

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

PREDICATED EXECUTION AND REGISTER
WINDOWS FOR OUT-OF-ORDER PROCESSORS

Eduardo Quiñones
Barcelona, May 2008

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy / Doctor per la UPC

Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

2

i

Y que has aprendido en el camino?
Que importa el viaje, no el destino.

Patrice Chaplin

ii

Acknowledgements

Son muchas las personas que han contribuido, en mayor o menor medida, a hacer posible este
documento. Los principales responsables son mis directores de tesis Antonio González, quien me
dio la oportunidad de sumergirme en el mundo de la investigación, y Joan Manel Parcerisa, con
quien he pasado largas horas discutiendo. Ellos me han enseñado el significado de investigar, de
plantear nuevas preguntas y ser capaz de dar respuestas.

También son muchas las personas que han contribuido a alargar esta tesis un poco más. Quiero
hacer una mención especial a los distinguidos miembros que han pasado por la sala c6-e208.
Con ellos he compartido largas tertulias de café. Eso sı́, un tema siempre ha estado vetado, la
arquitectura de computadores.

Sin embargo, estos años de doctorado no hubieran sido posible sin el apoyo incondicional
de mis padres, que siempre me han animado a seguir adelante, a buscar mi futuro personal y
profesional.

Finalmente, quiero agradecer muy especialmente a la persona con quien he vivido durante
estos casi cinco años que ha durado mi tesis, y con la que espero vivir durante muchos años más,
eso sı́, como doctor. Ella ha hecho que cada comento dı́ficil fuera fácil, que cada dı́a malo fuera
bueno, y que cada dı́a bueno fuera increı́ble! Gracies Roser.

El objetivo de un doctorado, no debe ser únicamente el tı́tulo de doctor, sino también el enriquez-
imiento personal. En un viaje, lo más importante no es el destino, sino disfrutar del camino. Me
siento una persona afortunada, he tenido los mejores compañeros de viaje. Gracias a todos.

iii

iv

Abstract

ISA extensions are a very powerful approach to implement new hardware techniques that re-
quire or benefit from compiler support: decisions made at compile time can be complemented at
runtime, achieveing a synergistic effect between the compiler and the processor. This thesis is
focused on two ISA extensions: predicate execution and register windows. Predicate execution is
exploited by the if-conversion compiler technique. If-conversion removes control dependences by
transforming them to data dependences, which helps to exploit ILP beyond a single basic-block.
Register windows help to reduce the amount of loads and stores required to save and restore reg-
isters across procedure calls by storing multiple contexts into a large architectural register file.

In-order processors specially benefit from using both ISA extensions to overcome the limi-
tations that control dependences and memory hierarchy impose on static scheduling. Predicate
execution allows to move control dependence instructions past branches. Register windows re-
duce the amount of memory operations across procedure calls. Although if-conversion and reg-
ister windows techniques have not been exclusivelly developed for in-order processors, their use
for out-of-order processors has been studied very little. In this thesis we show that the use of
if-conversion and register windows introduce new performance opportunities and new challenges
to face in out-of-order processors.

The use of if-conversion in out-of-order processors helps to eliminate hard-to-predict branches,
alleviating the severe performance penalties caused by branch mispredictions. However, the re-
moval of some conditional branches by if-conversion may adversely affect the predictability of the
remaining branches, because it may reduce the amount of correlation information available to the
branch predictor. Moreover, predicate execution in out-of-order processors has to deal with two
performance issues. First, multiple definitions of the same logical register can be merged into a sin-
gle control flow, where each definition is guarded with a different predicate. Second, instructions
whose guarding predicate evaluates to false consume unnecesary resources. This thesis proposes a
branch prediction scheme based on predicate prediction that solves the three problems mentioned
above. This scheme, which is built on top of a predicated ISA that implement a compare-and-
branch model such as the one considered in this thesis, has two advantatges: First, the branch
accuracy is improved because the correlation information is not lost after if-conversion and the
mechanism we propose permits using the computed value of the branch predicate when available,
achieving 100% of accurary. Second it avoids the predicate out-of-order execution problems.

Regarding register windows, we propose a mechanism that reduces physical register require-
ments of an out-of-order processor to the bare minimum with almost no performance loss. The
mechanism is based on identifying which architectural registers are in use by current in-flight in-

v

vi

structions. The registers which are not in use, i.e. there is no in-flight instruction that references
them, can be early released.

In this thesis we propose a very efficient and low-cost hardware implementation of predicate
execution and register windows that provide important benefits to out-of-order processors.

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Background and Motivation . 1
1.2 ISA Extensions: If-Conversion and Register Windows 3

1.2.1 If-Conversion and Predicate Execution 3
1.2.2 Register Windows . 5

1.3 Related Work . 7
1.3.1 Predicate Execution Benefits . 7
1.3.2 Predicated Execution and Branch Prediction 9
1.3.3 Predicate Execution on Out-of-Order Processors 10
1.3.4 Early Register Release Techniques . 11

1.4 Thesis Overview and Contributions . 13
1.4.1 Predicate Execution . 13
1.4.2 Register Windows . 14
1.4.3 Contributions . 15

1.5 Document Organization . 16

2 Experimental Setup 17
2.1 Itanium as a Research Platform . 17

2.1.1 Register Rotation . 18
2.1.2 Memory Speculation . 18
2.1.3 Predication . 19
2.1.4 Register Windows . 20

2.2 An Out-of-Order Execution Model for Itanium 21
2.2.1 The Rename Stage . 21
2.2.2 Memory Subsystem . 22

2.3 Simulation Methodology . 24

3 If-Conversion Technique on Out-of-Order Processors 25
3.1 Introduction . 25
3.2 A Predicate Predictor for If-converted Instructions 28

vii

viii CONTENTS

3.2.1 The Basic Predicate Prediction Scheme 29
3.2.2 The Confidence Predictor Mechanism 31
3.2.3 Evaluation . 34
3.2.4 Cost and Complexity Issues . 36

3.3 A Predicate Predictor for Conditional Branches 38
3.3.1 Replacing the Branch Predictor by a Predicate Predictor 40
3.3.2 The Predicate Predictor Implementation 42
3.3.3 Evaluation . 44

3.4 Summary and Conclusions . 48

4 Register Windows on Out-of-Order Processors 51
4.1 Introduction . 51
4.2 Early Register Release with Register Windows 53

4.2.1 Baseline Register Window . 54
4.2.2 Early Register Release Techniques with Compiler Support 56
4.2.3 Early Register Release Techniques without Compiler Support 57
4.2.4 Implementation . 58
4.2.5 Delayed Spill/Fill Operations . 62
4.2.6 Spill-Fill operations . 62

4.3 Evaluation . 63
4.3.1 Experimental Setup . 63
4.3.2 Estimating the Potential of the Alloc Release 64
4.3.3 Performance Evaluation of Our Early Register Release Techniques 65
4.3.4 Performance Comparison with Other Schemes 68
4.3.5 Performance Impact of the Physical Register File Size 68

4.4 Cost and Complexity Issues . 69
4.5 Summary and Conclusions . 70

5 Summary and Conclusions 73
5.1 If-Conversion Technique on Out-of-Order Processors 73
5.2 Register Windows on Out-of-Order Processors 74
5.3 Future Work . 75

6 Publications 77

List of Figures

1.1 (a) Original if-sentence with multiple control flow paths. (b) If-converted code
with one single collapsed control flow path. 4

1.2 Two procedure contexts are mapped at the same time into the architectural
register file. Compile-defined r3 register from the callee context is dynami-
cally renamed to its corresponding windowed register. 6

2.1 Data dependence graph changes when all predicate instructions are converted
to false predicated conditional moves. (a) Original code. (b) Converted code. . 23

2.2 Stacked register r38 is dynamically translated to its corresponding architec-
tural windowed register by using the RRBase and the RWBase pointers, prior
to access to the map table. Static register r21 access directly to the map table
without any translation. 23

3.1 If-conversion collapses multiple control flows. The correct map definition of
r34 depends on the value of p6 and p7 predicates. (a) Original if-sentence. (b)
If-converted code . 26

3.2 Predicate prediction produces a similar effect to branch prediction. In both
(a) and (b), i5 is not executed if p7 evaluates to false. (a) Original code. (b)
If-converted code. 29

3.3 Generation of a predicate prediction . 30

3.4 Predicate consumption at the rename stage 30

3.5 Performance impact of several confidence threshold values. A scheme without
confidence has been chosen as baseline. 32

3.6 Variance of confidence threshold. (a). Number of flushed instructions per
predicated committed instruction. (b) Percentage of predicated committed
instructions that have been transformed to false predicated conditional moves. 33

3.7 Performance comparison of selective predicate prediction with previous schemes.
False predicated conditional moves has been taken as a baseline. 36

3.8 Generation of select-µops at the rename stage. (a) Original code. (b) The
code has been renamed and the r34 map table entry modified. When the
instruction i5 consumes r34, a select-µop is generated 37

ix

x LIST OF FIGURES

3.9 Selective replay. (a) Original code. (b) Data dependences after predicate pre-
diction if no misprediction occurs Assuming p6 = true, p7 = false and p8 =
false, i3 and i4 are inserted into the issue queue but do not issue. (c) Data de-
pendences after predicate misprediction. Assuming p6 = false, p7 = true and
p8 = false, i2 and i4 are converted to false predicate conditional move, so the
correct r34 value is propagated through the replay data dependence graph. . 39

3.10 (a) Original code with multiple control flow paths. (b) Multiple control flow
paths have been collapsed in a single path. The unconditional branch br.ret
has been transformed to a conditional branch and it now needs to be pre-
dicted. It is correlated with conditions cond1 and cond2 40

3.11 Predicate Prediction scheme as a branch predictor. 42

3.12 Perceptron Predicate Predictor block diagram. 43

3.13 Branch misprediction rates of a conventional branch predictor and our pred-
icate predictor scheme, for non if-converted code. 45

3.14 Branch misprediction rates of an idealized conventional branch predictor and
an idealized predicate predictor scheme, both without alias conflicts and with
perfect global-history update, for non if-converted code. 46

3.15 (a) Comparison of branch misprediction rates for if-converted code. (b) Break-
down of the branch prediction accuracy differences between our predicate
predictor scheme and a conventional branch predictor. (c) Performance com-
parison of the 148KB predicate predictor scheme taking as a baseline the
148KB conventional branch predictor scheme. 47

3.16 Branch misprediction rates of an idealized conventional branch predictor and
an idealized predicate predictor scheme, both without alias conflicts and with
perfect global-history update, for if-converted code. 48

4.1 Average lifetime of physical registers for the set of integer benchmarks ex-
ecuting in a processor with an unbounded register file, when applying our
early release techniques and when not applying them. 53

4.2 Dynamic translation from virtual register r3 to its corresponding architec-
tural windowed register. 54

4.3 Overlapping Register Windows. 55

4.4 Relationship between Map Table and Backing Store memory. 56

4.5 Architectural register requirements are higher in path 1 than path 2. 57

4.6 In both figures, context 1 mappings that do not overlap with context 2 are
not-active (none in-flight instructions refer them), so they can be released. (a)
Alloc-Release technique, (b) Context-Release technique 58

4.7 Register-Release Spill technique (a) Context 1 mappings are not-active so they
can be early released. (b) Context 1 mappings are active (after returning from
the procedure) so they can not be released. 59

LIST OF FIGURES xi

4.8 The pointers upper active, lower active and dirty divide the map table in three
regions: free, active and dirty. Upper active and lower active pointers are com-
puted using ACDT information. Dirty pointer points to the first non-spilled
mapping. 60

4.9 Not-active mappings from context 1 have become active because of context 3,
so they can not be released if context 2 commits 61

4.10 The Retirement Map Table holds the commited state of the Rename Map Table.
Context 1 mappings will remain into the Retirement Map Table until Context
3 commits. 61

4.11 Number of allocs that the compiler should introduce when executing 100 mil-
lion committed instructions if a perfect shrunk of contexts is performed . . . 64

4.12 Performance evaluation of Context Release and several configurations with
Alloc Release and Context Release. Speedups are normalized to the baseline
register window scheme with 160 physical registers. 66

4.13 Performance evaluation of Register Release Spill configuration and Delayed
Spill/Fill configuration. Speedups are normalized to the baseline register win-
dow scheme with 160 physical registers. 66

4.14 Average lifetime of the set of integer benchmarks executing in a processor
with a 128 register file size, when applying different configurations: Delayed
Spill/Fill, Alloc Release, Context Release and register window baseline. . . . 67

4.15 Performance evaluation of VCA scheme, our Delayed Spill/Fill configura-
tion and the baseline register window scheme with 192 physical registers.
Speedups normalized to the baseline register window scheme with 160 physi-
cal registers. 68

4.16 Performance evaluation of our Delayed Spill/Fill configuration and the base-
line register window scheme, when the number of physical registers varies
from 128 to 256. 69

4.17 Performance evaluation of our Delayed Spill/Fill configuration, and the base-
line register window scheme, both with register window sizes up to 64 entries,
when the number of physical registers varies from 96 to 256. 70

xii LIST OF FIGURES

List of Tables

2.1 The compare type ctype describes how the destination predicate registers p1

and p2 are updated based on the result of the condition cond, its guarding
predicate qp and the NaT bits that form the condition (NaTs). 20

2.2 Main architectural parameters used. 22

3.1 Simulator parameter values used not specified in Chapter 2. 35
3.2 Simulator parameter values used not specified in Chapter 2. 44

4.1 Simulator parameter values used not specified in Chapter 2. 63

xiii

xiv LIST OF TABLES

Chapter 1
Introduction

1.1 Background and Motivation

I n 1966 IBM released the 360/91 processor [2], the first pipelined processor with five execution
units that allowed the simultaneous process of multiple instructions. With the introduction of

instruction pipelining, i.e. multiple instructions in different stages can overlap their execution,
instruction-level parallelism (ILP) became a crucial research topic to improve performance.

The maximum benefit of pipelining is obtained when all their stages are in use. This is
achieved by finding sequences of independent instructions that can overlap their execution. How-
ever, if a dependence occurs, i.e. the execution of an instruction depends on the outcome of another
instruction that has not been computed yet, the pipeline must stall. Stalls may occur also due to
insufficient resources. Therefore, ILP is limited by dependences and available resources (data and
control hazards and structural hazards). For the past decades, many of the computer architecture
research has focused on mitigate such negative effects.

One of the most constraining type of dependences is data dependence. An instruction is data
dependent if there is another instruction that generates a result that is required by its computation.
Note that data dependences create a producer-consumer scheme that serialize the execution of a
program.

Probably, the most well-known and studied technique to mitigate data dependence penalties is
the reorganization of the program code [70,71], which takes into account dependence analysis and
available resources. To expoit ILP, it is required to determine which instructions can be executed
in parallel. If two instructions are independent and the pipeline has sufficient resources, they can
be executed in any relative order between them or simultaneously without causing stalls. However,
if two instructions are data dependent, they must be executed in program order. In order to avoid
pipeline stalls, consumer instructions are separated from their producer instructions by a distance
in clock cycles equal to the execution latency of the producer. Thereby, when a consumer instruc-
tion executes, their required source operands are already computed and the pipeline does not stall.
The process of rearranging the code to minize the performance impact due to data dependences
and resources consumption, without modifying the semantic of the program, is called instruction
scheduling. Instruction scheduling can be performed statically at compile-time or dynamically
at runtime. In-order processors exclusivelly rely on static schedulers [27, 51], while out-of-order
processors rely on both static and dynamic schedulers [26, 38, 74].

There are many factors that can limit the effectiveness of the ILP extracted by schedulers, but

1

2 1.1. Background and Motivation

two of them are especially important: control dependences and memory hierarchy.

A control dependence appears when the execution of an instruction depends on a branch out-
come. Every instruction, except those that belong to the first basic-block (a straight-line code
sequence with only one exit branch in it) of a program, is control dependent on a set of branches,
that determine the correct program order execution. Hence, these control dependences must be
enforced to preserve the program order, which imposes a very restrictive scheduling constraint:
control dependent instructions cannot be moved past branches they depend on. This drastically
limits the scope where ILP can be extracted, reducing the scope of work of a scheduler inside
a basic block, which tends to be quite small. In fact, branches are very frequent. For instance,
in a set of Itanium benchmarks from the SpecCPU2000 suite, the 14% of instructions in integer
benchmarks are branches, and 11% of instructions for floating-point benchmarks are branches.
This means that, on average, only between seven and nine instructions are executed between a
pair of branches in case of integer and floating point benchmarks respectively. Moreover, since
these instructions are probably dependent between one another, the amount of exposed ILP inside
a basic-block is likely to be less than its average size.

The memory hierarchy provides the illusion of having a fast and huge memory. It is an eco-
nomical solution to the desire program request of unlimited amounts of fast memory, and the fact
that fast memory is expensive. It is formed by different levels of memory, with the goal to provide
a memory system with the size of the largest level (disk) and a speed almost as fast as the fastest
level. The register file is the first level of the hierarchy. It is the fastest memory level perfectly
integrated into the pipeline data path with a fixed latency. Multilevel caches, main memory and
disks form the other levels of the memory hierarchy. In theses levels, the memory latency is vari-
able because it depends on which level the required datum actually resides. This constraints the
scheduling of load memory instructions. On one hand, when a long-latency load, i.e. a load that re-
quires access to main memory, is scheduled close to their dependent instructions, the pipeline may
be stalled for hundred of cycles. On the other hand, when a short-latency load, i.e. a load whose
load-value lays on cache memory, is scheduled far from its dependent instructions, its destination
register increases unnecessarily its life-range.

Regarding control dependences, branch prediction [34, 50, 56, 68, 72, 73] is probably the most
common hardware-based techniques to dynamically remove control dependences. Dynamic sched-
ulers are specially benefited, because the use of branch prediction in conjuntion with specula-
tive execution [29, 69] allow to expose instructions from multiple basic-blocks at the same time.
Compile-based techniques are also very useful, especially when the behaviour of branches are
known at compile-time, e.g. in scientific codes. Techniques such as loop unrolling [81] or soft-
ware pipelining [42, 81] statically schedule instructions from different loop iterations; while trace
scheduling [20] handles instructions from different basic-blocks, all of them belonging to the path
with the highest execution frequency.

Focusing on memory hierarchy, many hardware cache designs have been developed to alleviate
the increasing latency gap between CPU and main memory: non-blocking caches [41], multilevel
caches [36, 79], victim caches [37], trace caches [63], etc. Other hardware techniques take ad-
vantatge of store-load memory dependence sequences, where the store value is directly forwarded
to the load destination register. This technique is called store-to-load value forwarding [38, 53].
From the compile point of view, many loop-level transformations have been proposed [1, 43, 82]

1. Introduction 3

to improve the cache locality of programs, i.e. to reduce the load latency.

As explained above, the negative effects of control dependences and memory hierarchy on sched-
ulers can be mitigated by using either compile-based or hardware-based techniques. However,
there is another set of techniques that combines the benefits by means of Instruction set architec-
ture (ISA) extensions. Predicate execution and register windows are two well-known ISA exten-
sions that mitigate the negative effects of control dependences and memory hierarchy: the former
allows to remove control dependences by using if-conversion; the latter reduces the amount of
memory operations across procedure calls by mapping procedure contexts to a large architected
register file.

Although these two ISA extensions have not been developed exclusivelly for in-order proces-
sors, their use in out-of-order processors has been almost ignored. We claim that the application
of these ISA extensions in out-of-order processors introduce new performance opportunities and
new challenges to overcome: the former may improve branch prediction accuracy; the latter may
reduce the physical register requirements, both being essencial factors in out-of-order execution
efficiency.

This thesis focuses on the application of these two ISA extensions, if-conversion in conjuntion
with predicate execution and register windows, to out-of-order processors. We propose novel
hardware mechanisms to support predication and register windows that improve performance in
out-of-order processors, bringing together the benefits of compiler and hardware technology. In
the following sections, these two ISA extensions are explained in detail.

1.2 ISA Extensions: If-Conversion and Register Windows

During the compilation process, compilers extract plenty of information about the program code.
Much of this information is lost during the code generation process, and it becomes not accessible
to the processor at runtime. However, on the other side, there is some information that is only
available at runtime, e.g. control dependences and memory latencies.

Predicate execution and register windows allow the compilers to pass valuable information to
the microarchitecture to implement powerful techniques.

1.2.1 If-Conversion and Predicate Execution

Predicate execution or predication [6, 28, 31] allows an instruction to be guarded with a boolean
operand called predicate. The guarding predicate value decides whether the instruction is executed
or converted into a no-operation. If the predicate evaluates to true the processor state is modified
with the outcome of the instruction, whereas if it evaluates to false the processor state is not
modified.

If-Conversion [6, 46] is a compiler technique that takes advantatge of predicate execution. It
removes branches by transforming control dependences into data dependences and exposing more
ILP to the scheduler. In other words, multiple control flow paths are collapsed into a single bigger
basic block with a potentially higher ILP to exploit, since removed control dependences are re-
scheduled based only on its transformed data dependence. If-conversion is especially beneficial

4 1.2. ISA Extensions: If-Conversion and Register Windows

Figure 1.1: (a) Original if-sentence with multiple control flow paths. (b) If-converted code
with one single collapsed control flow path.

when the behavior of the branch is difficult to predict, such as if-then-else statements. Although
this thesis focuses on if-conversion, predication has a number of other possible uses [31].

Figure 1.1 illustrates an if-conversion transformation. In Figure 1.1(a) the ld instruction cannot
be scheduled above its control dependent branch. In Figure 1.1(b) , after applying if-conversion,
the branch has been removed and the ld can be re-scheduled based only on the p6 data dependence.
Notice that the resulting basic block in (b) is bigger than previous not collapsed basic blocks in
(a).

By using predicate execution, the code has fewer branches, larger basic-blocks and fewer
constraints caused by control dependences, which results in an important advantatge: the compiler
has more instructions to extract parallelism from, which allows it to produce a better and more
parallel schedule.

Predicate Execution on Out-of-Order Processors

Dynamic branch prediction in conjunction with speculative execution has proved an effective tech-
nique to overcome control dependences in out-of-order processors. It combines three key ideas:
branch prediction for breaking the control dependence; speculative execution to allow the execu-
tion of control dependent instructions before the branch is solved; and dynamic scheduling to deal
with instructions from different basic blocks. However, branch mispredictions may result in severe
performance penalties that tend to grow with larger instruction windows and deeper pipelines.

If-conversion may alleviate the severe performance degradation caused by branch mispredic-
tion, by removing the hard-to-predict branches [10, 44, 45, 75]. However, when applying the if-
conversion technique to an out-of-order processor, the use of predicate execution has to deal with
two problems. First, multiple definitions of the same logical register can be merged into a single
control flow, where each definition is guarded with a different predicate. At runtime, when the
logical register is renamed, every guarded definition allocates a different physical register, and the
correct register mappings remains ambigous until all the predicates are resolved, stalling the re-
name stage if an instruction wants to consume it. Second, instructions whose predicate evaluates

1. Introduction 5

to false consume unnecesary processor resources such as physical registers, issue queue entries
and/or functional units, and can potentially degrade performance.

Moreover, the removal of some conditional branches by if-conversion may adversely affect
the predictability of other remaining branches [7], because it may reduce the amount of correla-
tion information available to branch predictors. As a consequence, the remaining branches may
become harder to predict, since they may have little or no correlation among them.

1.2.2 Register Windows

Register windows is an architectural technique [16,32,62] that helps to reduce the amount of loads
and stores required to save and restore registers across procedure calls, by keeping multiple proce-
dure contexts in the register file. This technique uses a dynamic renaming mechanism that allows
to assign each procedure context to a different set of contiguous architected registers (called reg-
ister window) independently of the static register assignment. Moreover, by overlapping register
windows, parameter passing does not even require register copies. The register windows mecha-
nism is capable of handling a large register file, so most implementations exploit this ability to get
the extra benefit of a large pool of registers that enable compilers to extract more ILP.

When a procedure is called, its local context is mapped into a set of consecutive new ar-
chitected registers, called register window. Through a simple runtime mechanism, the compile-
defined local variables are renamed to its corresponding register name, based on the register win-
dow location inside the architectural register file. If there are not enough registers for allocating
new procedure contexts, i.e. context overflow, local variables from previous caller procedures are
automatically saved to memory and their associated registers are freed for new procedures. This
operation is called spill. When these saved procedure contexts are needed, i.e. context underflow,
they are restored to the register file without any program intervention. This operation is called fill.

Notice that, although register windows reduces the required memory references that take part
into the procedure call-interface, there are still some memory transfers that automatically occur in
case of context overflow and underflow. However, contrary to non-register window schemes, reg-
ister window hardware support can take advantatge of unused memory bandwidth to dynamically
issue the required memory transfer [51], overlapping it with useful program work.

Figure 1.2 shows an example of two procedure contexts mapped to the architectural register
file. Registers from the caller procedure context are not required to be saved to memory, since they
are kept in the register file. The r3 compile-defined register in the callee context is dynamically
translated to its corresponding architectural windowed register by simply adding the base pointer
of its register window.

Register Windows in Out-of-Order Processors

The effectiveness of register windows technique depends on the size of the architectural register
file because the more register it has, the less number of spills and fills are required [61]. In other
words, there is more space to hold multiple procedure contexts at the same time without sending
them to memory.

In an out-of-order processor, the size of the architectural register file determines the minimum
size of the map table. Hence, the effectiveness of the register windows depends on the size of

6 1.2. ISA Extensions: If-Conversion and Register Windows

Figure 1.2: Two procedure contexts are mapped at the same time into the architectural reg-
ister file. Compile-defined r3 register from the callee context is dynamically renamed to its
corresponding windowed register.

the map table, which in turn determines the minimum number of physical registers. Moreover,
in order to extract high levels of parallelism, out-of-order processors require many more physical
registers than architected ones, to store the uncomitted values of a large number of instructions
in-flight [19]. Therefore, an out-of-order processor with register windows would require a large
number of physical registers because of a twofold reason: to hold multiple contexts and to keep
the uncommitted values. Unfortunately, the size of the physical register file has a strong impact
on its access time [19], which may stay in the critical path that sets the cycle time. It has also an
important cost in terms of area and power.

However, as it will be demonstrated in this thesis, register windows also supplies to the pro-
cessor the required information to achieve the contrary effect. We will show how to drastically
reduce the physical register requirements to the bare minimum with almost no performance loss in
comparison to an unbounded physical register file. The register windows information allows the
processor to identify which architectural registers are not being used by current in-flight instruc-
tions. As long as such registers have no in-flight references, they can be early released. Thereby,
in this thesis we will show that contrary to common beliefs, register windows is not only beneficial
for the reduction of memory references, but it also allows to manage more efficiently the first level
of the memory hierarchy: the register file.

As stated above, the register window mechanism works by translating compiler-defined local
variables to architected windowed registers. In an out-of-order processor this translation must be
performed prior to physical register renaming. Hence, the information required for this translation
is kept as a part of the processor state and must be recovered in case of branch misprediction or
exception.

1. Introduction 7

1.3 Related Work

The state of the art is explained in this section. Many of the works presented here are used in the
next chapters to compare them with our proposals. This section focuses only on a brief explanation
of them, leaving the comparison explanations for each corresponding chapter.

Predication was originally proposed in 1983 by Allen et al. [6] to remove the control depen-
dences that constrained program analysis methods based on support for automatic vectorization.
Those techniques, that converted sequential programs to a form more suitable for vector or parallel
machines, were based only on data dependence analysis and not on control dependence. Thereby,
all control dependences were transformed into data dependences by using a conditional expression
as an extra input operand of instructions.

Predication has been implemented on real in-order and out-of-order processors. Many out-of-
order processors such as Alpha [38] or PowerPC [21] implement partial predication, i.e. only a
small number of instructions are provided with conditional execution. This approach represents
an attractive solution for designers since the required changes to existing instruction set architec-
tures (ISA) and data paths are minimized. Full predication has been implement only on in-order
processors, such as Itanium [32].

Register windows was also early proposed in 1979 by Sites et.al. [62] as an organization mech-
anism for a huge register file: a context cache with fast multiport access and with short register
names as addresses. Each location in the context cache was tagged with a context id and an offset.
Instructions refered to registers by using the offset only. One of the earliest implementations of
the register windows to speedup procedure calls was in [76].

SPARC [16] and Itanium [32] are two in-order commercial processors that implement register
windows. In SPARC, where register windows are of fixed sized, overflows and underflows are
handled by trapping to the operative system. In Itanium, where register windows are of variable
size, overflows and underflows are handle by a hardware mechanism called Register Stack Engine.

The benefits brought by predicate execution and register windows ISA extensions has been
widely exploited for in-order processors. However, the advantatges of using them on out-of-order
processors have not been deeply studied. In this section we analyse those studies that mainly
focus on if-conversion benefits and a more efficient management of the first level of the memory
hierarchy: the physical register file.

1.3.1 Predicate Execution Benefits

Hsu et.al. [28] proposed the use of predication to reduce the penalty of delayed conditional
branches [24] in deeply in-order pipelined processors, as alternative of out-of-order execution
or branch prediction. Delayed branches are branches scheduled n instructions in advance, so the
branch outcome is already computed at the time the fetch stage requires it. The n instructions
following the delayed branch, called delayed part, are always executed regardless of whether the
branch is taken or not. By using predicate execution, instructions that are control dependent on
conditional delayed branches can be also scheduled inside the delayed part, by guarding all them
with the same condition guard as its dependent conditional delayed branch.

8 1.3. Related Work

Mahlke et.al. [44] eliminated branches that contribute to large numbers of mispredictions by
using profile information. Compiler support for predicated execution is based on a structure called
a hyperblock [46], which eliminates unbiased branches, while leaves highly biased branches. They
show that the compiler can reduce the number of dynamic branches by 27% on average, which in
turns reduces the branch misprediction misses by 20%. Moreover, the average distance between
branches is increased from 3.7 to 6.1 instructions.

Tyson et.al. [75] arrived to similar conclusions. By using predication to remove branches with
less prediction accuracy, they reduce the branch misprediction by 20%. Moreover, such a reduc-
tion can ease contention in branch predictors table access. They also study the benefits of instruc-
tion scheduling when applying predication. They show that an aggresive approach to predicating
branches provides a basic block increment size by up to 45%, supplying the static scheduler with
more instruction opportunities to fill the execution pipeline and significantly reducing pipeline
stalls.

Pnevmatikatos et.al. [58] evaluated the effects of predicate execution on the performance of
an out-of-order processor. They conclude that when using full predication, i.e. applied guarding
predicates to all instructions, the effective block size, measured as the number of instructions be-
tween branches that actually contribute to useful computation, is increased by about 52%. This
increment allows to also increase the average dynamic instruction window size (useful instructions
between mispredicted branches) up to 258 instructions. However, the processor has to fetch and
decode 33% more instructions that do not contribute to useful computation, i.e. those instructions
whose predicate evaluates to false. This number is reduced when using partial predication, i.e.
only basic blocks with no memory instructions inside are predicated, resulting in only 8% of false
predicate instructions that fetch. However, the effective basic-block size increases by only 8%,
and the average dynamic windows size is increased to 184 instructions. Finally, without any form
of predication, the branch predictor could establish dynamic windows of only 156 instructions.

Chang. et.al. [10] studied the performance benefit of using speculative execution and predi-
cation to handle branch execution penalties in an out-of-order processor. They selectively applied
if-conversion to hard-to-predict branches by using profile information to identify them; the rest of
branches were handled using speculative execution. They found a significant reduction of branch
misprediction penalties. The set of branches denoted by profiling as hard-to-predict accounted for
an average of 73% of the total mispredictions for each of the SPECInt92 benchmarks.

Mahlke et al. [45], studied the benefits of partial and full predication code in an out-of-order
execution model to achieve speedups in large control-intensive programs. With partial predicate
support, only a small number of instructions are provided with conditional execution, such as con-
ditional moves [13]. The paper concludes that, although using partial predicate support enables the
compiler to perform full if-conversion transformations to eliminate branches and expose ILP, the
use of full predicate support allow a highly efficient and parallel computation of predicate values.
The paper shows that, for an eight issue processor that executes up to 1 branch per cycle, partial
predication improves performance by 30% in comparison to a processor without predication sup-

1. Introduction 9

port, whereas full predication improves performance by 63%.

August et.al. [8] proposed a framework for compiling applications for architectures that sup-
port predicated execution based on hyperblocks formation [46]. The framework consists of two
major parts. First, aggressive if-conversion is applied early in the compilation process, which
enables the compiler to take full advantatge of the predicate representation to apply aggresive
ILP optimizations and control flow transformations. Second, partial reserve if-conversion [80] is
applied at schedule time, which delays the final if-conversion decisions at the time the relevant
information about the code content and the processor resource utilization are known. This allows
to obtain the benefits of predication without being subject to the sometimes negative side effects of
over-aggressive hyperblock formation, having an average speedup of almost 30% in comparison
to superblock formation.

1.3.2 Predicated Execution and Branch Prediction

This section analyses proposals that use predication to improve branch prediction.

Mahlke et.al. [47] proposed a new approach for dynamic branch prediction, refered to as com-
piler synthesized prediction, that was not hardware based. Rather, the compiler is completely
responsible for defining and realizing a prediction function for each branch by using profile feed-
back information. The result of this function, that is computed by extra instructions per branch
inserted into the compiled code, is kept in a predicate register that later it will be consumed by
conditional branches. The results shown that the performance of the compiler synthesized predic-
tor is significantly better than that of the 2-bit counter branch predictor [68], and is comparable to
that of the more sophisticated two-level hardware predictors [72].

August et.al [7] showed that the removal of some branches by if-conversion may adversely af-
fect the predictability of other remaining branches, since it reduces the amount of available branch
correlation information. Moreover, in some cases if-conversion may merge the characteristics of
many branches into a single branch, making it harder to predict. They proposed the Predicate En-
hanced Prediction (PEP-PA), that improves a local history based branch predictor by correlating
with the previous definition of the branch guarding predicate. Depending on the pipeline depth and
the scheduling advance of the predicate define, the predicate register value may not be available at
the time the branch is fetched. Instead, the predicate register file contains the previous computed
definition of that register. Assuming that its previous definition may be correlated with the current
branch, whose predicate definition is not yet computed, the PEP-PA predictor uses this prior value
to choose between one of two different local histories, both for using and for updating it. For
branches whose predicate is available, the pattern history table (PHT) counters quickly saturate,
and then prediction becomes equal to the computed predicate.

Simon et.al [66] incorporated predicate information into branch predictors to aid the predic-
tion of region-based branches. The first presented optimization, called Squash False Path, stores
the branch guarding predicate register number into its branch predictor entry, so future instances

10 1.3. Related Work

can be early-resolved if the predicated value has been computed. The second presented optimiza-
tion, called Predicate Global Update Branch Predictor, incorporates predicate information into
the global history register (GHR) to improve the performance of region branches that benefit from
correlation. Since the GHR is updated twice for every branch condition, once at the predicate
define writeback, and another at the branch fetch, it stores redundant information. However, the
main problem is that these updates are done at different places in the pipeline, so their scheme
must include a complex Deterministic Predicate Update Table mechanism to guarantee that the
GHR stores the conditions in program order. To overcome the existing delay between the branch
prediction and the updating of the GHR by predicate computations, a new scheduling technique is
also proposed. Their study was developed and evaluated for an in-order EPIC processor [25].

More recently, Kim et.al. [39] proposed a mechanism in which the compiler generates code
that can be executed either as predicated code or non-predicated code, i.e. code that maintains their
corresponding conditional branches. In fact, the code generated by the compiler is the same as the
predicated code, except the conditional branch is not removed but it is transformed to a special
branch type called wish-branch. At runtime, the hardware decides whether the predicate code or
the non-predicated code is executed based on a run-time confidence estimation of the prediction
of the wish-branch. The goal of wish branches is to use predicate execution for hard-to-predict
dynamic branches and branch prediction for easy-to-predict dynamic branches. They claim that
wish branches decrease the average execution time of a subset of SPECInt 2000 by 14% compared
to tradicional conditional branches, and by 13% compared to the best-performing predicated code
binary. Notice that, since if-converted branches are not removed but they are transformed into
wish branches, this technique does not suffer from the loss of correlation information.

1.3.3 Predicate Execution on Out-of-Order Processors

As state above, the use of predicate execution on out-of-order processors has to deal with two
performance issues: multiple register definitions at renaming, and unnecessary resources con-
sumption. This section analyses proposals that try to eliminate such effects.

The problem of wasted computation resulting from if-conversion was first addressed by Warter
et.al. [80]. They propose the use of if-conversion before the instructions scheduling phase of the
compiler, to eliminate the control dependencies and expose parallelism to the optimizer. After the
optimization phase, a reverse if-conversion transformation is proposed, in which guarded compu-
tation is transformed back into normal instructions covered by conditional branches.

Pnevmatikatos et.al. [58] proposed a predication execution model for out-of-order execution
where each predicate instruction has three or four source operands: one or two source operands
used for computing the value generated by the instruction, one predicate operand, and one implicit
source operand specified by the destination register. If the predicate evaluates to true, the pred-
icated instruction executes like a regular instruction, and the destination register is set with the
value instruction computation. However, if the predicate is set to false, the predicated instruction
writes the old value of the destination register (the implicit operand) back into the new destina-

1. Introduction 11

tion register. This new functionality can be expressed in a C-style operation: register definition =
(predicate)? normal execution : previous register definition. In other words, when the instruction
evaluates to false, it copies the value from its previous physical register to the newly allocated
physical register. Throughout this thesis we will use the term false predicate conditional move to
refer to this predicate execution model.

Kling et al. [78] proposed to solve the ambiguity of multiple register definitions by automati-
cally inserting into the instruction flow a micro-operation, called select-µop, that copies the correct
register definition to a newly allocated physical register. The idea of the select-µop is derived from
the φ-function used by compilers in static-single-assignment code (SSA) [15].

They propose an augmented map table. Instead of a single register mapping, each entry con-
tains the physical register identifiers of all the predicated definitions as well as the guarding pred-
icate of the instruction that defines each one. When an instruction renames a source operand, its
physical register name is looked up in the map table. If multiple definitions are found in the map
table entry, a select-µop is generated and injected into the instruction stream. The multiple register
definitions and their guarding predicates are copied as source operands of the select-µop, and a
new physical register is allocated for the result, so it becomes the unique mapping for that register.
Later on, when the select-µop is executed, the value of one of its operands is copied to the desti-
nation register according to the outcomes of the various predicates. The goal of the select-µop is
to postpone the resolution of the renaming ambiguity to latter stages of the pipeline.

Chuang et.al. [12] proposed a selective replay mechanism to recover the machine state from
predicate mispredictions without flushing the pipeline in a predicate prediction scheme. When
predicate instructions are renamed, they obtain the value of its guarding predicate from a predi-
cate predictor. When a misprediction occurs, misspeculated instructions are re-executed with the
correct predicate value, while other non-dependent instructions are not affected. With this mech-
anism all instructions, predicted true or false, are inserted into the issue queue. The issue queue
entries are extended with extra tags to track two different graphs: the predicted and the replay data
dependence graphs.

The predicted data flow tracks the dependencies as determined by the predicted values of pred-
icates, as in conventional schedulers. When a misprediction occurs, the misspeculated instructions
are re-executed according to the dependencies on the replay data flow graph. In this mode, pred-
icated instructions are converted to false predicated conditional moves [58], which forces all the
multiple definitions of the same register to be serialized. To maintain the replay data graph, one
extra input tag is needed for each source operand. This tag contains the latest register definition,
regardless of the predicate value of this definition. Recall that false predicated conditional moves
also need an extra input tag containing the previous definition of the destination register.

1.3.4 Early Register Release Techniques

As explained above, the register file is the first memory hierarchy level perfectly integrated into
the pipeline data path. Its size is a key factor to achieve high levels of ILP. However, there is a
trade-off between size and access time: the bigger it is, the slower it is. There exist many proposals

12 1.3. Related Work

that address this problem through different approaches. One approach consists of pipelining the
register file access [26]. However, a multi-cycle register file requires a complex multiple-level by-
passing, and increases the branch misprediction penalty. Other approaches improve the register file
access time, area and power by modifying the internal organization, through register caching [83]
or register banking [14]. Alternative approaches have focused on reducing the physical register
file size by reducing the register requirements through more aggressive reservation policies: late
allocation [23] and early release. This section focuses on early register release proposals.

Moudgrill et al [54] suggested releasing physical registers eagerly, as soon as the last instruc-
tion that uses a physical register commits. They identified three conditions: (1) the value has
been writen to the physical register; (2) all issued instructions that need the value have read it;
(3) the physical register has been unmapped from the map table. The last-use tracking is based
on counters which record the number of pending reads for every physical register, and the unmap
flag which is set when a subsequent instruction redefines the logical register, i.e. the old physical
register is unmapped. Then, a physical register can be released once its usage counter is 0 and its
unmapped flag is set.

This initial proposal did not support precise exceptions since counters were not correctly re-
covered when instructions were squashed. Akkary et al. [5] proposed to improve the Moudgrill
scheme. For proper exception recovery of the reference counters, when a checkpoint is created the
counters of all physical registers belonging to the checkpoint are incremented. Similarly, when a
checkpoint is released, the counters of all physical registers belonging to the checkpoint are decre-
mented.

Martin et.al. [48] introduced the Dead Value Information (DVI), which is calculated by the
compiler and passed to the processor to help with early register releasing. DVI can be passed
through explicit ISA extensions instructions, which contain a bit-mask indicating the registers to
release, or implicitly on certain instructions such as procedure call and returns. They use the DVI
such that when a dynamic call or return is committed the caller-saved registers are early-released
because the calling conventions implicitly state that they will not be live.

Monreal et.al. [52] proposed a scheme where registers are released as soon as the processor
knows that there will be no further use of them. Conventional renaming forces a physical register to
be idle from the commit of its Last-Use (LU) instruction until the commit of the first Next-Version
(NV) instruction. The idea is to shift the responsibility from NV instruction to LU instruction.
Each time a NV instruction is renamed, its corresponding LU instruction pair is marked. Marked
LU instructions reaching the commit stage will release registers instead of keeping them idle until
the commit of the NV instruction. If the LU instruction is already committed when renaming NV,
the releasing can proceed inmediately. However, if the NV instruction is speculative, which means
there are branches between LU and NV, any release must be considered speculative and subject to
squashing.

Martinez et.al. [49] presented Cherry: Checkpointer Early Resource Recycling, a hybrid mode
of execution based on reorder buffer and checkpointing, that decouples resource recycling, i.e. re-

1. Introduction 13

source releasing, and instruction retirement. In this scheme, physical registers are recycled if both
the instruction that produces the value and all their consumers have been executed, which are
identified by using the scheme described in [54], and are free of replay traps and are not subject
to branch mispredictions To reconstruct the precise state in case of exceptions or interrupts, the
scheme relies on periodic register file checkpointing.

Ergin et al. [17] introduced the checkpointed register file to implement early register release,
by copying its value into a special shadow bit-cells implemented inside each single entry of the
physical register file. A register is deallocated when its corresponding architectural register has
been redefined, and all their uses have been executed, even when the redefining instruction is
known to be speculative. This is done by copying its value into the shadow bit-cells of the register.
If a misprediction occurs, the previous register value is recovered from the shadow bit-cell.

Jones et al [35] uses the compiler to identify registers that will only be read once and rename
them to different logical registers. Upon issuing and instruction with one of these logical registers
as a source, the processor can release the register. In order to maintain the constistent state in case
of exceptions and interrupts, a checkpointer register is used [17].

Oehmke et.al. [55] have recently proposed the virtual context architecture(VCA), which maps
logical registers holding local variables to a large memory address space and manages the phys-
ical register file as a cache that keeps the most recently used values. Logical register identifiers
are converted to memory addresses and then mapped to physical registers by using a tagged set-
associative rename map table. Unlike the conventional renaming approach, the VCA rename table
look up may miss, i.e. there may be no physical register mapped to a given logical register. When
the renaming of a source register causes a table miss, the value is restored from memory and a free
physical register is allocated and mapped onto the table. If there are no free physical registers or
table entries for a new mapping, then a replacement occurs: a valid entry is chosen by LRU, the
value is saved to memory and its physical register is released. Although the VCA scheme does not
properly define register windows as such, in practice it produces similar effects: multiple proce-
dure contexts are maintained in registers, and the available register space is transparently managed
without explicit saves and restores.

1.4 Thesis Overview and Contributions

The goal of this thesis is to propose novel mechanisms for predicated execution and register win-
dows in out-of-order processors, with the objective of improving performance while keeping the
complexity low. The following sections outline the challenges we face, the approaches we take to
overcome these problems, and the novel contributions of our work.

1.4.1 Predicate Execution

Although the use of if-conversion is globally beneficial (see section 1.3.1), the use of predicate
execution has to deal with three performance issues: multiple register definitions and unecessary

14 1.4. Thesis Overview and Contributions

resource consumption, that affect to if-converted instructions; and a loss of the amount of correla-
tion information that feeds the branch predictors, that affects to conditional branches. In ISAs that
implement a predicate execution model such as the one considered in this thesis [32], the outcome
of both if-converted instructions and conditional branches depends on the value of its guarding
predicate, generated previously by a compare instruction. In such ISAs the knowlegde of the
guarding predicate value at early stages of the pipeline may help to handle the three performance
issues described above. In this thesis we propose a predicate prediction scheme that benefits from
both if-converted instructions and conditional branches in four main aspects:

1. The knoweldge of the predicted predicate value at the rename stage allows those if-converted
instructions whose predicate is predicted to false to be speculatively cancelled from the
pipeline, while those if-converted instructions predicted to true are normally renamed. By
doing this, we avoid the multiple register definitions and the consumption of unnecessary
resources.

2. Predicting the predicates of an if-converted code is actually like reversing the if-conversion
transformation. In order not to loose the benefits brought by if-conversion, the predicate
predictor dynamically selects which if-conversions are worth to be reversed, and which
ones should remain in its if-converted form because of a hard-to-predict branch. In the latter
case, the if-converted instruction is transformed to a false predicate conditional move (see
section 1.3.3) to avoid the problem of multiple register definitions.

3. Conditional branch outcomes depend on the value of their guarding predicates generated
by compare instructions. By using a predicate prediction scheme instead of branch pre-
diction, the predictor is not affected by the loss of correlation information caused by the
removal of if-converted branches, because such information is still present in the compare
instructions that generate branch predicates. In addition, since the same predictor is used
for branches and other predicated instructions, our scheme handles if-conversion at almost
no hardware cost, unlike all previous approaches, where substantial complexity was added
to the renamer [78] and the issue queue [12, 78].

4. The branch prediction accuracy may be improved by using a predicate predictor, if the
compare instruction is scheduled enough in advance, in such a way that conditional branches
do not consume a predicted value but a computed value, achieveing 100% of accuracy in
such a case.

In conclusion, our scheme replaces the branch predictor scheme by a predicate predictor
scheme whose predictions are consumed by both if-converted instructions and conditional branches,
allowing out-of-order processors to execute predicate code without loosing the benefits brought by
if-conversion and without any branch accuracy degradation.

1.4.2 Register Windows

The effectiveness of register windows depends on the size of the architectural register file. In an
out-of-order processor, the architectural register file determines the minimum size of the physical

1. Introduction 15

register file to guarantee forward progress, i.e. the number of architected registers plus one. How-
ever such register requirements are increased to store the uncommited values produced by in-flight
instructions. Hence, the use of register windows in out-of-order processors puts extra pressure on
the physical register requirements, which may negativelly impact its access time.

The register windows hardware mechanism maps at runtime the compiler-defined local vari-
ables of a procedure context into a set of consecutive arhcitectural registers. By tracking all the
uncommitted procedure contexts, the processor is able to identify which mappings are currently
being used by in-flight instructions. This makes possible two early register release opportunities:

1. When a procedure finishes and its closing return instruction commits, all physical registers
defined inside the closed procedure contain dead values because they will never be used
again and so they can be early released.

2. When the rename stage runs out of physical registers, mappings defined by instructions
belonging to caller procedures not currently in-flight can also be early released. However,
unlike the previous case, these values may be used in the future when the context is restored,
so they must be spilled to memory before being released.

By exploiting these two early release opportunities, our proposed scheme achieves a drastic
reduction of the physical register requirements to the bare minimum, i.e. the number of architected
registers plus one. Moreover, since the register windows mechanism is involved in the rename,
it must be kept as a part of the processor state. By tracking all uncommitted procedure contexts,
our scheme is also able to recover the register window state in case of branch mispredictions or
exceptions.

1.4.3 Contributions

The main contributions of this thesis are:

1. We propose selective predicate predictor, a technique that enables predicated execution in
out-of-order processors, thus enabling if-conversion optimization. This technique uses an
adaptive runtime mechanism to select which if-conversion transformations are maintained
in its original form, which ones are reversed. Some of its main features are:

• It solves the multiple definitions problem.

• It avoids unnecessary resource consumption of instructions whose predicate evaluates
to false.

• It requires very simple additional hardware to implement misprediction recovery.

• It outperforms previous approaches.

2. We propose predicting branches with a second-level overriding predicate predictor instead
of a branch predictor. The main features of this scheme are:

• It uses the same hardware for branch prediction and for predicated execution, so the
predicated execution is implemented for free with respect to a conventional processor,
which supposes a huge cost reduction compared to previous approaches.

16 1.5. Document Organization

• It avoids loss of branch prediction accuracy caused by loss of correlation information
when if-conversion removes some branches.

• It improves branch prediction accuracy because of early-resolved branches.

3. We propose a technique to implement register windows in out-of-order processors. Its main
features are:

• The proposed hardware requires a simple direct-mapped map table, more simple than
previous approaches.

• The mechanism to handle window information also permits simple recovery of the
windows state in case of branch misprediction or exceptions.

4. We propose Context Release, Early Register Release Spill and Alloc Release that drastically
reduce the physical register requirements, based on using the information associated with
procedure contexts.

5. We propose a simple implementation of these early register release techniques by adding
mininal changes to the hardware that manage the register windows, so that it may identify
at any point in time which registers mappings are in use by current in-flight instructions.

6. We propose Delayed Spill/Fill, a technique to reduce the amount of spills and fills required
by the register window mechanism.

1.5 Document Organization

The rest of this document is organized as follows:
Chapter 2 describes the assumed out-of-order microarchitectural model, as well as its default

main parameters, and the experimental framework utilized throughout this thesis, including the
simulation methodology and the benchmarks.

Chapter 3 proposes a predicate predictor scheme that overcomes the execution problems of
predicate instructions in out-of-order processors. This scheme reverses if-conversion transforma-
tions. A confidence predictor is also introduced not to loose the benefits brought by if-conversion.
Moreover, a new branch prediction scheme based on our predicate predictor that does not loose
correlation information and improves the branch accuracy is studied. All these proposal are evalu-
ated and compared with previous similar studies and with conventional branch prediction schemes.

Chapter 4 proposes a register windows scheme to reduce the physical register requirements
of an out-of-order processor by identifying which mappings are not in used by current in-flight
instruction. These mappings are released as well as their associative physical register. Moreover, a
checkpoint mechanism is also introduced to recover the procedure context state in case of branch
misprediction or exception. Our proposal is evaluated and compared with previous similar studies
and with a scheme that does not use the information provided by register windows.

Chapter 5 summarizes the main conclusions of this thesis.

Chapter 2
Experimental Setup

Simulation is a well known established technique in both academic and industry research to evaluate new
architectural ideas. In order to study the performance impact of predication and register windows on an
out-of-order processor, we have developed a cycle-accurate, execution driven simulator that runs Itanium
binaries. Itanium is a commercial architecture that incorporates predication and register windows, which
makes it an excellent platform to develop our research. Our simulator models in detail most of the Itanium
features that are involved in different pipeline stages, such as register rotation and memory speculation,
executing into a nine-stage processor with an out-of-order execution model.

This chapter describes the most important contributions to the Itanium out-of-order microarchitecture
design, its default main parameters and the experimental environment used along this thesis.

2.1 Itanium as a Research Platform

E xplicitly Parallel Instruction Computing [64] (EPIC) is an evolution of VLIW architectures
that has also absorbed many superscalar concepts. EPIC provides a way of building proces-

sors, along with a set of architectural features that support this philosophy. The term denotes a
class of architectures that subscribe to a common philosophy. The first instance of a commercially
available EPIC ISA is Itanium [31–33].

Itanium, also known as IA64 (Intel Architecture 64-bits) or IPF (Itanium Processor Family), is
a commercial architecture based on EPIC that incorporates an array of architectural features that
supplies to the compiler the required tools to extract high levels of ILP. There are two implemen-
tations of it: Itanium 1 [65] and Itanium 2 [51], both in-order processors.

The Itanium platform provides a competitive comercial compiler (Electron v.8.1) [9] that en-
sures a code generation quality, as well as developement tools such as PinPoints, that allows to
obtain the most representative portions of code [57], or an open-source research compiler such as
OpenCC [3]. All this makes Itanium an excellent platform to develop our research.

Two of the ISA extensions that Itanium incorporates are predicate execution and register win-
dows. In the following subsections Itanium implementations of predication and register windows
are brieftly explained. Other important Itanium ISA extensions, such as memory speculation and
register rotation, also implemented in our Itanium out-of-order execution model, are also briefly
described.

17

18 2.1. Itanium as a Research Platform

2.1.1 Register Rotation

Software pipelining allows compilers to execute multiple loop iterations in parallel. However, the
concurrent execution of multiple iterations traditionally requires to perform loop unrolling several
times, which entails the use of multiple registers to hold the values of multiple iterations.

Itanium architecture provides an ISA extension, register rotation, that allows to assign the
same register name to values coming from multiple iterations, avoiding the need to unroll and copy
these registers. At runtime, these compile-defined registers are renamed to a different architectural
registers based on the loop iteration number. The loop iteration number distinguishes one iteration
from another, making the value of register r[n] appear to move to register r[n+1]. It is held as a
part of the procedure context state, and it is incremented by certain special loop branches (br.ctop,
br.cexit, br.wtop, br.wexit) when executed at the end of each kernel iteration. When n is the highest
numbered rotating register, its value wraps around to the lowest numbered rotating register.

Rotating predicate registers and rotating floating-point registers are defined as a fixed-size
register subset, from p16 to p63 and from f32 to f127 respectively. Rotating general purpose
registers are defined as a variable-size multiple of eight register subset, starting at register r32 up
to the maximum register window size defined at by the alloc instruction.

2.1.2 Memory Speculation

Memory latencies are recognized as one of the major factors that restricts performance, especially
on integer programs. To mitigate such negative effects, memory speculation is used. The mem-
ory speculation is the scheduling in advance of load memory instructions regardless of possible
data or control dependence violations [11, 22, 38]. The Itanium architecture implements compile-
controlled explicit memory speculation with hardware support that allows to schedule loads ahead
of branches (control speculation) and ahead of stores (data speculation):

• Control speculation allows loads and their dependent instructions to be safely scheduled
ahead of a branch before it is known that the dynamic control flow of the program will ac-
tually execute them. Since these loads could cause a memory exception because of a wrong
speculation, the exception is not immediately raised. Instead, a NaT bit (Not a Thing) is
set on its destination register and it is propagated through all subsequent dependent instruc-
tions, until a non-speculative check instruction restores the state. Itanium defines a control
speculative load instruction (ld.s) and a check instruction (chk.s) that verifies the correctness
of the speculation.

• Data speculation allows loads to be scheduled ahead of stores even when it is not known
whether the load and the store references overlap into the same memory location. An special
check instruction is required to see if the advance load has violated any memory data depen-
dence, using a special hardware mechanism, called Advance Load Address Table (ALAT).
Each advance load allocates a new entry on the ALAT table, that can be indexed using ei-
ther its destination register or its memory access address. Subsequent stores check if there
is an ALAT entry with the same memory address. If it is, a memory dependence has been
violated, and the entry is removed. Later, a check instruction searches the ALAT by using
the same destination register of its corresponding advance load. In fact, both instructions

2. Experimental Setup 19

are data dependent, maintaining the order of advance loads and check instructions. If the
entry is found, the speculation was successful; otherwise, the speculation was unsuccessful
and the misspeculation must be fixed. Itanium defines a data speculative load instruction
(ld.a) and two check instructions (chk.a, ld.c) that verify the correctness of the speculation.

2.1.3 Predication

Itanium is a fully predicated ISA that allows to predicate almost all instructions. In fact, there are
only a few of them that can not be predicated, namely: allocate a new register window (alloc),
clean the rotating register base (clrrrb) or counted branches (br.cloop, br.ctop, br.cexit). Predi-
cates are one-bit values that affect the dynamic execution of instructions: if the predicate is true,
the instruction executes normally; otherwise, the architectural state is not modified, except for un-
conditional compare type (cmp.unc), floating point approximation (fprcpa, fprsqrta, frcpa, frsqrta)
and while-loop (br.wtop, br.wexit).

Predicates are generated by compare instructions (cmp), test a single bit or the NaT bit (tbit,
tnat) and floating point approximation (fprcpa, fprsqrta, frcpa, frsqrta). Although our out-of-order
execution model takes into account all these instructions, this section focuses only on compare
instructions.

A compare instruction tests a single specified condition, formed by two integer registers or
an integer register and an immediate operand, based on comparison relations such as equal, not-
equal, greater-than, etc. and generates two boolean results that are written into a predicate register
file. Itanium defines five types of compare instructions:normal, unconditional, AND, OR and De-
Morgan. These types define how the compare instruction writes its destination predicate registers
based on the result of its condition and on its own guarding predicate.

Table 2.1 shows the outcome of a compare instruction (p1 and p2) based on its type (ctype), its
own guarding predicate (qp) and the result of its condition (cond). NaTs column is applied when
one or two of the registers that form the condition has its NaT bit set to 1 (see section 2.1.2). An
empty cell means that p1 and p2 remains with its previous value, i.e. the architectural predicate
register is not modified.

A set of 64 predicate registers of 1 bit are used to hold the results of compare instructions.
These registers are consumed by both if-converted instrucions and conditional branches.

Itanium also provides special compare instructions, called parallel compares, that compute
efficiently complex compound conditions. These conditions normally require a tree-like computa-
tion to reduce several conditions into one. Parallel compares allow to compute conditions that have
and and or boolean expressions in fewer tree levels. Unlike common compares, the destination
predicate registers of parallel compares can be updated or not, depending on the previous value of
its destination predicate register. In fact, the previous value acts as a source operand: in or parallel
compare types, when the previous value of its destination register is 1, the register is not modified;
while and parallel compare types do not modify its destination register when its previous value is
0.

20 2.1. Itanium as a Research Platform

Comparison Types

ctype
qp = 0 qp = 1

cond = 0 cond = 1 NaTs
p1 p2 p1 p2 p1 p2 p1 p2

none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm 1 1
andcm 0 0 0 0
and.orcm 0 1

Table 2.1: The compare type ctype describes how the destination predicate registers p1 and
p2 are updated based on the result of the condition cond, its guarding predicate qp and the
NaT bits that form the condition (NaTs).

2.1.4 Register Windows

Register windows or stack frames (Itanium terminology), provides Itanium with a large integer
architectural register file to reduce the call conventions overhead. Itanium defines 128 architectural
integer registers: 32 static registers that do not take part on the register windows mechanism, and
96 windowed or stacked registers that form the register windows mechanism.

For each register window or stack frame Itanium defines three regions: the input region, that
contains the parameters passed by the caller procedures; the local region, that holds private pro-
cedure values; and the output region, that holds the parameters that will be passed to callee pro-
cedures. By overlapping the output and the input region of two register windows, parameters are
passed through procedures without using memory references such as activation records [30] and
without the need to copy registers. In fact, the time of a call, registers that belong to the out-
put region of a caller procedure become automatically registers of the input region of the callee
procedure.

Once the register window is created, its size can be modified using the alloc instruction. The
alloc specifies the number of registers the procedure expects to use, i.e. the size of the input, local
and output regions and the rotating register area (see section 2.1.1). A procedure can allocate
a register window of up to 96 registers. When there are not enough available registers (stack
overflow) the alloc stalls and registers of previous caller procedures are automatically sent to a
special region of memory called backing store. This operation is called spill. At the return point,
i.e. when a br.ret executes, the register window prior to the call is restored. If some of the caller’s
registers have been sent to memory, the return stalls until all required registers are brought back to
the register file (stack underflow). This operation is called fill.

The Register Stack Engine (RSE) is the automatic mechanism that moves registers between
the register file and the backing store without any program intervention. The RSE operates con-
currently with the processor and can take advantatge of unused memory bandwidth to dynamically
issue spill and fill operations. In this manner, the latency of spills and fills can be overlapped with

2. Experimental Setup 21

useful program work.

2.2 An Out-of-Order Execution Model for Itanium

Along this dissertation, we assume an out-of-order superscalar model with a nine-stage pipeline
(fetch, decode, rename, dispatch, issue, register read, execute, writeback and commit), similar
to that of the Alpha 21264 [38]. The backend is composed by three separate integer, FP and
branch issue queues (IQ) for dynamically scheduling instructions. A merged physical register file
stores both architectural and speculative values, with a renaming mechanism that maps logical to
physical registers. Finally a reorder buffer (ROB) records the program order and holds instruction
status, necessary to support speculation recovery and precise interrupts. Note that neither the ROB
nor the IQ contain operand data but only physical register names (tags), so in this model source
operands are read after instruction issue and before execution, either from the register file or from
the bypass. We assume an aggressive instruction fetch mechanism to stress the instruction issue
and execution subsystems, and a minimum branch misprediction penalty of 10 cycles.

Loads and stores are divided into two operations at the rename stage. One of them is dis-
patched to the integer IQ which computes the effective address. The other one is dispatched to
a load/store queue and it accesses memory. When the first operation completes, it forwards the
effective address to the corresponding entry in the load/store queue, to perform memory disam-
biguation and access to memory. A load access is issued when a memory port is available and
all prior stores know their effective address. If the effective address of a load matches the address
of a previous store, the store value is forwarded to the load. Store memory accesses are issued at
commit time.

The common architectural parameters used along this thesis are shown in Table 2.2. Branch
predictor type or register file size is detailed inside each Chapter.

The choice of Itanium as the base architecture to develop our researches requires an extra effort
on the simulator design. Although Itanium ISA specification is not explicity defined as an in-order
architecture, many of their architectural features such as predication, register windows, register
rotation or compile-controlled memory speculation, require an extra hardware support to be ex-
ecuted on an out-of-order processor. Although these architectural features intervene in several
pipeline stages, the main hardware additions reside in the rename stage and in the memory hier-
archy, which are briefly explained in the following subsections. Predication and register windows
are extensively explained in Chapters 3 and 4.

2.2.1 The Rename Stage

Probably, the rename stage concentrates most of the hardware mechanisms that support the ISA
extensions implemented on Itanium, such as predication, register windows and register rotation.

Predication affects to the overall execution of instructions, although it has a strong impact on
the rename stage due to the multiple register definitions problem (see section 1.2.1). In order to
ensure a correct predicate execution model, our baseline scheme converts all predicate instructions
into false predicated conditional move [58] (see section 1.3.3). This new functionality can be
expressed in a C-style operation: register definition = (predicate)? normal execution : previous

22 2.2. An Out-of-Order Execution Model for Itanium

Architectural Parameters
Fetch & Decode width 6 instructions (2 bundles)

Issue Queues
Integer: 80 entries
Floating-point: 80 entries
Branch Issue: 32 entries

Load-Store Queue 2 separated queues of 64 entries each

Reorder Buffer 256 entries

L1D
64KB, 4way, 64B block, 2 cycle latency, Non-blocking
12 primary misses, 4 secondary misses, 16 write-buffer entries
2 load, 2 store ports

L1I 32KB, 4 way, 64B block, 1 cycle latency

L2 unified
1MB, 16 way, 128B block, 8 cycle latency
Non-blocking, 12 primary misses
8 write-buffer entries

DTLB 512 entries. 10 cycles miss penalty

ITLB 512 entries. 10 cycles miss penalty

Main Memory 120 cycles of latency

Table 2.2: Main architectural parameters used.

register definition.
Although simple, this approach serializes the execution of predicated instructions due to the

dependence on the previous definition, making deeper the dependence graph and reducing the
effectiveness of the dynamic execution as shown in the graph of Figure 2.1b. Moreover, instruc-
tions with a false predicate are not early-cancelled from the pipeline, so they continue consuming
physical registers, issue queue entries and functional units.

Register windows and register rotation intervene directly on the renaming process. Both work
by translating compile-defined local variables to architected stacked registers. On an out-of-order
processor this translation must be performed prior to access to the map table where they obtain the
corresponding physical register.

Figure 2.2 shows the basic renaming scheme of our baseline architecure. Stacked compile-
defined registers are translated by adding two base pointers, Register Rotation Base (RRBase)
and Register Window Base (RWBase), both associated to each procedure context. At a call point,
when a new procedure context is invoked, the RWBase is incremented up to the output region
of the caller procedure, becoming the input region of the invoked procedure. The RRBase is a
multiple of eight value defined at the time the register is allocated by the alloc instruction. Static
compile-defined registers access directly to the map table, without any translation.

2.2.2 Memory Subsystem

Compile-controlled memory speculation requires the use of check instructions (chk.s, chk.a, ld.c)
that verify at runtime the correctness of the speculation. In-order execution models ensure that,
instructions younger than a check in program order, have not been executed at the time the mis-
speculation is detected. However, this is not the case in out-of-order execution models, where
younger instructions may have been already executed, consuming the wrong data brought by the

2. Experimental Setup 23

Figure 2.1: Data dependence graph changes when all predicate instructions are converted to
false predicated conditional moves. (a) Original code. (b) Converted code.

Figure 2.2: Stacked register r38 is dynamically translated to its corresponding architectural
windowed register by using the RRBase and the RWBase pointers, prior to access to the map
table. Static register r21 access directly to the map table without any translation.

mispeculated advance load. Hence, in out-of-order processors with compile-controlled memory
speculation, when a memory misspeculation is detected all instructions younger than the check
instruction must be flushed and re-fetched again.

Our out-of-order simulator model implements the NaT bit required to perform control specu-
lation, which is associated to each integer and floating-point physical register. A NaT bit equal to 1
indicates that the register contains a deferred exception which value the software can not rely upon.
The NaT bit is propagated through all subsequent dependent instructions until the corresponding

24 2.3. Simulation Methodology

check is executed. Note that, when a check detects a control misspeculation, instructions that
are older than check instructions and data-dependent of the misspeculated load are not flushed,
although the NaT bit of their target physical registers is set to 1.

The ALAT has been also modeled in the memory disambiguation subsytem of the simulator.
Check instructions index the ALAT not through the architectural register but through the physical
register number. Physical register numbers are unique identifiers inside the processor, and they
allow to chain a check with its correponding advance load ensuring that a load-check does not
execute prior its corresponding advance-load. Moreover, to ensure that a load-check does not
execute prior stores that lay between itself and its corresponding advance load in program order,
the load-store queue requires to check that both instructions do not overlap into the same memory
address.

2.3 Simulation Methodology

Our out-of-order simulator has been built from scratch using the Liberty Simulation Environment
(LSE) [77]. LSE is a simulator construction system based on module definitions and module co-
munications, which also provides a complete IA64 functional emulator that maintains the correct
state machine. The functional emulator required modifications, especially in the RSE and the
ALAT structures, to allow execute IA64 code in our out-of-order simulator.

All the experiments conducted in this thesis have been performed with the SpecCPU 2000 [4]
benchmark suite, using two different input sets: MinneSpec [40] and Test. All benchmarks have
been compiled with IA64 Intel’s compiler (Electron v.8.1) using maximum optimization levels and
profile information. For each benchmark, 100 million of committed instructions have been simu-
lated, starting at a representative portion of code, obtained using the Pinpoint tool [57]. For exper-
imental reasons, benchmarks have also been compiled using the open source compiler Opencc [3],
also using the maximum optimization levels.

Chapter 3
If-Conversion Technique on

Out-of-Order Processors

If-conversion is a compiler technique that transforms control dependences into data dependences by using
predicate execution. It is useful to eliminate hard-to-predict branches and reduce the severe performance
penalties of branch mispredictions. Although it is globally beneficial, the execution of if-converted code
on an out-of-order processor has to deal with two problems: (1) predicated code generates multiple defi-
nitions for a single destination register at rename time; (2) instructions whose predicate evaluates to false
consume unnecessary resources. Besides, if-conversion has also a negative side-effect on branch predic-
tion because the removal of some branches may eliminate correlation information useful for conventional
branch predictors. As a result, the remaining branches may become harder to predict.

In predicated ISAs with a predicate execution model such as IA64, compare instructions compute the
guarding predicate values that are consumed indistinctly for both if-converted and conditional branch in-
structions. Predicate prediction is an effective approach to address the problems stated above. First, it
allows to know the predicate value of an if-converted instruction at rename stage, avoiding multiple register
definitions and unnecessary resource consumption. Second, the use of a predicate prediction scheme as a
branch predictor allows to recover the correlation lost by the removal of some branches, since the correla-
tion information not only resides in branches, but also in compare instructions. In fact, the prediction of
predicates reverses if-conversions to their original form. In this chapter we propose a hardware mechanism,
in order not to loose the benefits brought by if-conversion, which dynamically selects which if-conversion
is worth to be predicted, and which one is more effective in its if-converted form.

Our approach enables a very efficient implementation of if-conversion for an out-of-order processor,
with almost no additional hardware cost, because the same hardware is used to predict the predicates of
if-converted instructions and to predict conditional branches without any accuracy degradation.

3.1 Introduction

B ranches are a major impediment to exploit instruction-level parallelism (ILP). The use of
branch prediction in conjunction with speculative execution is typically used by out-of-order

processors to remove control dependences and expose more ILP to the dynamic scheduler. How-
ever branch mispredictions result in severe performance penalties that tend to grow with larger
instructions windows and deeper pipelines.

If-conversion [6] is a compiler technique that helps to eliminate hard-to-predict branches, by
converting control dependences into data dependences and potentially improves performance.

25

26 3.1. Introduction

Figure 3.1: If-conversion collapses multiple control flows. The correct map definition of r34
depends on the value of p6 and p7 predicates. (a) Original if-sentence. (b) If-converted code

Hence, if-conversion may alleviate the severe performance penalties caused by hard-to-predict
branch mispredictions, by collapsing multiple control flow paths and scheduling them based only
on data dependences.

If-conversion relies on predicate execution. Predication is an architectural feature that allows
an instruction to be guarded with a boolean operand whose value decides whether the instruction
is executed or converted into a no-operation. Although our study focuses on the effects of if-
conversion, predication has other possible uses [31].

Many studies have shown that if-conversion provides an opportunity to significantly improve
hard-to-predict branches in out-of-order processors [10, 44, 45, 58, 75] (see section 1.3.1). This
advantage tends to be even more important with larger instruction windows and deeper pipelines.
However, as stated in Chapter 1, if-converted instructions have to deal with two issues in such
processors:

1. When multiple control paths are collapsed, multiple register definitions can be merged into
a single control flow, guarding each one with a different predicate. At run-time, each def-
inition is renamed to a different physical register, thus existing multiple possible physical
names for the same logical register until the predicates are resolved. Since predicates are
resolved at the execution stage of the pipeline, it may occur that the name of that register is
still ambiguous when renaming the source of an instruction that uses it. Figure 3.1 illustrates
the problem.

2. Instructions whose predicate evaluates to false have to be cancelled. If this is done in late
stages of the pipeline, these instructions consume processor resources such as physical reg-
isters, issue queue entries and/or functional units, and can potentially degrade performance.

Moreover, the removal of some conditional branches by if-conversion may adversely affect
the predictability of the remaining branches [7], because it reduces the amount of correlation in-
formation available for branch predictors. As a consequence, the remaining branches may become
harder to predict, since they may have little or no correlation among themselves.

In conclusion, although if-conversion is globally beneficial, the use of if-conversion technique
in out-of-order processors may affect negativelly both if-converted and conditional branch instruc-
tions.

3. If-Conversion Technique on Out-of-Order Processors 27

In ISAs that implement a predicate execution model such as the one considered in this the-
sis [31], the execution of if-converted and branch instructions depends on the value of its guarding
predicate which is produced in both cases by a previous compare instruction. On such a model,
the predicate prediction alleviates the above mentioned performance issues.

In this chapter, we propose a novel microarchitecture scheme for out-of-order processors that
improves the performance of if-conversion. Our approach predicts the guarding predicates of if-
converted instructions and conditional branches at the time they are produced by compare instruc-
tions using the compare PC. Such a prediction affects in different ways the two types of predicate
instructions: if-converted and conditional branch instructions.

• Regarding if-converted instructions, the knowledge of the guarding predicates at rename
time allows that if-converted instructions whose predicates are predicted to false are spec-
ulatively cancelled and removed from the pipeline, thus avoiding multiple definitions and
unnecessary resource consumption. Only those instructions with predicates predicted to true
are normally renamed.

• Regarding conditional branch instructions, the branch predictor is, in fact, replaced by a
predicate predictor. Branch predictions are actually generated by using the compare PC
instead of the branch PC. Our predicate predictor scheme is able to keep all correlation in-
formation among branches, even for those removed by if-conversion, since such information
is primarily associated with compare instructions. Unlike previous proposals, our scheme is
able to fully correlate branch global history. In addition, it takes full advantage of the knowl-
edge of early-resolved branches [7,66] to further improve branch prediction accuracy, since
it uses the computed predicate value when it is available, instead of the predicate prediction.

A closer look to the predicate prediction scheme reveals that what it actually does is to undo
if-conversion transformations done by the compiler. Therefore, since if-conversion appears to
be more effective than branch prediction for hard-to-predict branches [10], applying prediction
to all predicates may miss the opportunities brought by if-conversion. In order not to loose if-
conversion benefits, we introduce a specific hardware mechanism for if-converted instructions,
perfectly integrated in our predicate prediction scheme, that selectively predicts predicates based
on a confidence predictor: a predicate prediction is used by an if-converted instruction only if the
prediction has enough confidence. If not, the if-converted form remains. In this case, in-order
to overcome the multiple register definition problem the predicated instruction is converted into
a false predicate conditional move (see section 2.2.1). In fact, our approach tries to preserve if-
conversion for those branches that are really hard-to-predict. We have found that only 16% of
if-converted instructions are converted to false predicate conditional moves.

In summary, our proposal uses the same predicate predictor to predict conditional branches
and if-converted instructions with no extra hardware cost. It allows to execute predicated code
in out-of-order processors without loosing the benefits brought by if-conversion, and without any
branch accuracy degradation. This chapter explains the techniques proposed in papers [59, 60].

The rest of the chapter is organized as follows. Section 3.2 discusses our predicate predic-
tor scheme for if-converted instructions. Similary, section 3.3 discusses our predicate predictor
scheme, but for conditional branches. Finally, section 3.4 presents a brief summary and conclu-
sions.

28 3.2. A Predicate Predictor for If-converted Instructions

3.2 A Predicate Predictor for If-converted Instructions

As shown in previous section, the use of predicate execution in out-of-order processors has to deal
with two problems: the multiple register definitions of a source register at rename time, and the
unnecessary resource consumption caused by false predicated instructions.

As mentioned in section 1.3.3, previous proposals have focused only on the multiple reg-
ister definitions problem. In proposals such as select-µops [78] or false predicated conditional
move [58] techniques, instructions whose predicate evaluates to false consume physical regis-
ters, issue queue entries, and they compete for execution resources. Still worse, the select-µops
technique further aggravates the resource pressure with extra pseudo-instructions injected in the
pipeline.

The prediction of predicates is a good solution to avoid consuming unnecessary resources,
because once the predicate of an instruction is predicted false, it can be cancelled and eliminated
from the pipeline at rename time. Although the selective replay mechanism [12] also uses predi-
cate prediction (which avoids multiple definition problems), it precludes this advantage because it
needs to maintain all predicated instructions in the issue queue to reexecute them in case of predi-
cate misprediction, regardless of the predicate being predicted true or false. As it will be shown in
section 3.2.3, the reduced re-fetch penalty avoided by the replay mechanism is not worth the extra
pressure on the issue queue and other key resources.

The predicate prediction technique generates a prediction for every predicate at the time the
compare instruction is fetched. At rename stage, instructions with a predicate predicted to true are
speculatively renamed and executed, while instructions whose predicate is predicted to false are
not renamed and cancelled from the pipeline. Note that the prediction of predicates produces an
effect similar to that of branch prediction and speculative execution in the sense that it reverses the
if-conversion transformations.

This effect is illustrated in Figure 3.2. In Figure 3.2a, i5 instruction will not be fetched if
the conditional branch is predicted as not-taken, i.e. if p7 is predicted to false. Similary, in
Figure 3.2b, once if-conversion has been applied, i5 instruction will not be dispatched to the issue
queue if p7 is predicted to false. Thereby, the effectiveness of the if-conversion form depends
on the predictability of the removed conditional branch i2 or similary, the predicatibiliy of the
predicate p7. Hard-to-predict branches produce high misprediction penalties, being more effective
its if-converted form.

Hence, we propose a selective predicate prediction scheme that addresses both the multiple
definition and unnecessary resources consumption problems, without loosing the potential benefits
of if-conversion. Our scheme dynamically identifies easy-to-predict predicates with a confidence
predictor: a predicated instruction is speculated only when its prediction has enough confidence;
otherwise it is preserved in its if-converted form. In the latter case, the multiple definitions problem
is avoided by converting the instruction into a false predicated conditional move.

In case of a predicate misprediction, the misspeculated instruction and all subsequent instruc-
tions are flushed from the pipeline and re-fetched. Of course, handling mispredictions with flushes
may produce high performance penalties. However, as far as the confidence predictor is able to
correctly identify hard-to-predict predicates and avoid predicting them, these penalties are ex-
pected to have a minor impact. The next sections describe the selective predicate prediction mech-

3. If-Conversion Technique on Out-of-Order Processors 29

Figure 3.2: Predicate prediction produces a similar effect to branch prediction. In both (a)
and (b), i5 is not executed if p7 evaluates to false. (a) Original code. (b) If-converted code.

anism in detail.

3.2.1 The Basic Predicate Prediction Scheme

This section describes the basic predicate predictor scheme (without the confidence predictor) for
an out-of-order processor. This scheme assumes an ISA with full predicate support, such as the
one considered in this thesis [33].

A predicate prediction is produced in early stages of the pipeline for every instruction that
has a predicate outcome, such as compare instructions, using its PC. Figure 3.3 illustrates the
prediction mechanism for producers. Since compare instructions have two predicate outputs, our
predictor generates two predictions, one for each compare outcome. When the compare instruc-
tion is renamed, the two predictions are speculatively written to the Predicate Physical Register
File (PPRF). Later on, when the compare instruction executes, the PPRF is updated with the two
computed values. In the example, p6 and p7 are renamed to pph2 and pph1 respectively.

To support speculative execution of predicated instructions, each entry of the conventional
PPRF is extended with three extra fields: speculative and confidence bits, and ROB pointer. Since
the PPRF holds either predicted or computed predicate values, the speculative bit is used to dis-
tinguish both types: when the PPRF is first written with a prediction, the speculative bit is set to
true; when it is updated with the computed value, the speculative bit is set to false.

A predicate prediction is consumed by one or more if-converted instructions that depend on it.
When a predicated instruction reaches the rename stage, it always reads its predicate value from
the PPRF. If the speculative bit is set to true the instruction will use the predicate speculatively,
so the processor must be able to recover the previous machine state in case of misspeculation.
The ROB pointer field is set to point to the ROB entry of the first speculative instruction that uses
the predicted predicate. Thereby, if the prediction fails, the pointed instruction and all younger
instructions are flushed from the pipeline. Thus, after the speculative bit is set to true, the ROB
pointer field must be initialized by the first consumer that finds it empty. If the consumer predicate
is predicted to false, the Cancel Unit (CU), cancels the instruction and eliminates it from the
pipeline. Figure 3.4 shows the predicate consumption scheme.

As explained in Chapter 2, the IA64 ISA defines a rich set of instructions to produce predicate
values. For some compare types, the two predicate results depend on the outcome of the condition.

30 3.2. A Predicate Predictor for If-converted Instructions

Figure 3.3: Generation of a predicate prediction

Figure 3.4: Predicate consumption at the rename stage

3. If-Conversion Technique on Out-of-Order Processors 31

However, for some other types, these results also depend on state information that is not available
in the front-end, such as the NaT bits. Thus, it is not possible to infer two predicate values from a
single prediction and a comparison type, so two predictions must be generated.

3.2.2 The Confidence Predictor Mechanism

This section adds a confidence predictor [18] to the basic predicate prediction mechanism, which
is used to select which if-conversion transformations are worth to be undone, and which are not;
i.e., to select which predicates are predicted.

The confidence predictor is integrated with the predicate predictor: each predicate predictor
entry is extended with a saturated counter that increments with every correct prediction and is
zeroed with every misprediction. A prediction is considered confident if the counter value is
saturated, i.e. it equals to a confidence threshold.

When a predicate prediction is generated for a compare instruction, its confidence counter is
compared with the confidence threshold, producing a single confidence bit. When the compare
instruction is renamed, this bit is written into the confidence field of the PPRF. Figure 3.3 shows
the data paths for prediction and confidence information. Once the predicate is computed at the
execution stage, the PPRF entry and the predicate predictor are updated with the computed value
and the speculative bit is set to false. The confidence counter is updated according to the prediction
success.

If a predicated instruction finds the speculative and confidence bits of its predicate set to true,
it is speculated with the predicted value. However, if the confidence bit is set to false, the pred-
icated instruction is converted into a false predicated conditional move. As state in Chapter 2,
the new semantic of the non-confident instruction can be represented in a C-style form: result =
(predicate)? normal execution : previous register definition.

Confidence Threshold

The confidence threshold plays an important role in our proposal, since a prediction is consid-
ered confident if its saturating counter is equal or higher than it. The confidence threshold value
has two important performance effects: on the one hand, high threshold values could result in
lost opportunities of correct predictions and increased resource pressure; on the other hand, low
threshold values could result in severe performance penalties because of predicate mispredictions.
In this section we present a study of different confidence threshold schemes. All the experiments
presented in this section use the setup explained in section 3.2.3.

Figure 3.5 depicts the performance impact of different static confidence thresholds, i.e. thresh-
olds determined by a microarchitecture implementation: values 2, 4, 8, 16 and 32. A scheme
without confidence predictor has been taken as a baseline. As shown in the graph, the choice of a
static confidence threshold does not affect equally to the various benchmarks. While twolf has an
impressive performance gain with high threshold values, bzip2 degrades drastically as the thresh-
old increases. This observation suggests that adjusting dynamically the threshold could result in a
performance improvement.

32 3.2. A Predicate Predictor for If-converted Instructions

Figure 3.5: Performance impact of several confidence threshold values. A scheme without
confidence has been chosen as baseline.

Adaptive Confidence Threshold

As explained before, the confidence threshold value strongly depends on the frequency of two
events with an important impact on performance:

1. By reducing the threshold, the number of flushes caused by predicate mispredictions in-
creases because of hard-to-predict predictions.

2. By increasing the threshold, the number of predicated instructions that are converted into
false predicated conditional moves grows because of non-confident predictions.

Note that both events, predicate mispredictions and converted instructions, are closely related.
Figure 3.6 shows this relationship: graph (a) depicts the amount of instructions flushed due to
predicate mispredictions per committed predicated instruction; graph (b) depicts the amount of
committed predicated instructions that have been converted to false predicated conditional move.
As this figure shows, when the confidence threshold increases, the number of flushes are reduced
and the performance may improve. However, such a performance increment may be precluded be-
cause of an increment of the number of converted instructions which may derive in an unnecessary
resources consumption.

Comparing these results with those in Figure 3.5 shows that different benchmarks may have
different performance sensitivity to threshold adjustments. For instance, while the amount of
flushes is reduced by almost 100% for twolf (the number of flushed instructions decreases from
5,49 to 0,03 per commited predicated instruction), it is only reduced by 20% for bzip2, having
different performance impact in each case. Note also that for bzip2 or art the number of flushes

3. If-Conversion Technique on Out-of-Order Processors 33

Figure 3.6: Variance of confidence threshold. (a). Number of flushed instructions per predi-
cated committed instruction. (b) Percentage of predicated committed instructions that have
been transformed to false predicated conditional moves.

becomes stable at low thresholds, so the increment of converted instructions beyond this point
has an important impact on performance. On the other hand, for twolf or vpr the number of
flushes stabilize at high confidence thresholds, so the impact of converted instructions is lower.
For benchmarks such as sixtrack the number of flushes stabilize at high thresholds, but the number

34 3.2. A Predicate Predictor for If-converted Instructions

converted instructions also increases considerably.
It is important to take into account that both effects, pipeline flushes and converted instructions,

do not negatively affect the performance in the same way. Instructions converted to false predi-
cated conditional moves increase resource consumption and may stretch the dependence graph
(see section 2.2.1). However, when the pipeline is flushed, the processor must recover its architec-
tural state, and the misspeculated instruction and all subsequent instructions must be re-fetched.
An adaptive threshold mechanism must trade-off the two effects, but giving more weight to flush
reduction because it causes a higher performance degradation.

Our adaptive threshold scheme counts the number of flushes and converted instructions during
a fixed period (measured as a fixed number of compare instructions). After that period, the two
counts are compared with those obtained in the previous period, and the confidence threshold is
modified according to the following heuristic:

1. If the number of flushes decreases, then the number of converted instructions is checked.
If it has not increased by more than 1%, then the threshold keeps increasing. Otherwise,
the threshold begins to decrease; at this point, the number of flushes is considered a local
minimum and is stored.

2. If the number of flushes increases, then it is compared to the last local minimum value. If
the difference is less than 1%, then the threshold keeps decreasing. Otherwise, it begins to
increase.

Figure 3.5 compares the performance of the adaptive threshold scheme (labeled as Adapt Con-
fidence) and the static scheme with different thresholds. It shows that the adaptive scheme avoids
the performance degradation of bzip2 and apsi, while maintaining the performance improvement
of twolf and vpr. The number that appears on top of the adaptive confidence bar represents the
average confidence threshold value. Note that, in almost all cases, the adaptive scheme adjusts
the confidence threshold around the value of the best static scheme. In case of art, the adaptive
threshold scheme can even outperform the best static scheme by 3%, because it may dynamically
adjust the threshold to an optimum value that varies along the execution. On average, the adaptive
confidence threshold outperforms the best static scheme, i.e. a static scheme with a confidence
threshold of 16, by more than 2%.

3.2.3 Evaluation

This section evaluates the performance of our selective prediction scheme with adaptative confi-
dence threshold and compares it with the previous hardware approaches for predicate execution on
out-of-order processors, described in section 1.3, and with a perfect predicate prediction scheme.
The false predicated conditional move technique described in section 2.2.1 is assumed as the base-
line. All the reported speedups are computed with respect to this baseline.

Experimental Setup

All the experiments presented in this section use the cycle-accurate, execution-driven simulator ex-
plained in Chapter 2. Specific microarchitectural parameters for the selective predicate prediction
scheme are presented in Table 3.1.

3. If-Conversion Technique on Out-of-Order Processors 35

Simulator Parameters

Branch Predictor
Gshare, 18-bit BHR, 64K entries PHT

10 cycles for misprediction recovery

Predicate Predictor

Two predictors of 16KB each.

Gshare, 6-bit Global History.

6-bit of Adaptive Confidence Threshold

10 cycles for misprediction recovery

Integer Physical Register File 256 physical registers

Table 3.1: Simulator parameter values used not specified in Chapter 2.

We have simulated fourteen benchmark programs from SpecCPU2000 [4] (eight integer and
six floating point) using the test input set. All benchmarks have been compiled with IA64 Intel’s
compiler (Electron v.8.1) using maximum optimization levels.

The most common branch predictor designs and configurations have been evaluated to choose
a reasonable baseline. Our experiments show that, for a 2x16KB capacity, a Gshare predictor with
6 bits of global history is the most reasonable configuration.

The simulator also models previous proposals presented in section 1.3.3. The select-µops
technique [78] has been implemented in detail. Each map table entry has been augmented to record
up to six register definitions with their respective guards, and there is an additional dedicated issue
queue for select-µops.

The predicate prediction with selective replay technique [12] has not been modeled in detail.
Instead, the simulator models a simpler scheme whose performance is an upper-bound for this
technique. Instructions guarded with correctly predicted predicates execute as soon its source
operands are available. On the contrary, an instruction guarded with an incorrectly predicted
predicate is converted to a false predicated conditional move, and it issues exactly as it would do
when re-executed in replay mode. In other words, instead of simulating all the re-executions, only
the last execution is simulated. This model is more aggressive than the original because it puts less
pressure on the execution units. In addition, in our simple model, an instruction leaves the issue
queue when it has issued and all its sources and guarding predicates are computed. This makes
it also more aggressive than the original because the replay mechanism requires also that all its
sources be non-speculative.

Finally the simulator also models a perfect predicate prediction scheme, i.e. one in which the
PPRF always contains a confident well-predicted predicate value, for comparison purposes.

Performance Results

Figure 3.7 compares the performance speedup of our selective predicate predictor (labeled as se-
lective prediction) with previous proposals: generation of select-µops and selective replay mech-
anism (labeled as select-µops and prediction with replay respectively), and a perfect predicate
predictor (labeled as perfect prediction). The false predicated conditional move technique has
been taken as a baseline. For most benchmarks, our scheme significantly outperforms the previ-
ous schemes. On average, it achieves a 17% speedup over the baseline, it outperforms the other

36 3.2. A Predicate Predictor for If-converted Instructions

Figure 3.7: Performance comparison of selective predicate prediction with previous schemes.
False predicated conditional moves has been taken as a baseline.

schemes by more than 11%, and it performs within 5% of the perfect prediction scheme.

There are two cases where the upper-bound of the selective replay performs significantly better
than selective predicate prediction: vpr and twolf. For these benchmarks, more than 90% of com-
pare instructions are unconditional compare type. However, for benchmarks where this fraction is
very small, such as apsi (2%), bzip2 (3%) or mesa (1%), the selective replay technique performs
much worse. On average, this technique performs 6% better than the baseline. In fact, in order to
propagate the correct value in case of predicate misprediction, it creates a new data dependence as
the one created by false predicate conditional moves. Hence, this technique is actually converting
all predicate instructions to false predicated conditional moves, which is the same as the baseline
does. The 6% performance speedup over the baseline is achieved because the selective replay may
execute sooner instructions that are guarded with correctly predicted predicates.

The select-µops technique has a bad performance for bzip2 because of the large number of
generated micro-operations per commited instruction (43%). On the opposite side, this technique
achieves a good performance for mcf which generates only 8% of micro-operations per commited
instruction. However, notice that mcf has a very low ipc, so this speedup actually translates to a
very small gain.

3.2.4 Cost and Complexity Issues

The previous section evaluates our proposal only in terms of performance. However, it is also
interesting to consider several cost and complexity issues to compare the evaluated techniques.

First, let us examine in detail the implications of the select-µop technique [78]. Figure 3.8

3. If-Conversion Technique on Out-of-Order Processors 37

Figure 3.8: Generation of select-µops at the rename stage. (a) Original code. (b) The code
has been renamed and the r34 map table entry modified. When the instruction i5 consumes
r34, a select-µop is generated

shows how the select-µop works. Figure 3.8a shows the original code before renaming. Fig-
ure 3.8b, shows the same code after renaming, as well as the modifications of the r34 map table
entry. Predicated instructions i3 and i4 fill the extra map table fields, and are executed as non-
predicated. Then, prior to renaming the dependent instruction i5, a select-µop is generated which
leaves a unique definition for r34. Predicated instructions are not serialized between each other,
but the select-µop acts like a barrier between predicate instructions and its consumers, as shown
in the dependence graph.

The select-µop technique needs some special issue queue entries to hold the micro-operations,
with more tag comparators than regular entries. In addition, the map table entries are also extended
to track multiple register definitions and their guards. If the implementation supports many simul-
taneous register definitions, these extensions add a considerable complexity to the rename logic
and also to the issue logic. On the other hand, if the implementation supports only a few register
definitions, then the mechanism may generate a lot of additional select-µops and performance may
degrade.

Moreover, this technique increases the register pressure for two reasons. First, because each

38 3.3. A Predicate Predictor for Conditional Branches

select-µop allocates an additional physical register. Second, because when a predicate instruction
commits, it can not free the physical register previously mapped to its destination register as con-
ventional processors do. In fact, this physical register can not be freed until the select-µop that uses
it commits. Moreover, instructions guarded with a false predicate are not early-cancelled from the
pipeline so they continue consuming physical registers, issue queue entries and functional units.

Next, let us analyse the implications with the selective replay mechanism [12]. The selective
replay mechanism needs to track several data flows to avoid re-fetch of wrongly predicted instruc-
tions. Each issue queue entry is extended with one extra input tag for every source register, and
another for the destination register. These extensions increase considerably the issue logic com-
plexity. For instance, for instructions with two source registers, one destination register and one
predicate, the number of comparators needed are six instead of three. Figure 3.9 illustrates the
execution of the predicted and the replay data dependence graphs.

The selective replay is based on the IA64 ISA. IA64 is a full predicated ISA, with a wide
set of compare instructions that produce predicate values (see Chapter 2). However, Chuang’s
proposal only predicts one type (the so called unconditional [33]). The unconditional comparison
type differs from others because it always updates the architectural state, even if its predicate
is evaluated to false. The proposed selective replay works fine with these kind of comparison,
but cannot handle comparisons that do not update the state when the predicate evaluates to false,
because an extra mechanism would be needed to obtain the previous predicate definition. Our
experiments show that on average only 60% of compare instructions are unconditional.

Finally, another drawback of the selective replay is the increased resource pressure caused by
instructions whose predicate is predicted false, because they remain in the pipeline. In addition,
every instruction must remain in the issue queue until it is sure that no re-execution will occur,
thus increasing the occupancy of the issue queue. Moreover, the extra input tags required for the
replay mechanism significantly increase the complexity of the issue queue.

Our proposal also adds some complexity to the issue logic. Predicated instructions without
confidence are converted to false predicated conditional moves, which require an extra input tag
for the destination register. If we consider the previous example, instructions with two source
registers, one destination register and one predicate, the number of comparators needed are four
instead of three. However, since not all instructions need an extra tag, some hardware optimiza-
tions may be applied. Our experiments show that only 16% of the predicated instructions are
converted. Hence, the complexity increment is lower than that of previous techniques.

3.3 A Predicate Predictor for Conditional Branches

This section extends our previous predicate predictor scheme also for conditional branches, when
executing in an out-of-order processor. Like the previous section, this scheme assumes an ISA
with full predicate support, such as the one considered in this thesis [33].

Many studies have shown that if-conversion transformations help to eliminate hard-to-predict
branches [10,44,45,58,75]. However, it may also have negative effects in the predictability of the
remaining branches [7]. First, the removal of branches may reduce the amount of correlation infor-

3. If-Conversion Technique on Out-of-Order Processors 39

Figure 3.9: Selective replay. (a) Original code. (b) Data dependences after predicate pre-
diction if no misprediction occurs Assuming p6 = true, p7 = false and p8 = false, i3 and i4
are inserted into the issue queue but do not issue. (c) Data dependences after predicate mis-
prediction. Assuming p6 = false, p7 = true and p8 = false, i2 and i4 are converted to false
predicate conditional move, so the correct r34 value is propagated through the replay data
dependence graph.

mation available inside branch predictors. This reduction may degrade prediction accuracy, since
conventional branch predictors base their prediction on different levels of branch history to estab-
lish correlations between them. Second, if-conversion creates code regions where all instructions
are guarded with a predicate. This includes unconditional branches that are thereby transformed
to conditional branches, so they need to be predicted at fetch. Moreover, these region-branches
are fetched more frequently than in their original form.

Figure 3.10 illustrates the above mentioned problems with an example. In Figure 3.10a, the
unconditional branch br.ret executes only if conditions cond1 evaluates to false and cond2 eval-
uates to true. In Figure 3.10b the same code has been if-converted, so the unconditional branch
becomes conditional. Since the two previous conditional branches have been removed, their cor-
relation information is no longer available to a conventional branch predictor to predict the new

40 3.3. A Predicate Predictor for Conditional Branches

Figure 3.10: (a) Original code with multiple control flow paths. (b) Multiple control flow
paths have been collapsed in a single path. The unconditional branch br.ret has been trans-
formed to a conditional branch and it now needs to be predicted. It is correlated with condi-
tions cond1 and cond2

conditional branch.
However, the correlation information associated with the removed branches has not been com-

pletely eliminated, since it is still present in the predicate registers that hold the conditions, and it
may be associated to the compare instructions that define these predicates, as it will be shown in
the following subsections. In our example, a branch predictor could incorporate these predicates to
correlate with the prediction of the new conditional branch. Actually, this new conditional branch
will be taken if p1 and p3 are true, and p2 is false.

Of course, the use of full correlation information does not guarantee the easy predictability of a
branch. The poor predictability of the removed branches may migrate to the remaining branches,
thus making it useless the recovery of the lost correlation information. In Figure 3.10 the poor
predictability of conditions cond1 and cond2 may migrate to branch br.ret.

In the following subsection, we describe in detail our proposed scheme to avoid losing any
correlation information of if-converted branches, as well as to exploit early-resolved branches,
both resulting in branch prediction accuracy improvements.

3.3.1 Replacing the Branch Predictor by a Predicate Predictor

As stated in section 1.3.2, previous presented studies incorporate predicate information into branch
predictors in several ways. August et.al [7] propose to improve a local history branch predictor
by correlating with the previous definition of the branch guarding predicate. However, correlation
information is not fully recovered, since only the last predicate value definition is used to select and
update one of two local histories. Simon et.al [66] propose to introduce recent computed predicates
into the Global History Register GHR. Although a higher amount of correlation information is
recovered, the effectiveness of the predictor may be reduced due to storing duplicate information,

3. If-Conversion Technique on Out-of-Order Processors 41

and it requires a complex mechanism to keep the program order of the GHR. Finally, Kim et.al [39]
do not remove branches when applying if-conversion transformations. Instead, those branches are
transformed into wish branches, so the correlation information is not lost. However, this technique
can not exploit early-resolved branches.

Here, we propose to replace the conventional branch predictor with a predicate predictor. In
an ISA with a compare-to-branch model, the guarding predicate value of a conditional branch
determines its outcome, i.e. if the branch is taken or not. In fact, in such a model, conventional
branch predictors use the branch PC to predict the value of its guarding predicate, and the result
feeds the history registers. In contrast, in our predicate predictor scheme, branches do not take part
at all in the generation of predictions. Instead, the predicate predictor uses the PC of the compare
instruction that produces the guarding predicate of the conditional branch. Note that, instead of
predicting the branch input, we actually predict the compare output.

As explained in section 3.2.1, the predicate prediction is initiated at the fetch of the compare
instruction and stored in a predicate physical register at rename stage. Later on, the depending
consumer conditional branch will get its predicate prediction from that physical register, so it
must be renamed first to find the corresponding location. That is, the physical register name is the
unique identifier that binds a predicate producer with its consumers.

Since the prediction starts at the fetch stage with the compare PC, and is not stored until
the destination predicate is renamed, a multicycle prediction can be performed, i.e., it may be
designed as a pipelined large and highly accurate predictor. In addition, since the predictions are
not accessed by branches until they reach the rename stage, our predicate predictor becomes the
perfect candidate to be implemented in a two-level branch prediction scheme such as the one in the
Alpha [38] or the PowerPC [74] processors. Such schemes have two different branch predictors
that make two predictions for each branch: the first, fast though less accurate predictor, takes
a single cycle and allows the processor to continuously fetch instructions without stalling; the
second, slower but highly accurate, takes several cycles and overrides the first prediction. If the
two predictions are different, the front-end is flushed and the fetch redirected according to the
second prediction.

In addition, our scheme allows to exploit early-resolved branches. The predicted and the
computed values of a predicate are written into the same physical register. If a compare instruction
is scheduled enough in advance from its dependent branch, the branch will use the computed value
as a prediction, thus effectively being 100% accurate.

Figure 3.11 illustrates the predicate prediction scheme for conditional branches. As explained
in section 3.2.1, two predictions, one for each compare outcome, are generated in early stages of
the pipeline, starting with the PC of the compare instruction. When the compare instruction is
renamed, the two predictions are speculatively written to the PPRF. Later on, when the compare
instruction executes, the PPRF is updated with the two computed values. In the example above, p7
and p6 are renamed to pph1 and pph2 respectively. When a dependent conditional branch reaches
the rename stage, it renames its guarding predicate and obtains its input value from the PPRF.
The obtained value overrides the first branch prediction performed at fetch stage. In the example
above, the branch obtains its prediction from the predicate physical register pph1.

The extended PPRF fields, the speculative bit and the ROB pointer, used for if-converted in-
structions, are used for conditional branches in the same way. In fact, the speculative bit and

42 3.3. A Predicate Predictor for Conditional Branches

Figure 3.11: Predicate Prediction scheme as a branch predictor.

ROB pointer fields is used to advance the detection of a branch misprediction in the same way
a predicate misprediction of a if-converted instruction does. Thereby, the branch misprediction
detection is performed at compare execution instead of at branch execution. However, our experi-
ments have shown that there is no performance gain at all. The confidence bit, which is used by the
if-converted instruction to consume or not the predicate prediction, is never used by conditional
branches, since the predicate prediction always override the fetch branch prediction.

3.3.2 The Predicate Predictor Implementation

The performance results for if-converted instructions presented in section 3.2.3 have been obtained
using a simple Gshare predicate predictor with a 6-bit Global History Register. Although simple,
our experiments showed that the Gshare predictor achieves a reasonable trade-off between accu-
racy and complexity. However, in this new scenario the branch predictor is completely replaced
by a predicate predictor. Hence, in-order to compare our predicate predictor scheme with one
that uses a conventional branch predictor, in both cases we have implemented a state of the art
predictor.

This section gives a justification to the choice of a perceptron predictor for our predicate pre-
diction scheme, and describes how it is adapted to predict predicates instead of branches. Of
course, the prediction accuracy of if-converted guarding predicates is also benefited. Our exper-
iments show that the amount of instructions that are converted into a false predicate conditional
move are only 7% of the committed predicated instructions.

The Perceptron branch predictor, which is based on neural networks, obtains a very high accu-
racy for dynamic branch predictions [34]. However, the slow computation time of the prediction
function may suppose an important drawback to use perceptrons as a single cycle branch predic-
tor. As explained before, our scheme supports multicycle predicate predictions, so it makes the

3. If-Conversion Technique on Out-of-Order Processors 43

Figure 3.12: Perceptron Predicate Predictor block diagram.

perceptron a good candidate.

The original perceptron has been slightly modified to predict predicates more efficiently. As
explained before, since compare instructions produce two results, the predicate predictor needs
to perform two predictions for each compare instruction. The obvious solution might be to split
the Perceptron Vector Table (PVT) to perform the two predictions. However, not all compare
instructions produce two useful predicates. In fact, one of the destination predicate registers is
often the read-only predicate register p0. In this case, only the non-zero predicate register is
updated and only one prediction is needed. Having a split PVT table may result in a suboptimal
utilization of the available space, producing an increase of aliasing conflicts. Instead, we use an
unique PVT table that is accessed with two different hash functions, one for each predicate, so the
prediction vectors are better given out.

The accuracy of a predicate predictor is also affected negatively by global history corruption.
On a conventional branch predictor, processor state recovery is done by the same instruction that
speculatively updates it [67]. Instead, on a predicate prediction based scheme, the global history
is speculatively updated by a compare instruction while processor state recovery is done by its
predicate consumer, i.e. a conditional branch or an if-converted instruction. In this case, a pipeline
flush is triggered starting from the predicate consumer instruction. Although the correct global
history bit may be corrected during the corresponding recovery actions, compare instructions that
may come after the predicate producer and before the predicate consumer have already made their
predicate predictions based on a corrupted global history.

Figure 3.12 shows a high level scheme of the predicate perceptron predictor. The PVT is in-
dexed twice using two different hash functions, f1 and f2. The first hash function, that is used when
one prediction is needed, indexes the whole PVT using the corresponding PC bits. The second
hash function, that is used when two predictions are needed, simply inverts the most significant bit
of the first hash function.

44 3.3. A Predicate Predictor for Conditional Branches

Architectural Parameters

Multilevel Branch Predictor

First level: Gshare 14-bit GHR.

Total size: 4 KB. 1-cycle access.

Second level: Perceptron. 30-bit GHR. 10-bit LHR.

Total size :148 KB. 3-cycle access.

10 cycles for misprediction recovery

Predicate Predictor

Perceptron. 30-bit GHR. 10-bit LHR.

Total size :148 KB. 3-cycle access.

10 cycles for misprediction recovery

Integer Physical Register File 256 physical registers

Table 3.2: Simulator parameter values used not specified in Chapter 2.

3.3.3 Evaluation

This section evaluates the effectiveness of our predicate predictor based branch prediction scheme
in terms of branch prediction accuracy and performance.

Experimental Setup

All the experiments presented in this section use the cycle-accurate, execution-driven simulator
described in Chapter 2. Specific microarchitectural parameters for our predicate prediction scheme
are presented in Table 3.2.

We have simulated twenty-two benchmark programs from SpecCPU2000 [4] (eleven integer
and eleven floating-point) using the MinneSpec [40] input set 1. We have generated two set of
binaries. The first set has been compiled without enabling predication techniques (if-conversion
and software pipelining), and the second set has been compiled with only if-conversion transfor-
mations enabled. In both cases, all benchmarks have been compiled with IA64 Intel’s compiler
(Electron v.8.1) using maximum optimization levels.

The simulator also models in detail a 144 KB sized PEP-PA branch predictor with 14-bit local
history, as described in [7]. This predictor was proposed for an in-order processor and it correlates
consecutive predicate definitions with the same logical register name. Since we assume an out-
of-order processor, in order to correctly model this predictor, the simulator maintains the state of
a logical predicate register file. We assume that the local histories are updated speculatively and
correctly recovered on a branch misprediction.

Branch Prediction Accuracy on Non-If-Converted Code

This section analyses the impact on branch prediction accuracy of three features that differ be-
tween our scheme and a conventional branch predictor. On the positive side, our scheme elim-
inates some branch mispredictions by exploiting early-resolved branches. On the negative side,
predicate prediction introduces two factors that negatively affect prediction accuracy, as discussed
in section 3.3.2. First, it may introduce additional alias conflicts in the prediction tables, because

1MinneSpec input set reduces considerabely the initialization period in terms of simulated instructions. This has
allowed to increase the set of simulated benchmarks from 14 to 22 in comparison to the work presented in section 3.2.

3. If-Conversion Technique on Out-of-Order Processors 45

Figure 3.13: Branch misprediction rates of a conventional branch predictor and our predi-
cate predictor scheme, for non if-converted code.

some compare instructions produce two predicates. Second, compare instructions that come after
a wrong predicate prediction but before the first use of that predicate make predicate predictions
based on a corrupted global-history.

In order to isolate these effects from those produced by the correlation improvement of our
scheme, this experiment uses the binaries compiled without if-conversion. Figure 3.13 compares
the branch misprediction rate when using a conventional branch predictor and our predicate pre-
dictor. Both predictors have the same size and latency and analogous configurations. With only
three exceptions (parser, bzip2 and twolf), the results show that the predicate predictor scheme
achieves better accuracy than the conventional branch predictor. On average, it obtains an accu-
racy increase of 1.86%. This is a significant improvement, since we are using an already highly
accurate predictor as a baseline.

The results show that the positive effect of early-resolved branches dominates over the nega-
tive effect of increased alias conflicts and global-history corruption, except for three benchmarks,
where the net effect is the opposite. In order to evaluate the individual effect of early-resolved
branches, isolated from the other two negative effects, we have also simulated idealized branch
predictor and predicate predictor schemes, without alias conflicts and with perfect global-history
update. As shown in Figure 3.14 an idealized predicate predictor scheme consistently achieves
better accuracy for all benchmarks, and on average it increases branch accuracy by 2.24%. Over-
all, we conclude that the accuracy improvement contributed by early-resolved branches offsets the
small negative effects (less than 0.40% on average) of predicate prediction for most benchmarks.

Branch Prediction Accuracy on If-Converted Code

This section evaluates the branch prediction accuracy of our predicate predictor scheme compared
to a conventional branch predictor. Since part of the improvement is due to the ability to fully cor-
relate branch global history, it is also compared to the PEP-PA branch predictor (see section 1.3.2),

46 3.3. A Predicate Predictor for Conditional Branches

Figure 3.14: Branch misprediction rates of an idealized conventional branch predictor and
an idealized predicate predictor scheme, both without alias conflicts and with perfect global-
history update, for non if-converted code.

which addresses a similar goal by incorporating some predicate information. This section also
analyses quantitatively the individual contributions to accuracy due to early-resolved branches
and correlation improvement. These experiments use the binaries compiled with if-conversion en-
abled. Hence, their results can not be directly compared to those in the previous section, because
different binaries have been used.

Figure 3.15a shows branch misprediction rates for three different branch prediction schemes.
The first one is a 144 KB PEP-PA branch predictor. The second and the third schemes are a
conventional branch predictor and our proposed predicate predictor respectively, both having a
148 KB size and analogous configurations. With only one exception (twolf), the results show
that our predicate predictor scheme consistently has the lowest misprediction rate. On average, it
obtains an accuracy increase of 1.5% with respect to the best scheme. Surprisingly, the PEP-PA
scheme performs worse than the conventional predictor, but it may be produced by the out-of-
order writing of the predicate registers, which causes it to choose the local history with a wrong
predicate. Note that this scheme was conceived to work on an in-order processor.

Figure 3.15b breaks down the individual contributions of early resolved branches and corre-
lation improvement to the accuracy difference observed between our scheme and the conventional
branch predictor. In order to quantify the contribution of early-resolved branches, we have counted
the number of times that the predicate was ready and the conventional branch predictor did a wrong
prediction. The remaining accuracy difference is attributed to the correlation improvement. On av-
erage, the correlation factor has a higher contribution than early-resolved branches. The accuracy
increases are 1% and 0.5% respectively.

Finally, Figure 3.15c shows the performance speedup of our 148KB predicate predictor scheme
taking as a baseline the 148KB branch predictor scheme. On average, the branch accuracy incre-
ment of 1.5% showed in Figure 3.15a contributes a 4% speedup over the baseline.

3. If-Conversion Technique on Out-of-Order Processors 47

Figure 3.15: (a) Comparison of branch misprediction rates for if-converted code. (b) Break-
down of the branch prediction accuracy differences between our predicate predictor scheme
and a conventional branch predictor. (c) Performance comparison of the 148KB predicate
predictor scheme taking as a baseline the 148KB conventional branch predictor scheme.

48 3.4. Summary and Conclusions

Figure 3.16: Branch misprediction rates of an idealized conventional branch predictor and
an idealized predicate predictor scheme, both without alias conflicts and with perfect global-
history update, for if-converted code.

However, note that the impact of the correlation improvement is actually underestimated in the
Figure 3.15b, because these bars includes also the negative effects of the predicate predictor (see
section 3.3.2). This explains why this contribution is negative for one benchmark in terms of ac-
curacy and performance speedup(twolf). To evaluate separately the positive effects of our scheme
over conventional branch prediction, we have repeated the experiment with idealized schemes
assuming no alias conflicts and perfect global-history updates. Figure 3.16 shows a consistent
accuracy improvement across all benchmarks and an average improvement of almost 2%. Overall,
we conclude that the accuracy increases contributed by early-resolved branches and correlation
improvement, offset the small negative effect (less than 0.5% on average, which does not have any
significant speedup impact) of predicate prediction on all benchmarks but one.

3.4 Summary and Conclusions

If-conversion is a powerful compilation technique that may help to eliminate hard-to-predict branches.
Reducing branch mispredictions is specially important for modern out-of-order processors because
of their wide and deep pipelines. However, the use of predicate execution by the if-converted code
on an out-of-order processor entails two performance problems: 1) multiple register definitions
at the rename stage, 2) the consumption of unnecessary resources by predicated instructions with
its guard evaluated to false. Moreover, as shown in previous works, if-conversion may also have
a negative side-effect on branch prediction accuracy. Indeed, the removal of some branches also
removes their correlation information from the branch predictor and may make other remaining
branches harder to predict.

This thesis proposes a novel microarchitectural scheme that takes into account if-converted
and conditional branch problems and provides an unified solution for both. Our proposal is based

3. If-Conversion Technique on Out-of-Order Processors 49

on a predicate prediction scheme that replaces the conventional branch predictor with a predicate
predictor. The predictions are made for every predicate definition, and stored until the predicate is
used by a dependent if-converted or conditional branch instruction.

Our proposal allows a very efficient execution of if-converted code without no branch predic-
tion accuracy degradation. Our scheme does not require adding any significant extra hardware
because the second level branch predictor at rename stage is replaced with a predicate predictor.
This makes our proposal an extremely low cost hardware solution. Compared with previous pro-
posals that focus on if-converted instructions, our scheme outperforms them by more than 11% on
average, and it performs within 5% of an ideal scheme with a perfect predicate predictor. More-
over, our scheme improves branch prediction accuracy of if-converted codes by 1.5% on average,
which achieves an extra 4% of speedup.

50 3.4. Summary and Conclusions

Chapter 4
Register Windows on Out-of-Order

Processors

Register windows is an architectural technique that reduces memory operations required to save and re-
store registers across procedure calls. Its effectiveness depends on the size of the register file. Such reg-
ister requirements are normally increased for out-of-order execution because it requires registers for the
in-flight instructions, in addition to the architectural ones. However, a large register file has an impor-
tant cost in terms of area and power and may even affect the cycle time. In this chapter, we propose a
software/hardware early register release technique that leverage register windows to drastically reduce the
register requirements, and hence reduce the register file cost. Contrary to the common belief that out-of-
order processors with register windows would need a large physical register file, this chapter shows that the
physical register file size may be reduced to the bare minimum by using this novel microarchitecture. More-
over, our proposal has much lower hardware complexity than previous approaches, and requires minimal
changes to a conventional register window scheme. Performance studies show that the proposed technique
can reduce the number of physical registers to the number of logical registers plus one (minimum number
to guarantee forward progress) and still achieve almost the same performance as an unbounded register file.

4.1 Introduction

Register windows is an architectural technique that reduces the amount of loads and stores re-
quired to save and restore registers across procedure calls by storing the local variables of multiple
procedure contexts in a large architectural register file. When a procedure is called, it maps its
context to a new set of architected registers, called a register window. Through a simple runtime
mechanism, the compiler-defined local variables are then renamed to these windowed registers.

If there are not enough architectural registers to allocate all local variables, some local vari-
ables from caller procedures are saved to memory and their associated registers are freed for the
new context. When the saved variables are needed, they are restored to the register file. These op-
erations are typically referred to as spill and fill. SPARC [16] and Itanium [25] are two commercial
architectures that use register windows.

The effectiveness of the register windows technique depends on the size of the architectural
register file because the more registers it has, the less spills and fills are required [61]. Besides, for
an out-of-order processor, the number of architectural registers determines the size of the rename
map table, which in turn determines the minimum number of physical registers.

51

52 4.1. Introduction

To extract high levels of parallelism, out-of-order processors use many more physical regis-
ters than architected ones, to store the uncommitted values of a large number of instructions in
flight [19]. Therefore, an out-of-order processor with register windows requires a large amount
of physical registers because of a twofold reason: to hold multiple contexts and to support a large
instruction window. Unfortunately, the size of the register file has a strong impact on its access
time [19], which may stay in the critical path that sets the cycle time. It has also an important cost
in terms of area and power. There exist many proposals that address this problem through different
approaches.

One approach consists of pipelining the register file access [26]. However, a multi-cycle
register file requires a complex multiple-level bypassing, and increases the branch mispredic-
tion penalty. Other approaches improve the register file access time, area and power by mod-
ifying the internal organization, through register caching [83] or register banking [14]. Alter-
native approaches have focused on reducing the physical register file size by reducing the reg-
ister requirements through more aggressive reservation policies: late allocation [23] and early
release [52] [55] [5].

In this chapter we propose a new software/hardware early register release technique for out-
of-order processors that builds upon register windows to achieve an impressive level of register
savings. On conventional processors, a physical register remains allocated until the next instruc-
tion writing the same architectural register commits. However, procedure call and return semantics
enables more aggressive conditions for register release:

1. When a procedure finishes and its closing return instruction commits, all physical registers
defined by this procedure can be safely released. The values defined in the closed context
are dead values that will never be used again.

2. When the rename stage runs out of physical registers, mappings defined by instructions that
are not in-flight, which belong to caller procedures, can also be released. However, unlike
the previous case, these values may be used in the future, after returning from the current
procedure, so they must be saved to memory before they are released.

3. Architectural register requirements vary along a program execution. The compiler can com-
pute the register requirements for each particular control flow path, and insert instructions
to enlarge or shrink the context depending on which control flow path is being executed.
When a context is shrunk, all defined physical registers that lay outside of the new context
contain dead values and can be safely released.

By exploiting these software/hardware early release opportunities, the proposed scheme achieves
a drastic reduction in physical register requirements. By applying them to a processor with an
unbounded physical register file, the average register lifetime (number of cycles between the allo-
cation and release of a physical register) drops by 30% (see Figure 4.1). This allows to reduce the
number of physical registers to the minimum number that still guarantees forward progress, i.e.
same number of architectural plus one (128 in our experiments for IPF binaries), and still achieve
almost the same performance as an unbounded register file.

Contrary to the common belief that out-of-order processors with register windows would need
a large physical register file, this chapter shows that register windows, together with the proposed

4. Register Windows on Out-of-Order Processors 53

Figure 4.1: Average lifetime of physical registers for the set of integer benchmarks executing
in a processor with an unbounded register file, when applying our early release techniques
and when not applying them.

technique, can significantly reduce the physical register file pressure to the bare minimum. In other
words, we show that the proposed scheme achieves a synergistic effect between register windows
and out-of-order execution, resulting in an extremely cost-effective implementation.

Besides, our scheme requires much lower hardware complexity than previous related ap-
proaches [55], and it requires minimal changes to a conventional register windows scheme.

As stated above, a register windows mechanism works by translating compiler-defined local
variables to architected registers prior to renaming them to physical registers. The information
required for this translation is kept as a part of the processor state and must be recovered in case of
branch mispredictions or exceptions. Our scheme also provides an effective recovery mechanism
that is suitable for out-of-order execution.

The rest of the chapter is organized as follows. Section 4.2 describes our proposal in detail.
Section 4.3 presents and discusses the experimental results. Section 4.4 analyzes several cost and
complexity issues of the proposed solution and previous approaches. Finally, the main conclusions
are summarized in section 4.5.

4.2 Early Register Release with Register Windows

This section describes our early register release techniques based on register windows. Our scheme
assumes an ISA with full register window support, such as IA-64 [32]. Along this chapter we as-
sume a conventional out-of-order processor with a typical register renaming mechanism that uses
a map table to associate architected to physical registers. The IA-64 defines 32 static registers and
96 windowed registers. The static registers are available to all procedures while the windowed reg-
isters are allocated on demand to each procedure. Both, static and windowed architected registers
map to a unified physical register file. Our technique applies to windowed registers.

In the following subsections, a basic register window mechanism for out-of-order processors is
explained first. Then, we expose the early register release opportunities and present a mechanism
to exploit them.

54 4.2. Early Register Release with Register Windows

Figure 4.2: Dynamic translation from virtual register r3 to its corresponding architectural
windowed register.

4.2.1 Baseline Register Window

Register windows is a technique that helps to reduce the loads and stores required to save registers
across procedure calls by storing the local variables of multiple procedure contexts in a large
register file [61]. Throughout this chapter we will use also the term procedure context to refer to a
register window.

From the ISA’s perspective, all procedure contexts use the same ’virtual’ register name space.
However, when a procedure is called, it is responsible for dynamically allocating a separate set
of consecutive architected registers, a register window, by specifying a context base pointer and a
window size. Each virtual register name is then dynamically translated to an architected register
by simply adding the base pointer to it (see Figure 4.2). Notice that register windows grow towards
higher register indices.

Every register window is divided into two regions: the local region, which include both input
parameters and local variables, and the out region, where it passes parameters to its callee pro-
cedures. By overlapping register windows, parameters are passed through procedures, so those
registers holding the output parameters of the caller procedure become the local parameters of the
callee. The overlap is illustrated in Figure 4.3.

Hence, every register window is fully defined by a context descriptor having three parameters:
the context base pointer, which sets the beginning of the register window; the context size, which
includes the local and out regions; and the output parameters, which defines the size of the out
region.

Register windows are managed by software, with three specific instructions: br.call, alloc and
br.ret. Br.call branches to a procedure and creates a new context, by setting a context descriptor
with its base pointing to the first register in the out region of the caller context, and its context

4. Register Windows on Out-of-Order Processors 55

Figure 4.3: Overlapping Register Windows.

size equal to the out region’s size. Alloc modifies the current context descriptor by setting a new
context size and output parameters. Note that the new size may be larger or smaller than the
previous size, so this instruction may be used either for enlarging or shrinking the context. Finally,
br.ret returns to the caller procedure and makes its context the current context. The compiler is
responsible for saving, on each procedure call, the caller context descriptor to a local register and
restoring it later on return.

It may happen that an alloc instruction increases the window size but there is no room available
to allocate the new context size in the architectural register file, i.e. at the top of the map table. In
such case, the contents of some mappings and their associatived physical register at the bottom of
the map table (which belong to caller procedure contexts) are sent to a special region of memory
called backing store, and then are released. Such operation is called a spill. Note that spills
produce both free physical registers and free entries in the map table. These entries can then be
assigned to new contexts to create the illusion of an infinite-sized register stack 1.

When a procedure returns, it expects to find its context in the map table, and the corresponding
values stored in physical registers. However, if some of these registers were previously spilled
to memory, the context is not completely present. For each missing context register, a physical
register is allocated and renamed in the map table. Then, the value it had before spilling is reloaded
from the backing store. Such operation is called a fill. Subsequent instructions that use this value
are made data dependent on the result of the fill so they are not stalled at renaming to wait for the
fill completion.

The relationship between map table and backing store is shown in Figure 4.4. Notice that the
map table is managed as a circular buffer. Spill and fill operations will be discussed in more detail
in section 4.2.6.

1Each mapping has a unique associated backing store address.

56 4.2. Early Register Release with Register Windows

Figure 4.4: Relationship between Map Table and Backing Store memory.

4.2.2 Early Register Release Techniques with Compiler Support

On a conventional out-of-order processor, a physical register is released when the instruction that
redefines it commits. To help reduce the physical register pressure, we have observed that by
shrinking the context size, mappings that lay above the new shrunk context can be early released.
We have identified an early release opportunity: the Alloc Release.

Alloc Release. Architectural register requirements may vary along the control flow graph. At
compile-time, if a control flow path requires more registers, the context can be enlarged by defin-
ing a higher context size with an alloc instruction. At runtime, new architectural registers are
reserved at rename stage, as explained in section 4.2.1. Analogously, if the architectural register
requirements decreases, the compiler can shrunk the context by defining a lower context size with
an alloc instruction. At runtime, when the alloc instruction commits, none of the architectural reg-
isters that lay above the shrunk context is referenced by any of the currently in-flight instructions.
We refer to them as not-active mappings, and they can be early released as well as their associated
physical registers without having to wait until the commit of a subsequent redefinition. In both
cases (to enlarge or to shrink the context size) the compiler needs to introduce an alloc instruction.
Figure 4.5 shows a control flow graph with unbalanced architectural register requirements. Alloc
Release is illustrated in Figure 4.6a.

Compiler support may help to reduce the physical register pressure by shrinking contexts and
releasing not-active mappings that lay above the shrunk context. In fact, what this technique ac-
tually does is to adapt better the architectural registers requirements. However, physical register
requirements are not available at compile time. To overcome this limitation we propose two hard-
ware techniques called Context Release and Register Release Spill.

4. Register Windows on Out-of-Order Processors 57

Figure 4.5: Architectural register requirements are higher in path 1 than path 2.

4.2.3 Early Register Release Techniques without Compiler Support

Context Release takes full advantatge of call conventions. When a procedure finishes and its clos-
ing br.ret instruction commits, many of the physical registers defined inside the closed procedure
become not-active and can be early released. Context Release is illustrated in Figure 4.6b. Note
that this technique is very similar to Alloc Release, since br.ret also shrinks the current context
size. However, although both techniques require the same hardware support, the compiler is not
aware of applying Context Release.

Register Release Spill. This technique is based on an extension of the not-active mapping
concept: if none of the instructions of a procedure are currently in-flight, not all mappings of the
procedure context need to stay in the map table. Hence not-active mappings are not only those
mappings that lay above a shrunk context, but also those mappings that belong to previous caller
procedure contexts not currently present in the processor. The Register Release Spill technique
is illustrated in Figure 4.7. As shown in Figure 4.7a, when br.call commits, context 1 mappings
become not-active. This is not the case in Figure 4.7b, where the context 1 procedure has already
returned before br.call commits, so their mappings have become active. Hence, only not-active
mappings from Figure 4.7a can be early released. However, since these mappings belong to caller
procedures, they contain live values and they must first spill the content of their associated physical
registers before releasing them. We will refer to this operation as Register Release Spill.

Though beneficial for register pressure, this technique increases the amount of spill/fill oper-
ations. Our experiments have shown that a blind application of the Register Release Spill to the

58 4.2. Early Register Release with Register Windows

Figure 4.6: In both figures, context 1 mappings that do not overlap with context 2 are not-
active (none in-flight instructions refer them), so they can be released. (a) Alloc-Release
technique, (b) Context-Release technique

baseline register window scheme increases the amount of spill/fill operations from 1.1% to 7% of
the total number of commited instructions. Since spilling registers has an associated cost, it could
reduce the benefits brought by register windows. Hence, Register Release Spill is only triggered
when the released registers are actually required for the execution of the current context, i.e. if the
renaming runs out of physical registers. Our experiments have show that this policy increases only
spill/fill operations to 1.4% of the total number of commited instructions.

Notice that there is a slight difference between the Register Release Spill and the conventional
spill used in the baseline (see section 4.2.1). A conventional spill is triggered by a lack of mappings
when the window size is enlarged. What Register Release spill actually does is ”to steal” physical
registers from caller procedures at runtime to ensure an optimum execution of the current active
zone.

4.2.4 Implementation

To implement register windows in an out-of-order processor, we propose the Active Context De-
scriptor Table (ACDT). The ACDT tracks all uncommitted context states to accomplish two main
purposes: to identify the active mappings at any one point in time, which is required by our early
register release techniques; and to allow precise state recovery of context descriptor information in

4. Register Windows on Out-of-Order Processors 59

Figure 4.7: Register-Release Spill technique (a) Context 1 mappings are not-active so they can
be early released. (b) Context 1 mappings are active (after returning from the procedure) so
they can not be released.

case of branch mispredictions and other exceptions. Moreover, we introduce the Retirement Map
Table that holds the rename map table at commit stage. It allows that Alloc Release and Context
Release techniques identify at commit stage the not-active mappings that can be released, even
when these mappings have been already redefined at rename stage by another procedure context.

Active Context Descriptor Table (ACDT). The ACDT acts as a checkpoint repository that
buffers in a fifo way, the successive states of the current context descriptor. As such, a new entry is
queued for each context modification (at rename stage in program order), and it is removed when
the instruction that has inserted the checkpoint is committed. Hence, ACDT maintains only active
context descriptors. With these information, the ACDT allows precise state recovery of context
descriptor information: in case of branch mispredictions and other exceptions, when all younger
instructions are squashed, the subsequent context states are removed from the ACDT, too.

As they are defined, active mappings stay in a continuous region on the map table, called
active region. The active region is bounded by two pointers that are calculated using the ACDT
information: the lower active and the upper active. Both pointers are updated at each context
modification using the information present in the ACDT: the lower active equals to the minimum
context base pointer present in the ACDT, and the upper active equals to the maximum sum of

60 4.2. Early Register Release with Register Windows

Figure 4.8: The pointers upper active, lower active and dirty divide the map table in three
regions: free, active and dirty. Upper active and lower active pointers are computed using
ACDT information. Dirty pointer points to the first non-spilled mapping.

base + size present in the ACDT.

The mappings staying below the lower active pointer belong to not-active contexts of callers
procedures. These mappings may eventually become free if their values are spilled to memory, or
may become active again if a br.ret restores that context. They form the so called dirty region of
the map table, and it lays between the lower active pointer and a third pointer called dirty. The
dirty pointer equals to the first mapping that will be spilled if the renaming engine requires it.
Actually, the associated backing store address of the dirty pointer corresponds to the top of the
backing store stack.

Finally, the free-region lays between the upper active pointer and the dirty pointer (note that
the map table is managed as a circular buffer), and it contains invalid mappings. The three regions
are shown in Figure 4.8.

Retirement Map Table. When a context is shrunk, mappings that become not-active are not
always accessible. As shown in Figure 4.9, the alloc i4 has increased the size of the context,
creating a new context descriptor (context 3), just before the alloc i2, that has shrunk the the
context and created the context descriptor context 2, has commited. However, mappings from
context 1 can not be release since their corresponding map entries have been already assigned to
context 3, which is active. Notice that, although context 1 mappings have become active, their
associated physical registers contain dead values and can be early released.

In order to obtain context 1 defined physical registers, we introduce the Retirement Map Ta-
ble [26, 54], that holds the state of the Rename Map Table at commit stage. When an instruction
commits, the Retirement Map Table is indexed using the same Rename Map Table register index,
and updated with its corresponding destination physical register (which indicates that the physical
register contains a commited value). When a branch misprediction or exception occurs, the of-
fending instruction is flagged, and the recovery actions are delayed until this instruction is about
to commit. At this point, the Retirement Map Table contains the architectural state just before the

4. Register Windows on Out-of-Order Processors 61

Figure 4.9: Not-active mappings from context 1 have become active because of context 3, so
they can not be released if context 2 commits

Figure 4.10: The Retirement Map Table holds the commited state of the Rename Map Table.
Context 1 mappings will remain into the Retirement Map Table until Context 3 commits.

exception occurred. Then the processor state is restored by copying the Retirement Map Table to
the Rename Map Table (to avoid significant penalty stalls caused by the use of Retirement Map
Table, some optimizations have been proposed [5]).

Figure 4.10 shows the same previous example but introducing the Retirement Map Table. Note
that when the alloc that has created the context descriptor context 2 commits, not-active mappings
from context 1 are still present in the Retirement Map Table, so they can be safely early released.

In summary, when a shrunk context commits, Alloc Release and Context Release techniques
are applied by releasing those not-active mappings from the Retirement Map Table that have layed
above the commited shrunk context. Furthermore, when the rename stage runs out of physical reg-
isters, a Register Release Spill operation is triggered and it releases as many not-active mappings
as needed from the dirty region starting at the dirty pointer. These spilled mappings become part
of the free region.

62 4.2. Early Register Release with Register Windows

4.2.5 Delayed Spill/Fill Operations

A closer look to the register window scheme for out-of-order processors described in the previous
sections, reveals that there is still some room for physical register pressure reduction.

First, when a br.ret instruction is executed and the restored context is not present in the map
table, fill operations are generated until all its mappings are restored. Assuming a realistic scenario,
there may exist a limit on the number of fills generated per cycle. So a massive fill generation may
stall the renaming for several cycles. Moreover, it may happen that some of these mappings will
never be used. Actually, it occurs quite often that a br.ret is followed by another br.ret, so none of
the restored mappings are used. Hence, unnecessary fill operations reserve unnecessary physical
registers, which means a higher register file pressure. Hence, we propose to defer each fill and
its corresponding physical register allocation until the mapping is actually used by a subsequent
instruction. By delaying fill operations we achieve a lower memory traffic and we reduce the
physical register pressure which results in a higher performance.

Second, when an alloc is executed and there is not enough space into the map table, spill
operations are generated to free the required mappings. As it happens with the previous case, a
massive spill generation may stall the renaming for several cycles. Hence, we propose to defer
each spill until the map table entry is actually reassigned by a subsequent instruction.

Hence, when a br.ret is executed and the restored context is not present in the map table, the
required mappings from the free region are appended to the active region, and marked with a
pending fill bit, so the br.ret instruction is not stalled. When a subsequent dependent instruction
wants to use a mapping with the pending fill bit set, a fill operation is generated and a new physical
register is reserved. In a similar way, when an alloc is executed and there is not enough space for
the new context, the required mappings from the dirty region are appended to the active region,
and marked with a pending spill bit, so the alloc is not stalled. When an subsequent instruction
redefines a mapping with its pending spill bit set, the current mapping is first spilled to the backing
store.

It might happen that a mapping with the pending spill bit set is not redefined until a subsequent
nested procedure, and the map table has wrapped around several times. In that case, it would be
costly to determine its associated backing store address. Thus, it is less complex to have an engine
that autonomously clear the pending spills that were left behind. This problem does not occur with
pending fills because these are actually invalid mappings that may be safely reused.

4.2.6 Spill-Fill operations

This section discusses some implementation considerations about the spill and fill operations.
A naive implementation of spills and fills could insert them into the pipeline as standard store

and load instructions. However, spills and fills have simpler requirements that enable more ef-
ficient implementations. First, their effective addresses are known at rename time, and the data
that the spills store to memory are committed values. Since all their source operands are ready at
renaming, they can be scheduled on a simpler hardware. Second, a given implementation could be
further optimized by making that the system guarantees that spills and fills do not require memory
disambiguation with respect to program stores and loads. In this case, spill and fill operations could
be scheduled independently from all other program instructions by using a simple fifo buffer [55].

4. Register Windows on Out-of-Order Processors 63

Architectural Parameters
Fetch Branch Predictor Gshare 14-bit GHR, 4KB, 1-cycle acces

Predicate Predictor Perceptron. 30b GHR. 10b LHR
Total size :148 KB. 3-cycle access
10 cycles for misprediction recovery

Integer Map Table 96 local entries, 32 global entries

Integer Physical Register File 129 physical registers

Table 4.1: Simulator parameter values used not specified in Chapter 2.

4.3 Evaluation

This section evaluates the proposed early register release techniques (Alloc Release, Context Re-
lease, Register Release Spill and Delayed Spill/Fill) presented in previous sections, and compares
them to a configuration that uses the VCA register windows scheme (see section 1.3). For each
configuration, performance speedups are normalized IPCs relative to a configuration that uses the
baseline register windows scheme with 160 physical registers. Although this gives an advantage of
32 registers to the baseline, we believe that it is a more reasonable design point for such an out-of-
order processor with 128 logical registers. We will show that, although our best scheme has much
less registers, not only it outperforms the 160-registers baseline, but it still performs within a 192-
registers baseline. At the end of this section we provide a more complete performance comparison
for a wide range of physical register file sizes.

4.3.1 Experimental Setup

All the experiments presented in this section use the cycle-accurate, execution-driven simulator
explained in Chapter 2. Specific microarchitectural parameters for our predicate prediction scheme
are presented in Table 3.2.

We have simulated the integer benchmark SpecCPU2000 suite [4] (except two integer bench-
marks (eon,vortex), which the LSE emulator environment could not execute) using the Minne
Spec [40] input set. Floating-point benchmarks have not been evaluated because the IA-64 reg-
ister window mechanism is only implemented on integer registers. All benchmarks have been
compiled with IA-64 Opencc [3] compiler using maximum optimization levels. For each bench-
mark, 100 million committed instructions are simulated. To obtain representative portions of code
to simulate, we have used the Pinpoint tool [57].

The simulator models in detail the baseline register windows, as well as our proposed tech-
niques (Alloc Release, Context Release, Register Release Spill and Delayed Spill/Fill), the ACDT
mechanism and the Retirement Map table, as described in the previous section. The simulator
also models the VCA register windows technique, featuring a four-way set associative cache for
logical-physical register mapping, with 11-bit tags, as described in [55], although it was adapted
to the IA-64 ISA.

64 4.3. Evaluation

Figure 4.11: Number of allocs that the compiler should introduce when executing 100 million
committed instructions if a perfect shrunk of contexts is performed

4.3.2 Estimating the Potential of the Alloc Release

The Alloc Release technique releases not required architectural registers (and their associated
physical registers) by introducing alloc instructions that shrink the context size (see section 4.2.2).
A context can be shrunk by deallocating the mappings that are above the highest architectural
register holding a live value. Hence, the compiler should assign the shortest lifetime values to
the highest architectural register indexes in order to release them as soon as possible by shrinking
its context. However, this register assignment is not trivial, since the same value may have dif-
ferent lifetimes depending on the control flow path. Moreover, the introduction of shrunk allocs
increases the program code size, having undesirable side effects on the instruction cache and the
fetch bandwidth. Figure 4.11 shows the number of times there is one, eight or sixteen architectural
registers that can be released at the beginning of each basic block if the context is perfectly shrunk
(i.e. shortest lifetimes are allocated into the highest context indexes), when executing 100 million
of committed instructions.

Evaluating the Alloc Release technique requires to compare optimized and unoptimized bi-
naries. For a fair comparison, both binaries should be run until completion, not just running a
portion of the execution, because code optimized with Alloc Release is different from a code that
does not apply it. Because of the limited resources of our experimental infrastructure, we took
an alternative workaround: we attempted to estimate the potential performance speedup of this
technique, by evaluating an upper bound of the Alloc Release.

Instead of inserting alloc instructions, the compiler annotates the code at the beginning of each
basic block with a list of live architectural registers at that point. A register is considered live in a
given point if there is at least one consumer in any possible path downstream. At runtime, when the
first instruction of a basic block commits, the simulator releases the physical registers associated

4. Register Windows on Out-of-Order Processors 65

to current context mappings not included in the live register list, as would have occurred with a
shrinking alloc instruction. The physical registers are easily identified from the Retirement Map
Table.

However, note that by generating simple live register lists, there is no guarantee that the freed
registers are located at the highest mappings of the context, to make the context shrink possible.
Thus, the upper bound configuration does not attemp to shrink the context but only to free the
physical registers that correspond to non live values. This is the effect that would have been seen
on the Alloc Release if the non-live registers are always mapped by the compiler to the highest
context positions, which is obviously an optimistic assumption.

4.3.3 Performance Evaluation of Our Early Register Release Techniques

This section compares in terms of performance our proposals: Alloc Release, Context Release,
Register Release Spill and Delayed Spill/Fill. Each of them, either can be implemented indepen-
dently, or as a combination of one with the rest. Although a thorough study have been realized,
only the best four configurations are presented: (1) Context Release, (2) Alloc Release and Context
Release, (3) Register Release Spill and Context Release and (4) Delayed Spill/Fill and Register
Release Spill and Context Release. Notice that the four configurations use Context Release. This
is because Context Release is a very powerful technique that does not require any binary code
modification and it does not carry any side effect, unlike Alloc Release or Register Release Spill.
Moreover, it is a low cost technique in terms of hardware.

Alloc Release and Context Release. Figure 4.12 compares configurations (1) and (2), presented
in the previous paragraph, in terms of performance. The first column uses only Context Release
technique. The remaining three columns are variants of Context Release and Alloc Release con-
figurations, where Alloc Release is applied only if the number of released physical registers is
bigger than sixteen, eight or one respectively. On average, applying a non restricted Alloc Release
technique, i.e. release a physical register when possible, together with Context Release (fourth
column) achieves a performance advantage of more that 3%. However, such a performance im-
provement does not make up for the amount of alloc instructions that the compile should insert,
as shown in Figure 4.11. The restrictive use of Alloc Release (second and third columns) can
drastically reduce the code size expansion (from 12 to 2 and 4 millions of generated allocs), but it
carries a performance loss of 1.5% and 0.4% respectively in comparison to a non restictive use of
Alloc Release.

One could expect a higher performance improvement, but the Alloc Release technique shrinks
contexts because the architectural register requirements decreases, and not because of a lack of
physical registers. However, there is one benchmark (twolf) that achieves a performance advan-
tatge of 16% over Context Release configuration when applying the non restrictive Alloc Release.
A detail explanation will be given below.

Register Release Spill and Delayed Spill/Fill. Figure 4.13 compares the performance of con-
figuration (3) (Context Release and Register Release Spill) and (4) (Context Release, Register
Release Spill and Delayed Spill/Fill) mentioned above. The use of Delayed Spill/Fill consistently
outperforms the Register Release Spill configuration, with average speedups over the baseline of
6% and 4% respectively. Moreover, the number of spill/fill operations generated with Delayed

66 4.3. Evaluation

Figure 4.12: Performance evaluation of Context Release and several configurations with Al-
loc Release and Context Release. Speedups are normalized to the baseline register window
scheme with 160 physical registers.

Figure 4.13: Performance evaluation of Register Release Spill configuration and Delayed
Spill/Fill configuration. Speedups are normalized to the baseline register window scheme
with 160 physical registers.

Spill/Fill drops from 7.3% to 2.6% of the total number of committed instructions, and it almost
equals the number of spill/fill operations generated for the baseline scheme, that is 2.4% of the
total number of committed instructions.

Such a reduction produces notable performance improvements because it not only reduces
memory traffic but also the amount of physical registers allocated by fill operations. On average,
by using the Delayed Spill/fill technique, fill operations drop from 4.3% to 1.3% of the total

4. Register Windows on Out-of-Order Processors 67

Figure 4.14: Average lifetime of the set of integer benchmarks executing in a processor with
a 128 register file size, when applying different configurations: Delayed Spill/Fill, Alloc Re-
lease, Context Release and register window baseline.

number of committed instructions, in comparison to the Register Release Spill configuration (spill
operations generated are reduced from 2.7% to 1.4%). It is especially beneficial for twolf, where
the performance improvement of Delayed Spill/Fill configuration achieves an advantage of more
than 8% over the Register Release Spill configuration. This is because, by using only Register
Release Spill, physical registers obtained from dirty region are required again for fill operations
when the procedure returns, even though they were not necessary. Actually, it is quite often that
a br.ret is followed by another br.ret, so none of the required physical registers are used. Hence,
by applying Delayed Spill/Fill technique, only required fill operations (and physical registers) are
performed.

A similar effect explains the performance advantage of 16% of twolf when using a non re-
strictive Alloc Release together with Context Release in comparison to Context Release, shown in
Figure 4.12. This is because physical registers freed by Alloc Release comes from dead values that
do not need to be restored again to the map table. This also explains that a non restrictive Alloc
Release configuration outperforms the Register Release Spill configuration by almost 4% for the
case of twolf, when comparing Figures 4.12 and 4.13 (both use the same baseline). However, the
Alloc Release configuration do not adapt as well as the Delayed Spill/Fill configuration to register
requirements at runtime. On average, the Delayed Spill/Fill configuration outperforms the Alloc
Release configuration by almost 4%.

Such a performance improvement is mainly due to a huge reduction of the average register life-
time. Figure 4.14 shows the average register lifetime of the set of the studied integer benchmarks,
when using different configurations: Delayed Spill/Fill, Alloc Release, Context Release and the
register window baseline scheme. All configurations execute in a processor with a 128 register file
size. Our best proposal, i.e. the Delayed Spill/Fill configuration, reduces the lifetime by 75% over
the register window baseline scheme, and by 31% and 37% over the Alloc Release and the Context
Release respectively. Hence, by reducing the lifetime, the rename stage stalls caused by a lack of
physical registers are also drastically reduced, increasing considerably the processor throughput.

68 4.3. Evaluation

Figure 4.15: Performance evaluation of VCA scheme, our Delayed Spill/Fill configuration
and the baseline register window scheme with 192 physical registers. Speedups normalized
to the baseline register window scheme with 160 physical registers.

4.3.4 Performance Comparison with Other Schemes

Figure 4.15 compares the performance of our best proposal (4), that includes Context Release,
Register Release Spill and Delayed Spill/Fill, to the VCA register window scheme. Our scheme
outperforms the VCA on all benchmarks, except in twolf, where it loses by 1%. On average,
our scheme achieves a performance advantage of 2% over the VCA. The graph also shows for
comparison the performance of the baseline scheme but giving it the advantage of a large 192
physical register file (labeled as 192r Baseline), and assuming no increase on its access latency. On
average, our 128-registers scheme achieves the same performance as the optimistic 192-registers
baseline scheme.

4.3.5 Performance Impact of the Physical Register File Size

This section provides two performance comparisons of the Delayed Spill/Fill configuration (4)
and the baseline scheme, for a wide range of 129 to 256 physical registers and 96 to 256 physical
registers, respectively. Two different sets of binaries have been used. The first set has been com-
piled limiting the size of the register window up to 96 architectural registers (as it is defined in
the IA-64 ISA). These binaries have been simulated for various physical register file sizes ranging
from 128 to 256. The second set has been compiled with a maximum register window size of 64
architectural registers and simulated for physical register file sizes from 97 to 256. In both compar-
isons, performance speedups are normalized IPCs relative to the baseline configuration that uses
the minimum required number of physical registers, i.e. 97 and 129 baseline register schemes for
each set of binaries.

4. Register Windows on Out-of-Order Processors 69

Figure 4.16: Performance evaluation of our Delayed Spill/Fill configuration and the baseline
register window scheme, when the number of physical registers varies from 128 to 256.

Figure 4.16 compares the performance when the number of physical registers varies between
128 and 256. As expected (similar results have been published elsewhere), the baseline improves
performance by increasing the number of registers, up to a saturation point around 192, beyond
which it only gets marginal additional improvements. As shown in the graph, our scheme con-
sistently outperforms the baseline. However, the most remarkable result is that the baseline curve
drastically degrades as the number of registers decreases (up to a 80% speedup), while our pro-
posal suffers just a very small performance loss (less than 4% speedup). On average, our scheme
is capable to achieve the same performance as the 192-registers baseline despite having only the
minimum number of physical registers (i.e. the number of architected registers plus one).

Finally, Figure 4.17 compares the performance when the number of physical registers varies
between 96 and 256. Our scheme consistently outperforms the baseline. When reducing the
number of physical registers from 256 to only 96, our scheme suffers only a small performance
loss (7% speedup), while it achieves a enormous speedup (almost 70%) in comparison to the
baseline scheme with 96 physical registers. On average, our scheme is capable to achieve the same
performance as the 160-registers baseline with only the minimum number of physical registers.

In conclusion, the Delayed Spill/Fill configuration is able to reduce the number of required
physical registers by up to 64 registers, with a minimal performance loss.

4.4 Cost and Complexity Issues

The previous section evaluates our proposal only in terms of performance. However, it is also
interesting to analyze it in terms of cost and hardware complexity.

We have proposed a low cost implementation of the rename logic to support register windows
on out-of-order processors. Compared to an in-order processor with register windows, our scheme
only adds the ACDT and three map table pointers. We have experimentally found that a simple
8-entry ACDT table achieves near-optimal performance.

Compared to the VCA approach, our scheme is substantially less complex, since our proposal

70 4.5. Summary and Conclusions

Figure 4.17: Performance evaluation of our Delayed Spill/Fill configuration, and the baseline
register window scheme, both with register window sizes up to 64 entries, when the number
of physical registers varies from 96 to 256.

uses a conventional, direct-mapped table whereas the VCA requires a larger set-associative map
table to hold memory address tags. Fitting the rename delay into the processor cycle time is
typically a challenging problem because of its inherent complexity. Hence, adding complexity to
the rename stage increases its latency, which may have implications on cycle time and power.

Moreover, the effectiveness of the register windows technique depends on the size of the ar-
chitectural register file [61] so future implementations may take advantage of increasing the map
table size, which emphasizes the importance of a simple scheme for scalability.

Finally, our proposal produces a lower number of spill operations than the VCA, which not
only affects to performance, but also reduces the power requirements. In comparison to the base-
line, which generates a 1.1% of spill operations over the total number of commited instructions,
the VCA generated up to 3%, whereas our scheme generates only up to 1.4%.

4.5 Summary and Conclusions

In this chapter we have proposed a software/hardware early register release mechanism for out-of-
order processors that achieves a drastic reduction in the size of the physical register file leveraging
register windows. This mechanism consists of two techniques: Context Release and Register
Release Spill. They are based on the observation that if none of the instructions of a procedure are
currently in-flight, not all mappings of the procedure context need to stay in the map table. These
mappings, called not-active, can be released, as well as their associated physical registers.

Besides, we have developed another technique, called Alloc Release, which relies on the com-
piler to introduce alloc instructions in order to shrink the context and release all mappings that lay
outside the new shrunk context and their associated physical registers. However, our experiments
have shown that the speedup achieved by an upper-bound scheme does not make up for the code
size increment.

We introduce the Active Context Descriptor Table (ACDT), that tracks all uncommitted con-
text states to accomplish two main purposes: identify the active mappings at any point in time,

4. Register Windows on Out-of-Order Processors 71

which is required by our early register techniques; and implement precise state recovery of con-
text descriptor information in case of branch mispredictions and other exceptions.

Moreover, in order to avoid unnecessary rename stalls caused by the spills and fills generated
by alloc and br.ret instructions respectively, we propose to defer spills and fills operations until
the corresponding registers are used. Many fill operations are then eliminated, which results in a
substantial reduction of the physical register file pressure.

By applying these techniques, the average register value lifetime is reduced by a 75%, so a
processor fitted with only the minimum required number of physical registers, i.e. the number
of architected registers plus one (which is 128 in our experiments with IPF binaries), achieves
almost the same performance as a baseline scheme with an unbounded register file. Moreover,
in comparison to previous techniques, our proposal has much lower hardware complexity and
requires minimal changes to a conventional register window scheme.

72 4.5. Summary and Conclusions

Chapter 5
Summary and Conclusions

In this thesis we propose an efficient and low-cost hardware implementation of if-conversion and
register windows to out-of-order processors. The main conclusions of the thesis are presented in
this chapter, as well as future directions.

5.1 If-Conversion Technique on Out-of-Order Processors

If-conversion is a powerful compilation technique that may help to eliminate hard-to-predict bran-
ches. Reducing branch mispredictions is specially important for modern out-of-order processors
because of their wide and deep pipelines. However, the use of predicate execution by the if-
converted code entails two performance problems in out-of-order processors: 1) multiple register
definitions at the rename stage, 2) the consumption of unnecessary resources by predicated in-
structions with its guard evaluated to false. Moreover, as shown in previous works, if-conversion
may also have a negative side-effect on branch prediction accuracy. Indeed, the removal of some
branches also removes their correlation information from the branch predictor and may make other
remaining branches harder to predict.

There have been many proposals, focused on a predicated ISA such as IA64, to address sepa-
rately both if-converted and conditional branch instructions problems. From the if-converted point
of view, previous approaches address only the multiple definition problem, without taking into
account the resource consumption. In fact, these techniques increase resource pressure, which re-
duces the potential benefits of predication. From the conditional branch point of view, the recovery
of the correlation information proposed by previous approaches is done either by incorporating the
previous value of the branch guarding predicate into the prediction scheme, or by adding all the
predicate defines to the global history. However, in the first case, only a single predicate is corre-
lated; in the second case the global history is fed with redundant results, since all predicates are
inserted twice: once when they are produced by a compare instruction, and then when they are
consumed by a branch.

This thesis proposes a novel microarchitectural scheme that takes into account if-conversion
and conditional branch problems and provides an unified solution for both. This proposal is based
on a predicate prediction scheme that replaces the conventional branch predictor with a predicate
predictor. The predictions are made for every predicate definition, and stored until the predicate
is used by a dependent if-converted or conditional branch instruction. We have shown that this
approach has a number of advantages.

73

74 5.2. Register Windows on Out-of-Order Processors

First, if-converted instructions know its predicted guarding predicate value at renaming, avoid-
ing the multiple definition problem and not wasting resources. Instructions whose predicate is
predicted to be true are normally renamed, while those predicted to be false are cancelled from the
pipeline. However, predicting predicates may loose its potential benefits if not applied carefully,
since it undoes if-conversion transformations. Therefore, our scheme is extended for if-converted
instructions to dynamically identify and predict only those predicates that come from easy-to-
predict branches. Instructions whose predicate is not predicted are converted to false predicate
conditional moves. The selective mechanism is based on a confidence predictor with an adaptive
threshold that searches the best trade-off between pipeline flushes and lost prediction opportuni-
ties. Our experiments show that only the 16% of the if-converted instructions are transformed to a
false predicate conditional move.

Second, branch prediction accuracy is not negatively affected by if-conversion because com-
pare instructions keep all the correlation information in the predictor. Our approach can be adapted
easily to powerful predictors that exploit global and local correlation. On average, the branch
correlation contributed by the predicate predictor adds at least 1% accuracy over a conventional
branch predictor with the same configuration. Moreover, branch accuracy is further improved by
exploiting early-resolved branches. Each compare instruction stores the predicate predictions in
the same physical registers where the corresponding computed values will be later written. Hence,
if the compare instruction is scheduled enough in advance, the prediction read by the branch is
actually the computed value and is always correct. We have shown that, on average, exploiting
such early-resolved branches adds an extra 0.5% to the branch prediction accuracy of our scheme.

In conclusion, we have proposed a predicate prediction scheme that allows for a very efficient
execution of if-converted code without no branch prediction accuracy degradation. Moreover, our
scheme does not require to add any significant extra hardware because the second level branch
predictor at rename stage is replaced with a predicate predictor. This makes our proposal an ex-
tremely low cost hardware solution. Compared with previous proposals that focus on if-converted
instructions, our scheme outperforms them by more than 11% on average, and it performs within
5% of an ideal scheme with perfect predicate predictor. Moreover, our scheme improves branch
prediction accuracy of if-converted codes by 1.5% on average, which achieves an extra 4% of
speedup.

5.2 Register Windows on Out-of-Order Processors

Register windows is a hardware technique that allows to reduce the amount of loads and stores
required to save and restore registers across procedure calls by storing the procedure contexts on
a large register file. We propose software/hardware early register release techniques for out-of-
order processors that, by using the information provided by register windows, achieve a drastic
reduction in the size of the physical register file. These techniques, called Context Release, Alloc
Release and Register Release Spill, are based on the observation that if none of the instructions of
a procedure are currently in-flight, not all mappings of the procedure context need to stay in the
map table. These mappings, called not-active, can be released, as well as their associated physical
registers.

The Context Release technique releases mappings defined by a procedure whose closing return

5. Summary and Conclusions 75

instruction has committed. The values of these mappings are dead values that will never be used
again, so their associated physical registers can be safely released.

The Register Release Spill technique is automatically triggered when the rename stage runs out
of physical registers and it releases not-active mappings that belong to caller procedures. However,
unlike the previous technique, the values contained in these mappings are live values that may be
used in the future, after returning from the procedure, so they must be spilled before releasing
them.

The Alloc Release technique is a compiler technique that, by introducing alloc instructions,
shrinks the context size and releases all mappings that lay outside the new shrunk context and
their associated physical registers. In order to explore the potential of the Alloc Release technique
we have simulated an upper-bound scheme based on the knowledge of the register live list at the
entry of each basic block. However, our experiments have shown that the speedup achieved by the
upper-bound scheme does not make up for the code size increment.

We introduce the Active Context Descriptor Table (ACDT), that tracks all uncommitted context
states to accomplish two main purposes: identify the active mappings at any point in time, which is
required by our early register release techniques; and implement precise state recovery of context
descriptor information in case of branch mispredictions and other exceptions. We also introduce
the Retirement Map Table that holds the state of the Rename Map Table at commit stage, and it
allows to release not-active mappings from contexts that have already been redefined at the rename
stage by new contexts.

Moreover, in order to avoid unnecessary rename stalls caused by the spills and fills generated
by alloc and br.ret instructions respectively, we propose to defer spill and fill operations until the
corresponding registers are used. Hence, a fill is generated and its corresponding physical register
is allocated when the mapping is actually used by a subsequent instruction. Many fill operations
are then eliminated, which results in a substantial reduction of the physical register file pressure.
In the same way, a spill is generated when the mapping is actually reassigned by a subsequent
instruction.

By applying these techniques, the average register lifetime is reduced by a 75%, so a processor
fitted with only the minimum required number of physical registers, i.e. the number of architected
registers plus one (which is 128 in our experiments with IPF binaries), achieves almost the same
performance as a baseline scheme with an unbounded register file size. Moreover, in comparison
to previous techniques, our proposal has much lower hardware complexity and requires minimal
changes to a conventional register window scheme.

5.3 Future Work

This thesis opens up several topics from which we emphasize the following:

• Although predication has been widely proved to be a good solution to deal with branches
that are considered hard-to-predict (see section 1.3), it also has some drawbacks that should
be considered. Predicate execution may increase the size of the instruction word because of
the extra bits require to codify the predicate register name. This word size increment might
have some effects over memory bandwidth, fetch bandwidth and cache sizes.

76 5.3. Future Work

• The register windows mechanism considers that all the architectural registers that form a
procedure context contains live values. Hence, if new space is required to allocate a new
procedure context, all the required architectural registers are spilled into memory, although
some of them will never be used again when the procedure context be restored. Other
schemes, such as Alpha [38], have a pool of scratch registers whose values are not saved
in the call interface. Although, the Alloc Release technique may help to reduce the number
spill operations, it could be beneficial to assign a set of architectural registers as scratch,
avoiding unnecessaries spill operations.

Publications

Conferences

• Early Register Release for Out-of-Order Processors with Register Windows. Eduardo Quiñones,
Joan-Manuel Parcerisa, Antonio González. PACT ’07: Proceedings of the 16th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, Brasov, Romania.
September 2007.

• Improving Branch Prediction and Predicate Execution in Out-of-Order Processors. Eduardo
Quiñones, Joan-Manuel Parcerisa, Antonio González. HPCA ’07: Proceedings of the 13th
International Symposium on High-Performance Computer Architecture. Phoenix, Arizona,
USA. February 2007.

• Selective Predicate Prediction for Out-of-Order Processors. Eduardo Quiñones, Joan-Manuel
Parcerisa, Antonio González. ICS ’06: Proceedings of the 20th annual international confer-
ence on Supercomputing. Cairns, Queensland, Australia. June 2006.

Submited

• Leveraging Register Windows to Reduce Physical Registers to the Bare Minimum. Eduardo
Quiñones, Joan-Manuel Parcerisa, Antonio González. IEEE Transactions on Computers.

77

78

Bibliography

[1]

[2] Ibm360/91, http://www-03.ibm.com/ibm/history/reference/glossary 9.html.

[3] Opencc, the open research compiler, http://www.open64.net/home.html.

[4] Standard performance evaluation corporation. spec. Newsletter, Fairfax, VA, September
2000.

[5] H. Akkary, R. Rajwar, and S. t. Srinivasan. Checkpoint processing and recovery: Towards
scalable large instruction window processors. In MICRO 36: Proceedings of the 36th annual
international symposium on Microarchitecture, 2003.

[6] J. R. Allen, K. Kennedy, and C. P. an Joe Warren. Conversion of control dependence to data
dependence. In POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 177–189, New York, NY, USA, 1983. ACM
Press.

[7] D. August, D. Connors, J. Gyllenhaal, and W. M. Hwu. Architectural support for compiler-
synthesized dynamic branchprediction strategies: Rationale and initial results. In HPCA ’97:
Proceedings of the 3th International Symposium on High-Performance Computer Architec-
ture, pages 84–93, 1997.

[8] D. I. August, W. mei W. Hwu, and S. A. Mahlke. A framework for balancing control flow
and predication. In MICRO 30: Proceedings of the 30th annual international symposium on
Microarchitecture, pages 92–103, 1997.

[9] J. Bharadwaj, W. Y. Chen, W. Chuang, G. Hoflehner, K. Menezes, K. Muthukumar, and
J. Pierce. The intel ia64 compiler code generator. Micro IEEE, pages 44–53, September-
October 2000.

[10] P.-Y. Chang, E. Hao, Y. N. Patt, and P. P. Chang. Using predicated execution to improve
the performance of a dynamically scheduled machine with speculative execution. In PACT
’95: Proceedings of the IFIP WG10.3 working conference on Parallel architectures and
compilation techniques, pages 99–108, Manchester, UK, UK, 1995. IFIP Working Group on
Algol.

79

80 BIBLIOGRAPHY

[11] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. In ISCA ’98:
Proceedings of the 25nd annual international symposium on Computer architecture, June,
1998.

[12] W. Chuang and B. Calder. Predicate prediction for efficient out-of-order execution. In ICS
’03: Proceedings of the 17th annual international conference on Supercomputing, pages
183–192, 2003.

[13] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Reference Manual,
1999.

[14] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-banked register file archi-
tectures. In ISCA ’00: Proceedings of the 27th annual international symposium on Computer
architecture, pages 316–325, 2000.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, 1991.

[16] D.L.Weaver and T.Germond. SPARC Architecture Manual (version 9).

[17] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose. Increasing processor performance
through early register release. In ICCD: Proceedings of International Conference on Com-
puter Design, 2004.

[18] E. R. Erik Jacobsen and J. Smith. Assigning confidence to conditional branch predictions. In
MICRO 28: Proceedings of the 28th annual international symposium on Microarchitecture,
pages 142–152, 1996.

[19] K. Farkas, N. Jouppi, and P. Chow. Register file considerations in dynamically sched-
uled processors. In HPCA ’96: Proceedings of the 2th International Symposium on High-
Performance Computer Architecture, pages 40–51, 1996.

[20] J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Trans. on
Computers, C-30,7:478–490, July 1981.

[21] Freescale Semiconductor Inc. AltiVec Technology Programming Environments Manual,
2002.

[22] D. Gallagher, W. Chen, S. Mahlke, and J. G. ans W.W Hwu. Dynamic memory disambigua-
tion using the memory conflict buffer. In Proceedings of the 6th Conference on Architectural
Support for Programming Languages and Operating Systems, pages 183–193, October 1994.

[23] A. Gonzalez, J. Gonzalez, and M. Valero. Virtual-physical registers. In HPCA ’98: Pro-
ceedings of the 4th International Symposium on High-Performance Computer Architecture,
1998.

BIBLIOGRAPHY 81

[24] T. R. Gross and J. L. Hennessy. Optimizing delayed branches. In MICRO 15: Proceedings
of the 15th annual workshop on Microprogramming, pages 114 –120, Piscataway, NJ, USA,
1982. IEEE Press.

[25] L. Gwennap. Intel, hp make epic disclosure. Microprocessor report, 11:1 – 9, October 2001.

[26] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The
microarchitecture of the pentium 4 processor. Intel Technology Journal Q1, February 2001.

[27] T. Horel and G. Lauterbach. Ultrasparc-iii: Designing thrid-generation 64-bit performance.
Micro IEEE, pages 73–85, May-June 1999.

[28] P. Y. T. Hsu and E. S. Davidson. Highly concurrent scalar processing. In ISCA ’86: Proceed-
ings of the 13th annual international symposium on Computer architecture, pages 386–395,
1986.

[29] W. W. Hwu and Y. N. Patt. Checkpoint repair for high-performance out-of-order execution
machines. IEEE Transactions on Computers, C-36, December 1987.

[30] Intel Corporation. Intel(R) Architecture Software Developer’s Manual, Volume 2: Instruction
Set Reference Manual, 1999.

[31] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual. Volume 1: Ap-
plication Architechiture, 2002.

[32] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual. Volume 2: Sys-
tem Architechiture, 2002.

[33] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual. Volume 3: In-
struction Set Reference, 2002.

[34] D. A. Jimenez and C. Lin. Dynamic branch prediction with perceptrons. In HPCA ’01: Pro-
ceedings of the 7th International Symposium on High-Performance Computer Architecture,
2001.

[35] T. M. Jones, M. F. P. O’Boyle, J. Abella, A. Gonzalez, and O. Ergin. Compiler directed early
register release. In PACT ’05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, pages 110–122, Washington, DC, USA, 2005.
IEEE Computer Society.

[36] N. Jouppi and S. Wilton. Trade-offs in two-level on-chip caching. April 1994.

[37] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache prefetch buffers. In ISCA ’90: Proceedings of the 17th annual international
symposium on Computer architecture, pages 364–373, 1990.

[38] R. Kessler. The alpha 21264 microprocessor. Micro IEEE, 19:24–36, March-April 1999.

82 BIBLIOGRAPHY

[39] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt. Wish branches: Combining conditional branching
and predication for adaptive predicated execution. In MICRO 38: Proceedings of the 38th
annual International Symposium on Microarchitecture, pages 43–54, 2005.

[40] A. KleinOsowski and D. J. Lilja. Minnespec: A new spec benchmark workload for
simulation-based computer architecture research. 2002.

[41] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In ISCA ’81: Pro-
ceedings of the 8th annual international symposium on Computer architecture, pages 81–87,
May, 1981.

[42] M. Lam. Software pipelining: An effective scheduling technique for vliw machines. In
Proceedings of the SIGPLAN’88 Conference on Programming Languages Design and Im-
plementation, pages 318–328. ACM Press, June 1988.

[43] M. Lam, E. Rothberg, and M. Wolf. The cache performance and optimizations of blocked
algorithms. In Proceedings of the 4th Conference on Architectural Support for Programming
Languages and Operating Systems, April 1991.

[44] S. A. Mahlke, , R. H. anf R.A. Bringmann, J. Gyllenhaal, D. Gallagher, and W.-M. W.
Hwu. Characterizing the impact of predicated execution on branch prediction. In MICRO
27: Proceedings of the 27th annual international symposium on Microarchitecture, pages
217–227, 1994.

[45] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W. Hwu. A comparison
of full and partial predicated execution support for ilp processors. In ISCA ’95: Proceedings
of the 22nd annual international symposium on Computer architecture, pages 138–150, New
York, NY, USA, 1995. ACM Press.

[46] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler
support for predicated execution using the hyperblock. In MICRO 25: Proceedings of the
25th annual international symposium on Microarchitecture, 1992.

[47] S. A. Mahlke and B. Natarajan. Compiler synthesized dynamic branch prediction. In MICRO
29: Proceedings of the 29th annual international symposium on Microarchitecture, pages
153–164, 1996.

[48] M. M. Martin, A. Roth, and C. N. Fischer. Exploiting dead value information. In MICRO
30: Proceedings of the 30th annual international symposium on Microarchitecture, 1997.

[49] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry: Checkpointed
early resources recycling in out-of-order microprocessors. In MICRO 35: Proceedings of the
35th annual international symposium on Microarchitecture, 2002.

[50] S. McFarling. Combining branch predictors. WRL Technical Note TN36, June, 1993.

[51] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture. Micro IEEE, pages 44–55,
March-April 2003.

BIBLIOGRAPHY 83

[52] T. Monreal, V. Vials, A. Gonzalez, and M. Valero. Hardware schemes for early register
release. In ICPP-02: Proceedings of International Conference on Parallel Processing.

[53] A. Moshovos and G. S. Sohi. Streamlining inter-operation memory communication via data
dependence prediction. In MICRO 30: Proceedings of the 30th annual international sympo-
sium on Microarchitecture, pages 92–103, 1997.

[54] M. Moudgill, K. Pingali, and S. Vassiliadis. Register renaming and dynamic speculation: An
alternative approach. In MICRO 26: Proceedings of the 26th annual international symposium
on Microarchitecture, pages 202–213, Nov. 1993.

[55] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt. How to fake 1000 registers. In
MICRO 38: Proceedings of the 38th annual International Symposium on Microarchitecture,
pages 7 – 18, 2005.

[56] S. Pan, K. So, and J. Rameh. Improving the accuracy of dynamic branch prediction us-
ing branch correlation. In Proceedings of the 5th Conference on Architectural Support for
Programming Languages and Operating Systems, pages 76–84, October 1992.

[57] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing repre-
sentative portions of large intel itanium programs with dynamic instrumentation. In MICRO
37: Proceedings of the 37th annual International Symposium on Microarchitecture, pages
81–92, 2004.

[58] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and branch prediction in dynamic
ilp processors. April 1994.

[59] E. Quinones, J.-M. Parcerisa, and A. Gonzalez. Selective predicate prediction for out-of-
order processors. In ICS ’06: Proceedings of the 20th annual international conference on
Supercomputing, 2006.

[60] E. Quinones, J.-M. Parcerisa, and A. Gonzalez. Improving branch prediction and predicate
execution in out-of-order processors. In HPCA ’07: Proceedings of the 13th International
Symposium on High-Performance Computer Architecture, Feb. 2007.

[61] R. Rakvic, E. Grochowski, B. Black, M. Annavaram, T. Diep, and J. P. Shen. Performance
advantage of the register stack in intel itanium processors. In Workshop on Explicit Parallel
Instruction Computing (EPIC) Architectures and Compiler Techniques, 2002.

[62] R.L.Sites. How to use 1000 registers. In Caltech Conference on VLSI, pages 527 – 532.
Caltech Computer Science Dept., 1979.

[63] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: a low latency approach to high
bandwidth instruction fetching. In MICRO 29: Proceedings of the 29th annual international
symposium on Microarchitecture, 1996.

[64] M. S. Schlansker and B. R. Rau. Epic: Explicitly parallel instruction computing. Computing
Practices IEEE, pages 37–45, February 2000.

84 BIBLIOGRAPHY

[65] H. Sharangpani and K. Arora. Itanium processor microarchitecture. Micro IEEE, pages
24–43, September-October 2000.

[66] B. Simon, B. Calder, and J. Ferrante. Incorporating predicate information into branch predic-
tors. In HPCA ’03: Proceedings of the 9th International Symposium on High-Performance
Computer Architecture, 2003.

[67] K. Skadron, M. Martonosi, and D. W. Clark. Speculative updates of local and global branch
history: A quantitative analysis. Journal of Instruction Level Parallelism, January 2000.

[68] J. E. Smith. A study of branch prediction strategies. In ISCA ’81: Proceedings of the 8th
annual international symposium on Computer architecture, pages 135–148, May, 1981.

[69] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in pipelined processors.
IEEE Transactions on Computers, 37:562–573, May 1988.

[70] M. Smith, M. Johnson, and M. Horowitz. Limits on multiple instruction issue. In Pro-
ceedings of the 3th Conference on Architectural Support for Programming Languages and
Operating Systems, pages 290–302. ACM Press, April 1989.

[71] G. S. Sohi and S. Vajapeyam. Tradeoffs in instruction format design for horizontal archi-
tectures. In Proceedings of the 3th Conference on Architectural Support for Programming
Languages and Operating Systems, pages 15–25. ACM Press, April 1989.

[72] T. Teh and Y. N. Patt. Alternative implementations of two-level adaptative branch predic-
tion. In ISCA ’92: Proceedings of the 19th annual international symposium on Computer
architecture, pages 124–134, May 1992.

[73] T. Teh and Y. N. Patt. A comparison of dynamic branch predictors that use two levels of
branch history. In ISCA ’93: Proceedings of the 20th annual international symposium on
Computer architecture, pages 124–134, May 1993.

[74] J. M. Tendle, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. Power4 system microarchi-
tecture. IBM Journal of Research and Development, 46(1), 2002.

[75] G. S. Tyson. The effects of predicated execution on branch prediction. In MICRO 27:
Proceedings of the 27th annual international symposium on Microarchitecture, pages 196–
206, 1994.

[76] D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson. Architecture of soar: Smalltalk
on a risc. IEEE MICRO, 1984.

[77] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I. August. Microarchi-
tectural exploration with liberty. In MICRO 35: Proceedings of the 35th annual international
symposium on Microarchitecture, pages 271 – 282, 2002.

[78] P. H. Wang, H. Wang, R. M. Klin, K. Ramakrishnan, and J. P. Shen. Register renaming and
scheduling for dynamic execution of predicated code. In HPCA ’01: Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, page 15, 2001.

BIBLIOGRAPHY 85

[79] W. Wang, J. Baer, and H. Levy. Organization and performance of a two-level virtual-real
cache hierarchy. In ISCA ’89: Proceedings of the 16th annual international symposium on
Computer architecture, pages 140–148, May 1989.

[80] N. Warter and S. A. Mahlke. Reverse if-conversion. In Proceedings of the SIGPLAN’93
Conference on Programming Languages Design and Implementation, pages 290–299, June
1993.

[81] S. Weiss and J. Smith. A study of scalar compilation techniques for pipelined supercom-
puters. In Proceedings of the 2th Conference on Architectural Support for Programming
Languages and Operating Systems, pages 105–109. ACM Press, October 1989.

[82] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the SIG-
PLAN’91 Conference on Programming Languages Design and Implementation, pages 30–
44, June 1991.

[83] R. Yung and N. Wilhelm. Caching processor general design. In ICCD: Proceedings of
International Conference on Computer Design, pages 307–312, Oct. 1995.

