
A Clustered VLIW Architecture Based
on Queue Register Files

Marcio Merino Fernandes

Doctor of Philosophy
University of Edinburgh

1998

TO 	 x
01

To my parents,
Armirdo and Lourdes

Abstract

Instruction-level parallelism (ILP) is a set of hardware and software techniques

that allow parallel execution of machine operations. Superscalar architectures rely

most heavily upon hardware schemes to identify parallelism among operations.

Although successful in terms of performance, the hardware complexity involved

might limit the scalability of this model. VLIW architectures use a different

approach to exploit ILP. In this case all data dependence analyses and scheduling

of operations are performed at compile time, resulting in a simpler hardware

organization. This allows the inclusion of a larger number of functional units

(FUs) into a single chip. In spite of this relative simplification, the scalability

of VLIW architectures can be constrained by the size and number of ports of

the register file. VLIW machines often use software pipelining techniques to

improve the execution of loop structures, which can increase the register pressure.

Furthermore, the access time of a register file can he compromised by the number

of ports, causing a negative impact on the machine cycle time. For these reasons,

we understand that the register file required by a wide-issue unclustered machine

could compromise the benefits of having parallel FUs, which have motivated the

investigation of alternative machine designs.

This thesis presents a scalable VLIW architecture comprising clusters of FUs

and private register files. Register files organized as queue structures are used

as a mechanism for inter-cluster communication, allowing the enforcement of

fixed latency in the process. This scheme presents better possibilities in terms

of scalability as the size of individual register files is not determined by the total

number of FUs, suggesting that the silicon area may grow only linearly with

respect to the number of FUs. However, the effectiveness of such an organization

depends on the efficiency of the code partitioning strategy. We have developed an

algorithm for a clustered VLIW architecture integrating both software pipelining

and code partitioning in a single procedure. Experimental results show it may

allow performance levels close to an unclustered machine without communication

constraints. Finally, we have developed silicon area and cycle time models to

quantify the scalability of performance and cost for this class of architecture.

Acknowledgements

My greatest gratitude goes to Dr. Nigel Topham, my supervisor. This work

would not exist without him.

Many thanks to Josep Liosa of UPC for his contributions and fruitful discus-

sions, and Prof. Roland Ibbett, for his guidance during the first stages of this

work.

Special people have made my years in Edinburgh a great time: Hazel, Ann,

Susan, Thereza, Carol, Alberto, Goretti, Jitka, Nils, and many others, including

fellow doctoral students, members of basketball clubs, the ceilidh crowd, and the

local Brazilian society.

Finally, the unique opportunity for being here was made possible by the fin-

ancial support from CAPES-Brasil, and my family.

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text. Some of

the material in this thesis has already been published in:

• M. Fernandes, J. Liosa, and N. Topham. Distributed Modulo Schedul-

ing. In HPCA-5, 5th IEEE International Symposium on High Performance

Computer Architecture, Orlando, USA, 1999.

• M. Fernandes, J. Llosa, and N. Topham. Partitioned schedules for clustered

VLIW architectures. In IPPS'98, 12th IEEE/ACM International Parallel

Processing Symposium, Orlando, USA, 1998.

• M. Fernandes, J. Liosa, and N. Topham. Allocating lifetimes to queues

in software pipelined architectures. In EURO-PAR 97, 3rd International

Euro-Par Conference, Passau, Germany, 1997.

• M. Fernandes, J. Llosa, and N. Topham. Extending a VLIW architecture

model. Technical Report ECS-CSG-34-97, University of Edinburgh, De-

partment of Computer Science, 1997.

• M. Fernandes, J. Llosa, and N. Topham. Using queues for register file

organization in VLIW architectures. Technical Report ECS-CSG-29-97,

University of Edinburgh, Department of Computer Science, 1997.

Table of Contents

List of Figures 	 v

List of Tables 	 viii

Chapter 1 Introduction 	 1

	

1.1 	Work Context1

	

1.2 	Work Overview2

1.2.1 Queue Register Files3

1.2.2 Unclustered VLIW Architectures3

1.2.3 Clustered VLIW Architectures4

1.2.4 Distributed Modulo Scheduling Algorithm4

	

1.3 	Thesis Structure4

Chapter 2 	Background 6

2.1 Instruction-Level Parallelism 6

2.1.1 	Hardware-Centric ILP: Superscalar 7

2.1.2 	Software-Centric ILP: VLIW 8

2.2 VLIW Architecture 9

2.3 Register Files for VLIW Machines 10

2.3.1 	Register File Requirements 11

2.3.2 	Monolithic Register Files 13

2.3.3 	Partitioned Register Files 15

2.3.4 	Other Register File Organizations 18

2.4 VLIW Compilation Issues 19

2.4.1 	Overview of the Compilation Process 20

2.4.2 	VLJW Scheduling 25

2.4.3 	Register Allocation 28

2.4.4 	Code Generation 29

2.5 Commercial VLIW Machines 30

Chapter 3 Basic Experimental Framework 32

3.1 Machine Model 33

3.1.1 	Functional Units 33

3.1.2 	Local Register File 36

3.1.3 	Unclustered Machine 37

3.2 Workload 37

3.2.1 	Perfect Club Benchmark 38

3.2.2 	Selection of Loops and Compiler Optimizations 39

3.2.3 	Data Dependence Graph 40

3.3 Modulo Scheduling Algorithm 41

3.3.1 	Minimum Initiation Interval - MIT 43

3.3.2 	Iterative Modulo Scheduling - IMS 46

3.3.3 	Scheduling Example 52

3.4 Register Allocation 53

3.5 Output Information 56

3.5.1 	Direct Parameters 56

3.5.2 	Derived Parameters 56

3.5.3 	Results Presentation 58

Chapter 4 	Queue Register Files 59

4.1 QRF Organization 59

4.2 Transforming Multiple-Use Lifetimes 62

4.3 Overhead Due to Copy Operations 66

4.4 Allocating Lifetimes to a QRF 68

4.4.1 	Q-Compatibility Test 71

4.4.2 	Register Allocation Using the Q-Compatibility Test . . 76

4.5 Analytical Model for Register Files 79

4.5.1 	Silicon Area Model 79

4.5.2 	Cycle Time Model 80

4.5.3 	Comparing Register File Organizations 81

4.6 Summary of Results and Conclusions 83

Chapter 5 	Unclustered Architectures 84

5.1 	Increasing ILP with Loop Unrolling 85

5.2 	Experimental Framework Update 88

5.3 	Experimental Results 91

5.3.1 	Performance Analysis 91

5.3.2 	Machine Resources Analysis 94

t

5.3.3 Summary of Results and Conclusions 	 . 102

Chapter 6 	Clustered Architectures 103

6.1 Clustered Architecture Organization 103

6.2 Experimental Framework Update 107

6.3 Partitioning Heuristics 108

6.3.1 	Find Slot Function for a Clustered Machine 109

6.3.2 	Backtracking Function for a Clustered Machine 111

6.3.3 	Complexity of the New Heuristics 113

6.4 Experimental Results 113

6.4.1 	Partitioning Effectiveness 114

6.4.2 	Performance Analysis 116

6.4.3 	Machine Resources Analysis 118

6.4.4 	Summary of Results and Conclusions 123

Chapter 7 Distributed Modulo Scheduling 124

7.1 	Overview of the DMS Algorithm 125

7.1.1 Chains of Move Operations 127

7.1.2 Scheduling Chains and their Consumer Operations 	. . 133

7.1.3 Unscheduling Operations 135

7.1.4 Complexity of DMS 137

7.1.5 Using DMS with Other Machine Models 138

7.2 	Experimental Framework Update 139

7.3 	Experimental Results 140

7.3.1 Partitioning Effectiveness 140

7.3.2 Performance Analysis 142

7.3.3 Machine Resources Analysis 144

7.3.4 Summary of Results and Conclusions 149

Chapter 8 Scalability of Performance and Cost for Clustered VLIW 150

8.1 	Scalability and Technology Trends 151

8.2 	Experimental Framework Update 152

8.3 	Experimental Results 152

8.3.1 	Performance Analysis 152

8.3.2 	Scalability of Performance 155

8.3.3 	Summary of Results and Conclusions 157

111

Chapter 9 	Conclusions 159

9.1 	Main 	Findings 159

9.2 	Thesis Contribution 161

9.3 	Future Work 161

Bibliography 	 163

lv

List of Figures

2.1 Basic structure of a VLIW processor 10

2.2 Example of an instruction word for a VLIW processor 10

2.3 Register pressure resulting from loop unrolling 12

2.4 Register pressure resulting from software pipelining 12

2.5 Area of a monolithic register file 14

2.6 Subdividing a monolithic register file 16

2.7 Phases of an optimizing VLIW compiler 21

3.1 Hardware/ Software codesign process 33

3.2 Generic organization of a microprocessor pipeline 34

3.3 VLIW unclustered machine 37

3.4 Extracting loops from the benchmark 38

3.5 Innermost loop and data dependence graph 41

3.6 Modulo Reservation Table 47

3.7 Schedule produced by IMS 53

3.8 Register requirements - MaxLive 55

4.1 QRF block diagram 60

4.2 Using a queue to store a loop variant lifetime 61

4.3 Register storage 63

4.4 DDG transformation to include a copy operation 63

4.5 Inserting copy operations in a DDG 66

4.6 II Variation-Copy up 67

4.7 SC Variation-Copy Op 67

4.8 Using one queue to store lifetimes of the same length 69

4.9 Using one queue to store lifetimes of distinct lengths 70

4.10 Dual-ported register cell 80

4.11 Implementation of a QRF using dual-ported register cells 81

4.12 Silicon 	area 83

4.13 Access 	time 83

v

5.1 Unclustered machine using a QRF 84

5.2 Optimizing the use of machine resources with loop unrolling 	. 86

5.3 Number of loops in each class 90

5.4 Execution time-Fixed cycle 93

5.5 Loop speedup-Fixed cycle 93

5.6 Copy overhead-Class 1 94

5.7 Copy overhead-Class 3 94

5.8 IPC Dynamic-Class 1 95

5.9 IPC Dynamic-Class 3 95

5.10 Name space 96

5.11 Storage locations 96

5.12 Lifetimes sharing a queue 97

5.13 Maximum queue length 98

5.14 Silicon 	area 100

5.15 Cycle 	time 100

5.16 Execution time-Class 1 101

5.17 Execution time-Class 3 101

6.1 Clustered machine 104

6.2 Communication between adjacent clusters using a CQRF 105

6.3 Cluster organization 106

6.4 Loops with a larger II due to partitioning 115

6.5 Communication distance after partitioning 116

6.6 Number of cycles-Class 1 117

6.7 Number of cycles-Class 3 117

6.8 IPC Dynamic-Class 1 118

6.9 IPC Dynamic-Class 3 118

6.10 Total silicon area of register files 120

6.11 Cycle time of reg. 	files 121

6.12 Machine cycle time 121

6.13 Execution time-Class 1 122

6.14 Execution time-Class 3 122

7.1 Overview of IMS and DMS algorithms125

7.2 Options to create a chain128

7.3 DDC transformation to insert a chain133

7.4 Typical use of a move operation139

7.5 Loops with a larger II due to DMS partitioning141

vi

7.6 Communication distance after partitioning with DMS 142

7.7 Number of cycles-Class 1 143

7.8 Number of cycles-Class 3 143

7.9 IPC Dynamic-Class 1 144

7.10 IPC Dynamic-Class 3 144

7.11 Total silicon area of register files 146

7.12 Cycle time of reg. 	files 147

7.13 Machine cycle time 147

7.14 Execution time-Class 1 148

7.15 Execution time-Class 3 148

8.1 Number of cycles-Class 1 153

8.2 Number of cycles-Class 3 153

8.3 Machine cycle time 154

8.4 Execution time-Class 1 155

8.5 Execution time-Class 3 155

8.6 IPC vs Area-Class 	1 156

8.7 IPC vs Area-Class 3 156

8.8 Performance vs Area-Class 1 157

8.9 Performance vs Area-Class 3 158

vii

List of Tables

3.1 	Functional unit characteristics36

3.2 Register file access port requirements36

3.3 Loops extracted from the Perfect Club benchmark39

3.4 Instruction mix of the selected loops 39

4.1 	Register file configurations82

5.1 Unclustered machine configurations used in experiments91

5.2 	URV register requirements98

5.3 	UQV register requirements99

6.1 Machine configurations used in experiments114

6.2 	URF register requirements119

6.3 	CQF register requirements120

7.1 Machine configurations used in experiments with DMS140

7.2 	URF register requirements145

7.3 	CQF register requirements145

8.1 SIA predictions of device capabilities (1997)151

viii

Chapter 1

Introduction

Performance of computer systems has evolved continuously since the first ma-

chine was built. The availability of faster machines encourages the development

of new and sophisticated applications, leading to ever increasing performance re-

quirements. Advances in computer design and implementation technology have

allowed those improvements. Computer systems in 1998 are based on micropro-

cessors, which have grown in performance at an annual rate of over 50% [45].

One of the latest trends in microprocessor architecture design is called Very Long

Instruction Word (VLIW). Machines of this kind are able to exploit parallelism

at the level of machine instructions. This thesis presents a clustered VLIW archi-

tecture model able to achieve high performance and exhibiting a good potential

for scalahility. It was developed using a hardware/ software codesign process to

design a number of features, including a novel register file organization based on

queues, register allocation schemes, a clustered organization, and algorithms for

code scheduling and partitioning.

1.1 Work Context

The microprocessor technology of 1998 relies on two basic approaches to im-

prove performance. One is to increase clock rates, resulting in faster execution

of machine operations. The other is instruction-level parallelism (ILP), a set

of hardware and software techniques that allows parallel execution of machine

operations [84]. Superscalar architectures [51] rely most heavily upon hardware

schemes to identify parallelism among operations. Although this approach of-

fers advantages in terms of code compatibility, the hardware complexity involved

poses some limitations in terms of scalability. Increasing the number of functional

units (FUs) in current superscalar microprocessors would require even more soph-

isticated schemes to find and schedule independent operations. Using a VLIW

1

architecture is another possibility to exploit ILP. In this case all data dependence

analyses and scheduling of operations are performed at compile time, resulting

in a simpler hardware organization. This allows the inclusion of a larger number

of FUs into a single chip, increasing the possibilities of parallelism exploitation.

In spite of this relative simplification, the scalability of VLIW machines can he

constrained by the complexity and size of the required register file (RF). Ideally,

a VLIW machine would have a number of parallel functional units connected to

a common register file able to perform two reads and one write operation per FU

in each cycle [14]. This implies that each FU requires three access ports to the

register file.

The available processing power of a very wide issue machine can be fully ex-

ploited when executing loop structures, which in many cases accounts for the

largest share of the total execution time of a program. Several compiling tech-

niques have been developed to schedule loops in ILP machines. Software pipelin-

ing [16], for instance, is a scheme that allows the initiation of successive loop

iterations before prior ones have completed. In this scheme, consecutive data

values produced by the same operation may coexist, requiring distinct storage

locations and thus increasing register pressure [64]. High register pressure results

in register file requirements that are difficult to realize, taking into account cur-

rent technology trends. The size of shared register files grows in proportion to the

square of the number of ports, and hence also the number of FUs [13]. If software

pipelining is performed it can grow in proportion to the cube of the number of

FUs (Section 2.3.2). The size of the register file alone can be a problem in the ma-

chine design. Furthermore, the access time of such an RF can be compromised by

the number of ports, causing a negative impact on the cycle time of the machine.

For these reasons we understand that the register file required by a wide-issue

unclustered machine can compromise the benefits resulting from aggressive ILP

scheduling. This has motivated us to investigate alternative machine designs.

1.2 Work Overview

This thesis proposes a scalable VLIW architecture comprising clusters of func-

tional units and private register files, using queue structures to implement a mech-

anism for inter-cluster communication. We believe this scheme presents better

possibilities in terms of scalability as the size of individual RFs is not influenced

by the total number of FUs, suggesting that the silicon area may grow only lin-

early with respect to the number of FUs. Technology trends indicate the future

2

possibility of building systems integrating powerful processors and main memory

on a single chip [53]. This may address some design issues concerning the memory

subsystem of our machine model, a problem also common to other microarchi-

tectures. However, the effectiveness of such an organization also depends on the

scheduling and code partitioning strategy. We have developed a scheme to pro-

duce software pipelined code for a clustered VLIW machine model aiming to

achieve performance levels similar to an unclustered machine without commu-

nication constraints. The main developments and contributions of this research

work are outlined in the next subsections.

1.2.1 Queue Register Files

Software pipelining generally increases register pressure in VLIW machines. The

register file required in such cases may compromise scalahility, which has motiv-

ated us to develop a Queue Register File (QRF). Register files organized by means

of FIFO queues, with limited read and write access, are believed to be less com-

plex than conventional organizations. That should be the case because it could

be implemented using simple dual-ported individual register cells, and a possibly

less complex address decoding logic. On the other hand, this simplification in

hardware imposes new constraints on the register allocator, requiring new tech-

niques to efficiently exploit this organization. Software pipelined loops generate

a regular pattern of production and consumption of lifetimes. We have taken

advantage of this fact to deduce and prove a Q-Compatibility Test to decide which

lifetimes can share a given storage queue, based on their relative production and

consumption order. The Q-Compatibility Test enables efficient register allocation

to the QRF. Analytical models show that QRFs are in general more efficient than

conventional organizations in terms of silicon area and access time.

1.2.2 Unclustered VLIW Architectures

We developed a VLIW machine model organized as a single cluster of functional

units, all of them connected to a common register file. This model allow us

to quantify the achievable ILP for the architecture and compilation techniques

employed. Two types of register files have been used: a conventional RF, and

a QRF. The advantage of using a QRF with software pipelined loops has been

confirmed through experimental analysis. Nonetheless, it has also been confirmed

that unclustered machines do not scale well, mainly due to the size and number of

ports of the shared register file. In this case, all benefits achieved by an aggressive

ILP scheduling can be lost due to a long register file cycle time.

3

1.2.3 Clustered VLIW Architectures

Including additional functional units in a unclustered VLIW architecture is not a

straightforward design issue. New register file access ports can severely comprom-

ise the machine cycle time. This thesis proposes a VLIW architecture comprising

clusters of functional units and private conventional register files. Each cluster

should have a small number of FTJ5 to avoid increasing the register file complex-

ity. Clusters are interconnected using a bi-directional communication ring. We

developed a scheme using QRFs to implement data communication between adja-

cent clusters. In this case a communication queue register file (CQRFs) is placed

between two clusters. Sending. a value from one cluster to another requires only

one write and one read operation to the appropriate CQRF. We found through

experimental analysis that the silicon area required to implement this scheme

may grow only linearly with respect to the number of FUs.

1.2.4 Distributed Modulo Scheduling Algorithm

A clustered organization can address some of the issues related to the hardware

complexity of a VLIW architecture. However, a single thread of control im-

plies that operations scheduled in distinct clusters may he data dependent with

each other, requiring inter-cluster communication. This might impose additional

constraints on the scheduler and register allocator, possibly compromising the

machine performance. We developed a software pipeline scheduling algorithm

targeting clustered VLIW architectures. The scheme, called Distributed Modulo

Scheduling, performs in a single step both scheduling and partitioning of opera-

tions among clusters. The objective is to produce code achieving performance

levels close to a single cluster machine without communications constraints. Sev -

eral experiments investigated the effectiveness of the scheme for machine con-

figurations up to 10 clusters, and a total of 30 functional units. Furthermore,

the scalability of the proposed clustered architecture was assessed, taking into

account performance and cost aspects, along with future technology trends.

1.3 Thesis Structure

The thesis structure presented in this section generally reflects the chronological

order in which this research work was carried out. Some of the findings and ex-

periments performed in early stages of the work are omitted, being replaced by

later developments. A number of hardware and software issues have been ad-

dressed, however the interrelation among them requires that they are presented

together. We tried to produce a single presentation format for the work meth-

odology, design considerations, experimental results and discussions. Finally, a

summary of the main objectives and contents of each chapter is described below:

• Chapter 1: Motivation and work overview.

• Chapter 2: Bibliographic survey related to this thesis. Topics discussed

include ILP, hardware support for ILP, VLIW architectures, register file

organizations, compilation and scheduling techniques for VLIW, and similar

architectures developed elsewhere.

• Chapter 3: Description of the experimental framework used to perform

quantitative analyses throughout the work. A basic machine model is

defined, along with the benchmark loops employed. A software pipeline

scheduling algorithm is at the core of the compilation process. A number

of figures regarding performance and machine resources are generated.

• Chapter : A queue register file is proposed as an alternative organization to

deal with high register pressure. A novel technique is presented to perform

register allocation, which includes a theorem (Q-Compatibility Test) and

the corresponding proof. Comparisons with conventional organizations are

made in terms of silicon area and access time.

Chapter 5: Defines an unclustered VLIW machine, using either a RF or

QRF. The potential to exploit ILP, and the implications of using a shared

register file are investigated by means of experimental analysis.

• Chapter 6: A clustered VLIW machine and the corresponding scheduling

algorithm is proposed to address scalability issues. The main motivation is

to keep register files small enough to result in a short cycle time. Queue

register files are used to implement a communication mechanism between

clusters.

• Chapter 7: Presents DMS, an integrated scheduling/partitioning algorithm

targeting a clustered VLIW machine. The scheme is able to deal efficiently

with communication constraints for a range of machine configurations.

• Chapter 8: Analyses the scalability of performance and cost of clustered

VLTW machines. Compares several configurations of the proposed architec-

ture, trying to predict its viability according to current technology trends.

• Chapter 9: Final conclusions and suggestions for future work.

5

Chapter 2

Background

2.1 Instruction-Level Parallelism

Instruction-level parallelism is a set of processor and compiler design techniques

that allows a sequence of machine operations to he parallelized for execution on

multiple pipelined functional units. The operations are similar to the ones usu-

ally found in a RISC microprocessor, such as memory loads and stores, additions,

multiplications, and branch instructions. The main advantage of ILP is the pos-

sibility of exploiting parallelism with no need of code rewriting, working with

existing programs. Sequential programming style still dominates the software

base currently in use, and also new. developments. This is unlikely to change in

the foreseeable future, which emphasizes the commercial value of ILP.

Several studies have pointed out the existence of large amounts of available ILP

to be exploited in existing programs. Some studies concluded that the available

ILP is modest, ranging between 2 and 5. However those studies did not consider

program transformations able to expose ILP [84], such as loop interchange, trace

scheduling, loop unrolling, and software pipelining, among others [7]. Wall car-

ried out an extensive study, using speculative execution, memory disambiguation

and other techniques to enhance ILP [94]. He concluded the available parallel-

ism ranges between 2 and 60, depending on the execution model employed. A

new version of this study was later conducted, considering a much larger set of

techniques to expose ILP [95]. That report presents simulations of test programs

under 375 models of available parallelism. It was found that relying only on

the technology available at the time (1993), it was possible to consistently ob-

tain ILP between 4 and 10 for most of the programs. Using branch prediction

with speculative execution the range would shift to 7-13. It was also concluded

that vectorizable programs could attain much higher levels. Another study on

available ILP focused on methods to eliminate control flow barriers [55]. It was

[1

found that the parallelism in non-numeric programs ranges between 18 and 400.

Numeric applications could go even further. It is expected that new compiler

optimizations will expose even larger amounts of parallelism to he exploited by

aggressive machine configurations.

On the other hand, continuous improvements in VLSI design enables the in-

tegration of more functional units into a single chip. Furthermore, higher clock

speeds may result in more deeply pipelined functional units. These factors con-

tribute to increase the available hardware parallelism. The task of keeping an ILP

processor busy can rely most heavily either on hardware or software schemes. This

constitutes the basis upon which modern ILP processors can be classified, which

is discussed in the next subsections.

2.1.1 Hardware-Centric ILP: Superscalar

Superscalar processors [51] have complex hardware structures to decide at run-

time which operations have no dependences with each other, so they can be ex-

ecuted in parallel. Dynamic scheduling of operations are also performed by hard-

ware. Scoreboarding [92] is a dynamic scheduling technique that allows instruc-

tions to execute out-of-order. Another approach, called Tomasulo Algorithm [93]

combines out-of-order execution with register renaming. These and other related

techniques try to avoid stalls in the pipeline by preventing data hazards. Hard-

ware branch prediction schemes can also be implemented to avoid control haz-

ards [90]. As a side effect, increasing the number of operations in flight (issued

but not yet completed) can make the number of architectural visible registers

insufficient, requiring register renaming techniques [98].

The possibility of having object code compatibility is one of the main advant-

ages of superscalar processors, allowing applications to run in faster machines

without recompilation. For this reason, general purpose superscalar processors

have reached the mainstream market. The drawback of this approach is that

implementing those and other hardware schemes can be expensive in terms of

silicon area and clock cycle. Contemporary machines of 1998 can issue about

four operations per cycle [75, 37]. However, there is a general perception that

hardware complexities may prevent the expected performance gains if the cur-

rent instruction issue rate is increased by a significant factor. For this reason new

ILP designs, in the form of VLIW processors, move into the compiler some of the

tasks performed by hardware in superscalar architectures.

2.1.2 Software-Centric ILP: VLIW

VLIW machines provide hardware parallelism in the form of multiple and deep

pipelined functional units. However, they have a relatively simple control logic,

releasing more silicon area to implement functional units. This should result in

higher levels of hardware parallelism than found in superscalar machines. Sim-

pler hardware may result in lower cost per chip and less power consumption,

important features for embedded computing and portable devices, among oth-

ers. The counterpart of these advantages is the need of sophisticated compiler

techniques to identify parallelism and schedule operations among functional units.

The program for a VLIW machine specifies precisely which functional unit should

execute a given operation, and when an operation should be issued in order to

enforce dependence constraints [84]. Comparing to dynamic scheduling schemes,

a compiler can work with a larger window of candidate operations to be paral-

lelized. This improves the possibilities of keeping the available functional units

busy. However, the compiling techniques involved are complex, still evolving and

presenting challenges.

Detailed description of the target processor is necessary to achieve the best

performance with static scheduling. In this case object code compatibility may

not he possible among distinct machine generations, requiring program recom-

pilation. Complexity and program size can result in long compilation times. To

alleviate this problem the compiler can subdivide a program, performing tasks

of manageable sizes [44]. The nature of some application fields make them less

sensitive to this problem, such as scientific programs and digital signal processing

(DSP) [23]. However, this is an important issue for general purpose computers

and applications. A research group at IBM proposed a solution for this prob-

lem, organizing operations into tree-instructions [72]. Another work proposed

dynamic scheduling of operations for VLIW machines [77]. Although a number

of compiling issues are still open, VLIW architectures are beginning to estab-

lish itself in some niche markets, specially in the DSP area. The technology can

also be effective to support multimedia applications, an area of increasing in-

terest [761. However, to have a broad impact on the mainstream market, VLIW

processors must accelerate the non-vectorizable scalar code prevalent in most ap-

plications [86]. An indication of the viability of this technology is the announce-

ment by Intel of the first general purpose VLIW-like processor [43], to he released

in late 1999. The next sections of this chapter discuss VLIW architectures and

related compilation issues, followed by a brief presentation of some commercial

VLIW machines.

8

2.2 VLIW Architecture

A VLIW architecture is characterized by a wide instruction word controlling the

action of all functional units. A single control unit can issue a new instruction

every cycle. Data dependences and scheduling of instructions are resolved stat-

ically at compiling time, so the hardware has to perform no further checking

to ensure program correctness. The first VLIW architecture was proposed by

Fisher at Yale University [33]. Since then a growing interest in this technology

has motivated a number of hardware and software developments to support the

new paradigm.

The ideal VLIW machine has a number of concurrent FUs, connected to a

register file able to perform two reads and one write operation per functional unit

in each cycle [14, 211. A control unit, instruction and data caches complete the

basic VLIW design, as seen in Figure 2.1. The diagram shows a hypothetical

machine with functional units capable to perform memory load and store ac-

cess (L/S), arithmetic and logic operations (ADD), multiplication and divisions

(MUL), and a branch unit (BR). Static scheduling and a single thread of control

impose strict synchronization constraints among functional units, which should

operate in lockstep [45, 40]. This may result in one single cache miss stalling all

FUs, stressing the importance of the memory subsystem. However, the pattern of

memory access of some DSP applications may result in a high rate of cache misses,

motivating the use of alternative designs such as local memories or prefetching

buffers [23]. Future trends suggest that it will be possible to integrate processing

elements and main memory in a single chip [53], greatly simplifying this issue.

A long instruction word should contain, for each functional unit, the operation

code, the source and the destination registers used, as shown in the example in

Figure 2.2. No-operations (NOPs) may be inserted in the long instruction if there

are not enough operations to be issued in parallel in a given cycle. Practical

VLIW machines have been implemented using instruction words up to 1024 bits

wide [83, 661. Uncompressed encodings explicitly store NOPs in the instruction

word. This simplifies the hardware organization, but at the expense of poor

memory utilization due to increase in code size. Compressed encodings do not

store NOPs, using variable size instructions, allowing greater effective memory

bandwidth [17].

The need to execute some time-critical instructions might be known only at

run time, which is often associated with the outcome of a branch operation. Nev-

ertheless, the compiler can schedule those instructions speculatively, as long as

some hardware support is provided to ignore the effects of executing unnecessary

VLIW Processor

L Control Un itj

Instruction Cache

Jr

Jr Jr Jr Jr I Jr Jr
Multiported Register File

Jr
Data Cache

Figure 2.1: Basic structure of a VLIW processor

Single instruction word controlling all functional units

US 	US 	ADD 	ADD 	MULl 	MUL2 BR

I LD R3, O(RI) I LD R5, O(R2) I ADD RIO, R8, R9 I NOP I MUlL R20, R17, R18 j NOP 	JR R30

Figure 2.2: Example of an instruction word for a VLIW processor

operations [21, 83, 52]. Predicated execution determines the execution of an oper-

ation according to a Boolean input [47]. Some schemes employ extra poison bits to

indicate if the contents of a register is valid [45]. Other methods buffer the result

of an speculative instruction until deciding if it is needed or not. Branches can he

eliminated from an acyclic region of a control flow graph using if-conversion [4]

and predicated execution, as showed by Dehnert [18]. These and other special

hardware features can be used to optimize the performance of a VLTW machine.

2.3 Register Files for VLIW Machines

Performance reasons dictate that operations other than memory access should

be register-register [45]. Those operations use destination and source operands

stored in the on-chip register file. Memory operations can be made through load

10

and store operations. All functional units of a VLIW machine operate in lockstep.

If one of them stalls due to a memory operation, all the others must also stop

executing. Data communication among functional units should always take place

thorough a centralized register file. A VLIW processor should provide a register

file with enough capacity and bandwidth to support the intended instruction issue.

Occasional on-chip cache access to deal with spill code could he tolerated, however

frequent cache misses can seriously compromise the machine performance. For

this reason the design of the register file is one of the crucial aspects of a VLIW

machine, being able to determine the machine cycle time [25].

In this section we show that register file requirements for wide-issue VLIW

machines are high and complex. As a result, conventional designs may not be

well suited to address the problem. Thus, performance and scalability issues may

lead to alternative hardware organizations and compilation techniques

2.3.1 Register File Requirements

There are two main factors that make register file requirements for VLIW ma-

chines complex:

• Number of registers

• Number of access ports

Compiler optimizations employed to exploit ILP machines often require a large

number of registers. Predication and speculative execution generate extra data

values that must be kept without knowing if they are necessary or not. Loop

unrolling and software pipelining can also increase register pressure dramatically.

The lifetime of a value is the time span ranging from its definition up to the

last use of it. It can also be referred to as lifetime length. The precise definition

of the first and the last cycle of a lifetime depends on architecture details, and is

not relevant at this point of the discussion. Two types of lifetimes can be found

in a loop: A loop invariant lifetime spans the whole loop execution. Usually it is

initialized before entering loop execution and remains fixed until exiting. For this

reason they need only one storage position. On the other hand, a loop variant

is a lifetime produced by successive iterations of a loop, usually having its value

changed.

Loop unrolling [20] is a well known compiler optimization that replicates the

body of a loop some number of times. This allows simultaneous scheduling of

more than one iteration at a time, resulting in a larger number of operations to

11

exploit machine resources. New lifetimes are also generated, possibly requiring

distinct storage positions, as shown in the example in Figure 2.3.

LOOP unroiiea . times

I Lifetime
	

3 Lifetimes

I Storage positio
	

3 Storage positions

Figure 2.3: Register pressure resulting from loop unrolling

Software pipelining can also be very demanding due to the overlapping of life-

times produced by the same operation from distinct loop iterations. In this scheme

a new iteration starts before prior ones have fully completed. A given lifetime

length can be longer than the time between the initiation of two or more suc-

cessive iterations. In this case an operation produces a new value before previous

ones have been consumed, thus requiring distinct storage locations (Figure 2.4).

3 Successive Iterations of a
Software Pipelined Loop

3 Lifetimes

3 Storage positions
Op2

Op2

Figure 2.4: Register pressure resulting from software pipelining

Register requirements for ILP architectures have been studied by several au-

thors. A theory for assessing register requirements of pipelined processors with

various issue widths was developed by Mangione-Smith and others [69]. The tech-

nique is intended to help in evaluating trade-offs in machine designs. The study

concentrates on the execution of innermost loops from scientific programs. Liosa

12

performed a quantitative analysis on register requirements of software pipelined

loops and their effect on performance [64]. This study focused on loop variants as

they account for the most significant fraction of register requirements for numeric

applications. It was found that 64 registers are enough to avoid spill code for

at least 90% of the loops, however a lot more is required by a few loops [65].

Furthermore, those loops account for a significant fraction of the total execution

time of the benchmark, which emphasizes the relative importance of them. Farkas

produced a study on register files for dynamically scheduled ILP processors, with

some findings that can also be extended to VLIW machines [25]. It was concluded

that a four-issue machine requires at least 80 registers. An eight-issue processor

would require at least 128 registers. Those and other works have confirmed that

aggressive exploitation of ILP requires a large number of registers.

It has been shown that ILP machines executing non-numeric applications

would require RFs with a small number of access ports [71]. However, numeric

applications, often the target of wide-issue machines, are much more demanding.

The number of access ports required by a register file for VLIW architectures

further complicates its implementation and performance. As already said, each

functional unit requires 2 read and 1 write register file access ports to sustain the

achievable issue. The area of shared register files grows in proportion to the square

of the number of ports, and hence also the number of FUs [13, 25], which has

motivated a number of alternative organizations, as shown in the next sections.

2.3.2 Monolithic Register Files

A monolithic register file can be implemented using a register cell with multiple

read and write ports. It allows multiple access to the same register in any given

clock period [58]. This is the organization used by most of the ILP machines

built until 1998. However it can constitute a barrier for scalability. If software

pipelining is performed, as often happens in ILP machines, we have found that

the register file size can grow in proportion to the cube of the number FUs.

Let us assume that a p ported register file, containing r registers of d bits

each is fully connected to a collection of f functional units, each having a latency

of I cycles. The silicon area required to implement such a register file is shown

diagrammatically in Figure 2.5. It can be inferred that, for some constant value

K, the expression to calculate the area A of that register file is:

A = Krdp2 = O(rp2) 	 (2.1)

13

Register I
P ports

Area= xy= K(dp x rp)

Register r
P ports

Port! 	 Port
d data !1O lines 	d data 110 lines

Figure 2.5: Area Of a monolithic register file

In a software pipelined loop each operation in flight reserves n register names,

where n is the number of software pipe-stages straddled by each lifetime. The

number of operations in flight is determined by the product of the instruction

issue width and the pipeline lengths. This equals the number of independent

functional units, f, multiplied by the number of pipeline stages of each FU, 1.

Thus, assuming that n is a constant, the number of registers r required to execute

a software pipelined loop in a VLIW machine is:

= nfl = O(fl) 	 (2.2)

To sustain an average issue rate of s instructions per cycle it may be necessary

to have a register bandwidth of at least 2s reads and s writes per cycle, requiring

2 read ports and 1 write port per instruction. Under the reasonable assumption

that s = (f) we can say:

p=e(f)
	

(2.3)

Using equations 2.2 and 2.3 the register file area can be expressed in terms of

the number of functional units:

A = e(1f3) 	 (2.4)

14

We have found that the area of a register file to support software pipelining

execution is proportional to the cube of the number of functional units. This

result clearly shows that designs employing a large multiported register file can

constrain the scalability of VLIW architectures.

A further complicating factor is the access time of multiported register files:

it grows approximately linearly with the number of ports [23]. The register file

may well determine the cycle time of a VLIW machine. One study found that

when the issue rate scales up from 4 to 8, the performance improvement achieved

is only 20%. The main reason for this is the complexity of the enlarged register

file, specially in regard to the number of access ports [25].

We have shown that conventional register file organizations may not be suit-

able for ILP architectures. This could be even more problematic for wide-issue

VLIW machines, which has motivated the development of decentralized architec-

tures, as presented in the next section.

2.3.3 Partitioned Register Files

As discussed in Section 2.3.1, exploiting a high degree of parallelism also requires

parallel access to a possibly large set of registers. A single multiported register

file is the simplest solution to the problem, however access time and silicon area

may inhibit its use by wide-issue VLIW machines. The technology available in

1998 allows one to build register files with around 10-15 ports at reasonable cost

and speed [23]. This configuration would be suitable for machines with up to

5 FUs, however higher degrees of hardware parallelism are already possible. To

overcome this problem, some processor architectures may incorporate distributed

or partitioned register files, each of them providing access to a smaller set of

functional units. This reduces the port requirements of individual Us, and

should also reduce the size of them. Multiple banked register file organizations

can be used by dynamically scheduled processors. One way to deal with the new

organization is by using register renaming [96]. Statically scheduled processors

require complex compiling techniques to distribute operands among RF banks,

each of them dependent on the architectural model adopted.

As defined in [58], in a distributed RF configuration each set of functional units

has direct access to one register file only (Figure 2.6a), resulting in a clustered

structure [50]. Access to non-local register files may stall the processor or require

register copy operations, as discussed later in this section. A partitioned register

file provides less connectivity between FUs and registers (Figure 2.6b), however

each FU has still direct access to any register [50]. Copy operations are not

15

necessary, although conflict access may arise. This approach has been successfully

used in vector processors [58].

Distributed Register File

Register File
	

File
	

Register File

Partitioned Register File

Figure 2.6: Subdividing a monolithic register file

Significant performance degradation may occur if code partitioning is not

properly done. According to Faraboschi [23], three distinct architectural scenarios

may be possible when register files are partitioned or distributed:

The register file clustering is architecturally invisible. In this case the com-

piler assumes a unified register space. Local register access operations occur

as usual. However, access to a register file located in another cluster may

he necessary. In this case, hardware support should he available to stall

the processor while register contents are moved across non-local elements.

This approach does not impose extra complexities to the compiler, however

significant performance penalties may occur due to excessive stalls.

The register file clustering is architecturally visible, with complete connectiv-

ity between FUs and RFs. In this case local and non-local RF access have

distinct latencies. A non-local access is actually implemented using a copy

operation, which must be scheduled together with the operation requiring

the access to the RF. This creates an indivisible "operation-copy" pair.

The advantage here is the possibility of minimizing the overhead due to

copy operations by scheduling them out of the critical path.

16

3. The register file clustering is architecturally visible, with limited connectivity

between FUs and RFs. This case is similar to the previous one, however

the compiler must schedule copy operations explicitly, but not necessarily

together. Better schedules might be produced, at a cost of a more complex

compilation process.

Previous works have proposed distributed or partitioned register files for wide-

issue machines. Whatever organization is used, compilation for these type of

machines is difficult, resulting in severe performance loss if not properly handled.

The Multiflow Trace VLIW machines were commercially available as general

purpose systems in the late 1980s. Configurations capable of issuing up to 28

operations simultaneously were built [66]. The architecture was designed using

clusters of functional unit and distributed private register files. Global shared

buses were used to connect non-local register banks, which increases operation

latencies. The approach used to minimize the amount of data transfer latency is

derived from the Bottom Up Greedy (BUG) algorithm [22]. It is used as a pre-

scheduling step to assign operations to functional units and register banks [66].

The actual latency of an operation is determined by the register bank of the

destination operand. If it is local, no extra delay is necessary. Otherwise, the

functional unit has also to perform a sort of copy operation to access the non-

local register file using the global bus.

Capitanio and others proposed a Limited Connectivity VLIW architecture,

employing distributed register files [14]. Although originally called "partitioned",

this structure is more closely related to our definition of "distributed" register

file. We attribute this denomination conflict to the lack of a widely accepted

classification of register file organizations. The processor in this machine model

is partitioned into clusters of functional units fully connected to a private register

file. Communication between clusters take place through global buses. The com-

piler schedules move operations when non-local register file access is required.

The compilation process uses a three step scheduling process: code is first gener-

ated for an ideal VLIW, assuming a monolithic register file. Then an algorithm

is applied to distribute data among clusters, minimizing a given cost function re-

lated to communication delays. Finally the required move operations are inserted

and the code is recompacted.

The Transport Triggered Architecture (TTA) is a VLIW machine using parti-

tioned register files [50]. No extra copy or move operations are needed, however

the register allocator has to prevent access conflicts due to a limited number of

ports. A conventional register allocator maps architectural registers to machine

17

registers. Further actions must be taken if the number of physical registers is

insufficient. The register allocator for a TTA must also take into account the

limited number of ports. The authors proposed several methods for this task.

Another approach has being reported recently by HP Laboratories [19]. The

target machine is a clustered VLIW architecture, using distributed register files.

The code partitioning strategy can be seen as an extension of the techniques used

by the Multiflow architecture. However, a distinct architecture model allows the

compiler to explicitly schedule copy operations between clusters. The algorithm

distributes operations among clusters, trying to avoid the inclusion of copy oper-

ations in the critical path. This should minimize increases in the schedule length

due to partitioning. Register allocation is also taken into account during the par-

titioning phase, avoiding further complications due to eventually required spill

code.

2.3.4 Other Register File Organizations

Alternative register file organizations have been proposed in addition to the ones

described above. The Cydra 5 was designed as a VLIW machine to achieve high

performance when executing innermost loops [83]. A set of rotating register files

supports the execution of software pipelined loops. The rotating register file is

addressed using an iteration frame pointer (IFP), which is decremented on each

iteration [18]. The result is that a particular register reference actually refers to

a distinct physical register on each iteration. The rotating register file concept

is an effective technique to deal with overlapped lifetimes produced by software

pipelining schedules. However, it does not address access conflicts and register

port requirements, which can be high for wide issue machines. Furthermore, the

Cydra 5 architecture employed a crossbar interconnection among FUs and RFs,

which is not a scalable solution.

The regularity in memory access patterns found in some classes of applica-

tions, like DSP, has motivated the design of other storage structures. Aloqeely

and Chen proposed queues and stacks to store values not requiring random ac-

cess [5]. They are implemented using chains of shift registers. Storage structures

resembling FIFO (first-in first-out) or LIFO (last-in first-out) queues may reduce

the access time and hardware costs. This can be accomplished because there

is no need of address generation and decoding logic to access intermediate po-

sitions. However, those organizations require register allocation schemes more

complex than conventional ones. A similar approach was proposed using circular

queues [9], also using shift registers. This implementation may impose further

18

constraints to the register allocator: values must be written to and read from

fixed physical locations, at the end points of the storage structure. It can he

possible that the first logical value in a queue is not stored in the first physical

location in the queue, requiring extra cycles to perform shift operations. This may

delay the schedule of an operation dependent on that value. This problem can

he tackled using a structure called sequential read-write memory (SRWM) [46].

A register bit is used to control which memory location should be accessed, elim-

inating the need for global shifts of values. These structures have been reported

as more efficient in terms of silicon area and power consumption than the ones

using shift registers [36]. All of those works proposed register allocation schemes

exploiting particular characteristics of the application programs, enabling the use

of the non-conventional RF organizations.

2.4 VLIW Compilation Issues

The ultimate goal of a compiler is to produce code that minimizes the total

execution time of a program (runtime). Compiler optimizations for sequential

RISC processors accomplish this by minimizing the instruction count (number

of operations executed). For ILP processors the correlation between these two

factors is not necessarily the same. Some schemes actually increase the number

of operations executed in order to minimize runtime. Producing code for ILP

architectures requires knowledge of the available parallelism at both software and

hardware levels. This allows the compiler to transform the program in order to

optimize the use of machine resources, reducing the cycle count (number of cycles

to complete the program execution).

Programs are often represented as graph structures, which expose data de-

pendence among operations, and also opportunities for parallelism exploitation.

A target machine model, similar to the actual hardware of the target machine,

should feed the compiler with the available hardware parallelism. A detailed ma-

chine model description [42] may allow the compiler to produce better quality

code. However, this exposes one of the drawbacks of statically scheduled ILP

machines: a new recompilation is required for every distinct configuration of a

given architecture.

Compilers for ILP architectures must find enough parallelism to exploit the

available machine resources. This involves several program analyses and trans-

formations. Some designs focus on optimizing code for numeric applications, of-

ten accelerating loop execution, using techniques such as software pipelining [16].

19

General purpose machines must deal with non-numeric (scalar) code. Although

some attempts have produced acceptable results [32], research is far from com-

plete in this area.

2.4.1 Overview of the Compilation Process

The quality of compiler parallelization techniques can potentially make a differ-

ence of an order of magnitude in the performance of processors exploiting ILP.

In order to parallelize a program, three tasks must he performed by a compiler:

• Analyze the program to determine dependences between instructions.

e Perform optimizations to remove those dependences.

• Schedule instructions to he executed in parallel.

A simplified representation of the phases constituting an optimizing compiler

for a VLIW machine can be seen in Figure 2.7. The front end takes the source

code and performs lexical, syntactical, and semantic analysis [3], translating the

program into an intermediate code. Control and data flow analysis is then per-

formed, providing the information required to apply machine-independent and

machine-dependent optimization techniques [7]. Parallelism among instructions

can be represented by a data dependence graph, which is used by sophisticated

code scheduling techniques. Finally, the code generator produces the object code

for the target architecture. Optimization techniques can interact with each other,

so the order in which they are performed can change significantly the final effect.

For this reason, compiler implementations employing the same optimizations can

adopt a distinct phase ordering.

2.4.1.1 Dependence analysis

Optimizing compilers rely most heavily in a technique called dependence ana-

lysis [8]. A dependence is a relationship between two computations that places

constraints on their execution order. Dependence analysis is used to determine

whether a particular program transformation can be applied without changing

the program behaviour.

Deciding which operations can execute in parallel requires knowledge about

which operations must follow other ones. A dependence exists between two oper-

ations if interchanging their order changes the results. In the following examples

we assume that executing OPi before 0P2 ensures the correct semantics. De-

pendence analysis can he used to verify whether that ordering can he changed.

20

C:~~

E Lexical Analysis

Syntactical Analysis

Semantic Analysis

diatee

E Control Flow Analysis

Data Flow Analysis

ne-Independent Optimizations

petsdence Graph

Machine-Dependent Optirnizations

Code Scheduling

Register Allocation

Code Generation

Figure 2.7: Phases of an optimizing VLIW compiler

Dependences can be one of two types: data dependence and control dependence [8].

Data dependences can be further subdivided into three types:

• True dependence: It is said that 0P2 has a true dependence on Op, if

Op, writes a variable that is read by 0P2. In the following example the

dependence exists because of R 1 , which must he calculated (Opi) before it is

used (Op2). True dependences are due to the program semantics, imposing

a serialization in the program execution. However, a technique called data

value speculation may avoid this constraint by predicting the values that

flow among data dependent instructions [60, 38].

Op, : 	R 1 =R2 *4

Op2: 	R3 =R 1 +5

21

• Antidependerzce: It is said that 0P2 has a antidependence on Opi if 0P2
writes a variable that is read by OPi. This example shows an antidependence

because of R 5 , which must be read (Opi) before it is written over (0p2).
This dependence can he avoided if Op, and 0P2 use two distinct memory

locations for R5 .

Gm: 	R4 =R5 -1

Op2: 	R5 =R6 *2

• Output dependence: An output dependence refers to two operations Opi and

OP2 writing the same variable. The example shows two instructions using

the same variable (R 7), to store the result of both computations. Output

dependences can also be avoided using distinct memory locations.

Op, : 	R7 =R8 +1

Op2: 	R7 =R9 -3

Scalar variable references explicitly refer to a name, with each statement being

executed at most once. This simplifies the dependence analysis process. In loops

each statement may be executed many times, thus a more elaborated dependence

analysis is required. Dependences between operations from the same iteration are

called intra-iteration dependences. Other complex dependences may be found in

loop structures:

• Loop-carried dependence: They occur between operations from distinct it-

erations. If on a given iteration i the loop refers to an element with index

i - k, the dependence distance is said to be k. The following example shows

a simple loop without any dependence within a single iteration. However

there is a dependence between two iterations: OP2 reads a variable (A[i —2])

written by Opi from the second previous iteration. In this case the depend-

ence distance is said to be 2.

Do i=1, 100

OP1: 	A[i] = C[i] + 1

°P2 : 	B[i] = A[i - 2] - 5

• Recurrence. This is a particular form of loop-carried dependence. It occurs

when a variable is defined based on the value of that variable in an earlier

iteration. The following example shows a recurrence with distance 1. In

this case °Pi reads a variable produced by itself one iteration before.

22

Do i=1, 100

Op, : 	A[i] = A[i - 1] + 5

The last type of dependence described refers to the program control flow:

• Control dependence: This type of dependence occurs when a given Op,

determines whether 0P2 should he executed or not. A typical example of a

control dependence is the conditional construct if, as the following example

shows. Control dependences also impose a serialization in the program

execution, which may he avoided with branch prediction schemes [45].

Gm: 	if(R io =5)

OP2: 	then R 11 =

Control dependences can be converted into data dependences, using a trans-

formation called if-conversion [4]. If-conversion can be applied by using pre-

dicated instructions. In this case, an instruction is executed only if the value

of a third operand is equal to zero. A predicated instruction (in pseudo-

assembly) for the above example is shown below. The instruction copies

the contents of register R 11 into R 12 , according to the value of R40 .

CMOVZ R 11 , R 12 , R40

2.4.1.2 Optimizations

Optimizing a program often requires some sort of transformation, which may

involve inclusion, elimination, and reordering of instructions. A compiler must

perform three steps to apply an optimization [7]:

• Decide the region of a program to apply a given optimization.

• Verify that the required transformation does not change the program se-

mantics.

• Transform the program.

Optimizations can he classified into machine-independent and machine-dependent.

They can he further classified into local (within a single basic block) and global

(across basic blocks). A basic block is a sequence of instructions with no branches

into or out of the block, apart from the entry and exit boundaries. The goals

23

of these optimizations are to improve the execution speed and reduce the size of

program. For ILP machines they can also increase the amount of parallelism to

he exploited by the scheduler. Some of the most common machine-independent

optimizations [67] are:

• Constant propagation

• Forward/ Backward copy propagation

• Memory copy propagation

• Arithmetic common subexpression elimination

• Redundant load/store elimination

• Dead code removal

Loop structures can be the most significant factor affecting the total execution

time for many classes of applications [59]. This has motivated the development of

several loop-oriented optimizations [7]. Some of them are machine-independent,

capable of reducing loop overhead, improving register usage and data cache loc-

ality, among other features. A few of them are listed below:

• Invariant code removal

e Global variable migration

• Induction variable strength reduction

• Induction variable elimination

Machine-dependent optimizations take into account hardware resources of the

target machine to make program transformations to further expose parallelism

and exploit efficiently machine resources. The following are included among these

optimizations:

• Static branch predication

• Speculative Execution

• Loop unrolling

• Loop interchange

• Loop distribution

• Software pipelining

24

2.4.2 VLIW Scheduling

Scheduling algorithms can be classified into three types [84], according to the

control flow graph of the region being scheduled:

. Local scheduling

• Global acyclic scheduling

• Global cyclic scheduling

2.4.2.1 Local scheduling

This class of algorithms work with a single basic block at a time. A number of

efficient techniques have been proposed to schedule basic blocks. One of the most

popular is list scheduling [2], a scheme that schedule operations according to a

given priority list, such as highest-level-first. However, local schedulers have a

fundamental problem that prevents them from being used effectively with ILP

machines: the size of a basic block. Several studies have confirmed that on

average the size of a basic block ranges between 5-20 operations, limiting the

possibilities of parallelism exploitation. It has been found that limiting parallelism

extraction to a single basic block would yield a maximum speedup between two

and four [94, 59], an unacceptable limitation for wide-issue VLIW machines. For

this reason high performance can only be achieved if ILP is exploited across

multiple basic blocks.

2.4.2.2 Global Acyclic Scheduling

Global scheduling operates on multiple basic blocks simultaneously, identifying

windows of operations to be scheduled. A window is typically composed by entire

procedures or regions from a procedure [86]. Global acyclic scheduling selects

regions with no back edges in the control flow, a structure typically found in

loops. Doing so they target mainly the loop-free stretches of code prevalent in

many general purpose programs. Possibly the most well known algorithm of this

class is trace scheduling [32]. A trace scheduler selects regions of code that could

be taken according to the output of branch operations. These regions are then

scheduled as if they were a single basic block. The larger the size of a region

the better the possibilities of finding parallelism. However there is an implicit

trade-off: a large region requires a long compilation time, and may also result in

inefficient schedules due to wrong paths speculatively taken. Traces are scheduled

according to their execution frequency, which can he determined using profile

25

information or static branch prediction. The scheduler attempts to optimize

the execution time of frequently executed traces, at the expense of the least

frequent ones. The insertion of compensation code might be necessary in order

to correct the outcome of wrongly executed paths. That may generate excessive

code replication, resulting in code size explosion. A detailed implementation of

thisalgorithm can be found in [22].

Superbiock Scheduling is an algorithm derived from trace scheduling [49]. A

superblock is a trace without control entries into it, except at the top, although

it still allows intermediate exit points. Intermediate entry points are eliminated

using tail duplication, a technique that creates a copy of the trace below the entry

point, redirecting the control path to it if necessary. Each trace in a superhlock

is scheduled using list scheduling.

Hyperbiock Scheduling also create structures with a single entry at the top,

and possibly multiple exits [68]. The control flow is if-converted [4] to remove

control dependences, resulting in a code with a single entry point and multiple

exits. Then list scheduling is performed, followed by reverse if-conversion. The

later may result in code size explosion, as portions of the schedule in which m

predicates are active yield 2m versions of the code.

2.4.2.3 Global cyclic scheduling

Algorithms of this type use basic blocks taken from multiple iterations of a loop

structure. Efficient schemes have been proposed to perform cyclic scheduling of

numeric applications, as most of their execution time is often spent executing

loops. Trace scheduling [32] can also be used to schedule loops. In this scheme

back edges in the loop control flow graph are eliminated by performing loop

unrolling [20] of the loop body. Although effective, this strategy can generate

code size explosion, and also inefficient processing at the start and end points of

each series of unrolled iterations. Other acyclic scheduling algorithms can also be

used in a similar way, however they also show this limitation.

A scheme specially developed to schedule loop structures for ILP machines is

software pipelining [16]. The concept is similar to a hardware pipeline: successive

iterations start before previous ones have completed. This is possible because the

execution of operations from distinct loop iterations is overlapped, taking advant-

age of the available hardware parallelism. Software pipelining algorithms have to

deal with machine resource constraints and data dependences among operations

in the loop body. In this context, generating optimal schedules of loops with

arbitrary data dependence graphs is known to he a NP-complete problem [54].

26

Optimal schedules can be generated using integer linear programming, a tech-

nique that employs precise definitions of objectives and constraints of the sched-

ule. Some techniques assume the use of unlimited machine resources [35]. Others

are realistic enough to model resource constraints and minimize register require-

ments [39]. Although very effective to find the best possible schedule, the com-

plexity of methods based on integer linear programming prevent them from being

used in production compilers. However, they can be a valuable tool to evaluate

the effectiveness of other approaches.

Software pipelining algorithms of practical use must rely on heuristics to pro-

duce near-optimal solutions in most of the cases. Modulo Scheduling is class of

software pipelining algorithms targeting innermost loops. A basic schedule of one

single iteration is generated, which is issued at fixed intervals, called Initiation

Interval (II). The basic schedule is structured in order to preserve data depend-

ences among operations, even if the II is much smaller than the basic schedule

length. During the steady state a new iteration starts and another one finishes

every II cycles. The basic schedule must adhere to the modulo constraint:

When the basic schedule is initiated at II intervals no machine resource
should be oversubscribed. It should he noticed that an operation
holding a given resource at cycle c will hold the same resource at
regular intervals c + II. This is equivalent to saying that the resource
is required every c mod II cycles, with mod denoting the modulo
operator.

The minimum initiation interval achievable is based on two factors:

• Machine resources required by the computations of one iteration of the loop

body. These resources are functional units, buses, and register file ports,

among others.

• Recurrence circuits in the loop data dependence graph. A recurrence occurs

when a given operation has a direct or indirect dependence upon the same

operation from a previous iteration.

The first approach to modulo scheduling was proposed in [80]. This algorithm

was targeted at machines with simple resource usage patterns and loops with no

recurrence circuits. An extension of this algorithm, able to deal with complex re-

currences and machine usage patterns, is Iterative Modulo Scheduling (IMS) [79].

Like several other modulo scheduling algorithms, JMS uses a variation of list

scheduling to produce the basic schedule of one iteration. The algorithm allows

27

backtracking (unschedule and reschedule of operations) to deal with the extra com-

plexity involved. Loops with arbitrary control flow can also be scheduled using

if-conversion [4], as long as hardware support is available. A detailed description

of this algorithm is shown in Section 3.3. This approach can also be used to deal

with further constraints: Slack scheduling, for instance, incorporates heuristics to

shorten lifetimes, which helps to minimize register requirements [48].

An algorithm proposed by Lam uses a hierarchical reduction scheme to con-

vert code fragments containing control constructs into single nodes [54]. This

allows control flow structures to be modulo scheduled without special hardware

support for predicate execution. This work also proposed a new optimization

called modulo variable expansion (mve). The technique allows register allocation

to be performed without any special hardware support, such as rotating register

files [18].

Another technique, called swing modulo scheduling, produces efficient sched-

ules in terms of initiation interval, stage count and register requirements [63]. It

also compares favourably against other schemes in terms of complexity, requiring

low compilation time.

Loops with conditional branches have been the topic of some research work [18,

54]. As schedules presenting a single II can be inefficient according to the path

taken at run time, algorithms to generate schedules with different II have been

proposed [91, 97]. Finally, an attempt to use modulo scheduling efficiently with

non-numeric applications is reported in [57].

2.4.3 Register Allocation

Optimizing compilers of the 1990s usually perform register allocation using ef-

ficient techniques such as graph coloring [15]. Ideally, the number of available

registers should he enough to keep all the live values in on-chip storage. If that

is not the case, some values should be stored in the main memory and reloaded

when required, a process called spill code [11]. However, the difference in access

times between registers and main memory can be very high. For this reason,

spill code should he minimized or completely avoided in order to achieve high

performance levels.

In conventional (sequential) processors, register allocation might be a more

important step than instruction scheduling. As there is no parallelism involved,

the performance is determined by the number of operations executed, and not

the ordering among them. One factor that could compromise the performance is

an insufficient number of registers [15]. For this reason, register allocation was

28

regarded as a more important step, and usually performed before scheduling in

early compilers. However, for multiple-issue microprocessors the phase ordering

between these two steps is not a clear choice [84]. Performing register alloca-

tion before scheduling may minimize the use of spill code. However, this might

result in the introduction of unnecessary edges in the data dependence graph to

he scheduled, preventing parallelism exploitation. The alternative is to perform

register allocation after scheduling, at the expense of possible excessive spill code.

For statically scheduled processors this can result in a severe performance pen-

alty. Situation may arise when the entire processor has to stall to perform a single

memory access.

Multiple-issue machines already strive to find ILP among operations, so ex-

tra dependence constraints should be avoided [94]. On the other hand, these

machines can generate high register pressure [69]. Both phase-ordering alternat-

ives above described can potentially result in performance degradation. For this

reason some sort of cooperation between these two tasks has been suggested [73].

Some approaches have adopted a multi-pass procedure: pre-scheduling, register

allocation (introducing spill code if necessary), and final scheduling [66].

Performing register allocation before modulo scheduling a loop can place un-

acceptable constraints in the scheduler [81]. For this reason it is often performed

after the scheduling phase. In the Cydra 5 machine a failure to allocate registers

would result in incrementing the II and completely rescheduling the loop [18].

Dealing with the issue of overlapped lifetimes imposes further complications in

the process, requiring non-conventional techniques. This can be addressed using

rotating register files [18], which implements in hardware a sort of register. re-

naming scheme transparent to the compiler. If hardware support is not available,

modulo variable expansion (mve) can be used [54, 81]. In this case the code of

the loop body must be unrolled a number of times to ensure that no lifetime is

longer than the replicated kernel. Register allocation for modulo scheduled loops

is described in detail in [81].

2.4.4 Code Generation

The generation of modulo scheduled code is affected by a number of issues: if

the program structure is a do-loop or while-loop, the type of hardware support

provided, whether the loop has live-in or live-out scalar variables, and the register

allocation scheme employed. Distinct schemes can be used according to these

factors, with variable implications in performance and code size [82].

The first and last few loop iterations are scheduled in the prologue and epilogue

29

stages, and could also he the only ones for loops with small iteration counts.

Dealing with them requires a mechanism to enable the execution of subsets of the

kernel code, as the instruction pipeline is not completely filled in those stages.

Using a rotating register file along with support for predicate execution allows the

implementation of a scheme called kernel-only code [82]. In this case a single copy

of the kernel is sufficient to execute the entire modulo scheduled loop, preventing

code size explosion.

Generating code using a machine with a conventional register file may require

the use of mve [54]. The drawback of this technique is the possibility of code

size explosion, which can result in a high frequency of instruction-cache misses.

This can be avoided using a rotating register file [18], or any other scheme able

to perform a sort of dynamic register renaming.

2.5 Commercial VLIW Machines

The first VLIW processors built were the so-called attached array processor, of

which the best known were produced by Floating Point Systems.[84]. The next

generation of products were the minisupercomputers Trace and Cydra. A growing

interest in VLIW architectures has been shown in the late 1990s, particularly

for specialized applications such as DSP and multimedia [23]. New products

employing this technology have been released by Philips and Texas Instruments,

among other companies.

Multiflow Trace computers were produced from 1984 to 1990. They were

offered as general purpose machines, relying on a trace scheduling compiler to

find ILP in a large class of applications [66]. Although successful in finding par-

allelism in systems applications, compilation time limitations made the machine

best suited for scientific code. The machine was organized into clusters of func-

tional units and register files, with issue-rate ranging from 7 to 28 instructions

per cycle.

Cydra 5 was a mini supercomputer developed by Cydrome between 1984 and

1988. It was designed to serve high-performance scientific computing [18]. It

can he seen as a heterogeneous multiprocessor system [83]. Interactive processors

are responsible for all non-numeric computations such as operating system, com-

pilation, I/O, etc. In addition, a numeric processor is used to execute scientific

computations. The numeric processor was implemented as a VLIW architecture

with seven functional units, using software pipelining scheduling techniques [18].

Trimedia is a family of programmable multimedia processors from Philips

30

Semiconductors. TM-1000 is the first product from this family, designed to con-

currently process video, audio, graphics, and communication data. The archi-

tecture is based upon a high performance VLIW CPU core [76], consisting of

27 functional units. However, only 5 instructions can be issued simultaneously,

mainly due to a limited number of register file ports (15 read and 5 write ports).

Hardware support to implement guarded instructions is exploited by the compiler

to eliminate branches, and thus increase ILP identification.

Texas Instruments Veloc]Ti is a VLIW architecture. The TMS320C601 is

DSP processor from this family [89]. Its CPU has 8 independent functional units

running at 200 MHz. The CPU has two identical data paths with four functional

units each. Each data path has a register file with 10 read and 6 write ports. A

cross path allows read operations from the other register file. The compiler for

this architecture performs software pipelining and loop unrolling, among other

optimizations.

31

Chapter 3

Basic Experimental Framework

This chapter describes the basic structure of the experimental framework used

to develop the VLIW architecture proposed in this thesis. We have adopted a

hardware/software codesign methodology [34], to develop a machine model and

compilation techniques to accelerate the execution of loop intensive applications.

Results and conclusions obtained from experimental analysis have supported all

stages of the project. The framework organization reflects the main research

topics in which work was, conducted to complete the thesis, as listed below:

• VLIW architectures

• Modulo scheduling

• Register allocation

The basic input to the experimental framework is an innermost loop, repres-

ented by operations and the corresponding data dependencies information among

them. The output produced consists of a modulo schedule, performance and ma-

chine resources analysis. This information is used to guide further improvements

in hardware or software aspects, restarting the process shown in Figure 3.1.

The framework was implemented using the C++ language and the LEDA

library routines [70], which are particularly useful for graph manipulation. This

chapter describes only those aspects which are common to all the experiments

reported. Additional capabilities are introduced in the relevant chapter, such as

new register file organizations and heuristics for the scheduling algorithm. The

next sections present a detailed description of the components of the experimental

framework.

32

Input
(Loops)

Codesign Process

[_Machine
Model_IJ

[Modulo Scheiule1.1J 	
[Register Allocator)

Output

Figure 3.1: Hardware/ Software codesign process

3.1 Machine Model

The machine model used by the experimental framework consists of a collection of

two basic components: functional units and register files. The framework provides

enough flexibility to change some characteristics of these elements, allowing dis-

tinct machine configurations to be considered.

3.1.1 Functional Units

We call a functional unit (FU) an element of a microprocessor data-path capable

of performing actual computations or memory access operations. Modern micro-

processors use a technique called pipelining to implement functional units [45]. A

pipeline is similar to an assembly line, in which a task is subdivided into simpler

subtasks. Although an operation requires the completion of all steps in succes-

sion, the pipeline can work on distinct operations in parallel. Depending on the

pipeline organization, it is possible to have as many operations simultaneously in

flight as the number of pipeline stages. We assume the use of a register-register

architecture [45], which implies that memory access can only he made through

load and store operations. For any other operation, the destination and source

operands are stored in the on-chip register file. A simplified organization of a

pipeline can be seen in Figure 3.2, showing the five main stages of a pipeline:

33

Instruction Fetch (IF) : Fetch an instruction from memory into the instruc-

tion register.

Instruction Decode/Register Fetch (ID) : Decode the instruction and read

the input operands from the register file. These operations can be done in

parallel.

Execution (EX) : Execute an instruction, which can be an ALU (arith-

metic and logic unit) computation, memory address calculation, or branch

operation.

Memory Access (MEM) : Access to memory (usually cache) is performed

at this stage, as specified by load and store operations. It also updates the

PC (program counter).

Write Back (WB) : Write the result into the register file.

Pipeline Stages

IF 	ID 	EX MEM WB

Figure 3.2: Generic organization of a microprocessor pipeline

Each pipeline stage, except execution, takes one cycle to complete. Thus, the

machine cycle may be determined by the slowest of those pipeline stages. Real

implementations may adopt other organizations, combining or further subdividing

stages to allow a shorter cycle. The interested reader can refer to [45] for a detailed

discussion on pipelining techniques, as it is outside the scope of this thesis.

We define the latency of an operation as the total number of cycles required

to issue, execute, and make the result available for use. It is possible for a

functional unit to execute more than one type of operation, each of them possibly

requiring distinct latencies to complete. RISC and VLIW processors usually use

a technique called bypassing [1]. Bypassing allows forwarding operands directly

from the producer to the consumer operation. Doing so, it is possible for an

operation to use a value before it has actually been written in the register file.

Real implementations have separate FUs to perform integer and floating point

operations. For the sake of simplicity our machine model uses the same FUs to

perform both types of operations. We consider four types of functional units:

34

• L/S: Executes memory load and store operations, transferring values between

the main memory and the register file.

• ADD: Adder unit, executing addition, subtraction, type conversion, condi-

tional branch, compare, const (load immediate), and absolute operations.

MUL: Multiplier unit, executing multiplication, division, square root and

modulus operations.

• COPY: Auxiliary functional unit, used to duplicate and move values between

register files. It is capable of reading one value from a register file and

writing it hack to one or two other register locations. Specially designed to

support architecture features as defined in Sections 4.2 and 7.2.

All functional units are fully pipelined, being able to start a new operation at

any cycle. Operations may have distinct latencies, as shown in Table 3.1. This is

due to the pipeline execution stage, which consists of one or more stages, according

to the instruction being executed. Those latencies do not include the first two

pipeline stages as they are common to all operations and do not appear on the

critical path, except after a misprediction. The presence of bypassing hardware, to

forward results before the write-back stage, is assumed. Throughout this thesis

we use the term standard when referring to the functional units usually found

in other microprocessors: L/S, ADD, and MUL. Although performing a simple

operation, the Copy FU is not included in that group as it has been specially

designed for this architecture.

In order to consider memory operations (loads and stores) with fixed latency,

we assume a perfect cache hit ratio. Hence we have not considered as yet a

memory system coupled with the set of functional units and register file. It is

well known that providing the required memory bandwidth for a large number

of functional units is one of the main issues in the design of high performance

microprocessors. However, the issues addressed by this work are scheduling and

register file organizations. Designing an efficient memory system is a problem

common to most architecture designs, thus we have avoided increasing the level of

detail at this stage of the work. Furthermore, current technology trends indicate

the future possibility of building systems integrating powerful processors and

main memory on a single chip [53]. This might address some the issues posed by

wide-issue VLIW machines.

35

Functional Unit Instruction Latency Issue Interval

L/S Load 2 1
L/S Store 1 1

ADD Addition 3 1
ADD Subtraction 3 1
ADD Conversion 3 1
ADD Branch 1 1
ADD Compare 1 1
ADD Const 1 1
ADD Absolute 1 1

MUL Multiplication 4 1
MUL Division 17 1
MUL Modulus 17 1
MUL Square root 30 1

COPY Copy values 1 [_1

Table 3.1: Functional unit characteristics

3.1.2 Local Register File

As mentioned earlier, the ideal VLIW machine has a number of concurrent FUs,

connected to a register file able to perform two reads and one write operation

per functional unit in each cycle [14, 21]. The simplest design option is to use a

multiported register file with R read ports and W write ports, an organization

called a monolithic register file (Section 2.3.2).

In this basic version of the experimental framework we assume that all func-

tional units are connected to a monolithic register file, called the local register file.

It should provide the bandwidth required by the functional units (Section 3.1.1).

Specifically, most FUs require 2 read and 1 write ports. The only exception is

the COPY functional unit. which requires 1 read and 2 write ports, as shown in

Table 3.2.

Functional unit Read Ports
I

Write Ports

L/S 2 1
ADD 2 1
MUL 2 1
COPY 1 2

Table 3.2: Register file access port requirements

Wo

3.1.3 Unclustered Machine

The first machine model built in the experimental framework comprises a number

of functional units connected to a monolithic register file, using the components

described in Sections 3.1.1 and 3.1.2. We call this hardware organization an

Unclustered Machine. As an example, a simple VLIW unclustered machine could

be organized using 1 L/S, 1 ADD, and 1 MUL functional unit, as shown in

Figure 3.3. The local register file requires 6 read and 3 write ports.

D Lis ADD MUL S' C'
 il

Local Register File

Figure 3.3: VLIW unclustered machine

This organization is the natural choice of design to implement a VLIW ma-

chine. It can be seen as a direct extension of a superscalar processor, without some

of its complexities. Although it works well for a moderate number of functional

units, it presents scalability problems, as previously discussed. We have used this

basic architecture for comparison purposes with the new machine organization

proposed in this thesis.

3.2 Workload

An innermost loop is the basic input to the experimental framework. All eligible

innermost loops from the Perfect Club Benchmark [10] that are suitable for software

pipelining are used. The total number of selected loops is 1258. They were

obtained using the ICTINEO compiler [6], which performed all data dependencies

analysis and optimizations necessary to use modulo scheduling techniques. The

compiler generates information regarding loop operations and data dependencies.

These are in turn taken by the experimental framework, which reconstructs the

corresponding data dependence graph (DDC) to he used by the modulo scheduling

algorithm (Figure 3.4).

37

Ictineo Compiler
	 Experimental Framework

Source Code
(Perfect Club)

r Front End

	 I
Codesign Process:

[

Optimizations j
	

Machine Model

II 	 Modulo Scheduler

r Dependence

L Analysis

pDG1

Register Allocator

[Register Alloction &

Instruction Scheduling

Figure 3.4: Extracting loops from the benchmark

3.2.1 Perfect Club Benchmark

The Perfect Club Benchmark [10] is composed of 13 programs, containing approx-

imately 60,000 lines of code written in Fortran-77. They are numeric intensive

programs selected from science and engineering applications. Only loops without

subroutine calls and without conditional exits were selected. Although some tech-

niques have been developed to deal with early exits [57], using them is out of the

scope of this thesis. The selected 1258 loops represent 78% of the total execution

time of the benchmark, when executed on a HP-PA 7100 computer [61]. The

data in Table 3.3 shows the number of loops extracted from each program in the

benchmark. It also shows the fraction of the total execution time spent in those

loops.

Those loops present a varied instruction mix, including all the instructions

listed in Table 3.1. However the static instruction count reveals that four in-

38

Program 	11 No. Loops Execution Time - %
ADM 151 79
SPICE 57 9
QCD 90 43
MDG 31 62
TRACK 49 30
BDNA 152 69
OCEAN 74 97
DYFESM .104 98
MC3D 80 70
ARC21) 139 95
FL052 81 92
TRFD 25 97
SPEC77 F 	225 85

Total 	11 1258 78

Table 3.3: Loops extracted from the Perfect Club benchmark

structions are responsible for about 96% of the total instruction count, as seen

in Table 3.4. This analysis was used to define the type and characteristics of the

functional units employed by the machine model.

Instruction Static Count - %
Load 21
Store 15
Addition 24
Multiplication 36

Total 96

Table 3.4: Instruction mix of the selected loops

3.2.2 Selection of Loops and Compiler Optimizations

As already said, the loops used by the experimental framework were extracted

using the ICTINEO compiler [6], a research tool developed at The Universital

Politeenica de Catalunya. It performs a number of optimizations, including the

following:

• Constant value propagation

• Common subexpression elimination

39

• Strength reduction/ Induction variable recognition

• Dead code removal

• Invariant removal

• Privatization

• Interprocedural analysis

All loops suitable for modulo scheduling [79] are identified. Then if-conversion [4]

is performed to eliminate conditional structures from the loop body. In addition,

sophisticated data dependence analysis is performed in the innermost loop. This

includes symbolic analysis of array subscripts, a technique capable of identifying

loop-carried dependencies. A dependence graph is produced containing inform-

ation about the operation associated with each node, and two edge attributes:

dependence type and dependence distance. These attributes are described in Sec-

tion 3.2.3. Information regarding loop invariant lifetimes is also supplied, which

is required to estimate register requirements.

3.2.3 Data Dependence Graph

A data dependence graph (DDG) can be used to represent the dependencies among

loop operations. Let the data dependence graph be represented by DDG(N; E),

where N is the set of nodes and E is the set of directed edges. Each node v E N

represents an operation in the loop body. Each edge e = (u, v) E E represents

a dependence between two operations u, v. It is said that 'u is the source (prede-

cessor), and v is the target (successor) operation. The target operation depends

on the source operation, as discussed in Section 2.4.1.1. The number of edges

leaving a node u is called out-degree(u). The number of edges entering a node u

is called in-degree(u).

There are two attributes associated with each edge e: A, and 8e The first

one, \e, is the number of time units the source operation u takes to execute, also

known as the delay. The second attribute, 6e represents the dependence distance

between them, as defined in Section 2.4.1.1.

A circuit in the data dependence graph indicates the existence of a recurrence.

Every operation on a recurrence circuit must all he part of the same strongly

connected component (SCC). A SCC is the largest sub-graph of the DDC such

that a path exists from every node to every other node. Subdividing a DDG into

5CC can he useful to reduce the computational complexity of some procedures

usually found in optimizing compilers, reducing the compilation time.

The example in Figure 3.5 shows an innermost loop (a) and the corresponding

machine operations (b). The data dependence graph (c) represents the required

order of execution of those instructions. Each edge has a pair of values, repres-

enting the delay and the distance of each dependence, respectively. The delay

refers to the latency of the functional unit executing the source operation. In this

example we use the values as defined in Table 3.1. The only dependence distance

that is not equal to zero is the one originating in node E. It enforces that the

load operation (node A) starts executing only after the completion of the store

operation (node E) from one previous iteration.

a) Original Loop 	 C) Data Dependence Graph - DDG

Doi=2,N

A[i] = (A[i-1} + B[i]) * 5

b) Machine Operations

A: Load A[i- I]

13: Load B[i]

Add

Mul

Store A[i]

Loa
B

d

Figure 3.5: Innermost loop and data dependence graph

3.3 Modulo Scheduling Algorithm

This section describes the implementation of the code scheduling process adop-

ted by the experimental framework. The core algorithm used is Iterative Modulo

Scheduling (IMS) [79]. A number of intermediate code optimizations are performed

by the ICTINEO compiler [6] before an innermost loop can be modulo sched-

uled. These include the elimination of redundant loads and stores, if-conversion

of branches, and minimization of anti- and output dependencies. Other possible

optimizations depend on the hardware support available. A more detailed dis-

cussion of this issues can he found in [79].

41

Given a data dependence graph DDG representing an innermost loop, the

code scheduling process is summarized by the Algorithm 3.1. The first step cal-

culates the minimum initiation interval, which will he used in the first invocation

of the IMS algorithm. If the algorithm fails to find a valid schedule, the II is

increased and IMS is reinvoked. This process is repeated until a valid schedule is

found.

The schedule of a single iteration can be divided into stages of II cycles each.

The number of stages in one iteration is called stage count (SC). During each

of the first (SC-1) stages, a new iteration starts without the first one having

ended yet. This phase is called the prologue. From the SC-th stage onwards,

one iteration starts and another one finishes every II cycles, a phase called the

kernel or steady state. The last (SC-1) do not start any new iteration, but only

execute instructions from the last iterations started during the kernel phase. This

phase is called the epilogue. The last steps of the scheduling algorithm consist

of generating code for the prologue and epilogue phases. The code for these

stages can he directly derived from the kernel code produced by IMS. As already

said, the scheme called kernel-only code prevents code size explosion, however it

requires hardware support for both predicated execution and register renaming

of loop variants (such as rotating register files or an equivalent scheme). In this

work we assume the existence of the required hardware support, thus kernel-only

code is generated.

Algorithm 3.1 Modulo Scheduling

Schedule(DDG)
Calculate_ MII(MII)
/ Initialize II to the Mu /
11= Mu
completed = 0
/* Perform IMS until a valid schedule is found /

/* If necessary, increase the II */
While (not completed)

completed= IMS(II)
If (not completed)

11= II + 1

}

Generate Prologue
Generate Epilogue

42

3.3.1 Minimum Initiation Interval - MIT

The minimum initiation interval, Mu, is a lower bound on the smallest possible

value of II for which a modulo schedule exists. The MH can be calculated by

analysing the DDG representing the computations of the loop body. One lower

bound is derived from the resource usage requirements of these computations,

ResMil. The other one, RecMII, is defined according to the latency of recurrent

circuits in the DDG. The MH must be equal to or greater than both lower bounds,

being calculated using Algorithm 3.2.

Algorithm 3.2 Calculate Mu

C alculat eJVII I (MI!)
/ Based on machine constraints /

Calculate_ ResMII(ResMII)
/* Based on recurrence constraints /

/ Start with the minimum acceptable value, to reduce the compilation time /

candidate= ResMil
completed = 0
While (not completed) {

completed= Calculate_RecMII(candidate)
/ Candidate MIT too small /

If (not completed)
+ +candidate

}

RecMII= candidate
/* Based on both machine and recurrence constraints /

MII= max(ResMII, RecMII)

3.3.1.1 Calculating ResMil

The ResMilis calculated by totalling the usage of machine resources required by

one iteration of the loop. In this experimental framework we take into account

only the usage of functional units, to calculate ResMil. Thus the most heavily

used FU determines the ResMil, which can be calculated using Algorithm 3.3. As

we are assuming the use of fully pipelined functional units, each operation holds

a FU during one cycle only. The II must be an integer, so the value calculated

for ResMiJis rounded up to next integer.

43

Algorithm 3.3 Calculate ResMIl

Calculate...ResMII(ResMII)
/* Compute the number of operations to be issued by each type of FU /
forall FU of type i do

usa ge[i]= 0
forall operation u E DDC {

if u uses FU of type i
+ +usage[i]

}

ResMII= 0
forall FU of type i do {

1* Compute the number FUs of each type /

resource-count = number of EUs of type i
1* M11 based on a given type of FU /

r 	usage[i] = resource-count
]

if (candidate > ResMIl)
ResMII= candidate

}

3.3.1.2 Calculating RecMII

The RecMllimposes a lower bound on the II due to recurrence circuits in the loop

DDG. A loop contains a recurrence if an operation in one iteration has a direct

or indirect dependence upon the same operation from a previous iteration. An

elementary circuit in a DDC is a path through the graph which starts and ends

at the same node, and which does not visit any vertex on the circuit more than

once. An elementary circuit c indicates a recurrence in the DDG. Let delay(c) be

the sum of the delays along the circuit c, and distance(c) the sum of distances.

It can he said that delay(c) is the minimum time interval between the issue of

an operation on the circuit, and the same operation distance(c) iterations later.

Considering that all iterations have the same schedule, only delayed by II cycles,

the elementary circuit imposes the following lower bound on the II:

delay(c) 	II x distance(c) 	 (3.1)

The RecMIIis determined by considering the worst-case across all elementary

circuits in the DDC. We have adopted the approach proposed in [48] to determine

44

the RecMII. The algorithm ComputelklinDist calculates, for every pair of oper-

ations (u, v) E DDG, the minimum time interval between the schedule of both

operations from the same iteration (Algorithm 3.4). The main data structure of

the algorithm is the matrix MiriDist[u, v]. An entry [u, vi specifies the minimum

time interval between operations u and v. If there is no path from u to v in the

DDG, the value of entry [u, vJ is set to -. If MinDist[n, u] is positive for any

u, it means that u must be scheduled later than itself, which is impossible. This

indicates that II is to small. If all diagonal entries are negative, it indicates a slack

around all recurrence circuits, resulting from a II higher than necessary. The goal

of the algorithm is to find the minimum II for which there are no positive entries

and at least one entry equal to zero in the diagonal.

Algorithm 3.4 Calculate RecMII

Calculate.RecMII(candidate)
11= candidate
/* Initialize the distance matrix with the minimum delay /

/* between pairs of dependent operations tt and v

forall operation u E DDG {
forall operation v E DDG {

MinDist[u,v]= —00

forall edge e(u,v) E DDC
MinDist[n,v]= max(MinDist[u,v], (> - 11 X Se))

}

}

/ Now consider all possible paths via an intermediate node w

forall operation w E DDG {
forall operation u E DDG {

forall operation v E DDG
dist= MinDist[u, w] + MinDist[w, v]
if (dist > MinDist[u,v]) {

MinDist[u, v]= dist
1* Candidate II too small-that would result in a impossible /

/ constraint: a scheduling delay between the same operation /

if (u==v) and (dist > 0)
return 0

}

}

}

return 1

The algorithm complexity is O(iV 3), which is expensive for DDC with a large

number of nodes. This problem can be minimized if small subsets of the DDG

45

are used. The RecMII can be calculated for each strongly connected component

of the graph. The highest value computed determines the RecMII of the DDC.

This strategy is used by the experimental framework to optimize the algorithm

running time. Several algorithm executions may he necessary until the RecMIIis

found. The first invocation uses ResMIIas a candidate RecMII. This is acceptable

as we are interested in finding the JVIII, and not the actual RecMII.

3.3.2 Iterative Modulo Scheduling - IMS

Iterative modulo scheduling uses a goal-directed search for a legal schedule at

the candidate II. The strategy employed is similar to list scheduling using height-

based priorities [2]. However, it is possible that a partial schedule results in a

dead-end state. In this case no additional operation can be scheduled, unless

the II is increased, which should be avoided as much as possible. IMS tries to

break dead-end states using backtracking: previously scheduled operations are

ejected from the partial schedule. Backtracking allows the scheduling process to

resume from a different path in the search for a valid schedule. Those unscheduled•

operations will be rescheduled, possibly in a distinct slot from the previous one.

Repeatedly scheduling and rescheduling operations lends the term iterative to the

algorithm [79]. If the search for a valid schedule fails after a large number of steps,

it is assumed that no solution exists for the candidate II. When this happens, the

II is increased and IMS reinvoked. The number of scheduling steps attempted

before increasing the II is controlled by a parameter called budget. We have used

a budget equal to three times the number of operations in the DDC. This was

based on an evaluation published in [79] and also our own observations. During

the early stages of this research work we tried using smaller and larger values

for the budget parameter. A smaller budget sometimes resulted in unnecessary

increase of the II. On the other hand, in most of the cases increasing the budget

was not effective to avoid increasing the II, only causing compilation delays due

to additional backtracking. The Algorithm 3.5 describes the main steps of IMS,

followed by a detailed description of those steps.

IMS uses a structure called Modulo Reservation Table (MRT) to keep track

of machine resource usage during the scheduling process [54, 79]. MRT records

when a particular resource is in use by an operation at a given cycle. As already

said, this experimental framework only keeps track of FU usage. Thus each FU

of the machine model has a total of II reservation slots, as seen in Figure 3.6.

This simple representation is possible because of the modulo scheduling nature:

an operation holding a given resource at cycle c will hold the same resource every

II cycles. Thus the MRT needs to be only II long. As operations are scheduled,

the corresponding slots are marked as used. Scheduling an operation in a given

cycle is legal only if it does not result in an attempt to use a slot more than once.

MRT for 11=5

US ADD MUL

used used

used

used

used

Figure 3.6: Modulo Reservation Table

Algorithm 3.5 Iterative Modulo Scheduling

IMS(II)
budget= 3 x (No. operations in DDG)
Create-Priority-List(List)
While (List not empty) and (budget > 0) {

Get (List, OP)
/ mintime is the earliest start time for OP according to /

/ * currently scheduled predecessors */

mintime= Earliest-time(OP)
1* Select a valid slot *1
slot= Find_Slot(OP, mintime)
/* According to the slot chosen, unschedule all operations due to /

/ * resource and dependence conflicts with scheduled successors

Backtracking(OP, slot)
Schedule(OP, slot)
1* Keep track of machine resources usage /

Update MRT
Remove (List, OP)
budget= budget-1
If (List is empty)

Return 1
If (budget == 0)

Return 0

}

47

3.3.2.1 Creating a priority list

IMS uses a height based priority function [2] to define the order in which opera-

tions are selected for scheduling. An operation with higher priority than another

means it has less scheduling options to prevent lengthening the schedule. Further-

more, the height-based priority defines a topological sort in which a predecessor

operation will have higher priority than all of its successors.

A sorted priority list can be built using Algorithm 3.6. It assumes that two

pseudo-operations, Start and Stop are included in the DDC. These operations are

never scheduled, being only used to support the strategy to deal with recurrences

in the DDC. Start and Stop are respectively made predecessor and successor of

all original operations in the DDC. In order to deal with recurrence cycles, the

strong connected components of the DDG are identified. Doing so, each SCC can

be viewed as a super-vertex, resulting in a acyclic graph. Creating a priority list

involves a successive calls to the function HeightR (Algorithm 3.7), using the Start

operation as the first argument. Every operation is assigned a priority, based on

the distance to the Stop operation. Finally, the list of operations is sorted in

decreasing order of priorities.

Algorithm 3.6 Create Priority List

Create-Priority-List (List)
/* Identify cyclic regions of the DDG /

IdentifySCC(DDG)
/ Initialize operations for the graph traversal process

forall operation OP E DDG {
priority[OP]= - 00

visit ed[OP]= false
Include(List, OP)

}

/ Start graph traversal /

HeightR (S TART, List)
/* Sort operations in descendent order of priorities /

Sort (List)

The procedure HeighiR computes, for each operation OP, the longest path

from OP to the end of the graph, a Stop operation with priority zero. The

height of operations not belonging to a recurrence circuit is computed in a post-

order fashion, by means of a depth-first search (DFS) of a tree rooted at the

Start operation. On the other hand, dealing with SCC requires to keep track

of the first vertex (root) visited of each SCC. To facilitate this, the vertices of

an SCC are collected on a stack during the DFS traverse of the DDG. Once

all operations belonging to a SCC have been visited, a call to the procedure

FinalizeSCC (Algorithm 3.8) computes the corresponding priorities.

Algorithm 3.7 Compute Height

HeightR(OP, List)
visit ed[OP]= true
if OP has no successor

priority[OP]= 0
else {

/ DFS traversal /

forail successor of OP {
if (visited[successor] == false) {

HeightR (successor, List)

}

priority[OP]= Max (p riority[OP], (priority[successor] +

e(OP,successor) - 6e(OP,successor) X II))
}

}

/ Stack used to keep track of operations belonging to the same SCC /

If (OP E 8CC2)
Push(OP, stack)

/* All operations of the SCC have been visited *1
If (OP is the root of SCC2) {

FinalizeSCC
/* Update stack /

While (Top(stack) E SCC)
Pop (stack)

}

Algorithm 3.8 Finalize 8CC

FinalizeSCC()
/ Get the fixed-point solution for the heights of all vertices of the SCC */

first= deepest op E stack I op E 8CC2
Repeat {

For (op= first) to Top-Of-Stack
forall successor of op

priority[op]= Max (priority[op], (priority[successor] +
A e(op,successor) - 8e(op,successor) X II))

until no priority[op] changes }

3.3.2.2 Earliest time to schedule an operation

The algorithm Earliest-time finds the earliest cycle when an operation OP can

be scheduled. This procedure enforces correct schedules from the viewpoint of

dependence constraints. However it takes into account only the currently sched-

uled predecessors of OP, as shown by Algorithm 3.9. Dependence conflicts with

successors will be addressed by the backtracking process.

Algorithm 3.9 Earliest time

Earliest_time(OP)
mintime= 0
forall predecessor of OP {

If (predecessor is scheduled at cycle=c) {
candidate— c +)'e(predecessor,OP) - (11 X 5e(predecessor,OP))

if (candidate > mirtime)
mintime= candidate

}

}

Return mintime

3.3.2.3 Find slot

This procedure finds a valid slot to schedule an operation. It enforces correct

schedules from a resource usage viewpoint, using the MRT structure described

in Section 3.3.2. Algorithm 3.10 tries to find a resource free slot to schedule

OP in the range between mintime and maxtime. Mintime is the earliest cycle to

schedule OP, as described in Section 3.3.2.2. Maxtime is set to (mintirne+II-1).

The value of maxtime is defined based on the observation that it is redundant

to consider more than II contiguous time slots. If a resource free slot cannot be

found in that range, the algorithm will relax this constraint to assign a schedule

slot for OP. If OP was never scheduled before, the chosen slot will be at cycle

mintime. Otherwise, it will he one cycle later than it was previously scheduled. In

this case the operation currently scheduled in the chosen slot will be unscheduled

during the backtracking process.

50

Algorithm 3.10 Find Slot

FindSlot(OP, mintime)
/ Limit range of possible slots /

maxtime= mintime + II -1
currtime= mintime
While (currtime < niaxtime)

{

1* Find a resource free slot *1
find free slot in MRT at cycle=currtime
if (slot found)

Return slot
else

+ +curriime

}

/ Relax the "resource free" condition /

If (OP never scheduled)
/ Choose a slot in the first possible cycle *1
choose slot in MRT at cycle_-mintime

else
/ * Choose a slot one cycle later than previously scheduled /

choose slot in MRT at cycle= OPPrCVjOUS_SlOt + 1
Return slot

3.3.2.4 Backtracking

Once a slot is found to schedule OF, resource and dependence conflicts may arise,

which would require some operations to be unscheduled. The backtracking pro-

cedure described by Algorithm 3.11 checks dependence conflicts due to scheduled

immediate successors of OP. The algorithm calculates the earliest cycle in which

a successor can be scheduled, which we call correct time. Any successor scheduled

before the correct time must be ejected from the partial schedule as its operands

will not be available. There is no need to check for eventual dependence conflicts

with scheduled predecessors, as this is taken into account by the Earliest-time

procedure (Section 3.3.2.2). Operations may he also unscheduled due to resource

usage conflicts, as discussed in Section 3.3.2.3.

(~C_n

Algorithm 3.11 Backtracking Process

Backtracking(OP, slot)
S= slot cycle
forall successor of OP {

/* Compute the correct time in which successors should be scheduled /

If (successor is scheduled at cycle c) {
correct= s +)te(Qp,successor) - (II X Se(OP,successor))

if (correct > c) {
1* Scheduling cycle too early to meet dependence constraints /
Unschedule (successor)
Update MRT
/* Return successor to the list of unscheduled operations /

Include (List, successor)

}

}

}

/* Unschedule all operations due to resource conflicts /

forall op having a resource conflict in slot {
Unschedule(op)
Update MRT
Include (List, op)

}

3.3.3 Scheduling Example

This section shows an example of the scheduling of a simple innermost loop using

IMS. It is assumed a machine model comprising 3 standard FUs: 1 L/S, 1 ADD,

and 1 MUL. The loop source code and the corresponding DDG are shown in Fig-

ures 3.7a and 3.7b, respectively. It requires the execution of 3 memory operations,

1 addition, and 1 multiplication. Hence, the most heavily used function unit is

the L/S, determining a ResMIIof 3 cycles. One of the multiplication operands is

the result of the same operation from the previous iteration. This is translated

into the only recurrent circuit seen in the DDC, an edge starting and ending at

the multiply operation. Because the latency of the multiply operation is 4 cycles,

successive executions of this operation requires an interval of at least 4 cycles.

Thus the RecMIIof the DDC is 4, which also determines the Mu.

In this example IMS manages to find a valid modulo schedule within the

Mu. In Figure 3.7c we show the schedule of operations for a single iteration of

the loop, which takes 11 cycles to complete. It can he verified that starting

52

the same schedule every II cycles does not violate either machine or dependence

constraints. A compact representation of the kernel code is shown in Figure 3.7d.

Each operation has a subscript indicating the iteration it belongs to.

Original Loop
Do 1=2, N

R=A[i] + B[iJ

C[i]=R * C[i-1]

Corresponding DDG

dçd

;O/z

Add (D
4 	

3,O

Mul

1

O

Store

4,0

c) Schedule of 1 iteration

Cycle

0

2

3

4

5

6
	 Lp

7

8

9

10
	E

d) Kernel code - II = 4

X 1 = Operation X of Iteration i

Cycle

0

2

3

Figure 3.7: Schedule produced by IMS

3.4 Register Allocation

Once the scheduling process is completed, register allocation is performed. We

call lifetime the number of cycles during which a value must be stored during loop

execution. Lifetimes can be related to one of two types of variables:

• Loop-Invariants: These variables are used by every loop iteration, but never

modified. They are also called scalar lifetimes, and can be seen as a single

value during loop execution. Thus a single physical register may he enough

to store a loop-invariant lifetime.

53

• Loop-variants: A new value of this type of variable is produced in each

loop iteration, generating a vector of lifetimes. Loop-variant lifetimes from

distinct iterations can overlap due to software pipelining, requiring distinct

storage locations.

It can be said that the length of a loop-variant lifetime is the number of

cycles ranging from its production to its last consumption. The lifetime length

can be calculated in different ways, according to the architectural model in use.

We have adopted the end-begin definition: A lifetime starts at the last cycle of

the producing operation, and finishes the cycle before the last consumer starts.

This definition has been adopted in order to support the functionality of a queue

register file (Chapter 4).

The register allocator is not constrained by a finite number of physical re-

gisters. Hence, instead of performing actual register allocation to the RF, we

compute a lower bound on the number of registers required. We call MaxLive the

highest number of values that must be stored at any given cycle of the sched-

ule [81]. MaxLive indicates how many physical locations are necessary to keep

those values. A scheme to calculate MaxLive, considering both, loop variants and

invariants, is described by Algorithm 3.12.

Algorithm 3.12 Maximum number of live registers

MaxLive 0
/ * Each loop invariant holds a register during every cycle of the schedule */

for i= 0 to (II - 1)
live[i]_— number of loop invariants
1* Compute the start cycle and length of each loop variant /
forall OP E DDG {
if_start= (starting cycle of OP) + (latency of OP) -1
forall successor using a value produced by OP {

lf_iength= (starting cycle of successor) - If-start +
(II X (Se(OP,successor))

1* Identify cycles in which a lifetime requires a register */

for i= If-start to (if_start + if_length -1)
++iive[i mod II]

}

}

/* Total number of registers required is defined by the cycle *1
/ * in which the largest number of registers are needed */

MaxLive= max(live[i])

54

The schedule of 3 consecutive loop iterations of the example presented in

Section 3.3.3 is shown in Figure 3.8a. It is intended to illustrate a MaxLive

calculation. The steady state starts with the second iteration. The maximum

number of lifetimes coexisting at any given cycle occurs in the third cycle of the

kernel phase. In this cycle the value of MaxLive is 3, which can also be seen in

the compact notation presented in Figure 3.8h. It should he noticed that a given

scheduling slot at cycle i corresponds to scheduling slot (i mod II) in the compact

representation. This example considers only loop variant lifetimes. Each eventual

loop invariant lifetime would increase MaxLive by one.

Kernel Phase

Schedule of 3 consecutive iterations

US ADD MUL

Start ~ 	

Life

Wil

±!2! 	?W.L 	End c_

C US ADD MUL

Register requirements

me associated
operation X

Kernel Phase

Cycle US ADD MUL

o 	A

B 	I 	I -.-- MaxLive= 3

2

E l I 	 D

3 	 C

X 1 = Operation X of Iteration i

Figure 3.8: Register requirements - MaxLive

55

3.5 Output Information

A standard set of information is produced for each loop scheduled assuming a

particular machine model. These data can be used individually, or most often by

means of statistical analysis regarding the full benchmark set. The data generated

can be divided into two groups, called direct and derived parameters.

3.5.1 Direct Parameters

The following parameters are derived directly from the application of IMS on an

innermost loop:

• Modulo Schedule

• II, Mu, ResMil, ReciVill: As previously defined.

• Schedule length: Number of cycles of the schedule for one iteration.

Stage Count: As previously defined, and calculated using the following ex-

pression:

Schedule length1
II

• Instruction Count: Number of instructions scheduled.

• Iteration Count: Total number of times the body of the innermost loop is

executed.

3.5.2 Derived Parameters

Derived parameters provide an insight on the architecture performance and the

required machine resources. They are calculated using the direct parameters:

• X. This parameter states the total execution time of a modulo scheduled

innermost loop. The kernel, prologue and epilogue phases are taken into

account. It is assumed that kernel-only code is generated. Given a loop i

in a benchmark set composed of L loops; let Ni be the iteration count, let

II, be the initiation interval, and let SC1 be the number of stages in the

software pipeline schedule. The total execution time of loop i, X 1 , is given

by the following expression:

56

X, = II, x (SC, + N - 1) 	 (3.3)

• IPCdynam ic : The dynamic issue takes into account the total execution time

of a loop, including the kernel, prologue, and epilogue stages. The weight of

a loop is determined by the execution time when IPCdynam ic is calculated for

the complete benchmark. The execution time of a loop is mostly determined

by the II and the iteration count, which is used to calculate the cycle count.

Given a loop i in a benchmark set composed of L loops; let Ni be the

iteration count, let Mi be the initiation interval, let Sci be the number of

stages in the software pipeline schedule, and let Oi be the number of useful

operations in the schedule. Then, IPCdy nam i c can be calculated as follows:

'ç-'L N1O 	
(3.4) IPCdynamic = 	

z=1
L
i=1 IIi (SC + N - 1)

• IIspeedup We have defined this parameter to measure the gain in perform-

ance execution of the kernel code when a given machine model A scales up

to a machine model B. It is calculated using the following expression:

"machincA
(3.5) "speedup = "machineB

• SC?) : This parameter accounts for the stage count variation when distinct

machine models are used, calculated according to the following expression:

SCvar = SCmachineB - SCmachineA 	 (3.6)

• Register requirements: The basic version of the experimental framework as-

sumes the use of a conventional register file. It is calculated as a lower

bound for the number of registers required to store loop variant and invari-

ant lifetimes without using spill code. This is done using Algorithm 3.12

to compute MaxLive. The model assumes that once a value is stored in a

given register, it remains there until the last use.

57

3.5.3 Results Presentation

Unless otherwise stated, all data reporting machine resources refers to dynamic

analysis. The data presented refers to the machine resources required to execute

the loops accounting for at least 99% of the total execution time of all loops from

our benchmark set (Section 3.2). The remaining 1% of the execution time is

usually spent in a few very large loop bodies with a large iteration count. These

loops cannot be identified beforehand, so they are not discarded before scheduling.

Hence, the machine resources reported refers to the maximum requirements of the

loops necessary to make the 99% fraction. In practice, instead of attempting to

software pipeline large loops, a production compiler could split them into smaller

ones, using techniques such as loop distribution [7]. Doing so, the new machine

requirements would possibly he lower. Finally, when static data is presented

instead, it will refer to the resources accounting for 99% of the loops from the

benchmark (1246 loops).

58

Chapter 4

Queue Register Files

We have shown in Section 2.3 that software pipelining increases register pressure.

Modulo scheduling algorithms capable of minimizing register requirements have

already been proposed, presenting some advantages over conventional schemes [48,

63]. However, the typical number of available registers is still insufficient for some

loops, thus requiring spill code. Increasing the number of registers in a conven-

tional RF organization requires more address generation and decoding hardware.

It may also increase the cycle time due to longer wires [5]. Furthermore, re-

gister files for wide-issue ILP architectures require a large number of access ports,

which may result in a long machine cycle time [25]. It is possible to limit the

number of access ports, but this may also compromise parallelism exploitation.

Those factors suggest that new register file organizations may be necessary to

implement high performance ILP architectures.

4.1 QRF Organization

The regular pattern of production and consumption of loop variant lifetimes has

motivated us to use queue structures as storage elements. A FIFO queue can be

used to store consecutive loop variants, which are written in the tail and read from

the head of the queue. If we constrain each definition of a lifetime to a single use,

there is no need to access intermediate queue positions, simplifying the hardware

organization [5, 46]. It is possible to transform a multiple use lifetime into several

single use lifetimes (Section 4.2). In this chapter we propose the use of a queue

register file (QRF) to support the execution of software pipelined loops in VLIW

machines. A QRF having one queue of p elements consists of a storage array

surrounded by supporting circuits to select the current write and read positions. A

number of data access ports complete the basic structure of the QRF (Figure 4.1).

A multiple-queue QRF can he built using the same organization.

59

Queue Pointers

r 	

Storage Array
p words

w

I Access Ports 	I

data in/out

Figure 4.1: QRF block diagram

During the design of the VLIW architecture proposed in this thesis we have

found that QRF organizations allow at least three advantages over conventional

RFs:

• Silicon area: As previously discussed the hardware complexity of a queue

register file should be lower than of a conventional RF, and likewise the

silicon area required. This may also improve the cycle time, which has been

confirmed using an analytical timing model (Section 4.5).

• Inter-Cluster communication: We have developed a scheme using QRFs to

implement data communication between adjacent clusters in a distributed

VLIW architecture (Section 6.1). This results in a low-latency communica-

tion mechanism, which can be efficiently exploited by the novel partitioning

algorithm described in Chapter 7.

• Compilation issues: In a QRF a data value is allocated to a specific queue

instead of to a specific register. Experimental analysis has shown that the

shift from register names to queue names reduces dramatically the pressure

on the size of the register, name space [28]. Furthermore, the functionality

of a QRF is similar to a rotating register file [82, 831. This may improve

the machine performance in two aspects: kernel-only code can be used

(Section 2.4.4), and register allocation can be performed without modulo

variable expansion (Section 2.4.3).

The concept of allocating loop variant values to a queue is illustrated in Fig-

ure 4.2. It shows a simple innermost loop, the corresponding DDG, and the

Original Loop
Doi=l, N

B[i] = (A[i] + 1) * A[i] cycle

0
Corresponding DDG

Load

TT3,
7

0

10

Store

C) Schedule of 3 consecutive iterations - 11= 2

US ADD

qUL
US 	ADDMUL
A

A

B

US ADD MUL

D r

modulo schedule of 3 consecutive iterations (parts a, h, and c, respectively). Val-

ues produced by operation A can be stored in a queue until they are consumed by

operation C. A single queue (corresponding to a single register name) is enough

to store those values, as seen in Figure 4.2d. If a conventional register file was

used instead, two distinct register names would he required because the II is

smaller than the length of that lifetime. In this case, using the same location to

store all lifetimes would result in lifetimes being overwritten before being used.

It can be seen in the figure that successive definitions of lifetimes produced by

operation A matches successive consumptions by C (Figure 4.2e). This regular

pattern ensures that the first element in the queue is always the value required

by the next read operation.

Storage queue for values produced by operation A

	

Read from 	A1 	A 2 	A3 	 Write to

X= Operation
Consecutive definitions and uses of lifetime A 	 of iteration i

	

Cycle

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9

	

Producer 	A 1 	A 2 	A 3

	

Consumer 	I 	I 	I 	I 	I Cl I 	I C 	C3

	

Cycle 	0 	1 	1 	1 	2 	1 	3 	1 	4 	1 	5 	1 	6 	1 	7 	1 	8 	1 	9

Figure 4.2: Using a queue to store a loop variant lifetime

61

It should be noticed that in a conventional register file organization random

access to any register is allowed, thus simplifying the register allocation process.

However, in a QRF this issue is further complicated because of its limited address-

ing capabilities. We have developed a new register allocation strategy for a QRF.

It is based on the regular access pattern of loop variant lifetimes produced by a

modulo scheduled loop. This scheme is described in Section 4.4, and is essential

to take full advantage of a QRF.

In the next section we address the issue of multiple-use lifetimes, which we

define as a pre-condition to employ a QRF. Then we discuss register allocation

schemes for this particular organization. The chapter ends with a possible hard-

ware implementation of a QRF, including analytical models for the silicon area

and cycle time. These parameters are used to compare a QRF to a conventional

register file.

4.2 Transforming Multiple-Use Lifetimes

The proposed QRF model assumes that access to physical locations is controlled

by two elements, called the r-pointer and the w-pointer. They determine the

current read and write positions, respectively. Every time data is written in the

queue, the w-pointer moves back one position. Similarly, a read operation moves

the r-pointer to the next read position. This operational mode implies that data

can be read only once from a QRF.

A value produced by a given operation may be consumed more than once, as

shown in the DDG of Figure 4.3a. Once a value is written into a conventional

register file, it can be read as many times as necessary (Figure 4.3b). However

the read-once limitation of a QRF requires that multiple-use lifetimes must be

stored in distinct locations, one for each use (Figure 4.3c). We call this situation

as replicated writes, which may result in at least two problems:

• Problem 1: The instruction format should allow a single instruction to spe-

cify an unbounded (possibly large) number of destination queues.

• Problem : The QRF should allow simultaneous write access to an unboun-

ded number of queues.

We propose instead the use of copy operations to eliminate the need for rep-

licated writes. A copy operation has one input and two output operands. It is

capable of reading one register value, and copying it back to two other storage

62

a) Data Dependence Graph

us

S

b) Register storage using a RF

S
Write to 1SF

Conventional RF

/Read from 1SF

\ Red from RF

ADD

S

c) Register storage using a QRF

us

write 	

9
tOQuU

\W• Queue 2

Queue RF

Read from Queue I

Read from Queue 2

S
Figure 4.3: Register storage

locations. Replicated writes can be eliminated by transforming the data depend-

ence graph to include copy operations. One copy operation can transform one

dual-use lifetime into two single-use lifetimes, as shown by the diagram in Fig-

ure 4.4. In this transformation a new node is inserted in the DDC, referring to

the copy operation. The two original edges are replaced by three new edges: one

from the producer to the copy operation, and two others from the copy operation

to each one of the consumers, respectively. New attributes are set according to

the delay and distance values of the replaced edges.

DDG Transformation 	 0

Latency of Copy operation = I cycle I e51 Copy 1 82

0
Figure 4.4: DDC transformation to include a copy operation

Successively applying this simple transformation allows one to transform any

multiple-use lifetime into a number of single lifetimes. We have designed an

algorithm able to generate a balanced subgraph after the inclusion of copy oper-

ations. The root of this subgraph is the original producer, and the leaves are the

original consumers. This reduces the eventual delay resulting from the inclusion

63

of copy operations in the critical path of the DDG. The scheme is described by

Algorithms 4.1 and 4.2, which creates a modified DDC from the original one.

These algorithms assume a latency (delay) of one cycle to execute a copy opera-

tion. An application of the algorithm, transforming a four-use lifetime into four

single-use lifetimes, is shown by the example in Figure 4.5

In the experimental framework a consistency check is performed after this

transformation, comparing the original data dependence graph against the mod-

ified version. This is done to ensure that the semantics of the original program is

preserved after the DDG transformation.

Algorithm 4.1 choose Edge

ChooseEdge(NewDDG, source)
/ Perform a breadth-first search until until the first edge /

/* without a copy operation as a target is found /

Append(NewList, source)
found= 0
While not found {

currentList= NewList
clear(NewList)
forall u E currentList {

forall out_edge(u,e) {
if (target(e) =A copy) {

found— 1
Return (e)

}

else
Append(NewList, target(e))

}

}

}

Algorithm 4.2 Inserting Copy Operations

Insert -Copy (DD G, NewDDG)
/ Insert original nodes in new DDG /
forall operation u E DDG

Insert (New_DDC, u)
1* Insert edges in new DDG *1
forall edge e E DDC {

if out-degree (source (e)) = 1
1* Single-use lifetime-Copy not necessary *1

new-edge= e
Insert (New_DDG, new-edge)

else { /* Multiple-use lifetime-Insert copy operation *1
Insert (New_DDG, copy)
1* Choose the insertion point of the copy operation according to /
/ the original pair of producer and consumer operations /

split-edge= ChooseEdge (New_DDG, source (e))
1* Edge from the original producer to the copy operation *1
new-edge= (source(split_edge), copy)

\e(new_edge) = 'e(sp1it_edge)

6e(new_edge) = 0
Insert (New_DDG, new-edge)
/ Edge from the copy operation to the original consumer

new-edge= (copy, target (split- edge))

)'c(new_edge) = 1

5e(new_edge) = 6e(split_edgc)

Insert (New_DDG, new-edge)
/* Edge from the copy operation to the new consumer *1
new-edge= (copy, target(e))

)'e(new_edge) = 1

8e(new_edge) = Se

Insert (New_DDC, new-edge)

}

}

65

Original DDG - multiple-use lifetimes

Creating New_DDG - single-use lifetimes only

0 Inserting Op ® T2,0

2,1 	

(

0
00

Inserting OP (D 	T2,0

 0 Inserting 0p 	
2,0

cl
N °

A"o C3
00

Figure 4.5: Inserting copy operations in a DDG

4.3 Overhead Due to Copy Operations

In terms of hardware, the use of copy operations requires an extra FU, capable

of copying a value from one register and writing it back to two other storage

locations. This should be simple to implement. In the experimental framework

that function is performed by the Copy FU, as described in Section 3.1.1. We

assume a latency of one cycle for this operation. Although a simple function is

performed, a significant overhead overhead results from the use of Copy FU: extra

access ports are required.

In terms of software the introduction of copy operations may increase the total

execution time of a loop. That would be the result of a higher stage count or

initiation interval. Copy operations inserted in the critical path of the DDC will

increase the schedule length of a single iteration. A longer schedule length may

result in a higher SC, requiring longer prologue and epilogue phases. It might

also happen that the required number of copy operations makes the Copy FU

the most heavily used machine resource, increasing the II. Increasing the II may

cause a higher impact on the execution time than increasing the SC, specially

for loops with a large iteration count. This can be inferred from the expression

for the execution time of a loop (Section 3.5.2). It is also possible that a copy

r
S.

Initiation Interval Variation
Due to Copy Operations-Static Data

Stage Count Variation
Due to Copy Operations-Static Data

100

90

80

70

60

p 50
S

40

30

20

10

0

L
0

0

p
S

%

operation is inserted in a recurrent circuit, increasing the RecMII.

We have performed a number of experiments to evaluate the effect of intro-

ducing copy operations in the DDG of innermost loops. Machine models and the

workload used in the evaluation are as described in Chapter 3. In this section we

only present results referring to an unclustered machine comprising of 4 FUS: 1

L/S, 1 ADD, 1 MUL, 1 Copy. We have found similar results and conclusions for

other machine configurations, as reported in [27].

The chart in Figure 4.6 shows that around 94% of the loops can be scheduled

within the same II that would be otherwise possible without using copy oper-

ations. The remaining fraction of loops requires a higher II, an increase of one

cycle in most of the cases. Similar results were found for the stage count variation

(Figure 4.7): the value of SC remains the same for 89% of the loops. An eventual

increase of one stage occurs for 10% of the loops. The average stage count, with

and without copy operations, is 3.0 and 3.1, respectively.

0 	1 	2 	3
	

0 	1 	2 	3
II Increase
	

SC Increase

• 3FUs
	

• 3FUs

Figure 4.6: II Variation-Copy Op 	Figure 4.7: SC Variation-Copy Op

The combined effect of variations in those parameters has been measured by

calculating the number of cycles required to execute all loops of the benchmark

using copy operations. This value was compared with the time required to ex-

ecute the same set of loops without using copy operations. For this machine

67

configuration, we have found that copy operations increase the total execution

time by 1.5%, confirming that the performance penalty due to this transformation

is acceptable. In the next chapters more extensive analyses of this matter will be

presented.

4.4 Allocating Lifetimes to a QRF

Allocating lifetimes to a queue is more complicated because of the limited ad-

dressing capability. We will focus the discussion on the problem of allocating

loop variant lifetimes generated by a modulo scheduled loop as this is the main

motivation to develop a QRF. We have identified two sufficient conditions under

which two or more lifetimes can share a storage queue in the QRF proposed in

Section 4.1. We shall call them Q-Compatibility Conditions, which are listed below:

There can be at most one read and one write access operation to the queue

at any given cycle.

Lifetimes must be written and read from a queue in exactly the same order.

A straightforward solution is to allocate a single lifetime to each queue. In

this case a queue would act as a buffer, storing successive productions of a given

lifetime (Figure 4.2). The advantage over a conventional register file is that only

one register name is required (the name of the queue), even if the lifetime length

spans more than II cycles. However it is easy to identify situations in which

a queue can accommodate more than one lifetime, hence optimizing the use of

machine resources.

Two or more loop variant lifetimes of the same length may share a single queue.

It can be verified that the production and consumption order of all lifetimes are

identical during the kernel stage of a modulo schedule. This is sufficient to meet

the second Q-Compatibility condition. The first condition can be met if that set of

lifetimes have distinct starting cycles. Using this condition results in a relatively

small search space to identify which lifetimes can share a common queue. It only

involves grouping lifetimes according to their lengths, an approach used in [5].

As an example Figure 4.8a shows the kernel code for a hypothetical loop, which

is repeated every 8 cycles. It can be seen that lifetimes produced by operations

A and B have the same length (2 cycles), and distinct starting cycles. The

diagram in Figure 4.8h shows, cycle by cycle, the production and consumption of

those values. This definition-use pattern is repeated throughout the kernel code

execution.

a) Kernel code - 11= 8

Cycle US ADD MUL

0 A

lfI
2

3 	 C

4 	 D

5 	 ILI
6 	E

7 	F

Schedule executed every 8 cycles

Storage queue for lifetimes A, B

	

Read from 	 I Write to

Definition and use of lifetimes from one iteration

	

Cycle 	0 	1 	2 	3 	4 	5 	6 	7

	

Producer 	A 	B

Consumer 	 C 	D

	

Cycle 	0 	1 	2 	3 	4 	5 	6 	7

Figure 4.8: Using one queue to store lifetimes of the same length

Furthermore, the above example suggests that lifetimes of distinct lengths can

share a single queue. In Figure 4.9b we show that three lifetimes produced by

the modulo schedule of Figure 4.9a can share the same queue. Lifetimes A, B

and C have distinct lifetimes of 2, 2, and 1 cycles, respectively. But they also

have identical production and consumption orders, and distinct starting cycles,

meeting both Q-compatibility conditions.

The allocation scheme shown in the last example can indeed optimize the

use of machine resources. However a simplistic approach to the problem would

require working through a huge search space, a complex problem for a large

number of lifetimes. Therefore, it is important to reduce the size of the search

space in order to find a practical allocation method. We have developed a set

a) Kernel code - 11= 8

Cycle US ADD MIJL

0 A

Schedule executed every 8 cycles

2

3

4

5

6

7

E

F

C

Storage queue for lifetimes A, B, C

	

Read from A 	B 	C 	
Write to

Definition and use of lifetimes from one iteration

Cycle 	0 	1 	2 	3 	4 	5 	6 	7

Producer 	A 	B 	 C

Consumer 	 C 	D

Cycle 	0 	1 	2 	3 	4 	5 	6 	7

Figure 4.9: Using one queue to store lifetimes of distinct lengths

of constraints under which two lifetimes can share the same storage queue [26].

We also show how this condition can he evaluated through a simple and practical

compile-time test. We shall call it Q-Compatibility Test, which is formally stated

and proved in the next section. To the best of our knowledge no other work has

used a similar approach. Schemes based on rotating register files are the most

similar to this one. Although a rotating register file can be seen as set of queues,

each of them can store only distinct instances of the same lifetime.

70

4.4.1 Q-Compatibility Test

In a modulo-scheduled loop each computation generates a new value every Initi-

ation Interval (II) cycles. Each value has a fixed lifetime which begins at some

start-point and terminates at some end-point within the schedule.

Definition 4.4.1 (Lifetimes) On each iteration of a loop every computation a

produces a new value which exists over a period defined by the pair (S a , Sa + La - 1),

where Sa is the start-point and Sa + La 1 is the end-point of that value. We say

that L a is the lifetime of computation a.

Definition 4.4.2 (Vector lifetimes) In a modulo-scheduled loop every compu-

tation a produces a vector of lifetimes A:

A {(a,a + L a —1): an = Sa + n.II} >o

Definition 4.4.3 (Q- Compatibility) Let two computations a and b have start-

points Sa and Sb, and have lifetimes L a and L. The values produced by a and b

can share the same destination queue if the relative order in which they produce

values is identical to the relative order in which those values are consumed by

their successor computations, and their start-points are different.

It is now necessary to formulate a simple way of determining the compatibility

of any pair of computations. We do this by formulating a proposition which

encapsulates our definition of Q-Compatibility and then we prove that there exists

a simple relationship between lifetimes, start-points and Initiation Interval which

can he used in a scheduler to determine Q-Compati bill ty. The proofs we develop

use modulo arithmetic and rely on the following four lemmas.

Lemma 4.4.1 For all integers x, y and n, x y =' [x] 	[y].

Lemma 4.4.2 For all integers x, y and n, [x + ny] 	[x].

Lemma 4.4.3 For all integers x and n, x > 0 = [x] < X.

Lemma 4.4.4 For all integers x and n, 0 < x <n = [x], 	X.

We now formulate a proposition based on Definition 4.4.3 which provides us

with a formal criterion for queue compatibility.

71

Proposition 4.4.1 The two computations a and b are Q-compatible if, and only

if..

a2 > b3 = a + La > b2 + Lb 	 (4.1)

A aj<bj =aj+La <bj +Lb 	 (4.2)

A a2 	 (4.3)

This proposition, although an accurate formulation of Definition 4.4.3, can-

not be used directly when scheduling a loop as it contains universal quantifi-

ers. These imply a large, possibly unbounded, search space for i and j. The

following theorem defines an alternative, and computationally efficient, test for

Q- Compatibility.

Theorem 4.4.1 (Q-Compatibility Test) Two computations a and b, with start-

times Sa and Sb, and lifetimes L a and Lb such that La > Lb, are Q-compatible if

L a - Lb < [Sb - Sal ii .

Proof

To prove Theorem 4.4.1 we must demonstrate that = P = Q, where

Q = V 2 ,3 > 0 : R 1 A R2 A I?3 	 (4.4)

R 1 = a 2 > b3 = a 2 + La > b3 + Lb 	 (4.5)

R2 	a2 <b3 = a 2 + La <b3 + Lb 	 (4.6)

R3 	a2 	b3 	 (4.7)

P 	L a - Lb < [Sb - Saljj 	 (4.8)

We now show that this formula holds using proof by contradiction:

Let there exist interpretations of P and Q which render P = Q false.

Hence, there must exist values of i, J , S, Sb, L a , Lb, and II such that P is

true and Q is false.

From the definition of Q in equation (4.4) any one of R 1 , R2 and R3 can be

false for Q to be false. We consider these cases in steps 3, 4 and 5.

Let R 1 be false, then there must exist i,j > 0 such that a2 > b 3 and

a2 + La < b3 + Lb. Thus:

a2 + La -<b3 + Lb

and so

L a - Lb < b3 - a 2

72

But a, > b, so b3 - a, < 0, and hence

L a - Lb <b3 - a 2 <0 	 (4.9)

However, it is assumed that n > La > Lb, consequently R 1 cannot be false

if P is true.

4. Let R2 be false, then there must exist i,j > 0 such that a, < b2 and

a + La >— b3 + Lb. Thus:

a + La >— b + Lb

and so

	

L a - Lb > b1 - a 2 	 (4.10)

We know from Definition 4.4.2 that a 2 = Sa + i.II and bj = Sb + J- 11, so

we may write:

	

bj —a j =Sb —S a +II(j—i) 	 (4.11)

By Lemma 4.4.1 and equation (4.11) we may write:

[b3 - a] 11 = [Sb - S. + II(j - i)]11 	 (4.12)

By Lemma 4.4.2, equation (4.12) can be reduced to:

[b - 	= [Sb - Sal ii 	 (4.13)

Recall that for R2 to be false we must satisfy the following inequalities:

L a - Lb > bj - a 2 > 0

But since proposition P is assumed to he true, then:

La - Lb < [Sb - S.III

Since both equation (4.10) and proposition P must both hold, we can write:

[SbSa]jj >La L b >bj ai >0

Eliminating L a - Lb, we get:

[Sb - Sa]jj > b3 - a 2 > 0 	 (4.14)

From equation (4.13) we know that [Sb - Sal = [b - a] 11 , and hence

substituting for [Sb - Sal il in equation (4.14) we get:

[b - a2] 11 > b3 - a i > 0 	 (4.15)

This contradicts Lemma 4.4.3 so R2 cannot he false.

73

5. Let H3 he false, then 3 jj>o : a2 = b3 and consequently [b - a2] 11 = 0.

From equation (4.13) we can further deduce that [Sb - Sal =0. However,

if P is true we can say that:

LaLb< [5& 5a] jj =0

But as an assumption of the theorem we have:

La - Lb > 0

This represents a contradiction, so R3 cannot be true when P is true.

We have thus demonstrated that none of R 1 , R 2 or H3 can be false if P is

true, which in turn means that Q cannot he false if P is true.

We have therefore shown that whenever the inequality in Theorem 4.4.1 is sat-

isfied, the condition expressed in Proposition 4.4.1 is also satisfied. This provides

us with a guarantee that the Q-Compatibility test from Theorem 4.4.1 will always

indicate incompatibility for a pair of lifetimes that are incompatible. We would

also like to guarantee that whenever our Q-Compatibility test indicates incom-

patibility, then so does Proposition 4.4.1. This would demonstrate equivalence

between Theorem 4.4.1 and Proposition 4.4.1 and show that Theorem 4.4.1 is an

exact test.

Theorem 4.4.2 (Exactness) Two computations a and b, with start-times 8a

and Sb, and lifetimes L a and Lb such that L a > L, are Q-compatible if and only

If L a - Lb < [Sb - Sa]Jj.

Proof

To prove this theorem we must show that = P = Q and = -'P = —'Q,
for P and Q defined by equations (4.8) and (4.4) respectively. Theorem 4.4.1

established = P = Q, so it only remains to show = -'P = —'Q.

1. Let us assume that there exist interpretations of P and Q such that -P =

-
'Q is false. Therefore P must be false and Q must be true.

Recall that Q is defined as:

H 1 A R 2 A H3

In statements 2, 3 and 4 we consider three cases which cover all possible

relative values of a, and b. These are a, < b, a, > b, and a2 = b.

rffill

2. Assume a, <b3 , then R 1 and R3 are both true. However, R2 is only true if:

	

a + L a < b3 + 	Lb 	 (4.16)

Under these conditions we can assert:

	

L a - Lb < b - 	 (l 	 (4.17)

and

	

b3 - a 2 > 0 	 (4.18)

From the definition of -'P we know that:

	

L a - Lb >— [Sb - Sa]jj 	 (4.19)

Substituting for [Sb - S, J I , according to equation (4.13) in equation (4.19)

we get:

	

L a - Lb ~! [b - a 2] 11 	 (4.20)

Combining equations (4.20) and (4.17) yields the following proposition:

	

- a 2 > La - Lb >— 	[b3 - a 2] 11 	(4.21)

However, every computation in a schedule is executed exactly once per IT

cycles when the loop is in kernel mode (i.e. after the pipeline is primed, but

before the shutdown phase). Consequently it is axiomatic that:

	

b3 - a 2 < II 	 (4.22)

Equations (4.18) and (4.22) tell us that there exist i and j such that:

II> b3 - a, > 0

Hence, by Lemma 4.4.4 we can assert:

[b - a 2] 11 	b - a 	 (4.23)

Substituting for [b3 - a 2] 11 in equation (4.21) using equation (4.23) yields:

bj - a 2 > b3 - a 2

This is a contradiction and so there exist values of i and j for which R2

cannot he true when - P is true and a 2 < b3 . Under these conditions -'R2

cannot be false and consequently -'Q cannot he false.

75

Assume a i > ba, then R2 and R3 are both true. However, R 1 is only true if:

(Li + La > b3 + Lb 	 (4.24)

Under these conditions we can assert:

L a - Lb > b - a 1 < 0 	 (4.25)

From the definition of P in equation (4.8) we know that -P is given by:

-iP 	L a - Lb 	[Sb - Saul
	

(4.26)

Substituting for [Sb - Sal ij in equation (4.26) using equation (4.13) we get:

L a - Lb >_ [b - ct] ii 	 (4.27)

As a 1 > b, we know [b - ai] 11 0, so we may write:

L a - Lb 0 0 	 (4.28)

It is an assumption of the theorem that L a > Lb. Let us therefore assume

L a = Lb, and thus La - Lb = 0. This directly contradicts equation (4.28)

and we may conclude that if -P is true when a i > b3 then R 1 must be false.

Hence -R i must be true and -'Q cannot he false.

Assume a i = b3 . Then R 1 and R 2 are both true but R3 is false. Hence -'Q

is true. Thus when a i = b3 and -P is true, -'Q is always true.

We have shown that whatever the relative values of a i and b3 it is not

possible for -'Q to be false when -P is true. Thus = -iP = -'Q. 	0

4.4.2 Register Allocation Using the Q-Compatibility Test

In the experimental framework register allocation is performed assuming an un-

limited number of queues and queue positions. However, it tries to minimize the

usage of the most critical resource (number of queues) by allocating as many life-

times as possible to a single queue. If values are allocated to queues instead of to

individual registers, the number of distinct queues can be seen as the size of the

name space.

The register allocation process starts after the modulo schedule is generated.

In the first step all loop variant lifetimes are identified, as well as their start time

and length. Then an interference matrix is built, specifying for every pair of life-

times if it can share the same storage queue (Algorithm 4.3). The Q-Compatibility

BEP

test presented in Section 4.4.1 is used to create the matrix, operating on each pair

of lifetimes.

Algorithm 4.3 Check Compatibility

Check_Compatibility(lf, compatible, no-If)
no-If= 0;
forall op E DDG {

/* Compute the start cycle and length of each lifetime /

forall successor of op {
++noJf
new(lf/'noJfj)
lf..startlno_IfJ= (.starting cycle of op) + (latency of op) -1
lf.length/no_lf]= (starting cycle of successor) - lf.start[no_lf] +

(II X Sc(op,success6r))

}

}

/ Initialize the compatibility matrix for every pair of lifetimes /

for i= 1 to (no-If -1) {
for j= (i+1) to no-If {

if (lf.length[i] - lf.length[j]) < ((lf.start[j] - lf.start[i]) mod II) {
corn patible[i][j]= 1
compatible[j][i]_— 1

}

else {
compatible[iJ[j]= 0
compatible[j][i]= 0

}

}

}

Finally, a single pass procedure is executed, trying to allocate each lifetime to

a previously assigned queue. If that is not possible clue to incompatibilities, the

lifetime is assigned to a new queue. This procedure is described in Algorithm 4.4.

77

Algorithm 4.4 Register allocation to a QRF

QRF_Allocation()
Check_Compatibility(If, compatible, no-If)
no-queues= 0;
/ Allocate every lifetime to a queue /

for i= 1 to no-1f {
allocated= 0;
/* Try to allocate lifetime i to one of the existing queues /

while not allocated {
/ Try to allocate lifetime i to queue j *1
forj= 1 to no-queues {

conflict— 0
1* Check compatibility between lifetime i and all other lifetimes *1

/* previously allocated to queue j *1
forall lf[k] E queue[j]

if compatible[i][k] == 0
conflict= 1

if not conflict { 1* Allocation possible /

allocate lf[i] to queue[j]
allocated= 1

}

break

}

}

/* Allocation not possible in any of the existing queues-use a new one

if not allocated {
++no_ queues
allocate lf[i] to queue[no_ queues]

}

}

As already said, the procedure above described assumes the availability of

an unlimited number of queues, each of them having as many storage positions

as necessary. If those resources were limited, the algorithm should provide a

mechanism to balance the distribution of lifetimes among queues. This is specially

important to prevent having more live values than the actual queue capacity. We

have found that even employing this simple scheme the required capacity of a

queue remains low in most of the cases, as shown in Section 5.3.2.4. Effectively

dealing with a finite number of storage positions would require the introduction

of spill code [15], however this is out of the scope of this thesis. A discussion on

spilling mechanisms for software pipelined loops can be found in [65].

78

4.5 Analytical Model for Register Files

An accurate comparison between conventional and queue register file organiza-

tions should consider the silicon area required to implement them. A further

refinement would include the cycle time allowed by those implementations. In

this thesis we have used the analytical model for multiported register files de-

scribed in [62]. The input parameters taken by that model include the number

of registers, the number of read and write ports, and the width of the registers

(64 bits in this thesis). Queue register files can also he analysed using the same

model. In this case the number and size of each queue is also taken into account.

A brief overview of the analytical model is presented in the next subsections.

4.5.1 Silicon Area Model

We assume the VLSI technology used to implement the register file is scalable

CMOS. Dimensions can be expressed by means of a technology dependent para-

meter, called A. Modern implementations in 1998 employ .A = 0.25im pro-

cesses [88]. The micron measurement refers to the distance between circuits on a

microprocessor. Generally, a smaller) results in a faster microprocessor.

The overall size of a multiported RF is mainly determined by the size of the

memory cells, which are replicated and together represent between 85% and 95%

of the total area. Other components such as decoders and read/write drivers for

the data lines account for the remaining fraction. The diagram of Figure 4.10

shows a dual-ported (1R,1W) register cell that could be used to implement a

multiported register file. One transistor, a select line and a data line is required

by each port, in order to access the register cell. The area of the cell grows approx-

imately with the square of the number of ports added because each additional

port increases both dimensions of the cell. The memory portion is a pair of cross-

coupled inverters consisting of four transistors, resulting in a minimum height of

41). The memory portion can accommodate 3 select lines running horizontally

across the cell. Thus, the height does not increase until more than 3 ports are

implemented. After this, each additional port adds 8A to the height. The width

of the dual-ported cell is 50\. Each additional read port adds 14A to the width,

while additional write ports add 22A. The analytical model used in this thesis

also considers the area of other elements of the register file, which can be found

in [62].

A queue cell of N registers can be implemented using a collection of N dual-

ported register cells, like the one described above. To build a multiported QRF,

79

	

write 	 --.-

data line 	data line

Figure 4.10: Dual-ported register cell

each queue cell can he considered as the memory portion. For each access port,

an additional select line is required (Figure 4.11). Note that since each register

cell of the queue cell only requires two select lines, a N element queue cell can

accommodate up to N select lines without growing in height. Hence, the cell

height does not grow until more than N ports are implemented. This usually

allows for a smaller area in comparison to a multiported conventional register

file of the same capacity. In that case, each additional port increases the size

of individual memory cells. Other elements of the queue register file occupy a

relatively smaller area, which is also taken into account by the model used in this

work, as described in [62].

4.5.2 Cycle Time Model

The cycle time of register files and queue files is also modelled in [62]. The timing

model uses the technology parameters of CACTI [99]. The access time to a

multiported register file is determined by the length of the word-lines, the length

of the bit lines and, to a lesser extent, by decode time. Other components, such

as sense amplifier or precharge delays, contribute minimally to the cycle time,

but are included in the model for completeness and accuracy. The length of each

word-line depends on the width of the bit-cell, which depends on the number of

ports, and the number of bits per register. Conversely, the length of each bit-

line depends on the height of the bit-cell, which varies with the number of ports

and the number of registers. Finally, decoder dimensions are determined by the

number of registers and the height of the memory array, which in this layout is

80

Figure 4.11: Implementation of a QRF using dual-ported register cells

computed as the product of the number of registers and the height of a bit-cell.

They are implemented using a multi-level predecoding scheme. Hence, there is a

predecoded address bus running parallel to the bit-lines, as in the CACTI model.

4.5.3 Comparing Register File Organizations

We have used both models above presented to make a preliminary comparison

between RF and QRF organizations. We compare structures having the same

number of storage locations and access ports. The main objective at this point is

to compare register files with similar storage capacity. Evaluating the effectiveness

of those structures would require the analysis of performance figures associated

with those configurations, which will be done in the next chapters.

In this evaluation we assume that the number of access ports in either case

is based on the number of functional units sharing the register file. Ten config-

urations ranging from 3 to 30 FUs have been evaluated. Each functional unit

MU

FUs Register File Configuration 	 I
Access RF QRF

Read Ports Write Ports Registers Queues Queue Length
3 6 3 32 4 8
6 12 6 64 8 8
9 18 9 96 12 8
12 24 12 112 14 8
15 30 15 128 16 8
18 36 18 144 18 8
21 42 21 160 20 8
24 48 24 176 22 8
27 54 27 192 24 8
30 60 30 208 26 8

Table 4.1: Register file configurations

requires two read and one write ports. The total number of storage locations

for a conventional register file was arbitrarily chosen. It is an approximation of

the register requirements of a VLIW machine using a multiported register file, as

reported in Section 5.3.2. We assume that each queue in the QRF has 8 locations.

Thus the number of queues is chosen in order to match the total number of stor-

age locations of a RF. The parameter values used in this analysis are summarized

in Table 4.1.

It can be seen in Figure 4.12 that the silicon area required to implement a QRF

is always smaller than the area of a RF. Furthermore, the rate of increase is much

lower as the number of functional units scales up. Similar results were observed

when analysing the cycle time resulting from both implementations (Figure 4.13).

Those results have confirmed that in general a QRF is more efficient than the

equivalent RF in terms area and cycle time. However the analysis presented did

not take into account the functionality of those register files. Distinct performance

levels may be result from from conventional and queue register files. These issues

are addressed in the next chapters.

82

6C'

S

5'

4

4

T 3

e 2

ns
2

Silicon Area
Register File Only

20

18

16

14

12
A

r 10

A2 .109

6

4

KA

0•LLJT_L
3 6 9 12 15 18 21 24 27 30

Functional Units

-- RF 	 QRF

Figure 4.12: Silicon area

Access Time
Shared Register File

3 6 9 12 15 18 21 24 27 30
Functional Units

.. QRF

Figure 4.13: Access time

4.6 Summary of Results and Conclusions

The following list summarizes the main results and conclusions of this chapter:

• A queue register file, as defined in this chapter, presents a number of ad-

vantages to support the execution of modulo scheduled loops.

• A novel strategy was proposed for the allocation of loop variant lifetimes to

a QRF. The scheme is based on the Q-Compatibility Test.

• The proposed QRF requires the introduction of copy operations in the DDC.

Experimental analysis have shown that the performance penalty due to this

transformation is acceptable.

• In general QRFs are more efficient than conventional RFs in terms of silicon

area and cycle time. However further experiments are required to assess the

performance level allowed by those implementations.

83

Chapter 5

Unclustered Architectures

Our main motivation to design a queue register file is the register requirements

resulting from the execution of software pipelined loops in a VLIW machine. We

have shown in Chapter 4 that a QRF organization have some advantages over

a RF in terms of silicon area and access time. In this chapter we present a

number of experimental results comparing two types of unclustered architectures,

which differ only by the register file organization. The basic characteristics of an

unclustered machine are described in Section 3.1.3. The experiments compare

the performance and required machine resources of both organizations. Machine

configurations ranging from 3 to 30 functional units have been considered, which

connect either to a RF or to a QRF (Figure 5.1). The number of access ports of

each register file is determined by the number and type of the functional units

(Section 5.3).

Figure 5.1: Unclustered machine using a QRF

It is well known that many programs cannot take full advantage of the avail-

able hardware parallelism. Accordingly, one objective of the experiments was to

84

measure the performance improvement achieved when the benchmark is executed

in wider-issue machines. As discussed in Section 4.3, the use of a QRF may

result in some performance degradation due to the introduction of copy opera-

tions in the loop DDG. This set of experiments extends the investigation on that

issue. Early results suggested that using a QRF instead of a RF favours scalahil-

ity [28, 27], which is possibly complemented by benefits in silicon area and access

time (Section 4.5). Hence, another objective of the experimental evaluation was

to quantify the machine resources required to achieve a given performance level.

Optimizing the use of a wide-issue VLIW machine requires finding large

amounts of ILP. However, that is not always available in the body of single loop

iteration.We have used loop unrolling, performed prior to modulo scheduling, to

address this issue, which is described in the next section. Then the experimental

framework is updated with the QRF organization and related parameters. The

chapter finishes presenting experimental results and related conclusions.

5.1 Increasing ILP with Loop Unrolling

Requiring that the II be an integer can result in sub-utilization of machine re-

sources. That situation happens because the TI should be rounded up to the next

integer. As discussed in Section 3.3.1, in this experimental framework the II can

he determined by the most heavily used functional unit. Consider a resource

constrained loop with 3 instructions using the L/S functional unit. Assuming

that the machine model has 2 FUs of this type results in a Mu 1.5, and thus

II = 2. However this implies in one idle L/S slot every 2 cycles. A particular

situation occurs when MII < 1. Suppose the same loop is scheduled in a machine

model with 4 FUs of that type. In this case MII = 0.75, II = 1, and 1 L/S slot

is idle every 4 cycles.

Resource constrained loops having MII < 1 do not have enough operations

in the loop body to use all available functional units. One way to minimize this

problem is to perform loop unrolling [20] of the loop body prior to modulo schedul-

ing. Loop unrolling replicates the original loop body multiple times, eliminating

unnecessary branch instructions. This results in a larger basic block, increasing

the possibilities of finding ILP.
Returning to the above examples, distinct unroll factors can be used to avoid

having idle L/S FUs. Unrolling the loop twice for the machine model with 2 L/S
FUs result in IVIII = 3. On the other hand, for the machine model with 4 L/S
FUs the loop can be unrolled four times, in which case MII = 3. In both cases

85

the schedule has no idle L/S slots, achieving full processing power. Although both

schedules have the same II, the execution time of individual iterations is different.

In the first case 2 iterations are completed every 3 cycles. In the second, 4

iterations are completed in the same amount of time, because the machine has

twice as many L/S FUs. These examples are summarized in Figure 5.1. A study

on the benefits of using loop unrolling with modulo scheduling can he found

in [56].

Scheduling
Parameters

Machine Model A
2 L/S FUs

Machine Model B
4 L/S FUs

Unroll Factor 1 2 1 4
L/S Operations 3 6 3 12
MIT 1.5 3 0.75 3
II 2 3 1 3
Cycles/ Iteration 2 1.5 1 0.75

FUs Utilization 75% 100% 75% 100%

Figure 5.2: Optimizing the use of machine resources with loop unrolling

This research work has considered wide-issue machine models employing up

to 30 FUs. For this reason loop unrolling has been used to increase the ILP

available in small loops. Furthermore, unrolling has also been used to minimize

the negative effects of rounding the ResMIIup to the next integer [78]. Although

performance gains can be achieved with unrolling, side effects may also occur,

which might compromise the achieved benefits. In this work two issues are of

particular concern, being investigated through experimental analysis:

• Unrolling may generate a loop containing too many operations and complex

dependence chains, making it difficult and time consuming to find a valid

schedule with IMS.

• Unrolling may further increase the register pressure.

In the experimental framework loop unrolling is performed only if the ResMIl

is the dominating factor determining the Mu. The number of times a loop body

is unrolled is called unroll factor (u). It is chosen according to the performance

degradation incurred when the ResMIIis rounded up to the next integer. The un-

roll factor u is determined in order to minimize a tolerance value, called Utoierance,

which can be calculated by means of the following expression [78]:

86

Utojerance =
fResMil x ul
ResMil x u

—1 	 (5.1)

In general the maximum unroll factor used in this experimental framework is

10. This avoids creating loops with too many operations. So the unroll factor

is chosen between 1 and 10, whichever results in the smallest Utoierance. Unroll

factors that would result in a DDG with over 250 operations are not considered.

The reasons for this are twofold: possible performance gains are not so significant

because the wasted fraction is small compared to the II. Furthermore, a large

number of operations may result in a higher II due to excessive backtracking,

which also increases the scheduling time. However, it might happen that for very

small loops an unroll factor of ten is still insufficient to have ResMil > 1. In this

cases an unroll factor as high as 40 can be used. Loop unrolling is also used to

support the partitioning algorithm when small loops are scheduled, as discussed

in Section 7.1.4. We have found that the criterion used to perform loop unrolling

does not result in significant performance degradation or excessive use of machine

resources [27]. Thus we have adopted it as a standard feature of the experimental

framework, being performed whenever necessary.

Unrolling an original DDC in times produces a new graph which we shall call

UDDG. For each vertex u representing an instruction u i E DDG, UDDC has in

vertices w corresponding to distinct iterations of the same operation. Likewise,

for each dependence edge e(u, v) E DDG, in dependences e(u1, mod m E

UDDG are created. The loop unrolling scheme [85] used by the experimental

framework is described in Algorithm 5.1. If the number of iterations of the ori-

ginal loop is N, the number of iterations performed by its unrolled version is

approximately (N - in). So we have defined a new parameter called II j to

express the number of cycles required to execute a single iteration of the original

loop body. This parameter is useful to compare schedules of the same loop having

distinct unroll factors, and is calculated by means of the following expression:

"Si = 	 (5.2)

RVA

Algorithm 5.1 Loop Unrolling

Unroll(DDG, UDDG, m)
1* Replicate each operation according to the unroll factor m

forall operation u E DDG {
for i=O to rn-i {

U 2 = U

Insert(UDDG, ui)

}

}

/ * Insert edges in order to preserve the original data dependences *1
forall edge e(u,v) E DDC {

for i=O to rn-i {
new-edge= e(u, v(i+6(u,v)) mod m

I i+5(u,v)
Jnew_edge - L m

Anew-edge = Ae

Insert(UDDG, new-edge)

}

}

5.2 Experimental Framework Update

So far the experimental framework considers only an unclustered machine model

using a conventional register file, as described in Section 3.1.2. In this section

that model is extended to consider also the use of a QRF. A machine using a QRF

requires Copy FUs, and thus extra access ports to the register file (see Table 3.2).

Only loop variant lifetimes are considered when register allocation is performed

for a QRF, which is done using the scheme described in Section 4.4.2. Although

some alternatives have been considered to allocate loop invariants [27], they have

not been as yet implemented. Furthermore, loop invariants account only for a

small fraction of the total register requirements, thus this simplification should

not affect the results significantly. An unclustered machine using a conventional

register file (RF) to perform register allocation of loop variants only is called U RV.

A similar architecture using a QRF is called UQV. Whenever necessary the suffix

nn is used to indicate the number of functional units of a given configuration.

Copy FUs are not taken into account to compute the total number of FUs as

they do not perform any useful computation from the user's perspective. Thus,

although two machines denoted URVnn and UQVnn have the same number of

standard FUs, UQVnn has also Copy FUs, requiring additional access ports to

88

the QRF. Additional output parameters related to the QRF are generated by the

experimental framework, including the following:

• Number of queues: Total number of queues required to allocate loop variant

lifetimes produced by a modulo schedule. This parameter can also he viewed

as the size of the register name space for a machine using a QRF.

• Queue length: Maximum number of live values that must coexist in a queue

at a given cycle. The length corresponds to a lower bound on the required

storage capacity of a queue.

• Queue locations: Total number of storage positions required by a modulo

scheduled loop. It is calculated summing up all queue lengths resulting from

the register allocation. Although it may not be necessary to use all locations

at the same time, the characteristics of a QRF require this capacity.

• Queue sharing: Number of lifetimes produced by distinct operations sharing

a queue at any given cycle.

Some loops allow a higher degree of performance improvement than others as

the machine model scales up. In the experimental framework this is particularly

the case for resource constrained loops. Recurrence constrained loops do not

benefit from extra functional units. The reason for this is that unrolling is not

performed in loops having ResMil < RecMII. Simply unrolling the loop may

reduce the impact of rounding the RecMII up to the next integer [56]. However

this does not help to fully utilize extra machine resources, as happens when

ResMil <0. Achieving significant performance gains in loops with ResMil <

RecMII requires sophisticated techniques, such as blocked hack-substitution [87].

This technique unrolls a loop m times, reducing the RecMII by the same factor.

However its implementation is outside the scope of this thesis.

For this reason we understand that resource constrained loops should he the

main target of wide-issue machine configurations. We have subdivided the bench-

mark loops into three classes in order to produce a more precise analysis:

• Class 1: Contains all 1258 loops.

• Class 2: Contains only resource constrained loops, thus ResMil > RecMII.

They fully benefit from extra functional units. Although RecMII is a fixed

parameter, ResMil depends on the number of FUs. Thus the number of

loops in this set is machine dependent.

• Class 3: Contains only loops without recurrence circuits, characterized by

RecMII = 0. The number of loops in this set is constant, regardless of the

machine configuration. All class 3 loops also belongs to class 2.

The data in Figure 5.3 shows the number of loops in each class. Class 1 con-

tains 1258 loops, while class 3 contains 753 loops, which is machine independent

in both cases. The number of class 2 loops ranges from 1102 (for 3 FUs) to 807

(for 30 FUs). The chart shows that the number of class 2 loops converges to the

number of class 3. If a very large number of functional units was available the

condition ResMil < 1 would always hold for those loops. Thus the II would

always be rounded to 1. A class 3 loop has RecMII = 0, which is also rounded

to one. Thus for a very large number of functional units the condition to be a

class 2 loop, ResMil > RecMII, is equivalent to ResMil = RecMII, which

results in the same loops being, included in both sets.

Loop Classification

L
0

0

P
S

3 	6 	9 	12 	15 	18 	21 	24 	27 	30
Functional Units

1-All Loops 	- - 2-Res. Const 	-- 3-No Rec.

Figure 5.3: Number of loops in each class

When reporting performance results we often present only the results for

classes 1 and 3. Although we are mostly interested in the loops of class 2, the num-

ber of them is not fixed for distinct machine configurations. We avoid comparing

sets of distinct sizes by using class 3 loops instead. Nonetheless the conclusions

obtained should he the same as the characteristics of both sets are the same re-

garding the parameters of interest. Unless otherwise stated the results present

machine models scaling by increments of 3 standard functional units, plus extra

Copy FUs if required.

KE

5.3 Experimental Results

This section presents experimental results regarding unclustered architectures,

using either a conventional or a queue register file. A total of 30 machine con-

figurations were considered: 10 URV and 20 UQV, each group ranging from 3 to

30 functional units. Two type of TJQV machine models have been used, differing

only by the number of Copy FUs available. One configuration, called UQV1 has a

fixed proportion of 1 Copy to 3 standard FUs. The other, called UQV, provides

at least 1 Copy for each group of 6 standard FUs. The queue register files used

by these machines are referred as QRF1 and QRF2, respectively. These machine

configurations are summarized in Table 5.1.

Unclustered Machine Configurations

Functional Units URV UQV1 UQV2
L/S 1-10 1-10 1-10
ADD 1-10 1-10 1-10
MUL 1-10 1-10 1-10
Copy - 1-10 1-5

Register File RF QRF1 QRF2
Read ports -60 7-70 7-65
Write ports [_~3 -30 5-50 5-40

Table 5.1: Unclustered machine configurations used in experiments

Innermost loops taken from the Perfect Club Benchmark were used in the

experiments (Section 3.2). Loop unrolling prior to modulo scheduling was per-

formed according to the criteria described in Section 5.1. We have subdivided the

presentation of results into two main topics: performance, and machine resources.

5.3.1 Performance Analysis

In this section the performance of the machine models defined in Section 5.3 is

analysed and compared. First the potential for parallelism exploitation is in-

vestigated, followed by an investigation of the impact caused by the use of copy

operations with a queue register file. The analysis presented in this section is

focused on scheduling issues, so it assumes a fixed cycle time for all machine con-

figurations. In Section 5.3.2.5 a reasonable estimation for the register file cycle

time is presented, which is used to calculate the actual execution time of each

loop.

91

5.3.1.1 ILP Exploitation

Implementing a wide-issue VLIW machine cannot he justified unless it produces

significant performance improvements for the target applications. Accordingly,

this first set of experiments investigates the performance improvement achieved

by scaling up the number of functional units in URV machine models. We have

found that the total number of cycles required to execute all loops from a given

class can be significantly reduced using wider-issue machines, as shown in the

chart in Figure 5.4. The results are relativized using as a baseline the execution

time of the corresponding class of loops in a URV03 machine. In this case the

number of cycles required to execute all loops of classes 1, 2 and 3 is 3.6 x 10 10 ,

34 x 10' 0 , and 1.3 x 1010, respectively.

It should be noticed that the execution time of classes 1 and 2 do not differ

by a large factor for the smallest configuration, which shows that a large fraction

of the execution time is spent in resource constrained loops. As the number of

functional units increases, so does the gap between both curves, showing that class

2 loops take more advantage of the extra functional units. This is most clearly

concluded by comparing the achieved speedup for each class of loops (Figure 5.5).

Classes 2 and 3 can achieve linear speedups as they consist of vectorizable loops.

The speedup of class 1 is sublinear because the recurrence constrained loops found

in this class do not take full advantage of extra functional units.

5.3.1.2 Impact of Copy Operations on Performance

As previously discussed the use of a QRF may delay loop execution due to the

introduction of copy operations. In order to further investigate this issue we have

extended the analysis presented in Section 4.3, now considering additional ma-

chine configurations and performing loop unrolling when necessary. The analysis

compares performance execution using three machine models: URV, UQV1, and

UQV2, as previously defined. A comparison of the execution time of all loops

is shown in Figure 5.6. Small performance degradation in relation to configur-

ation URV is observed when UQV1 is used. If UQV2 is used instead, the total

execution time increases by a larger factor. This confirms that Copy FUs can he

the critical resource for some loops, determining the II. The overhead tends to

increase as the machine configuration scales up. The main reason for this is that

more loops become recurrence constrained as more functional units are used. In

this case more loops are affected by the introduction of Copy operations in a re-

currence circuit. Furthermore, a wider-issue machine may require a higher unroll

factor. Thus, more Copy operations are necessary, possibly increasing the II. A

92

Execution Time
URV - Fixed Cycle Time

100

90

80

R 70

a 60

50

T 40

e 30

	

20 	j

	

3 	6 	9 12 15 18 21 24 27 30
Functional Units

All Loops 	R. Corist --- No Rec

Loop Speedup
URV - Fixed Cycle Time

12.0

11.0

•1

8.0
S
	

/
./

7.0

•1

d 	6.0
U

P
5.0

4.0

3.0

2.0

1.0

	

3 	6 9 12 15 18 21 24 27 30
Functional Units

All Loops 	R. Const 	No Rec

Figure 5.4: Execution time-Fixed cycle Figure 5.5: Loop speedup-Fixed cycle

smaller overhead is observed when only loops without recurrences are considered

(Figure 5.7). In this case the extra execution time is only due to loops whose

critical resource is the Copy FU.

The value of IPCdy namic also shows small variations between machine models

for both sets of loops, as seen in Figures 5.8 and 5.9, respectively. However the

performance loss is larger when UQV2 is used, for the reasons above discussed. A

linear increase is observed for loops without recurrences, which is also achieved for

resource constrained loops. When all loops are included, the growth of IPCdynamic

is sublinear because recurrence constrained loops do not use all the available FUs.

We have concluded that it is possible to achieve high speedup levels using

any of the architecture models proposed, specially for loops that are resource

constrained. It might he possible that additional techniques make it feasible to

accelerate an even larger class of loops. We have found that using a QRF does not

result in significant performance degradation, as long as an adequate number of

Copy FUs is provided. However the inclusion of extra functional units implies new

access ports, which increases the complexity of the QRF, possibly compromising

performance. Hence, a trade-off is involved in the performance optimization of

UQV machines, between scheduling flexibility and number of access ports.

93

R
e

a

V

e

T

m
e

Execution Time
All Loops - Fixed Cycle Time

- 3 6 9 12 15 18 21 24 27 30
Functional Units

• URV U UQVi DI UQV2

Execution Time
Loops Without Rec. - Fixed Cycle Time

110

100

90

80
A
e

I 	70

60

e 50

T

40
m
e

30

20

10

0
3 6 9 12 15 18 21 24 27 30

Functional Units

• URV 	E3 UOV1 DII UQV2

Figure 5.6: Copy overhead-Class 1 	Figure 5.7: Copy overhead-Class 3

5.3.2 Machine Resources Analysis

The experiments shown in this section compare the machine resources required

to achieve the performance levels reported in Section 5.3.1. An issue of particular

interest is the scalability of the model using a queue register file. As defined in

Section 5.2, all data refer to dynamic measurements, accounting for the loops

responsible for 99% of the total execution time of the benchmark.

5.3.2.1 Name Space

As already discussed, the maximum number of live values at a given cycle determ-

ines the required number of distinct storage locations. In a conventional register

file each storage location requires a distinct register name. However, in a queue

register file all registers comprising a given queue are referred to by the same re-

gister name. Thus, the register name space problem is shifted from register names

to queue names. A smaller name space size may require less bits to specify the

address of instruction operands, possibly simplifying the instruction word format

and the register file implementation.

The data in Figure 5.10 compares the size of the name space of both organiz-

ations. The growth of the name space for a RF is almost linear as the number of

WC-Dynamic
	

WC-Dynamic
All Loops
	

Loops Without Recurrences

20

19-

18-

17

16-

15-

14

n 13-

12-

r 	11

10-

t 	91

8 1

4 1
3 1
4
0-

3

441

6 	9 12 15 18 21 24 27 30
Functional Units

URV 	- UQV1 	UOV2

I

I

nl
Si

r 1
u 1
C

0

n
S

3 	6 	9 12 15 18 21 24 27 30
Functional Units

URV 	'- UQV1 	-- UQV2

Figure 5.8: IPC Dynamic-Class 1 	Figure 5.9: IPC Dynamic-Class 3

functional units scales up. On the other hand, for QRFs the name space increases

constantly by a small factor across the machine models. It should be noticed that

the size of the name space is smaller if less Copy FUs are used, as can be inferred

by comparing the results for UQV1 and UQV2.

5.3.2.2 Storage Locations

We define the number of storage locations as the lower bound on the register

file capacity. For a RF it is determined by MaxLive. However for a QRF it

is computed according to the longest size of each queue during loop execution.

The longest size of a queue can he viewed as its MaxLive value. As expected,

the requirements are higher for a queue register file (Figure 5.11). Although

register requirements for UQV2 are lower than for UQV1, they are always higher

than for RF. Multiple-use lifetimes are the main reason for this difference. As

discussed in Section 4.2, a multiple-use lifetime requires only one storage location

in a RF. If a QRF is used instead, multiple locations are required. Furthermore,

a QRF requires copy operations to move data between queues, using additional

storage locations to implement the data transfer. The somewhat irregular shapes

of the curves are due to distinct unroll factors. The main criteria determining the

95

N
a
m
e
S

L

	

o192t 	 I
C

t 160

n 128

96

64f /Y

	

32 	 I

320

288

256

224

Name Space
	

Storage Locations
Loops ref/ 99% Execution Time

	
Loops tell 99% Execution Time

3 	6 	9 12 15 18 21 24 27 30
	

3 	6 9 12 15 18 21 24 27 30
Functional Units
	

Functional Units

URV 	 UQV1 	UQV2
	

URV 	 UOV1 	UQV2

	

Figure 5.10: Name space 	 Figure 5.11: Storage locations

extent of unrolling is performance optimization, which depends on the number of

functional units. Distinct unroll factors may result in large differences in register

requirements. In any case the experiments have confirmed that a QRF requires

more storage locations than the equivalent RF.

5.3.2.3 Queue Sharing

The chart of Figure 5.12 shows the number of lifetimes produced by distinct oper-

ations sharing the same queue. It was measured over all the benchmark loops for

UQV1 configurations. The data is subdivided into three cumulative sets: more

than one, two, and three distinct lifetimes in a queue. The results are normalized

based on the total number of cycles in which one or more live values are stored in

a queue. It can be seen that sharing does occur, being the reason for a reduction

in the size of the name space of UQV machines. Similar results were observed for

UQV2 configurations.

Queue Sharing
UQV1 - All LOOPS

C
Y
C

e
S

%

3 	6 	9 	12 	15 	18 	21 	24 	27 	30
Functional Units

1+ Lifetimes 	IIffl 2+ Lifetimes 	El 3+ Lifetimes

Figure 5.12: Lifetimes sharing a queue

5.3.2.4 Register File Silicon Area

We have used the hardware model presented in Section 4.5 to compare the silicon

area of the register files required to implement the architecture models described

in this chapter. All results are based on CMOS technology using .A = O.8rni.

We assume that MaxLive determines the number of registers in a conventional

RF. Using a similar approach for a QRF would not he appropriate. In a real

implementation the size of each queue is finite, possibly constant, a constraint

that is not taken into account when calculating the maximum number of live

values. We have measured the dynamic length of every queue used by both

organizations, UQV1 and UQV2, as shown in Figure 5.13. The maximum size of

each queue ranges between 7 and 10, for those loops accounting for 99% of the

total execution time.

We have defined the specification of each register file as follows: The size of

the name space (Figure 5.10) determines the number of registers for a RF, or the

number of queues for a QRF. The size of each queue is based on the maximum

queue length for the corresponding configuration (Figure 5.13). The exact value

of those parameters can be found in Tables 5.2 and 5.3. It is assumed that each

register location is 64 bits wide. It is clear that the capacity of QRF configurations

are more than enough in terms of total storage locations. However, that allows

flexibility to the scheduler and register allocator.

97

Longest Queue
UQV-All Loops

3 	6 	9 	12 	15 	15 	21 	24 	27 	30
Functional Units

• ORF1 	ED QRF2

Figure 5.13: Maximum queue length

RF Parameters

Capacity Ports
FUs Registers Read Write

3 41 6 3
6 62 12 6
9 90 18 9
12 106 24 12
15 135 30 15
18 148 36 18
21 166 42 21
24 166 48 24
27 169 54 27
30 220 60 30

Table 5.2: URV register requirements

W.

Q RF Parameters

QRF1 QRF2________
Capacity Ports Capacity Ports

FUs Queues Length Read Write Queues Length Read I Write
3 25 10 7 5 25 10 7 5
6 j 	31 10 14 10 26 8 13 8
9 35 8 21 15 35 7 20 13
12 40 8 28 20 36 8 26 16
15 46 8 35 25 42 8 33 21
18 54 8 42 30 42 7 39 24
21 61 8 49 35 49 8 46 29
24 68 8 56 40 51 8 52 32
27 72 9 63 45 57 8 59 37
30 81 9 .70 50 60 9 65 40

Table 5.3: UQV register requirements

All figures referring to silicon area are presented in A 2 units (Section 4.5). The

data in Figure 5.14 shows that QRF1 organizations uses more silicon area than

a conventional RF, although the differences are not large in most of the cases.

Q RF2 and RF organizations have use areas up to 12 FUs. However, if more

functional units are used there is an increasing advantage for QRF2.

5.3.2.5 Register File Cycle Time

A number of critical paths can determine the cycle time of a wide-issue dynam-

ically scheduled processor. The first one refers to the number of access ports of

the register file. The second one refers to a number of structures used for dy-

namic instruction-scheduling [24]. As reported in [25], the machine cycle time of

both superscalar and VLIW processors may he determined by the cycle time of

the register file. The DEC Alpha 21264, for instance, has a partitioned integer

register file because it is on a critical timing path [41]. Considering that VLIW

processors have no hardware for instruction scheduling, it would be reasonable to

estimate the machine cycle time according to the register files. Thus, we will use

this approach through the remainder of this thesis.

The analytical model presented in Section 4.5 was used to estimate the cycle

time of the machine configurations considered in this analysis. We have found

that in most of the cases the access time of RF and QRF1 organizations are

similar (Figure 5.15). Although QRF1 has more access ports than RF, that is

compensated by the lower complexity of a queue structure. QRF2 allows a shorter

Ali

	

Silicon Area 	 Access Time

	

Register File Only 	 Shared Register File

	

20- 	
601

	

18- 	
551

	

1 	50

	

16 	 I 	 J
45-

	

14 	 :1
40-

	

12 	 :1 	35

A 	 T

e 	
. 01/ 4 	r 30

25

	

A2X10:1 	
n

	

20 	i

I

/

2

0 1— 	I 	 I 	 I 	 I 	 I

3 	6 	9 12 15 18 21 24 27 30
Functional Units

RF 	 ORF1 	-- ORF2

Figure 5.14: Silicon area

3 	6 	9 12 15 18 21 24 27 30
Functional Units

RF 	 ORFI 	-.- QRF2

Figure 5.15: Cycle time

cycle time than QRF1 because it has less access ports. However, as shown in

Section 5.3.1.2 this option results in a higher performance penalty due to a smaller

number of Copy FUs. Although those results assume a fixed cycle time, that is

not the case in real implementations. In fact, scheduling for a machine having

less Copy FUs and less access ports may actually result in a better performance.

We have used the cycle time values calculated for each configuration to weight

the execution times reported in Section 5.3.1, which assume a fixed cycle time

for all machines. This should provide a more accurate insight on the actual

performance. The results are normalized using as a baseline the total execution

time of the corresponding set of loops in a URV03 machine, measured in ns. In

this case, the execution time for all loops of classes 1, 2 and 3 is 2 x 10 11

1.8 x 1011 ns, and 7 x 1010 ns, respectively.

The chart in Figure 5.16 shows the total execution time of all benchmark

loops. The most important finding is that real performance improvement only

occurs when configuration URV03 scales up to URV06. In this case there is a

reduction in the total execution time over the previous configuration. URV con-

figurations allow better performance than UQV up to 12 FUs. The performance

of URV15 and UQV15 are similar, but for more than 15 FUs UQV has a better

100

performance than URV machines. Nonetheless the implementation of any of those

machines cannot he justified as their absolute performance is worse than URV06

configuration. Using more than 6 FUs only increases the total execution time.

This means that the improvements resulting from aggressive ILP scheduling are

surmounted by a longer cycle time, which is due to high register requirements.

Execution Time 	 Execution Time
All Loops - Actual Cycle Time 	 Loops Without Rec. - Actual Cycle Time

R
e

a

V

e

T

m
e

220

200

180

160
11
e
I 140

120

100

T
80

m
e

60

40

20

0' 	I 	 I 	 I 	 I

3 	6 	9 	12 15 18 21 24 27 30
Functional Units

	

URV 	 UQV1 	U0V2

3 	6 	9 12 15 18 21 24 27 30
Functional Units

URV 	 UQV1 	UOV2

Figure 5.16: Execution time-Class 1 	Figure 5.17: Execution time-Class 3

Distinct conclusions can he drawn if only loops without recurrences are con-

sidered. Actual performance improvement occurs when the number of FUs in-

creases from 3 to 6 (Figure 5.17). However the lowest execution time is produced

by the UQV18 machine, although URV06 (a much simpler implementation) has

similar performance. UQV machines of more than 18 FUs do not allow further

performance improvements. It should he noticed that, for this class of loops, the

absolute performance of UQV machines does not degrade by a large factor with

wider-issue machines, as observed in the other case. It could be said that the

improvements of ILP scheduling approximately matches the performance penalty

resulting from a complex register file. Nonetheless, the results suggest once again

that implementations of unclustered machines with more than 6 FUs are not well

justified.

101

5.3.3 Summary of Results and Conclusions

The following list comprises the main conclusions drawn from the experimental

analysis presented in this chapter:

• Wide-issue VLIW machines can he efficiently exploited by means of ag-

gressive scheduling of resource constrained loops. This can be done using a

combination of software pipelining with loop unrolling.

• Although recurrence constrained loops do not allow the same level of im-

provement, resource constrained loops constitute a significant part of the

full benchmark set.

• The introduction of copy operations alone in the loop DDC does not com-

promise the scheduling quality to a large extent. A more important con-

straint is the number of available Copy functional units.

• QRF organizations have a clear advantage over conventional RFs in terms

of name space, considering both aspects, absolute value and scalability.

However, a QRF requires more storage locations as the required size of a

queue (around 8 locations) is not fully utilized.

• The number of Copy FUs determines if a QRF is preferable than an RF in

terms of silicon area and cycle time. Having 1 Copy FU for each 3 standard

FUs requires too many additional access ports, making the RF a better

choice. This conclusion is reversed if 1 Copy FU is used for each 6 standard

FUs.

• Wide-issue unclustered machines require large and complex register files,

resulting in much longer cycle times. This can completely overshadow per-

formance gains resulting from aggressive ILP scheduling.

• There is a significant potential for ILP exploitation in VLIW machines.

However unclustered designs over 6 FUs fail to deliver the expected per-

formance due to larger register files.

102

Chapter 6

Clustered Architectures

We have found in Section 5.3.1 that scheduling techniques targeting wide-issue

VLIW machines can take advantage of the available ILP found in loops. However

a centralized register file would be required if all functional units are included in a

single cluster. The number of registers and access ports of such organization res-

ult in a large access time, which can overshadow the performance gains obtained

from ILP scheduling. We have shown in Section 5.3.2.5 that unclustered machines

of more than 6 FUs do not deliver the expected performance, either using con-

ventional or queue register files. Those findings have motivated the development

of a clustered VLIW architecture. In this organization each cluster should contain

a number of FUs small enough to result in a short register file cycle time.

6.1 Clustered Architecture Organization

The overall structure of the clustered VLIW architecture proposed in this thesis

is shown in Figure 6.1. It comprises a conventional superscalar CPU, plus a col-

lection of VLIW clusters connected in a bi-directional ring topology. The front-end

processor is responsible for executing all parts of a program except the innermost

loops, which are scheduled for parallel execution on the VLIW compute-engine.

The clustered VLIW processor executes the innermost loops of an application

compiled using a modified version of IMS Algorithm [79], which is shown in

Section 6.3. In this thesis we focus exclusively on the performance and cost con-

siderations of the VLIW compute-engine. Optimization of the front-end is also

important, but plays a lesser role when scalability is the prime concern.

Each cluster contains an instruction processor capable of issuing instruction

parcels to the pipelined functional units from a statically compiled loop schedule.

For convenience the functional units are grouped within a cluster, connecting to

a conventional register file.

103

Figure 6.1: Clustered machine

It was shown in Section 4.4 that loop variant lifetimes can be allocated to a

queue register file. However, loop invariant lifetimes also require a special alloca-

tion scheme, due to the read-once limitation of our QRF model. We believe that

such scheme can be implemented using copy operations to write a value back to

its source queue after a read operation. As shown in Section 4.5.3, the silicon

area and cycle time of conventional and queue register files are similar for con-

figurations up to 6 functional units. Thus, we understand that in these cases the

small disadvantage of a conventional register file is compensated by the flexibility

of a standard design. Doing so, the proposed VLIW architecture could also be

used with other scheduling techniques targeting non-loop structures. This are

the main motivations to adopt a conventional register file to store values that are

produced and consumed in the same cluster. Hence, all intra-cluster communica-

tion takes place via a Local Register File (LRF), while inter-cluster communication

takes place via one of the Communication Queue Register Files (CQRF).

A CQRF is a queue register file (as defined in Chapter 4) placed between two

adjacent clusters, providing read-only access to one of them, and write-only access

to the other (Figure 6.2). Sending a value from one cluster to another requires

only a pair of write/read operations to the appropriate CQRF. The analytical

model presented in Section 4.5 shows that the cycle time of QRFs and RFs are

similar for a small number of FUs. If the machine cycle time is determined by

one of those components [25] it might be feasible to assume the same latency for

an operation accessing either the LRF or the CQRF, allowing flexibility to the

scheduler.

104

Q
Write toCQRF 	IIINII Read from CQ

X

Cluster i 	I 	ii i I 	Cluster +1

X

CQRF

Figure 6.2: Communication between adjacent clusters using a CQRF

Each cluster of the proposed organization has two CQRFs to communicate

with its two neighbouring clusters (Figure 6.3a). Instruction results can be writ-

ten to the LRF or to the cluster CQRFs. Source operands can he read from the

LRF and also from the CQRFs of the adjacent clusters (Figure 6.3h). The func-

tional units obtain their operands from the LRF and the CQRFs, via the operand

multiplexing, comprising a 3-input multiplexer per functional unit read port. We

have found that the cluster configuration resulting in the lowest cycle time for

either a LRF or a CQRF comprises 3 standard and 1 Copy FUs (Section 6.4.3.2).

Hence this is the configuration we have used in the experiments, unless stated

otherwise. Those four functional units in each cluster would require a maximum

bandwidth of 5 writes and 7 reads per cycle. This bandwidth requirement may be

directed at the LRF and/or one or more CQRFs. The only restriction is that in

each cycle each queue can be read at most once, and written at most once. In this

study we assume a perfect memory system, capable of servicing each load and

store operation within the latencies set out in Table 3.1. The code generator maps

the lifetimes that span a cluster boundary onto the corresponding CQRF. An im-

portant feature of the architecture and its scheduler is that nearest-neighbour

communication requires no explicit instruction to communicate the value.

We have adopted a bi-directional ring topology because of the advantages of

symmetry and strictly nearest-neighbour interconnects, which ensures the same

latency for any communication operation. Rings also exhibit natural broadcast

properties that facilitate the implementation of scheduling and partitioning al-

gorithms, which is a crucial aspect in this kind of architecture. Extending the con-

nectivity using other structures such as 2D-Mesh or Torus, for instance, would of-

fer greater flexibility to the scheduler. However, that would increase the hardware

complexity and silicon area, and also result in variable communication latency due

to a non-symmetric structure.

The ring topology lends itself well to a single-chip implementation. Although

the nearest-neighbour communications require very short wires, the furthest dis-

tance between any two clusters is approximately the width of the chip. This would

105

LRF

Th

F

____ EEL
11 	 EL

CQRF-Cluster i-I 	 CQRF-Cluster 1+1

5writcs

CQRF-Cluster l 	 CQRF-Cluster 1+1

_1I 	 EEE

Operand Mu!tiplexmg

] 	H
Cluster i

Cluster unit

CQRF @ E

Cluster i

	
LRF 	

[EQ-:

Register files interconnection in a cluster

Figure 6.3: Cluster organization

make it difficult to operate with a global synchronous clock, and is where we see

an additional benefit of using buffered inter-cluster communication. Each cluster

could operate from its own clock, phase-locked to a master clock but potentially

skewed with respect to the clocks of its neighbouring clusters. Local clock syn-

chronization can be used to bring cluster clocks into sync with each other, or

alternatively asynchronous data transfer could be used across cluster boundaries.

In spite of the distribution of functional units among clusters, the proposed

architecture model still assumes a single thread of control. This will almost cer-

tainly involves data exchange among FUs located in distinct clusters. Compiling

for a clustered architecture involves code partitioning in order to meet communic-

ation constraints (a bi-directional communication ring, in this case). The ideal

operation assignment would result in the same II achievable for an unclustered

architecture. However communication constraints may force an operation to he

scheduled in a given cluster. It might happen that no available slot exists to

schedule that operation in the required cluster. In this case the only alternative

106

would be increasing the II, which will delay the loop execution. For this reason

code partitioning is a crucial issue for the effectiveness of a clustered VLIW ar-

chitecture. In this thesis we propose two schemes to perform this task: a simple

one, described in this chapter, and a more elaborate one, shown in Chapter 7.

The remainder of this chapter presents an update to the experimental frame-

work in order to consider the clustered architecture model. Then, a new heuristic

is presented to perform code partitioning of a modulo scheduled loop. Finally,

a number of experiments are reported, comparing the performance and machine

resources of clustered and unclustered architectures.

6.2 Experimental Framework Update

As defined in previous chapters the experimental framework considers only Un-

clustered VLIW machines, either using a conventional or a queue register file. In

this section we extend its capabilities to consider a clustered machine model, as de-

scribed in Section 6.1. In this model groups of functional units and a conventional

register file (LRF) are grouped into clusters, which in turn are interconnected by

means of a bidirectional ring of queue register files (CQRFs).

The use of LRFs allows the allocation of loop invariant values without any

special scheme. Lifetimes of this type are allocated to the LRF of every cluster

where they are used. Hence, lifetime duplication may occur. Therefore from

now on loop invariants are also taken into account when register requirements

are estimated. Loop variant lifetimes can be allocated to the LRF or to one

of the CQRFs. If a value is produced and consumed in the same cluster, then

it is allocated in the LRF. If it is consumed in one of the adjacent clusters,

then it is allocated in the corresponding CQRF. The code partitioning algorithm

must ensure the existence of a communication channel between every pair of

producer/ consumer operations. As will be shown later in Section 7.1.4, the DDG

transformation to eliminate multiple-use lifetimes simplifies the partitioning task.

We shall call URF an unclustered machine using a conventional register file

to perform allocation of both loop variant and invariant lifetimes. Clustered

architectures will be referred as CQF, also performing register allocation for both

types of lifetimes. If necessary the suffix nn is used to indicate the number of

standard functional units, which excludes Copy FUs. Unless otherwise stated it

should be assumed that each cluster comprises 3 standard FUs (1 L/S, 1 ADD,

and 1 MUL) and 1 Copy FU. Thus each LRF and CQRF must provide 7 read

and 5 write ports.

107

The machine model description now includes some new parameters:

• Number of clusters

• Cluster configuration, which is defined by the number and type of functional

units, and the type of register file.

• Communication topology

• Latency of inter-cluster communication

The output parameters are the same as described in previous chapters. However,

machine resources such as number of registers and queues, among others, are now

estimated individually for each LRF and CQRF. Specific requirements of indi-

vidual register files often differ among clusters. We let the most demanding LRF

determine the capacity of all other LRFs, using a similar approach to estimate

the size of CQRFs.

Finally, it should he noticed that the scheduling algorithm employed so far

cannot target a clustered machine with limited connectivity. We have enhanced

the IMS algorithm with new heuristics, making it capable of producing code for

this kind of architecture, as described in Section 6.3.

6.3 Partitioning Heuristics

The original version of Iterative Modulo Scheduling [79] used by the experimental

framework assumes that all functional units connect to a centralized register file.

However this is not the case for the clustered machine model defined in Section 6.1.

The limited connectivity among FUs prevents the assignment of operations to

some clusters, according to definition and use of lifetimes.

If two operations with a true data dependence are scheduled in indirectly-

connected clusters it is said that a communication conflict occurs. One way to

address this problem is to perform code partitioning before modulo scheduling,

ensuring that no communication conflict arises. This problem can be seen as a

k-way graph partitioning problem [31], where the cost function to be minimized

represents the Mu. Once the partitioning is completed, the scheduling process

can proceed, taking into account the assignment of operations to clusters.

We have developed an alternative approach, performing both scheduling and

partitioning in a single step [29]. The main motivation for integrating both

tasks into one single procedure is the possibility of reducing the compilation

time without compromising the quality of the schedule. This should he possible

108

because a whole step is eliminated (partitioning), while the additional complex-

ity introduced into the other one (scheduling) is comparatively smaller than of

its original tasks. The strategy adopted includes further heuristics to the IMS

algorithm, relying on its backtracking capabilities to break dead-end states. The

effect of those heuristics is to limit the space of choices to schedule an operation,

as defined below:

• An operation is scheduled in a given cluster only if there are no commu-

nication conflicts with previously scheduled operations, i.e. the clusters to

which the communicating operations belong to must he directly intercon-

nected. We do not as yet consider the introduction of operations to transfer

a value between indirectly connected clusters, implying that an operation

can only send or receive data from an operation scheduled either in the

same cluster or in one of the adjacent ones.

• Communication conflicts can prevent an operation from being scheduled in

any of the clusters, leading to a backtracking process to unschedule conflict-

ing operations. The unscheduled operations are then rescheduled, taking

into account the new communication constraints arising from the new par-

tial schedule.

These new heuristics require modifications in two of the original procedures

of the IMS algorithm: Find-Slot and Backtracking (Section 3.3). The updated

version of those functions are described in Sections 6.3.1 and 6.3.2, and are used

when scheduling for the clustered machine model described in this chapter.

6.3.1 Find Slot Function for a Clustered Machine

The original procedure tries to find a valid slot to schedule an operation OP,

enforcing correct schedules from a resource usage viewpoint. If a free slot can-

not be found within the range [mintime..maxtime], the algorithm will relax this

constraint to assign a scheduling slot for OP. In this case the operation currently

scheduled in the chosen slot will be unscheduled during the backtracking process.

The new version, called Find_Slot_Clustered includes a further constraint to re-

turn a valid slot: no communication conflict should arise if operation OP is indeed

scheduled in the returned slot. The scheme is described by Algorithm 6.3.1. Com-

munication conflicts are checked between OP and all of its scheduled predecessors

and successors. They should be scheduled either in the same or in an adjacent

cluster to the candidate slot. The checking procedure described by Algorithm 6.2

109

uses a parameter called NrClusters, expressing the number of clusters of the ma-

chine configuration. If a valid slot cannot be found under these conditions, the

algorithm will relax the constraints, choosing a slot as in the the original ver-

sion. In this case, the backtracking process may also unschedule operations due

to communication conflicts.

Algorithm 6.1 Find slot for a clustered machine

Find-Slot -Clustered (OP, mintime)
/ Limit range of possible slots /

maxtime= mintime + II -1
currtime= mintime
While (cnrrtime < maxtime) {

1* Find a resource free slot /

find free slot in MRT at cycle=currtime
if (slot found)

1* Verify if communicating operations would be located *1
/ * in directly connected clusters /

conflict= ch eckcommunication_confiict (OP, slot)
if (conflict == 0)

Return slot
else

++currtime

}

/ Resource free slot not found-relax this condition /

If (OP never scheduled)
/* Choose a slot in the first possible cycle */

choose slot in MRT at cycle=mintime
else

/* Choose a slot one cycle later than previously scheduled /

choose slot in MRT at cycle— OPprCVjOUS-slot + 1
Return slot

110

Algorithm 6.2 Check Communication

Check.Communication(OP, slot)
1* Assuming that OP is scheduled in a slot at a given cluster, verify if *1
/ * all operations sending and receiving values from OP would be /
/* located in directly connected clusters /
conflict= 0;
Let Ca be the cluster which slot is located in
forall predecessor of OP {

if (predecessor is scheduled at cluster C) {
/* Verify the number of hops between the cluster of OP *1
/ and its predecessor, assuming a bi-directional ring */

gap= abs(Ca - Cb)
if (gap> 1) and (gap 	(Nrlusters - 1)) {

conflict= 1
Return conflict

}

}

}

forall successor of OP {
if (successor is scheduled at cluster C) {

/* Verify the number of hops between the cluster of OP */
/ and its successor, assuming a bi-directional ring /

gap= abs(Ca - C)
if (gap> 1) and (gap 	(NrClusters - 1)) {

conflict= 1
Return conflict

}

}

}

Return conflict

6.3.2 Backtracking Function for a Clustered Machine

The new version of the backtracking algorithm also unschedules operations due

to communication conflicts. This will be the case if a conflict free slot could

not be found by the Find_Slot_Clustered procedure. The scheme described in

Algorithm 6.3 is a direct extension of the Check- Communication procedure. Every

predecessor or successor of OP, scheduled in a cluster not directly connected to

where OP is scheduled, is ejected from the partial schedule. These operations will

then be rescheduled, possibly in another cluster, trying to avoid communication

conflicts.

111

Algorithm 6.3 Backtracking for a clustered machine

Backtracking_Clustered(OP, slot)
S= slot cycle
forall successor of OP {

If (successor is scheduled at cycle c) {
correct= S +)'e(OP,successor) - (II X Se(OP,sticcessor))

if (correct > c) {
Unschedule (successor)
Update MRT
/ Return successor to the list of unscheduled operations /
Include (List, successor)

}

}

}

/ Unschedule pred. and suc. of OP due to communication conflicts /
Let Ca be the cluster which OP is scheduled in
forall predecessor of OP {

if (predecessor is scheduled at cluster Gb) {
gap= abs(Ga - Gb)
if (gap> 1) and (gap 	(NrClusters - 1))

/* Clusters non-directly connected /*

Unschedule (predecessor)
Update MRT
Include (List, predecessor)

}

}

}

forall successor of OP {
if (successor is scheduled at cluster C) {

gap= abs(Ca - C)
if (gap> 1) and (gap =A (NrGlusters - 1))

/* Clusters non-directly connected 1*
Unschedule (successor)
Update MRT
Include (List, successor)

}

}

}

forall op having a resource conflict in slot {
Unschedule (op)
Update MRT
Include (List, operations)

}

112

6.3.3 Complexity of the New Heuristics

The order of complexity of the IMS algorithm is not affected by the introduction

of new heuristics, as only further constraints are added to the existing ones when

choosing a valid time slot to schedule an operation. It has been shown that

the empirical computational complexity of IMS is 0(N 2), with N representing

the number of operations to be scheduled [79]. The new computation involved

to check communication conflicts consists of simple comparisons between cluster

identifiers. In practice the number of comparisons is small, as it involves only

immediate predecessors and successors of an operation. In general there are at

most two. predecessors. The number of successors may he larger, however we

have noticed that in most of the cases it is less than 5. Furthermore, using the

scheduling techniques proposed in this thesis, an operation can have at most two

successors. This follows from the DDG transformation used to eliminate multiple-

use lifetimes. It is expected that the backtracking frequency may increase in some

cases, requiring a longer compilation time. Nonetheless, we have not changed

the budget parameter limiting the number of scheduling steps for a given II.

Communication conflicts may require a larger II than would be achieved if a

single cluster machine had been used instead. Small or no variations at all in the

II would mean that only a tolerable increase occurs in the backtracking frequency.

Accordingly, we evaluate the effectiveness of the new heuristics by measuring the

II increase due to code partitioning. This, and other analyses, are presented in

the next section.

6.4 Experimental Results

This section presents experimental results comparing clustered and unclustered

architectures. A total of 14 machine configurations were considered: 7 URF and 7

CQF models, each set of seven ranging from 3 to 21 functional units. Unclustered

machine models have a centralized conventional register file (RF). Clustered ma-

chines can have between 1 and 7 clusters. Each cluster has 3 standard FUs and 1

Copy FU, 1 local register file (LRF), and 2 communication register files (CQRF).

Register allocation of both loop variant and invariant lifetimes is performed for

all models. Those machine configurations are summarized in Table 6.1.

Innermost loops taken from the Perfect Club Benchmark were used in the ex-

periments (Section 3.2). Loop unrolling prior to modulo scheduling was performed

according to the criteria described in Section 5.1. The presentation of results is

subdivided into three main topics: partitioning effectiveness, performance, and

113

Machine Configurations

Number of Clusters: 1-7

Functional Units URF CQF Single Cluster
L/S 1-7 1-7 1
ADD 1-7 1-7 1
MUL 1-7 1-7 1
Copy - 2-7 1

Register Files URF CQF I Single Cluster
RF 1 - -

LRF - 1-7 1
CQRF - 4-14 2

Table 6.1: Machine configurations used in experiments

machine resources. It should be noticed that a clustered machine composed of a

single cluster is identical to the equivalent unclustered version. Thus, it does not

include Copy FUs, CQRFs, and does not require transformations in the DDG.

6.4.1 Partitioning Effectiveness

In this section we evaluate the effectiveness of the partitioning algorithm investig-

ating two issues: increase in the II, and distribution of operations among clusters.

6.4.1.1 Overhead on the II Due to Partitioning

An ideal algorithm would always produce a valid schedule with minimum II. As

reported in [79], and confirmed by our experiments, the IMS algorithm achieves

this objective for a high fraction of loops when targeting a single cluster ma-

chine. The MH should ideally be the same for a single- or multi-cluster machine,

assuming that both have the same number of standard FUs. Although not al-

ways possible, due to communication constraints, a good scheduling/partitioning

scheme would minimize the performance degradation incurred.

We have compared the II of schedules for clustered and unclustered machines.

The data in Figure 6.4 shows the fraction of loops with an increase in the II due

to partitioning. The overhead observed for machines with 6 and 9 FUs is only due

to the introduction of copy operations in the DDG. These machines have 2 or 3

clusters only, which makes the bi-directional communication ring equivalent to a

cross-bar. Thus the partitioning process is not constrained by the communication

system. Only a slightly larger overhead occurs for 12 FUs, showing the algorithm

is very effective when scheduling for 4 clusters. A more significant increase is

114

observed for 15 FUs, although it is still possible to schedule around 85% within the

same II. Larger machine configurations are more demanding for the partitioning

scheme, which is reflected by an accentuated increase in the fraction of loops

having some performance degradation. The low frequency of loops requiring a

higher II for configurations up to 5 clusters also shows that the extra backtracking

is tolerable, when it occurs.

II Increase
Due to Partitioning-Static Data

L
0

0

P
S

%

3 	6 	9 	12 	15 	16 	21
Functional Units

• CQF

Figure 6.4: Loops with a larger II due to partitioning

We have found that in many cases the II increase is of one cycle only. The

impact caused by this may be minimal, but may also be significant, depending

on the II value. The results presented provide an insight into the partitioning

effectiveness, however they cannot show the actual performance degradation. The

effect of increasing the II and the SC can be better quantified by analysing the

execution time and the IPC, which is shown in Section 6.4.2.

6.4.1.2 Communication Distance

We define the communication distance to be the number of cluster boundaries each

value crosses on its way from producer to consumer. A distance of zero refers to

both operations being executed in the same cluster. A distance of one refers

to the consumer operation being executed in one of the adjacent clusters to the

producer. In these cases the communication process involves only access to the

LRF or the CQRF, respectively. The data in Figure 6.5 shows the distribution

of communication distances for several machine configurations, measured over all

115

lifetimes created. Local communication occurs most frequently if only 2 clusters

are used, shown by the higher frequency of distance 0. Equivalent frequencies of

distances 0 and 1 are observed for 3 clusters. If 4 or more clusters are used the

frequency of distance 1 is approximately twice as high as the frequency of distance

zero. Hence, it can be said, empirically, that the probability of a consumer

operation being located in the producer cluster is half of the probability of being

located in either one of the adjacent clusters. This shows the algorithm manages

to balance the distribution of operations among clusters, avoiding concentrating

too many operations in the same cluster. If this was the case, over-utilization of

some clusters, and sub-utilization of others would occur, possibly increasing the

II.

Communication Distance
Ref. Def/Use of Lifetimes

L

e

m
e
S

%

3 	6 	9 	12 	15 	113 	21

Functional Units

0-Same Cluster 	tII I -Adjacent Cluster

Figure 6.5: Communication distance after partitioning

6.4.2 Performance Analysis

The actual impact of the partitioning process can be quantified by comparing the

execution time of both architecture models, clustered and unclustered. The data

in Figure 6.6 compares the execution time of the full benchmark set, assuming a

fixed cycle time for all configurations. The results are relativized using as baseline

the execution time of the corresponding class of loops in a URF03 machine. The

number of cycles required to execute all loops is 3.6 x 1010, 3.4 x 1010, and 1.3 x 10 10 ,

for classes 1, 2, and 3, respectively.

Small performance degradation with clustering was observed for machine mod-

116

3 	6 	9 	12 	15 	18 	21
Functional Units

Unclustered 	- - Clustered

100

90

80

A 70
e

a 60

V 50
e

1 40

m
e 30

20

10

0' 	I

3 	6 	9 	12 	15 	18 	21
Functional Units

Unclustered 	 Clustered

A
e

a

V

e

T

m
e

els up to 15 FUs (5 clusters). However for 18 FUs the number of cycles does not

decrease by a significant factor. Furthermore, it increases if 21 FUs are used.

This suggests that the proposed partitioning scheme is effective for at most 5

clusters. Although no increase in the number of cycles was observed if only loops

without recurrences are considered, some performance degradation was observed

for 6 and 7 cluster machines (Figure 6.7). However it should be noticed that very

small differences were observed up to 5 clusters.

Execution Time 	 Execution Time
All Loops-Fixed Cycle Time 	 Loops Without Rec.- Fixed Cycle Time

Figure 6.6: Number of cycles-Class 1 	Figure 6.7: Number of cycles-Class 3

Similar conclusions can be drawn by analysing the values of IPCdynamic for

both sets of loops, as seen in Figures 6.8 and 6.9, respectively. Very small per-

formance degradation occurs for machines up to 5 clusters. If only loops without

recurrences are considered, clustered and unclustered machines present virtually

the same performance. However, it can he seen once again that the algorithm is

not appropriate for 6 or more clusters.

We have concluded that the quality of the schedules produced by the in-

tegrated scheduling/partitioning algorithm is good for machine models up to 5

clusters. But we have also shown in Section 5.3.2.5 that scheduling quality can

only translate into actual performance if accompanied by a short machine cycle

time. It is expected that the small register files required by clustered machines

117

WC-Dynamic
	

WC-Dynamic
All Loops
	

Loops Without Recurrences

20

19

18

17

16

15

14

o 13

12

r 11

10

9

07
S

03 	
6 	9 	12 	15 	18 	21

Functional Units

Unctustered 	 Clustered

3 	6 	9 	12 	15 	18 	21
Functional Units

Unclustered 	- - Clustered

Figure 6.8: IPC Dynamic-Class 1 	Figure 6.9: IPC Dynamic-Class 3

will minimize this parameter. A more detailed analysis of this issue is presented

in Section 6.4.3.2.

6.4.3 Machine Resources Analysis

In this section we compare the machine resources required to achieve the per-

formance levels reported in Section 6.4.2. We focus on the silicon area and cycle

time analysis, which is used to estimate the actual performance of both machine

models. As was done in the last chapter, all data refer to dynamic measurements,

accounting for the loops responsible for 99% of the total execution time of the

benchmark.

6.4.3.1 Register File Area

The hardware model presented in Section 4.5 was used to compare the silicon area

of the register files required to implement the architecture models described in

this chapter. As previously defined, MaxLive determines the number of registers

in a conventional RF. As seen in Table 6.2, the register requirements for URF

machines are slightly higher than for URV models (Table 5.2), which is due to

the allocation of loop invariants.

118

URF Register File Parameters

Capacity Ports
FUs Registers Read Write

3 71 6 3
6 69 12 6
9 102 18 9
12 108 24 12
15 137 30 15
18 152 36 18
21 176 42 21

Table 6.2: URF register requirements

In a clustered machine the total area occupied by register files depends on the

area of the LRF and the CQRFs of each cluster. The capacity of each LRF is de-

termined by the MaxLive value in the corresponding cluster. A similar approach

to the one employed in Section 5.3.2.4 was used to estimate the size of each CQRF:

the size of the name space determines the number of queues, and the maximum

length of any of them determines the length of all other queues. As expected,

we have found that register requirements are not homogeneous throughout the

clusters. We have used the highest requirements found to determine the para-

meters of all other register files. Although this approach does not minimize the

use of machine resources, it allows some flexibility to the scheduling/partitioning

algorithm. Nonetheless we have not found large differences among the register

requirements of all clusters. The exact value of the parameters used to calculate

the area of each LRF and CQRF of a clustered machine is reported in Table 6.3.

It is assumed that each register location is 64 bits wide. The columns labelled No

indicate the number of LRFs and CQRFs required by each machine configuration.

The chart in Figure 6.10 shows the total silicon area required to implement

the register files of each machine configuration. All figures referring to silicon

area are presented in \2 units. The area used by register files in an unclustered

machine of 6 FUs is smaller than required by the equivalent clustered machine.

Similar space is occupied by configurations of 9 FUs. Clustered machines have

a clear advantage regarding this parameter for 12 of more FUs, a difference that

tends to increase as more FUs are used. This is possible because the required

capacity of LRFs and CQRFs increases by a much smaller factor than it does for

the RFs of an unclustered machine, as shown in Tables 6.2 and 6.3.

119

F CQF Register File Parameters

LRF CQRF
No Capacity Ports No Capacity Ports

FUs Registers Read Write Queues Length Read Write
3 1 71 6 3 0 - - - -

6 2 63 7 5 4 11 8 7 5
9 3 45 7 5 6 9 9 7 5

12 4 38 7 5 8 9 8 7 5
15 5 34 7

1 	
5

1 	
10 9 8 7 5

18 6 50 7 5 11 13 7 5
21 7 47 7 5 H14 13 13 7 5

Table 6.3: CQF register requirements 	 -

Silicon Area
Register File Only

20

18

16

14

12

A

10

8

A2 x 10

6

4

2

0
3 11512i

Functional Units

Unctustered 	 Clustered

Figure 6.10: Total silicon area of register files

6.4.3.2 Register File Cycle Time

The cycle time of register files can also be estimated using the analytical model

presented in Section 4.5. The data in Figure 6.11 show the cycle time of RFs,

LRFs, and CQRFs across distinct numbers of functional units. It can he seen

120

that LRFs and CQRFs have similar cycle times for all machine configurations,

which is around 6 ns. This confirms our expectations that the inter-cluster com-

munication mechanism using CQRFs does not result in significant delays. It is

important to notice that the cycle time of LRFs and CQRFs hardly increases for

larger configurations, which is an important feature in terms of scalability. This is

not the case for the cycle time of centralized RFs, which has a value always higher

than LRFs and CQRFs, growing approximately linearly to the number of FUs.

Although LRFs and CQRFs require extra access ports to support Copy opera-

tions, they are still more efficient than a centralized RF supporting all standard

functional units.

We have estimated the cycle time of a clustered machine based on the cycle

time of LRF and CQRFs, whichever is higher. URF machines have the cycle time

determined by the RF [25]. The data in Figure 6.12 shows that the cycle time of

a clustered machine is always lower than the corresponding unclustered version.

Cycle Time 	 Cycle Time
Individual Register File 	 Based on Slowest Register File

T

T

e

ns

T

m
e

ns

3 	6 	9 	12 	15 	18 	21
	

3 	6 	9 	12 	15 	18 	21
Functional Units
	

Functional Units

RF 	 LRF 	 CQRF
	

Unclustered 	- - Clustered

Figure 6.11: Cycle time of reg. files 	Figure 6.12: Machine cycle time

The performance results reported in Section 6.4.2 assume a fixed cycle time

for all machine configurations. Although an unrealistic assumption, it is valid to

evaluate the scheduling/partitioning effectiveness. However, the actual cycle time

should be taken into account to have an insight on the real machine performance.

121

We have used the cycle time values calculated for each configuration to weight

those execution times. The results are normalized using as baseline the total

execution time of the corresponding set of loops in a URF03 machine, measured

in ns. In this case, the execution time for all loops of classes 1, 2 and 3 is 2.3 x 10 11

ns, 2.2 x 1011 ns, and 8.5 x 1010 ns, respectively.

The chart in Figure 6.13 shows the total execution time of all benchmark

loops. Real performance gains were observed for machine configurations up to 15

FUs. This is not the case for unclustered machines, which only allow performance

gains up to 6 FUs. Similar results were observed if only loops without recurrences

are considered (Figure 6.14). The only difference is that unclustered machines

still allow a small performance improvement up to 15 FUs, although the degree

of improvement is small.

Execution Time 	 Execution Time
All Loops - Actual Cycle Time 	 Loops Without Rec. - Actual Cycle Time

R
e

a

V

e

T

m
e

R
e

a

V

0

T

m
0

3 	6 	9 	12 	15 	18 	21
	

3 	6 	9 	12 	15 	18 	21
Functional Units
	 Functional Units

Unclustered 	 Clustered
	

Unclustorod 	 Clustered

Figure 6.13: Execution time-Class 1 	Figure 6.14: Execution time-Class 3

Those results suggest that clustered machines allow real performance gains

for configurations up to 5 clusters (15 FUs). No improvements were observed for

larger configurations, which is due to limitations in the partitioning scheme. For

the configurations studied we have found that clustered machines have always

better performance than unclustered organizations.

122

6.4.4 Summary of Results and Conclusions

The main conclusions obtained from the experimental analysis presented in this

section are summarized in the following list:

• The integrated scheduling/partitioning scheme proposed is effective for ma-

chine configurations up to 5 clusters. The resulting overhead on execution

time and IPC values is minimal for these configurations.

• The register file requirements of individual clusters are reasonable, only

growing by a small factor as the machine model scales up. For this reason

the total silicon area of a clustered machine is smaller than the equivalent

unclustered organization for 9 or more functional units.

• The cycle time of LRFs and CQRFs are similar for all of the configurations

studied. Hence, the proposed communication system using CQRFs between

adjacent clusters does not cause any significant extra delay.

• Small register file requirements of individual clusters make the cycle time

of a clustered machine always shorter than the equivalent unclustered or-

ganization. Furthermore, there is no significant variation in the cycle time

value across the range of configurations considered.

• The short cycle time of a clustered machine allows performance gains ob-

tained from aggressive ILP scheduling to be translated into a shorter exe-

cution time. In general this is not the case of unclustered machines.

• The techniques presented in this chapter have shown the feasibility of a

VLIW clustered architecture using queue register files as an inter-cluster

communication mechanism. The proposed model presents distinct advant-

ages in terms of scalability, enabling the use of additional functional units

without a significant penalty in the machine cycle time. Actual performance

gains were observed for machine models up to 5 clusters (15 FUs), which

was achieved using the single scheduling/partitioning procedure. However

the proposed scheme is not effective for 6 or more clusters. Performance

improvements beyond that level would require further enhancements to the

algorithm, or even a new approach to the problem.

123

Chapter 7

Distributed Modulo Scheduling

A clustered machine model was proposed in the last chapter in order to reduce

the size and number of ports of individual register files, and thus improve the

machine cycle time. A key issue in this architecture model is the partitioning of

operations among clusters, which must conform to the communication system.

The scheme proposed in Section 6.3 is a variation of the original IMS algorithm.

It performs both scheduling and partitioning in a single step, ensuring that no

communication conflicts are present in the final schedule. Experimental results

have shown the strategy is effective for machine models up to 5 clusters. In those

cases the performance degradation due to partitioning is acceptable. Further-

more, the required register files result in short access times, which allows effective

performance gains through successive machine upgrades.

However, the proposed scheduling/partitioning scheme is not effective when

dealing with machine models of 6 or more clusters. The communication system

allows data dependent operations to be scheduled either in the same or in adjacent

clusters. Intuitively one should expect an increasing difficulty in balancing the

distribution of operations among clusters for larger machine configurations. In

this chapter we present a new algorithm, called Distributed Modulo Scheduling

(DMS), to deal with the problem [30]. DMS is derived from the modified version of

IMS described in Section 6.3, targeting the same machine model and compilation

environment. It can also be classified as a single step scheduling/partitioning

algorithm. However, the new capabilities allow it to produce efficient schedules for

a larger number of clusters. This is possible because the algorithm can schedule

intermediate copy operations between a pair of producer/ consumer operations

scheduled in non-adjacent clusters. The DMS algorithm, and the corresponding

experimental analyses, are presented in the next sections.

124

7.1 Overview of the DMS Algorithm

As already discussed, a clustered machine model introduces new communication

constraints to the scheduling algorithm, in addition to machine and dependence

constraints.

We have used the IMS algorithm as a basic structure to develop a scheme able

to deal with distributed functional units and register files. As seen in Figure 7.1,

IMS has one basic strategy to schedule an operation OP, which is described in

detail in Section 3.3. On the other hand, the DMS algorithm has three basic

strategies: First it tries to schedule OP in such a way that no communication

conflict arises with scheduled predecessors and successors of OP. If that is not

possible, it tries to insert move operations between OP and its scheduled pre-

decessors, using a structure we call a chain. If the partial schedule has enough

machine resources to schedule the required chains, OP can be scheduled. Other

operations may be unscheduled due to machine and dependence conflicts. If the

schedule of chains cannot be completed, OP is simply scheduled in a given slot

and all conflicting operations are unscheduled.

IMS

Schedule OP

If necessary, unschedule other ops due to:
Resource conflicts

Dependence conflicts

DMS

No Communication conflicts allowed

Schedule OP

If necessary, unschedule other ops due to:
Resource conflicts
Dependence conflicts

If not possible

Create Chain of Move ops
to solve Communication conflicts

Schedule Chains

Schedule OP

If necessary, unschedule other ops due to:
Resource conflicts
Dependence conflicts

If not possible

Schedule OP

If necessary, unschedule other ops due to:
Resource conflicts
Dependence conflicts

Communication conflicts

Figure 7.1: Overview of IMS and DMS algorithms

125

A high level description of DMS is shown below (Algorithm 7.1), with further

details and related algorithms presented in the next sections.

Algorithm 7.1 Distributed Modulo Scheduling

DMS(II)
budget= S x (No. operations in DDG)
Create-Priority-List (List)
While (List not empty) and (budget > 0) {

Get (List, OF)
/* Earliest start time for OF, according to scheduled predecessors *1
mintime= Earliest-time(OP)
1* Select a valid slot, without communication conflicts /
slot= Find_Slot_Clustered (OF, mintime)
If (valid slot) {

/ Unschedule operations due to resource and dependence conflicts /
Backtracking_ Clustered (OF, slot)
Schedule (OP, slot)

}

else { / Chains required-select cluster for OP according to set of chains /

Cluster_ OP= Create- Chains (Chain-List)
If (Cluster-OP 	0) { /* Valid set of chains found /

Schedule Chains (Chain_List)
1* Find slot for OP at the chosen cluster /

mirztime= Earliest-time(OP)
slot= Find_Slot_DMS(OP, mintime, Cluster-OP)
/ Unschedule operations due to resource and dependence conflicts *1
Backtracking- Clustered (OF, slot)
Schedule (OF, slot)

}

else { / Select a valid slot, ignoring communication conflicts /

slot— Find_Slot (OF, mintime)
1* Unschedule operations due to resource, dependence, /

/ * and communication conflicts /

Backtracking_Clustered (OF, slot)
Schedule (OF, slot)

}

}

}

Update MRT; Remove (List, OP); budget= budget-i
If (List is empty)

Return i
If (budget == 0)

Return 0

126

7.1.1 Chains of Move Operations

The first part of the DMS algorithm avoids communication conflicts, scheduling

pairs of producer/ consumer operations in the same or adjacent clusters. However

we have found that it is increasingly difficult to do that having 5 or more clusters.

That has led us to consider the use of move operations between data-dependent

operations located in non-adjacent clusters. All discussions and algorithms re-

garding the introduction of move operations assume that the topology of the

communication system among clusters is a hi-directional ring (Section 6.1). It is

also assumed that the machine model has N clusters, sequentially identified by

an integer in the range [1..N].

We define a chain as a. string of move operations scheduled in the clusters

between OP and one of its predecessors. A move operation simply reads one

value from a register file, and writes it back to another one. Thus, if it is sched-

uled in the required cluster, it is possible to move operands between a pair of

producer/consumer operations located in non-directly connected clusters.

Given a candidate cluster to schedule OP, and the cluster of its predecessor,

there are two possibilities to create a chain, each of them following opposite direc-

tions (Figure 7.2). The bi-directional ring of queues used to connect the clusters

allows this flexibility.

7.1.1.1 Creating a Chain

Initially every cluster can be considered to schedule OP. Depending on the

candidate cluster, OP can require at most two chains, as it can have no more than

two scheduled predecessors. As discussed above, for each candidate cluster there

are two possibilities to create a chain. Thus, at most four possible chains should

he considered in each candidate cluster. This ensures that the number of options

to be investigated is finite and relatively small, scaling linearly with the number of

clusters. The scheme described in Algorithm 7.2 considers all clusters to schedule

OP. In the first attempt only clusters having a free slot for OP are considered,

which is verified with a call to the function Find_S1oLDMS. If a valid slot cannot

be found, the constraint is relaxed, and thus every cluster is considered, which

might generate backtracking. All possible chains are evaluated before choosing

the best one, according to some criteria that we have defined. The chosen set of

chains defines the cluster in which OP will be scheduled (Cluster-OP).

A crucial aspect in the implementation of these algorithms are the data struc-

tures used to keep track of machine resource usage. Although we have imple-

mented a simple scheme in our experimental framework, more sophisticated tech-

127

Communication Conflict

iiii Eli liiiE

Option 1 - ChainR

EijEui

Option 2 - ChainL

Figure 7.2: Options to create a chain

niques exist to model machine descriptions. As an example, the scheme pro-

posed in [42] allows efficient low-level representations to be derived from a high-

level language, which is a desirable feature for compiler writers. The low-level

representation, based on AND/OR trees, is obtained by applying a number of

transformations on the high-level description. Experiments have shown signific-

ant reductions in both memory requirements and number of resource checks per

scheduling attempt.

128

Algorithm 7.2 Create Chains

CreateChains(OP, Chain-List)
1* Investigate the possibility of creating the necessary chains assuming *1
/ that OP can be scheduled in anycluster with a resource free slot /
forall cluster C {

/ search for a resource free slot for OP /
slot= FindSlotDMS(OP, C)
If (free slot found) {

Candidate_ Chains (OP, C, Candidate_List[C])

ii

/ Define a cluster to schedule OP, according to the chosen set of chains /
Cluster-OP= 0
Chain-List= void
forall cluster C {

If Better_ Chain (Candidate_List[C], Chain-List) {
Chain-List= Candidate-List[C]
Cluster-OP= C

}

}

If (Cluster-OP =h 0)
Return Cluster-OP

else {
1* Not possible to schedule OP in a resource free slot-relax the condition *1
forall cluster C {

Candidate- Chains (OP, C, Candidate_List[C])
forall cluster C {

If Better_ Chain (Candidate_List[C], Chain-List) {
Chain-List= Candidate_List[C]
Cluster-OP= C

}

}

Return Cluster-OP

}

7.1.1.2 Candidate Chains

For each predecessor pred of an operation OF, two possible chains can be built,

each of then starting from pred and following opposite directions. Those chains

are called ChainR (right-hand side), and ChainL (left-hand side). The scheme

129

described in Algorithm 7.3 build, for each predecessor of OF, the corresponding

ChainR and ChainL, assuming that OP will be scheduled in cluster C. If the

pair pred/OP is set to he scheduled without communication conflicts, no chain

is necessary. This can he verified by calculating the gap between both clusters.

Algorithm 7.3 Candidate Chains

Candidate..Chains(OP, C, Candidate-List)
/* Create a set of chains connecting OP with all of its predecessors */

/* Investigate both paths for each chain, based on the bi-directional ring /

Candidate-List= void
Forall scheduled predecessor of OP {

C = (Predecessor cluster)
gap= abs(C - C)
If (gap> 1) and (gap 	(NrClusters -1)) {

1* Chain following the right direction, from the predecessor to OP */
ChainR= Set of move ops between (Predecessor —+ OF)
/ Chain following the left direction, from the predecessor to OP */
ChainL= Set of move ops between (OP f— Predecessor)
/ Decide which is the best of both chains, and also if it is valid */

/* A valid chain implies in free slots to schedule move operations /

If Better_Chain(ChainL, ChainR) {
If (Valid_ Chain (ChainL))

Include (Can didate_List, ChainL)

}

else {
If Valid Chain (ChairzR)

Include(Candidate_List, ChainR)

}

II
}

7.1.1.3 Choosing the Best Chain

The process of choosing the best option to schedule a chain depends basically

on verifying the current state of machine resource usage. First of all, a set of

chains has to be valid to be considered for scheduling. A set of chains consists of

all chains that would be required to schedule OP in a given cluster C. A set of

chains is said to be valid if the partial schedule has enough free resource free slots

to schedule all of its move operations. The proposed scheme does not unschedule

operations to release slots for a new chain. During the algorithm development

130

we have found this alternative would increase the backtracking frequency without

resulting in actual benefits. Verifying if a set of chains is valid can be done using

Algorithm 7.4.

Algorithm 7.4 Valid Chain

Valid Chain(ChainSet)
/* Verify if there are free slots to schedule all move operations */

/* belonging to a set of chains /

Forall Move ops E Chain-Set
Assume they are scheduled in the respective cluster

/* Minimum number of slots for move operations that /

/* would be left in any cluster /

bound-free-slots= 00

Forall cluster C {
free-slots= (No. remaining Move slots in cluster C)
If (free-slots < bound-free-slots)

bound-free-slots= free-slots

}

If (bound-free-slots > 0)
Return 1

else Return 0

It might happen that more than one valid set of chains exists to address a

given communication conflict. In this case the best option is selected according

to the following criteria:

Choose the set of chains that, once scheduled, maximizes the number of free

slots left available for move operations in any cluster.

If two or more sets of chains are still equivalent regarding the above condi-

tion, choose the one composed by the smallest number of move operations.

The first of these conditions is intended to facilitate the scheduling of another

eventually required chain. The second one aims to minimize the number of move

operations used. We have found that the DMS algorithm is more sensitive to the

first one, as it reduces the frequency of backtracking. Thus the first condition has

been assigned a higher priority than the second one. A scheme to compare two

sets of chains according to these criteria is described by Algorithm 7.5.

131

Algorithm 7.5 Better Chain

Better_Chain(Chain_Setl, ChainSet2)
1* Identify the best one between two sets of chains based /
/ * on machine resources to schedule move operations /
total_mvl= 0
/* Total number of move operations required by set 1 /
Forall Move ops E Chain_Setl {

Assume they are scheduled in the respective cluster
total_mvl ++

}

/* Minimum number of free move slots left by set 1 /

bound_free_slotsl= 00

Forall cluster C {
free-slots= (No. remaining Move slots in cluster C)
If (free-slots < bound_free_slots 1)

bound_free_slots 1 = free-slots

}

total_mv2= 0
/ Total number of move operations required by set 2 *1
Forall Move ops E Chain_Set2 {

Assume they are scheduled in the respective cluster
total_mv2++

}

bound_free_slots2= 00

Forall cluster C {
free-slots= (No. remaining Move slots in cluster C)
If (free-slots < bound_free_slots2)

bound_free_slots2= free-slots

}

/ * Choose the best set based on the above parameters /

If (bound_free_slots 1 > bound_free_slots2)
Return 1

else {
If (bound_free_slotsi = bound_free_slots2) {

If (total_mvl < total_mv2)
Return 1

else Return 0

}

else Return 0

II

132

7.1.2 Scheduling Chains and their Consumer Operations

Once a valid set of chains is chosen, it can be scheduled without concern about

finding a free slot for each move operation. A valid chain implies that the availab-

ility of machine resources has been verified before. However the data dependence

graph must he modified to include the new move operations, and also to update

data dependencies. Inserting a chain between a pair of producer/ consumer op-

erations implies that they are not directly dependent any more. The first move

operation is directly dependent on the producer operation. Thus, the attributes

of this dependence are the same as the ones of the original dependence. All other

move operations are successively dependent on the previous one. The original

consumer operation is dependent on the last move operation of the chain. These

DDC transformations are illustrated in Figure 7.3.

Original dependence

1 81

DDG Transformation
• Latency of Move operation = I cycle

New dependences after inserting a chain

Ol€1
I 10 _G)

Original producer 	Chain of 2 Move operatioms - 	Original consumer

Figure 7.3: DDG transformation to insert a chain

The first step required to schedule a set of chains is to update the DDG, as

described above. Then move operations are sequentially scheduled, starting from

the first one after the producer operation. This ordering must be enforced in order

to determine the correct scheduling time of each of them. That ensures correctness

from the point of view of dependence constraints. As already discussed, resource

constraints should not arise, thus a free slot should always be available to schedule

a move operation in the proper cluster. A high level description of this procedure

is shown by Algorithm 7.6.

133

Algorithm 7.6 Schedule Chains

Schedule -Chains (Chain List)
Forall chain E Chain-List {

Forall move E chain {
/ Update DDG with move operations /
Include(DDG, move)
/* Move operation is scheduled according to immediate successor

mintime= Earliest_time(move)
/* A resource free slot for move should always be found */

cluster= (cluster which move must be scheduled in)
slot= Find_Slot_DMS (move, mintime, cluster)
Schedule(move, slot)
Update MRT

}

}

A modified procedure, called Find_SlotDMS, is used to find a free slot to

schedule a move operation. The only difference between this function and the

version used by the IMS algorithm is that the returned slot is located in a cluster

specified beforehand. This procedure, described in Algorithm 7.7, is also used to

find a slot to schedule move operations. In this case the slot returned must be in

a cluster as defined by the procedure Create-Chains.

Algorithm 7.7 Find Slot DMS

Find_SIot_DMS(OP, mintime, cluster)
maxtime= mintime + II -1
currtime= mintime
While (currtime < maxtime) {

find free slot in MRT belonging to cluster at cycle=c'urrtime
if (slot found)

Return slot
else

++currtime

}

If (OP never scheduled)
choose slot in MRT belonging to cluster at cycle=mintime

else
choose slot in MRT at cycle =previous_slot(OP) + 1

Return slot

134

7.1.3 Unscheduling Operations

Special attention must be paid to the process of unscheduling operations. It might

happen that an operation being ejected from the partial schedule is related to a

chain. In this case it may be necessary to unschedule other operations in order

to prevent communication conflicts among the remaining scheduled operations.

Distinct actions must be taken, according to the type of the operation being

unscheduled, which can be one of the following:

The original producer of a chain: Unschedule the operation and all chains

starting from itself. Unschedule the consumer operation at the end of each

of those chains. Unschedule all chains leading to this consumer operation.

A move operation: Unschedule all move operations of the corresponding

chain. Unschedule the consumer operation at the end of the chain. Un-

schedule all chains leading to this consumer operation.

The original consumer of a chain: Unschedule the operation. Unschedule

all chains leading to itself.

Other types of operations: Unschedule the operation only.

So far both procedures employed to perform backtracking use a simple func-

tion called Unschedule to eject an operation from the partial schedule. This

function simply unschedules the operation specified. However, the use of move

operations may require other operations to be unscheduled, as discussed above.

We have defined a new function called Unschedule_DMS, capable of unscheduling

all required operations, as shown in Algorithm 7.8. If a chain of move operations

is unscheduled, the DDG must be updated, restoring the original data dependen-

cies between the original producer/ consumer pair. Once unscheduled, the chain

must he removed from the DDC, as it is not known if it will be necessary again.

Hence, an updated version of Backtracking. Clustered must be used by the DMS

algorithm. This new version employs the routine UnscheduleDMS instead of

Unsch edule.

135

Algorithm 7.8 Unscheduling of operations for DAIS

UnscheduleDMS(op)
Unschedule (op)
/ Verify if op is directly on indirectly dependent on a chain /

/* If so, unschedule all involved operations */

If (op = original producer of a chain) {
Forall chain starting at op {

Forall move E chain
Unschedule (move)

consumer= operation at the end of chain
Unsch edule (consumer)
Fôrall chain2 ending at consumer {

Forall move E chain2
Unschedule(move)

}

}

}

If (op = move operation E chain) {
Forall move E chain

Unschedule (move)
consumer= operation at the end of chain
Unschedule (consumer)
Forall chain2 ending at consumer {

Forall move E chain2
Unschedule(rnove)

}

}

Unschedule (op)
If (op = original consumer of a chain) {

Forall chain ending at op {
Forall move E chain

Unschedule (move)

}

}

136

7.1.4 Complexity of DMS

The basic structure of the DMS and IMS algorithms is similar. Although the

worst-case complexity of IMS is exponential in N, the empirical computational

complexity has been estimated as 0(N 2) [79], with N representing the number of

operations to he scheduled. IMS verifies a set of conditions before scheduling an

operation, which may lead to other operations being unscheduled. DMS has to

verify a more complex set of conditions, possibly unscheduling a larger number

of operations. However these conditions are not dependent on N, but rather in

the number of clusters and predecessors of the operation being scheduled. The

extra computational cost involved in the verification of a more complex set of

conditions is fixed, consisting of numeric comparisons among a finite number of

elements, as shown in Section 7.1.1.1.

It is expected that the additional constraints used by DMS could increase

the number of unscheduled operations. However, we have found through exper-

imental analysis that the overhead on the II due to the partitioning performed

by DMS is tolerable in most of the cases (Section 7.3.1). Those results suggest

that on average the backtracking frequency of IMS and DMS is similar for ma-

chine configurations up to 8 clusters. Hence, although we have not performed a

formal analysis on this issue, the experimental results suggest that the empirical

complexity of DMS is also 0(N 2) for these machine configurations.

When the backtracking frequency does increase, it is due to an insufficient

number of slots to schedule the required move operations, a situation occurring

most often for machines with a large number of clusters. Increasing the number

of clusters complicates the partitioning process for two reasons:

• Each additional cluster stretches the maximum possible distance between

a pair of producer/ consumer operations by 1. Thus, extra move operations

are necessary to fill the gap.

• Each additional cluster increases the number of available functional units.

This results in a smaller II if the loop being scheduled is resource con-

strained. A smaller initiation interval implies less free slots to schedule a

move operation in any single cluster, reducing the chances of successfully

scheduling a chain.

When small loops are scheduled in a wide-issue machine the II is typically 1

or 2. In those cases the number of available slots for move operations in a single

cluster is not enough to schedule the required chains. Hence we have used loop

137

unrolling to increase the II, which results in more slots per cluster. This strategy

allows scheduling of most of those loops without performance degradation.

We have also found that the DDG transformation to eliminate multiple-use

lifetimes is an important factor to support both partitioning schemes proposed in

this thesis. Limiting to 2 the number of predecessors of each operation simplifies

the task of distributing operations evenly among clusters with limited connectiv-

ity. Multiple-use lifetimes would force the producer and all consumer operations

to he scheduled in at most 3 adjacent clusters, in order to avoid using move

operations. If moves are required, there will be a high concentration of them

around the cluster of the producer operation. Both situations can restrict the

scheduler, potentially requiring an increase in the II, which can be avoided using

the transformation described in Section 4.2.

This restriction is not necessary if they are transformed into several single-use

lifetimes.

7.1.5 Using DMS with Other Machine Models

Although the DMS algorithm has been specially developed targeting the archi-

tecture model described in Section 6.1 we believe it could also be used with other

clustered VLIW architectures. Although some other issues may arise due to par-

ticular features of an architecture, we understand that it should present three

basic characteristics in order to use DMS:

• Directly-connected clusters should communicate through a mechanism able

to ensure fixed timing constraints, known precisely at compile time. For

performance reasons this latency should be similar to the cycle time of the

cluster private register file. In our model this is accomplished by using a

CQRF between clusters. In addition, each cluster must have at least one

FU able to perform move operations.

• The number of possible paths to create a chain should be small, in order

to avoid considering an excessive number of options. Using a bi-directional

ring, for instance, limits the number of options in two. By contrast, a

three dimensional mesh of clusters may present several options, which would

probably cause a negative impact on the scheduling time.

• The instruction set we use assumes that an operation can have a true data

dependence with at most two predecessors. This is the case in most of

the instruction sets currently in use, with operations taking one or two

138

operands. This ensures that the number of predecessors of OP should be

limited to two. However the number of successors can he very large. A

load operation, for instance, can have its target operand used by several

other arithmetic operations. As discussed in Section 7.1.4, transforming

all multiple-use lifetimes into single-use ones is an important feature sup-

porting the effectiveness of DMS. Hence we believe that some sort of DDC

transformation should be made in order to limit the number of immediate

data dependent successors of any operation.

7.2 Experimental Framework Update

As previously defined in Chapter 6, the experimental framework can also consider

clustered machine models. New heuristics have been also introduced in the IMS

algorithm, in order to avoid communication conflicts. In this chapter we have

introduced DMS, a new modulo scheduling algorithm targeting the clustered ma-

chine model defined in Section 6.1. Hence, from now on DMS will be used by

the experimental framework whenever scheduling is performed for a clustered ma-

chine. The unclustered machine still employs the original version of IMS. As done

before, machine resources will be estimated taking into account loop variant and

invariant lifetimes.

A key feature of DMS is the possibility of using chains of move operations. We

define a move operation as the process of reading a value from one register location

and copying it back to another one. In practice it moves a value between distinct

CQRFs, allowing communication between non-adjacent clusters (Figure 7.4). In

the experimental framework we assume that those operations are executed by a

Copy FU (Section 3.1.1). The only difference is that a move operation has only

one result operand, instead of two in a copy operation. Therefore, no additional

functional unit or register file access port is required to execute a move operation.

However, it can increase the utilization rate of Copy FUs, which may require a

higher II. This and other issues were investigated thorough experimental analyses,

as presented in the next section.

Figure 7.4: Typical use of a move operation

139

7.3 Experimental Results

This section presents experimental results comparing clustered and unclustered

architectures. This analysis is similar to the one presented in Chapter 6, the

main difference being the use of the DMS scheduling/partitioning algorithm for

clustered architectures. The effectiveness of the strategies employed in the last

chapter limited the analysis to machine configurations up to 7 clusters (21 FUs).

The results suggested that no further performance gains would be possible beyond

that level. However better results should he expected by using DMS, so in this

chapter a total of 20 machine configurations are considered: 10 URF and 10

CQF models, each set of ten ranging from 3 to 30 functional units. Clustered

machines can have between 1 and 10 clusters. Each cluster has 3 standard and 1

Copy FUs, 1 local register file (LRF), and 2 communication register files (CQRF).

These machine configurations are summarized in Table 7.1.

Machine Configurations

Number of Clusters: 1-10

Functional Units URF CQF Single Cluster
L/S 1-10 1-10 1
ADD 1-10 1-10 1
MUL 1-10 1-10 1
Copy - 2-10 1

Register Files URF CQF Single Cluster
RF 1 - -

LRF - 1-10 1
CQRF - 4-20 2

Table 7.1: Machine configurations used in experiments with DMS

As in the previous chapters, innermost loops taken from the Perfect Club

Benchmark were used in the experiments, with loop unrolling performed ac-

cording to the criteria described in Section 5.1. The presentation of results is

subdivided into three main topics: partitioning effectiveness, performance, and

machine resources.

7.3.1 Partitioning Effectiveness

In this section the effectiveness of the partitioning algorithm is evaluated by ana-

lysing variations in the II, and also the distribution of operations among clusters.

140

7.3.1.1 Overhead on the II Due to Partitioning

As already discussed, a good scheduling/partitioning algorithm should minimize

eventual increases of the II in relation to the values otherwise achieved for the

corresponding unclustered machine. The data in Figure 7.5 shows the fraction of

loops scheduled without increasing the II due to DMS partitioning. Overheads

for machines with 6 and 9 FUs are only due to the introduction of copy oper-

ations in the DDC, because the partitioning process is not constrained by the

communication system. Over 80% of the loops do not present any overhead for

machine models up to 24 FUs (8 clusters). This result is considerably better

than obtained using the simpler heuristics presented in Section 6.4.1, as seen in

the chart. Furthermore, the overhead increase is less accentuated when DMS is

used, suggesting the algorithm may adapt well to wider-issue machines. When

the II increases it is mainly because the Copy FUs became the most heavily used

resources, due to an excessive number of move operations (Section 7.1-.4). That

could he improved with additional hardware support. The ultimate effect of in-

creasing the II or the SC can be estimated by analysing the total execution time

and IPC values, which is presented in Section 7.3.2.

II Increase
Due to Partitioning-Static Data

L
0

0

P
S

1o'

9

8

7

6

5

4

3

2

3 	6 	9 	12 	15 	18 	21 	24 	27 	30
Functional Units

	

• Using DMS 	 EM Simple Heuristics

Figure 7.5: Loops with a larger II due to DMS partitioning

7.3.1.2 Communication Distance

As defined in Section 6.4.1.2, the communication distance is the number of clusters

boundaries each value crosses on its way from producer to consumer. The data in

141

Figure 7.6 shows the distribution of communication distances for several machine

configurations, measured over all lifetimes created. Similar results to the ones

found in Section 6.4.1.2 were observed, with distances 0 and 1 accounting for most

of the cases. Once again the frequency of distance 1 is approximately twice as high

as the the frequency of distance 0. In practice this indicates that DMS effectively

balance the distribution of operations and lifetimes among clusters. An increasing

number of distances greater than 1 can he observed for 18 or more FUs (6 or more

clusters). In all those cases this is only possible due to move operations, which are

scheduled in intermediate clusters between the original producer/ consumer pair.

This is simply not possible using the heuristics described in Section 6.3, and shows

the mechanism through which DMS achieves better results than scheme.

Communication Distance
Ref. Def/Use of Lifetimes

L

e

M

e
S

%

3 	6 	9 	12 	15 	18 	21 	24 	27 	30
Functional Units

• Distance 0 	 Distance 1
Illll Distance 2 	 Distance3

Figure 7.6: Communication distance after partitioning with DMS

7.3.2 Performance Analysis

In this section we compare the total execution time for sets of loops in both ar-

chitecture models, assuming fixed cycle time for all configurations. All results are

normalized using as a baseline the execution time in a URF03 machine (see values

in Section 6.4.2. Results for the full benchmark set are shown in Figure 7.7. It

can he seen that only small performance degradation occurs for up to 21 FUs

(7 clusters). However, no further improvement can he achieved for wider-issue

clustered machines. On the other hand, very small performance losses due to

partitioning were observed for loops without recurrences (Figure 7.8) scheduling

142

9

8

A 7
e

a 6

vs
e

T 4

m
e 3

2

100

90

80

A 70
e

a 60

V 50
e

T 40

m
e 30

20

10

0'
3 	6 9 12 15 18 21 24 27 30

Functional Units

Unclustered 	 Clustered

3 6 	9 12 15 18 21 24 27 30
Functional Units

Unclustered 	 Clustered

in all machine configurations. Minimal differences between clustered and un-

clustered machines occur up to 7 clusters. Furthermore, the results suggests that

DMS may be effective for even wider-issue machines.

Execution Time 	 Execution Time
All Loops-Fixed Cycle Time 	 Loops Without Roc.- Fixed Cycle Time

Figure 7.7: Number of cycles-Class 1 	Figure 7.8: Number of cycles-Class 3

Similarly, the value of IPCdynam i c improves for machines up to 21 FUs, lev -

elling beyond that point (Figure 7.9). Loops without recurrences allow improve-

ments for the whole range of machine models, as seen in Figure 7.10.

The results presented suggest that the DMS algorithm is effective for machine

configurations of at least 7 clusters, or even further if a more restricted set of loops

is used. These conclusions will be extended in Section 7.3.3.2, where the actual

cycle time of each machine configuration will be used to calculate the execution

time.

143

20

19

18

17

16

15

14

n 13

12

r 11

10

9

n 7
S

6

5

4

3

2

0
3

20

19

18

17

16

15

14

n 13

12

r 11

10

9

$1 7
5

6

5

4

3

2

0
3

IPC-Dynamic
All Loops

6 	9 12 15 18 21 24 27 30
Functional Units

Unclustered 	- 	Clustered

WC-Dynamic
Loops Without Recurrences

6 	9 12 15 18 21 24 27 30
Functional Units

Unctustered 	- .- Clustered

Figure 7.9: IPC Dynamic-Class 1 	Figure 7.10: IPC Dynamic-Class 3

7.3.3 Machine Resources Analysis

In this section we estimate the machine resources required to achieve the per-

formance levels reported in Section 7.3.2, focusing on the silicon area and cycle

time analysis. All data refer to dynamic measurements, accounting for the loops

responsible for 99% of the total execution time of the benchmark.

7.3.3.1 Register File Area

The value of MaxLive can be used to determine the number of registers in a

conventional RF, which is used by unclustered machines (Table 7.2).

Register requirements for clustered machines are estimated as described in

Section 6.4.3.1. The exact value of the parameters used to calculate the area of

each LRF and CQRF of a clustered machine is shown in Table 7.3. It is assumed

that each register location is 64 bits wide. The columns labelled No indicates the

number of LRFs and CQRFs required by each machine configuration, respectively.

The chart in Figure 7.11 shows the total silicon area required to implement the

register files of each machine configuration. Once again the results show that the

area of an unclustered machine of 6 FUs is smaller than the equivalent clustered

machine. Both areas are similar for 9 FUs. Clustered machines of 12 or more FUs

144

URF Register File Parameters

Capacity Ports
FUs Registers Read Write

3 71 6 3
6 69 12 6
9 102 18 9
12 108 24 12
15 137 30 15
18 152 36 18
21 176 42 21
24 178 48 24
27 172 54 27
30 221 60 30

Table 7.2: URF register requirements

CQF Register File Parameters

LRF CQRF
No Capacity Ports No Capacity Ports

FUs Registers Read Write Queues Length Read Write
3 1 71 6 3 0 - - - -

6 2 63 7 5 4 11 8 7 5
9 3 45 7 5 6 9 9 7 5
12 4 38 7 5 8 9 8 7 5
15 5 34 7 5 10 9 7 7 5
18 6 33 7 5 12 10 9 7 5
21 7 30 7 5 14 11 10 7 5
24 8 29 7 16 9 8 7 5
27 9 32 7 5 18 12 10 7 5
30 10 33 7 5 20 13 24 7 5

Table 7.3: CQF register requirements

(4 or more clusters) are clearly more efficient in terms of area. The advantage

tends to increase as the machine model scales up. It can be seen in Table 7.3 that

register requirements of individual LRFs and CQRFs remain at the same level

for the whole range of configurations: This suggests that the silicon area may

grown proportionally to the number of functional units, which is not the case for

an unclustered machine.

We have estimated register requirements not taking into account any further

optimization to minimize resource usage. Hence, it might happen that some con-

145

figurations have the capacity of all register files determined by the requirements of

just a few loops (1 or 2, most often). For instance, it was defined that the size of

each queue is 24 for a clustered machine having 30 FUs. This is the requirement

of one loop only. If we do not take it into account, the required queue length

would be reduced to 12.

After performing a detailed analysis on the most demanding loops of the

benchmark we have concluded that it may he possible to achieve similar perform-

ance levels having all CQRFs implemented with 8 queues of 8 locations each. A

few loops require additional resources, and when it happens it could be minimized

if a better resource allocation was performed. To address these cases, it may be

possible to develop a strategy to add some degree of register-pressure sensitivity

to DMS. Furthermore, spill-code could be used to deal with the remaining cases.

Thus, we understand that the proposed configuration is a realistic target to be

pursued, which will result in further improvements in the silicon area and cycle

time.

Silicon Area
Register File Only

2O

18

16

4

2

04,
3
	

6 	9 	12 15 18 21 24 27 30
Functional Units

Unctustered 	- - Clustered

Figure 7.11: Total silicon area of register files

146

7.3.3.2 Register File Cycle Time

Estimates for the expected cycle time of RFs, LRFs, and CQRFs can be found

in Figure 7.12. It can be seen that LRFs and CQRFs have equivalent cycle times

for all machine configurations, which is around 6 ns. A significant difference is

only observed for the CQF30 machine, which is due to CQRFs designed with over-

dimensioned queues. Apart from that, we have found that the cycle times of LRFs

and CQRFs are very similar for all machine configurations. As previously found,

the cycle times of centralized RFs are always higher than LRFs and CQRFs,

growing approximately linearly to the number of FUs.

As in Chapter 6, we have determined the cycle time of a clustered machine

based on the cycle time of LR.F and CQRFs, whichever is higher. Unclustered

machines have the cycle time determined by the RF. It can be seen in Figure 7.13

that the cycle time of a clustered machine is always lower than the corresponding

unclustered version.

Cycle Time
	

Cycle Time
Individual Register File
	

Based on Slowest Register File

T

T

e

ns

T

T

e

ns

3 	6 	9 12 15 18 21 24 27 30
	

3 	6 	9 12 15 18 21 24 27 30
Functional Units
	

Functional Units

RF 	 LRF 	CQRF
	

Unclustered 	 Clustered

Figure 7.12: Cycle time of reg. files 	Figure 7.13: Machine cycle time

The performance results reported in Section 7.3.2 assume fixed cycle times for

all machine configurations. However the actual cycle time should be taken into

account to have an insight on the real machine performance.

The cycle time calculated for each configuration can he used to weight the

147

results presented in Section 7.3.2. Actual performance improvement occurs for

clustered machines up to 24 FUs (8 clusters), as seen in Figure 7.14. Similar res-

ults were observed if only loops without recurrences are considered (Figure 7.15),

but a higher level of improvement is achieved in this case. Unclustered machines

allow improvements up to 6 or 12 FUs, depending on the scheduled set of loops.

All data presented are normalized using as baseline the execution time of a URF03

machine, using the values shown in Section 6.4.3.2.

We have confirmed previous findings, concluding that the performance of a

clustered machine is always better than the corresponding unclustered organiza-

tion. The results presented in this section shows that DMS further extends the

advantages resulting from the use of the scheme proposed in Section 6.4.3.2. In

that case, real performance gains were obtained up to 15 FUs (5 clusters). Using

DMS, significant improvements can he achieved up to 24 FUs (8 clusters).

Execution Time 	 Execution Time
All Loops - Actual Cycle Time 	 Loops Without Rec. - Actual Cycle Time

A
e

a

V

e

T

m
e

260

240

220

200

A 180
e

160
a

140
V

e 120

100

60

40

20

0
3 	6 	9 12 15 18 21 24 27 30

Functional Units

Unclustered 	 Clustered

3 	6 	9 12 15 18 21 24 27 30
Functional Units

Unclustered 	. Clustered

Figure 7.14: Execution time-Class 1 	Figure 7.15: Execution time-Class 3

148

7.3.4 Summary of Results and Conclusions

The main conclusions obtained from the experimental analysis presented in this

section are summarized in the following list:

• The proposed DMS algorithm is effective for machine configurations up to

8 clusters, resulting in low overhead due to partitioning. A larger overhead

was observed for wider-issue machines, although that could he minimized

by using additional FUs to schedule move operations. We suggest the use of

existing standard FUs for this task. This alternative can partially address

the problem without requiring extra access ports to the register files.

o DMS further extends the benefits of using a clustered architecture with

the other partitioning heuristics, without requiring additional machine re-

sources. In many cases, the use of a few move operations is enough to

avoid dead-end states otherwise reached using the simplest partitioning al-

gorithm. Thus, the silicon area and machine cycle time is kept lower than

for the equivalent unclustered machine. Aggressive TLP scheduling using

DMS translates into actual performance gains for configurations up to 24

FUs (8 clusters).

• The results presented in this chapter have confirmed the feasibility of a

VLIW clustered architecture. The key advantage of this organization is

the possibility of keeping the machine cycle time almost constant across a

wide range of configurations. We have shown that the scalability of such

architectures can be heavily constrained by the effectiveness of the schedul-

ing/partitioning algorithm. The DMS algorithm can produce high quality

schedules for clustered architectures comprising a number of clusters not

previously considered in other works, to the best of our knowledge. Hence,

it can significantly extend the potential for ILP exploitation in this kind

of machine. Furthermore, an architecture employing an alternative inter-

cluster communication mechanism or topology may allow extra flexibility

to the scheduler, so a higher degree of improvement might be achieved.

149

Chapter 8

Scalability of Performance and
Cost for Clustered VLIW

Future increases in transistor densities will make highly-parallel VLIW processors

a realistic prospect. The scalability of VLIW processors is therefore a key issue.

In this chapter we define scalability in terms of the relationship between processor

area and actual performance, and focus on the scalability of clustered architec-

tures.

A fundamental issue in microarchitecture is how to apply increasing transistor

densities in ways that are most cost effective. Of course there is no single an-

swer, but it is widely accepted that a greater exploitation of parallelism is a key

requirement. However, it is equally important that the performance evaluation

of candidate microarchitectures takes account of silicon area and logic delays as

well as parallelism. In essence, the ability to apply increasing transistor densities

effectively requires microarchitectures that are scalable.

It is axiomatic that increases in transistor count cannot translate indefinitely

into processors with ever increasing logical complexity. Greater complexity re-

quires greater verification effort, so adding new features to an already complex

out-of-order superscalar processor is certain to increase design cost and may push

design time beyond a viable limit. In contrast, an architecture which scales to

larger configurations through replication of fixed-cost building blocks will be at-

tractive provided it can also yield scalable performance.

In this chapter we focus on what it means to be scalable. We target specifically

the novel clustered VLIW architecture model defined in Chapter 6, although

it could be extended to similar architectures. We assess the scalability of our

approach by considering the rate at which execution time of our benchmarks

reduces when more transistors (i.e., more functional units) are used.

150

8.1 Scalability and Technology Trends

The possibility of a billion-transistor chip is a strong motivating force in microar-

chitecture, but also one which presents many challenges [12]. Arguably the two

most critical challenges for scaling performance with increasing chip area are:

• Exposing parallelism in applications

• Defining architectures in which time and space complexities scale linearly

with increasing parallelism

As previously discussed in this thesis, the size and number of ports of a register

file can seriously compromise the performance of ILP machines. The results

presented in Sections 6.4 and 7.3 show clearly that net performance does not

necessarily track gross ILP in very wide VLIW configurations. One must also

take account of cycle time. We therefore define scalability as the rate at which net

performance increases as the transistor budget increases.

The scalability of our clustered VLIW architecture depends upon the rela-

tionship between chip area and performance. Scalability should also imply an

ability to exploit future advances in silicon technology. To address these issues

we correlate the area estimates of the candidate configurations with predictions

of future device characteristics from the 1997 Semiconductor Industry Associ-

ation Roadmap for Semiconductors [88]. The data in Table 8.1 show certain key

characteristics of the five generations expected to span 1997 to 2009.

(pm) 11 Year I Die Area (mm 2) I A 2 /die (x106)

0.25 1997 300 4,800
0.18 1999 340 10,494
0.13 2003 430 25,443
0.10 2006 520 52,000
0.07 2009 620 126,530

Table 8.1: SIA predictions of device capabilities (1997)

The area occupied by functional units can he estimated by reference to exist-

ing designs. For example, the FPTJ of the MIPS R10000 contains a multiplier, an

adder, and a divider. In a 0.25 pm CMOS technology, this occupies an area of

12 mm2 [74], or 1.92 x 108\2. In the machine models we have considered so far

in this thesis, one cluster group is similar to the R10000FPU, but also contains

one L/S and one Copy functional units. However, both of these are integer units

151

with low complexity. We therefore assume the MIPS 1110000 FPU area to be

a reasonable approximation to the area of one cluster group. For comparative

purposes we assume that each group of three functional units in a unclustered

machine is assigned the same estimated area. The total area of a given configur-

ation therefore includes the area of LRFs, CQRFs, and the above approximation

for the area of the FUs. As previously done, the area and cycle time of register

files is estimated using the analytic model [62] presented in Section 4.5.

8.2 Experimental Framework Update

The features of the experimental framework last defined in Section 7.2 already

present the capabilities to target a clustered VLIW machine. A key element in

the process is the use of DMS, a single step scheduling/partitioning algorithm.

So far we have considered only one type of clustered configuration, consisting

of 3 standard and 1 Copy FUs. We define this basic set as a FU group. To extend

the analysis on scalability issues, we have updated the experimental framework in

order to consider alternative cluster configurations. Hence, from now on cluster

configurations can consist of 1, 2, 3, or 4 FU groups, which correspond to 3, 6,

9, and 12 standard FUs, respectively. These configuration are denoted Gi, G2,

G3, and G4. If necessary the suffix GX will be appended to the existing notation

(CQFnn) to indicate the number of FU groups in each cluster. As an example,

a machine model denoted by CQF12C2 comprises a total of 12 standard FUs,

organized in 2 clusters of 2 FU groups each. Distinct cluster configurations also

imply distinct access port requirements to the register files, defined according to

the number of functional units.

8.3 Experimental Results

In this section we present some results regarding the scalahility of the proposed

VLIW architecture. The results are subdivided into two main topics: performance

analysis, and scalability.

8.3.1 Performance Analysis

A range of new machine configurations is being considered in this analysis. Thus,

machine configurations with the same issue-width may have distinct number of

clusters, implying in the following trade-off when performance optimization is the

main objective:

152

100

90

R 80

e
I 70

a
60

v 50
e

40
T

30
M

e 20

10

100

90

A 80

e
70

a
60

V 50
e

40
I

30
m

e 20

10

• Using a larger cluster configuration means that less clusters are required

for a given issue-width. This reduces communication conflicts, possibly

improving performance.

A larger cluster increases register file requirements, which might increase

the machine cycle time.

We have performed some experiments to investigate the effect of varying those

parameters. As was done in previous chapters, results regarding execution time

are normalized using as a baseline the execution time in a URF03 machine.

Execution Time 	 Execution Time
All Loops - Fixed Cycle Time 	 Loops Without Rec. - Fixed Cycle

0!

3 	6 	9 12 15 18 21 24 27 30
Functional Units

—°--URF 	—o--CQF-G1 - - CQF-G2

• CQF-G3 - .- CQF-G4

3 	6 	9 12 15 18 21 24 27 30
Functional Units

—o—URF 	—o--CQF-G1 - .- CQF-G2

• . CQF-G3 - CQF-G4

Figure 8.1: Number of cycles-Class 1 	Figure 8.2: Number of cycles-Class 3

The first set of results assumes a fixed cycle time for all configurations. Al-

though the differences are not large, the charts in Figures 8.1 and 8.2 show that a

larger cluster configuration in general results in shorter execution time. This res-

ults from the relatively smaller number of clusters required to organize the same

number of FUs, which facilitates the partitioning process. It should be noticed

that the performance loss is more significant for GI configurations of 24 or more

functional units. In those cases the partitioning algorithm is less effective because

it works with 8 or more clusters. All other machine models comprise at most 4

clusters, resulting in less communication conflicts.

153

We have estimated the cycle time of all machine configurations using the

same approach discussed in Section 6.4.3.2. Figure 8.3 shows how the cycle time

of the register structures in those clustered and unclustered processors varies

with the number of functional units, based on 0.8 micron CMOS technology

parameters [62]. As previously found, the cycle time of a globally-shared register

file is clearly a problem for all but the smallest configurations. However the cycle

time of all clustered configurations remains essentially constant, although each

one in a distinct level. As expected, the smaller the cluster configuration, the

shorter the cycle time. Hence, Cl configurations allow the shortest cycle. It

should be noticed that the cycle time of Cl and C2 configurations do not differ

by a large factor. Furthermore, for 30 FUs C2 is better than Cl. This is due

to the difference between the register requirements of machines with 5 and 10

clusters, respectively. This is a clear example of the trade-off involved to define

the best cluster configuration.

Cycle Time
Based on Slowest Register File

60

50

C
40

Y
C

30

e
(ns)

20

10

0!. .

3 	6 	9 	12 15 18 21 24 27 30

Functional Units

	

-°--URF 	-o--COF-G1 - .- CQF-G2
• • CQF-G3 - .- CQF-G4

Figure 8.3: Machine cycle time

Once again we have used the cycle time calculated for each configuration to

weight those results assuming a fixed cycle. As seen in Figures 8.4 and 8.5, the

smallest cluster configuration generally results in the shortest execution time, for

both loop sets considered. However, for 30 FUs the best results are obtained with

154

100

90

R 80

8

I 70
a
t 60

V 50
8

40
T

30
m

e 20

10

100

90

80

8
I 70

a
60

V 50
e

40
T

30
m

e 20

10

configuration G2, which is due to lower pressure on the partitioning algorithm.

The results suggest that further effective performance gains may he possible using

configuration G2, which is not the case with Cl machine models (they peak at

24 FUs).

Execution Time
	

Execution Time
All Loops - Actual Cycle Time

	 Loops Without Rec. - Actual Cycle Time

3 	6 	9 12 15 18 21 24 27 30
Functional Units

—o--URF 	--CQF-G1 - .- CQF-G2
CQF-G3 -- CQF-G4

0 .
3 	6 	9 12 15 18 21 24 27 30

Functional Units

—°—URF 	--CQF-G1 - CQF-G2
CQF-G3 -- CQF-G4

Figure 8.4: Execution time-Class 1 	Figure 8.5: Execution time-Class 3

8.3.2 Scalability of Performance

This thesis focuses on single-chip implementations of an ILP processor. There-

fore, the scaling characteristics must be viewed against expected future integration

capabilities. There are four primary factors involved: the available chip area, the

number of clusters and their issue-width, the expected cycle time of a configur-

ation, and the effective IPC after scheduling/partitioning. All four factors are

closely interlinked, and together determine the scalability of each configuration.

The relationship between IPCdynam ic and chip area for the VLIW compute-

engine is shown in Figures 8.6 and 8.7. We have seen in Section 7.3.2 that

unclustered configurations yield the highest IPC. Here we see they have the worst

IPC/area ratio. For device areas up to 4 x 1O9\2 the Cl configuration has the

best IPC/area ratio. Beyond that, the G2 configuration appears to be a promising

candidate.

155

Scalability of Performance
All Loops - Area vs. I PC

20
18
16
14 -

112 -
Plo ---- --
C8

20
18
16
14

112
plo
C8

6
4
2
0

0

4 	6 	8 	10 	12 	14 	16 	18 	20

Area ()L
2 x 1 0)

—°—URF —o--CQF-G1 - - CQF-G2 -CQF-G3 -- CQF-G4

Figure 8.6: IPC vs Area-Class 1

Scalability of Performance
Loops Without Rec. - Area vs. PC

2 	4 	6 	8 	10 	12 	14 	16 	18 	20

Area (),2 x 10)

—o--URF ---CQF-G1 - - CQF-G2 .-CQF-G3 -- CQF-G4

Figure 8.7: TPC vs Area-Class 3

156

Arguably the most fundamental metric of scalahility for a single-chip ILP pro-

cessor is the ratio of absolute performance to chip area. We have used the actual

execution time calculated for each configuration (Section 8.3.1) as a measure of

absolute performance. The graphs in Figures 8.8 and 8.9 show this relationship

for all loops and recurrence-free loops, respectively. These graphs also delineate

area values corresponding to intervals of 10 - 20% of the maximum chip area for

the five technology generations outlined in Table 8.1. This gives an indication of

the chronological scalahility of each clustered configuration. Overall, these results

show that statically-scheduled clustered VLIW processors scale very well up to

24 FUs, for Cl configurations. The G2 configuration scales well up to 30 FUs,

and may even scale well beyond.

Scalability of Performance
All Loops - Area vs. Execution Time

200 -
R 180 -

160
a 140

120
o 100
e

80
T 60

40
e 20

0-
0.1

X values to implement these structures whithin 10-20% of maximum chip area.

1 	 10 	 100
Area (?2 x 1 O)

—w—URF —o—CQF-G1 - - CQF-G2 -.CQF-G3 -- CQF-G4

Figure 8.8: Performance vs Area-Class 1

8.3.3 Summary of Results and Conclusions

The conclusions obtained from the analysis presented in this section are summar-

ized in the following list:

• In general, the smaller cluster configurations result in the most cost effective

implementation. However the validity of this assumption depends on the

effectiveness of the scheduling/partitioning algorithm.

• In this experimental framework, a cluster consisting of 1 FU group is the

best option for up to 24 FUs, which corresponds to 8 clusters. Wider-issue

157

Scalability of Performance
Loops Without Rec. - Area vs. Execution Time

200 1

180 1
I 160
a 140

120
v 100
e 80

T 60
I 40

20

0.1

A values to implement these structures whithin 10-20 9/6 of maximum chip

1 	 10
Area () 2 x 1 0)

100

—URF —'—CQF-G1 - •- CQF-G2 .-CQF-G3 -- CQF-G4

Figure 8.9: Performance vs Area-Class 3

machines can he better designed using 2 FU groups per cluster.

e Cluster configurations of more than 2 FU groups fail to deliver the expected

performance, which is due to a large number of register file access ports.

Actually, each of those clusters resembles an unclustered machine, with the

corresponding advantages and disadvantages.

• The proposed VLIW architecture model scales well up to 24 FUs, possibly

more. The scalability can be constrained by the number of clusters and

register file access ports. We have found that the DMS algorithm performs

well up to 8 clusters. Furthermore, it is possible to achieve a reasonable

machine cycle time using up to 6 standard and 2 Copy FUs per cluster.

These parameters should limit the search space for the most cost-effective

VLIW design.

• The conditions required to employ more than 8 clusters would include a

new partitioning strategy, and an alternative communication system among

clusters. Employing a larger number of FUs in a single cluster, without in-

creasing the cycle time, may only be possible with new hardware techniques.

158

Chapter 9

Conclusions

This final chapter summarizes all of the material presented thus far, focusing

on the main aims and achievements of the thesis. This involves presenting the

conclusions on our work to propose a scalable VLIW architecture model, and ex-

plicitly highlighting the original contribution to knowledge which has been made.

Finally, a number of topics will be suggested for future research in this particular

topic.

9.1 Main Findings

The main objective of this research work was to propose a scalable VLIW ma-

chine model targeting numeric applications, which may also be extended to some

classes of DSP and multimedia applications. For this reason, software pipelining

techniques were adopted to accelerate the execution of innermost loops. Our ex-

periments have confirmed the conclusions of previous works, which indicated that

an unclustered organization is inappropriate due to high register file requirements.

Thus, we have proposed a clustered VLJW machine using queue register files to

build a communication system between adjacent clusters. We have also proposed

the integration into a single procedure of both, scheduling and code partitioning

for a clustered machine. A novel algorithm performing software pipelining was

developed within this strategy, called DMS. A final analysis was conducted to

assess the scalability of this architecture model, in terms of performance and sil-

icon area. The following list includes the main findings obtained throughout the

development of this work:

• There is a significant amount of ILP in numeric applications to be ex-

ploited by wide-issue VLIW machines. This is particularly the case for

innermost loops that are resource constrained. However, software pipelin-

159

ing techniques generate high register pressure, requiring large register files

that may compromise the machine performance.

• Unclustered machine organizations having more than 6 functional units, and

relying on a centralized register file, fail to deliver the expected performance.

In those cases the number of access ports increases the machine cycle time

to an extent that completely overshadows the performance gains obtained

from ILP scheduling. Although a QRF organization in general is more

efficient than a conventional RF in terms of silicon area and cycle time, it

is also inappropriate to support a large number of functional units.

• Clustered machines scale well in terms of machine resources. Register re-

quirements for both LRFs and CQRFs remain similar after successive in-

clusions of extra clusters in a given machine model. Thus, for a given

cluster configuration, the machine cycle time shows very small variations,

regardless of the number of clusters employed. This allows to increase the

number of PUs without compromising the overall cycle time. As expected,

a cluster configuration of 3 standard and 1 Copy FU results in the shortest

cycle time. A small, possibly acceptable, increase in the cycle time results

from using twice as many FUs. However, it rises sharply beyond this limit.

Thus, we believe that 6 standard and 2 Copy FUs is the limit for an effi-

cient cluster configuration, considering the architecture and corresponding

hardware models we have adopted in this work.

• Good quality schedules can be produced for a clustered architecture, in-

troducing only a small performance penalty due to code partitioning. The

communication system among clusters and the efficiency of the algorithms

employed determines the maximum number of clusters that allow actual

performance gains. The DMS algorithm is effective for configurations of up

to 8 clusters interconnected as a hi-directional ring.

• Using the architecture and compilation techniques proposed in this work,

the most cost-effective design for up to 24 FUs comprises 8 clusters of 3

standard FUs each. If more functional units are used, an organization of 6

standard FUs per cluster should be the best option.

160

9.2 Thesis Contribution

In this section the main original contributions to knowledge made by this work

are highlighted. To best of our knowledge, none of the following points have

previously appeared in the literature, apart from the work of our own:

• Design of a Queue Register File specially targeting the execution of soft-

ware pipelined loops. A key aspect of its functionality is the use of a

Compatibility-Test to perform allocation of loop variant lifetimes to queues.

• Design of a Clustered VLIW Architecture organized as a bi-directional ring

of clusters, interconnected by queue register files.

• Propose an integrated approach to the problem of performing software pipelin-

ing and code partitioning for a clustered VLIW machine. Previous works

have performed these tasks separately.

• Development of DM8, a novel modulo scheduling algorithm able to per-

form in a single step both scheduling and code partitioning for a clustered

VLIW architecture. Experimental results showed the scheme is effective for

configurations of at least 8 clusters, considering the architecture model and

compilation techniques proposed in this thesis.

• Experimental analysis considering a large range of clustered and unclustered

VLIW machines of up to 30 FUs. Scalability issues were investigated, taking

into account parameters such as performance, silicon area, and cycle time.

9.3 Future Work

A few suggestions of further work are presented in this section. They can be

either direct extensions of this thesis, or closely related topics in this field, as

listed below:

• In terms of hardware, a major enhancement to the existing experimental

framework would be the inclusion of a memory system connecting to the

VLIW engine. This would allow us to quantify the performance degradation

due to an imperfect cache system, as well as the extra hardware complex-

ity involved in its implementation. Two issues are of particular concern

regarding the organization of the memory system: the interconnection with

FUs, and cache coherence. We believe that some sort of partitioning of the

161

cache system is necessary to address these problems. In this case, the cache

coherence would rely on a scheduler sensitive to the locality of dependent

load and store operations. They should be assigned to the same cluster,

and thus use the same cache partition. An alternative to caches is the use

of local memory banks, which might be a better option according to the

memory access pattern of the target applications. For a large number of

FUs, the interconnection problem may be addressed with the advent of new

hardware technologies.

• Improvements must be done to the QRF register allocator, in order to

balance the distribution of lifetimes among queues, and thus optimize its

utilization. That should reduce the required size of each queue. In addition,

a scheme to introduce spill code would be necessary to work with limited

machine resources.

• For comparison purposes it would he interesting to investigate another par-

titioning strategy. We suggest performing the partitioning of the DDC prior

to modulo scheduling, using one of the available methods found in the lit-

erature. This would be followed by a scheduling algorithm, which should

take into account the assignment of operations to clusters defined in the

first step.

• This work has considered innermost loops typically found in numeric ap-

plications. Among them, resource constrained loops constitute the bulk of

performance improvements achieved. On the other hand, recurrence con-

strained loops cannot fully benefit from the available functional units. It

would be very useful to develop techniques able to reduce the latency of

recurrence circuits found in those loops.

• We believe that the proposed architecture model is well suited for some

classes of DSP and multimedia applications having the execution time dom-

inated by highly parallelizable innermost loops. Hence, it would he inter-

esting to use specific benchmarks to investigate the suitability of this archi-

tecture for those application domains.

• For commercial reasons, the execution of scalar code is increasingly import-

ant in microprocessor design. Finding enough ILP in those applications

to sustain a high IPC rate still constitutes an open issue. Any wide-issue

VLIW machine aiming for general purpose use should address this problem.

162

Bibliography

A. Abnous and N. Bagherzadeh. Pipelining and bypassing in a VLIW pro-

cessor. IEEE Transactions on Parallel and Distributed Systems, June 1994.

T. Adam, K. Chandy, and J. Dickson. A comparison of list schedules for

parallel processing systems. Communications of the ACM, December 1974.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and

Tools. Addison Wesley, 1986.

J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control

dependence to data dependence. In 10th Annual Symposium on Principles

of Programming Languages, 1983.

M. Aloqeely and C. Chen. A new technique for exploiting regularity in data

path synthesis. In EURO-DAC'9, European Design Automation Conference,

1994. 	 -

E. Ayguadé, C. Barrado, J. Labarta, J. Liosa, D. Lopez, S. Moreno,

D. Padua, E. Riera, and M. Valero. ICTINEO: Una herramienta para la

investigacion en paralelismo a nivel de instrucciones. In VI Jornadas de

Paralelismo, 1995.

D. Bacon, S. Graham, and 0. Sharp. Compiler transformations for high-

performance computing. ACM Computing Surveys, pages 345-420, 1994.

U. Banerjee. Dependence Analysis for Supercomp'uting. Kluwer Academic

Publishers, 1988.

I. Bennour and E. Ahoulhamid. Register allocation using circular FIFOS.

In International Symposium on Circuits and Systems, 1996.

M. Berry, D. Chen, P. Koss, and D. Kuck. The perfect club benchmarks:

Effective performance evaluation of supercomputers. Technical report, Cen-

ter for Supercomputing Research and Development, University of Illinois at

Urbana-Champaign, 1988.

163

P. Briggs, K. Cooper, and L. Torczon. Improvements to graph coloring

register allocation. ACM Transactions on Programming Languages and sys-

tems, 1994.

D. Burger and J. Goodman. Billion-transistor architectures. IEEE Micro,

September 1997.

A. Capitanio, N. Dutt, and A. Nicolau. Design considerations for limited

connectivity VLIW architectures. Technical Report TR59-92, University of

California, Irvine, Department of Information and Computer Science, 1992.

A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register files for VLIWs:

A preliminary analysis of trade-offs. In Proceedings of the MICRO-25 - The

25th Annual International Symposium on Microarchitecture, 1992.

G. Chaitin. Register allocation and spilling via graph coloring. In Proceedings

ACM SIGPLAN Symp. on Compiler Construction, 1982.

A. Charlesworth. An approach to scientific array processing: The architec-

tural design of the AP12013/FPS-164 family. Computer, 14(9), 1981.

T. Conte et al. Instruction fetch mechanisms for VLIW architectures with

compressed encodings. In Proceedings of the MICRO-29 - The 29th Annual

International Symposium on Microarchitecture, 1996.

J. Dehnert and R. Towle. Compiling for the Cydra 5. The Journal of Super-

computing, July 1993.

G. Desoli. Instruction assignment for clustered VLIW DSP compilers:

A new approach. Technical Report HPL-98-13, HP Laboratories Cam-

bridge, Massachusetts, 1998.

J. Dongarra and R.Hinds. Unrolling loops in Fortran. Software-Practice and

Experience, pages 219-226, 1979.

K. Ebcioglu. Some design ideas for a VLIW architecture for sequential-

natured software. In Proceedings of IFIP WC 10.3 Working Conference on

Parallel Processing, 1988.

John R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press,

Cambridge, Massachusetts, 1986.

164

P. Farahoschi, C. Desoli, and J. Fisher. The latest word in digital and media

processing. IEEE Signal Processing Magazine, March 1998.

K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The multicluster archi-

tecture: Reducing cycle time through partitioning. In Proceedings of the

MICRO-30 - The 30th Annual International Symposium on Microarchitec-

ture, 1997.

K. Farkas, N. Jouppi, and P. Chow. Register file design considerations in

dynamically scheduled processors. Technical Report 95/10, Digital Western

Research Laboratory, 1995.

M. Fernandes, J. Liosa, and N. Topham. Allocating lifetimes to queues in

software pipelined architectures. In EURO-PAR 97, 3rd International Euro-

Par Conference, Passau, Germany, 1997.

M. Fernandes, J. Llosa, and N. Topham. Extending a VLIW architecture

model. Technical Report ECS-CSG-34-97, University of Edinburgh, Depart-

ment of Computer Science, 1997.

M. Fernandes, J. Llosa, and N. Topham. Using queues for register file organ-

ization in VLIW architectures. Technical Report ECS-CSG-29-97, University

of Edinburgh, Department of Computer Science, 1997.

M. Fernandes, J. Llosa, and N. Topham. Partitioned schedules for clustered

VLIW architectures. In JPPS'98, 12th IEEE/ACM International Parallel

Processing Symposium, Orlando, USA, 1998.

M. Fernandes, Josep Llosa, and Nigel Topham. Distributed modulo schedul-

ing. In HPCA-5, 5th IEEE International Symposium on High Performance

Computer Architecture, 1999.

C. Fidducia and R. Mattheyses. A linear time heuristic for improving network

partitioning. In 19th Design Automation Conference, 1982.

J. Fisher. Trace scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers, July 1981.

J. Fisher. Very long instruction word architectures and the ELI-512. In

Proceedings of the 10th Annual International Symposium on Computer Ar-

chitecture, 1983.

165

J. Fisher, P. Faraboschi, and G. Desoli. Custom-Fit processors: letting

applications define architectures. In Proceedings of the MICRO-29 - The

29th Annual International Symposium on Microarchitecture, 1996.

C. Gao, Q. Ning, and V. Van Dongen. Extending software pipelining for

scheduling nested loops. In 6th International Workshop on Languages and

Compilers for Parallel Computing, 1993.

S. Gerez and E. Woutersen. Assignment of storage values to sequential read-

write memories. In EURO-DAC'96, European Design Automation Confer-

ence, 1996.

B. Gieseke. A 600MHz superscalar RISC microprocessor with out-of-order

execution. In IEEE International Solid-State Circuits Conference, 1997.

J. Gonzalez and A. Gonzalez. The potential of data value speculation to

boost ILP. In 12th ACM International Conference on Supercomputing, 1998.

R. Govindarajan, E. Altman, and C. Gao. Minimizing register requirements

under resource-constrained rate-optimal software pipelining. In Proceedings

of the MICRO-27 - The 27th Annual International Symposium on Microar-

chitecture, 1994.

J. Gray, A. Naylor, A. Abnous, and N. Bagherzadeh. VIPER: A VLIW

integer microprocessor. IEEE Journal of Solid State Circuits, December

1993.

L. Gwennap. Digital 21264 sets new standard. Microprocessor Report, 10(14),

1996.

J. Gyllenhaal, W. Hwu, and B. Rau. Optimization of machine descriptions

for efficient use. In Proceedings of the MICRO-29 - The 29th Annual Inter-

national Symposium on Microarchitecture, 1996.

T. Halfhill. Beyond pentium II. Byte, December 1997.

R. Hank, W. Hwu, and B. Rau. Region-based compilation: Introduction,

motivation, and initial experience. International Journal of Parallel Pro-

gramming, 25:113-146, 1997.

J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers, Inc., USA, 1996.

166

A. Heubi, M. Ansorge, and F. Pellaildini. A low power VLSI architecture with

an application to adaptive algorithms for digital hearing aids. In EUSIPCO-

9, Seventh European Signal Processing Conference, 1994.

P. Hsu and E. Davidson. Highly concurrent scalar processing. In 13rd Annual

International Symposium on Computer Architecture, 1986.

R. Huff. Lifetime-sensitive modulo scheduling. In Proceedings of the SIC-

PLAN'93 - Conference on Programming Language Design and Implementa-

tion, 1993.

W. Hwu, S. Mahike, W. Chen, P. Chang, and N. Warter. The superhlock:

An effective technique for VLIW and superscalar compilation. The Journal

of Supercomputing, July 1993.

J. Janssen and H. Corporaal. Partitioned register file for TTAs. In Pro-

ceedings of the MICRO-28 - The 28th Annual International Symposium on

Microarchitecture, 1995.

M. Johnson. Superscalar Microprocessor Design. Prentice-Hall, Inc., Engle-

wood Cliffs, N. Jersey, 1991.

W. Karl. Some design aspects for VLIW architectures exploiting fine-grained

parallelism. In PARLE'93 - Parallel Architectures and Languages Europe,

1993.

C. Kozyrakis et al. Scalable processors in the billion-transistor era: IRAM.

Computer, September 1997.

M. Lam. Software pipelining: An effective scheduling technique for VLIW

machines. In Proceedings of the SICPLAN'88 - Conference on Programming

Language Design and Implementation, 1988.

M. Lam and R. Wilson. Limits of control flow on parallelism. In 19th

International Symposium on Computer Architecture, 1992.

D. Lavery and W. Hwu. Unrolling-based optimizations for modulo schedul-

ing. In Proceedings of the MICRO-28 - The 28th Annual International Sym-

posium on Microarchitecture, 1995.

D. Lavery and W. Hwu. Modulo scheduling of loops in control-intensive

non-numeric programs. In Proceedings of the MICRO-29 - The 29th Annual

International Symposium on Ivlicroarchitecture, 1996.

167

C. Lee. Code Optimizers and Register Organizations for Vector Architectures.

PhD thesis, University of California, Berkeley, 1992.

D. Lilja. Exploiting the parallelism available in loops. Computer, February

1994.

M. Lipasti, C. Wilkerson, and J Shen. Value locality and load value pre-

diction. in Proceedings of the ACM Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, 1996.

J. Llosa. Reducing the Impact of Register Pressure on Software Pipelined

Loops. PhD thesis, Universitat Politecnica de Catalunya-DAC, 1996.

J. Llosa and K. Arazabal. Modelo de area y tiempo para bancos de regis-

tros multipuerto y bancos de colas. Technical Report UPC-DAC-1998-35,

Universitat Politecnica de Catalunya-DAC, 1998.

J. Llosa, A. Gonzalez, E. Ayguadé, and M. Valero. Swing modulo scheduling:

A lifetime-sensitive approach. In PACT'96, 1996.

J. Llosa, M. Valero, and Ayguadé. Quantitative evaluation of register pres-

sure on software pipelined loops. International Journal of Parallel Program-

ming, 26(2):121-142, 1998.

J. Llosa, M. Valero, and E. Ayguadé. Heuristics for register-constrained soft-

ware pipelining. In Proc. of the 29th Annual mt. Symp. on Microarchitecture

(MICRO-29), pages 250-261, 1996.

P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, and R. Nix. The

multiflow trace scheduling compiler. The Journal of Supercomputing, July

1993.

S. Mahlke. Design and implementation of a portable global code optimizers.

Master's thesis, University of Illinois at Urbana-Champaign, 1992.

S. Mahlke, D. Lin, W. Chen, , R. Hank, and R. Bringmann. Effective com-

piler support for predicated execution using the hyperhlock. In Proceedings

of the MICRO-25 - The 25th Annual International Symposium on Microar-

chit ecture, 1992.

W. Mangione-Smith, S. Abraham, and E. Davidson. Register requirements

of pipelined processors. In mt. Conference on Supercomputing, 1992.

168

K. Mehihorn and S. Naher. LEDA: A platform of combinatorial and geo-

metric computing. Communications of the ACM, January 1995.

S. Moon and K. Ehêioglu. A study on the number of memory ports in

multiple instruction issue machines. In Proceedings of the MICRO-26 - The

26th Annual International Symposium on Microarchitecture, 1993.

J. Moreno et al. Architecture, compiler, and simulation of a tree-based VLIW

processor. In 24th International Symposium on Computer Architecture, 1997.

C. Norris and L. Pollock. An experimental study of several cooperative re-

gister allocation and instruction scheduling strategies. In Proceedings of the

MICRO-28 - The 28th Annual International Symposium on Microarchitec-

ture, 1995.

K. Olukotun et al. The case for a single-chip multiprocessor. In ASPL OS- VII,

1996.

D. Papworth. Tuning the pentium pro microarchitecture. IEEE Micro, April

1996.

S. Rathnam and C. Slavenburg. Processing the new world of interactive

media. IEEE Signal Processing Magazine, March 1998.

B. Rau. Dynamically scheduled VLIW processors. In Proceedings of the

MICRO-26 - The 26th Annual International Symposium on Microarchitec-

ture, 1993.

B. Rau. Iterative modulo scheduling: An algorithm for software pipelining

loops. In Proceedings of the iVIICRO-27 - The 27th Annual International

Symposium on Microarchitecture, 1994.

B. Rau. Iterative modulo scheduling. The International Journal of Parallel

Processing, February 1996.

B. Rau and C. Glaeser. Some scheduling techniques and an easily schedulable

horizontal architecture for high performance scientific computing. In 1 4th

Annual Workshop on Microprogramming, 1981.

B. Rau, M. Lee, P. Tirumalai, and M. Schlansker. Register allocation for soft-

ware pipelined loops. In Proceedings of the ACM SICPLAN'92 - Conference

on Programming Language Design and Implementation, 1992.

169

B. Rau and P. Tirumalai M. Schlansker. Code generation schema for mod-

ulo scheduled loops. In Proceedings of the MICRO-25 - The 25th Annua'

International Symposium on Microarchitecture, 1992.

B. Rau, D. Yen, W. Yen, and R. Towle. The Cydra 5 departmental super-

computer. Computer, January 1989.

R. Rau and J. Fisher. Instruction-level parallel processing: History, overview

and perspective. The Journal of Supercomputing, July 1993.

F. Sanchez. Loop Pipelining with Resource and Timing Constraints. PhD

thesis, UPC - Universitat Politecnica de Catalunya, 1995.

M. Schlansker et al. Compilers for instruction-level parallelism. Computer,

December 1997.

M. Schlansker and V. Kathail. Acceleration of first and higher order recur-

rences on processors with instruction level parallelism. In 6th International

Workshop on Languages and Compilers for Parallel Computing, 1993.

Semiconductor Industry Association. The National Technology Roadmap for

Semiconductors, 1997.

N. Seshan. High VelociTi processing. IEEE Signal Processing Magazine,

March 1998.

A. Smith and J. Lee. Branch prediction strategies and branch-target buffer

design. Computer, January 1984.

M. Stoodley and C. Lee. Software pipelining loops with conditional branches.

In Proceedings of the MICRO-29 - The 29th Annual International Symposium

on Microarchitecture, 1996.

J. Thornton. Parallel operation in the control data 6600. In Proceedings of

the Fall Joint Computer Conference, 1964.

R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.

IBM Journal of Research and Development, January 1967.

D. Wall. Limits of instruction-level parallelism. In Fourth International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, 1991.

170

D. Wall. Limits of instruction-level parallelism. Technical Report 93/6,

Digital Western Research Laboratory, 1993.

S. Wallace and N. Bagherzadeh. A scalable register file architecture for

dynamically scheduled processors. In PACT'96, 1996.

N. Warter-Perez and N. Partamian. Modulo scheduling with multiple initi-

ation intervals. In Proceedings of the 114'ICRO-28 - The 28th Annual Inter-

national Symposium on Microarchitecture, 1995.

S. Weiss and J. Smith. Instruction issue logic for pipelined supercomputers.

In Proceedings of the 11th Annual International Symposium on Computer

Architecture, 1984.

S. Wilton and N. Jouppi. An enhanced access and cycle time model for on-

chip caches. Technical Report 93/5, Digital Western Research Laboratory,

1994.

171

