2,732 research outputs found

    Web service control of component-based agile manufacturing systems

    Get PDF
    Current global business competition has resulted in significant challenges for manufacturing and production sectors focused on shorter product lifecyc1es, more diverse and customized products as well as cost pressures from competitors and customers. To remain competitive, manufacturers, particularly in automotive industry, require the next generation of manufacturing paradigms supporting flexible and reconfigurable production systems that allow quick system changeovers for various types of products. In addition, closer integration of shop floor and business systems is required as indicated by the research efforts in investigating "Agile and Collaborative Manufacturing Systems" in supporting the production unit throughout the manufacturing lifecycles. The integration of a business enterprise with its shop-floor and lifecycle supply partners is currently only achieved through complex proprietary solutions due to differences in technology, particularly between automation and business systems. The situation is further complicated by the diverse types of automation control devices employed. Recently, the emerging technology of Service Oriented Architecture's (SOA's) and Web Services (WS) has been demonstrated and proved successful in linking business applications. The adoption of this Web Services approach at the automation level, that would enable a seamless integration of business enterprise and a shop-floor system, is an active research topic within the automotive domain. If successful, reconfigurable automation systems formed by a network of collaborative autonomous and open control platform in distributed, loosely coupled manufacturing environment can be realized through a unifying platform of WS interfaces for devices communication. The adoption of SOA- Web Services on embedded automation devices can be achieved employing Device Profile for Web Services (DPWS) protocols which encapsulate device control functionality as provided services (e.g. device I/O operation, device state notification, device discovery) and business application interfaces into physical control components of machining automation. This novel approach supports the possibility of integrating pervasive enterprise applications through unifying Web Services interfaces and neutral Simple Object Access Protocol (SOAP) message communication between control systems and business applications over standard Ethernet-Local Area Networks (LAN's). In addition, the re-configurability of the automation system is enhanced via the utilisation of Web Services throughout an automated control, build, installation, test, maintenance and reuse system lifecycle via device self-discovery provided by the DPWS protocol...cont'd

    An approach to open virtual commissioning for component-based automation

    Get PDF
    Increasing market demands for highly customised products with shorter time-to-market and at lower prices are forcing manufacturing systems to be built and operated in a more efficient ways. In order to overcome some of the limitations in traditional methods of automation system engineering, this thesis focuses on the creation of a new approach to Virtual Commissioning (VC). In current VC approaches, virtual models are driven by pre-programmed PLC control software. These approaches are still time-consuming and heavily control expertise-reliant as the required programming and debugging activities are mainly performed by control engineers. Another current limitation is that virtual models validated during VC are difficult to reuse due to a lack of tool-independent data models. Therefore, in order to maximise the potential of VC, there is a need for new VC approaches and tools to address these limitations. The main contributions of this research are: (1) to develop a new approach and the related engineering tool functionality for directly deploying PLC control software based on component-based VC models and reusable components; and (2) to build tool-independent common data models for describing component-based virtual automation systems in order to enable data reusability. [Continues.

    Smart Home Systems

    Get PDF

    Meeting the challenges of decentralized embedded applications using multi-agent systems

    No full text
    International audienceToday embedded applications become large scale andstrongly constrained. They require a decentralized embedded intelligencegenerating challenges for embedded systems. A multi-agent approach iswell suited to model and design decentralized embedded applications.It is naturally able to take up some of these challenges. But somespecific points have to be introduced, enforced or improved in multiagentapproaches to reach all features and all requirements. In thisarticle, we present a study of specific activities that can complementmulti-agent paradigm in the ”embedded” context.We use our experiencewith the DIAMOND method to introduce and illustrate these featuresand activities

    Engineering framework for service-oriented automation systems

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    A component-based approach to human–machine interface systems that support agile manufacturing

    Get PDF
    The development of next generation manufacturing systems is currently an active area of research worldwide. Globalisation is placing new demands on the manufacturing industry with products having shorter lifecycles and being required in more variants. Manufacturing systems must therefore be agile to support frequent manufacturing system reconfiguration involving globally distributed engineering partners. The research described in this thesis addresses one aspect within this research area, the Human Machine Interface (HMI) system that support the personnel involved in the monitoring, diagnostics and reconfiguration of automated manufacturing production machinery. Current HMI systems are monolithic in their design, generally offer poor connectivity to other manufacturing systems and require highly skilled personnel to develop and maintain them. The new approach established in the research and presented in this thesis provides a specification capture technique (using a novel storyboarding modelling notation) that enables the end users HMI functionality to be specified and rapidly developed into fully functional End User HMI's via automated generation tools. A novel feature in this HMI system architecture that all machine information is stored in a common unified machine data model which ensures consistent accurate machine data is available to all machine lifecycle engineering tools including the HMI. The system's run-time architecture enables remote monitoring and diagnostics capabilities to be available to geographically distributed engineering partners using standard internet technologies. The implementation of this novel HMI approach has been prototyped and evaluated using the industrial collaborators full scale demonstrator machines within cylinder head machining and engine assembly applications

    Bio-inspired anatomy for autonomous DPWS-compliant automation components

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Engenharia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis thesis approaches the use of the DPWS technology to implement web-services on small devices, addresses its limitations, and explains an architecture to solve it. An approach to an autonomous device’s simple architecture was realized, using DPWS, and was called Simple DPWS. The objective was to implement/simplify some features in a device in a way that the device can work on its own. The designed architecture is based on that each component has its framework of modules, having always at least the skeleton modules communication and Event Router-Scheduler. The communication module controls all the communication between the devices and the ERS is the responsible for the other modules’ real-time communication. The DPWS toolkit offers no capability of interacting with run-time-appearing services. Thus there was a necessity to do enhancements over the DPWS toolkit to have a dynamic stub and skeleton. This service was called the dynamic service. An experience was done connecting a DPWS toolkit sample service with the corresponding hand-created dynamic service. It was used the lighting service that consists on turning a lamp ON or OFF and getting its status. A GUI was done for the application to be more user-friendly. The results were satisfactory, as the connection worked

    A component-based virtual engineering approach to PLC code generation for automation systems

    Get PDF
    In recent years, the automotive industry has been significantly affected by a number of challenges driven by globalisation, economic fluctuations, environmental awareness and rapid technological developments. As a consequence, product lifecycles are shortening and customer demands are becoming more diverse. To survive in such a business environment, manufacturers are striving to find a costeffective solution for fast and efficient development and reconfiguration of manufacturing systems to satisfy the needs of changing markets without losses in production. Production systems within automotive industry are vastly automated and heavily rely on PLC-based control systems. It has been established that one of the major obstacles in realising reconfigurable manufacturing systems is the fragmented engineering approach to implement control systems. Control engineering starts at a very late stage in the overall system engineering process and remains highly isolated from the mechanical design and build of the system. During this stage, control code is typically written manually in vendor-specific tools in a combination of IEC 61131-3 languages. Writing control code is a complex, time consuming and error-prone process. [Continues.

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion
    corecore