to the number of FUs. 

As in Chapter 6, we have determined the cycle time of a clustered machine 

based on the cycle time of LR.F and CQRFs, whichever is higher. Unclustered 

machines have the cycle time determined by the RF. It can be seen in Figure 7.13 

that the cycle time of a clustered machine is always lower than the corresponding 

unclustered version. 
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Figure 7.12: Cycle time of reg. files 	Figure 7.13: Machine cycle time 

The performance results reported in Section 7.3.2 assume fixed cycle times for 

all machine configurations. However the actual cycle time should be taken into 

account to have an insight on the real machine performance. 

The cycle time calculated for each configuration can he used to weight the 
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results presented in Section 7.3.2. Actual performance improvement occurs for 

clustered machines up to 24 FUs (8 clusters), as seen in Figure 7.14. Similar res-

ults were observed if only loops without recurrences are considered (Figure 7.15), 

but a higher level of improvement is achieved in this case. Unclustered machines 

allow improvements up to 6 or 12 FUs, depending on the scheduled set of loops. 

All data presented are normalized using as baseline the execution time of a URF03 

machine, using the values shown in Section 6.4.3.2. 

We have confirmed previous findings, concluding that the performance of a 

clustered machine is always better than the corresponding unclustered organiza-

tion. The results presented in this section shows that DMS further extends the 

advantages resulting from the use of the scheme proposed in Section 6.4.3.2. In 

that case, real performance gains were obtained up to 15 FUs (5 clusters). Using 

DMS, significant improvements can he achieved up to 24 FUs (8 clusters). 
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7.3.4 Summary of Results and Conclusions 

The main conclusions obtained from the experimental analysis presented in this 

section are summarized in the following list: 

• The proposed DMS algorithm is effective for machine configurations up to 

8 clusters, resulting in low overhead due to partitioning. A larger overhead 

was observed for wider-issue machines, although that could he minimized 

by using additional FUs to schedule move operations. We suggest the use of 

existing standard FUs for this task. This alternative can partially address 

the problem without requiring extra access ports to the register files. 

o DMS further extends the benefits of using a clustered architecture with 

the other partitioning heuristics, without requiring additional machine re-

sources. In many cases, the use of a few move operations is enough to 

avoid dead-end states otherwise reached using the simplest partitioning al-

gorithm. Thus, the silicon area and machine cycle time is kept lower than 

for the equivalent unclustered machine. Aggressive TLP scheduling using 

DMS translates into actual performance gains for configurations up to 24 

FUs (8 clusters). 

• The results presented in this chapter have confirmed the feasibility of a 

VLIW clustered architecture. The key advantage of this organization is 

the possibility of keeping the machine cycle time almost constant across a 

wide range of configurations. We have shown that the scalability of such 

architectures can be heavily constrained by the effectiveness of the schedul-

ing/partitioning algorithm. The DMS algorithm can produce high quality 

schedules for clustered architectures comprising a number of clusters not 

previously considered in other works, to the best of our knowledge. Hence, 

it can significantly extend the potential for ILP exploitation in this kind 

of machine. Furthermore, an architecture employing an alternative inter-

cluster communication mechanism or topology may allow extra flexibility 

to the scheduler, so a higher degree of improvement might be achieved. 
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Chapter 8 

Scalability of Performance and 
Cost for Clustered VLIW 

Future increases in transistor densities will make highly-parallel VLIW processors 

a realistic prospect. The scalability of VLIW processors is therefore a key issue. 

In this chapter we define scalability in terms of the relationship between processor 

area and actual performance, and focus on the scalability of clustered architec-

tures. 

A fundamental issue in microarchitecture is how to apply increasing transistor 

densities in ways that are most cost effective. Of course there is no single an-

swer, but it is widely accepted that a greater exploitation of parallelism is a key 

requirement. However, it is equally important that the performance evaluation 

of candidate microarchitectures takes account of silicon area and logic delays as 

well as parallelism. In essence, the ability to apply increasing transistor densities 

effectively requires microarchitectures that are scalable. 

It is axiomatic that increases in transistor count cannot translate indefinitely 

into processors with ever increasing logical complexity. Greater complexity re-

quires greater verification effort, so adding new features to an already complex 

out-of-order superscalar processor is certain to increase design cost and may push 

design time beyond a viable limit. In contrast, an architecture which scales to 

larger configurations through replication of fixed-cost building blocks will be at-

tractive provided it can also yield scalable performance. 

In this chapter we focus on what it means to be scalable. We target specifically 

the novel clustered VLIW architecture model defined in Chapter 6, although 

it could be extended to similar architectures. We assess the scalability of our 

approach by considering the rate at which execution time of our benchmarks 

reduces when more transistors (i.e., more functional units) are used. 
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8.1 Scalability and Technology Trends 

The possibility of a billion-transistor chip is a strong motivating force in microar-

chitecture, but also one which presents many challenges [12]. Arguably the two 

most critical challenges for scaling performance with increasing chip area are: 

• Exposing parallelism in applications 

• Defining architectures in which time and space complexities scale linearly 

with increasing parallelism 

As previously discussed in this thesis, the size and number of ports of a register 

file can seriously compromise the performance of ILP machines. The results 

presented in Sections 6.4 and 7.3 show clearly that net performance does not 

necessarily track gross ILP in very wide VLIW configurations. One must also 

take account of cycle time. We therefore define scalability as the rate at which net 

performance increases as the transistor budget increases. 

The scalability of our clustered VLIW architecture depends upon the rela-

tionship between chip area and performance. Scalability should also imply an 

ability to exploit future advances in silicon technology. To address these issues 

we correlate the area estimates of the candidate configurations with predictions 

of future device characteristics from the 1997 Semiconductor Industry Associ-

ation Roadmap for Semiconductors [88]. The data in Table 8.1 show certain key 

characteristics of the five generations expected to span 1997 to 2009. 

(pm) 11 Year I Die Area (mm 2 ) I A 2 /die (x106 ) 

0.25 1997 300 4,800 
0.18 1999 340 10,494 
0.13 2003 430 25,443 
0.10 2006 520 52,000 
0.07 2009 620 126,530 

Table 8.1: SIA predictions of device capabilities (1997) 

The area occupied by functional units can he estimated by reference to exist-

ing designs. For example, the FPTJ of the MIPS R10000 contains a multiplier, an 

adder, and a divider. In a 0.25 pm CMOS technology, this occupies an area of 

12 mm2  [74], or 1.92 x 108\2.  In the machine models we have considered so far 

in this thesis, one cluster group is similar to the R10000FPU, but also contains 

one L/S and one Copy functional units. However, both of these are integer units 
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with low complexity. We therefore assume the MIPS 1110000 FPU area to be 

a reasonable approximation to the area of one cluster group. For comparative 

purposes we assume that each group of three functional units in a unclustered 

machine is assigned the same estimated area. The total area of a given configur-

ation therefore includes the area of LRFs, CQRFs, and the above approximation 

for the area of the FUs. As previously done, the area and cycle time of register 

files is estimated using the analytic model [62] presented in Section 4.5. 

8.2 Experimental Framework Update 

The features of the experimental framework last defined in Section 7.2 already 

present the capabilities to target a clustered VLIW machine. A key element in 

the process is the use of DMS, a single step scheduling/partitioning algorithm. 

So far we have considered only one type of clustered configuration, consisting 

of 3 standard and 1 Copy FUs. We define this basic set as a FU group. To extend 

the analysis on scalability issues, we have updated the experimental framework in 

order to consider alternative cluster configurations. Hence, from now on cluster 

configurations can consist of 1, 2, 3, or 4 FU groups, which correspond to 3, 6, 

9, and 12 standard FUs, respectively. These configuration are denoted Gi, G2, 

G3, and G4. If necessary the suffix GX will be appended to the existing notation 

(CQFnn) to indicate the number of FU groups in each cluster. As an example, 

a machine model denoted by CQF12C2 comprises a total of 12 standard FUs, 

organized in 2 clusters of 2 FU groups each. Distinct cluster configurations also 

imply distinct access port requirements to the register files, defined according to 

the number of functional units. 

8.3 Experimental Results 

In this section we present some results regarding the scalahility of the proposed 

VLIW architecture. The results are subdivided into two main topics: performance 

analysis, and scalability. 

8.3.1 Performance Analysis 

A range of new machine configurations is being considered in this analysis. Thus, 

machine configurations with the same issue-width may have distinct number of 

clusters, implying in the following trade-off when performance optimization is the 

main objective: 
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• Using a larger cluster configuration means that less clusters are required 

for a given issue-width. This reduces communication conflicts, possibly 

improving performance. 

A larger cluster increases register file requirements, which might increase 

the machine cycle time. 

We have performed some experiments to investigate the effect of varying those 

parameters. As was done in previous chapters, results regarding execution time 

are normalized using as a baseline the execution time in a URF03 machine. 

Execution Time 	 Execution Time 
All Loops - Fixed Cycle Time 	 Loops Without Rec. - Fixed Cycle 
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• . CQF-G3 - CQF-G4 

Figure 8.1: Number of cycles-Class 1 	Figure 8.2: Number of cycles-Class 3 

The first set of results assumes a fixed cycle time for all configurations. Al-

though the differences are not large, the charts in Figures 8.1 and 8.2 show that a 

larger cluster configuration in general results in shorter execution time. This res-

ults from the relatively smaller number of clusters required to organize the same 

number of FUs, which facilitates the partitioning process. It should be noticed 

that the performance loss is more significant for GI configurations of 24 or more 

functional units. In those cases the partitioning algorithm is less effective because 

it works with 8 or more clusters. All other machine models comprise at most 4 

clusters, resulting in less communication conflicts. 
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We have estimated the cycle time of all machine configurations using the 

same approach discussed in Section 6.4.3.2. Figure 8.3 shows how the cycle time 

of the register structures in those clustered and unclustered processors varies 

with the number of functional units, based on 0.8 micron CMOS technology 

parameters [62]. As previously found, the cycle time of a globally-shared register 

file is clearly a problem for all but the smallest configurations. However the cycle 

time of all clustered configurations remains essentially constant, although each 

one in a distinct level. As expected, the smaller the cluster configuration, the 

shorter the cycle time. Hence, Cl configurations allow the shortest cycle. It 

should be noticed that the cycle time of Cl and C2 configurations do not differ 

by a large factor. Furthermore, for 30 FUs C2 is better than Cl. This is due 

to the difference between the register requirements of machines with 5 and 10 

clusters, respectively. This is a clear example of the trade-off involved to define 

the best cluster configuration. 
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Figure 8.3: Machine cycle time 

Once again we have used the cycle time calculated for each configuration to 

weight those results assuming a fixed cycle. As seen in Figures 8.4 and 8.5, the 

smallest cluster configuration generally results in the shortest execution time, for 

both loop sets considered. However, for 30 FUs the best results are obtained with 
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configuration G2, which is due to lower pressure on the partitioning algorithm. 

The results suggest that further effective performance gains may he possible using 

configuration G2, which is not the case with Cl machine models (they peak at 

24 FUs). 

Execution Time 
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Figure 8.4: Execution time-Class 1 	Figure 8.5: Execution time-Class 3 

8.3.2 Scalability of Performance 

This thesis focuses on single-chip implementations of an ILP processor. There-

fore, the scaling characteristics must be viewed against expected future integration 

capabilities. There are four primary factors involved: the available chip area, the 

number of clusters and their issue-width, the expected cycle time of a configur-

ation, and the effective IPC after scheduling/partitioning. All four factors are 

closely interlinked, and together determine the scalability of each configuration. 

The relationship between IPCdynam ic  and chip area for the VLIW compute-

engine is shown in Figures 8.6 and 8.7. We have seen in Section 7.3.2 that 

unclustered configurations yield the highest IPC. Here we see they have the worst 

IPC/area ratio. For device areas up to 4 x 1O9\2  the Cl configuration has the 

best IPC/area ratio. Beyond that, the G2 configuration appears to be a promising 

candidate. 
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Arguably the most fundamental metric of scalahility for a single-chip ILP pro-

cessor is the ratio of absolute performance to chip area. We have used the actual 

execution time calculated for each configuration (Section 8.3.1) as a measure of 

absolute performance. The graphs in Figures 8.8 and 8.9 show this relationship 

for all loops and recurrence-free loops, respectively. These graphs also delineate 

area values corresponding to intervals of 10 - 20% of the maximum chip area for 

the five technology generations outlined in Table 8.1. This gives an indication of 

the chronological scalahility of each clustered configuration. Overall, these results 

show that statically-scheduled clustered VLIW processors scale very well up to 

24 FUs, for Cl configurations. The G2 configuration scales well up to 30 FUs, 

and may even scale well beyond. 
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8.3.3 Summary of Results and Conclusions 

The conclusions obtained from the analysis presented in this section are summar-

ized in the following list: 

• In general, the smaller cluster configurations result in the most cost effective 

implementation. However the validity of this assumption depends on the 

effectiveness of the scheduling/partitioning algorithm. 

• In this experimental framework, a cluster consisting of 1 FU group is the 

best option for up to 24 FUs, which corresponds to 8 clusters. Wider-issue 
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machines can he better designed using 2 FU groups per cluster. 

e Cluster configurations of more than 2 FU groups fail to deliver the expected 

performance, which is due to a large number of register file access ports. 

Actually, each of those clusters resembles an unclustered machine, with the 

corresponding advantages and disadvantages. 

• The proposed VLIW architecture model scales well up to 24 FUs, possibly 

more. The scalability can be constrained by the number of clusters and 

register file access ports. We have found that the DMS algorithm performs 

well up to 8 clusters. Furthermore, it is possible to achieve a reasonable 

machine cycle time using up to 6 standard and 2 Copy FUs per cluster. 

These parameters should limit the search space for the most cost-effective 

VLIW design. 

• The conditions required to employ more than 8 clusters would include a 

new partitioning strategy, and an alternative communication system among 

clusters. Employing a larger number of FUs in a single cluster, without in-

creasing the cycle time, may only be possible with new hardware techniques. 
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Chapter 9 

Conclusions 

This final chapter summarizes all of the material presented thus far, focusing 

on the main aims and achievements of the thesis. This involves presenting the 

conclusions on our work to propose a scalable VLIW architecture model, and ex-

plicitly highlighting the original contribution to knowledge which has been made. 

Finally, a number of topics will be suggested for future research in this particular 

topic. 

9.1 Main Findings 

The main objective of this research work was to propose a scalable VLIW ma-

chine model targeting numeric applications, which may also be extended to some 

classes of DSP and multimedia applications. For this reason, software pipelining 

techniques were adopted to accelerate the execution of innermost loops. Our ex-

periments have confirmed the conclusions of previous works, which indicated that 

an unclustered organization is inappropriate due to high register file requirements. 

Thus, we have proposed a clustered VLJW machine using queue register files to 

build a communication system between adjacent clusters. We have also proposed 

the integration into a single procedure of both, scheduling and code partitioning 

for a clustered machine. A novel algorithm performing software pipelining was 

developed within this strategy, called DMS. A final analysis was conducted to 

assess the scalability of this architecture model, in terms of performance and sil-

icon area. The following list includes the main findings obtained throughout the 

development of this work: 

• There is a significant amount of ILP in numeric applications to be ex-

ploited by wide-issue VLIW machines. This is particularly the case for 

innermost loops that are resource constrained. However, software pipelin- 
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ing techniques generate high register pressure, requiring large register files 

that may compromise the machine performance. 

• Unclustered machine organizations having more than 6 functional units, and 

relying on a centralized register file, fail to deliver the expected performance. 

In those cases the number of access ports increases the machine cycle time 

to an extent that completely overshadows the performance gains obtained 

from ILP scheduling. Although a QRF organization in general is more 

efficient than a conventional RF in terms of silicon area and cycle time, it 

is also inappropriate to support a large number of functional units. 

• Clustered machines scale well in terms of machine resources. Register re-

quirements for both LRFs and CQRFs remain similar after successive in-

clusions of extra clusters in a given machine model. Thus, for a given 

cluster configuration, the machine cycle time shows very small variations, 

regardless of the number of clusters employed. This allows to increase the 

number of PUs without compromising the overall cycle time. As expected, 

a cluster configuration of 3 standard and 1 Copy FU results in the shortest 

cycle time. A small, possibly acceptable, increase in the cycle time results 

from using twice as many FUs. However, it rises sharply beyond this limit. 

Thus, we believe that 6 standard and 2 Copy FUs is the limit for an effi-

cient cluster configuration, considering the architecture and corresponding 

hardware models we have adopted in this work. 

• Good quality schedules can be produced for a clustered architecture, in-

troducing only a small performance penalty due to code partitioning. The 

communication system among clusters and the efficiency of the algorithms 

employed determines the maximum number of clusters that allow actual 

performance gains. The DMS algorithm is effective for configurations of up 

to 8 clusters interconnected as a hi-directional ring. 

• Using the architecture and compilation techniques proposed in this work, 

the most cost-effective design for up to 24 FUs comprises 8 clusters of 3 

standard FUs each. If more functional units are used, an organization of 6 

standard FUs per cluster should be the best option. 
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9.2 Thesis Contribution 

In this section the main original contributions to knowledge made by this work 

are highlighted. To best of our knowledge, none of the following points have 

previously appeared in the literature, apart from the work of our own: 

• Design of a Queue Register File specially targeting the execution of soft-

ware pipelined loops. A key aspect of its functionality is the use of a 

Compatibility-Test to perform allocation of loop variant lifetimes to queues. 

• Design of a Clustered VLIW Architecture organized as a bi-directional ring 

of clusters, interconnected by queue register files. 

• Propose an integrated approach to the problem of performing software pipelin-

ing and code partitioning for a clustered VLIW machine. Previous works 

have performed these tasks separately. 

• Development of DM8, a novel modulo scheduling algorithm able to per-

form in a single step both scheduling and code partitioning for a clustered 

VLIW architecture. Experimental results showed the scheme is effective for 

configurations of at least 8 clusters, considering the architecture model and 

compilation techniques proposed in this thesis. 

• Experimental analysis considering a large range of clustered and unclustered 

VLIW machines of up to 30 FUs. Scalability issues were investigated, taking 

into account parameters such as performance, silicon area, and cycle time. 

9.3 Future Work 

A few suggestions of further work are presented in this section. They can be 

either direct extensions of this thesis, or closely related topics in this field, as 

listed below: 

• In terms of hardware, a major enhancement to the existing experimental 

framework would be the inclusion of a memory system connecting to the 

VLIW engine. This would allow us to quantify the performance degradation 

due to an imperfect cache system, as well as the extra hardware complex-

ity involved in its implementation. Two issues are of particular concern 

regarding the organization of the memory system: the interconnection with 

FUs, and cache coherence. We believe that some sort of partitioning of the 
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cache system is necessary to address these problems. In this case, the cache 

coherence would rely on a scheduler sensitive to the locality of dependent 

load and store operations. They should be assigned to the same cluster, 

and thus use the same cache partition. An alternative to caches is the use 

of local memory banks, which might be a better option according to the 

memory access pattern of the target applications. For a large number of 

FUs, the interconnection problem may be addressed with the advent of new 

hardware technologies. 

• Improvements must be done to the QRF register allocator, in order to 

balance the distribution of lifetimes among queues, and thus optimize its 

utilization. That should reduce the required size of each queue. In addition, 

a scheme to introduce spill code would be necessary to work with limited 

machine resources. 

• For comparison purposes it would he interesting to investigate another par-

titioning strategy. We suggest performing the partitioning of the DDC prior 

to modulo scheduling, using one of the available methods found in the lit-

erature. This would be followed by a scheduling algorithm, which should 

take into account the assignment of operations to clusters defined in the 

first step. 

• This work has considered innermost loops typically found in numeric ap-

plications. Among them, resource constrained loops constitute the bulk of 

performance improvements achieved. On the other hand, recurrence con-

strained loops cannot fully benefit from the available functional units. It 

would be very useful to develop techniques able to reduce the latency of 

recurrence circuits found in those loops. 

• We believe that the proposed architecture model is well suited for some 

classes of DSP and multimedia applications having the execution time dom-

inated by highly parallelizable innermost loops. Hence, it would he inter-

esting to use specific benchmarks to investigate the suitability of this archi-

tecture for those application domains. 

• For commercial reasons, the execution of scalar code is increasingly import-

ant in microprocessor design. Finding enough ILP in those applications 

to sustain a high IPC rate still constitutes an open issue. Any wide-issue 

VLIW machine aiming for general purpose use should address this problem. 
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