
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2012

Future value based single assignment program representations Future value based single assignment program representations

and optimizations and optimizations

Shuhan Ding
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Copyright 2012 Shuhan Ding

Recommended Citation Recommended Citation
Ding, Shuhan, "Future value based single assignment program representations and optimizations",
Dissertation, Michigan Technological University, 2012.
https://digitalcommons.mtu.edu/etds/177

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages

FUTURE VALUE BASED SINGLE ASSIGNMENT PROGRAM REPRESENTATIONS

AND OPTIMIZATIONS

By

Shuhan Ding

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

(Computer Science)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2012

c© 2012 Shuhan Ding

This dissertation, "Future Value Based Single Assignment Program Representations and

Optimizations," is hereby approved in partial fulfillment of the requirements for the Degree

of DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE.

Department of Computer Science

Signatures:

Dissertation Advisor

Dr.Soner Önder

Department Chair

Dr. Steven M Carr

Date

To my parents and my husband

Contents

List of Figures . 11

List of Tables . 15

Acknowledgments . 19

Abstract . 21

1 Introduction . 23

1.1 Motivation . 23

1.2 Research Goals . 26

1.3 Contribution . 27

1.4 Organization of the Dissertation . 28

2 Background . 29

2.1 Program Representations . 29

2.1.1 Single Assignment Semantics . 30

2.1.2 Static Single Assignment Form (SSA) 30

2.1.3 Gated Single Assignment Form (GSA) 32

2.1.4 SSA and GSA Comparison . 33

2.2 Computing Single Assignment Forms . 33

2.2.1 Construction algorithms and Problems 33

2.2.2 Inverse Transformation Algorithms and Problems 36

2.3 Other Important Representations . 39

7

2.4 Code Motion and Compiler Optimizations 40

2.4.1 PRE and strength reduction . 42

2.4.2 Scheduling and register allocation 44

2.5 Future Values . 46

3 Future Gated Single Assignment (FGSA) . 48

3.1 Motivation and Comparison . 49

3.2 Congruence Classes and Path Separability 51

3.3 Efficiently Computing FGSA . 55

3.3.1 Identification of Congruence Classes 55

3.3.2 Gating Function Construction and Insertion 57

3.4 Interval Analysis and T1/T2 Transformations 59

3.4.1 Acyclic Regions: T2 Transformation 59

3.4.1.1 Computing Path Predicate Expressions 61

3.4.1.2 Merging Edges . 62

3.4.2 Cyclic Regions: T1 Transformation, Exit Function 62

3.5 Irreducible Graphs and TR Transformation 65

3.6 Experimental Analysis . 69

3.7 Complexity of FGSA Construction . 72

3.8 Executable FGSA . 72

3.9 Conclusion . 74

4 Live Variable Analysis on FGSA . 75

4.1 Extended Liveness . 76

4.2 Associating Liveness with Congruence Classes 80

4.2.1 Computing The Anticipated Window and The Gating Region 81

4.2.2 Interference Under Extended Liveness 83

4.3 Computing and Associating Liveness with Congruence Classes 85

4.4 Conclusion . 88

8

5 Inverse Transformation From FGSA . 90

5.1 Simple Inverse Translation from FGSA . 91

5.2 Path Separability, C-FGSA, T-FGSA and Isolation 93

5.2.1 Checking for Path Separability . 96

5.3 Minimizing Copies . 98

5.3.1 Handling Interferences for an Isolated CC 100

5.3.2 Handling Non-Gated to Gated CC Interferences 102

5.3.3 Handling Gated to Gated CC Interferences 103

5.3.4 Representation of the Problem . 103

5.4 Common Use Form and Global Optimal Solution 108

5.4.1 Global Solution Through Complete Isolation 110

5.4.2 Approximation of Global Optimal Solution 111

5.4.3 Validity of Proposed Approach . 112

5.5 Conclusion . 113

6 Optimizations on FGSA . 114

6.1 Constant Propagation on FGSA . 114

6.2 Global Value Numbering (GVN) on FGSA 116

7 Recursive Future Predicated Form . 119

7.1 Code Motion in Acyclic Code . 120

7.1.1 Future Predicated Form . 122

7.1.2 Elimination of φ -nodes . 122

7.1.3 Merging of Instructions . 124

7.2 Instruction-Level Recursion . 128

7.3 Code Motion in Cyclic Code and Recursive Future Predicated Form 129

7.3.1 φ -nodes in Loop Header . 130

7.3.2 Conversion of Loops into Instruction-Level Recursion 130

7.4 Code Motion Involving Memory Dependencies and Function Calls 134

9

7.5 Directly Computing RFPF . 138

7.6 Conclusion . 140

8 Optimizations on RFPF . 141

9 Conclusion . 145

9.1 Summary of Work . 145

9.2 Future Research . 146

References . 147

10

List of Figures

2.1 SSA form . 31

2.2 Single assignment semantics and special functions 31

2.3 Insert copy assignments to eliminate a φ -function 37

2.4 Split critical edges . 37

2.5 The semantics of simultaneous evaluation of φ -functions and break circular

definition . 38

2.6 The concept of future data and control dependencies 47

3.1 An FGSA Example . 49

3.2 A non-path-separable CC: use belongs to two CCs 53

3.3 Local CCs computation . 55

3.4 T2 example . 57

3.5 CC cases . 59

3.6 Algorithm 1: T2-CC incorprating . 61

3.7 Algorithm 2: T2-CC merging . 63

3.8 A self-referencing gating function . 63

3.9 TR transformation on an irreducible graph 66

3.10 Predicated instructions . 73

4.1 Traditional liveness . 76

4.2 Partial liveness . 77

4.3 Two liveness approaches in general single assignment form 78

4.4 Running FGSA Example . 80

11

4.5 Extended liveness on FGSA . 82

4.6 Gating region . 84

4.7 Algorithm 1 with live analysis . 87

4.8 Algorithm 2 with live analysis . 89

5.1 Translation from FGSA . 92

5.2 Path separability example . 93

5.3 Isolation and path-separability . 95

5.4 Basic algorithm for checking path separability 97

5.5 A non-path-separable CC and its NPSG 101

5.6 Interferences of uses in different regions 103

5.7 Weighted Interference Graph . 105

5.8 Dynamic programming and search tree 106

5.9 Common use form . 109

6.1 Evaluation rules for (a) ψP and (b) ψR functions 115

6.2 Constant propagation . 116

6.3 A modified example from Gargi’s work. Predicates are contained in <>.

Line f1, f2, and f3 contain FGSA gating functions for corresponding φs. . . 117

7.1 Splitting code motion . 121

7.2 Merging code motion . 121

7.3 Code motion across control dependent regions 123

7.4 φ -node elimination . 124

7.5 Instruction propagation . 126

7.6 Instruction merging . 127

7.7 Algorithm 3: Compute RecursivePredicate and ExitPredicate 131

7.8 Theorem 7.3.1 . 132

7.9 Program 1:Conversion of a cyclic program into RFPF 133

7.10 Predicated memory and reordered memory 135

12

7.11 φ -node of predicates before a store . 135

7.12 φ -node of predicates before a load . 136

7.13 Rewriting memory operations: placement of φ -functions 136

7.14 Rewriting memory operations: rewriting memory instructions 137

7.15 Algorithm 4: Directly computing RFPF 139

8.1 Partial redundancy elimination during the code motion 142

8.2 Merging and converting back to CFG . 143

8.3 Constant propagation on RFPF . 144

13

14

List of Tables

3.1 CCs vs pruned φ -functions over REAL . 70

3.2 Number of definitions in CCs . 71

3.3 Length of CC predicate expressions . 71

15

Preface

This dissertation contains the material (Chapter 7 and Chapter 8) that has been published

in CC’10/ETAPS’10 Proceedings of the 19th joint European conference on Theory and

Practice of Software, international conference on Compiler Construction Springer-Verlag

Berlin, Heidelberg 2010, which is co-authored by me and Soner Önder. Dr.Önder proposed

the key concepts of future values and instruction level recursion. I designed the algorithms

under the supervision of Dr. Önder.

Acknowledgments

Though only my name appears on the cover of this dissertation, a great many people have

contributed to the success of this work 1, each in their own unique ways.

First, my sincere thanks to my advisor, Dr. Soner Önder. I have been amazingly fortunate to

have an advisor whose patience and support helped me overcome many crises to finish this

dissertation. Your advice and insight were invaluable to the success of this work. Thank

you for your guidance and help in reaching this important milestone.

A heartfelt thanks to Dr. Steven Carr, who introduced me into the wonderful compiler

world. Many thanks to Dr. Zhenlin Wang, Dr. Nilufer Önder, Dr. Steven Seidel, Dr.

Ching-Kuang Shene and Dr. Jean Mayo. Thank you for teaching me in various computer

science courses and helping me to build a solid foundation for this dissertation and for my

career.

Many wholehearted friends have helped me to keep my sanity through these years. Sincere

thanks to Wei Wang, Yunhua Li, Zheng Zhang, Xinxin Jin. Thank you for accompanying

me through laughters, happiness and even hardships. Your support and care helped me

overcome setbacks and to stay focused on my graduate study. I greatly value your

friendship and I deeply appreciate your belief in me. You are not just friends to me, but

you also give me a family feeling in the darkest of times.

Many thanks to my colleagues: Changpeng Fang, Peng Zhou, Lihui Hu, Alicia Thorsen,

Roland Scott and Weiming Zhao. Your wise counsel and willingness to share your

experience during your PhD study, assisted me greatly to finish my dissertation. Besides,

many thanks to my friends around and outside the Michigan Tech: Ming Xie, Zhiyao An,

Xiaofei Qu and Fengqiong Huang.

Finally and most importantly, none of this would have been possible without the love

and patience of my family. My parents, raising and supporting me, also aided and

encouraged me throughout this endeavor. I truly and deeply appreciate their generosity

1This work is supported by an NSF CAREER award (CCR-0347592) to Soner Önder.

19

and understanding. To my soul mate Mingsong Bi, thanks for supporting me constantly all

these years.

20

Abstract

An optimizing compiler internal representation fundamentally affects the clarity, efficiency

and feasibility of optimization algorithms employed by the compiler. Static Single

Assignment (SSA) as a state-of-the-art program representation has great advantages though

still can be improved. This dissertation explores the domain of single assignment beyond

SSA, and presents two novel program representations: Future Gated Single Assignment

(FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed

control flow and data flow information, enabling efficient traversal program information

and thus leading to better and simpler optimizations. We introduce future value concept,

the designing base of both FGSA and RFPF, which permits a consumer instruction to be

encountered before the producer of its source operand(s) in a control flow setting. We show

that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding

an expected linear time algorithm for combining together the construction of the pruned

single assignment form and live analysis for both reducible and irreducible graphs. As a

result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the

number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark

suite. We present a solid and near optimal framework to perform inverse transformation

from single assignment programs. We demonstrate the importance of unrestricted code

motion and present RFPF. We develop algorithms which enable instruction movement in

acyclic, as well as cyclic regions, and show the ease to perform optimizations such as

Partial Redundancy Elimination on RFPF.

21

Chapter 1

Introduction

1.1 Motivation

An optimizing compiler internal representation fundamentally affects the clarity, efficiency

and feasibility of optimization algorithms employed by the compiler. A strong program

representation is built upon sound principles so that it facilitates correctness. A good

representation is never eclectic, yet, it represents information that is needed by a large

number of optimizations. Most state-of-the-art optimizing compilers in this regard rely on

Static Single Assignment (SSA) form initially developed by Ron Cytron, Jeanne Ferrante,

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck in the 1980s. The strength

of SSA comes from its ability to represent programs in single-assignment form. In

single assignment form, every assignment is unique and each definition dominates all its

uses. These two properties together enable SSA for the development of strong, provably

correct sparse optimization algorithms for a variety of problems. SSA achieves single

assignment semantics by inserting a gating function, called a φ -function at the merge

nodes of the control-flow graph which returns one of the definitions reaching the merge

points. The code size of SSA is linear to the original program. The state of art SSA

transformation and inverse transformation algorithms are very efficient although the inverse

transformation is problematic. Overall SSA is a good IR because it brings in significant

23

improvement on efficiency and simplicity and only small overhead. However, there is still

significant room for improvement in the domain of single assignment representations. At

a φ -function, which definition to return is not explicitly represented in SSA. Therefore

programs in SSA form are not directly executable and an inverse transformation is

inevitable before machine code can be generated. A fundamentally similar representation

Program Dependence Web/Gated Single Assignment (Ottenstein et al. 1990) employs

executable gating functions by encoding the control flow information in the form of

predicates in the gating functions. Thus the return value of the gating function is decided

by the predicates controlling it. However with the initial design for data, control, demand

-driven interpretation, PDW suffers complicated transformation algorithms. Both SSA and

GSA insert gating functions at control flow convergence points. In some control flow cases,

gating functions are inserted in such a way they refer to each other and no new value is

indeed generated, which causes unnecessary data flow traversal. And because the gating

functions are location specific, optimizations that rely on code movement cannot be easily

performed.

In this dissertation, we explore the domain of single assignment beyond SSA and GSA. We

present two novel program representations: Future Gated Single Assignment (FGSA) and

Recursive Future Predicated Form (RFPF). They both retain the single assignment property,

i.e., each use has a single definition. Both representations are significantly different from

SSA in the way of handling how to converge multi-definitions and how to deliver a value

of a definition to a use. In the case of FGSA, instead of inserting gating functions at the

confluence points, we identify a group of uses which receive the same set of definitions,

forming a congruence class. We also identify the control flow under which each definition

flows into the uses and encode this information in the form of a set of path expressions.

Assigning a different name to each definition and a common, unique name to the uses,

the single-assignment semantics can easily be achieved by using a single gating function

per congruence class. This gating function is controlled by the set of path expressions

computed from control flow.

24

Both FGSA and RFPF embed either essential or extensive control flow information. In

FGSA, when the control flow involves determining which value should flow to a use, the

control information is explicitly represented. In RFPF, control dependencies are completely

converted into data dependencies, resulting a linear non-graphic representation. Just as

SSA makes data flow traversal easier, our new IRs make both data and control flow traversal

more efficient and thus lead to better and simpler optimizations.

In FGSA and RFPF, we introduce future value concept, which permits a consumer

instruction to be encountered before the producer of its source operand(s) in a control-flow

setting. Future values concept allows FGSA to place the gating function above the

definitions of its uses, enabling definitions to be encountered down the control flow. It

also gives RFPF the capability to move the consumer instruction above its value producers

and permits unrestricted code motion.

In summary, these representations extend the state-of-art in program representations on

several points:

1. Executable semantics which permits direct execution by a appropriate architecture,

yet serving the dual role as a compiler internal representation;

2. A formal framework for inverse transformation;

3. Uniform treatment of control and data dependencies resulting simplification of

compiler optimization algorithms such as PRE;

4. In case of RFPF, possession of capabilities for code motion which are only possible

with code restructuring in the existing representation without code restructuring

during the optimization phase.

It is important to mention that there are other representations which aim at combine

data flow and control flow setting as our new representations do, such as Dependence

Flow Graphs (Ferrante et al. 1987), ThinnedGSA (TGSA) (Havlak 1993), Static Single

Information Form (SSI) (Ananian and Rinard 1999; Singer 2006), and Extended Static

25

Single Assignment (e-SSA) (Bodík et al. 2000). In terms of program analysis capability,

these representations have somewhat equal power but each have significantly different

levels of implementation complexity as well as the overhead imposed by the representation.

However these representations do not address fundamental problems that FGSA and RFPF

address, namely a framework to address inverse transformation, a provision of efficient

executable semantics and a framework in which unrestricted code motion is feasible.

Finally, FGSA and RFPF are efficiently computable and as such, they are very promising

to be effective and practical representation.

1.2 Research Goals

This dissertation aims to design two new IRs. FGSA is more close to SSA and can be

used as a replacement of SSA. RFPF further extends FGSA which maintains all the good

properties of FGSA and is designed for arbitrary code motion. For details, in this work, our

goals are:

1. To design efficient and provable correct transformation algorithms for FGSA, which

identifies congruence classes, computes the control predicates and inserts the gating

function at the proper position;

2. To examine the overhead of FGSA in terms of transformation complexity, code size,

and complexity of predicate expressions;

3. To perform program analysis and adapt optimizations on FGSA;

4. To investigate inverse transformation on FGSA based on congruence classes and

control predicates;

5. Based on FGSA, to design RFPF transformation algorithms;

6. To adapt optimization algorithms to RFPF.

26

1.3 Contribution

This dissertation contributes two single assignment representations, algorithms to compute

them as well as algorithms to transform them back to multi-assignment form. This

dissertation also introduce the concept of unrestricted code motion to the degree that

any instruction can be moved to any program point while maintaining correct program

semantics. As well, it illustrates that the concept of traditional liveness can be effectively

used in the presented single assignment program representations. These contributions

enable a number of additional contributions listed below:

1. We present an algorithm that computes FGSA using a series of T1/T2

transformations. To the best of our knowledge, utilization of T1/T2 transformations

for single assignment computation has not been explored before.

2. We develop a novel transformation TR which permits T1/T2 based algorithm to

handle irreducible loops without node splitting. As a result, computation of

single-assignment form and irreducible loop elimination can be efficiently combined.

3. We demonstrate that live variable analysis can be combined with algorithms for

translation into single assignment.

4. We present a near optimal inverse transformation of FGSA in terms of number of

copies.

5. We illustrate that FGSA is convenient to use as an IR by presenting two cases studies

of optimization algorithms on FGSA.

6. We develop the concepts of future values, future dependencies, future predicates and

instruction level recursion. These concepts together enable any instruction including

loops to be moved beyond data dependencies and control dependencies.

27

7. We present an algorithm to convert conventional programs into the RFPF. These

algorithms operate by propagating instructions and predicates and use only the local

information available at the vicinity of moved instructions.

8. We illustrate that unrestricted code motion itself can be used to analyze programs for

optimization opportunities.

9. FGSA approach results in an average reduction of 7.7% in the number of gating

functions compared to the pruned SSA form.

1.4 Organization of the Dissertation

In the rest of the dissertation, in Chapter 2, various important program representations

that this research is built upon and several optimizations that are utilized in the following

chapters are reviewed. Next, Chapter 3 through Chapter 5 present the construction, live

analysis and inverse transformation of FGSA. In Chapter 6, several optimizations are

demonstrated on FGSA and compared to existing techniques. Next Chapter 7 presents

the construction and inverse transformation of RFPF and Chapter 8 presents optimizations

on FGSA. Finally, a summary and conclusion is given in Chapter 9.

28

Chapter 2

Background

2.1 Program Representations

An IR is a data structure used in most modern compilers which is transformed from source

program and from which the target program is generated. A typical source program can be

one of various high level language programs or one type of IRs and the target program

can be anther type of IR or machine code. IRs are important tools for representing

a program either for direct execution or for better employing compiler optimizations.

The IRs presented in this work are based on a number of ideas introduced in existing

representations, such as static single assignment form(SSA) and its extension, gated single

assignment(GSA). This section reviews some of these representations.

We begin by introducing Control flow graph(CFG) which is a primary means of

representing programs in optimizing compilers. A CFG G =< N,E,s,e > is a directed

graph, where N is the set of nodes, E is the set of the edges and s and e represent two

special nodes start and end. The nodes in a CFG are basic blocks. A basic block is a

group of instructions that have one entry point, one exit point and no branch instructions

are contained within the group. The edges represent the transfer of control between basic

blocks. There’s an edge from start to any entrance basic block and there’s an edge from

any exiting basic block to end. For an edge X→ Y in the graph, Y is a successor of X and

29

X is a predecessor of Y. A basic block with multiple predecessors is a join node. Similarly,

a basic block with multiple successors is a branch node.

As control dependencies between instructions are represented in a CFG, data dependencies

were traditionally represented by use-def chains(UD Chain) and def-use chains(DU

Chain) (Aho et al. 1986). A UD chain consists of a use of a variable and all the definitions

of the variable that can reach the use without being intervened by other definitions. A

DU chain consists of a definition of a variable and all the uses of the variable that can be

reached by the definition. Before the SSA form was invented, both UD and DU chains

were a prerequisite for many compiler optimizations.

2.1.1 Single Assignment Semantics

UD and DU chains are extra structures which represent the data flow in a program. Single

assignment semantics on the other hand explicitly embeds UD and DU information into the

representation. Two popular representations that implement single assignment semantics

are Static Single Assignment(SSA) form and Gated Single Assignment(GSA) form. In both

representations every variable is assigned only once, that is each use is explicitly related to

a single definition site. At control confluence points special functions are inserted to merge

and select values. SSA employs non-executable φ -functions while GSA employs several

forms of executable gating functions. Many optimizations algorithms become simpler

with single assignment semantics. Detailed properties of these two representations are

summarized in the following sub-sections.

2.1.2 Static Single Assignment Form (SSA)

Static single assignment(SSA) was developed by Ron Cytron and coworkers, researchers

from IBM in the 1980s (Cytron et al. 1991). In SSA, existing variables in the original

representation are split into versions and new variables are indicated by the original

name with a subscript such that every definition gets its own version. The usefulness

30

of SSA comes from how it simplifies the properties of variables, i.e., use and definition

relationship of each variable is explicit. For example, consider the following piece of code

(Figure 2.1(a)):

y← 1

y← 2

x← y

y1← 1

y2← 2

x1← y2

(a) example code 1 (b) SSA form

Figure 2.1: SSA form

In this very simple example, we need reaching definition analysis to determine that it is the

second definition of y that reaches x and hence the first definition is not necessary. But if

the program is in SSA form (Figure 2.1(b)), the result is straight-forward.

Unlike the above straight-line code example, most programs have branch nodes and join

nodes. At a join node, a use of a variable can be reached by multiple definitions due

to control flow. SSA introduces a special function, called φ to choose the correct value.

Consider Figure 2.2(a). In constructing the SSA, it is clear which definition version reaches

each use except the use of y in w = y + 1. In Figure 2.2(b), a φ -function is inserted at the

beginning of the block. A new definition of y, namely y3 is generated, where the φ -function

chooses either y1 or y2 according to which way control arrived from.

x = 1

YN
if (x < 0)

y=x−3 y=x*2

w = y + 1

x1 = 1
if (x1 < 0)

y1 = x1 − 3 y2 = x1 ∗ 2

w1 = y3 + 1
y3 = φ(y1, y2)

N Y
if (P)

y1 = x1 − 3 y2 = x1 ∗ 2

w1 = y3 + 1
y3 = γP (y2, y1)

N Y

x1 = 1
P = x1 < 0

(a) example code 2 (b) SSA form (c) GSA form

Figure 2.2: Single assignment semantics and special functions

The SSA form of a program enables or enhances many analysis and transformations.

31

Wegman and Zadeck presented two approaches to constant propagation with conditional

branches in (Wegman and Zadeck 1991), one is in SSA and the other is not. Clearly the

approach which uses SSA has significant advantages. Rosen et al., proposed the approach

to redundancy elimination, applying global variable numbers on SSA in (Rosen et al. 1988).

They found out that using SSA enables easy removal of trivial assignments and exposes

identical expressions which may not be visible in the normal form. Recent applications

of SSA to eliminate redundancies can be found in (Kennedy et al. 1999; VanDrunen and

Hosking 2004b,a).

2.1.3 Gated Single Assignment Form (GSA)

φ -functions in SSA are not directly executable. Ballance et al., proposed a new program

representation, called Program Dependence Web(PDW) (Ottenstein et al. 1990) based

on SSA. In PDW, φ -functions are replaced with a family of gating functions which are

executable. The three ’gating’ functions used in PDW are:

† γ(P,v1,v2): A γ-function contains a predicate and two values. It returns v1 if

predicate P is true or v2 if P is false.

† μ(P,v1,v2): A μ-function also contains a predicate and two values and represents

a loop entry. Predicate P determines whether control will pass into the loop body.

Once P becomes true, the μ-function returns v1 for the first iteration of the loop and

v2 for the subsequent iterations.

† two η-functions, ηT and ηF : A ηT (P,v) returns the value v when the loop predicate

P is true. A ηF(P,v) behaves similarly when P is false

The resulting graph is called Gated Single Assignment(GSA) form. Figure 2.2(c) shows

the GSA form of the code.

Due to several reasons, GSA is not as popular as SSA. However, there are still some

applications. For example, Arenza et. al., (Arenaz et al. 2003) proposed a GSA-based

32

compiler infrastructure to detect parallelism in loops that contain complex computations.

These computational kernels form the strongly connected components (SCC) in the graph

of use-def chains for the corresponding GSA form. They identified different scenarios of

SCC graphs and use the information to guide the generation of parallel code for the loops.

2.1.4 SSA and GSA Comparison

Despite of using different forms of gating functions, both SSA and GSA can represent

programs single assignment form. φ -functions in SSA at a control convergence point select

values according to which edge of the graph was taken by control flow. Gating functions

in GSA embed control dependence information in the form of predicates, and they select

values based on the value of the predicate. Basically, GSA provides the same information

SSA does as well as extra control information that helps to select values at gating functions.

However construction of GSA is more complicated, which restricts its usefulness. Next

construction and destruction algorithms for both representations are discussed.

2.2 Computing Single Assignment Forms

2.2.1 Construction algorithms and Problems

φ -function placement is a central issue in the SSA construction. Two concepts, namely,

dominance relation and dominance frontiers are crucial to the understanding where to insert

φ -functions.

Let X and Y be nodes in the CFG of a program. If X appears on every path from

start to Y, then X dominates Y. If X dominates Y and X �= Y , then X strictly dominates

Y. The immediate dominator of Y (denoted idom(Y)) is the closest strict dominator of

Y on any path from start to Y. The dominance relation can be summarized as a tree

structure, called the dominator tree, in which any node Y other than start has idom(Y)

as its parent in the tree. The problem of finding the dominators of a flowgraph has

33

been studied extensively, Lengauer-Tarjan (Lengauer and Tarjan 1979) being the most

well known algorithm. This algorithm relies on the observation that a node’s dominator

must be above it in the depth-first-spanning tree, which provides an initial guess at the

dominator. Then in a second pass, the real dominator is found by correcting the initial

guess. Lengauer-Tarjan has a good asymptotic time complexity as O(E logN) or even

better O(Eα(E,N)) using a sophisticated implementation. Keith Cooper et al., (D.Cooper

et al. 2001) proposed a straight-forward algorithm to find dominators, which formulates the

dominance as a global data-flow problem. The approach yields an efficient iterative solver.

With a carefully designed data structure, the implementation of the algorithm can run as

fast as Lengauer-Tarjan in practice.

The dominance frontier of a node X (denoted DF(X)) is the set of nodes Y such that X

dominates a predecessor of Y but does not strictly dominate Y. Cytron et al. (Cytron et al.

1991) proposed finding the dominance frontier set for each node in a two step manner. This

algorithm walks over the dominator tree in a bottom-up traversal order. At each node X, X’s

successor nodes that are not dominated by X are added into DF(X). Next the dominance

frontier sets of X’s children in the dominator tree are traversed and any node that is not

dominated by X is added into DF(X).

Dominance frontiers are exact places where φ -functions may be needed. Consider a

definition that resides at node A. For the nodes that are in DF(A), the definition can reach

them together with other definitions of the same variables brought in through other control

flow. Further, once a φ -function of some variable is inserted at node B, B becomes one of

the definition sites regarding to the variable, more φ -functions may need to be inserted at

nodes in DF(B), which demonstrates the idea of iterative dominance frontier.

An efficient approach to inserting a minimum number of φ -functions using iterative

dominance frontiers is proposed by Cytron et al. (Cytron et al. 1991). The outline of

Cytron’s general SSA construction algorithms is as below:

1. Compute the dominance frontier for each node in the control flow graph.

2. Using the iterative dominance frontier information, determine the locations of the

34

φ -functions for each variable.

3. Rename each variable by replacing the name of an original variable V by a proper

version name Vi.

Cytron’s algorithm is minimal in terms of φ -functions in the sense that it captures the exact

number of joining cites of multiple definitions. However, it can insert the φ -functions

that are never used after joining. Choi et al. (Choi et al. 1991) propose the pruned

SSA form, which contains no dead φ -functions. Based on live analysis information, the

pruned SSA form only inserts φ -functions where the variable is live. It contains fewer

φ -functions and uses fewer SSA names at the cost of live analysis and more condition

evaluations during the φ -function insertion. These two variations of SSA form favor

different applications. Applications like register allocation always benefit from accurate

live information provided by pruned SSA while surprisingly global value numbering, an

optimization that combines constant propagation and redundancy elimination can benefit

from extra information provided by dead φs inserted by the minimal SSA algorithm. Briggs

et al. (Briggs et al. 1998) propose the third variation, called semi-pruned SSA form which

balances the number of φ -functions and the cost of construction between the previous two.

Bilardi and Pingali (Bilardi and Pingali 2003) investigated the existing φ -placement

algorithms and put them into a single framework based on a new relation called merge.

Using the merge relation, they describe several new algorithms for φ -functions insertion

which are optimal for a single variable, as well as an optimal algorithm for multiple variable

φ -placement in structured programs.

Building the dominator tree and the dominance frontier has non-trivial costs. Targeting

this optimization opportunity, several new techniques have been proposed to generate

the SSA form without precomputing the dominator and dominance frontier information.

Aycock and Horspool (Aycock and Horspool 2000) discover where to insert φ -functions

by inserting φ -functions for every variable at every node in the flow graph and iteratively

deleting the extraneous ones. This approach achieves the minimal φ -functions in reducible

graphs. Brandis and Mössenböck (Brandis and Mössenböck 1994) generate the SSA form

35

in one pass for structured CFGs. Their algorithm inserts φ -functions at the joining nodes

by employing different rules for different structures, such as if, while and repeat. The

algorithm performs variable renaming in the same pass.

The first work in which GSA is proposed (Ottenstein et al. 1990) employs Control

Dependence Graph (CDG) (Ferrante et al. 1987; Cytron et al. 1991) to replace φ -functions

into gating functions. CDG is a graph representation that summarizes the control

dependence information of a CFG. It can be computed by computing dominance frontiers

on a reverse graph of CFG. During the replacement, for each φ -function, two conditions

are computed: conditions under which the arguments flow to the φ -function and conditions

under which the φ -function should be executed. For example, given the condition

information, gating function γ(P,v1,γ(Q,v2,⊥) is built. Here special symbol ⊥ signifies

that control flow cannot reach the corresponding φ under the corresponding predicate value.

Havlak (Havlak 1993) proposed a simplified version of GSA, called Thinned GSA(TGSA)

which has a simpler algorithm. Invented for symbolic analysis only, TGSA contains less

control information than original GSA. For example, TGSA omits the loop predicate in

μ-functions and the predicates in the γ-functions where control cannot flow to the functions

under the conditions represented by the predicates. γ-function replacement is the main

part of the construction. The approach constructs a DAG which has the same dataflow

predecessors and successors as the original φ . It also takes the result of a branch as input.

By visiting the DAG, each reaching φ -argument and the branch conditions under which the

argument flows is computed. Tu and Padua (Tu and Padua 1995) improved the computation

of gating functions by converting the problem into a path compressing problem. Unlike the

above two algorithms, the algorithm does not require the SSA form to generate the GSA

form. Gating functions and their positions in the graph are computed at the same time.

2.2.2 Inverse Transformation Algorithms and Problems

The SSA form of a program is an intermediate representation that enables efficient

implementations of many compiler optimizations. However, the program needs to be

36

x3 = φ(x1, x2)

x3 = x1 x3 = x2

Figure 2.3: Insert copy assignments to eliminate a φ -function

transformed back to an executable form since φ -functions are not directly executable.

SSA form is translated back to the traditional form by replacing each φ -function with

some ordinary assignment. This algorithm involves insertion of copy operations in the

predecessor nodes of a φ -function, as it is shown in Figure 2.3. This naive copy insertion

approach will break in some subtle cases, namely, the existence of critical edges in the flow

graph(the bold edge in Figure 2.4 left) and the simultaneous evaluation of φ -functions of

the same block. A critical edge is an edge, of which the source node has multiple successors

and the target node has multiple predecessors. The critical edges are handled by splitting

them (Figure 2.4 right). For the case involving simultaneous evaluation of φ -nodes in the

same block, consider Figure 2.5 (a). The naive copy insertion results in Figure 2.5(b),

which destroys a1’s value before b1 gets it and thus breaks the original semantics. The

solution is to insert a temporary to keep a1’s value as in Figure 2.5 (c).

x3 = x1

x3 = φ(x1, x2)

Figure 2.4: Split critical edges

According to Sreedhar et al (Sreedhar et al. 1999), SSA form can be classified into

Conventional SSA(C-SSA) and Transformed SSA(T-SSA) based on whether copy insertion

is needed during the inverse transformation. C-SSA is the form when the SSA form is

just built and arguments in the same φ -function do not interfere. To transform a C-SSA

program, a representative name is used to replace all the arguments and the destination

37

(c)(a) (b)

b1 = φ(b0, a1)
b1 = a1

a1 = b1

b1 = t

a1 = b1

t = a1

a1 = φ(a0, b1)

Figure 2.5: The semantics of simultaneous evaluation of φ -functions and

break circular definition

of the φ -function and later the trivial assignment statement is deleted. T-SSA form

results from the SSA form undergoes optimization passes during which live range of the

φ -arguments become overlapped. Due to the overlapping, using a single representative

variable to replace the φ -arguments does not work since the representative variable cannot

represent multiple values in the overlapped regions. Sreedhar et al (Sreedhar et al. 1999)

proposed the approach to transform T-SSA into C-SSA first and then back into normal CFG

based on the concept of phi-congruence classes. At the beginning, all the arguments and the

destination of a φ -function are in the same congruence classes. During the transformation,

when two names in the same class conflict (i.e., live ranges overlap), copy operations are

introduced for one of the names to divide the class into two. Eventually, when there are

no conflicts between the names in the same class, T-SSA is transformed into C-SSA and

each class is given a distinctive representative name. Several copy insertion algorithms are

proposed. The best one employs both control flow information and live range dependence

graph and results in a significant reduction in the number of copy instructions. However

minimizing copy insertion during inverse transformation of SSA is still an open research

question.

A different approach to reducing copy instructions follows the idea of introducing as

many copies as necessary and eliminating the redundant copies by applying coalescing

algorithms developed specially for this purpose. Two names can be coalesced if they are

not both live at any point of the program. Boissinot et al. (Boissinot et al. 2009) proposed

a coalescing algorithm by taking values of variables into account. By their definition, two

names do not conflict even when they are both live at some point of the program as long as

38

their values are the same.

2.3 Other Important Representations

In addition to above mentioned representations, there are some other program

representations which are significant for various reasons. Static Single Information (SSI)

form (Ananian and Rinard 1999; Singer 2006), an extension to SSA places σ -functions at

control branches. A σ -function is a multi-destinations function that each destination has the

same value and a unique name. Through the embedded information of branch conditions,

SSI supports predicate analysis and backward dataflow analysis. A distinguished property

of SSI is its aggressive splitting of live ranges which gives it predicate analysis power

without explicitly using predicates. Extended-Static Single Assignment (e-SSA) (Bodík

et al. 2000) has the same property and similar program analysis capability. Particular

in case of SSI, aggressive splitting of live ranges results in interference graphs which

are interval graphs, providing significant advantage in coalescing and register allocation

tasks if done on single assignment form. Of course, split live ranges must later be

combined, and the approach can make sense only with an effective coalescer. However,

this approach also results in an enormous increase in the number of gating functions used.

For example, Singer (Singer 2003) reports an average of six fold increase in the number

of gating functions in SSI compared to SSA. Program dependence graph(PDG) (Ferrante

et al. 1987) is a representation which makes both the data and the control dependencies

for each instruction in a program explicit through graph links. Ball and Horwitz (T.Ball

and S.Horwitz 1992) give algorithms to reconstruct a control flow graph from a control

dependence graph such as PDG. Pingali (Pingali et al. 1990) analyzes CFG, data

dependence graph and a combination representation with control flow and data dependence

information and summarizes the crucial properties for any good program representation

such that a data structure can be easily traversed for dependence information. Then a

program representation called dependence flow graph (DFG) which is based on dependence

driven execution model is given. DFG naturally incorporates the best aspects of many

39

other representations and leads to a better algorithm for solving the constant propagation

problem.

2.4 Code Motion and Compiler Optimizations

Code motion is an essential tool for many compiler optimizations. In this section, we first

briefly discuss Partial Redundancy Elimination(PRE), one of the powerful optimizations

that is carried out by code motion.

PRE combines and extends two other techniques:

1. Common subexpression elimination which eliminates the redundant computations.

An expression is redundant at a program point p if it is computed along every path

leading to p and none of its subexpressions has been redefined. If an expression

is redundant at p, its computation at p can be replaced by a reference to a variable

holding the computed value.

2. Loop-invariant code motion which moves loop-invariant expression out of the loop.

An expression is loop-invariant if its value remains the same at each loop iteration.

By moving the expression out of the loop, we reduce the computation times of the

expression to once and still obtain the correct value.

A more common optimizable case is that the expression is redundant along some, but not

all paths leading to p, which is defined as partial redundancy. PRE are the algorithms to

remove partial redundant expressions to achieve execution speedup. The basic idea of PRE

is to convert partially redundancy to (full) redundancy, that is, to copy and move a target

expression to a proper point such that the expression at the original location becomes fully

redundant. Once the original computation becomes fully redundant it can be replaced with

a reference to the computed value. Various PRE algorithms exist aiming to address the

question of where to move the copy instructions with different approaches.

Strength reduction is an optimization that replaces a costly operation with a set of

equivalent, but less expensive operations. Strength reduction is very powerful especially

40

when the target expressions are in the loops. Code motion is used to move the code to

a different point in the program where specialized circumstances allow the code to be

replaced by less expensive sequence of operations.

Instruction scheduling is a compiler optimization that reorders the operations to improve

instruction-level parallelism (ILP). Multiple operations can be executed in parallel on the

processors that are equipped with pipelined functional units or multiple parallel functional

units. The former processors are represented by pipelined machines and the later are

represented by superscalar and VLIW architectures. We refer to machines with multiple

functional units, namely superscalar and VLIW as ILP architectures. The basic idea of

pipelining is to split the processing of an instruction into a series of independent steps so

that CPU is allowed to issue instructions at the rate of the slowest step, which is much faster

than the time needed to process all the steps at once. As a result, multiple instructions are

executed simultaneously at any time on a pipelined machine. Hazards can happen when

data dependencies between these instructions occur. When hazards happen, pipeline stalls

or No-Operations must be inserted to ensure correctness. ILP architectures have the ability

to issue more than one instruction per cycle by dispatching the instructions to multiple

functional units. Scheduling algorithms are suggested for both superscalar and pipelined

machines. While for a pipelined machine the goal is to issue a new instruction every cycle

by eliminating pipeline stalls, for an ILP architecture with n functional units, the basic idea

is to execute as many as n instructions each cycle. For both machines, the compiler is

required to rearrange the code properly to better utilize the machine sources.

Memory scheduling is an important issue since memory instructions usually have longer

latency than other instructions. In order to hide the latency of accessing memory, some

techniques allow lifting of load instructions to an early position in the program so that

when an instruction using the load value is executed, the value will be ready.

PRE and strength reduction are machine independent optimizations while scheduling is

machine dependent. The state-of-art algorithms involving these optimizations will be

summarized in the next two subsections.

41

2.4.1 PRE and strength reduction

PRE algorithms consist of initializing an auxiliary variable with a candidate computation

and replacing original computations by reloading the variable. In 1979, Morel and Renvoise

proposed an algorithm to suppress partial redundancies (Morel and Renvoise 1979). Their

work became the first to combine redundancy elimination and loop-invariant code motion

together. They developed the bi-directional iterative approach to global-flow analysis for

code placement. Their idea is to put the computations as early as possible. An alternative

code placement strategy called Lazy Code Motion(LCM) (Knoop et al. 1992) was proposed

by Knoop, Rüthing and Steffen. Their algorithm decomposes the bi-directional structure

of Morel and Renvoise’s work and thus is more efficient. LCM achieves computational

optimality in the sense that computations on each path can not be reduced further by

means of safe code motion and the lifetime optimality in the sense that the lifetimes of

the introduced variables are minimized. The basic idea is to move target expressions to

the early program points to expose the maximum number of redundancies and then to push

them to the latest points where the redundancies still remain to minimize register pressure.

A practical implementation algorithm for LCM was proposed later by the same authors

in (Knoop et al. 1994).

An algorithm called SSAPRE is presented in (Chow et al. 1997; Kennedy et al. 1999)

for performing PRE based on SSA form. This work is one of the earliest that look

into the relationship between use-def information for variables represented in SSA

and the redundancy property for expressions. The algorithm is based on a sparse

representation of expressions, the factored redundancy graph(FRG). In FRG, the real

expression computations and Φ-nodes which are inserted at points where the value of the

expressions may change represent the nodes and the control flow edges in original CFG

and use-def edges for expressions represent edges. Analysis performed in FRG is similar to

LCM, which first moves expressions up the graph and then pushes them down to determine

the code motion region. SSAPRE achieves the same computation optimality and life-time

42

optimality as LCM.

Cliff Click proposed a different code motion strategy called Global Code

Motion(GCM) (Click 1995). GCM algorithm first hoists instructions out of the

original blocks (i.e., move code out of loops) and then schedule them according to

data dependencies between instructions. An instruction can be moved as far up as it is

dominated by its input and can be moved as down as it dominates its uses. Between the

two points is the code motion region for the instruction. Cliff also presents the algorithm

for global value numbering (GVN), which aims to replace a set of instructions that

compute the same value with one instruction. Combined with GVN, GCM can achieve a

net effect of performing constant propagation and PRE. Click’s algorithm separates code

motion from optimization issues. It is simple and fast, however, it may introduce extra

computations along some paths.

Code motion alone can not eliminate all the partial redundancies. According to Bodik,

Gupta and Soffa (Bodík et al. 1998), 73% of loop-invariant statements in SPEC benchmarks

can not be eliminated by code motion alone. They proposed an algorithm based on the

integration of code motion and CFG restructuring to achieve the complete removal of

partial redundancies. Their work resorts to restructuring merely to remove the obstacles to

code motion, which reduces the code growth resulting from code duplication. Additionally,

using a profile to guide the optimization further reduces the code growth by selecting those

computations that have sufficient run time gains over the cost of duplications.

Strength reduction has a close connection with PRE. Strength reduction methods can be

classified into two families: One family treats it as a loop optimization issue that requires

explicit detection of loop induction variables. The other unifies code motion in PRE

with strength reduction. Compared to PRE, besides initializing an auxiliary variable with

the computation and replacing original computations by reloading the variable, strength

reduction techniques additionally update the variable between its initialization and uses.

Several other PRE algorithms extend their reach by incorporating strength reduction. An

example of such an algorithm is lazy strength reduction (Knoop et al. 1993), proposed by

43

Knoop, Rüthing and Steffen. In lazy strength reduction, the candidate expressions are in the

form of v∗ c where c is a constant. The algorithm performs a similar technique of pushing

up first to expose optimization opportunities and then pushing down to minimize register

pressure as in LCM, with several refinements. Kennedy, Chow and their co-workers also

proposed their strength reduction algorithm based on SSAPRE framework (Kennedy et al.

1998). This algorithm covers a broader class of candidates than lazy strength reduction.

Since the algorithm is performed on expressions one by one, it can find and optimize new

candidates that are formed by optimizing previous candidates.

Max Hailperin proposed a general framework called Thrift Code Motion (TCM) (Hailperin

1998). The technique is based on cost which can be instantiated to perform strength

reduction. A computation has different costs when it is placed at different points in the

program, e.g., a computation can be hoisted up to points where it is constant foldable,

which means smaller cost. The general goal is to place computations so as to minimize

their cost, rather than their number. So TCM consists of first moving computations as early

as possible, then delaying them as long as the cost does not increase. The cost function can

be computed via forward dataflow analysis. Hailperin’s algorithm covers more candidates

than any other previous works.

2.4.2 Scheduling and register allocation

Scheduling algorithms consist of scheduling for ILP and scheduling for Memory Level

Parallelism (MLP). Early work for scheduling for ILP is mainly to find data independent

instructions within basic blocks. List scheduling (Fisher 1979) using the highest-level-first

priority scheme is the classic one. In this algorithm a directed acyclic graph representing

the dependencies between instructions is constructed. The nodes represent the instructions

and the edges represent the dependence relation between instructions, with latencies labeled

on them. Any topological sort is a valid schedule. In order to eliminate stalls during the

execution some heuristics are commonly used, e.g., if a candidate instruction is on the

critical path, its priority is increased.

44

Trace scheduling (Fisher 1982) is a global acyclic scheduling algorithm which allows code

motion across the basic block boundaries. A trace is an acyclic sequence of basic blocks in

the CFG, forming a path through the program. Traces are selected and scheduled according

to their execution frequency. Instructions in a trace are scheduled as if they were in a basic

block. Rules of inter-block code motion are specified in (Fisher 1982). Trace scheduling

puts its total focus on the current trace and neglects the rest of program. A different

approach to global acyclic scheduling is based on the concept of superblock. Allen et

al., (Allen et al. 1983) proposed the i f − conversion which converts all the branches into

predicates and thus eliminates the branches in the flowgraph. The resulting code with one

entrance and multiple exits is called a superblock. Superblocks can be scheduled using

local scheduling techniques. After scheduling, reverse IF-conversion (Warter et al. 1993)

is performed to regenerate CFG.

Instruction scheduling at the basic level is inadequate for superscalar processors. Bernstein

and Rodeh (Bernstein and Rodeh 1991) proposed a scheme for intra-loop scheduling,

which uses the control and data dependence information summarized in the program

dependence graph (PDG) (Ferrante et al. 1987) to move instructions beyond the basic block

boundaries. An instruction can be moved to a block which has the same control dependence

as the block originally holding the instruction. Further, an instruction can be moved to its

predecessor block speculatively (speculative instruction). A set of heuristics are used to

pick the instruction to be scheduled next. For example, non-speculative instructions have

high priority over speculative instructions.

For cyclic scheduling, the most common way is to unroll loops some number of iterations

so that global acyclic scheduling algorithms can find enough basic blocks to perform the

code motion. This approach still has the scheduling barrier at the back-edge and the cost of

increased code size. A better approach is software pipelining (Rau and Glaeser 1981; Rau

1994).

Scheduling for MLP typically involves movement of multiple load instructions, in most

cases speculatively. A speculative load is a load instruction that does not incur any

45

exception until another instruction uses the value loaded. Rogers and Li (Rogers and

Li 1992) described a hardware mechanism to support speculative loading. Then they

described how to lift a load within a basic block region, over a branch and across the

loop region respectively. The highest point a load can be lifted within a basic block is after

the instruction which the load is data dependent on. Considering the register pressure, a

load should be lifted away from the first use of the loaded value merely to cover memory

accessing latency. A load can be lifted over a branch if the load is from the block that is

predicted to be executed most often. For loops, when there are not enough instructions to

hide the latency of some speculative loads, these loads can be lifted across iterations.

2.5 Future Values

As it is known, code motion is prohibited due to data dependencies, as well as the control

dependencies. Future values concept allows instruction movements beyond control and

data dependencies. In order to see how this is possible, consider the statements shown in

Figure 2.6(a). In this example, the control first encounters instruction I1 that computes the

value x, and then encounters the instruction I2which consumes the value. In Figure 2.6(b),

the instruction I2 has been hoisted above I1, and its source operand x has been marked

to be a future value using the subscript f. If the machine buffers any instructions whose

operands are future values alongside with any operand values which are not future until the

producer instruction is encountered, the instructions can be executed with proper data flow

between them even though the order at which the control has discovered them is reversed.

In other words, when an instruction is hoisted beyond an instruction that defines the hoisted

instruction’s source operand, a future dependency results:

Definition 1. When instructions I and J are true dependent on each other and the

instruction order is reversed, the true dependency becomes a future dependency and is

marked on the source operand with the subscript f.

This execution semantics requires that when an instruction is hoisted in an arbitrary manner,

46

i1: x = a + bi2: z = x + a

i1: x = a + b i2: z = x + a

(a) Traditional data−flow (b) Future (reversed) data−flow

Control flow Control flow

f

i1: if(a < b)

i2: x = x +1

i1: P=(a < b)

i2: [P]x = x+1

(c) Traditional control-flow (d) If-conversion
i2: [Pf]x = x+1

i1: P=(a < b)

(e) Future control-dependence

Figure 2.6: The concept of future data and control dependencies

the compiler has to make sure that a definition of the value is encountered across all paths.

In the same manner, it’s possible to represent control dependencies in future form too.

Consider Figure 2.6(c). In this example, i2 is control dependent on i1. In Figure 2.6(d)

predicate P is used to guard i2, which represents the same control dependence. When the

order of i1 and i2 is reversed (Figure 2.6(e)), predicate P becomes a future value and thus

the original control dependence becomes future control dependence.

Future data and control dependencies may enable unrestricted code motion with proper

program representations. They together form the foundation upon which this work will be

built.

47

Chapter 3

Future Gated Single Assignment (FGSA)

We have reviewed several important existing program representations, including SSA

and GSA. Both SSA and GSA achieve single assignment semantics by inserting gating

functions at the confluence nodes of the control-flow graph. In this chapter, we develop an

alternative representation called Future Gated Single Assignment (FGSA) form which can

potentially lead to better program analysis and optimization algorithms. This representation

is built on the two fundamental concepts, namely, future values and congruence classes.

Together, they provide the foundation for a sparse representation that can associate

data and control-dependence information with the variables to the extent possible while

permitting well-established program optimization algorithms work with ease with the new

representation.

FGSA approach to sparse representation is unique. FGSA disassociates program facts from

the control flow graph as much as possible by identifying a group of uses which receive the

same set of definitions, forming a congruence class. It also identifies the control flow under

which each definition flows into s uses and encodes this information int the form of a set of

path expressions. Assigning a distinct name to each definition and a common unique name

to the uses, single assignment semantics is easily achieved by using a single gating function

per congruence class. This function is controlled by the set of path expressions, computed

from control-flow and the function is placed at the lowest common dominator of the uses,

instead of the confluence points of the program. Because this point maybe above some

48

of the definitions, future dependencies may result, giving the name Future Gated Single

Assignment (FGSA) form to the representation.

3.1 Motivation and Comparison

B1

B2

x =
y =

if (Q)

= x

YN

YN

B3

B4

y =
x =

if (P)

= x

B1

B2

if (Q)

YN

YN

B3

B4

x2 =

if (P)

x1 =
y1 =

y2 =

x4 = φ(x3, x2)
y4 = φ(y3, y2)

x3 = φ(x1, x2)
y3 = φ(y1, y2)

=x4

= x3

B1

B2

if (Q)

YN

YN

B3

B4

y1 =
x1 =

x2 =
y2 =

x3 = φ(x1, x2)

x4 = φ(x3, x2)

=x4

if (P)

= x3

B1

B2

= x3

B3

B4

N Y

N Y

if (Q)

if (P)

y1 =

= x3

y2 =
x2 =

x3 = ψP (x2f
, x1)

x1 =

(a) original CFG (b) minimal SSA (c) pruned SSA (d) FGSA

Figure 3.1: An FGSA Example

We present our motivation through an example shown in Figure 3.1(a). In this example,

the same set of values flow into uses of x at node B3 and B4. y is defined at two places but

not used. After applying Cytron et al.s’ algorithm (Cytron et al. 1991) the graph shown in

Figure 3.1(b) is obtained. Dead φ -functions can be eliminated through pruning (Choi et al.

1991) yielding the graph in Figure 3.1(c). Clearly, there is a single useful congruence class

consisting of two uses of x, one at node B3 and the other at node B4 and the two definitions

x1 and x2. Congruence classes involving y are not useful, since they do not reference a

use. Observe that a query such as which definitions flow into the use x in block B4 cannot

be readily answered even in the pruned version without visiting the φ function in node B3

although this node does not alter dataflow. This is a key observation for program analysis

and optimization: since SSA places gating functions at the confluence points, control-flow

information that is irrelevant to program analysis has to be dealt with, at times visiting

multiple φ functions.

49

The FGSA version shown in Figure 3.1(d) includes an executable function, ψ which returns

the value of the first argument if its predicate expression P is true and the second argument

if it is false. This function is placed at the closest common dominator node of the uses so

that its result dominates all its uses. Since some definitions may not be available at the node

ψ is inserted, unavailable arguments become a future value and are marked with a subscript

f (Ding and Önder 2010; Önder 2010). In the above example, when the predicate P is true,

the function returns the value of x2 to be defined along the taken path of the branch P. A

separate pruning step is not necessary, since definitions of y do not have any uses.

FGSA is a single assignment representation which builds on the strengths of SSA and

GSA by preserving single definition and dominance properties of these representations.

As a result, it provides equivalent functionality to that of SSA and GSA and existing

optimization algorithms can directly use it with minimal changes. It however improves

significantly upon these representations by aiming for a clear separation of data-flow and

control-flow aspects of the program. In FGSA, congruence classes represent participants in

data-flow, predicate expressions represent the effect of control-flow and the gating function

placement is data driven. Furthermore, predicate expressions are minimal, in the sense that

if a given predicate expression is true, corresponding definition is guaranteed to reach the

congruence class uses, although the program may traverse many more predicates before

it reaches to one of the uses. These properties together enable FGSA to represent the

same program by using fewer gating functions than either SSA or GSA. Our primary goal

however is not to reduce the number of gating functions, but to represent essential and

precise information about the program.

The separation of control flow structure from the gating and the grouping of definitions

and uses into congruence classes also make it easy to compute the representation. The

information that is necessary to generate FGSA is quite different than that of SSA or GSA,

therefore the representation lends itself well to interval analysis. As a result, it is possible

to use a series of T1/T2 (Hecht and Ullman 1974; Aho et al. 1986) transformations to

compute the representation. We further simplify the construction by introducing a novel

50

transformation TR which enables the interval analysis based algorithm to handle irreducible

graphs without node replication, yielding a clean, reducible graph in single assignment

form.

We now formally introduce the concept of congruence classes and the concept of path

separability, the key for computing gating predicates.

3.2 Congruence Classes and Path Separability

We first define the congruence classes and Gated congruence classes:

Definition 2. Let U = {u1,u2, · · · ,um} be a set of uses which have the same reaching

definition set D = {d1, · · · ,dn}. Such sets form a congruence class CC = {D,U}.

In the following discussion, we use the notation CC.U and CC.D to refer to the use set and

the definition set of the congruence class CC respectively.

Definition 3. A Gated Congruence Class is a triple, given by CCG =< CC,G,ψG >, where

G = {g1, · · · ,gn} is the gating predicate expressions separating definitions, ψG is the gating

function which returns one of the definitions in CC.D such that ∀i ∈ [1,n], if gi is true, di is

returned.

A gating predicate expression gi is a boolean expression that consists of branch

conditions(predicates) in the control flow as variables and operators AND(∧), OR(∨) and

NOT(¬). For acyclic code, the predicate expression set G can be computed directly from

the control flow. For cyclic code there are no predicate expressions one can observe which

could control the gating at the loop header between the values flowing from the outside of

the loop and loop carried values in a single-assignment form. We therefore separate the

congruence classes into two types. Those congruence classes for which we can compute

the gating predicates from control flow are called path-separable congruence classes and

congruence classes involving cyclic regions are called non-path-separable congruence

51

classes. 1

Definition 4. A CC={D,U} is path-separable if and only if there ∃ a function f , such

that G = f (P) where G = {g1, · · · ,gn} is the set of gating predicate expressions and P =

{p1, · · · , pn} is the set of path expressions for CC.D.

Generally, a path expression is defined as a regular expression over edges which represents

all the paths from a given source node to the target node in the CFG (Tarjan 1981). In this

work, we define a path expression over predicates by labeling each edge with a predicate,

such that :

1. The taken edge of a conditional jump with condition P is labeled P;

2. The not taken edge of a conditional jump with condition P is labeled ¬P;

3. An unconditional edge is labeled T , representing the predicate value true.

Definition 5. The path expression for a given path in the CFG is defined as the conjunction

of the edge labels which form of the path.

Therefore, if there are multiple paths from node u to v, the path expression from u to v is

given by the union of individual path expressions, each of which representing a distinct path

from u to v. Note that to compute gating functions, we compute path expressions for all the

definitions in the same CC. Those path expressions must represent the paths starting from

the same node, from which each definition in the CC has a chance to execute. The closest

node in the control-flow graph where all definitions in a given CC have a chance to execute

is the lowest common ancestor of the nodes where the definitions reside in the dominator

tree, referred to as LCDOM. To compute the minimal path expressions for gating functions,

we define:

Definition 6. Given a definition di ∈CC.D defined in node z and node v=LCDOM(CC.D),

the (minimal) path expression for definition di is the path expression from v to z.
1A simple congruence class CC={{d}, U} is trivially path-separable irrespective of the region involved and

the congruence class value is d.

52

This definition leads us to the theorem that for path-separable congruence classes, the

gating path expressions can be computed from the predicate expressions controlling the

definitions:

Theorem 3.2.1. Given CC = {{d1,d2},U} and path expressions p1 for d1, p2 for d2, the

gating predicate expression for d1 is given by g1 = ¬p2∧ p1 if there exists a path on which

d2 kills d1, and g1 = p1 otherwise. 2

Proof. Let u be the node where d1 resides and v be the node where d2 resides. Let w

represent the node for any use in CC.

(1).If d1 and d2 do not kill each other, then the path u→ w is clear of the other definition,

i.e., when d1 is executed, CC ’s value is d1. Since d1 is executed when p1 is true, g1 = p1.

(2). If d2 kills d1 along some path, then the path from u→ w is not clear. d1 can reach to

uses in CC only when d2 is not executed and d1 is executed. g1 = ¬p2∧ p1.

More generally, given CC = {{d1, · · · ,dm},U} and path expression P = {p1, · · · , pm},
gating predicate expression G = {g1, · · · ,gm} is computed as:

∀ j ∈ [1,m], g j = ¬pk1
∧¬pk2

∧·· ·∧¬pkl ∧ p j when d j is killed by dk1
, · · · ,dkl along some

path where k1, · · ·kl ∈ [1,m].

=xu1
x1 =

if (Q)

x0 =

=xu1
x1 =

if (Q)

=xu1
x1 =

if (Q)

x0 =

i1

i2

CC1 = {{x0},{xu1}}
CCxu1

= {{x0,x1},{xu1}} CC2 = {{x1},{xu1}}
Figure 3.2: A non-path-separable CC: use belongs to two CCs

Computing the gating predicates for non-path-separable congruence classes requires

splitting the congruence classes, computing gating predicates for each sub-congruence

2In the case of two definitions, expression ¬p2 implies p1, so the gating path expression can be simplified to

g1 = ¬p2. However, for the general case, this does not hold and the conjunction is required.

53

class and recombining back using a special predicate. This is because the definitions

outside the loop flow into the CC only once, but once this happens, the CC receives only

the definitions within the loop. Consider the example in Figure 3.2(a). Peeling the loop

once (Figure 3.2(b)), we observe that xu1 in the first iteration only receives x0 while xu1

in successive iterations only receives x1. Clearly, this equivalent program contains two

sub-congruence classes, one of which represents the flow of values from the outside and

another represents loop carried data flow. Both of these classes are trivially path-separable.

The key issue is, splitting a given CC in this manner results in sharing of uses between the

two sub-CCs. We therefore introduce read-once predicates and use them to combine the

two CCs:

Definition 7. The read-once predicate is a special predicate which becomes false once it

is read.

Note that, a read-once predicate is set to true before entering the loop and becomes false

once it is read. Now we can construct a new CC by introducing a read-once predicate R:

CCxu1
= {v = ψR(CC1.D,CC2.D),{xu1}}, which in this case can be simplified to CCxu1

=

{v = ψR(x0,x1),{xu1}}. This new CC essentially represents the semantics of regular loops

allowing us to construct the gating predicates using path predicates and use the same gating

function uniformly across the representation without overloading its semantics.

So far, we have introduced the concept of congruence classes and showed how the concept

can be used to construct single-assignment form by computing the gating predicates. Once

the congruence classes and their gating predicates are computed, we can identify the points

where the gating functions should be inserted and finalize the construction of FGSA. In the

following sections we first give an overview of the algorithm and discuss the handling of

reducible programs using T1/T2 transformations. In Section3.5, we show how to handle

irreducible programs using our novel transformation TR which permits the T1/T2 to proceed

normally upon encountering an irreducible loop.

54

CCu1 = {∅, {xu1}}
=xu1

xd1 =
= xu2

= xu3

xd2 =

node i

CCd1 = {{xd1}, {xu2, xu3}}
CCd2 = {{xd2}, ∅}

Figure 3.3: Local CCs computation

3.3 Efficiently Computing FGSA

FGSA construction algorithm consists of two steps. In the first step, the congruence classes

are identified alongside with their gating predicates by using a bidirectional global flow

analysis algorithm with edge placement (Graham and Wegman 1976; Dhamdhere and Patil

1993). This algorithm employs a local computation and a global propagation such that

during local computation, definitions and uses in each basic block are grouped to construct

local CCs and during global propagation local CCs that can communicate with other blocks

(i.e., CCs for which definitions come from the predecessor blocks or values which flow

into the successor blocks) are propagated globally using T1/T2 transformations alongside

edges. Once the congruence classes are computed, the second step of the algorithm uses

the dominator information to place the gating functions at the appropriate points on the

CFG and the representation is finalized.

3.3.1 Identification of Congruence Classes

Consider Figure 3.3. xu1 is upward exposed since it receives definition(s) outside of node

i. xd2 is downward exposed, whose value can flow into the successors of node i. xd1’s

value flows into both xu2 and xu3 locally. By scanning each statement in the block, uses and

definitions are grouped by Definition 2 to form three congruence classes within node i as

shown. Note that a single use can also form a CC which has an unknown value.

For global dataflow analysis, only CCs that are either upward or downward exposed in a

55

node can communicate with others, such as CCu1 and CCd2 in Figure 3.3. We refer to

the two types of CCs as CCup and CCdown of the block. We use the combination of the

two types of CCs to categorize nodes and edges in the following description of T2 and T1

transformations:

[T1]: Remove any edge that points from a node to itself. This is the key to the construction

of the gating predicates for non-path-separable CCs. During this transformation, the loop

node information is pushed onto the edges between the node and its predecessors and its

successors.

[T2]: If a node v has a single predecessor u, T2 transformation consumes node v by

node u. All the successor edges from node v become successor edges of node u. This

step propagates partially computed CCs globally and computes the path predicates. T2

transformation for node v therefore pushes v’s information (i.e., locally computed CCs

of node v) onto the edge (u,v) and collects the path expression from u to v. When v

is consumed by u, the CCs are combined with existing CCs on the edges to form the

propagating data in the next step.

When the whole program has only the start node left after a series of T1/T2

transformations, the construction of all the CCs is complete.

Now let us see through an example how the global propagation of CC information is

handled. Consider the program shown in Figure 3.4(a). The only applicable transformation

is a T2, therefore, first, node B2 is selected. The local CCs for B2 are CCup(B2) = /0 and

CCdown(B2) = {{xd1},{xu1}}. After incorporating B2’s local information with information

on edge (B1,B2) and (B2,B3) which by default are all /0s, we consume B2 and push the

resulting CCs onto the edge. Since B2 was on the not taken path of its predecessor,

predicate ¬P is propagating down along the edge (Figure 3.4(b)). On the taken path of

the branch (B1,B3), there is no computation, so both CCs on that edge is empty, with

predicate P. Now there are two edges, both from B1 to B3 and they are to be merged.

Both edges contain /0 as CCup, the resulting CCup is /0. Since one edge contains CCdown

with a definition and the other doesn’t, there is an unknown value that can reach the uses

56

Y

= xu2

xd1 =
= xu1

N
B2

if (P)

B1

B3
= xu2

N
if (P)

B1

B3

[P]

∅
∅

Y

CCxd1 = {{¬P : xd1}, {¬P : xu1}}

CCxd1

[¬P]
∅

(a) (b)

= xu2

N
if (P)

B1

B3

Y

CCxd1 = {{¬P : xd1}, {¬P : xu1}}

[true]
∅
CCxd1L

CCxd1L
= {{¬P : xd1, Λ}, ∅}

N
if (P)

B1

Y
[true]
∅
CCxd1L

CCxd1 = {{¬P : xd1}, {¬P : xu1}}
CCxd1L

= {{¬P : xd1, Λ}, {xu2}}
(c) (d)

Figure 3.4: T2 example

below. A new CC, namely CCxd1L is created, taking the union of definition sets of CCxd1
and

a special symbol Λ which represents this unknown definition which reaches to this point.

Predicates guarding the two edges are also merged, resulting in a true predicate to guard

the merged edge (Figure 3.4(c)). Eventually, CCxd1L’s value will flow into xu2, as shown in

Figure 3.4(d).

Note in this example, during congruence class construction, predicates are associated with

both the definitions and the uses. Use predicates are used during the gating function

construction and insertion (Section 3.3.2) to avoid a partially dead gating function. In

the following sections, we give a detailed algorithm for global propagation and CC

construction.

3.3.2 Gating Function Construction and Insertion

Gating functions for non-path-separable CCs and exit functions are constructed and

inserted during T1. For path-separable CCs, construction of gating path predicates requires

57

the use of reduced reachable set (Boissinot et al. 2008) for each node:

Definition 8. The reduced reachable set of node v is a set of nodes that are reachable from

v after all the back-edges in the CFG are eliminated, given by R(v)={x | there is a path

from node v to node x containing no back-edges}

The reduced reachability relation of nodes is used in gating function construction since

it can answer the query whether the definitions in the same CC may kill each other.

Together with the reduced reachable set information, Theorem 3.2.1 given in Section 3.2

enables us to compute the gating predicates from path predicates. Note that both the

reduced reachable set information and path predicates are computed during the T1/T2

transformations. According to Theorem 3.2.1, the key question must be answered is

whether definitions in the same CC may kill each other. Assuming definitions di and d j

belong to the same CC and they reside in node vi and v j, we observe that d j may kill

di if v j ∈ R(vi) holds. Once the gating predicates are computed gating functions can be

inserted at the flow-graph for each CC that contains more than one definition to divert

those definitions. On one hand, in order to ensure that each use in a CC gets the value of

the gating function, the gating function must dominate each use in the CC. Also considering

minimizing the live range, the gating function is inserted at the lowest common dominator

(LCDOM) node of all the uses in the CC. On the other hand, the LCDOM node may not be

post dominated by the uses, in which case the gating function inserted at that point may be

partially dead. To avoid that, we compute the disjunction of the predicates controlling the

uses and use it to guard the gating functions. Any definition that appears below the gating

function is marked as a future value (Ding and Önder 2010; Önder 2010).

58

3.4 Interval Analysis and T1/T2 Transformations

3.4.1 Acyclic Regions: T2 Transformation

Consider node v as the next T2 transformation candidate, which has a single preceding edge

(u,v) and possibly multiple successor edges. (v,wi) represents the ith successor edge of v.

For each of these edges, two congruence classes representing the upward exposed value

and the downward exposed value are associated with the edge, annotated as CCup and

CCdown. During the computation and propagation, four cases of the combination of CCup

and CCdown may occur. We illustrate here using edge (u,v). The combinations happening

within node v and on the edge (v,wi) are the same. Predicates USE and DEF are used to

identify each of the cases:

u

v

u

v

= x1
CCx1

CCx1 = {∅, {x1}}

u

v

u

v

x1 =
∅
CCx1

CCx1 = {{x1}, ∅}

u

v

u

v

x1 =
= x2

CCx1

CCx2

CCx2 = {∅, {{x2}}
CCx1 = {{x1}, ∅}

(a) Case 2 (b) Case 3 (c) Case 4

Figure 3.5: CC cases

Case1 : CCup =CCdown = /0. We set USE(u,v) = f alse and DEF(u,v) = f alse. This is the

case for an unprocessed edge or where the nodes processed between u and v are transparent

to the given variable.

Case2 (Figure 3.5(a)): CCup = CCdown �= /0. We set USE(u,v) = true. Between u and

v and before node v is processed, a node with a use of x was eliminated through T2

transformation. A CC is created for the use, namely CCx1
in the example. Since such a

CC is upward exposed to any definition and downward exposed to any use, it is associated

with edge (u,v) as both CCup and CCdown.

59

Case3 Figure 3.5(b): CCup = /0 and CCdown �= /0. We set DEF(u,v) = true. Figure shows

a case where the intermediate node contains a downward exposed definition. A CC of a

single definition is created and uses further down will later join. To the upward direction,

the CC is closed since definitions further up cannot join (because they are killed by this

definition and cannot be in the reaching definition set of the uses of the CC), neither can

the uses above (because their reaching definition set won’t contain the definition). In such

a case, CCup is /0.

Case4 Figure 3.5(c): CCup �= CCdown and neither is /0. We set USE(u,v) = true and

DEF(u,v) = true. This case represents a combination of the above two cases.

To perform T2 transformation on node v, assuming local CCs for node v, CC(v) (i.e.,

CCup(v) and CCdown(v)) is computed, Algorithm 1 (Figure 3.6) is applied to compute

CC(u,wi) by incorporating CC(v) with CC(u,v) in the first phase and the intermediate

results (annotated as CC(u,v]) with CC(v,wi) in the second phase. During two CCs

incorporation, if the preceding CC contains no definition, two CCup.U are merged to

form the new CCup; otherwise, the succeeding CCup.U meets their definitions in the

preceding CCdown and thus joins the preceding CCdown. Definitions in the preceding

CCdown.D are killed by definitions in the succeeding CCdown.D. A global list is

maintained, called globalCC, which records the valid global congruence classes. Initially,

CC(u,v),CC(v),CC(v,wi) are all listed in globalCC.

Note in Algorithm 1 line (11), a special symbol Λ may appear in a CCdown. Λ is created

when two CCs merge, resulting from two edges’ merging (see Merging Edges). When it

appears in a CCdown, it represents upward exposed definitions, which are bound to the value

of the corresponding CCup. The Λ is replaced by the same definitions once the CCup finds

them. In order to compute the reduced reachable set information, we associate a node set

S with each edge within Algorithm 1 and 2 by lines annotated by (R).

60

Algorithm 1
We define Function f such that :

CC(u,wi) = f (f (CC(u,v),CC(v)),CC(v,wi))

Function f:
INPUT: CC(X), CC(Y)
OUTPUT: CCup(Z),CCdown(Z)

begin

//case 1 and 2

(1)if (¬DEF(X)) then

(2) CCup(Z).U = CCup(X).U
∪CCup(Y).U

(3) remove CCup(X),CCup(Y)
from globalCC

(4) add CCup(Z) into globalCC

(5) CCdown(Z) =
DEF(Y)?CCdown(Y) : CCup(Z)

// case 3 and 4

(6)else

(7) CCdown(X).U = CCdown(X).U
∪CCup(Y).U

(8) remove CCup(Y) from globalCC

(9) CCup(Z) = CCup(X)
(10) CCdown(Z) = DEF(Y)?

CCdown(Y) : CCdown(X)
(11) if (DEF(Y) and Λ ∈CCdown(Z)) then

(12) CCdown(Z).D = CCdown(Z).D
∪CCdown(X).D

// compute R sets

//(R1) add S(Y) to reduced reachable

//(R1) set of each node in S(X)
//(R2) S(Z) = S(X)∪S(Y)
end

Figure 3.6: Algorithm 1: T2-CC incorprating

3.4.1.1 Computing Path Predicate Expressions

Path predicate expressions are also computed during the T2/T1 transformation and

participate in congruence class propagation. T2 transformation involves two types of path

merging:

1. When concatenating path (u,v) and (v,s) to form (u,s), given α(u,v) for path

predicate expression of (u,v) and α(v,s) for (v,s), α(u,s) = α(u,v)∧α(v,s).

2. When combining two paths q1, q2 that have the same predecessor s and the successor

t, given α(q1),α(q2) as the path predicate expressions for q1 and q2, α(s, t) =

α(q1)∨α(q2).

In a local CC computation, such as the precomputed CC(v), definitions and uses are

guarded with the predicate T , representing the value true. Given path predicate expression

p(u,v) for path (u,v), p(u,v) becomes the path expression for each definition and use in

CC(v) from u to v. The predicated CC(v) then is combined with CC(u,v). The same

procedure applies when CC(u,v] incorporates with CC(v,wi).

61

Path predicate expressions involving loops are computed by the following and used in

Section 3.4.2. Suppose path p consists of a loop on path p1, let α(p1) be the path predicate

expression for p1, α(p) = α(p1)∗ (infinite conjunction of the predicate expression of

α(p1)).

3.4.1.2 Merging Edges

After eliminating node v, there may be multiple edges from u to wi. Such edges are

merged into a single edge. The edge merging results in merging of the CCs associated

with the edges as well as the path predicate expression. Given two edges ei and e j, with the

same predecessor and successor node , we compute the resulting CCup and CCdown using

Algorithm 2 (Figure 3.7). All the use sets that are upward exposed are unioned to form a

new CC since all these uses must receive the same set of definitions. Definitions flowing

out are merged into set D. If any existing CC contains such a definition set, it represents

the CCdown, otherwise a new CC is created with the definition set D.

3.4.2 Cyclic Regions: T1 Transformation, Exit Function

Each candidate for T1 transformation is a self pointing node v and a back-edge eback.

Note that before the T1 step, CC(v) for local CC of node v and the summary of dataflow

information within the loop excluding the node v CC(eback) have already been computed.

The path predicate expression from v to eback is also available. Merging CC(v) and

CC(eback) using Algorithm 1 forms the base CC for T1 transformation, referred to as

CC(lp). T1 transformation computes CC(l p∗), which represents the effect of iteration

on CC(lp). Once the back-edge is processed and deleted, the rest part of propagation is

handled by additional T2 transformations.

When there is no definition in the loop (i.e., DEF(lp)=false), the uses in the loop, as well as

the uses following the loop, get the same value that initially comes to the loop, therefore,

CCup(l p∗) = CCdown(l p∗) = CCup(l p).

When there are definitions in the loop (i.e., DEF(lp)=true), the algorithm needs to deal

62

Algorithm 2
INPUT: CCup(ei),CCdown(ei),CCup(e j),CCdown(e j)
OUTPUT: CCup,CCdown
begin

CCup.U = CCup(ei).U ∪CCup(e j).U
add CCup in the globalCC

remove CCup(ei) and CCup(e j) from globalCC

if (DEF(ei) or DEF(e j)) then

D = CCdown(ei).D∪CCdown(e j).D
// CC(ei) or CC(e j) does not contain definitions

if(¬DEF(ei) or ¬DEF(e j)) then

D = D∪{Λ}
if (CCD not exist in globalCC)

CCnew = {D, /0}
add CCnew to globalCC

CCdown = CCnew

else

CCdown = CCD

else

CCdown = CCup

// compute R sets

//(R) S(u,v) = S(ei)∪S(e j)
end

Figure 3.7: Algorithm 2: T2-CC merging

with two issues. First, the loop defined definitions may flow through the back-edge to uses

in CCup(l p), which also receive initial values. Second, when a loop defined value flows

outside of the loop, it must be separated from iterative values. Consider the two cases:

B1

xd1 =
= xu1

N
B2

if (P)

B3

Y

= xu2
if (Q)

xd0=

B1

if (Q)
∅
CCxd1L

CCxd0 = {{xd0}, U}

CCxd0

CCxd1L
= {{¬P : xd1, Λ}, {xu2}}

CCxd1 = {{¬P : xd1}, {¬P : xu1}}

CCxu2.1 = {{¬P : xd1,xd0},{xu2}}
CCxu2.2 = {{Q+ ∧ ¬P : xd1,Q+ :

xu2},{Q+ : xu2}}
CCxu2

= {v =
ψR(CCxu2.1,CCxu2.2),{xu2}}

(a) (b) (c)

Figure 3.8: A self-referencing gating function

63

(1) CCdown(l p).D does not contain Λ. In this case loop carried definitions are all defined

within the loop. The uses in CCup(l p) can receive values initially flowing into the loop, as

well as the values defined in the previous loop iteration. Figure 3.2 as we discussed before

shows such an example. We set CCup(l p∗) = CCup(l p) = { /0,{xu1}} during T1, which

later merges with some definition(s) to form CC1. We also incorporate CCup(l p).U and

CCdown(l p).D to form CC2 and combine them using the read-once predicate.

Read-once predicate needs to be initialized before entering the loop. A read-once predicate

is introduced for each T1 transformation at the immediate dominator of the T1 candidate

node. If a read-once predicate is needed by multiple CCs in the loop during the same

iteration, a temporary (normal) predicate must be introduced at the loop header and

assigned to the read-once predicate, ensuring read-once semantics.

(2) CCdown(l p).D contains Λ, which represents an upward exposed definition set. Consider

the example shown in Figure 3.8 in which loop carried values consists of both the initial

value and the loop defined value. Within the loop (Figure 3.8(a)), the CC(lp)s are computed,

as shown in Figure 3.8(b). xu2 receives a loop carried value xd1 and an initial value, which

turns out to be xd0. Note that, along the taken path of P, xd0 flows to xu2 for the first iteration

, while in the subsequent iterations the previous iteration value of xu2 flows, which can be

either xd0 or xd1. Hence xu2 must belong to two CCs (CCxu2.1 and CCxu2.2) (Figure 3.8(c)). It

should be noted that, within CCxu2.1 , definitions are path-separable and the gating function

can be constructed as ψP(xd0,xd1). The same reasoning applies to CCxu2.2 . Therefore, the

gating function for CCxu2
is simplified to xu2 = ψP(ψR(xd0,xu2),xd1).

To handle the value flow outside the loop, we introduce a new function:

Definition 9. The exit function η(di) returns the last value of an iteratively executed

definition di.

When a loop defined value flows to uses both inside and outside the loop region (i.e.,

statically those uses have the same reaching definition set), only the value of the last

iteration flows to the uses outside of the loop. For a CCi = {D,U} such that definitions

are all defined in the loop and some uses are within the loop while others are not, we divide

64

CCi into two CCs, namely CCi1 and CCi2 such that CCi1={D, U1} where U1 is the set of

uses in the loop and CCi2={η(D),U2} where U2 is set of uses outside of the loop. Insertion

of exit functions therefore requires classifying uses in the CC based on whether the use is

in the loop region. Assuming the path predicate expression on the back-edge is p1 and the

path predicate of a use outside the loop is p2, the property p1∧ p2 = f alse holds. Applying

this property divides the uses into two parts and the CC for each part is computed.

3.5 Irreducible Graphs and TR Transformation

The interval analysis algorithm presented so far can only handle reducible graphs. In order

to handle irreducible graphs, the graph can be converted into a reducible graph using node

splitting (Janssen and Corporaal 1997; Unger and Mueller 2002). Unfortunately, node

splitting is a technique which may result in significant code growth and the complexity of

analysis that is necessary to minimize the growth is not trivial. We therefore introduce a

novel transformation called TR which eliminates irreducibility at the cost of single basic

block per irreducible loop by inserting a unique loop header nhead each time it is applied.

We first give a few key definitions adopted from the previous works (Janssen and Corporaal

1997; Unger and Mueller 2002) before we present an intuitive view of the transformation.

Definition 10. Given a loop L, an entryedge is an edge such that the source node is not in

L and the target node is in L. The target node of an entryedge is an entrance of L.

For loop L to be irreducible, there must be more than one entrance. It is easy to show that

all the entrances of L share an external node e as their immediate dominator, referred to as

the shared external dominator SED.

Definition 11. Given a loop L, node e as SED of all the entrances, we define external path

from e to entrance ni as the union of all the paths from e to ni only consisting of nodes that

are not in L; the corresponding external path predicate represents the external path as a

predicate expression, referred to as EPP.

65

Note that an entrance gets executed either when the corresponding EPP is true or the control

flow is already in the loop. This simple reasoning leads to a transformation based on

read-once predicates, since we can use a read-once predicate to test whether the control

flow is in the loop or not.

if (P)
y1 =

x2 = = xu

y2 =

= yu

B1

B2

B4

B3

x1 =

if (P)

B1

B2

B4

B3

x3 = φ(x1, x4)

y4 = φ(y1, y2)

y1 =

y3 = φ(y1, y4)
= x3

y2 =

x2 =

x4 = φ(x2, x3)

= y4

x1 =

= yu

B4

= xu

y2 =
B3

x2 =

B2
if (P)

B1 x1 =
y1 =
R1 =

W = P ∨ ¬R1

Bhead

x2 =

B2
if (P)

B1
y1 =
R1 =

W = P ∨ ¬R1

Bhead

B4

= x3

y3 = ψW (y2, y1)
= y3

B3

x1 =

x3 = ψP (x1, x2)

y2 =

(a) (b) (c) (d)

Figure 3.9: TR transformation on an irreducible graph

Now consider Figure 3.9. In this graph, the loop is {B3,B4} and B1 is the SED. We select

node B3 in Figure 3.9(a) as the target entrance, and introduce a new loop header Bhead .

Edge (B2,B4) and (B1,B3) are redirected to this header and the edge (B4,B3) now is the

back-edge yielding the graph Figure 3.9(b). Since the selected entrance B3 is on the P path

from SED, the branch condition in Bhead is given by W = P∧¬R1.

Upon completing the TR transformation, the interval analysis algorithm can proceed to

compute the CCs using the algorithms presented in Section 3.4.1 through Section 3.4.2.

The resulting CCs are given by CCxu = {{P : x1,¬P : x2},{xu}} and CCyu = {{W : y2,¬W :

y1},{yu}} and FGSA form for the loop is shown on Figure 3.9(c). The SSA version of

this irreducible loop is given in Figure 3.9(d) for comparison. Note that even though the

variable x3 is loop invariant, it is harder to move out of the loop region in case of SSA

version, whereas in case of FGSA the move can easily be done by some PRE algorithm

as the loop is now reducible. We now give a formal definition of TR transformation using

read-once predicates as follows:

Definition 12. TR transformation: Let G =< N,E > be an arbitrary (irreducible)

66

control-flow graph, L an irreducible loop in G, n0 a selected entrance of L, then the

transformation G′ =< N′,E ′ >= TR(G,L,n0), is defined as follows:

† N′ = N∪{nhead}, (3.4.0)

† E ′ ⊂ N′ ×N′ such that the following restriction holds:

(x,y) ∈ E ∧ x �∈ L∧ y ∈ L⇔ (x,nhead) ∈ E ′,(nhead,y) ∈ E ′, (3.4.1)

(x,n0) ∈ E ∧ x ∈ L⇔ (x,nhead) ∈ E ′, (3.4.2)

otherwise, (x,y) ∈ E⇔ (x,y) ∈ E ′.

† Let EPP of n0 be P. Introduce a read-once predicate R1. The branch condition in

node nhead is set to P∨¬R1. (3.4.3)

The above transformation algorithm inserts a unique loop header nhead for the loop (rule

3.4.0). nhead dominates nodes in L. Any edge from a node outside the loop to a node inside

the loop is directed through nhead (rule 3.4.1). Any edge heading to the selected entrance is

redirected to the header as a back-edge (rule 3.4.2). After applying the TR transformation,

the selected entrance becomes a single predecessor node (nhead is its single predecessor) so

that it can be consumed by a T2 transformation. This property guarantees that the size of

irreducible loop is decreasing. Therefore, an irreducible graph will become reducible after

a finite number of TR transformations together with T1/T2 transformations.

In general, elimination of irreducible loops is exponential (Carter et al. 2003) in the sense

that for an irreducible graph equivalent to a complete graph to be converted, the resulting

reducible graph contains at least 2n−1 nodes. However, this is only true for traditional

node splitting conversion. As indicated by the same reference, and exploited by Erosa and

Hendren (Erosa and Hendren 1994) this is not applicable to guard based irreducibility

elimination. Contrary to node-splitting, TR transformation is a linear transformation and

the irreducible graphs do not cause exponential code growth or exponential processing time

either during the conversion to FGSA or during the inverse transformation. This is because,

each TR transformation adds a single node (basic block) containing a single instruction for

67

each irreducible core that is reduced. Next we prove that TR eliminates the irreducible loops

with linear code growth.

Definition 13. Given a loop L, SED-set(L)={ni ∈ L|idom(ni) = e /∈ L}. MSED-set is the

maximal SED-set of L.

Definition 14. A loop L is SED-maximal if there is no other loop L’ such that L ⊂ L′ and

MSED-set(L)⊂MSED-set(L’).

With these definitions, we know that if we can reduce the size of MSED-set of each

irreducible loop down to one, the graph becomes reducible.

Theorem 3.5.1. Let L be an SED-maximal loop, K be its MSED-set, ni be one of the

entrances of L, then ni ∈ K.

Proof. Let e be SED of K and let e′ be the immediate dominator of ni. We claim that e

dominates e′. This can be proved by contradiction. Let p1 be the path from start to ni which

does not contain e and let k be an arbitrary node in K. There must be a path p2 from ni to

k because they are both in L. By concatenating p1 with p2, we obtain a path to k which

does not contain e, which contradicts the assumption that e immediate dominates k. Since

e dominates ni and e′ immediate dominates ni, e dominates e′. Similarly, we can prove that

e′ dominates e. Then e is the immediate dominator of ni. Because K is the maximal set that

contains all the nodes in L that share e as immediate dominator, ni ∈ K.

Theorem 3.5.2. Let L be an SED-maximal loop, K be its MSED-set. Each TR(L) reduces

the size of K by at least one.

Proof. Let n0 be the selected entrance. According to Theorem3.5.1, n0 is an element in K.

After the transformation, n0 has a single predecessor which is nhead , therefore it no longer

belongs to K. nhead immediate dominates nodes in K, therefore, nhead does not belong to

K. For nodes in L\K, their dominance relationship does not change. No node is added into

K after TR. Therefore, the size of K is reduced by at least one.

68

Theorem 3.5.3. TR eliminates the irreducible loops with linear code growth.

Proof. Let L be an SED-maximal loop in G, K be its MSED-set, and e be SED of K. TR(L)

does not change dominance information of G except that nhead becomes the immediate

dominator of nodes in K and e immediate dominates nhead . Therefore, TR(L) cannot affect

other SED-maximal loops in G. According to Theorem 3.5.2, the TR transformation needs

to be performed at most |K| − 1 times on L to make size of K to become one. Given

G has t number of SED-maximal loops and each MSED-set is Ki, i ∈ (1, t), at most Δ =

∑i∈(1,t)(|Ki|−1) TR transformations are required. Since each TR inserts a single node with

a single branch instruction, the code size is increased by Δ.

3.6 Experimental Analysis

We compute the number of gated CCs and compare it with the number of φ -functions on

SSA. For this purpose, we modified GCC 4.2.4 and compiled the SPEC2000 program suite

with optimization flags -O3. This computation permits a direct comparison between FGSA

and SSA since the number of FGSA gating functions is equal to the number of gated CCs.

In order to compute the number of gated CCs, given the SSA form, we check each argument

for each φ -function. The φ -function argument can either be defined by a real instruction or

another φ . In the latter case, the argument is replaced by the arguments in its definition and

the procedure is recursively applied.

In this way, uses can be classified into groups according to different definition sets, which

are then organized into CCs. GCC builds SSA based on Cytron’s algorithm but includes a

pruning procedure which detects and avoids inserting dead φ -functions. Our experiment is

performed both with the procedure on and off.

Without pruning, the number of CCs is 73.7% less than number of φ -functions on an

average. Table 3.1 shows the results over real variables after pruning. Data is collected

based on each function in a benchmark program. Therefore, item Max refers to the

maximum reduction in the functions while Average refers to the average reduction over

69

Table 3.1
CCs vs pruned φ -functions over REAL

% Reduction

vars phis ccs Max Average

164.gzip 3715 624 514 42.86 8.85

175.vpr 16648 1309 1092 61.11 7.39

176.gcc 125212 15810 14206 66.67 4.8

181.mcf 899 161 117 60 12.17

186.crafty 14341 1485 1226 67.47 10.55

197.parser 18720 2887 2653 50 6.08

253.perlbmk 20330 1789 1656 50 2.83

255.vortex 36585 1913 1747 50 1.9

256.bzip2 3598 342 286 50 12

300.twolf 21676 2653 1991 64.91 10.22

177.mesa 4446 3511 2779 53.33 21.03

179.art 1383 173 155 19.23 10.4

183.equake 1670 131 125 10 4.58

188.ammp 13735 1433 1297 51.72 9.49

functions within the same program.The pruning procedure reduces the number of φs

significantly. However, comparing CCs with pruned φs, we still observe a maximum

reduction of 67.47% from a function in 186.crafty and an average reduction of 7.7%. Note

that FGSA doesn’t require a separate pruning procedure yet produces fewer number of

gating functions. Benchmark 171, 172, 173, 200 and 301 are not reported. Number of CCs

and φ -functions are almost the same in these Fortran programs due to simple control flow

structures they have. When all the variables including virtual ones are taken into account,

number of CCs are reduced more over φs, resulting an average reduction of 10% with φ

pruning and 72.3% without pruning.

Table 3.2 shows the distribution of CCs based on the number of definitions for SPEC2000

INTEGER suite. From the table we can observe, CCs consisting of two definitions are

dominant, making up 62% or more of all the CCs across the suite. for all the benchmarks.

CCs consisting of more than two definitions require nested gating functions when single

predicate controlled gating functions are used. However, the number of CCs of more than

four definitions takes 13.38% in the worst case.

Table 3.3 shows the distribution of the length of predicate expressions found in congruence

classes. The data has been obtained by adapting Tu and Padua’s (Tu and Padua 1995)

70

Table 3.2
Number of definitions in CCs

ccs 2defs% 3defs% 4defs% 4+defs%

164.gzip 514 78.79 11.87 4.28 5.06

175.vpr 1092 81.32 7.97 7.97 2.75

176.gcc 14206 76.95 10.14 4.65 8.26

181.mcf 117 68.38 27.35 1.71 2.56

186.crafy 1226 62.07 14.52 10.03 13.38

197.parser 2653 79.8 16.66 2.41 1.13

253.perlbmk 1656 79.71 8.33 7.13 4.83

255.vortex 1747 87.58 5.15 3.15 4.12

256.bzip2 286 80.42 12.24 5.59 1.75

300.twolf 1991 76.49 10.9 9.94 2.66

Table 3.3
Length of CC predicate expressions

Benchmark median average % > 4 % > 8 max

164.gzip 1 1.98 12.5 0.4 13

175.vpr 1 2.06 7.1 1.4 31

176.gcc 2 3.79 20.3 9.2 132

181.mcf 1 1.97 6.0 1.7 9

186.crafty 2 3.15 16.7 6.1 95

197.parser 2 2.27 12.9 1.3 83

253.perlbmk 1 2.5 12.6 5.3 31

255.vortex 1 2.01 11.2 3.4 17

256.bzip2 1 1.71 4.6 1.4 15

300.twolf 1 2.23 8.1 3.5 32

GSA path predicate computation algorithm to FGSA. We observe that some benchmarks,

such as 176.gcc exhibit complicated control flow which manifests itself in the length of

predicate expressions. On the other hand, the median across the whole suite is no more

than two, and predicate expressions which are longer than eight elements make up less than

10% of the congruence classes indicating that in these benchmarks, there are some CCs

which span large regions of complicated control flow with large live ranges of definitions.

However, even for 176.gcc, congruence classes which has more than 16 predicates is 3.7%.

It is important to note that the length of the predicate expressions is a property of the

program at hand. As a result, optimization algorithms have to traverse and evaluate these

conditions either through predicate expressions built onto the CCs, or by traversing a chain

of φ functions.

71

3.7 Complexity of FGSA Construction

In the following discussing, we follow the practice for most recent SSA work (Bilardi and

Pingali 2003; Das and Ramakrishna 2005) and report the complexity per variable. Given a

program, let the number of nodes, edges, user defined variables and instructions be N, E, V

and I respectively. The FGSA construction is done in three steps:

1. The local CC computation scans each instruction in each node. This is done once for

all the variables, hence the time complexity per variable is O(I)/V.

2. During CC propagation, Algorithm 1 runs for each node that contains a single

predecessor, therefore its running time is bounded by O(N). Algorithm 2 runs over

edges which is bounded by O(E). Running time for T1 is bounded to O(N).

3. Let the total number of global CCs that require gating functions be Ctot , bounded

by the number of join nodes in the program, which is bounded by O(N). For each

definition in one of the CCs, computing its gating path predicate requires a query of

reduced reachable sets. The total number of queries is the total number of definitions

in the CCs, represented as ∑CCi |CCi.D|. A very loose bound for the number of

definitions in a CC would be O(N), which will yield a worst time complexity of

O(I)/V + O(N + E)+ O(N2). However, the experiments in Section 3.6 shows that

for most of CCs, the size of CCi.D is a small number. The term ∑CCi |CCi.D| can be

folded into Ctot , yielding a bound of O(N).

Putting it all together, the expected time complexity for FGSA construction per variable is

O(I)/V +O(N +E).

3.8 Executable FGSA

FGSA can be executed in a predicated architecture or on an architecture that is fully

equipped with the ability to execute the gating functions in FGSA.

72

(1)x1 = · if true

(2)x2 = . if P

(3)x3 = x1 if ¬P
(4)x3 = x2 if P

Figure 3.10: Predicated instructions

Generally, in a predicated architecture such as IA-64, the execution of an instruction is

guarded by a predicate(one bit predicate register), for example: Figure 3.10 shows the

sequence of code is the Program in Figure 4.1(b) after it is converted into predicated

instructions. A compiler employs i f -conversion (Allen et al. 1983) to eliminate branches

and to convert a control-flow region of program into a linear sequence of predicated

code. Note that gating functions in FGSA can be easily transformed into predicated

instructions. Based on the definition of gated congruence classes, a gating function

v1 = ψ(p1,p2,,pn)(d1,d2, ,dn) can be transformed into: v1 = d1 if p1, v2 = d2 if p2,·, vn = dn

if pn. Note that gating functions with a read-once predicate can be converted in the same

approach as long as the read-once predicate is initialized and reset properly after being read.

Because gating predicates are always disjoint, the predicates of predicated copy instructions

resulting from a particular gating function are disjoint as well, which is a unique property

of FGSA.

Assuming the architecture is a traditional predicated architecture which does not support

future value execution, the future values must be eliminated after we convert the gating

functions into predicated copy instructions . For each gating function argument, there is a

particular point of the program where the value of the argument is produced and available.

Therefore, in order to eliminate future values, we can move the affected copy instruction

right below the definition of the future argument.

Predicates present a challenge to program analysis and optimizations such as register

allocation. This is because the interference between variables depends on not only the

live ranges but also the relationship of predicates of live ranges. Consider the code in

Figure 3.10, x1 is live between instruction (1) and (3) while x2 is live between (2) and (4).

73

Without considering predicates, x1 and x2 interfere and cannot be put into the same register.

However, because x2 is defined and used on P while x1 is used on ¬P and P and ¬P are

complementary, x1 and x2 can share the same register. Several papers (Gillies et al. 1996;

Hoflehner 2010) address the issue. These techniques analyze predicate relationships and

allocate registers for predicated code. Predicated code resulting from FGSA can equally be

analyzed using these techniques although the disjointness of gating predicates can further

simplify the predicate analysis.

FGSA can directly be executed on an architecture which supports future values. This

support is no more complicated than allocating a register upon encountering an instruction

with a future value through the renamer. When the producer instruction is encountered, it

is simply renamed to the allocated register. It implies that the live range of a variable which

has a future value use starts from the future use and ends at the last use or a definition

depending on which one comes last. Gating functions can be directly executed similar to

conditional moves, encountered in many architectures.

We don’t investigate further execution of FGSA based code on predicated and future valued

architectures in this dissertation. Instead we concentrate on compiling for transitional

architectures.

3.9 Conclusion

We have presented a new program representation, its computation using an interval analysis

based approach, a novel transformation that allows conversion of irreducible loops to

reducible loops without node replication. FGSA representation facilitates expected linear

time conversion of programs from a control-flow graph, yields the same semantics as

SSA and GSA by using fewer gating functions, eliminates irreducibility and provides

additional information in the form of path expressions which can further simplify analysis

and optimization algorithms. Our algorithms do not require the computation of iterative

dominance frontiers and do not need a separate live-analysis to generate pruned forms of

the graph.

74

Chapter 4

Live Variable Analysis on FGSA

Live variable analysis is important for coalescing and register allocation. Traditional

liveness is conservative and imprecise. In a multi-assignment form, as shown in

Figure 4.1(a), x is reported to be live at the exit of B1. The fact is, B1 reaches a use of

x by following path B1B2B4. However along path B1B3, x is dead. To be more accurate,

x is partially live at B1, which cannot be represented by traditional backward data flow

analysis that is used to solve the liveness problem. Therefore, the conservative result that

x is (definitely) live at B1 is returned. In other words, although the traditional definition

of liveness is complete, it is not sound (Hoflehner 2010): "Completeness means at any

point of program where a variable is actually live, the liveness computation report it as live.

Soundness means that at any point where the liveness computation reports a variable as

live, it is actually live."

The problem partly originates from the fact that conventional live information is computed

and reported based on blocks. Because the blocks contain computations that may change

the liveness, we have to employ two sets for each block, LIVEIN and LIVEOUT to

represent the liveness at the entry of the block and the exit of the block respectively.

Consider data flow equation used to compute liveness. LIVEOUT of block ni is taking

the union of LIVEIN sets of all the succeeding blocks of ni. Therefore when a variable is

dead at LIVEIN of some succeeding block of ni, it is regarded as live in ni, although we

know it is not definitely live. If liveness is computed and reported on edges, conventional

75

LIVEIN and LIVEOUT for blocks can be simplified to LIVE. Furthermore, given LIVE

information for edges, the live information for blocks is easily computable. Unfortunately,

adopting an edge based approach addresses only part of the problem.

In an SSA program, if we assume that φ nodes are true functions, their arguments must be

treated as uses. This does not work in SSA and the φ -function arguments are considered

to be live at the exit of the preceding nodes , but not at the entrance of the node containing

the φ . For example, in Figure 4.1(b), the SSA form of the program in Figure 4.1(a), x1 is

live at the exit of B2 and x2 is live at the exit of B3, but neither is live at the entry of B4

while x3 is considered to be live at the entry of B4. This is not consistent with how liveness

is interpreted in the rest of program but it is unavoidable with an imprecise definition of

liveness.

if (P)

B2 B3

B4

x =

= x

B1

x =

x3 = φ(x1, x2)

B2 B3

B4

x2 =

B1

x1 =

if (P)

= x3

(a) Multi-assignment liveness (b) SSA liveness

Figure 4.1: Traditional liveness

Given the impreciseness of the traditional concept of liveness and the new perspective

brought in by FGSA, this chapter extends the concept of liveness to cover single assignment

in general and SSA and FGSA in particular. As we demonstrate later, this extension makes

the availability and consumption of values and the conditions under which this happens

precise, yielding a computation of liveness that is both complete and sound.

4.1 Extended Liveness

Contrary to the simple live and dead attributes which define live ranges, we define a variable

to be definitely live, (definitely) dead, partially live or exclusively live. We consider a

76

variable to be definitely live at a program point p if the value is available at p and used

along all paths from p to the program exit; a variable is dead if the value is not used along

any path from p to the program exit; a variable is partially live if the value is available at

p and used along some (but not all) paths from p to the program exit. We will delay the

definition of exclusive liveness for now as it is closely related to single assignment form

and congruence classes.

In general, the partial liveness of a variable indicates that the computation of the variable is

partially dead. There are two cases which make a variable partially live. Both Figure 4.2(a)

and (b) show that x is partially live at the exit of B1. In Figure 4.2(a) there are no uses of the

variable along some path to the exit. In Figure 4.2(b) the value is killed before it reaches

the use along some path to the exit.

= x

x =

exit

B1

= x

x =

exit

B1

= x x =

(a) x is not used along some path (b) x is killed along some path

Figure 4.2: Partial liveness

Traditional liveness unifies live ranges formed by multiple definitions as long as these

definitions are under the same variable name. Consider Figure 4.1(a) again. The liveness of

x is computed by unifying live ranges formed by the definition in B1 and the use in B4 and

the definition in B2 and the use in B4 into a single live range. In single assignment form,

these two live ranges represent separate live ranges. When such live ranges share a set of

uses, we consider each definition to be exclusively live at the uses.

Let’s review SSA liveness under this extension. We pointed out at the beginning that given

Figure 4.1(b), variable x1 is live at exit of B2 but not at the entry of B4 while x3 is live at the

entry of B4. With the extended liveness, we can interpret arguments of φ functions to be

77

actual uses which are conditionally used. As a result, the variables become exclusively live

at the block where the φ node is placed. This is because only one of the argument values

can be used at any time. The concept of exclusive liveness therefore addresses a significant

problem regarding gating function arguments in single assignment form.

Because of their conditional nature, gating functions in single assignment form offer two

alternative interpretations. One approach is to view that gating functions split the live

ranges, which is the approach the traditional SSA liveness analysis adopts. In this approach,

live ranges of gating function arguments end at the gating function and the live range of

the gating function result starts. Another approach which hasn’t been explored before is to

view gating functions to be transparent. In this approach, uses of gating function result can

be treated as the uses of the variables that reach the gating function, in essence extending

the live ranges of gating functions arguments. Figure 4.3 compares the two approaches

where ψ represents a general gating function.

x1 =

x2 =

x3 = ψ(x1, x2)

= x3

range
of
x2

live
range

of

range
of

x1, x2 are

x3

x1

at the gating function
exclusively live

live

live

x1 =

x2 =

x3 = ψ(x1, x2)

= x3

range

x2

of

live
range

of
x1

x1, x2 are
exclusively live

live

(a) live range splitting gating function (b) live range transparent gating function

Figure 4.3: Two liveness approaches in general single assignment form

Compared to live range splitting gating functions, live range transparent gating function

treatment has several important advantages. First of all, reaching definition information

that is obscured by gating functions gains its traditional meaning. In Figure 4.3 x1 and x2

are (exclusively) live at the use of x3 as they both reach this point. Note that extracting this

information in an SSA graph would require traversal and analysis (i.e., closure) of several

φ nodes. Second, live range of x3 is still computable if desired. Third, if one considers the

78

register allocation problem, the live range reported by the transparent approach is much

closer to the reality (precise if no copy operations are needed to eliminate the gating

functions) whereas the live range splitting approach optimistically reports shorter live

ranges. Furthermore, as we show later, this form is easily computable as part of single

assignment form computation. It appears that the splitting approach is most appropriate if

one desires to execute the gating functions. In this case, we can envision gating functions

as instructions, and starting of a new live range is the appropriate semantics for this

case. Similarly transparent gating functions are most appropriate for program analysis

and optimizations, but they must provide a direct relationship between the definitions and

uses if awkward traversals are to be avoided. Interestingly, SSA adopts live range splitting

approach although the gating functions are not executable, and it can’t readily adopt the

transparent approach because of chaining of φ nodes. As we shortly discuss, FGSA can do

both.

Let’s apply the two approaches on FGSA respectively. Since FGSA gating functions

are executable and the conditions of the gating are precisely specified through the

predicate expressions, it is possible to view the gating functions as executable, conditional

instructions. This view splits the live ranges at the gating functions. Live range of variables

which participate in a CC end at the gating function when dataflow is traditional or start at

the gating function when dataflow is future.

By applying the transparent gating function approach in FGSA, a particular definition can

reach the uses represented by the CC. As previously stated, this view is most appropriate for

code optimization and generation on traditional architectures, and it allows us to compute

liveness before the gating functions are placed during FGSA construction.

Now consider again our running example from Chapter 3 (Figure 4.4). With the extended

liveness, x2 is definitely live at the exit of B2 because it is used (through x3 in B3 and B4)

along all paths. x1 is partially live at the exit of B1 because it is not anticipated along B1B2

due to x2 and is anticipated along B1B3. The congruence class of x3 (CCx3
) is formed and

used at B3 and B4. Therefore, at the point where the CC is constructed, the definitions in

79

B1

B2

= x3

B3

B4

N Y

N Y

if (Q)

if (P)

y1 =

= x3

y2 =
x2 =

x3 = ψP (x2f
, x1)

x1 =

Figure 4.4: Running FGSA Example

the CC namely, x1 and x2 are exclusively live. This view permits us to associate liveness

with congruence classes, a significant advantage of the representation.

4.2 Associating Liveness with Congruence Classes

The extended definition of liveness when combined with congruence classes permits

simplification of many program analysis and optimization algorithms. Particularly inverse

transformation from single assignment form may benefit from reporting the live ranges of

each variable with respect to each CC the variable is a member of. In other words, we can

compute a variable’s total live range by unifying its live ranges with respect to each CC it

participates in. Given a gated CC, any definition in the CC arrives at the uses of the CC

only when its gating predicate expression is evaluated to be true. At any time, only a single

gating predicate expression can become true, which guarantees that a single definition can

be live and flow into the uses while other definitions either don’t flow or are killed. As a

result, we define an important concept, anticipated region of a definition:

Definition 15. Given CCG =< CC,G,ψG >, the Anticipated Region (AR) of di ∈CC.D is

a set of program points P such that ∀p ∈ P, di is the sole anticipated value at p among the

definitions in CC.D.

The anticipated region depends on where the definition is placed. When the definition

site moves or the definition is replaced by another definition which resides in a different

80

block, the anticipated region changes. However, the gating path predicate expression for

the value shall not change and it defines the maximal anticipated region of the definition.

For that purpose, we compute the anticipated window for each definition. Intuitively, the

anticipated window of a variable represents the set of program points such that a variable

may become anticipated at that point due a program transformation, such as copy folding

even if the variable is not currently anticipated.

4.2.1 Computing The Anticipated Window and The Gating Region

Anticipation window of a given variable can be computed by assuming that all the

definitions are available at the LCDOM of all the definitions in a CC and propagating

this information using path predicates associated with each variable. Therefore, we start at

LCDOM to traverse the CFG. Each CFG edge or block will contain a set of definitions that

are possibly anticipated at it. Clearly LCDOM contains all the definitions. The definition

set then is propagated and classified at each branch. The taken edge of branch P contains

the set of definitions where P appears as a term in their gating path predicate. Similarly,

the not-taken edge contains the rest of the definitions. If P is irrelevant to the gating path

predicates of the definitions coming to the branch, the whole set is passed to the first control

independent node of P. The process ends when the edge or the block contains a single

anticipated definition. If the CC is not fully anticipated at LCDOM, we need to mark the

dead ends before the processing. When a program point contains a single definition, it

starts the maximal anticipated region of the definition:

Definition 16. Given CCG =< CC,G,ψG >, the maximal anticipated region of di ∈CC.D,

or referred to as the gating region (GR) of di is a set of program points P such that ∀p ∈ P,

either p ∈ AR(di) w.r.t CC or p is in the anticipated window of di such that it contains only

di.

As we demonstrate shortly, anticipated region and gating region are crucial concepts in

analyzing the interaction between various live ranges. In Figure 4.5 (a), x1 and x2 are

81

members of CCx3
only. The result of computing the anticipated window is shown in

Figure 4.5 (b). B1 is the LCDOM which contains x1 and x2. Next we encounter branch P.

Since x1’s gating path predicate contains ¬P, the not-taken edge (B1B3) gets x1. Similarly,

because x2’s gating path predicate contains P, the taken edge B1B2 gets x2. Because both

edges contain a single definition, the processing ends and (B1B3) marks the beginning of

GR(x1) while (B1B2) marks the beginning of GR(x2). Based on this, we compute the

anticipated region and gating region of x1 which are the same while the gating region of x2

includes every point in AR(x2) plus edge B1B2.

The anticipated region depends on where the definition is placed while the gating region

depends on the corresponding gating predicate expression. Therefore, when optimization

algorithms such as copy propagation are applied on the CC, the anticipated region of each

definition may change but the gating region will not. The gating region is therefore a

central concept as it is strongly tied to the semantics of the program. While it is possible

to envision program changes that can modify the gating region through code motion and

rewriting, in general, safety constraints in optimizations respect the semantics indicated by

the gating region. As such, gating region concept precisely defines the range of program

points a definition can be safely placed. For example, a definition that is inside the gating

B1

B2

= x3

B3

B4

N Y

N Y

if (Q)

if (P)

y1 =

= x3

y2 =
x2 =

x3 = ψP (x2f
, x1)

x1 =

AR(x2) : B2, (B2B3), (B2B4)

B3

B4

N Y

if (Q)

if (P)

y1 =

= x3

y2 =
x2 =

x3 = ψP (x2f
, x1)

x1 =

= x3

B1

[x1, x2]

GR(x1)

AR(x1)

N Y

B2

AR(x2)

GR(x2)

[x2]
[x1]

AR(x1) = GR(x1) : (B1B3), B3, (B3B4)

GR(x2) : (B1B2), AR(x2)

(a) Running FGSA Example (b) Anticipated Region and Gating Region

Figure 4.5: Extended liveness on FGSA

82

region of a CC will never be partially dead with respect to this CC. In other words, if the CC

is executed, the value is used. Furthermore, the gating region of a variable with respect to a

given CC classifies interferences into two main groups, namely those which occur outside

the gating region and those which occur inside the gating region.

Consider Figure 4.6. There are two gated CCs: CCx4
and CCx5

and two non-gated CCs:

CCx1
and CCx3

. It is easy to see that the program has undergone some optimizations and

some definitions are not in their original places. However the gating predicate expressions

which represent the semantics of the program remain. According to the gating predicate,

the gating regions w.r.t the two gated CCs are listed in Figure 4.6(b). The gating regions

for non-gated CCs are trivial.

4.2.2 Interference Under Extended Liveness

When two variables are simultaneously live at a given program point, we consider these

two variables interfere. Under the extended liveness, this description still holds except that

when two variables are exclusively live, they don’t interfere. Understanding and analyzing

interferences between variables in single assignment forms is key in many optimizations

such as coalescing, inverse transformation and register allocation. With extended liveness

and CCs, we can now classify the interferences into different types and look for a solver

for each type.

1. D-to-D interference: Definition-to-definition interferences result when definitions

that belong to the same CC are placed above their gating regions such that two or

more definitions simultaneously flow through a program region towards their gating

region. In Figure 4.6(a), the interference between x1 and x3 is a D-to-D interference.

In order to solve it, we can place a copy of one definition or move one definition into

its gating region depending on the approaches we employ. The points of placement

must dominate its (exclusive) uses in the CC. For that purpose, we define exits of a

gating region:

83

B8

P

x3=
Q

W= x1

=x3

x2=

x1=B1

B2 B3

B4 B5

B6 B7

N Y

N YN Y

N Y

N Y

x4 = ψ(P,¬P)(x1, x2) x5 = ψ(Q∧W,¬Q∨¬W)(x3, x1)

B9

GR(x1) w.r.t CCx4
:

(B1B3),B3,(B3B6),B6,(B6B8)
GR(x2) w.r.t CCx4

:

(B1B2),B2,(B2B4),B4,(B2B8),(B4B8)
GR(x3) w.r.t CCx5

:

(B5B7),B7,(B7B9)
GR(x1) w.r.t CCx5

:

(B3B6),(B5B6),B6,(B6B9)

(a) (b)

Figure 4.6: Gating region

Definition 17. An exit of a gating region of di ∈CCi.D is an edge BiB j such that di

is partially or definitely live at block Bi and exclusively live at block B j.

There exists either a single point or multiple points which (collectively) dominate all

the exits of the gating region. These points are the potential placement points for

the new definition. If a single point exists, a single copy is enough to eliminate the

interference. Otherwise, a copy is needed at each point. Placing copies at such points

guarantees that the value of the original definition can flow to the CC (uses in the CC)

along the original path predicate expression. In other words, the placement keeps the

program semantics. Assuming we place the new definition beyond its gating region,

the definition becomes no longer exclusive live at some B j. Similarly, if we place the

new definition at a point which doesn’t dominate all the exits, the value flows into

the CC along a different path predicate. In either case, the program semantics will

change.

2. U-to-D interference type A: Given d1,d2 ∈ CCi.D, d1 has a use either in d2’s

anticipated region if d2’s definition is placed in its gating region or d1 has a use

in d2’s gating region. In such a case, d1 is live at d2’s definition point, which implies

that d1 and d2 interfere. For example, in Figure 4.6(a), the use of x1 at B4 is in x2’s

anticipated region. Because d1 has an actual use, definition of d1 and its uses form

84

a non-gated CC: CCd1
. CCd1

and CCi both contain d1 as one of their definitions. In

order to solve this type of interference, we have two options. One option is to insert

a single copy of d1 given by d′1 = d1 to isolate the two CCs (i.e., replace d1 in CCi

by d′1). The other option is to shrink d2’s anticipated region such that the region is

below the use of d1. In Figure 4.6(a) this would involve insertion of two copies of x2

at the exits of its gating regions.

3. U-to-D interference type B: Given d1 ∈ CCi.D, d1 has a use at the point where d1

is exclusively live with respect to CCi. Type B is similar to type A in the sense that

CCd1
and CCi share d1. Because the use is at a multiple value anticipated point, the

only option to solve the interference is to isolate two CCs by inserting a single copy

of d1.

These types of interferences will manifest themselves in inverse transformation and register

allocation. The different options we select to solve the interferences have different costs

in terms of number of copy instructions inserted. In the next Chapter, we focus on inverse

transformation and demonstrate the developed algorithms to reduce the number of copy

insertions.

4.3 Computing and Associating Liveness with

Congruence Classes

Given the definitions provided by extended liveness, we can now illustrate how the

extended liveness can be further enhanced and computed to make it useful for optimization

algorithms.

Definition 18. When v1 and v2 are both live at a program point p such that v1 is live at

predicate P1 and v2 is live at predicate P2 and P1 and P2 are disjoint (i.e., P1 and P2 cannot

be simultaneously be true), then v1 and v2 are exclusively live w.r.t each other.

By convention, variables interfere when they are simultaneously live at some program

85

point. This is not true for variables that are exclusively live. For a CC in FGSA, all the

definitions that participate the CC are exclusively live at the gating function point because

gating path predicates are always disjoint.

For FGSA, we define liveness based on CCs:

Definition 19. CC = {D,U} is live at a program point p if and only if:

1) there exists a use ui ∈CC.U and a path from p to ui; AND

2) for each definition di ∈CC.D, there exists a path from di to p such that di is not killed

along the path.

No computations are performed on the edges, therefore conventional LIVEIN and

LIVEOUT for blocks can be simplified to simply LIVE for edges. To further improve

the accuracy, the live information can be predicated, i.e., we say CC is live on edge e on P

when CC is partially live and only along the path presented by P. In FGSA construction,

information is propagated along the edges together with the path predicates, and as a result

live information can also be computed at the same time. In FGSA, a given use can only

be a member of a particular CC eventually, although it may form a CC initially without

definitions. In the following discussion, we use the phrase ”use u is live at edge e” and the

phrase ”CCu is live on e” which u participates in eventually interchangeably.

Consider local CC computation. If block Bi contains a non-empty upward exposed CC,

it implies that the CC is live at ei assuming ei is a preceding edge of Bi. Then during the

propagation, the CC (or definitions participate in the CC) is live along the edges that are

consumed by T1/T2 right before the CC meets its definitions.

Globally T1/T2 propagates data flow bidirectionally. Therefore we can compute liveness

on edges using availability and anticipation of variables. In the forward direction, we can

collect definitions which are available along the edges. In the backward direction, we

can collect CCs (represented by the uses) that are anticipated along the edges. Given this

information, we consider a definition to be live on a given edge if the definition is available

and at least one CC is anticipated along the same edge. When multiple definitions are live

at on edge, they are exclusively live. Based on anticipation information, we can further tell

86

Algorithm 1
We define Function f such that :

CC(u,wi) = f (f (CC(u,v),CC(v)),CC(v,wi))

Function f:
INPUT: CC(X), CC(Y)
OUTPUT: CCup(Z),CCdown(Z)

begin

(L1)if (DEF(X) or USE(X)) then

(L2) for each e in Edgeup(Y)
(L3) insert CCdown(X) into AVAIL[e]

(L4)if (USE(Y)) then

(L5) for each e in Edgedown(X)
(L6) insert CCup(Y) into ANTIC[e]

(L7)if (Λ ∈CCdown(Y).D
and CCdown(Y).U �= /0)

(L8) for each e in

Edgedown(X)∪Edgeup(Y)
(L9) insert CCdown(Y) into ANTIC[e]

(L10)if (¬DEF(X)) then

(L11) Edgeup(Z) = Edgedown(X)
∪Edgeup(Y)

(L12)else

(L13) Edgeup(Z) = Edgeup(X)
(L14)if (DEF(Y) and Λ /∈CCdown(Y).D) then

(L15) Edgedown(Z) = Edgedown(Y)
(L16)else

(L17) Edgedown(Z) = Edgedown(X)
∪Edgedown(Y)

//X is case 1 or 2

(1)if (¬DEF(X)) then

(2) CCup(Z).U = CCup(X).U ∪CCup(Y).U
(3) add CCup(Z) into globalCC

(4) CCdown(Z) =
DEF(Y)?CCdown(Y) : CCup(Z)

(5) remove CCup(X),CCup(Y)
from globalCC

//X is case 3 or 4

(6)else

(7) CCdown(X).U = CCdown(X).U
∪CCup(Y).U

(8) CCup(Z) = CCup(X)
(9) CCdown(Z) = DEF(Y)?

CCdown(Y) : CCdown(X)
(10) if (DEF(Y) and Λ ∈CCdown(Z).D) then

(11) CCdown(Z).D = CCdown(Z).D
∪CCdown(X).D

(12) remove CCup(Y) from globalCC

// compute R sets

//(R1) add S(Y) to reduced reachable

//(R1) set of each node in S(X)
//(R2) S(Z) = S(X)∪S(Y)
end

Figure 4.7: Algorithm 1 with live analysis

respect to which CC a definition is live.

Similar to associating CCup and CCdown with each edge (node), we additionally associate

Edgeup and Edgedown with each edge (node) during the propagation. Edgeup represents

the list of edges that are transparent to the uses in the corresponding CCup. Edgedown

represents the list of edges that are reachable from the definitions in CCdown. We also

keep two global vectors ANTIC[] and AVAIL[], which are indexed by edges and updated

during the propagation. ANT IC[ei] contains CCs that are anticipated along edge ei while

AVAIL[ei] contains CCs (definitions in the CCs) that are available along edge ei.

We now modify Algorithm 1 and 2 to propagate Edgeup and Edgedown and to update CC

87

live information during FGSA construction. In Algorithm 4.7, line L1-L17 computes live

information for CCs. In the modified algorithm, when CC(X) contains downward exposed

definitions or uses, edges in Edgeup(Y) will get the same values as CC(X). For those edges,

we add CCdown(X) into their AVAIL[] set (line L1-L3). When CC(Y) contains upward

exposed uses, edges in Edgedown(X) all reach the uses. For those edges, we add CCup(Y)

into their ANTIC[] set (line L4-L6). When CCdown(Y).D contains Λ, it implies values are

partial transparent through the region. Therefore when CCdown(Y).U contains uses, these

uses are anticipated along edges in Edgeup(X)∪Edgeup(Y) (line L7-L9). The resulting

Edge(Z) is also updated during the process (line L10-L17). When edge merging happens

(Algorithm 4.8), Edgeup and Edgedown are merging respectively.

During T1, when loop l p contains definitions which reach the back-edge (i.e.,

CCdown(l p).D is not empty) and l p contains upward exposed uses(i.e., CCup(l p).U is

not empty), edges in Edgeup(l p)∪Edgedown(l p) represent the edges to which the uses

are either reduced reachable or reachable through the back-edge. Therefore, we add

CCdown(l p) to AVAIL[] and ANTIC[] entries that are corresponding to these edges.

4.4 Conclusion

We have extended the concept of liveness on FGSA with respect to predicates and

congruence classes. By doing so, we are able to classify interferences among variables

into categories and look for solutions for each category, which can be utilized by inverse

transformation and register allocation algorithms. Finally in this chapter, we have presented

algorithms to combine FGSA construction with liveness computation.

88

Algorithm 2
INPUT: CCup(ei),CCdown(ei),CCup(e j),CCdown(e j)
OUTPUT: CCup,CCdown
begin

(1)CCup.U = CCup(ei).U ∪CCup(e j).U
(2)add CCup in the globalCC

(3)if (DEF(ei) or DEF(e j)) then

(4) D = CCdown(ei).D∪CCdown(e j).D
// CC(ei) or CC(e j) does not contain definitions

(5) if(¬DEF(ei) or ¬DEF(e j)) then

(6) D = D∪{Λ}
(7) if (CCD not exist in globalCC)

(8) CCnew = {D, /0}
(9) add CCnew to globalCC

(10) CCdown = CCnew

(11) else

(12) CCdown = CCD

(13)else

(14) CCdown = CCup

(15) remove CCup(ei) and CCup(e j) from globalCC

(L1) Edgeup = Edgeup(ei)∪Edgeup(e j)
(L2) Edgedown = Edgedown(ei)∪Edgedown(e j)

// compute R sets

//(R) S(u,v) = S(ei)∪S(e j)
end

Figure 4.8: Algorithm 2 with live analysis

89

Chapter 5

Inverse Transformation From FGSA

We have introduced FGSA, algorithms to transform a given program into this

representation and we have presented an extended definition of liveness for

single-assignment forms in general and congruence classes in particular. We now illustrate

that a congruence class based single-assignment form coupled with the extended definition

of liveness also leads to an efficient inverse translation algorithm. This algorithm presents

a fresh perspective and a promise of an optimal solution to the long-standing problem of

inverse translation from single-assignment forms.

Key to our approach is the classification of interferences under a well-formed taxonomy

and developing solutions for each element of the taxonomy. This taxonomy is enabled by

the extended liveness definition as well as the use of congruence class concept in specifying

the interferences.

In the rest of this chapter, first in Section 5.1 we give a simple algorithm to translate a

given FGSA program back into multi-assignment form. This algorithm is analogous to

an algorithm developed for SSA by Boissinot et al. (Boissinot et al. 2009). Our purpose

in providing the algorithm is to show that using a single gating function per congruence

class and placing this gating function at a point in the program at times involving future

dependencies will not affect the applicability of existing inverse transformation techniques

on FGSA. We follow this simple algorithm with a taxonomy of interferences in Section 5.2

90

and present key notions of path-separability and isolation. Also In this section, we

demonstrate that inverse translation is the process of ensuring that all congruence classes in

the representation are path-separable and isolated. In Section 5.3, we discuss the problem of

minimizing copy instructions inserted for this purpose and develop solutions for each case

arising from our taxonomy. In Section 5.4, we introduce an important concept, common

use form which further extends the concept of congruence class to combine two or more

congruence class into a single congruence class. Finally, in Section 5.5 we summarize our

approach and conclude the chapter.

5.1 Simple Inverse Translation from FGSA

Inverse transformation from FGSA requires elimination of gating functions on an

architecture that is not designed to execute gating functions with future values. Similar to

CSSA and TSSA defined in Sreedhar et al.’s (Sreedhar et al. 1999), we define C-FGSA

(conventional FGSA) as the form computed using the set of algorithms in Chapter 3.

Inverse transformation from C-FGSA is straight-forward. All the variable occurrences in a

gating function are replaced by a representative variable, and later the gating function can

be removed. Given a program in C-FGSA form, optimizations may transform it into a state

in which this simple procedure will not result in a semantically correct outcome because of

interferences. Therefore, given a gating function v = ψG(D), the algorithm for translating

out of FGSA consists of three steps: (1) For each definition di, insert gi : v = di at the

gating function, where gi is di’s gating path predicate; (2) Eliminate the gating function;

(3) Move copy instruction gi : v = di along the control flow such that the predication is

eliminated and di is not in future form. Critical edges are split in order to put the copy

instructions in proper control flow positions. This algorithm follows a similar approach

to Boissinot et al. (Boissinot et al. 2009). The first step inserts all the copies necessary

and the redundant copies are assumed to be eliminated by applying coalescing algorithms

developed specifically for this purpose.

Consider the lost copy problem of SSA inverse transformation in Figure 5.1(a) within the

91

y1 =

x1 =

if (P)

N Y

x3 = ψP (x2, x1)

= x3

CCx3
= {{T : x1, P : x2}, {x3}}

x2 = y1

y1 =

x1 =

if (P)

N Y

x3 = ψP (y1, x1)

= x3

CCx3
= {{T : x1, T : y1}, {x3}}

x2 = y1

(a) Lost copy problem (b) Copy folding applied

x3 = ψP (y1, x1)

y1 =

x1 =

if (P)

N Y

CCx3
= {{T : x1, T : y1}, {x3}}

= x3

P : x3 = y1

¬P : x3 = x1

y1 =

x1 =

if (P)

N Y

x3 = ψP (y1, x1)

= x3

CCx3
= {{T : x1, T : y1}, {x3}}

x3 = x1
x3 = y1

(c)Inverse transformation: step 1 (d)Inverser transformation: step 2&3

Figure 5.1: Translation from FGSA

FGSA framework. After the copy propagation, CCx3
and the gating function are updated

as shown in Figure 5.1(b). With the updated graph, both x1 and y1 are above their gating

regions which results in a D-to-D interference and the D-to-D interference is the reason why

the graph is in T-FGSA form. Note that the detection of the interferences is not necessary

for the correctness of the above algorithm.

When we apply the steps of the algorithm, two copy instructions are inserted at the gating

function (Figure 5.1(c)), and are later moved to a proper point of the program to eliminate

the predication (Figure 5.1(d)). Note that the final points of insertion for these variables are

precisely the beginning of their gating regions. Coalescing algorithms will remove x3 = x1,

however the other one will not be removed.

92

y1=

P

x1= x2=

Q

YN

YN

x3 = y1

x4 = ψ(P∧Q,¬P∧Q,¬Q)(x2, x1, x3)

B1

B3

B4

B5 B6

B7

B2

y1 =

P

x1= x2=

Q

YN

YN

x3 = y1

x4 = ψ(P∧Q,¬P∧Q,¬Q)(x2, x1, y1)

B1

B3

B4

B5 B6

B7

B2

(a) (b)

Figure 5.2: Path separability example

5.2 Path Separability, C-FGSA, T-FGSA and Isolation

Before we can develop efficient inverse transformation algorithms which are provably

optimal, we need to understand the implication of various optimizations on a given

single assignment form. Although it is intuitively clear that one cannot simply drop

gating functions and rename variables to a single representative variable to go back to

the multi-assignment form after most optimizations, existing approaches are limited to

handling interferences created due to optimizations.

In order to gain further insight, consider the program shown in Figure 5.2(a). Before

any optimizations, this program clearly is in a form where one an simply drop the gating

function and rename all instances x1,x2,x3 to x to go into the multi-assignment form. It is

important to observe that the gating predicates of the gating function were easily computed

using the presented algorithms and they are still computable after the variables have been

renamed into the unique definition form using subscripts. All that’s necessary is to assume

that a new definition xi kills any x j reaching to its definition point. In other words, the graph

is still path separable based on the definition of path separability (Definition 4).

Consider now the problem of recalculating the gating path predicates on Figure 5.2(b).

Assuming y1 kills x2 and x1 by the same definition, it is clear that predicates computed as

93

such would be wrong and hence would not represent the semantics of the program correctly.

Since the gating path predicates are invariant, we can test for path separability using a new

definition given below:

Definition 20. Given a CC = {D,U} and its corresponding gating function ψG(D),

definitions in CC.D are path separable if and only if ∀di ∈ CC.D, di is the last definition

from LCDOM(CC.D) to uses in CC.U along path represented by gi, where gi is the gating

path predicate for di.

In fact, optimizations such as code motion and copy propagation destroy either the path

separability of definitions or destroy the isolation property of congruence classes, or, both.

While path separability deals with interferences within definitions, isolation deals with

interferences between uses of one definition and other definitions. We define isolation as

such:

Definition 21. Given CC = {dv = ψG{d1,d2, · · · ,dn},U} where dv is the destination of the

gating function, the related use set is defined as:

Û = CC.U ∪ ⋃
di∈CC.D

CCdi.U, where CCdi is the congruence class consisting of the single

definition di and its uses.

Correspondingly, the related definition set is defined as:

D̂ = CC.D∪{dv}.
CC is isolated if and only if ∀u ∈ Û and its definition xu, condition (I) and one of the

conditions (II)(a) and (II)(b) must hold:

(I) when xu is not dv, xu reaches u without being intervened by definitions from D̂/ {xu}.
(II)(a) when xu is dv and the gating function contains no future values, xu reaches u without

being intervened by definitions from D̂/ {xu}.
(II)(b) when xu is dv and the gating function contains future values, let the set of future

values be D f , ∀di f ∈ D f , di f reaches u.

Theorem 5.2.1. If a gated CC is path separable and isolated, the C-FGSA Property holds

for the CC.

94

B1

B2

if (Q)

YN

Y

B3

x1 =
x2 =

B4

if (P)

N

= xu2
= xu3

x3 = ψP (x1, x2)

CC1 = {{T : x1, T : x2}, {¬P ∨ ¬Q : xu3}}
CC2 = {{T : x2}, {P ∧Q : xu2}}

x3 = ψP (x1, x
′
2)

B1

B2

if (Q)

YN

Y

B3

x1 =
x2 =

B4

if (P)

N

= xu2
= xu3

CC2 = {{T : x2}, {P ∧Q : xu2}}

B
′
2

CC1 = {{T : x1,¬P : x
′
2}, {¬P ∨ ¬Q : xu3}}

x
′
2 = x2

(a) (b)

Figure 5.3: Isolation and path-separability

Proof. Let CCi = {dv = ψG(D),U} be a path separable and isolated gated CC. Because

CCi is path separable, ∀di ∈ CCi.D it is not killed by any definition along gi. Further, dv

is not killed by any definition when its value flows into uses. Therefore renaming di or dv

into a representative name will not affect its value flowing into any use of CCi.U . dv cannot

appear in any other CCs so renaming dv cannot affect other CCs. We can classify CCi into

two cases:

† If CCi shares no definition with other CCs, renaming of CCi will not affect the

semantics of other CCs. Therefore CCi has C-FGSA property.

† CCi shares definition(s) with other CCs. Let di ∈ CCi.D ∩CCj.D. Because of

condition (I) in Definition 21, the value that flows between di and any use in CCj.U

is not intervened. Along the renaming di during translating CCi, uses in CCj.U can

be renamed using the same representative. CCj must be a CC consisting of single

definition di, so renaming of CCj cannot affect other CCs.

To perform inverse transformation from FGSA, we can check each CC with respect to

path separability and isolation criteria. If both are satisfied, eliminating the corresponding

gating function is trivial. Otherwise, copy insertion and code motion are applied. Consider

Figure 5.3. This program is in a T-FGSA form. Since path predicate expressions for both

95

x1 and x2 are T , CC1 is not path-separable. Furthermore, because of CC2, gated CC1 is not

isolated with respect to x2. In order to make CC1 path-separable, we can insert either a copy

of x1 on path P or a copy of x2 on path ¬P according to the gating function ψ(P,¬P)(x1,x2).

Considering that CC1 may need to be isolated from CC2 w.r.t x2, the copy of x2 has priority

over x1. Once x
′
2 = x2 is inserted as shown in Figure 5.3(b), CC1 obtains C-FGSA property.

Next we present the algorithm to check path separability for CCs in T-FGSA. We’ll discuss

how to minimize copy insertion in Section 5.3.

5.2.1 Checking for Path Separability

Checking for path separability involves the concept of the gating region for a congruence

class. Intuitively, Definition 20 can be understood as a variable being the sole anticipated

value in its gating region. However, when the congruence class in question is of the

nested form, we need to analyze each sub-congruence class and locate the gating region

appropriately.

In order to understand the problem better, consider Figure 5.2 again. Although there is

a single congruence class represented by the gating function ψ(P∧Q,P∧¬Q,¬P)(x2,x1,x3),

this congruence class consists of a nested congruence class ψ(P,¬P)(x2,x1) as an embedded

component. In other words, x1 and x2 are exclusively live in block B4, and the gating

function ψ(Q,¬Q)(ψ(P,¬P)(x2,x1),x3) selects either this value or x3 depending on the

predicate Q. From this perspective, the beginning of the gating region for x1 is edge

(B1B2), for x2 it is (B1B3), for {x1,x2} (B4B6) and finally for x3, it is edge (B4B5).

Our algorithm which detects path separability involves insertion of a holder block at the

beginning of the gating region for each and recursively checking for path separability,

in essence decomposing the gating path predicate expressions. Given CCi = {v =

ψ(p1,p2,···)(d1,d2, · · ·),U}, the algorithm consists of several steps:

1. For each definition, locate or place (if no such block exists) a block Bi, referred to

as holder block based on its gating path predicate, marking the beginning of a gating

region. Note that the gating path for di is the path from LCDOM(CCi.D) through Bi

96

(1)for di ∈CC.D do

(2) let Bi be di’s holder block

(3) if de f (di) reaches Bi then

(4) if AVAIL(Bi) �= {di} then

(5) di is not path separable

(6) for d j ∈CC.D and i �= j do

(7) if Bi reaches de f (d j) then

(8) di is not path separable w.r.t d j

Figure 5.4: Basic algorithm for checking path separability

to any use of CCi.

2. Divide CCi.D into subsets S1, · · · ,Sm based on distinctive holder blocks such that

Si = {di1,di2, · · ·} contains all the definitions that have the same holder Bi. This

results from the fact that all the definitions in Si share the common suffix of their

gating path predicates, resulting in some variables being exclusively live.

3. Apply basic algorithm on S1, · · · ,Sm to check path separability among subsets.

4. For any Si that contains more than one definition, cut the common suffix of the gating

path predicates, repeat the algorithm to check path separability within the subset.

Figure 5.4 presents the basic algorithm that checks path separability for a set of definitions

in a CC with distinctive holder blocks. For efficiency, this algorithm precomputes reduced

reachability (Boissinot et al. 2008). Given a directed flow graph G =< N,E > with node

set N and edge set E, the reduced graph G′ =< N,E ′ > is the subgraph of G such that

it contains no back-edges. The reachability on G’ is referred to as reduced reachability.

Also reaching definition is computed on the subgraph involving the CC. de f (di) represents

the node where di is defined. In the algorithm, line (3)-(5) checks whether di is the only

definition in the reaching definition set of Bi if it is defined before Bi. Line (6)-(8) checks

whether di is the only definition on all paths from Bi to any use in CC.

Theorem 5.2.2. Algorithm in Figure 5.4 correctly computes path separability.

97

Proof. On path from LCDOM(CC.D) to Bi, line (3)-(5) guarantees di is the only definition

that reaches Bi without being killed. Suppose there exists d j ∈ AVAIL(Bi) where d j ∈CC.D

and i �= j, then upon arriving at Bi, di and d j are not distinguishable using path predicate of

di.

Line (6)-(8) guarantees that di is not killed by other definitions, and it does not kill other

definitions either. There are two cases:

1. di ∈ AVAIL(Bi). According to line (7), d j must kill di along path Bi→ de f (d j). So

the result that di and d j are not path separable holds.

2. di /∈ AVAIL(Bi). Assume di is path separable. Then along all the path from Bi to any

use of CC, di must flow, which means di must be defined along all the path from Bi

on. In other words, de f (di) post-dominates Bi. Since Bi reaches de f (d j), the fact

that either d j kills di along the path de f (di)→ de f (d j) or de f (di) post-dominates

de f (d j) holds. In either case, di and d j are not path separable.

Given CCi = {v = ψ(p1,p2,···)(d1,d2, · · ·),U},

† case1: d1 and d2 are not path separable, CCi is isolated with respect to d1 and d2, we

can insert either a copy of d1 on p1 or d2 on p2;

† case2: d1 and d2 are not path separable, CCi is not isolated with respect to d1 only,

we can insert a copy of d1 on p1. If CCi is not isolated with respect to d2 only, a copy

of d2 can be inserted instead.

† case3: d1 and d2 are path separable, CCi is not isolated with respect to either d1 or d2

or both. In Section 5.3, we discuss the solutions to handle such cases.

5.3 Minimizing Copies

As we have discussed in Chapter 4, interferences among variables can broadly be classified

into three categories, namely, D-to-D, U-to-D type A and type B. When definitions are

98

shared among congruence classes, whether these classes are gated or not, the data-flow

aspects of the involved congruence classes must be compatible, since the inverse translation

will force all the CCs to use the same name. While some of the data-flow incompatibilities

can be eliminated by inserting copies to divert the data flow in gating regions, there are

incompatibilities (such as U-to-D type B interferences) which require total isolation of the

involved congruence classes. As a result, the optimal solution to a given set of interferences

has to take into account how each type of interference manifests itself and whether the

interference is localized to a particular CC or multiple CCs are involved in the solution of

the problem.

Although programs which are in C-FGSA form are isolated by definition, this definition of

isolation is difficult to test and use. Furthermore, this definition mixes two distinct cases

of isolation together; programs in which the target CC is strictly isolated (i.e., share no

definitions with other CCs) and those which share definition(s) but shared variables do not

interfere. When we consider the interference testing based on the extended liveness, it

becomes clear that the separation of the two cases enables a divide-and-conquer solution

in which we first develop algorithms specifically for strictly isolated CCs and then extend

these solutions to the global problem of solving interferences optimally when CCs share

their definitions. It should be clear that a CC that is isolated but not strictly isolated should

lead to a solution in which no copy instructions are placed by the global algorithm. We

now define strict isolation formally:

Definition 22. A CCi = {{d1,d2, · · · ,dn},U} is strictly isolated w.r.t di if and only if there

does not exist CCj, i �= j such that di ∈CCj.D. CCi is strictly isolated if and only if ∀di ∈
CCi.D,CCi is isolated w.r.t di.

Based on the concept of strict isolation, we divide the problem of inverse transformation

into three subproblems:

1. Eliminating interferences when a CC is strictly isolated;

2. Eliminating interferences when a gated CC shares definitions with one or more

99

non-gated CCs;

3. Eliminating interferences when a gated CC shares definitions with one or more gated

CCs.

Note that insertion of a copy instruction targeting a particular variable can isolate a given

CC with respect to others. As a result, we can rely on isolation to convert case (2) and

(3) to a problem of case (1), although the process may insert more copies than necessary.

Therefore, elimination of interferences when a CC is strictly isolated is a key algorithm

which is used whenever a particular problem is reduced to case (1). Similarly, most

CCs share variables with non-gated CCs and the solution of this case (2) is another key

component of a global optimization solution.

In the following subsections, we present a provably optimal copy placement algorithm in

terms of the number of copy instructions placed for case (1) and case (2) listed above. We

further provide an upper bound for a near-optimal algorithms for case (3).

5.3.1 Handling Interferences for an Isolated CC

A strictly isolated CC is C-FGSA if it is path-separable. Otherwise, inserting copies of

definitions to their gating regions will make it path-separable. Any non-path-separability

between two definitions can be solved by inserting copies for either one of the definitions

at its gating region. Note that the copy placement must dominate all the exits of the gating

region and when there are multiple possible placements, the one with the minimum number

of copies is selected. We refer to this placement as D-placement in the gating region.

As a result, we can map copy minimization to achieve path-separability into a weighted

vertex cover problem (selecting a subset of vertexes to cover all the edges with minimal

cost). For the CC in question, we construct Non-Path-Separability Graph (NPSG) which

is a special interference graph. Vertexes in an NPSG are definitions in a CC and there

is an edge between two vertexes if the definitions are non-path-separable w.r.t each other.

There is a cost associated with each vertex, which represents the number of copies that are

100

x1

x1=
x2 =

if(P)

if(Q)

B1

x3 = ψ(¬P∨¬Q,P∧Q)(x1, x2)

B2

B4

B3

¬P ∨ ¬Q : x1

P ∧Q : x2

gating path predicate:

(1)(2)

NPSG:

x2

Figure 5.5: A non-path-separable CC and its NPSG

necessary to be inserted to cover the corresponding gating path. To find the solution with

the minimal number of copies to achieve path separability for a CC is to find the solution

to the optimal weighted vertex cover on the NPSG. Figure 5.5 shows a strictly isolated and

non-path-separable CC and its NPSG. x1 and x2 are not path separable and their gating path

predicates are shown at the up right corner of the figure. For x1, no single basic block in

the CFG can represent the starting point of its gating region but B2 and B4 together can.

Therefore we need two copy instructions to be inserted at x1’s gating region. Similarly, we

compute the cost for x2. Now we can construct the NPSG as it is shown at the down right

corner of the figure. It is easy to see, in this example, picking x2 is the optimal solution. By

solving the vertex cover on the NPSG and inserting one copy for x2, we make the CC path

separable.

Although the general minimal vertex cover problem is NP-complete, it has polynomial time

optimal solution on chordal graphs (Gavril 1972). Sebastian (Hack 2005, 2007) proves that

the interference graphs on SSA is chordal, based on the fact that when two variables x1 and

x2 interfere, they are both live a program point l, definition sites of x1 and x2 both dominate

l and thus either x1 dominates x2 or x2 dominates x1. The same dominance relationship can

be found in FGSA when two variables are non path separable. Following the same proof

mechanism used by Sebastian, the proof is straight-forward that the NPSG is also chordal.

101

Therefore, minimizing the copies for inverse transformation of CCi is achievable using a

polynomial time algorithm. Since such a CC has no communication with other CCs, the

local optimal solution is also the globally optimal solution.

5.3.2 Handling Non-Gated to Gated CC Interferences

A non-gated CC has a single definition and it does not require specific handling. Given d1

and d2 in the same CCi, d1 and d2 have U-to-D interfere if d1 has a use in d2’s region. A

U-to-D interference implies that d1 is placed above its gating region and the use of d1 is

placed in d2’s gating region or exclusive live region. There are two cases:

† U-to-D type A: The use of d1 is in d2’s gating region. For this type, we either place

a copy of d1 to isolate the two CCs or shrink d2’s anticipated region. Note that

these operations are with different costs. The isolation operation cost is always one.

The shrinking operation places copies to avoid the use and dominate all the exits.

Its cost depends on where the uses are. Shrinking operation may have advantage

over isolation operation in terms of minimizing number of copies when multiple

definitions have U-to-D interference with d2.

† U-to-D type B: The use of d1 is in d2’s exclusive live region. For this type, we have

no choice, but isolate d1.

Figure 5.6 demonstrates uses of x1 in different regions of x2. The use at block B4 is U-to-D

type B interference because x1 and x2 are exclusively live here. The uses at block B1 and

B3 cause U-to-D type A interference. However, the costs of operation to solve them are

different. For the use at block B1, a placement of a single copy at block B2 is sufficient. For

the use at block B3, two copies of x2 are necessary for the placement to be placed below

the use and dominate all the exits.

When interferences caused by non-path-separability are combined with those caused by

uses in other definitions’ regions, optimal copy insertion must take both causes into

account. Our method to solve the combined interferences is based on the observation that

102

: exits of gating region of x2

if(P)

if(Q)

x2 =

x1=

=x1

B1

x3 = ψ(P∧Q,¬P∨¬Q)(x2, x1)

=x1

=x1

B2

B4

B3

Figure 5.6: Interferences of uses in different regions

when k variables have D-to-D interferences with each other, there exist k− 1 number of

ways to solve them. Therefore, we enumerate all possible D-to-D solvers and optimally

solve copy insertion problem on each one of them. If copy insertion problem without

D-to-D interference is polynomial solvable, the general problem is too. We’ll show that

copy insertion problem without D-to-D has polynomial time solution in Section 5.3.4.

5.3.3 Handling Gated to Gated CC Interferences

In this category, the local optimal solution may not be the global one. When two CCs share

definitions, they can be separated by inserting copies for the shared definitions and then be

treated respectively as one of the above two cases. An alternative way is to merge the two

CCs into one if possible. We discuss this case in Section 5.4.

5.3.4 Representation of the Problem

We now concentrate on the case where CCi shares definitions with non-gated CCs . We

know from the analysis, inferences caused by type B must be solved with copies of involved

103

variables while cases of type A have choices. We focus on minimizing copy insertion for

solving U-to-D Type A interferences within a gated CC. We introduce a directed weighted

interference graph (WIG) where each node represents a definition involved and each edge

represents a interference which is caused by a use of d1 taking place in d2’s region. Because

d1 has a use in d2’s region and definition site of d1 dominates its use sites, definition site

of d1 dominates definition site of d2, annotated as d1 ≺ d2. Therefore, the direction of the

edge represents the partial order of dominance of the two nodes involved. On the WIG, we

have two types of operations, isolation operation g and shrinking operation eg. Given any

node i, g(i) represents inserting a copy of i , which covers all the outgoing edges associated

with node i because the two CCs are isolated. Cost of g(i) is always one. The shrinking

operation eg(i) j which is related to edge ĵi represents inserting copies of i as a placement

in its gating region such that it handles uses of j in i’s region. Because such a placement

may also solve uses other than j, eg(i) j covers some incoming edges including edge ĵi.

Meanwhile, the placement in the gating region of i serves as an isolation and thus all the

outgoing edges associating with node i are covered. The cost of eg(i) j is the number of

copies that should be inserted for that placement to work. Minimizing copy insertion is

equivalent to covering all the edges in WIG with operations of minimal cost.

Lemma 5.3.1. WIG is acylic.

Proof. Assume there exists a cycle i1i2...ini1. Because the edge direction represents

dominance relationship, i1 ≺ i2... ≺ in ≺ i1 which implies i1 ≺ in and in ≺ i1 both hold.

Consequently the assumption cannot hold.

Lemma 5.3.2. Given i1 � i2 � i3 and î1, i3 is an edge in WIG, then i1 also interferes with

i2.

Proof. The edge î1, i3 implies i1 has a use that is live at i3’s definition site. Because i2 � i3,

that use of i1 is also live at i2’s definition site. Therefore, i1 and i2 interfere.

The interference between i1 and i2 is a U-to-D type A interference. The use of i1 is exposed

to i2’s gating region once we shrink i3’s region. We can incorporate such interferences into

104

(1)

1

2

3 4 5

(1)

(2)

(1)

(1)

(5)
(1)

(2)

(1)

Figure 5.7: Weighted Interference Graph

WIG by introducing a directed edge from i1 to i2.

Figure 5.7 shows an example of WIG where numbers in the parenthesis are costs of gating

and extended gating operations.

Because WIG is a DAG, there exists a topological order to traverse the graph, which is the

order of dominance. We can use dynamic programming to solve the problem because

the problem has overlapped sub-problems and optimal substructure. Consider WIG in

Figure 5.7. Each node is processed based on the dominance relationship starting from

node 1. Node 1 can take g(1) or blank operation b(1) which takes no operation on the node

so that each of its outgoing edges should be covered by the eg operation of the node that

the edge points to. Corresponding to the two operations, two induced sub-graphs namely

G1 and G1′ results. The optimal solution to the root WIG is between the optimal solution

to G1 plus g(1) and optimal solution to G1′. A solution tree can be constructed to represent

each level of operations and the resulting sub-graphs. On the left branch (g(1) operation)

of the level, sub-graph G1 is a fresh start, with node 2 as next processing node. Again we

can have g(2) and blank operation on it and get two sub-graphs G2 and G2′. On the right

branch(b(1)) of the first level, node 2 has a dangling edge, which forces eg(2) to be the

next operation resulting exact same sub-graph as G2. Further expansion on this branch is

unnecessary. The whole search tree is shown in Figure 5.8.

This property of subproblem overlapping is not a coincidence. It is determined by the

property of WIG. At any level of search tree, the sub-graphs which result from operation

g(i) and b(i), namely Gi and G′i have the same number of nodes. G′i contains the entire Gi

105

G2

G1

g(1)

G

b(1)

G1’

eg(2)

G2
eg(3)

G2’

b(2)

G23
eg(4)

eg(4)

G3’

b(3)

G3

g(3)

g(4) eg(5)

g(2)

3
2

(1)

4 5(5)
(1)

4 5(5)
(1)

G1

2

3 4 5

(1)

(2)

(1)

(1)

(5)
(1)

(1)

G1’

(2)

2

(2) (1)

(1)

3

(1)

(1) 4 5(5)
(1)

G2 3 4 5

(1)

(1) (5)
(1) G2’

(2)

3

(1)

(1)

(1)

4 5(5)
(1)

G23

G3’ (1) 4 5(5)

G3

Figure 5.8: Dynamic programming and search tree

plus some dangling edges from node i. Based on Lemma 5.3.2, nodes that have dangling

edges are consecutive in the processing order. Assume that the dangling edges point to

node j1 through jk which are the next k nodes about to be processed. j1 has no incoming

edges besides the dangling edge from i. eg(j1)i is the only choice. Based on the same

reasoning, eg(j2)i through eg(jk)i must be taken in the next steps, which results in Gx. On

the other hand, Gi will become Gx after taking g(j1) through g(jk) consecutively. So the

optimal solution on G(x) is used repeatedly to construct optimal solutions on Gi and G′i.

If any sub-graph is no longer connected, there is no affect among each connected

component. Solving each connected component independently, the summation of the cost

of individual optimal solutions is the optimal solution to the combined graph.

Theorem 5.3.3. The solution tree contains the optimal solution in term of operation cost

for covering all the edges in the WIG.

Proof. We construct the solution tree by enumerating all possible operations of nodes when

traversing nodes in a topological order (i.e., given edge î, j, enumerate i’s operations before

j’s). Therefore, when we enumerate operations of nodes in a reverse order at some step

106

(i.e., given edge î, j, enumerate j’s operations before i’s), we may generate solutions that

do not belong to the solution tree. We’ll show that those solutions cannot be optimal.

Assume we enumerate operations according to the topological order of all nodes except for

nodes i and j where edge î, j exists. We process node j before node i. If operation g(j) or

b(j) is selected (depending on whether j has outgoing edges or not), enumeration of node i

in next step is not affected. In another word, selecting g(j)/b(j) first and then processing i is

the same as processing i first and then selecting g(j)/b(j), which is covered by the solution

tree. Let us consider cases when operation eg(j) is selected.

1. when node j has the only incoming edge î, j, there are several subcases:

a) node i has no incoming edges and the only outgoing edge î, j, we have no

choice but to select operation b(i). b(i)+ eg(j) is the segment that the solution tree

would generate;

b) node i has no incoming edges and multiple outgoing edges including î, j, we

can select operation g(i) or b(i). If we select b(i), this is the segment of solution that

solution tree would generate. If we select g(i), segment g(i)+ eg(j) costs more than

g(i)+ g(j)/b(j), which covers the exact same edges. Note that g(i)+ g(j)/b(j) is

the segment of the solution tree;

c) node i has an incoming edge, we have to select operation eg(i). Similar to the

above subcase, eg(i) + eg(j) covers the exact the same edges as eg(i) + g(j)/b(j)

while costs more. eg(i)+g(j)/b(j) is covered by the solution tree;

2. when node j has incoming edge ĥ, j besides î, j, we know incoming edge ĥ, i must

exist. During processing of node i, we have to select eg(i):

a) if eg(j)h covers both edge î, j and k̂, j (i.e., cost of eg(j)h is greater than cost of

eg(j)i), eg(i)+ eg(j)h is the solution segment that the solution tree would generate;

b) if eg(j)h does not cover edge î, j (i.e., cost of eg(j)h is smaller than cost of

eg(j)i), to enumerate eg(j), we have the choice of eg(j)h and eg(j)i. If eg(j)h is

selected, the rest is the same as the above subcase, which we will obtain a solution

107

segment that the solution tree would generate. If eg(j)i is selected, segment eg(i)+

eg(j)i covers the same edges as eg(i)+eg(j)h covers while costs more. eg(i)+eg(j)h

is covered by the solution tree.

After analyzing each case, we know solutions that do not belong to the solution tree all

costs more than their counterpart in the solution tree. Therefore, those solutions cannot be

optimal. This proves the solution tree contains optimal solutions.

To analyze the complexity of the algorithm, consider a WIG with N nodes. The

enumeration of solutions is bounded by O(N) and each solution requires O(N) operations.

Therefore time complexity of our algorithm is bounded by O(N2).

5.4 Common Use Form and Global Optimal Solution

Given the algorithms presented so far, we have developed an optimal solution to the inverse

translation problem when interferences are restricted to gated-non-gated CC interferences.

Optimal inverse translation when multiple gated CCs share variables is much involved.

At the end of inverse transformation of a gated CC, all variables in the definition set are to be

named by a single representative name. Consider two gated CCs that share a definition. The

shared definition must be named by representatives chosen by the two CCs respectively.

However, if the representatives chosen by two CCs are different, it is impossible for a

variable to be named with two different names. Therefore either the two CCs must be

isolated by inserting copies of the shared definitions or the two CCs must use the same

representative. Renaming two CCs with the same name implies a union operation on the

use set and definition set of the two CCs, which results in what we call Common Use

Form(CUF). Isolating each shared variable or putting CCs into CUF are two alternatives.

While isolation is always feasible, constructing CUF is restrictive.

When multiple gated CCs share definitions and they can be put into common use form,

WIG and NSPG graphs based solutions developed earlier in this chapter can be used to

solve the resulting CUF to obtain the optimal solution to the combined CC. Consider

108

x4 = ψ(P,¬P)(x1, x2)

x1 =
if (P)

x2 =

x3 =

if (Q)

= x1

YN

N Y

= x1= x4 = x5

x5 = ψ(Q,¬Q)(x3, x1)
x45 = ψ(P∧Q,P∧¬Q,¬P)(x3, x1, x2)

x1 =
if (P)

x2 =

x3 =

if (Q)

= x1

YN

N Y

= x1= x45 = x45

(a) (b)

Figure 5.9: Common use form

Figure 5.9(a), in which two CCs CCx4
and CCx5

share definition x1 is shown. Corresponding

CUF for these CCs is given in Figure 5.9(b). Note that a single gating function represented

by x45 routes definitions to the appropriate set of uses, although this combined CC does not

have the maximal sharing of definitions property for its use set. It is easy to observe that

two gated CCs cannot be put into the CUF when the gating path predicates of definitions

between the two CCs are not compatible.

Unfortunately, not only that CUF is not always possible, but also the optimal solution to

the CUF may not be the globally optimal solutions as there may be a global solution with

a better cost based on isolation of shared variables. As a result, for a set of CCs that are

tied to each other due to definitions sharing during inverse transformation, approaches vary

among two extreme approaches and those in between. On one end of approaches, all CCs

are put into a single combined CC so that the optimal solution for the CC is searched. For

the other end, optimal solutions for all CCs are searched independently under the restriction

that each shared variable must be isolated. Between the two extremes, the whole set can be

divided into several subsets such that the CUF approach is performed intra-subsets and the

isolation is performed inter-subsets. Any valid configuration of subsets forms an approach

and therefore leads to a solution.

109

5.4.1 Global Solution Through Complete Isolation

Consider complete isolation approach. Given m CCs, namely CC1,CC2, ...,CCm, sharing a

single definition v1. To solve each CC independently, we can apply algorithms discussed

in this chapter and get m local optimal solutions, namely sol1,sol2, ...,solm. For CCi and its

corresponding local solution soli, if soli contains an operation on v1, CCi is isolated from

other CCs. This is because an operation on v1 (i.e., copies of v1 are inserted) not only

serves as an interference solver within the CC, but also serves as an isolation instance. v1

is covered once when a local solution contains an operation on it or an instance of isolation

is performed on it. To isolate m CCs completely, v1 must be covered at least m−1 times.

Let n be the number of coverage for v1 by the union of all the local optimal solutions. If

n = m−1, the union of the local optimal solutions is the global optimal solution. Otherwise,

m−1−n instances of isolation must be performed. Each instance of isolation costs a copy

of v1 inserted at the definition site of v1. The local optimal solutions plus these instances of

isolation is the global optimal solution to the set of CCs. Proof sketchy:

Assume we use an alternative local solution sol′i for CCi to replace soli which contains no

operation on v1 and keep all other local optimal solutions the same. Even if sol′i contains

an operation on v1, the cost difference between soli and sol′i cannot be less than one which

is the isolation cost for soli. Therefore the union of the local optimal solutions is the global

optimal solution when a single variable is shared under the complete isolation paradigm.

For the general case, consider variables v1,v2, ...,vn are shared by CC1,CC2, ...,CCm. We

know each variable requires at least m− 1 instances of coverage. In this case, the union

of local optimal solutions may not be the global optimal one. Alternative local solutions

may contain operations that cover more variables with less cost in terms of global cost than

the corresponding local optimal ones. Next, we present an approximate solution to this

problem.

110

5.4.2 Approximation of Global Optimal Solution

Let’s look at a related problem: Given n variables, namely v1,v2, ...,vn which are shared by

CC1,CC2, ...,CCm, we look for the global optimal solution GS′ with cost δGS′ such that the

solution solves each CC’s local interferences and covers each variable m times. Consider

the difference between GS′ and our original goal GS which covers each variable at least

m− 1 times with cost δGS. We can find the lower bound of cost of GS given GS′. GS′

covers each variable at most once more than GS. For n variables, the total cost difference

Δ1 = δGS′ −δGS is less than n. In other words, if we find GS′, cost of GS cannot be less than

δGS′ −n. In order to find GS′, let’s annotate local solutions for CCi as soli,∗. We order local

solutions based on their costs so that the local optimal solution for CCi is soli,0. Given local

solution soli, j, it has cost δi, j and covers χi, j number of variables. Given two local solutions

for CCi, namely soli, j and soli,k, the two solutions are globally equal if soli,k covers t more

variables and costs t more than soli, j. This is because in order to cover the same number

of variables, soli, j can always match by using isolation. The total isolation cost for soli, j is

t which is the same as the cost difference between soli, j and soli,k. Therefore among local

solutions the global optimal solution tends to pick the one which relatively covers more

and costs less. For that purpose, we compute for each local solution a unique value Adv.

Advi, j = (χi, j−χi,0)− (δi, j−δi,0). We order the local solution based on Adv value and the

solution for CCi with the largest Adv is sol∗i,0. We can prove that the approximate global

optimal solution consists of the union of sol∗i,0 for each CCi.

Theorem 5.4.1. GS’ consists of
⋃

i sol∗i,0 where i ∈ (1,m).

Proof. We replace sol∗i,0 by an arbitrary solution sol∗i,t and fix other local CC solutions to

form a global solution GS′i,t . sol∗i,0 requires n− χ∗i,0 instances of isolation. Similarly sol∗i,t
requires n− χ∗i,t instances of isolation. The cost difference between GS′i,t and GS′ is given

by Δ2 = (δi,t ∗+n− χ∗i,t)− (δi,0 ∗+n− χ∗i,0), which is Adv∗i,0−Adv∗i,t . Because sol∗i,0 has

the largest Adv among the local solutions, Δ2 is always greater than 0. It implies that GS′

always costs less than GS′i,t . Therefore GS’ is the approximate global optimal solution.

111

Based on the proof, we compute the cost of GS’ as δGS′,givenby∑i δ ∗i,0 + n×m−∑i χ∗i,0.

Therefore we obtain the lower bound and upper bound of cost of the global optimal solution

which is δGS′ −n and δGS′ respectively.

5.4.3 Validity of Proposed Approach

As it can be seen, an optimal solution to the inverse translation is involved. While a simple

interference graph based solutions all appear to be NP-Complete solutions developed so

far are all polynomial time algorithms when we seek the global solution through appreciate

application of these algorithms. It then becomes a legitimate question, as to whether the

combined solution would be globally optimal solution in terms of minimum number of

copies placed. We claim that Theorem 5.3.3 is also applicable to the global case, that

is a global optimal solution consists of only solutions from each CC’s solution tree. In a

global solution there may be isolations and the number of isolations is determined by the

operations on nodes in WIGs. Also the global cost is computed from the local costs and

costs of isolations. Now the question is that can there be a solution S which is not generated

by a solution tree and contributes less to the global cost? This is not possible since there

is always a solution generated by a solution tree that it has operations on the exact same

nodes as the solution S and costs less. In other words there is always a solution (generated

by a solution tree) with exact same number of isolations as S. It just suffices to consider

some sub-cases in the proof of Theorem 5.3.3. For instance:

"node i has no incoming edges and multiple outgoing edges includingî, j. If we select g(i),

segment g(i)+eg(j) costs more than g(i)+g(j)/b(j), which covers the exact same edges."

Can a solution with "g(i)+eg(j)" be part of global solution? No. Because we can instead

use g(i)+g(j) with less local cost. Both of "g(i)+eg(j)" and "g(i)+g(j)" have operations on i

and j, so both will result in the same contribution to the number of isolations globally.

112

5.5 Conclusion

We have presented an approach to the inverse translation problem in the single assignment

program representation domain. We have demonstrated that the problem is polynomial

time solvable to generate minims number of copy instructions when definition sharing is

restricted to gated-non-gated CC combinations. we also presented an algorithms which is at

most n−1 away from an optimal solution when n variables are shared among multiple gated

CCs. In the next chapter, we illustrate the power of the representation on two important

optimizations.

113

Chapter 6

Optimizations on FGSA

The executable semantics of FGSA combined with its direct representation of congruence

classes make the representation quite powerful in its ability to implement various

optimizations. Although the adaptation and implementation of optimization algorithms are

beyond the scope of this work, we illustrate the clarity the representation provides through

two case studies, namely, constant propagation and global value numbering respectively.

In the two case studies, we show that by unifying control flow and data flow traversal into

one, FGSA achieves the same results as SSA does and enables simpler and more efficient

optimization algorithms.

6.1 Constant Propagation on FGSA

Wegman and Zadeck (Wegman and Zadeck 1991) proposed two constant propagation

algorithms, namely Simple Constant (SC) propagation and Conditional Constant (CC)

propagation algorithms and the SSA versions of these algorithms, referred to as SSC and

SCC respectively. The CC and SCC algorithms find more constants than the SC and SSC

algorithms by using an extra data structure to keep track of the edges that are executable

based on the evaluation result of the conditional expressions.

These algorithms can be implemented on an FGSA representation in a straight-forward

manner. Interestingly however, the executable semantics of FGSA representation coupled

114

with the direct congruence class representation gives similar powers to the simple constant

algorithm to that of conditional constant on FGSA. When a conditional expression becomes

constant, any gating function which uses its result can be simplified and evaluated. As a

result, we just need to redefine the meet operation for FGSA gating functions. Figure 6.1(a)

shows the evaluation rules for gating functions. For simplicity, assume the gating function

is in the form of ψP(d1,d2). The rules are represented in the three-level lattice (Wegman

and Zadeck 1991) where � at the highest level represents undetermined values, constant

values such as c1 and c2 are in the middle and⊥ at the lowest level represents non-constant

values. Evaluation of read-once predicates requires a different set of rules, as unlike other

predicates, we assume their value is always ⊥. For the gating function ψR(d1,d2), the

evaluation rules are given in Figure 6.1(b). We refer to the modified simple constant

algorithm as the FGSA-SSC algorithm.

In order to see the application of the simple constant algorithm on both SSA and FGSA,

consider Figure 6.2. When SSC is applied on Figure 6.2(a), evaluation of the SSA edges

results in the discovery that x1, P, x2 are all constants, whereas Q is not a constant. Flow

of two different constant values (namely, five and six) onto X3 makes it ⊥, which in turn

makes x4 also ⊥. When the FGSA-SSC algorithm is used on Figure 6.2 (b), depending on

the evaluation order, rules given in Figure 6.1 are applied, for the gating function, initially

giving it a � value and the value constant 6 when x2 is evaluated. Since x3 represents the

Rule P d1 d2 ψP(d1,d2)
1 true X1 X2 X1

2 f alse X1 X2 X2

3 ⊥ c1 c2 (c1 == c2)?c1 :⊥
4 ⊥ ⊥ X2 ⊥
5 ⊥ X1 ⊥ ⊥
6 ⊥ � � �
7 ⊥ � c2 �
8 ⊥ c1 � �
9 � �/c1 ⊥ �

10 � ⊥ �/c2 �
11 � ⊥ ⊥ ⊥

Rule R d1 d2 ψR(d1,d2)
1 ⊥ c1 � c1

2 ⊥ � c2 c2

3 ⊥ c1 c2 (c1 == c2)?c1 :⊥
4 ⊥ ⊥ X ⊥
5 ⊥ X ⊥ ⊥

(a) (b)

Figure 6.1: Evaluation rules for (a) ψP and (b) ψR functions

115

B1

B2

YN

B3

B4

x1 =5

x3 = φ(x1, x2)

x4 = φ(x3, x2)

=x4

if (P)

= x3

P = x1 < 10

N Y

if (Q)

read z1

x2 = 6

Q = x2 < z1

B1

B2

= x3

B3

B4

N Y

N Y

if (P)

= x3

x3 = ψP (x2f
, x1)

x2 =6
read z1

Q = x2 < z1

if (Q)

x1 =5
P = x1 < 10

(a) SSC on SSA (b) SSC on FGSA

Figure 6.2: Constant propagation

congruence class, all uses of x3 become a constant. Similar results can be achieved by

applying the conditional constant algorithm on Figure 6.2(a).

Note that the future values have no effect on this algorithm as it chases def-use chains

implemented through single assignment. Although this simple example shows the power

of FGSA, this is by no means a proof that SSC and SCC are equivalent when used on

FGSA.

6.2 Global Value Numbering (GVN) on FGSA

GVN(Rosen et al. 1988)(Click 1995)(Simpson 1996) is an optimization based on SSA

form. It maps value-congruent1 variables/expressions into the same class and thus achieves

constant propagation, redundant computation and unreachable code elimination. In classic

GVN, any computation at a confluence point that uses a φ result as an operand is split

by renaming the operand with φ -arguments and moving up along corresponding incoming

edges. The goal is to locate some local redundancy. On FGSA, this step is easy to perform

because a ψ-function is executable and forward propagation is directly applicable.

1Term congruent is used by GVN to indicate two expressions are value-equivalent. To distinguish from

congruence classes as we define in this dissertation, we use the term value-congruent in the following

discussion.

116

A more recent work on GVN by (Gargi 2002) which builds on Simpson’s work(Simpson

1996) exploits predicates of branch conditions to find more value-congruences. There are

two key ideas in this work. One is to infer values from predicates (value inference and

predicate inference). For example, given a branch (i f (x0 == y0)), x0 and y0 are assumed

to be in the same class in the region dominated by the taken edge of the branch. The

other is to associate the arguments of acyclic φ -functions with the predicates that control

their arrival (φ -predication). Two φ -functions are said to be value-congruent if their

arguments are value-congruent and predicates of corresponding edges are value-congruent.

We adopt Gargi’s motivating example with some simplifications (Figure 6.3). Within the

whole example region, y0 can be replaced by x0 due to predicate R1. After computing

φ -predication for p3 and q2, they are put into the same class according to φ -function

value-congruence definition, which eventually causes i3 to become constant 1.

01 i0 = 1

02 if (x0 == y0) < R1 >
03 p0 = 0

04 if (x0 ≥ 1) < R2 >
05 if (i0 �= 1) < R3 >
06 p1 = 2

07 elsei f (x0 ≤ 9) < R4 >
08 p2 = i0
09 p3 = φ(p0, p2, p1)
f1 (p3 = ψ(R2∧R3,R2∧¬R3∧R4,¬R2∨¬R3∧¬R4)
f1 (p1, p2, p0))
10 q0 = 0

11 i f (i0 ≤ y0) < R2′ >
12 i f (9≥ y0) < R4′ >
13 q1 = 1

14 q2 = φ(q0,q1)
f2 (q2 = ψ(R2′∧R4′,¬R2′∨¬R4′)(q1,q0))
15 i2 = p3−q2 +1

16 i3 = φ(i0, i2)
f3 i3 = ψ(R1,¬R1)(i2, i0)

Figure 6.3: A modified example from Gargi’s work. Predicates are

contained in <>. Line f1, f2, and f3 contain FGSA gating functions for

corresponding φs.

117

The algorithm can be applied on FGSA with no changes. In fact, φ -predication

analysis (time complexity is O(E2)(Gargi 2002)) can be saved because gating predicates

of ψ-functions have the same information. On line f1, because R3 is false (line 05)

and hence R2 ∧ R3 is false, p1 is irrelevant to p3. The ψ-function is simplified to

ψ(R2∧R4,¬R2∨¬R4)(1,0). On line f2, because R2’ and R2, R4’ and R4 are value-congruent,

the ψ for q2 becomes ψ(R2∧R4,¬R2∨¬R4)(1,0), which clearly shows p3 and q2 are

value-congruent. FGSA simplifies the task of inferring values from predicates as well

resulting in further simplification of the algorithm. Observe that at any gating function,

any argument (definition) flows to the CC when its gating predicate is true. Based on

Theorem 3.2.1 and its generalization, a gating expression consists of the path predicate

(P1) controlling the execution of the definition, and another set of predicates (P2) which is

true when the value is not killed. In other words, a definition can be computed only when its

path predicate P1 is true and therefore, its computation can exploit its path predicate to infer

values. For example, on line 3, i2’s gating predicate, namely R1, which in this case also is

i2’s path predicate. Value inferring from R1 can be applied to all operands of i2 and applied

recursively, which results in i2 being updated to constant 1 and in turn i3 becoming constant

1. More aggressively, value inferring from the P2 part can also be applied. However the

result using P2 inferring can be used only to update the gating function (since P2 is true

if the gating function returns that definition) and may not be used to update the definition

(since P2 may not be true at the definition site). As it can be seen, unlike value inferring

on SSA, value inferring on FGSA is more targeted and may bring more sparseness to the

algorithm.

118

Chapter 7

Recursive Future Predicated Form

1 In this chapter, we revisit the concept of future values and demonstrate that the

concept permits unrestricted code motion to the degree that entire procedures can be

collapsed into a singe basic block under a new program representation call Recursive

Future Predicated Form (RFPF). Similar to FGSA, RFPF also is a representation built

on the principle of single-assignment (Bilardi and Pingali 2003; Cytron et al. 1991)

and it subsumes general if-conversion (Allen et al. 1983). RPFP can co-exist with

any single-assignment representation, and can provide the framework in which existing

represent can perform code motion with ease, or use the representation itself as the primary

internal representation. In this respect, RFPF properly extends the single assignment forms

and covers the domain of legal transformations resulting from instruction movements.

Furthermore, we illustrate that under this representation, both the construction of the

representation and program analysis itself can be performed using the code motion as the

only mechanism. In this respect, possible transformations range from the starting SSA form

where all data-flow is traditional, to a final reduction where the entire procedure becomes a

single block through upward code motion, possibly with mixed (i.e., traditional and future)

data-flow. We refer to a procedure which is reduced to a single block through code motion

1The material contained in this chapter was previously published in CC’10/ETAPS’10 Proceedings of the

19th joint European conference on Theory and Practice of Software, international conference on Compiler

Construction.

119

to be in complete RFPF. Complete RFPF expresses the program semantics without using

control-flow edges except sequencing. During the upward motion of instructions, valuable

information is collected and can be used to perform several sophisticated optimizations

such as Partial Redundancy Elimination (PRE). Such optimizations typically require

program analysis followed by code motion and/or code restructuring (Morel and Renvoise

1979; Knoop et al. 1992; Bodík et al. 1998).

Complete RFPF can be constructed starting from any single assignment form, including

FGSA. Because of the property of FGSA gating functions, FGSA is a better starting

point than SSA for generating complete RFPF transformation. In the following sections,

Section 7.1 through Section 7.4 present transformation algorithms from SSA using code

motion as the primary means. During the entire process, the single-assignment property

is maintained. In Section 7.5, we further discuss how to use T1/T2/TR transformations to

directly build RFPF.

7.1 Code Motion in Acyclic Code

We first discuss code motion using future values in acyclic regions involving control

dependencies. For an acyclic control-flow graph G =< s,N,E > such that, s is the start

node, N is the set of nodes and E is the set of edges, instruction hoisting involves one of

three possible cases. These are: (1) movement that does not involve control dependencies

(i.e., straight-line code), (2) splitting (i.e., parallel move to predecessor basic blocks),

and (3) merging (i.e., parallel move to a predecessor block that dominates the source

blocks). Note that movement of a φ -node is a special case and normally would destroy

the single-assignment property. We examine each of these cases below:

Case 1 (Basic block code motion). Consider instructions I and J. Instruction J follows

instruction I in program order. If I and J are true dependent, hoisting J above I converts

the true dependency to a future dependency. Alternatively, if the instructions are future

dependent on each other, hoisting J above I converts the future dependency to a true

120

dependency (Figure 2.6(a) and (b)).

When code motion involves control dependencies, the instruction propagation is carried out

using instruction predication, instruction cloning and instruction merging. An instruction

is cloned when the instruction is moved from a control independent block to a control

dependent block. Cloned copies then propagate along the code motion direction into

different control dependent blocks. When cloned copies of instructions arrive at the same

basic block they can be merged.

Case 2 (Splitting code motion). Consider instruction I that is to be hoisted above the block

that contains the instruction. For each incoming edge ei a new block is inserted, a copy of

the instruction is placed in these blocks and a φ -node is left in the position of the moved

instruction (Figure 7.1).

I: x1 =

I1: x1,1,2= I2: x1,2,2=

J: x1 = φ(x1,1,2, x1,2,2)

Figure 7.1: Splitting code motion

I

if (P)

if (P)

[¬P] I

N YYN

Figure 7.2: Merging code motion

Note that in Figure 7.1, when generated copies I1 and I2 are merged back into a single

instruction, the inserted φ -node can safely be deleted and the new instruction can be

renamed back to x1. The two new names created during the process, namely, x1,1,2 and

x1,2,2 are eliminated as part of the merging process. In order to facilitate easy merging of

clones, we adopt the naming convention vi, j,k where vi is an SSA name, j is the copy version

number and k is the total number of copies. Generated copies can be merged when they

arrive at the immediate dominator of the origin block, and in case of reduction to a single

block, all copies can be merged. We discuss these aspects of merging later in Section 7.1.3.

Case 3 (Merging code motion). Consider instruction I that is to be hoisted into a block

where the source block is control dependent on the destination block. The instruction I

is converted to a predicated instruction labeled with the controlling predicate of the edge

(Figure 7.2).

121

7.1.1 Future Predicated Form

When a predicated instruction is hoisted above the instruction which defines its predicate,

the predicate guarding the instruction becomes future as the predicate is also a value and

the data dependence must be updated properly. Figure 7.3 shows a control dependent case.

Instruction I is control dependent on condition a0 < b0. When the instruction I is moved

from B2 to B1, it becomes predicated and is guarded by Q (Figure 7.3(b)). In the next step,

the instruction is hoisted above the definition of Q and its predicate Q becomes future (i.e.,

Q f) (Figure 7.3(c)).

When a predicated instruction is hoisted further, it may cross additional control dependent

regions and will acquire additional predicates. Consider Figure 7.3(c). Since the target

instruction is already guarded by the predicate Q f , when it moves across the branch defined

by P, it becomes guarded by a nested predicate (Figure 7.3(d)). In terms of control flow, it

means that predicate P must appear, and it will appear before Q. Similarly, if P is true, then

Q must also appear since if the flow takes the true path of P the predicate Q will eventually

be encountered. In other words, the conjunction operator has the short-circuit property and

it is evaluated from left to right. Semantically, a nested predicate which involves future

predicates is quite interesting as it defines possible control flow.

7.1.2 Elimination of φ -nodes

RFPF transformations aim to generate a single block representing a given procedure. The

algorithms developed for this purpose hoist instructions until all the blocks, except the start

node are empty. Proper maintenance of the program semantics during this process requires

the graph to be in single-assignment form. On the other hand, movement of φ -nodes as

regular instructions is not possible and the elimination of φ -nodes result in the destruction

of the single-assignment property. For example, elimination of the φ -node x3 = φ(x1,x2)

involves insertion of copy operations x3 = x1 and x3 = x2 across each incoming edge in that

order. Such elimination creates two definitions of x3 and the resulting graph is no longer in

122

Y

B2

B1

if (a0 < b0)

I: z1 = x1 + y1

t0 = x1 + y1

N

YN

if (d0 < e0)

B0 B0

N

B2

Y

B1

YN

if (P)

P = d0 < e0

t0 = x1 + y1

Q = a0 < b0

if (Q)

[Q] I: z1 = x1 + y1

(a) before code motion (b) after code motion

B0

N

B2

Y

Q = a0 < b0

B1

YN

P = d0 < e0

t0 = x1 + y1

[Qf] I: z1 = x1 + y1

if (P)

if (P)

B0

N

B2

Y

Q = a0 < b0

B1

t0 = x1 + y1

[P ∧Qf] I: z1 = x1 + y1

YN

if (P)

if (P)

P = d0 < e0

(c) future predicate (d) nested predicate

Figure 7.3: Code motion across control dependent regions

single-assignment form. Our solution is to delay the elimination of φ -nodes until the two

definitions can be merged, at which time a gating function can be used if necessary.

Since the gating functions created in this manner would be binary, instead of the gating path

predicates introduced with FGSA representation, we redefine ψ to have a single controlling

predicate P:

Definition 23. We define the gating function ψp(a1,a2) as an executable function which

returns the input a1 if the predicate p is true and a2 otherwise.

Note that during merging, cloned copies already bring in the necessary information for

123

K: x3 = φ(x1, x2)

I: x1 = J: x2 =
J: x2 =

K2: x3,2,2 = x2

K: x3 = φ(x3,1,2, x3,2,2)

K1: x3,1,2 = x1

I: x1 =

Figure 7.4: φ -node elimination

computing the controlling predicate for the gating function. The merging process is enabled

by transforming the φ -node in a manner similar to the splitting case described above:

Case 4 (φ -node elimination). Consider the elimination of the φ -node x3 = φ(x1,x2)

(Figure 7.4). φ -node elimination can be carried out by placing copy operations x3,1,2 = x1

and x3,2,2 = x2 across each incoming edge in that order and updating the φ -node with the

new definitions to become x3 = φ(x3,1,2,x3,2,2).

Merging of the instructions x3,1,2 = x1 and x3,2,2 = x2 requires the insertion of a gating

function since the right-hand sides are different. Once the instructions are merged, the

φ -node can be eliminated. It is important to observe that until the merging takes place and

the deletion of the φ -node, instructions which use the φ -node destination x3 can be freely

hoisted by converting their dependencies to future dependencies.

7.1.3 Merging of Instructions

In general, upward instruction movement will expose all paths resulting in many copies

of the same instruction guarded by different predicates. This is a desired property for

optimizations that examine alternative paths such as PRE and related optimizations since

partial redundancy needs to be exposed before it can be optimized. We illustrate an

example of PRE optimization in next chapter. On the other hand, the code explosion

that results from the movement must be controlled. RFPF representation allows copies

of instructions with different predicates to be merged. Merging can be carried out between

copies of instructions which result from a splitting move, as well as those created by φ -node

elimination. As previously indicated, merging of two instructions with the same derivative

destination (i.e., such as those which result from φ -node elimination) requires the insertion

124

of the gating function ψ into the appropriate point int program, whereas merging of the

two copies of the same instruction can be conducted without the use of a gating function.

When the merged instructions are the only copies, the resulting instruction can be renamed

back to the φ destination. Otherwise, a new name is created for the resulting instruction,

which will be merged with other copies later during the instruction propagation.

Definition 24. Two instructions γ : xi,m,k ← e1 and δ : xi,n,k ← e2, where γ and δ are

predicate expressions, represent the single instruction γ∨δ : xi,(m,n),k← e1 if e1 and e2 are

identical.

Definition 25. Two instructions γ : xi,m,k ← e1 and δ : xi,n,k ← e2, where γ and δ are

predicate expressions represent the single instruction γ ∨ δ : xi,(m,n),k ← ψP(e1,e2) if e1

and e2 are not identical. The predicate expression P is the first predicate expression in γ

and δ such that P controls γ and ¬P controls δ .

Definition 26. Instruction γ : xi,(p,...,q),k← e can be renamed back to γ : xi← e if (p, . . . ,q)

contains a total of k version numbers.

Theorem 7.1.1. Copy instructions generated from a given instruction I during upward

propagation are merged at the immediate dominator of the source node of I, since all

generated copies will eventually arrive at the immediate dominator of the source block.

Proof. Let node A be the immediate dominator of the source node I has originated from in

the forward CFG. Assume there’s one copy instruction I′ which does not pass through A

during the whole propagation. For this to happen, there must be a path p, which from the

start node reaches I’ and then reaches the source node of I. The fact that p does not pass

through node A conflicts the assumption that A is the immediate dominator node of I.

Let us now see through an example how the instruction merging effectively eliminates

unnecessary code duplication. Consider the CFG fragment shown in Figure 7.5(a).

Suppose that instruction I needs to be moved to block B1. Further note that instruction I is

control independent of the block B1. We first insert the branch condition P = a < b in block

125

................

if (a ¡ b)

I: z = x + y B4

B1

YN
B3B2

................

B1

YN
B3B2

if (P)

P = a < b

B4

I2: z,2,2 = x + yI1: z,1,2 = x + y

J: z = φ(z,1,2, z,2,2)

(a) (b)

................

B1

B4

J: z = φ(z,1,2, z,2,2)

N Y

if (P)

[¬P] I1: z,1,2 = x + y

[P] I2: z,2,2 = x + y

P = a < b

B2 B3

................

B1

B4

N Y

if (P)

J: z = φ(z,1,2, z,2,2)

I: z = x + y

P = a < b

B2 B3

(c) (d)

Figure 7.5: Instruction propagation

B1. Moving of I is accomplished by applying the splitting transformation, followed by

progression of I1 and I2 into blocks B2 and B3 respectively and the deletion of temporary

nodes inserted during the movement (Figure 7.5(b)). Next, the instructions I1 and I2

are propagated using a merge move which predicates them with ¬P and P respectively

and places them in block B1 (Figure 7.5(c)). At this point, using Definition 24, the two

instructions can be reduced to a single instruction I without a predicate (Figure 7.5(d)) and

the φ -node can be deleted. Note that the merging of the instructions and the deletion of φ

node must be carried out in the same step to maintain single-assignment property.

126

I: z = e
B3

YN

if (Q=...)

N Y

B1

B2

if (P=...)

I3: z,3,3 = e

I2: z,2,3 = eI1: z,1,3 = e

YN

if (Q=...)

B3

J: z = φ(z,1,3, z,2,3, z,3,3)

B2

N

if (P=...)

Y

B1

I3: z,3,3 = e

[γ]I1: z,1,3 = e1
[δ] I2: z,2,3 = e2

B3

J: z = φ(z,1,3, z,2,3, z,3,3)

B1

N Y

if (P=...)

YN

B2

if (Q=...)

(a) (b) (c)

I3: z,3,3 = e

B3

J: z = φ(z,(1,2),3, z,(1,2),3, z,3,3)

N Y

if (P=...)
B1

Y

B2

if (Q=...)
= ψQf

(e2, e1)
[γ ∨ δ] I1,2: z,(1,2),3

N

[β]I3: z,3,3 = e3

B3

if (P=...)

[α] I1,2: z,(1,2),3

= ψQf
(e2, e1)

B1

N Y

J: z = φ(z,(1,2),3, z,(1,2),3, z,3,3)

YN

if (Q=...)

B2

B3

J: z = φ(z,(1,2),3, z,(1,2),3, z,3,3)

B1

N Y

if (P=...)

[α ∨ β] I: z = ψPf
(e3, ψQf

(e2, e1))

YN

if (Q=...)

B2

(d) (e) (f)

Figure 7.6: Instruction merging

A detailed example which shows how the adopted naming convention facilitates instruction

merging is illustrated in Figure 7.6(a). In this example regions represented as clouds are

arbitrary control and dataflow regions an instruction has to pass through and cloud regions

have no incoming or outgoing edges except for the explicitly indicated ones. Instruction

I, which computes e is moved across block B3 by applying a splitting transformation

(Figure 7.6(b)). Next, two of the total three copy instructions, namely, I1 and I2 converge

in block B2 and during propagation may acquire different expressions, namely, e1 and e2.

These two instructions are merged into I1,2 using Definition 25 (Figure 7.6(c)(d)).

127

Note that future predicate Q f is used in the gating function for choosing between e1 and

e2. At this point, checking the name of destination z,(1,2),3, indicates that there are copies

that are not merged yet. Further instruction propagation results in the merging of I1,2 and

I3 in block B1. Applying Definition 25 and 26, all the copy instructions are reduced into a

single instruction I, which is represented through a nested gating function 2. At this point

the φ -node can be deleted. The final result is shown in Figure 7.6(f).

7.2 Instruction-Level Recursion

In a reducible control-flow graph, a loop region is a strongly connected region where the

loop header forms the upward propagation boundary. Therefore moving instructions across

the loop header requires a new approach. This approach is to convert every instruction

within the loop region to an equivalent instruction that can iterate in parallel with the

loop execution independently. We define an instruction that schedules its next iteration,

a recursive instruction.

Conceptually, a recursive instruction appears as a function call that is spawned at the point

the control visits the instruction. The instruction executes within this envelope and checks a

predicate to see if it should execute in the next iteration. If the predicate is true, a recursive

call is performed. Otherwise the function returns the last value it had computed. In this way,

as long as the predicate which controls the loop iteration is known, any loop instruction can

iterate itself and hence it can be separated from the loop structure (or pushed out of the

loop region). In other words, an instruction that is hoisted above the loop header becomes

a recursive instruction controlled by a special predicate called the Recursive Predicate:

Definition 27. Recursive Predicate: In a loop L that has a single loop header H and a

single backedge e, the predicate expression which allows control flow to reach e from H

without going through e is Recursive Predicate for L.

For loops with multiple edges we can use the disjunction of the recursive predicates

2 These nested gating functions can be properly represented using FGSA ψ functions

128

computed for each edge. This follows from the observation that we can insert an empty

block such that all the backedges are connected to this block and removed from the loop

header and a single exit from this block becomes the single backedge for the graph. Since

the controlling predicate of the newly inserted block’s outgoing edge is the disjunction of

the controlling predicates of all the incoming edges, such graphs can be reduced into a

single backedge case described above.

Since the instruction returns only its last value, we can establish proper data dependencies

with instructions outside the loop region. Note that, a recursive instruction should also

include a predicate to implement the control flow within the loop body:

Definition 28. Recursive Predicated Instruction: xi = (R)[P]{I : xi j =}, where I is the

instruction, xi is the single-assignment name of the instruction’s destination, j is the loop

nest level, P is the predicate guarding I obtained through acyclic instruction propagation

into the loop header and R is the recursive predicate the instruction iterates on.

Note that the recursive instruction renames the destination of the original instruction by

appending the loop nest level, and the function returns the original name. In Section 7.3.2

we revisit this renaming. From an executable semantics perspective, a recursive predicate

must need to know the number of readers it is being waited by and should generate a new

value after all the readers have read it.

7.3 Code Motion in Cyclic Code and Recursive Future

Predicated Form

We follow a hierarchical approach to perform code motion in cyclic code. For this

purpose, starting with the inner-most loops, we convert the loops into groups of recursive

instructions, propagate them to the loop header of the immediately enclosing loop and

apply the procedure repeatedly until all cyclic code is converted into recursive instruction

form, eventually leading to a single block for the procedure.

129

7.3.1 φ -nodes in Loop Header

Although any code motion within a given loop can be carried out using the acyclic

code motion techniques, the φ -nodes in the loop header cannot be eliminated using the

techniques developed for acyclic regions. This is because a φ -node placed in a loop

header controls data flow coming from outside the loop and loop carried values. As

discussed in section 3.2, this data flow is not path-separable using predicates computed

from control-flow. Instead, we can use the appreciate gating function developing on

the single assignment from over which RFPF is being built. This function is the

μ-function (Ottenstein et al. 1990) if RFPF is built on SSA or GSA and the ψ function

with a read-once predicate, if it’s built on FGSA. For ease of reference, we define the μ

function as given in (Ottenstein et al. 1990):

Definition 29. "We define the gating function μ(ainit ,aiter) as an executable function. ainit

represents external definitions that can reach the loop header prior to the first iteration.

aiter represents internal definitions that can reach loop header from within the loop

following an iteration. ainit is returned when control reaches loop header from outside

of the loop. aiter is returned in all subsequent iterations."

7.3.2 Conversion of Loops into Instruction-Level Recursion

The conversion is achieved by following the following steps:

1. Identify a single-entry, multi-exit region where the entire region is dominated by an

inner-most loop header.

2. Propagate all instructions except branches to the loop header using acyclic code

motion discussed before.

3. Calculate the controlling predicates for the exit edges and calculate the

Recursive Predicate using Algorithm 3 shown in Figure 7.7.

130

Algorithm 1
for each back-edge and exit edge e do

begin

let b be the block which e originates from

let I be any instruction originally in block b
let α(I) be the predicate expression guarding I
if block b has a branch on predicate P then

if e is on the true path of the branch then

p(e)← α(I)∧P if e is a back-edge

q(e)← α(I)∧P if e is an exit edge

else

p(e)← α(I)∧¬P if e is a back-edge

q(e)← α(I)∧¬P if e is an exit edge

end

else /* e is fall through backedge */

p(e)← α(I) if e is a back-edge

end

if e is a back edge then

RP← p(e)
end

Figure 7.7: Algorithm 3: Compute RecursivePredicate and ExitPredicate

4. Pick an unused single assignment name for the RecursivePredicate.

5. Convert φ -nodes to gating function μ or ψ with a read-once predicate..

6. Insert (RP)[T]RP = at the very beginning of loop header where RP is the single

assignment name picked in the previous step and it is assigned to the computed

RecursivePredicate by converting all the predicate variables in the computed

predicate to future form.

7. Convert every instruction in the header to recursive form using RP and delete the back

edges and branches. The conversion involves renaming all instructions which are in

the loop body such that each single assignment name that is defined in the block is

appended the loop nest level, starting with zero at the inner-loop and incrementing.

This renaming will update any uses which are loop carried to the new name while

keeping names which are defined outside the loop unchanged.

131

Once the above process is completed, an inner-most loop has been converted to sequential

code. We apply the above process until the entire procedure is converted into a single block.

Theorem 7.3.1. The predicate expression controlling the backedge e can be computed

correctly using Algorithm 1.

Proof. Figure 7.8 that contains an arbitrary innermost loop is used to demonstrate the proof.

B1 is the loop header, e1 is a backedge originating from block B3 which contains instruction

J. Assume a trivial instruction K is inserted in e1 as shown in Figure 7.8(b). The predicate

expression controlling K, namely γ is the same as the one controlling e1. γ is computed

by propagating instruction K to B1. For that purpose, K is first moved into block B3. K

becomes β : K in B3 where three cases may happen:

case1: β = P if e1 is the taken edge of B3,

case2: β = ¬P if e1 is the fall through edge of B3,

case3: β = true which means K is not guarded by any predicate if B3 is ended with an

unconditional jump.

Propagate β : K and instruction J to B1. Since β : K and J propagate from the same block,

the predicates guarding these two instructions are the same when they reach B1. Assume

J becomes α : J in B1, then K becomes α : {β : K}. Combining nested predication yields

γ = α ∧β .

B1

B2

B3

e2

e1

I

if (Q)

if (P)

J

Y

N

B1

B2

B3

e2

e1

I

if (Q)

if (P)

J

Y

N K

(a) (b)

Figure 7.8: Theorem 7.3.1

132

Note that although K may be split into multiple copies during the propagation, the last copy

instruction is merged and hence the resulting instruction is renamed back to K in the loop

header B1 if it is not merged before reaching B1.

use w2

Y

B1

START

w0 = 0

z0 = 2

B2

N

if (P = (z1 ≥ 0)

z1 = φ(z0, z2)

w1 = φ(w0, w2)

e1exit

eback

B4

use w1

if (S = (w2 > z2))

B3

w2 = x4 + w1
z2 = z1 − 1

YN

END

e2exit

B5

x4 = 1

use w2

B4

use w1

B1

START

w0 = 0

z0 = 2

YN

END

e2exit

B2

if (S)

Y

B3
Ne1exit

B5

z1 = φ(z0, z2)
w1 = φ(w0, w2)

P = (z1 ≥ 0)

[P] x4 = 1
[P] w2 = x4 + w1

[P] z2 = z1 − 1

[P] S = (w2 > z2)

if (P)

eback

p(e1exit) = ¬P

p(eback) = P ∧ S

p(e2exit) = P ∧ ¬S

(a) A single-entry loop (b) Apply acyclic code motion

and compute RecursivePredicate

use w2

B4

use w1

B1

START

w0 = 0

z0 = 2

END

B2

z1 = φ(z0, z2)
w1 = φ(w0, w2)

P = (z1 ≥ 0)

[P] w2 = x4 + w1

[P] z2 = z1 − 1

[P] S = (w2 > z2)

e2exit : P ∧ ¬S

eback : P ∧ S

B5

e1exit : ¬P

[P] x4 = 1

B1

START

w0 = 0

z0 = 2

END

B5

e1exit : ¬P

e2exit : P ∧ ¬S

z2 = (RP 0)[P 0]{z2 0 = z1 0 − 1}

B2

B4

use w1

use w2

w2 = (RP 0)[P 0]{w2 0 = x4 0 + w1 0}
x4 = (RP 0)[P 0]{x4 0 = 1}
P = (RP 0)[T]{P 0 = (z1 0 ≥ 0)}
z1 = (RP 0)[T]{z1 0 = μ(z0, z2 0)}
w1 = (RP 0)[T]{w1 0 = μ(w0, w2 0)}
RP = (RP 0)[T]{RP 0 = P 0(f) ∧ S 0(f)}

S = (RP 0)[P 0]{S 0 = (w2 0 > z2 0)}

(c) Eliminate loop (d) Convert to recursive form

except loop header

Figure 7.9: Program 1:Conversion of a cyclic program into RFPF

133

Figure 7.9(a) is an example that shows the steps of transforming cyclic code. The

region cut out is a loop region with a single loop header B2. Following the algorithm,

we first propagate every instruction inside the loop into the loop header(Figure 7.9(b)).

During the instruction propagation, the necessary predicate information to compute the

RecursivePredicate and controlling predicates for the exit edges are collected naturally,

shown on the right side of Figure 7.9(b). Next, everything in the loop region except the

loop header and the back edge is deleted.(Figure 7.9(c)). The result of the conversion is

shown in Figure 7.9(d).

7.4 Code Motion Involving Memory Dependencies and

Function Calls

Memory dependencies pose significant challenges in code motion. There are many cases a

compile time analysis of memory references would not yield precise answers. Our solution

is to assume dependence and enforce the original memory ordering in the program through

predication. Since a series of consecutive load operations without intervening stores have

no dependence on each other, RFPF allows these loads to be executed in any order once the

dependence of the first load in the series is satisfied. We define the memory operations as:

MEM, @P where MEM represents a Load/Store operation and P is a predicate whose value

is set to 1 when the memory operation MEM gets executed. Any memory operation that

has a dependence with MEM will be guarded by P as a predicated operation. In this way,

the dependence among memory operations are converted into data dependencies explicitly.

Once the memory operations are converted in this manner, they can be moved like any other

instruction. Because of the predication, if a memory operation is hoisted above another

which defines its controlling predicate, the controlling predicate becomes a future value

(Figure 7.10).

Taking control flow into account, one memory operation may have multiple dependencies

due to multiple paths through which it can be reached. In this case, a gating-function is

134

LW1, @P1

[P1] SW1, @P2
f[P1] SW1, @P2

SW1

LW1

LW1, @P1

memory reorderingpredicated memory

Figure 7.10: Predicated memory and reordered memory

used to choose which dependence finally comes to the memory operation. Figure 7.11

shows a case where a store, namely ST2 is in a converging node of LD1 and ST1. Note

that the store ST2 cannot execute before LD1 or ST1 completes, therefore the φ -function

selects the destination predicates of previous memory operations. Hence P4 = φ(P1,P3) is

inserted to select the dependencies with LD1 and ST1 3.

ST1LD1

ST2

[P0] LD1, @P1

[P4] ST2, @P5

[P2] ST1, @P3

P4 = φ(P1, P3)

Figure 7.11: φ -node of predicates before a store

Figure 7.12 shows a slightly different case where a load, namely LD2 is in a converging

node. A load operation normally is independent of another load whereas a store after a

series of load operations is dependent on all of them. For this reason, a new predicate

representing the dependence from a series of loads so far needs to be computed after every

load instruction since the last store operation in the path. Note that, in Figure 7.12, if

the control flow takes the left edge, LD2 is controlled by the same predicate that LD1

is controlled by, which is produced by the last store in the path. Further notice, a new

predicate needs to be computed after the load as representing the dependence from all the

loads so far. Therefore two φ -nodes are inserted before LD2, where P4 is for guarding LD2,

and P6 is for computing the new predicate after LD2, namely P7. Again, note that, since our

goal is to impose a minimal ordering of memory operations, store and load at the converge

node need different number of φ -functions and each φ is computed differently as they are

3In case of FGSA, the corresponding gating function would be ψ(P0,P2)(P1,P3)

135

shown in Figure 7.11 and 7.12. In a general rewriting algorithm, without knowing the next

memory operation is a load or a store, the combination of all three φs are needed at each

convention node.

[P4] LD2, @P5

P4 = φ(P0, P3)

P6 = φ(P1, T)

ST1LD1

LD2

[P0] LD1, @P1 [P2] ST1, @P3

P7 = P6 + P5

Figure 7.12: φ -node of predicates before a load

For building RFPF on SSA, our algorithm to rewrite memory operations is based on Cytron

et al’s SSA construction algorithm (Cytron et al. 1991). Since all the load/store operations

can be treated as assignments to the same variable, Cytron et al’s algorithm can be modified

to accomplish the rewriting. Cytron et al’s algorithm has two phases: placement of

φ -functions and renaming. The original φ -function placement algorithm uses the iterative

dominance frontier information to place φs. Figure 7.13 shows the modifications on this

phase.

Treat each load/store instruction as an

assignment to a special variable M.

Modify placement of φ -functions algorithm

in (Cytron et al. 1991):

instead of placing one φ -function for each

variable at each proper node,

place three φ -functions for the special

variable M, namely

P1 = φ(T, . . . ,T), P2 = φ(T, . . . ,T),
P3 = φ(T, . . . ,T),
where T represents boolean value true

Figure 7.13: Rewriting memory operations: placement of φ -functions

We put three φ -functions at each converge node, where P1 computes the predicate guarding

the next load operation, P2 computes the predicate guarding next store operation and P3

136

computes the predicate representing the consecutive loads so far. The purpose of P3 is the

same as P7 in Figure 7.12. Extra φ -nodes that are never used later can be eliminated each

by pruning.

Modify renaming algorithm in (Cytron et al.

1991):

Elements stored in stack S for the special

variable M are in the form of a tuple <
Pj,Pk,Pl >

(1) for each memory operation MEM do

(2) < Pj,Pk,Pl > = pop(S)

(3) if MEM is a load
(4) rewrite MEM with [Pj]MEM,@Pi
(5) insert Pi+1 = Pl ∧Pi behind the current memory operation

(6) push(Pj,Pi+1,Pi+1)

(7) i=i+2

(8) if MEM is a store
(9) rewrite MEM with [Pk]MEM,@Pi
(10) push(Pi,Pi,T)

(11) i=i+1

Figure 7.14: Rewriting memory operations: rewriting memory instructions

The original renaming algorithm performs a top-down traversal of the dominator tree. The

visit to a node processes the statements associated with the node in a sequential order,

starting with any φ -function that may have been inserted. Each variable is associated

with a stack, keeping the current version number on the top. The right hand side variable

of each statement is renamed by the top of the corresponding stack. The left hand side

variable is given a new version number which then is pushed into the corresponding stack.

Figure 7.14 shows the modification on the renaming phase. Corresponding to the three

φ -functions at the converge nodes, each memory operation is associated with a tuple,

namely < Pj,Pk,Pl >. Pj and Pl are for the next load and Pk is for the next store. Note that

i keeps the current predicate version number and gets updated for each memory operation.

Rewriting the load operations is performed by line(4) and the new predicate after a load is

137

computed by line (5). Rewriting store operations is performed by line (9) of the algorithm.

We employ a similar algorithm for handling function calls. Because of their side effects

such as input/output, function calls may not be reordered without a proper analysis of the

functions referenced. Therefore, we introduce a single predicate for each call instruction

which is set when the call is executed. A single φ node is needed at merge steps to enforce

the function call order on any path.

7.5 Directly Computing RFPF

As discussed at the beginning of the chapter, RFPF can be constructed on any single

assignment form. Instead of starting with an SSA program, we can start with FGSA.

Unlike φ -functions in SSA, gating functions in FGSA are not tied to the program points

and thus they can be split, moved and merged back the same way as any executable

instruction. FGSA contains fewer gating functions which will results in a smaller RFPF.

More importantly, TR transformation eliminates irreducible loops, which enables the RFPF

computation algorithms to handle general graphs. Intuitively, FGSA already contains the

part of information required for computing RFPF, which is collected through T1/T2/TR.

Next we are going to demonstrate how to directly compute RFPF from a multi-assignment

form through the concept of congruences classes and T1/T2/TR.

Given any instruction, computing its RFPF format requires computing the path predicate

expressions from start to this particular instruction, constructing gating functions for

its operands if necessary and renaming its operands. Constructing gating functions and

renaming operands are the exact same tasks as they are in FGSA, which are achieved by

the set of algorithms in Chapter 3. In FGSA, we compute partial path predicate expressions

representing the path from LCDOM of a CC’s definition set to a definition. In RFPF, a full

path predicate expression which represents the path from the start node to any definition

(instruction) must be computed, which will be used to guard the instruction in the complete

RFPF. The complete path predicate expression can be obtained through T2 transformation

with an extra computation. Consider an instruction in node v. When T2 is performed on

138

Pred(v) = /0

Link(v) = /0

RP(v) = /0

Loop(v) = /0

while(there is a node except start left) do

if (T1 is performed on v)

let path predicate expression at back-edge be p
RP(v) = p

Loop(v) = {v}
for(w is dominated by v)

if(Pred(w) is not empty AND

Pred(w) ∧ RP(v) is not false)

add w into Loop(v)

for (w in Loop(v))

convert each instruction in w into recursive form with RP(v)

if (T2 is performed on v with predecessor u)

let path predicate expression at edge (uv) be q
Pred(v) = q

Link(v) = u

endo

Traverse each node v in the dominator tree in pre-order

Pred(v) = Pred(v) ∧ Pred(Link(v))

Figure 7.15: Algorithm 4: Directly computing RFPF

v, path predicate expression which represents the path from u to v was already computed

and pushed onto edge (uv). It is easy to see that u must dominate v. We can create a link

between u and v. Later when u is consumed by T2, the path predicate expression from

u’s dominator to u will be computed and u and the dominator is also linked. Finally by

concatenating the path predicate expressions following the links in the dominator tree from

v all the way back to start, the complete path predicate expression is computed.

For an instruction in a cyclic region, computing its RFPF format requires computing the

recursive predicate. In fact, when T1 is performed, the path predicate expression at the

back-edge is the recursive predicate for the loop. Then it is easy to transform a loop

instruction into its recursive form. As discussed before, a gating function with a read-once

predicate can be used at the loop headers. However if an instruction is below and outside the

loop, it shouldn’t be transformed into the recursive form. In Section 3.4.2, we demonstrated

139

that we can identify whether a node is inside or outside a loop by testing the result of its

path predicate (to the loop header) AND the recursive predicate.

Based on T1/T2/TR presented in Chapter 3, we present complete path predicate expression

and recursive predicate computation in Figure 7.15. Note that T1/T2/TR also computes

congruence classes and constructs gating functions, therefore direct computing RFPF from

a multi-assignment form is complete.

7.6 Conclusion

We have presented a new approach, Recursive Future Predicated Form to program

representation and optimization. The most significant difference of our approach is to

move instructions to collect the necessary data and control flow information, and in

the process yield a representation in which compiler optimizations can be carried out.

RFPF representation is a complete framework which exposes optimizations which are

only possible through code restructuring. In the next Chapter, we visit PRE under this

representation.

140

Chapter 8

Optimizations on RFPF

1 Many optimizations can be carried out on the complete RFPF and as well as during

the transformation process. One of the advantages of RFPF is its ability to perform

traditional optimizations while keeping the graph in single-assignment form with minimal

book keeping. We show two examples of optimizations, one which can be employed during

the transformation and another after the graph is converted into full RPFP.

Case Study 1. PRE during the transformation:

Consider Figure 8.1(a). There’s a redundant computation of x0 + y0 along the path (B2 B4

B5). Most PRE algorithms cannot capture this redundancy because node B4 destroys the

available information for x0 + y0. On the other hand, instruction propagation and RFPF

cover the case. Observe that during the instruction propagation, one of the clones, namely,

(I1) reaches node B2(Figure 8.1(b)). By applying Value numbering (Aho et al. 1986) in the

basic block, x0 + y0 in I1 is subsumed by z1(Figure 8.1(c)).

By further propagating and merging, instruction I1 and I2 are merged in B1 with

the addition of the gating function ψ (Figure 8.2(a)) yielding the complete RFPF

(Figure 8.2(d))).

Figure 8.2(b) gives the result of transforming RFPF back into SSA. This graph is

1The material contained in this chapter was previously published in CC’10/ETAPS’10 Proceedings of the

19th joint European conference on Theory and Practice of Software, international conference on Compiler

Construction.

141

Q

P

N Y

N Y

B2

B5

B3

B4

I: z2 = x0 + y0

B1

J: z1 = x0 + y0

Q

P

N Y

N Y

B2 B3

B4

B1

[Qf] I2: z2,2,2 = x0 + y0

J: z1 = x0 + y0

[Qf] K: z2 = φ(z2,1,2, z2,2,2)

B5

[Qf] I1: z2,1,2 = x0 + y0

(a) A PRE example (b) Code motion

Q

P

N Y

N Y

B2 B3

B4

B1

[Qf] I2: z2,2,2 = x0 + y0

J: z1 = x0 + y0

[Qf] K: z2 = φ(z2,1,2, z2,2,2)

[Qf] I1: z2,1,2 = z1

B5

B1

P=.....

Q=.....

[Q] I: z2 = ψP (x0 + y0, z1)

[¬P] J: z1 = x0 + y0

(c) Value numbering (d) Complete RFPF

Figure 8.1: Partial redundancy elimination during the code motion

functionally equivalent to Figure 8.2(c), which shows the result by using the PRE algorithm

of Bodik et al. (Bodík et al. 1998). This algorithm separates the expression available path

from the unavailable path by node cloning which eliminates all redundancies. As it can be

seen, RFPF can perform PRE and keep the resulting representation in the SSA form.

The dependency elimination in our example is not a coincidence. By splitting instructions

into copies, we naturally split the dataflow information available path from unavailable

path. From the perspective of the total number of the computations, RPFP yields essentially

the same result. The optimality of RPFP and code motion based PRE in RFPF is yet to be

studied, but its ability to catch difficult PRE cases is quite promising.

Case Study 2. Constant propagation in complete RFPF:

We use another example(Figure 8.3(a)) to show how to do constant propagation(CP) in

142

Q

N Y
B5

B4

YN

P

B3B2

[¬Pf] J: z1 = x0 + y0

[Qf] I: z2 = ψPf (x0 + y0, z1)

B1
P

N Y

J: z1 = x0 + y0

B2 B3

B1

B4

Y

N

N

Y

K:z2 = φ(z2,1,2, z2,2,2)

B5

if (P)

Q

I2: z2,2,2 = x0 + y0I1: z2,1,2 = z1

P

N Y
B2 B3

B1

J: z1 = t

Q

B4’

N

I: z2 = t

YN

B5

Y

Q

B4

t = x0 + y0

t = x0 + y0

(a) Instruction merging (b) RFPF to CFG (c) Bodik et al.

(Bodík et al. 1998)

Figure 8.2: Merging and converting back to CFG

complete RFPF. As in the PRE example, constant propagation chances are caught in node

B2 and B4(Figure 8.3(b)). Figure 8.3(c) and (d) shows complete RFPF of the program

and the result after optimization. We use the conditional constant propagation(CCP)

approach described in (Wegman and Zadeck 1991). Note that x4 becomes a constant in our

representation because gating function ψ can be evaluated given the constant information

of the predicate and the variable values.

The choice of applying various optimizations during or after the transformation has to be

decided based on foreseen benefits. This is an open research problem and is left as future

work.

143

B2

x3 = −1
x2 = 0

use x4

YN

YN

if (Q = y ≥ 0)

B1

START

END

x4 = φ(x3, x1, x2)

B5

B4

if (R=(y==0))

B3

read x1

y = 0

x2 = 0
x4,3,3 = x2

use x4

YN

if (Q = y ≥ 0)

B1

START

END

B3

read x1

y = 0

B5

B2

x3 = −1

x4,1,3 = x3
B4Y

if (R=(y==0))

[¬Rf] x4,2,3 = x1

x4 = φ(x4,1,3, x4,2.3, x4,3,3)

N

(a) A CP Example (b) Transform to RFPF

read x1

y = 0

Q = (y≥ 0)
Q : R = (y == 0)
Q∧R : x2 = 0

¬Q : x3 =−1

x4 = ψQ(ψR(x2,x1),x3)
use x4

read x1

y = 0

Q = true
true : R = true
true : x2 = 0

f alse : x3 =−1

x4 = ψtrue(ψtrue(0,x1),x3)
use 0(x4)

(c) Complete RFPF (d) Apply CCP

Figure 8.3: Constant propagation on RFPF

144

Chapter 9

Conclusion

This dissertation explores the field of single assignment forms beyond SSA and GSA and

improves the state-of-the-art on several points, including use of interval analysis to compute

single assignment form, elimination of irreducibility without node replication as well as

the provision of a framework which can potentially subsume optimizations which require

program restructuring.

9.1 Summary of Work

Chapter 3 presents FGSA, a congruence class based single assignment form. We employ

interval analysis T1/T2 to collect the information necessary for FGSA construction. We

introduce TR transformation to eliminate irreducible loops without node replication, which

enables interval analysis to handle both reducible and irreducible programs. FGSA

representation facilitates expected linear time conversion of programs from a control-flow

graph, yields the same semantics as SSA and GSA by using fewer gating functions and

provides executable semantics with extra information in the form of path expression. The

information embedded in FGSA can be used to simplify analysis and optimizations, which

is demonstrated in Chapter 4 and Chapter 6 respectively. In Chapter 4, we’ve extended

the concept of liveness on FGSA with respect to predicates and congruence classes. By

doing so, we are able to classify interferences among variables into categories and look

145

for solutions for each category. In Chapter 6 we’ve adapted two optimizations algorithms

on FGSA to show that existing optimization algorithms are easy to be adapted to FGSA

and have good chance to be simplified on FGSA. Based on the idea, in Chapter 5, we’ve

designed a framework of optimal translation from FGSA. We first present the taxonomy

of the interferences resulting from optimizations and then presented solutions for each

category. To our knowledge this is an approach that has never been investigated to solve

single assignment inverse transformation problem.

Chapter 7 presents RFPF, an novel approach to program representation and optimization.

We’ve presented complete sets of algorithms to move code in acyclic regions as well

as cyclic regions, including memory instructions and function calls. The property of

unrestricted code motion of RFPF is very powerful. In Chapter 8 we’ve demonstrated

the ability of RFPF through two optimization problems.

9.2 Future Research

This dissertation work can be extended to the following areas:

1. A generalized framework to adapt existing analysis and optimizations onto FGSA

and RFPF;

2. Development of provably optimal inverse transformation algorithms for gated-gated

interferences in FGSA;

3. Development of optimized inverse transformation algorithms for RFPF and

investigation of whether RFPF can subsume program structuring based optimization;

4. A new design of architecture to directly execute FGSA/RFPF.

146

References

Aho, A. V., R. Sethi, and J. D. Ullman. 1986. Compilers: principles, techniques, and tools.

2nd Ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Allen, J. R., K. Kennedy, C. Porterfield, and J. Warren. 1983. Conversion of control

dependence to data dependence. In POPL ’83: Proceedings of the 10th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, New York, NY,

USA, pp. 177–189. ACM.

Ananian, C. S. and M. Rinard. 1999. Static single information form. Master’s thesis.

Massachussets Institute of Technology.

Arenaz, M., J. Touriño, and R. Doallo. 2003. A gsa-based compiler infrastructure to

extract parallelism from complex loops. In Proceedings of the 17th annual international

conference on Supercomputing, ICS ’03, New York, NY, USA, pp. 193–204. ACM.

Aycock, J. and N. Horspool. 2000. Simple generation of static single assignment form.

In Proceedings of the 9th International Conference in Compiler Construction, Volume

1781 of Lecture Notes in Computer Science, pp. 110–125. Springer.

Bernstein, D. and M. Rodeh. 1991. Global instruction scheduling for superscalar machines.

SIGPLAN Not. 26(6): 241–255.

Bilardi, G. and K. Pingali. 2003. Algorithms for computing the static single assignment

form. J. ACM 50(3): 375–425.

147

Bodík, R., R. Gupta, and V. Sarkar. 2000. Abcd: eliminating array bounds checks on

demand. In Proceedings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, PLDI ’00, New York, NY, USA, pp. 321–333.

ACM.

Bodík, R., R. Gupta, and M. L. Soffa. 1998. Complete removal of redundant expressions.

In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on Programming

language design and implementation, New York, NY, USA, pp. 1–14. ACM.

Boissinot, B., A. Darte, F. Rastello, B. D. de Dinechin, and C. Guillon. 2009.

Revisiting out-of-ssa translation for correctness, code quality and efficiency. In CGO

’09: Proceedings of the 2009 International Symposium on Code Generation and

Optimization, Washington, DC, USA, pp. 114–125. IEEE Computer Society.

Boissinot, B., S. Hack, D. Grund, B. Dupont de Dine hin, and F. e. Rastello . 2008. Fast

liveness checking for ssa-form programs. In CGO ’08: Proceedings of the 6th annual

IEEE/ACM international symposium on Code generation and optimization, New York,

NY, USA, pp. 35–44. ACM.

Brandis, M. M. and H. Mössenböck. 1994, Nov. Single-pass generation of static

single-assignment form for structured languages. ACM Transactions on Programming

Languages and Systems. 16(6): 1684–1698.

Briggs, P., K. D. Cooper, T. J. Harvey, and L. T. Simpson. 1998, Jul. Practical improvements

to the construction and destruction of static single assignment form. Software—Practice

and Experience. 28(8): 859–881.

Carter, L., J. Ferrante, and C. Thomborson. 2003. Folklore confirmed: reducible flow

graphs are exponentially larger. In Proceedings of the 30th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’03, New York, NY, USA,

pp. 106–114. ACM.

148

Choi, J.-D., R. Cytron, and J. Ferrante. 1991. Automatic construction of sparse data flow

evaluation graphs. In POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, New York, NY, USA, pp. 55–66.

ACM.

Chow, F., S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. 1997. A new algorithm for

partial redundancy elimination based on ssa form. In PLDI ’97: Proceedings of the ACM

SIGPLAN 1997 conference on Programming language design and implementation, New

York, NY, USA, pp. 273–286. ACM.

Click, C.. 1995. Global code motion/global value numbering. In PLDI ’95: Proceedings

of the ACM SIGPLAN 1995 conference on Programming language design and

implementation, New York, NY, USA, pp. 246–257. ACM.

Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1991. Efficiently

computing static single assignment form and the control dependence graph. ACM Trans.

Program. Lang. Syst. 13(4): 451–490.

Das, D. and U. Ramakrishna. 2005, May. A practical and fast iterative algorithm for

φ -function computation using dj graphs. ACM Trans. Program. Lang. Syst. 27: 426–440.

D.Cooper, K., T. J.Harvey, and K. Kennedy. 2001. A simple, fast dominance algorithm.

Softw. Pract. Exper..

Dhamdhere, D. M. and H. Patil. 1993, April. An elimination algorithm for bidirectional

data flow problems using edge placement. ACM Trans. Program. Lang. Syst. 15:

312–336.

Ding, S. and S. Önder. 2010. Unrestricted code motion: A program representation

and transformation algorithms based on future values. In R. Gupta (Ed.), Compiler

Construction, Volume 6011 of Lecture Notes in Computer Science, pp. 26–45. Springer

Berlin / Heidelberg. 10.1007/978-3-642-11970-5_3.

149

Erosa, A. and L. J. Hendren. 1994. Taming control flow: A structured approach to

eliminating goto statements. In In Proceedings of 1994 IEEE International Conference

on Computer Languages, pp. 229–240. IEEE Computer Society Press.

Ferrante, J., K. J. Ottenstein, and J. D. Warren. 1987. The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9(3): 319–349.

Fisher, J. A.. 1979. The optimization of horizontal microcode within and beyond basic

blocks: an application of processor scheduling with resources. Ph. D. thesis, New York,

NY, USA.

Fisher, J. A.. 1982, July. Trace scheduling: A technique for global microcode compaction.

IEEE Transcations on Computers c-30: 4778–490.

Gargi, K.. 2002. A sparse algorithm for predicated global value numbering. In

Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design

and implementation, PLDI ’02, New York, NY, USA, pp. 45–56. ACM.

Gavril, F.. 1972. Algorithms for Minimum Coloring, Maximum Clique, Minimum

Covering by Cliques, and Maximum Independent Set of a Chordal Graph. Siam Journal

on Computing 1: 180–187.

Gillies, D. M., D.-c. R. Ju, R. Johnson, and M. Schlansker. 1996. Global predicate analysis

and its application to register allocation. In Proceedings of the 29th annual ACM/IEEE

international symposium on Microarchitecture, MICRO 29, Washington, DC, USA, pp.

114–125. IEEE Computer Society.

Graham, S. L. and M. Wegman. 1976, January. A fast and usually linear algorithm for

global flow analysis. J. ACM 23: 172–202.

Hack, S.. 2005, June. Interference Graphs of Programs in SSA Form. Technical Report

2005-15, Universität Karlsruhe.

150

Hack, S.. 2007, October. Register Allocation for Programs in SSA Form. Ph. D. thesis,

Universität Karlsruhe.

Hailperin, M.. 1998. Cost-optimal code motion. ACM Trans. Program. Lang. Syst. 20(6):

1297–1322.

Havlak, P.. 1993. Construction of thinned gated single-assignment form. In Proceedings

of the 6th International Workshop on Languages and Compilers for Parallel Computing,

Volume 768 of Lecture Notes in Computer Science, pp. 477–499. Springer.

Hecht, M. S. and J. D. Ullman. 1974, July. Characterizations of reducible flow graphs. J.

ACM 21: 367–375.

Hoflehner, G. F.. 2010. Strategies for Predicate-Aware Register Allocation, Volume 6011,

pp. 185–204. Springer.

Janssen, J. and H. Corporaal. 1997. Making graphs reducible with controlled node splitting.

ACM Trans. Program. Lang. Syst. 19(6): 1031–1052.

Kennedy, R., S. Chan, S.-M. Liu, R. Lo, P. Tu, and F. Chow. 1999, May. Partial

redundancy elimination in SSA form. ACM Transactions on Programming Languages

and Systems 21(3): 627–676.

Kennedy, R., F. C. Chow, P. Dahl, S.-M. Liu, R. Lo, and M. Streich. 1998. Strength

reduction via ssapre. In CC ’98: Proceedings of the 7th International Conference on

Compiler Construction, London, UK, pp. 144–158. Springer-Verlag.

Knoop, J., O. Rüthing, and B. Steffen. 1992. Lazy code motion. In PLDI ’92:

Proceedings of the ACM SIGPLAN 1992 conference on Programming language design

and implementation, New York, NY, USA, pp. 224–234. ACM.

Knoop, J., O. Ruthing, and B. Steffen. 1993. Lazy strength reduction. Journal of

Programming Languages 1: 71–91.

151

Knoop, J., O. Rüthing, and B. Steffen. 1994. Optimal code motion: theory and practice.

ACM Trans. Program. Lang. Syst. 16(4): 1117–1155.

Lengauer, T. and R. E. Tarjan. 1979, Jul. A fast algorithm for finding dominators in a

flowgraph. ACM Transactions on Programming Languages and Systems 1(1): 121–141.

Morel, E. and C. Renvoise. 1979. Global optimization by suppression of partial

redundancies. Commun. ACM 22(2): 96–103.

Önder, S.. 2010. Methods and systems for ordering instructions using future values. US.

Patent 7,747,993, Filed Dec. 2004, Issued Jun. 2010.

Ottenstein, K. J., R. A. Ballance, and A. B. MacCabe. 1990. The program dependence

web: a representation supporting control-, data-, and demand-driven interpretation of

imperative languages. SIGPLAN Not. 25(6): 257–271.

Pingali, K., M. Beck, R. C. Johnson, M. Moudgill, and P. Stodghill. 1990. Dependence

flow graphs: An algebraic approach to program dependencies. Technical report, Cornell

University, Ithaca, NY, USA.

Rau, B. R.. 1994. Iterative modulo scheduling: an algorithm for software pipelining

loops. In MICRO 27: Proceedings of the 27th annual international symposium on

Microarchitecture, New York, NY, USA, pp. 63–74. ACM.

Rau, B. R. and C. D. Glaeser. 1981. Some scheduling techniques and an easily schedulable

horizontal architecture for high performance scientific computing. SIGMICRO

Newsl. 12(4): 183–198.

Rogers, A. and K. Li. 1992. Software support for speculative loads. In ASPLOS-V:

Proceedings of the fifth international conference on Architectural support for

programming languages and operating systems, New York, NY, USA, pp. 38–50. ACM.

152

Rosen, B. K., M. N. Wegman, and F. K. Zadeck. 1988. Global value numbers and redundant

computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’88, New York, NY, USA, pp. 12–27.

ACM.

Simpson, L. T.. 1996. Value-driven redundancy elimination. Ph. D. thesis, Houston, TX,

USA. AAI9631092.

Singer, J.. 2003. Ssi extends ssa. In Work in Progress Session Proceedings of the Twelfth

International Conference on Parallel Architectures and Compilation Techniques.

Singer, J.. 2006. Static program analysis based on virtual register renaming. PhD’s thesis,

University of Cambridge. UCAM-CL-TR-660.

Sreedhar, V. C., R. D.-C. Ju, D. M. Gillies, and V. Santhanam. 1999. Translating out

of static single assignment form. In SAS ’99: Proceedings of the 6th International

Symposium on Static Analysis, London, UK, pp. 194–210. Springer-Verlag.

Tarjan, R. E.. 1981. Fast algorithms for solving path problems. J. ACM 28(3): 594–614.

T.Ball and S.Horwitz. 1992. Constructing control flow from control dependence. Technical

report, University of Wisconsin-Madison.

Tu, P. and D. Padua. 1995. Efficient building and placing of gating functions. In

Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design

and Implementation, pp. 47–55.

Unger, S. and F. Mueller. 2002, July. Handling irreducible loops: optimized node splitting

versus dj-graphs. ACM Trans. Program. Lang. Syst. 24: 299–333.

VanDrunen, T. and A. L. Hosking. 2004. Anticipation-based partial redundancy elimination

for static single assignment form. Softw. Pract. Exper. 34(15): 1413–1439.

153

VanDrunen, T. and A. L. Hosking. 2004. Value-based partial redundancy elimination. In

13th International Conference on Compiler Construction, Volume 2985 of Lecture Notes

in Computer Science, pp. 167–184. Springer.

Warter, N. J., S. A. Mahlke, W.-M. W. Hwu, and B. R. Rau. 1993. Reverse if-conversion.

In PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference on Programming

language design and implementation, New York, NY, USA, pp. 290–299. ACM.

Wegman, M. N. and F. K. Zadeck. 1991, Apr. Constant propagation with conditional

branches. ACM Transactions on Programming Languages and Systems 13(2): 181–210.

154

	Future value based single assignment program representations and optimizations
	Recommended Citation

	viewcontent.cgi

