

Departamento de Engenharia Electrotécnica e de

Computadores

Bio-Inspired Anatomy for Autonomous

DPWS-Compliant Automation Components

José Eduardo Bruno de Sousa

Dissertação apresentada na Faculdade de Ciências e Engenharia da Universidade Nova de

Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Orientador: Prof. José Barata

Lisboa

Fevereiro de 2009

2

3

Acknowledgements

This work is the last movement of one more step of my long journey on studies.

Among all my university colleagues, there were some who I had the pleasure of work

with, and within these, there were some who really helped me on this journey. I would like to

thank here all of them, with no special order: David Rodrigues, Rodrigo Guerreiro, Nuno

Garrido, Paulo Bonifácio, João Oliveira, Carlos Barros, David Valério, Filipe Lopes, José

Serra and Ricardo Mendes.

However, one special colleague was Alexandre Rodrigues, who, besides helping me at

university, came with me to Schneider-Electric GmbH, and helped me with not only my

work, but also programming a higher-level application that uses my work demonstrating it.

Also, I would like to thank all my colleagues at Schneider-Electric GmbH, as they

were my family there, again with no special order: Daniel Cachapa, J. Marco Mendes, Nuno

Barral, Axel Bepperling, Natalyia Popova, Viktor, Thanh Pham, Dimitri and Martin.

I must also send a very special thanks to all my teachers, who, some more, others less,

cared about my work as a student. A particular word of gratitude goes to my supervisor Prof.

José Barata, whose support and motivation were fundamental, as was the opportunity to

realize my training/dissertation at Schneider-Electric GmbH.

My experience at Schneider-Electric GmbH was not possible, however, without the

authorization and support of Armando Colombo and Ralf Neubert, who had always time to

oversee the progress of my work despite having very busy work schedules.

There is also a group of friends who I must show my gratitude, as they always cared

about my studies even being nothing to do with it: David Freitas, Tânia Bragança, Ana Lucia,

Diogo Santos, Pedro Dias, Pedro Leiria, Janete Faustino, Pedro Tomaz e Ana Maria.

However, the biggest debt I have goes to my family. They always supported me,

principally in the most difficult times, and I know I can always count on them.

4

5

Resumo

Esta dissertação aborda o uso da tecnologia DPWS para implementação de web-

services em dispositivos, explica as suas limitações e apresenta uma arquitectura para

ultrapassá-las.

Foi estudada uma arquitectura baseada em DPWS com o objectivo de tornar um

dispositivo autónomo, chamada de DPWS Simples. Esta arquitectura é baseada na

programação por módulos, sendo o esqueleto suportado por dois módulos obrigatórios, o

módulo de comunicação e o Event Router-Scheduler.

O módulo de comunicação controla a comunicação para o exterior, enquanto o ERS é

responsável pela comunicação interna, em tempo real, entre os módulos.

O toolkit do DPWS não oferece possibilidade de interagir com serviços que emergem

em run-time. Foi necessário implementar algumas melhorias de modo a permitir ao DPWS ser

mais dinâmico. Este novo serviço foi chamado Serviço Dinâmico.

Foi realizada uma experiência fazendo ligação entre um serviço do DPWS e o mesmo

serviço mas criado dinamicamente. Foi usado o exemplo das lâmpadas, que consiste em ligar

e desligar uma lâmpada, e obter o seu estado. Uma interface gráfica foi implementada para a

aplicação ter fácil utilização. Os resultados foram satisfatórios, pois a experiência funcionou

plenamente.

6

7

Abstract

This thesis approaches the use of the DPWS technology to implement web-services on

small devices, addresses its limitations, and explains an architecture to solve it.

An approach to an autonomous device’s simple architecture was realized, using

DPWS, and was called Simple DPWS. The objective was to implement/simplify some

features in a device in a way that the device can work on its own. The designed architecture is

based on that each component has its framework of modules, having always at least the

skeleton modules communication and Event Router-Scheduler.

The communication module controls all the communication between the devices and

the ERS is the responsible for the other modules’ real-time communication.

The DPWS toolkit offers no capability of interacting with run-time-appearing services.

Thus there was a necessity to do enhancements over the DPWS toolkit to have a dynamic stub

and skeleton. This service was called the dynamic service.

An experience was done connecting a DPWS toolkit sample service with the

corresponding hand-created dynamic service. It was used the lighting service that consists on

turning a lamp ON or OFF and getting its status. A GUI was done for the application to be

more user-friendly. The results were satisfactory, as the connection worked.

8

9

Glossary of Abbreviations

DPWS - Devices Profile for Web Services

ERS - Event Router-Scheduler

GUI – Graphical User Interface

HAVi - Home Audio/Video Interoperability

HTTP - Hypertext Transfer Protocol

I/O - Input/Output

ICT - Information and Communication Technologies

IMS - Intelligent Manufacturing Systems

IP - Internet Protocol

ISC - International Security Controls

JINI - Java Intelligent Network Infrastructure

K/BIS - Kitchen and Bath Show

LAN -Local Area Network

MAS - Multi-Agent Systems

MTOM - Message Transmission Optimization Mechanism

OASIS - Organization for the Advancement of Structured Information Standards

OSGi - Open Service Gateway Initiative

PC - Personal Computer

PLC - Programmable Logic Controller

QoS - Quality of Service

RMI – Remote Method Invocation

SoA - Service-oriented Architecture

SOA4D - SoA for Devices

SOAP - Simple Object Access Protocol

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

UPnP - Universal Plug And Play

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

WS4D - Web Services for Devices

WSDL - Web Services Description Language

10

XML - eXtended Markup Language

11

Table of Contents

Chapter 1 ... 17

Introduction .. 17

1.1 – Research Problem .. 17

1.2 – Thesis outline ... 21

Chapter 2 ... 25

The State of the Art in the Industry .. 25

2.1 – The industry is changing ... 25

2.2 – Emerging technologies: SoA and MAS .. 28

2.3 – The SoA technology and SoA for devices .. 29

2.4 – SoA and the automation industry - a society of service-oriented automation

components ... 30

2.5 – Existing SoA realizations for devices .. 34

Chapter 3 ... 37

Supporting Technologies .. 37

3.1 – The Device Profile for Web Services .. 38

3.2 – DPWS description and history .. 38

3.3 – DPWS overview .. 39

3.4 – DPWS protocol .. 40

3.5 – DPWS architecture principles ... 44

3.6 – DPWS advantages and disadvantages ... 45

3.7 – DPWS – old and current implementations and application areas 47

12

Chapter 4 .. 49

SDPWS – to support Autonomous Components ... 49

4.1 – SDPWS: the autonomous component community .. 49

4.2 – SDPWS: the communication module ... 51

4.3 – SDPWS: enhanced interaction patterns .. 52

Chapter 5 .. 55

The Event Router-Scheduler .. 55

5.1 – SDPWS: The Event Router-Scheduler module .. 55

5.2 – Event Router-Scheduler: Internal Anatomy of components 57

5.3 – Event Router-Scheduler: the module .. 59

5.4 – Event Router-Scheduler – implementation and operation .. 64

Chapter 6 .. 69

The Dynamic Service ... 69

6.1 – DPWS service’s static creation ... 69

6.2 – Dynamic service: specifications .. 73

6.3 – Dynamic Service: implementation .. 74

6.4 – Dynamic DPWS: the Simple Service.. 78

6.5 – Dynamic Service: Benefits and Disadvantages .. 80

Chapter 7 .. 83

SDPWS – Case Study .. 83

7.1 – Objective ... 83

7.2 – SDPWS Implementation ... 84

Chapter 8 .. 93

Conclusion ... 93

13

Future Work .. 94

References.. 95

14

15

Table of Figures

Figure 1.1 – The SDPWS with the kernel modules…………………………………….…..19
Figure 1.2 – Real-time Service Loading and Spreading ……………………………………21

Figure 3.1 – DPWS terminology…………………………………………………….……...43
Figure 3.2 – DPWS protocol stack………………………………………………………….43
Figure 3.3 – architecture of a device compliant with DPWS…………………………….…44

Figure 4.1 – Simple DPWS architecture……………………………………….……………50
Figure 4.2 – Service Accessing Interaction Sequence………………………………………53

Figure 5.1 – The Event Router-Scheduler in the application structure…………………..…56
Figure 5.2 – Anatomical-like structures component………………………………………..58
Figure 5.3 – the Event Router-Scheduler generic concept……………………………........61
Figure 5.4 – ERS’ many possible operations…………………………………….……....…62
Figure 5.5 – (a) ERS freezing event get and (b) ERS non-freezing event get operations….63
Figure 5.6 – Mechanical arm controller example using ERS……………………………….65

Figure 6.1 – WSDL 1.1 object hierarchy…………………………………………………...71
Figure 6.2 – gSOAP’s artifacts involved in web-service development………………….…72
Figure 6.3 – WSDL to C structures transformation………………………………………...75
Figure 6.4 – invalid WSDL cannot be implemented………………………………….…….76
Figure 6.5 – DPWS Service vs. (Dynamic) Simple Service………………………………..79
Figure 6.6 – service self-spreading to the other identical devices………………………….81

Figure 7.1 – Implemented Simple Service………………………………………………….87
Figure 7.1 – example GUI with no neighbors detected…………………………….……….89
Figure 7.2 – example GUI with some neighbors detected……………………..…….……..90
Figure 7.3 – neighbor selected and respective operating buttons…………………………..90
Figure 7.4 – light turned ON………………………………………………………………..91

16

17

Chapter 1

Introduction

Contents

1.1 – Research Problem .. 17

1.2 – Thesis outline ... 21

1.1 – Research Problem

Modern manufacturing processes are focusing on flexibility, agility and re-

configurability. Production focus is shifting from mass production to mass customization.

New revolutionary manufacturing concepts are, thus, emerging. Centralized architectures

aren’t capable of dealing with the new reality of decentralized agile systems. As so, next

generation manufacturing must support strong market responsiveness but low costs and high

quality remain vital concerns. So, new technology is required to be considerably more flexible

and adaptable.

18

Nowadays, the communication between manufacturing components is facilitated by a

central system. This structure design approach fails when trying to use an intelligent control

structure. Recent technology is capable of much more of what is being used. Such technology

should be integrated with new engineering solutions that will support the research and

implementation of new paradigms in automation and control.

Besides this, a new approach to the enterprises is required, like intra-enterprise

dynamic integration of modules and inter-enterprise dynamic cooperation.

Some different approaches had been studied, like Multi-Agent Systems and Service-

Oriented Architectures. These technologies have been the subject of great attention, as they

implement effectively two principles that may sound contradictory: autonomy and

interoperability.

On top of Service-oriented Architectures, a new technology called Devices Profile for

Web Services (DPWS) is becoming steady in some areas. DPWS is a plug-n-play protocol

middleware built on top of a set of Web Services specifications. Consequently, it is a

distributed architecture. It leverages TCP/IP and the Web technologies to enable seamless

proximity networking in addition to control and data transfer among networked devices in the

home, office, and public spaces.

DPWS objectives are similar to those of Universal Plug And Play (UPnP) but, in

addition, DPWS is fully aligned with Web Services technology and includes numerous

extension points allowing for seamless integration of device-provided services in enterprise-

wide application scenarios.

In distributed automation and especially in the branch of production systems, the set of

equipment and other components in the system may be comparable under some circumstances

19

to a society of living beings. Taken a closer look into a component itself, its internal

mechatronical organization may correspond to functional organs that are responsible for

specific tasks, providing the "vital" properties to be able to fulfill its requirements. A central

question is how these functional modules or “organs” may be integrated, controlled and able

to pass impulses between them and therefore to form complex and operational structures.

Taking this in mind, an approach to an autonomous device was realized, using DPWS.

It was called Simple DPWS (SDPWS), and is represented in figure 1.1. The main objective is

to implement some features in a device in a way that the device can work on its own, owning

the necessary features. This simplification and features were studied and engineered. The

designed simplification is based on that each component has its framework of modules (figure

1.1). There are two kernel (obligatory) modules, the communication module and the Event

Router-Scheduler module (figure 1.1), and optional modules, and the work was based on the

kernel ones, as they were studied and developed.

Figure 1.1 – The SDPWS with the kernel modules

The communication module controls all the communication between devices and,

therefore, is responsible for using DPWS. The Event Router-Scheduler (ERS) is the

20

responsible for the other modules’ real-time communication. The optional modules are user-

defined and adapted to the respective component’s function.

The DPWS toolkit generates compact code, creating a light weight resource-constraint

program structure with a high performance predictive parser for each service. However, it

offers no capability of interacting with new services that appear at run-time, and new code has

to be generated and compiled on the client stub to integrate the unprecedented service. Thus

there was a necessity to do some enhancements over the DPWS toolkit to have a dynamic

stub and skeleton that can invoke and receive any kind of message, and thus, having the

possibility to create or update services in real-time, without machinery shut-down. This

would, among other benefits, greatly increase the agility of the shop floor, and consequently

reduce maintaining costs.

This new feature on automation components must accomplish some main objectives,

like be able to read a new service at run-time and inform the other identical devices that a new

service is available, as update a service and automatically send services to “new-born”

identical devices. For this purpose, the component must have a built-in service-receiving and

service-updating service, as also a service-spreading service, as shown in figure 1.2.

21

Figure 1.2 – Real-time Service Loading and Spreading

The dynamic service cannot, however, throw away the DPWS capacity of maintaining

the code compact and light-weight, as embedded memory becomes short rapidly, and costs

must be kept low.

Both Schneider-Electric colleagues and supervisors appreciated the concluded work,

giving a very positive feedback.

1.2 – Thesis outline

This thesis is divided in eight chapters: “Introduction”, “The State of the Art in

Industry”, “Supporting Technologies”, “SDPWS – the Living Components”, “The Event

22

Router-Scheduler”, “The Dynamic Service”, “SDPWS Complete Implementation” and

“Conclusion”.

This introductory chapter briefly explains the problem under research and presents the

outline of this work.

The second chapter, “The State of the Art in Industry”, explains the aging in currently

used technologies in industry, comparing it to what is possible to do, and gives an example of

emerging technologies that can be implemented in this sector, Service-oriented Architecture

and Multi-Agent Systems.

The third chapter, “Supporting Technologies”, presents the DPWS technology, a

middleware which is used on top of web-services, and allows web-services on small devices.

The fourth chapter, “SDPWS – the Living Components”, presents an enhanced and

simplified architecture using DPWS, called Simple DPWS (SDPWS), which was designed to

add the necessary features to a device using DPWS which would turn the device independent.

The fifth chapter, “The Event Router-Scheduler”, shows the implementation of the

intra-application module-communication-way module of the SDPWS and explains the

advantages and importance of such module in real-time multi-tasking devices.

The sixth chapter, “The Dynamic Service”, exposes the DPWS’ current version

technological limitation of being a static, pre-compiled service-implementation, and presents

a new architecture of turning those services dynamic, real-time implementable and self-

spreading between similar devices.

23

The seventh chapter, “SDPWS – Case Study”, presents exhaustively an

implementation of all of the previously mentioned architectures and technologies. The

example is a little Light ON/OFF service.

The concluding chapter discusses the results of the complete implementation, and

points future research directions.

24

25

Chapter 2

The State of the Art in the Industry

Contents

2.1 – The industry is changing .. 25

2.2 – Emerging technologies: SoA and MAS ... 28

2.3 – The SoA technology and SoA for devices ... 29

2.4 – SoA and the automation industry - a society of service-oriented automation

components .. 30

2.1 – The industry is changing

Modern manufacturing processes are focusing on flexibility, agility and re-

configurability. Production focus is shifting from mass production to mass customization, and

technology must follow new patterns to accommodate all the requirements. As so, new

revolutionary manufacturing concepts and emerging technologies are being researched to take

advantage of the newest mechatronics, information and communication technologies [11].

26

 Nowadays, any enterprise with stability must be able to change promptly and

dynamically its product or service catalogue to react to any unexpected disturbances or

market’s new directions. Centralized architectures aren’t capable of dealing with this new

reality, as the emergence of decentralized systems is a very important issue, for the systems to

be capable of dealing with the fast changes in the production environment. These new systems

must be agile and efficient to compete in a global market. The future of manufacturing will be

characterized by rapidly changing markets, pressure from competition and continuously

emerging technologies. Therefore, next generation manufacturing must support strong market

responsiveness. However, low costs and high quality remain vital concerns, so new

technology is required to be considerably more flexible and adaptable to changing than

today’s technology.

Approximately one third of the cost of a manufacturing plant over its lifetime is spent

on installation and setup. Another substantial part of the costs is spent on maintenance. For a

plant to be adapted to new products, it must change its process flow and its machines. This

situation generates high costs and time spending. Actual components are inflexible, so

communication between them is hard to configure, as is porting software applications to new

machines. Industry has to develop, deploy and support automated systems on a global basis in

ever shorter timeframes. Furthermore, the lifecycle engineering of production machines

requires complex, innovative and timely interaction between geographically distributed

members of project engineering teams comprising automation suppliers, control system

suppliers, machine tool builders and end-user product, process and control engineers.

Collectively they have responsibility for the implementation and lifecycle support of the

automated system as product and production requirements change [5].

Currently, machines are categorized according to their functionality. As they are

independent and can even be brand-mixed, programming is made individually. Thus, the

27

communication between them is facilitated by a central system. This structure design

approach fails when trying to use an intelligent control structure.

There are many factors why today’s technology is surpassed:

• Increasing computational power and Ethernet are more and more available on ever

smaller devices;

• SOA based on Web service technology is more and more used in the world of

automation technology and is already used as a platform for communication and

control;

• The entire lifecycle of a product and the equipment is considered at the planning

phase;

• Development and linkage of service components, as well as the design and modeling

of application and workflows are already supported by engineering tools.

• Simulation and emulation tools are available for control logic entities, but not at the

same extent as those for distributed applications.

These advances should be integrated with new engineering solutions that will support

the research and implementation of new paradigms in automation and control in order to bring

flexibility, agility and robustness to the production lines of the future. Such a tool would have

to support the production line throughout the whole production lifecycle [10].

A new technology capable of hold a new generation of industrial components and

architectures is desperately needed. A wide variety of open platforms has been proposed for

years in the Information and Communication Technologies (ICT), which proposes industry to

look at open solutions for manufacturing plants. Although several proposals have been

submitted, today’s reality shows the still dominance of old standards that fight against

progress.

28

Besides the requirements already mentioned above, there are some requirements

needing to be satisfied in order to truly have a new generation of manufacturing system:

• Intra-enterprise dynamic integration of modules, turning the whole system completely

robust;

• Inter-enterprise dynamic cooperation, opening a new vision to the actual enterprises’

services requested and offered

• Non-disruptive scalability through addition of resources, either hardware or software;

• Fault-tolerant, self-configuration and self-monitoring modules capable of automatic

recovery.

These issues have more importance than ever to maintain productivity and

competitiveness.

2.2 – Emerging technologies: SoA and MAS

Some different approaches had been studied, developed and analyzed to cover the new

requirements. Multi-Agent Systems and Service-Oriented Architectures are maybe the best

implementation of such technology. These technologies implement effectively two principles

that may sound contradictory: autonomy and interoperability.

 These two technologies particularly have been the subject of great attention. However,

despite their promise, they have not made significant inroads in manufacturing plants yet. The

lack of widely accepted standards is resulting in variety of islands with poor scalability.

29

2.3 – The SoA technology and SoA for devices

A Service-oriented Architecture (SoA) is as a group of services that communicate with

each other, trading data and/or coordinating some activity together. This intercommunication

implies the need for some means of connecting two or more services to each other.

In theory, Service-Oriented Architectures offer the potential to provide the necessary

system-wide visibility and device interoperability in complex collaborative automation

systems subject to frequent changes. They are proven in a business system context, and initial

analysis suggests that SoA could meet the technical and business level requirements for future

automation systems. SoA is basically an architectural paradigm that defines mechanisms to

publish, find and bind services. Message-based communication, loose coupling and open

standards characterise SoA. Those features make it particularly applicable for a global multi-

vendor environment where interoperability is essential [5].

In practice, SoAs build applications out of spread software services. They typically

implement functionality most humans would recognize as a service, such as filling out an

online application for an account, viewing an online bank-statement, or placing an online

booking or airline ticket order. Instead of services embedding calls to each other in their

source code, they use defined protocols which describe how one or more services can

communicate with each other. This architecture then relies on a business process to link and

sequence services. This process is known as orchestration, and it allows meeting a new or

existing business system requirement.

The big breakthrough areas of SoA for devices are in particular the industrial sector

and home automation.

In home automation, SoA helps to bridge the heterogeneity of products and brings new

opportunities for networking and interaction of diverse devices. For industry applications,

SoA can be used for integration of equipment or even products themselves into the enterprise

30

infrastructures. This allows a higher level of transparency and opens completely new ways for

optimization of business processes.

Research activities in the last years have been dedicated to apply and evaluate SoA on

medium sized embedded systems like embedded PC, PDAs or network routers. Development

frameworks like gSOAP, Intel Authoring Tools or the aveLink suite for UPnP have been

created to provide development support for SoA on these devices. For smaller embedded

devices likes actuator and sensor nodes this is different. They focus on mechanisms to

outsource computational load from the devices. Thus, a proxy approach is favored over direct

implementation of SoA to compensate for the computational restrictions of the small devices

[12].

2.4 – SoA and the automation industry - a society of service-

oriented automation components

Production and automation systems are heterogeneous in nature, made of different

components with distinguished roles. It is therefore predictable that the specifications of those

systems are moving from the traditional central-controlled manner to the corresponding

distributed counterpart, assimilating the natural appearance and layout of the real system.

Thus, one promising guideline in this respect is to have a conglomerate of distributed,

autonomous, intelligent, fault-tolerant, and reusable manufacturing units, which operates as a

set of co-operating entities. Each entity is capable of dynamically interact with each other to

achieve both local and global manufacturing objectives, from the physical/machine control

level on the shop floor to the higher levels of the factory management systems [4]. This new

generation of systems is referenced as Intelligent Manufacturing Systems (IMS) [17].

One of the rising solutions to adapt the majority of the concepts behind IMS into

feasible principles is Service-oriented Architectures device communications using the devices.

31

The concept SoA has gained significant attraction in just a few years and will undoubtedly

have a major impact in many branches of technology. According to [1], “A service-oriented

architecture is a set of architectural tenets for building autonomous yet interoperable

systems.” and this proposal is facing one of the challenges of IMS, namely providing

interoperability between autonomous systems.

Adapting the service-orientation concepts to the automation and production

“ecosystem” at the shop floor and considering the principles of IMS, a “society” of service-

oriented automation components is born. Each participant in the system is referred as Service-

oriented Component and in some extends, Service-oriented Automation Component (when it

has automatic control duties). Components may have different roles (e.g. production,

transportation and monitoring) and operate autonomously. Since services are the main guide,

these components should have the need of requesting services and also the desire in providing

services to the community. Services itself are a form of providing resources and actions that

are shared in some circumstances, much similar to the real-life services.

Fig. 2.1 shows the basic description of a Service-oriented Component and its

integration into the environment of automation and production shop floor. The given example

is a component that represents a physical conveyor (Mediator of : Conveyor) and has the

transportation role (Role: Transportation). Implicitly, the communication to the outside world

would be via services (Orientation : Services), being able to provide and request services

when needed. The integration into the IT enterprise is also reached by the service-orientation.

A component has a set of tasks or activities (Tasks: Transport, Monitoring, etc.) and those

may be used as services provided by the component.

32

Figure 2.1 – description scheme of a service-oriented component

Interaction between components is done by the two-way service orientation, in sense

of requesting and providing services. It is expected in production and automation that

heterogeneous components work together for mutual benefit and global objectives. This can

be distinguished as symbiosis, similar to the interactions between different biological species

[6]. It is also possible that components may compete with each other for resources (services),

but in the end the global goal must be respected.

In simple scenarios, like lighting, the use of SOA has following benefits [12]:

• Homogeneity: Heterogeneous systems become homogeneous using the notion of

services. Although different vendors may provide different lighting systems, from the

SoA point of view they will provide a service for switching the light on or off.

Different vendors may even provide the exact same service for their devices. This

allows our SoA-based switches to be used for nearly arbitrary lightings.

• Dynamics: In a device centric SoA network, services are announced when devices

become available. In our setup this means that when new lighting is installed, the

respective lighting service is advertised. Next time a switch is pressed it can also

switch the new lamp, as it is aware of all existing lighting services.

33

• Self-Description: Devices are enabled to find out what capabilities other devices have

using the self descriptive notion of services. This supports dynamic behavior of a

system. If a switch was supposed to create a light scene for watching movies, it would

dim all lights that are dimmable and switch the rest off. The lighting itself will tell the

switch if it is dimmable or not.

In another example, the application case “information management for tracking &

tracing of products for recycling”, which is part of the EU funded research project PROMISE,

focuses on optimization of processes in a plastics recycling facility [13]. Wireless SoA-

enabled temperature sensors are used to monitor containers carrying milled plastic material

that inheres the risk of self ignition. Each sensor provides a service which conveys its ability

to monitor temperature to the facility’s management system. The management system uses

these services to assign monitoring tasks to the sensors with an appropriate threshold with

respect to its current load. Respectively, sensors will inform the management system if goods

enter a critical state, so that appropriate countermeasures can be initiated.

• Eventing: SOA is used to translate a physical value i.e. temperature into a system

parameter. With this, the management system is now able to even react on physical

events as they are now system events. In our case the violation of the temperature

threshold will lead to an event based notification of the system, which then will start

countermeasures.

• Dynamics: Leveraging the dynamic lookup mechanisms of SOA, the management

system is aware which containers are in the monitored storage area at any given

moment and can automatically react on incoming or outgoing containers.

• Distribution of responsibility: Furthermore, the intrinsic philosophy of SOA dictates

that the sensor themselves are responsible to implement the actual monitoring and to

34

determine when a threshold has been reached. This minimizes management overhead

in backend systems and prescribes adequate distribution of responsibilities.

In some situations Service-oriented Components can be seen as software agents

according to the definition given by (Schoop et al.) [3], adapted from (Jennings and

Wooldridge) [2], to flexible production systems:

“An agent is considered a software entity situated in a flexible production environment, with

enough intelligence that is capable of autonomous control actions in this environment and of

co-operation relationships by participating in associations’ agreements with other entities in

order to meet its design objectives”.

Moreover, Multi-agent Systems [7] are of special interest since these systems bring the

idea of collaborative agent society, in which each of them can take autonomous actions over

their environment or over the system that they represent. On the other hand and differentiating

from the agent concepts, the true meaning of service-orientation is centered in the requirement

of providing services and in the necessity of requesting services by a component in the

system. The real architecture, habitat and objectives of the system are truly open to the

developer and thus it may adopt different strategies to cover the requirements.

2.5 – Existing SoA realizations for devices

In reality, the SoA concept is not applied singly but needs a framework which

provides means like protocols or data structures to bring SoA down to the implementation

level. Over the years, so-called middlewares have been developed to implement different

flavors of SoA.

35

Middlewares that are especially relevant in the area of SoA for devices are Jini, OSGi,

UPnP and DPWS as they try to address the dynamic nature of device integration and/or have

specifically been designed for application in this area. We will now briefly outline the main

concepts of these frameworks:

1. Jini (www.jini.org) is a Java based solution which provides mechanisms for

distributing and discovering services and supports migration of executable code from

one computer to another. The core of a Jini system is a lookup-service which

facilitates the search for services throughout the Jini network. Each service has to

announce its existence to the lookupservice and to deposit a set of attributes as

description of its features. The communication with the lookup-service is based on

Java Remote Method Invocation (RMI) where the communication between server and

client is defined by the drivers and may therefore use any proprietary protocol and

format. Due to the RMI-based communication, Jini requires a participating device to

execute a Java Virtual Machine and a respective Java application.

2. OSGi (www.osgi.org) is targeted on the connection of various components in home

networks. It is a Java centric approach where so-called bundles disclose capabilities of

a device and allow interaction via local method invocation. A central device (the

gateway) provides the necessary communication platform on which the bundles are

executed. Additionally, standardized mechanisms are defined to dynamically install or

remove bundles and respectively discover active bundles during runtime.

Maintenance/installation of the bundles can be done locally on the gateway or even

remotely via the Internet. Remote communication with bundles is not supported

natively. For distributed communication a mapping between OSGi bundles and UPnP

devices has been defined.

36

3. The Universal Plug and Play (UPnP) (www.upnp.org) Architecture uses open and

standardized protocols based on XML to describe and control devices. Information is

transferred over TCP/IP and UDP/IP using high-level communication protocols like

SOAP. All interaction is done on top of the IP layer and is thus completely hardware-

independent. In UPnP, mechanisms for Addressing, Discovery, Description, Control,

Eventing and Presentation are defined. A peer-to-peer philosophy is inherited in all

these parts, so that no central component is needed to facilitate interaction among the

participants of a UPnP network.

4. Devices Profile for Web Services (DPWS) is the approach to make the successful

’Web Services’ fit for usage on the device level. DPWS combines a set of

functionalities taken from the existing WS protocol suite and specifies additional

protocols on top of them (WS Eventing, WS Discovery). Like Web-services, DPWS

uses SOAP for message transmission and XML as data format. The projects SIRENA

[14], SODA [15] and SOCRADES [16] consider the application of DPWS in the

industrial sector and until now have created a DPWS stack capable to be executed on

embedded devices.

37

Chapter 3

Supporting Technologies

Contents

3.1 – The Device Profile for Web Services ... 38

3.2 – DPWS description and history ... 38

3.3 – DPWS overview ... 39

3.4 – DPWS protocol ... 40

3.5 – DPWS architecture principles .. 44

3.6 – DPWS advantages and disadvantages .. 45

3.7 – DPWS – old and current implementations, and application areas 47

38

3.1 – The Device Profile for Web Services

The Devices Profile for Web Services (DPWS) defines a minimal set of

implementation constraints to enable secure Web Service messaging, discovery, description,

and eventing on resource-constrained devices.

Its objectives are similar to those of Universal Plug And Play (UPnP) but, in addition,

DPWS is fully aligned with Web Services technology and includes numerous extension points

allowing for seamless integration of device-provided services in enterprise-wide application

scenarios.

3.2 – DPWS description and history

The Devices Profile for Web Services is a plug-n-play protocol middleware built on

top of a set of Web Services specifications. This protocol middleware addresses discovery,

description, and control of devices and services on local networks. It is a distributed

architecture and leverages TCP/IP and the Web technologies to enable seamless proximity

networking in addition to control and data transfer among networked devices in the home,

office, and public spaces.

DPWS specification began in 2002 under the initiative of Microsoft with the aim to

become the second version of the basic protocol layers of UPnP™. However, since UPnP™

devices have emerged on the market and are not interoperable with the new DPWS

specification, the UPnP™ Forum does not accept the proposed roadmap.

Therefore, DPWS appears today as a competitor. Some implementations exist, like the

one delivered open source by Schneider-Electric in ITEA SODA project. Microsoft well-

known Vista OS hosts DPWS tools beside the UPnP™ ones.

DPWS is fully aligned on Web Services specification: WSDL 1.1, XML Schema,

SOAP 1.2, WS-Addressing, WS-MetadaExchange, WS-Transfer, WS-Policy, WS-Security,

39

WS-Discovery and WS-Eventing. It leverages lower-level Internet components, including IP,

TCP, UDP, HTTP, and XML. This alignment on Web Services technologies is an opportunity

to benefit from successful specifications and to simply make a bridge between local networks

and the World Wide Web. On local networks, DPWS refines the Web Services specification

with a specific devices profile and leverages specific local mechanisms like multicast

networking. The latter is used for device and service discovery on the Local Area Network

(LAN).

3.3 – DPWS overview

In the last years has been noticed a convergence from user-controlled distributed

systems to automatic distributed, autonomous and self-configurable systems.

The emergent technology DPWS offers the possibility to use Web Services in

electronic devices, taking in consideration their constraints and implementing the most recent

key needs of technology: footprint, security, plug & play, asynchronous data exchange and

event-driven data exchange, among others.

DPWS permits many interactions as Discovery, which allows performing search

operations and exposing operations, Eventing, which manages subscriptions between devices,

Naming, allowing searching and indexing operations over data, and Description, which uses

metadata to explain a device’s operations and services to other devices.

The DPWS specification was initially published in May 2004 and was submitted for

standardization to the Organization for the Advancement of Structured Information Standards

(OASIS) in July 2008.

However, DPWS is not the first SoA that targets device-to-device communication. As

explained before, technologies such as Open Service Gateway Initiative (OSGi), Home

Audio/Video Interoperability (HAVi), Java Intelligent Network Infrastructure (JINI) and

Universal Plug and Play (UPnP) are similar approaches.

40

The OSGi specification defines a service platform that relies on Java. An OSGi service

is a simple Java interface but the semantics of the service are not clearly specified.

HAVi offers plug-and-play as well as Quality-of-service (QoS) capabilities and is

restricted to the home domain.

JINI was developed by Sun Microsystems for spontaneous networking of services and

resources based on the Java technology. Services/devices carry the code (proxy) needed to use

them.

UPnP supports ad-hoc networking for devices and services and is easy to develop for.

It has a very similar functionality in comparison to DPWS but does not address security issues

and is only applicable for small networks (no service registry/proxy).

The big advantage of DPWS compared to all other mentioned SoAs is the reliance on

Web services which implies high acceptance among developers and platform as well as

programming language independence.

This technology allows devices to do a plug & play protocol when connected to the

Ethernet, i.e., they know which devices are on the Ethernet, and the other devices know about

it. So, any device with this technology can discover, invoke and offer services and

functionalities. The concept is identical to the UPnP but it uses web-services to communicate.

Support of discovery has led some to dub DPWS as "the USB for Ethernet."

There are two types of services defined by DPWS: hosting services and hosted

services. Hosting services are directly associated to a device. They play an important part in

the device discovery protocol. Hosted services are mostly functional, and depend on their

hosting device for discovery.

3.4 – DPWS protocol

DPWS is partially based on the Web Services Architecture (WSA) and uses further

standards from the Web services protocol family, as seen next:

41

• WS-Addressing - The main objective is to provide an addressing mechanism for Web

services as well as messages in a transport-neutral matter. By introducing both

concepts endpoint references (EPR) and message information headers (MI) WS-

Addressing overcomes the lack of SOAP's independence of underlying protocols and

secondly support of asynchronous message exchange. Both limitations are historically

caused by the default SOAP to HTTP binding.

• WS-Discovery - is a discovery protocol based on IP multicast for enabling services to

be discovered automatically. Discovery introduces three different endpoint types:

target service, client and discovery proxy. Target services are Web services offering

themselves to the network. Clients may search for target services and discover them

dynamically. Discovery proxy is an endpoint enabling discovery in spanned networks

since simple discovery is limited to a multicast group and hence to local managed

networks only. WS-Discovery defines four operations or messages to discover target

services in a network. To explicitly discover target services in a network a client can

use the Probe operation, send as multicast message. Matching target services will

answer with the Probe Matches operation send as UDP unicast message to the client.

To implicitly discover target services a client can listen for Hello and Bye messages. A

target service announces its availability with these messages send as UDP multicast.

To resolve logical addresses introduced with the endpoint structure in WS-Addressing

a client can use the Resolve operation send as UDP multicast message. The

corresponding target service responds with the Resolve Matches operation send as

UDP unicast to the client. The discovery proxy does not need any additional

operations.

• WS-MetadataExchange / WS-Transfer – is a specification that defines data types and

operations to retrieve metadata associated with an endpoint. This metadata describes

what other endpoints need to know to interact with the described endpoint. WS-

42

MetadataExchange defines the MetadataSection that divides the metadata into separate

units of metadata with a dialect specifying its type. Until the latest version of DPWS

only WSMetadataExchange was used for service and device description and retrieval.

In the latest DPWS version of February 2006 WS-Transfer is used to retrieve the

metadata. The structure of the metadata is still as specified in WSMetadataExchange.

The main difference is that WSMetadataExchange defined operations to retrieve all or

parts of the metadata of an endpoint, whereas WS-Transfer only can be used to

retrieve all metadata of an endpoint. We expect that WS-Transfer and WS-

MetadataExchange will be merged closer in future releases.

• WS-Eventing – defines a protocol for managing subscriptions for a Web services

based eventing mechanism. This protocol defines three endpoints: subscriber, event

source and subscription manager. Subscribers request subscriptions on behalf of event

sinks to receive events from event sources. Subscription requests contain an event

delivery mode and event filter mechanism to negotiate event delivery mechanisms and

event filter mechanism. Subscription managers are responsible of holding

subscriptions of event sources.

The DPWS terminology is represented in figure 3.1.

43

Figure 3.1 – DPWS terminology

Other used Web Services standards are XML, WSDL, XML Schema and MTOM. The

DPWS protocol stack is shown in figure 3.2.

Figure 3.2 – DPWS protocol stack

44

3.5 – DPWS architecture principles

As said before, the DPWS specification defines an architecture in which devices can

run two different types of services: hosting services and hosted services.

DPWS is built on top of the SOAP 1.2 standard, and relies on additional Web Services

specifications to further constrain the SOAP messaging model.

The figure 3.3 taken from DPWS User Guide v2.9 shows the general architecture of a

device compliant with DPWS.

Figure 3.3 – architecture of a device compliant with DPWS

In figure 3.3 can be seen:

• User-defined services and events are shown in yellow. They are provided as user-

written code and generated code in the DPWS toolkit;

• Predefined services are shown in grey. They are provided as run-time libraries in the

DPWS toolkit;

45

• The two network interfaces are shown: the primary interface uses the standard SOAP

1.2 over HTTP binding to exchange regular SOAP messages, while the discovery

interface uses UDP and a multicast address to broadcast and listen to the predefined

discovery messages. Both interfaces rely on a standard IP stack.

3.6 – DPWS advantages and disadvantages

DPWS strong points are the reliance on web services which developers highly accept,

as well as it is platform and language independent. The number of functionalities that DPWS

can offer at the time this thesis was written is vastly superior to any other similar technology.

Devices implemented using DPWS can provide services to any application on the network.

Thus, developers only must focus on the application itself.

The DPWS technology is a web-service implementation, so it is totally compatible

with the web-services architecture. Inheriting the same concepts, it is very easy and fast to

add, replace or change components. Web-services provide high-level mechanisms that

abstract away the low-level effort to build a distributed architecture. The capability of making

a component itself independent, as its dependency from any other is non-existent, makes the

DPWS a very propitious technology for implementing in manufacturing industrial devices.

Also, DPWS have many practical advantages for developers, users and sellers:

• Lower production costs;

• Common solution to the industry;

• Web-service extension to devices;

• Strong security mechanisms embedded;

• Known internet patterns;

• Open-platform solution;

• Common development tools;

46

• Easier configuration

• Easier installation;

• Easier connection;

• Less product return;

• Richer user experiences;

• Better product differentiation;

• New automation opportunities;

• Lower support costs;

• More product confidence;

• Easy product upgrade.

On the other side, embedded systems normally are short on memory, not having

processing power to run some technologies used in DPWS as a Hypertext Transfer Protocol

(HTTP) web server, Simple Object Access Protocol (SOAP) engine, and a XML parser. All

this requires more RAM usage, and furthermore, increases bandwidth and operating costs.

To allow SOAP implementation, the DPWS specifies limited constraints

functionalities, allowing it to be implemented on small devices to restrict traffic. The protocol

itself allows a large variety of options, but it also brings some complexity in the design of a

concrete framework.

The DPWS services’ interface description is made by the Web Services Description

Language (WSDL). The current version of this technology (WSDL 1.1) is lacking

information about more advanced interaction patterns. Therefore, additional methods are

required for these purposes. However, the newer version WSDL 2.0 could offer better support

and more realistic association with the service concept.

47

3.7 – DPWS – old and current implementations and application

areas

DPWS is an emerging technology used in many implementations and research projects. There

are open toolkits enabling the development of service-oriented software components in

DPWS as are SoA for Devices (SOA4D) and Web Services for Devices (WS4D). In the

manufacturing industry there are many applications using DPWS, such as methods for

developing efficient diagnosis mechanisms in devices [18].

In the content of this thesis, the obvious example is industrial automation. In this field,

communication between devices is automatic, and the responsible people just either must pay

attention to any warning given by some supervisor device, or give new orders to a specific

device. This is a complete intelligent supervision and communication system, as it uses

informative communication, intelligent control, supervising, etc

There are many examples of DPWS applications, being one of the most noticed the

Windows Rally, a set of technologies from Microsoft that integrates DPWS in a stack side-

by-side with other new web-based technologies. This turns many personal computers in the

world compatible with this technology.

In industry, there are some applications using DPWS, as methods for developing

diagnosis mechanisms in devices.

Another big application area is web-services it selves. For example, buying a flight

ticket, the technology can be used as a client-to-machine connection, with the client at home

buying to the air company server, or as a machine-to-machine connection, as the company

server asks a printer to print the new (material) ticket, for example, or, more complex, alerts

the police office for a just used stolen credit card.

Companies are also using DPWS to create products that allow a new superior degree

in smart homes, controlling the interaction between the human, the house and the compatible

48

devices on it. Infinity of possibilities is present here, as it can be used for controlling the

house devices, it can be used for security, or even to control the devices remotely, by cell

phone for example. Asking the microwave to start warming the food five minutes before

arrive home is a very attractive idea.

In this field, a new product is revealing itself very fast. It is called Life|ware™. This

next-generation home technology was highlighted by an automation system that used DPWS

to communicate with a lighting system, audio distribution system, security system, motorized

shades, security cameras, thermostats, washers and dryers, and a motorized television mount.

As it says on its website (www.life-ware.com):

“Life|ware™ is a simple but sophisticated software program that works with Windows®

Media Center to give you one-touch control of your home's climate, lighting, security, audio

and entertainment systems. So you can worry less and do more.”

For manufacturers, the first step towards DPWS adoption is the creation of a small

device bridge between their native proprietary code and Web Services. At least 117

automation products from 37 different vendors currently support DPWS this way. At the

International Security Controls (ISC) trade show, a major security company demonstrated a

security system that supported DPWS, while the Kitchen and Bath Show (K/BIS) saw two

major appliance manufacturers demonstrating washers and dryers that communicated using

DPWS.

49

Chapter 4

SDPWS – to support Autonomous

Components

Contents

4.1 – SDPWS: the autonomous component community 49

4.2 – SDPWS: the communication module ... 51

4.3 – SDPWS: enhanced interaction patterns .. 52

4.1 – SDPWS: the autonomous component community

An approach to an autonomous device was realized, using a DPWS simplification and

enhancement. The temporary name of SDPWS (Simple DPWS) was given at its time, and

from now on it will be used in this document. It is represented in figure 4.1.

50

Figure 4.1 – Simple DPWS architecture

The main objective of this approach is to implement, with DPWS, a number of

features in a device in a way that the device can work on its own, serving the others and using

their services, be capable of interacting in as many ways as needed (I/O, Ethernet, User

Interface, etc), and be capable of actualize its services in real-time, without shut down.

To reach this goal, some features are needed and were engineered, as seen below:

• The device must be able to run a DPWS client and a DPWS server, in order to

offer services and use services;

• The device must be divided in different modules, each one independent from the

others, and with its own functionality (for example, a I/O module that cares of

information passed to and by an I/O physical port, or a communication module,

that uses the DPWS to communicate with the other devices);

• It is needed a special module that will handle the internal communication of the

device, i.e., the communication between modules;

• It must be possible to update the services of the device in real-time, in order to add

or remove services without recompiling code or shutdown any device, this means,

the update itself must work like a service that will be sent by the programmers.

51

The architecture designed is made of several service-oriented components, with

different roles. The interaction is implemented by providing and requesting services. Each

component is made of a framework with several functional modules.

Some modules are essential, like the communication module, which controls all the

communication between devices and, therefore, is responsible for using DPWS, and the

module responsible for the other modules’ communication, the Event Router-Scheduler

(ERS), which will be explained exhaustively in the coming chapters. The other modules can

be user-defined and adapted to the components function. For example, if the component is

controlling an automation device, it will require the interface module to access the I/O’s, and

probably will need some form of control module.

4.2 – SDPWS: the communication module

Modular programming concepts are applied in the communication module providing a

higher level of abstraction and making de DPWS program interaction easier to understand. It

has many functionalities of the DPWS toolkit and has a list of WSDL structures. Services can

be added and removed from the list, and new services are analyzed to determine the presence

of existing parameter and consequent reuse, minimizing the required memory.

A dynamic stub and skeleton were implemented. This functionality is called Dynamic

DPWS and will be exhaustively explained in chapter 6. This feature allows to dynamically

add and remove services to the component, in real-time, and is made with C structures.

This ability promotes the reuse of the DPWS component in other programs and

increases greatly the agility and life cycle of the components. Time saving and speeding up

development are the main advantages.

The communication module offers a very useful set of technical functionalities. On the

server side, it has the ability to support multiple devices (hosting devices), each one with one

or more hosted services. The module uses the WS-Addressing protocol for coordination of

52

service operations and device identification. On the client side, it offers an easy way to

implement and perform lookups, retrieve metadata from hosted services and devices, and

subscribe/unsubscribe services to the user.

As will be explained latter, the Event Router-Scheduler has a fundamental role

offering a way of interacting between modules synchronous and asynchronously, making it

not only extremely efficient, but also very easier to understand how to solve the problem of

shared data between modules.

4.3 – SDPWS: enhanced interaction patterns

The new methodology resolves some of the previously mentioned DPWS limitations

in terms of advanced interaction patterns. The devices can be both clients and servers,

providing and requesting services, and are implemented as part of the distributed control

approach at the shop-floor level in automation and production systems.

All this process is made by the Communication module, generating the necessary

events, through the Event Router-Scheduler (ERS) module, reaching the target functional

modules. In the communication module, it is possible to create many ports, for the same

service, and bound it with a port type. A new received message is automatically de-serialized

into the C structures implemented by the ERS, and the entry port allows the developer to

know which port type was intended.

Traditionally, in service-oriented systems, a service is a set of ports, being each one an

instance of a port type. A port type defines a set of interaction operations and the

corresponding message transfers between the service provider and the service requesters. In

the proposed methodology, a service involves several phases of interaction with its requesters,

which must follow specific protocols associated to the instances of the port types (ports).

The access to a service is done performing the following phases:

• Discovery phase – which is the ability to discover services;

53

• Negotiation phase – for quality of service (QoS) discussion or different priorities, for

example;

• Operational phase – which is the service itself, with both mains ports and logical ports

being used here. Before the use of a service, the client must search a one that

completely fulfils its needs. After obtaining the interface, it can contact the provider,

and then, if agreed, it uses the service as negotiated;

• Termination phase – is the disconnect phase, when the service is not needed anymore.

Consists on a finish message followed by a finish reply.

The figure 4.2 shows a sequence diagram of the process to interact with services using

the four phases. Besides that, the proposed methodology has some additional features. First,

ports can be created dynamically, and a non-existent operational port can be created for a

specific situation. Second, it is possible to provide similar ports for the same functionality, but

instantiated from different port types.

Figure 4.2 – Service Accessing Interaction Sequence

54

The interaction itself is separated into the four phases also. To each phase corresponds

one or more port types with the associated access protocol that defines the interaction rules.

The access of the requester is done to the instances of the port types. In generally, discovery

phase can be associated to the facilities provided of DPWS and thus does not need special

treatment for simple discovery processes.

In service-oriented systems the interactions are made of requesting existing services

by a client that want to use them and obviously coordinating the process. One approach is to

use the WS-Discovery protocol that defines a dynamic multicast discovery mechanism

without using any intermediate entity. Before the use of the service, the requester must search

for a specific service that fulfills its needs. After obtaining the interface (which describes the

service), it can contact the provider.

Obviously it must first make a proposal to use the service. If not accepted, it may

proceed to a more complex negotiation with the provider. After the operational phase, the

termination phase may setup processes to conclude the usage of a service.

The logical ports of the operational phases can be directly related to the physical ports

of the devices.

The interaction method may be complex. Semantic-rich descriptions allow using

machine reasoning to perform automatic matchmaking of services using logical inference.

This allows the use of services that did not exist or were not known when the client was

programmed, as the services are selected dynamically.

55

Chapter 5

The Event Router-Scheduler

Contents

5.1 – SDPWS: The Event Router-Scheduler module .. 55

5.2 – Event Router-Scheduler: Internal Anatomy of components..................... 57

5.3 – Event Router-Scheduler: the module .. 59

5.4 – Event Router-Scheduler – implementation and operation 64

5.1 – SDPWS: The Event Router-Scheduler module

Automation and production systems are evolving in the direction of autonomous and

collaborative components, approaching the idea of an ecosystem. Each habitant of this system

is responsible for different and concurrent activities and thus requires an adapted anatomy that

is balanced for the several requirements.

The Event Router-Scheduler introduces an anatomical-like way for implementation of

functional and reusable modules which constitute service-oriented automation components.

56

Paying attention to the internal software structure of the automation device, the ERS is the

mechanism that binds the several modules together. The resulting software automation

components are customized for different tasks due to the inclusion and management of the

specialized functional modules, and provide the ability to operate in a service-oriented

automation and production environment.

Figure 5.1 – The Event Router-Scheduler in the application structure

The ERS can be compared to the nervous system of living beings in sense of carrying

impulses from and to different organs, and so, maintaining the dynamic information flow

(figure 5.1). Intelligent behavior can be reached when these “nerves” are linked to the “brain”,

that provides static control based on workflow processes and also autonomy to respond to

unexpected events, undocumented situations and internal objectives. Being inserted in a

57

service-oriented environment, interaction with other components is achieved only by

providing and requesting services o reach local and global objectives.

5.2 – Event Router-Scheduler: Internal Anatomy of components

Each Service-oriented Component may be implemented independently and differently.

The only requirement is that it should share its functions as services and obey to the protocols

of communication and processes. To be able to construct and deploy these components in a

simple but functional way, an anatomical-like framework was specified.

A general component is structured in an anatomical form comprising several “organs”

(functional modules) that are responsible for individual tasks, as illustrated in Fig. 5.2: Logic

Controller, Decision and Exception Handler, Communication, Device Interface and Event

Router-Scheduler. These modules are included in the control component according to its

needs and possibly implemented using different technologies. It is also possible to develop

and integrate other modules for diverse functionalities, if they respect the rules provided by

the framework for the integration (task of the Event Router-Scheduler).

The Event-Router-Scheduler and Communication modules are the kernel modules to

develop a Service-oriented Component based on the proposed anatomy. They are responsible,

respectively, for the main framework of the component (event-based inter-module

communication and integration) and external communication with other components (service-

oriented inter-component communication). Other modules may be added to the structure

according to the component’s requirements.

58

Figure 5.2 – Anatomical-like structures component

In more detail, the Communication module provides the necessary functions to expose

the services from the associated component and request services from other components.

Other functions include, among others, discovery and negotiation mechanisms. The remaining

modules of the component may use the Communication module to access these functions

through impulses (events) provided by the Event Router-Scheduler module.

As an example, a conveyor may provide the Transfer service to handle the movement

of pallets, which is controlled by the Logic Controller module and accessed by the Device

Interface module. The Transfer service may be used by the other components, but the

component itself can also call external services when needed (e.g. to be connected to other

conveyor it requests the Transfer service of that conveyor) [8]. A suitable technological

solution to implement the service-oriented communication module is to use Web technology,

and most specifically Web services. At its core, Web services technology is quite simple and

it is designed to move XML (eXtended Markup Language) documents between service

59

processes using standard Internet protocols. This simplicity helps Web services to achieve the

primary goal of interoperability and also means that it is necessary to add other technologies

to build complex distributed applications.

The remaining modules are described briefly in Figure 5.2. The goal to include the

other modules is to provide an example of a Service-oriented Automation Component that is

mediator of some physical equipment with control capabilities. For example, the resulting

component of Figure 5.2 represents a smart controller of a conveyor device, by providing

several features such as control and access over the physical device, ability to decide in

unexpected and undocumented situations and also the possibility of service-oriented

communication to other components. Other example is a service-oriented PLC-like controller,

which may interpret control models and give the necessary orders to other components via the

invocation of the provided services by them. In this case, it is not necessary to have the

Device Interface module, since it does not command directly the devices.

Finally, the “nervous system” of the anatomy represented in Fig. 5.2 is managed by

the Event Router-Scheduler.

5.3 – Event Router-Scheduler: the module

Components and devices that implement several of the expressed aspects of service-

orientation require a consistent anatomy to deal with the different function modules

(“organs”) in order to fulfill the necessary requirement. Other problems may arise from the

asynchronously operating modules, possible data inconsistencies and concurrent

processes/threads. For this purpose, it is proposed a mechanism to provide an “impulse”

(event) passing and scheduling feature to guide the impulses to different modules, thus

permitting the synchronized communication between them. The heart of the component is the

Event Router-Scheduler (ERS) module.

60

During the design phase it was clear that the ERS should meet the following

objectives:

• Common event routing/scheduling mechanism for the communication and integration

of modules;

• Provide some transparent functions for creating and managing modules;

• Suitable for software application that are deployed both in traditional PC and

embedded systems;

• High performance, especially in critical situations and targeting real-time

applications;

• Use of C language, aiming to balance between performance, portability and features;

• Thread safety and management of data concurrency;

• Easy to use by developers, in sense of building modules and how events are

processed.

The function of the ERS is comparable in some parameters to the nervous system of

living beings, including humans. H. Gray wrote in his book “Gray's Anatomy of the Human

Body” [9]:

“The Nervous System is the most complicated and highly organized of the various systems

which make up the human body. It is the mechanism concerned with the correlation and

integration of various bodily processes and the reactions and adjustments of the organism to

its environment.”

In the case of Service-oriented Components, the “environment” is captured and

manipulated by specific modules (e.g. Communication and Device Interface), but the natural

equilibrium with impulses (events) of the several modules and their integration is reached

with the help of the ERS.

61

Figure 5.3 shows the generic conceptual structure of the Event Router-Scheduler. The

feature groups are separated in blocks that correspond to the Scheduling and Routing of

Events, Hardware/Software Abstraction, Threading and Data Consistency and

Template/Interface for Event-based Modules.

Figure 5.3 – the Event Router-Scheduler generic concept

The main feature is to provide event-based communication between functional

modules and the corresponding routing and scheduling of events (see Scheduling and Routing

of Events block of Fig. 5.3). From the practical point of view, the component’s internal

impulses (events) between its functional modules are integrally managed by the ERS. The

ERS allows synchronous and asynchronous event calling between any modules (which is

critical in real-time applications), and offers several additional procedures to realize more

complex operations, like events generated by other events and time-triggered events. In the

most basic form, a sender module must only emit an event to a specific destination (other

module) and the ERS routes it to the destination. There are also other options for sending and

processing events, such as events with reply and multicast events to several destination

modules (see Fig. 5.4).

62

Figure 5.4 – ERS’ many possible operations

An event is a structure with all the information a module needs to know regarding

various possible situations. Besides the standard information as the intended action and the

parameters from who the event came, it can ask for a reply, for an information forwarding,

can have a fault message’s receiver, and the event’s receiver can check if it is a reply. Also, an

event sent more than once, by error, is detectable.

The ERS uses lists as a way of transmitting and queuing events between the modules,

so the number of events waiting to be processed is only limited by the available memory. The

ERS uses some techniques to avoid memory fragmentation, because the creation and

elimination of new data is a very frequent operation in the modules, as the world is constantly

changing. In some cases when the number of events is high, the ERS offers the possibility to

give different priorities to the events. Like this, an event sent to a certain module will always

pass by all the waiting events of that module which have lower priority than the sent one.

Being capable of both synchronous and asynchronous operations, the asynchronous

ones are managed using threads. The synchronous operations can be either freezing or non-

63

freezing for the receiver. For example, on event reading the operation can be a module-freezer

or not. In case of the freezing mode, the module freezes until any event arrives for it. After

that, the module continues its normal proceeding, as shown in Fig. 5.5(a). This is a very low

CPU resource-taking procedure, useful for embedded devices. However, it is not useful for

real-time multi-task modules, as this kind of module should not freeze. On the other hand, the

non-freezing event reading always receives an event. However, it can be an invalid event. An

invalid event means that there were no events for the module, so it can continue processing its

other tasks. Obviously, if it is a valid event, the module should process it. This is represented

in Fig. 5.5(b).

Asynchronous event triggering is also possible. Callbacks are used to perform this

type of operation, as it must occur when it is called. However, the event is not triggered

immediately, because of data-protecting, and it should only occur when the module activates

an authorization (mutex) to allow callbacks, which will possibly change the module’s data.

Each module has its mutex for this matter, and developers who want to enable asynchronous

event handling should be very careful with this protection.

Figure 5.5 – (a) ERS freezing event get and (b) ERS non-freezing event get operations

64

The remaining blocks of Fig. 5.3 are responsible for adjacent tasks of the Scheduling

and Routing of Events block, specifically to its and other modules’ management. The

Hardware/Software Abstraction provides some functions transparent to the system

architecture that can be accessed by all modules. Since the ERS and other modules are in a

multi-functional and concurrent environment, a special block of the ERS, namely the

Threading and Data Consistency block, introduces simple thread manipulation and data

protection (such as mutex).

Finally, the Template/Interface for Event-based Modules block provides the basis for

creating functional modules and associates them to the ERS. Each module can be

programmed independently. This means that it is possible to remove, replace, upgrade or add

new modules. This makes a program using the ERS very flexible. The module ID is the

module’s identification and it is unique for each module. This variable is what the other

modules need to know to send an event to a specific module. It is comparable to the code that

the nerves carry to reach some organ. However, it is also possible to search a module by its

type like “controller” or “user interface”, as this way is much more practical for a developer to

reach a module without many information.

5.4 – Event Router-Scheduler – implementation and operation

A prototype implementation has been done to test the proposed framework, integrally

coded using the C programming language and compatible with Windows and GNU/Linux

operating systems (targeting also others, such as VxWorks). Some implementation details are

given next.

The functions provided by the framework to develop and operate components are

explained with an example component representing a mechanical arm (articulated robot to

move small objects) made of three modules (besides the ERS), represented in Fig. 5.6. The

65

modules correspond to a subset of the ones in Fig. 5.2 (excluding the Decision and Exception

Handler module) that are briefly commented in chapter 5.2. The major difference is that it is

connected to the mechanical arm via the Device Interface module, instead of the conveyor of

Fig. 5.2.

Figure 5.6 – Mechanical arm controller example using ERS

In terms of data structures, the ERS includes several structure types for storing and

relating different information about modules, events and other aspects. The Module Structure,

which represents a module in the program, identifies its module by a unique ID. It also

provides storage for local information such as the module’s incoming events list, which is

where the module is going to get the events sent by the other modules and a pointer to the

module’s callback implemented function, which is triggered by new events when the

asynchronous mode is activated. The Event Structure has all the information to handle an

event: action name, parameters, who is sending/sent it (module ID), and some variables for

reply handling, an ID of the event and ID of the reply. Finally, the Database Structure of the

ERS is where pointers to all modules are allocated.

First the modules must be created. Thus, the respective function shall be called, and

each module must have an ID and type, as seen below:

66

module_create(1,DEVICE_INTERFACE);

module_create(2,LOGIC_CONTROLLER);

module_create(3,COMMUNICATION);

Sending and receiving events is very straightforward. For example, to send an event

from module 1 to module 2, the developer must create an event, put the sender, the action and

the parameters, and then send it with low or high priority, to the destiny, using the

event_send() function. To read an event, presuming that callbacks are disabled, module 2

must call the synchronous event handle by either freezing while there are not events, or not

freezing. This variable is a parameter when calling the event-reading function, as it can be

something like event_get(2, FREEZE) or event_get(2, NO_FREEZE).

The not-freezing way of getting an event always returns an event, but it may be an

invalid event. On this case, valid events always have valid senders, i.e., the from variable,

which corresponds to the sender ID, is always bigger than zero. So, invalid events have

negative sender IDs. If the module 2’s callback is ON instead, and if the callback mutex

allows it, the new event would immediately trigger the callback, so it would run the function

pointed on the module 2’s structure.

More flexible operations can be done with multicasting and reply to events. In case of

multicasting, there is a special function to emit an event to several destination modules:

event_send_multicast(). One of the parameters is a list of destination modules that

are intended to receive the event. Some events may expect replies and this can be done in two

ways: asynchronously (nonfreezing) using the event_send() function with the attribute

reply_id and synchronously (freezing) using the special event_send_with_reply()

function.

For the example, the modules of the mechanical arm component have simple

functionalities. The Device Interface provides the access to the mechanical arm in sense of

67

calling the programs of pick & place to move the objects from one place to another. Its

Communication module uses a service-oriented infrastructure, based on a DPWS

implementation, namely SoA for Devices (SOA4D). Through the communication module, the

component provides one service, Transfer, to be called externally in case objects are available

to be transported. Finally, the Process Controller module is responsible for coordinating the

components activity, generally synchronizing service calls with the pick & place program

execution of mechanical arm.

A simple algorithm is presented in Fig. 5.6 inside the Logic Controller module. Each

time a function is required by one module to another one, events are sent through the ERS. In

case of the algorithm of Fig. 5.6, an instance of it is executed when the Transfer service is

requested and then the Communication module of the component emits an event to the Logic

Controller. It is assumed that the Transfer service is called when an object is ready to be

moved. From the other hand, the operation of pick & place program can only be started if the

mechanical arm is not occupied and if the destination where to place the object is free. For the

sake of simplification, these checking functions are represented in the algorithm but their

behavior is absent in Fig. 5.6., which would involve sending/receiving events to/from the

Device Interface and possible also an entity representing the destination place. On successful

conclusion of the pick & place program of then Device Interface, an event is sent back to the

Logic Controller, and by its turn to the Communication module that then notifies the external

component and thus concludes the service usage.

68

69

Chapter 6

The Dynamic Service

Contents

6.1 – DPWS service’s static creation... 69

6.2 – Dynamic service: specifications ... 73

6.3 – Dynamic Service: implementation ... 74

6.4 – Dynamic DPWS: the Simple Service ... 78

6.5 – Dynamic Service: Benefits and Disadvantages .. 80

6.1 – DPWS service’s static creation

 DPWS allows implementing web-services in electronic devices. These services are

generated using the Web-Service Description Language (WSDL) file.

The WSDL is an XML-based language that provides a model for describing web-

services. It defines services as collections of network endpoints or ports. The abstract

definition of ports and messages are separated from their concrete use or instance, allowing

70

the reuse of these definitions. A port is defined by associating a network address with a

reusable binding, and one or more ports define a service. Messages are abstract descriptions

of the data being exchanged, and port types are abstract groups of supported operations. The

concrete protocol and data format specifications for a particular port type constitutes a

reusable binding, where the operations and messages are then bound to a concrete network

protocol and message format. In this way, WSDL describes the public interface to the web

service.

The WSDL object hierarchy can be seen in figure 6.1. Here is the explanation of each

object:

• Element: consists of a unique name, and data type. The purpose of a WSDL element is

to describe the data and define the tag which delimits the data sent in the message

parameters.

• Message: corresponds to an operation. The message contains the information needed

to perform the operation. The message name attribute provides a unique name among

all messages. The part name attribute provides a unique name among all the parts of

the enclosing message.

• Operation: can be compared to a method or function call in a traditional programming

language. Here the soap actions are defined and the way the message is encoded for

example, "literal."

• PortType: defines a web service, the operations that can be performed, and the

messages that are used to perform the operation.

• Binding: Specifies the port type. The binding section also defines the operations.

• Port: The port does nothing more than define the address or connection point to a web

service. This typically is a represented by a simple http url string.

• Service: can be thought of as a container for a set of system functions that have been

exposed to the web based protocols.

71

Figure 6.1 – WSDL 1.1 object hierarchy

The approach used by the DPWS toolkit is the same used by the gSOAP toolkit. It

relies heavily on automatic code generation to map back and forth SOAP envelopes and C

structures. Relatively to the service definition, which involves operations, data types used as

parameters, and return values to those operations, the DPWS toolkit generates the required

code to provide transparent access to the remote operations from a client. The only pieces left

to implement by the developer are the implementation of the operations in the server and the

Less
specific

More
specific

72

implementation of the client that invokes the remote operations, with the respective

arguments. The server then must process the new received value.

The proxy, skeleton, and marshalling and de-marshalling (transformation between C

structures and SOAP-XML messages) code is completely generated by the toolkit. The

marshalling/un-marshalling code is the same in the client and the server.

There are two types of messages. In one-way messages, only the request message is

transmitted. On request/reply messages, SOAP responses are returned.

gSOAP provides a code generator that transforms a WSDL document into an

annotated header file ready for processing by the gSOAP compiler. The figure 6.2

summarizes the various artifacts involved in Web service development, using gSOAP.

.

Figure 6.2 – gSOAP’s artifacts involved in web-service development

The current DPWS toolkit extends the above code generation principles to take into

account the WS-Addressing specification. This specification states that a SOAP response and

fault message may be redirected at user choice to any endpoint, and not necessarily to the

73

origin of the request. This means that the standard, synchronous approach, which uses the

HTTP response to carry the response or fault message associated to a SOAP request sent

through an HTTP request, is not always applicable. So, the DPWS toolkit supports

asynchronous transfer of response or fault messages to a specified endpoint. Such an endpoint

should be ready to receive asynchronously SOAP responses and fault messages. The DPWS

toolkit generates header and C files implementing the skeletons for the handlers, following the

pattern used by the gSOAP service skeleton generation. A similar approach is used for

handling events: endpoints that subscribe to events should be set up as message servers, and

use the event handling skeletons generated by the DPWS toolkit to process received events.

6.2 – Dynamic service: specifications

As explained, the DPWS toolkit generates compact code, creating a light weight

resource-constraint program structure with a high performance predictive parser for each

service, allowing an efficient marshaling and un-marshaling of data. However it offers no

capability of interacting with new services that appear at run-time, making it time costly and

removing the ability to quickly react to changes since a new code has to be generated and

compiled on the client stub to integrate the unprecedented service. For these reasons there was

a necessity to do some enhancements over the DPWS toolkit to have a dynamic stub and

skeleton that can invoke and receive any kind of message.

This new feature must accomplish some objectives, whose will be explained next.

First, the most obvious, it must be able to read a new service at run-time. This service

will be written in a WSDL file and, somehow, passed to the device. So, the service-reading

must be a service itself that will receive a WSDL file. So, this service must be built-in.

Second, it must transform the WSDL file into a service’s code. This transformation

will be made by a de-serialize algorithm implemented on the device. The final result in

memory should be identical to the static DPWS. Notice that the WSDL must be validated

74

before loaded. Even if an error-catch algorithm can be implemented, it should be avoided, as

the resource-taking from the device, principally the memory, should be minimal, and this kind

of operation takes memory and processing time. However, the device must be capable of

discard erroneous services, and, very important, warn the user about this service discarding

decision, to avoid users to think the service is online and running.

Third, the device must inform the other devices that a new service is available. DPWS

informs about its services with the HELLO messages, when it starts running. In this case, the

service is already running so it needs a procedure to send an HELLO-like message with, at

least, the new service.

Fourth, the device must be able to create, send, read and process a SOAP envelope,

using its dynamic structures, just like it does in the original static implementation. For this

purpose, there must be implemented a SOAP envelope serialize/de-serialize algorithm. Again,

exists the possibility of, somehow, the received envelope from the communication module is

containing an error, so this de-serialize algorithm should be capable of send back a message

of non-existent service or any other error that can appear.

Fifth, for maintenance purposes, it should be possible to import/export the actual state

of the memory that represents the service. This means that the pairs <element, value>

should be listed and then sent in to some debug application. At extreme debug conditions, it

should be possible to send all the structure, as it would be not a difficult or resource-taking

procedure, but it looks like unnecessary, as if there were any error in the structure, it would

happen on the structure creation. This kind of error should be catch at programming time.

6.3 – Dynamic Service: implementation

According to the previous specifications, a dynamic stub and skeleton were

implemented. Not all of them, but in the future it will be. At the time this thesis was written,

the implemented specifications are explained next.

75

Using C structures, a replica of all existent WSDL objects were created. This means

that any and all objects that came in a WSDL file can be passed to the device memory, more

concretely to C structures. This is illustrated in figure 6.3.

Figure 6.3 – WSDL to C structures transformation

This copying operation always respects the WSDL architecture, as the creating

procedures it selves do not allow invalid operations. This respect of the service architecture

can be used as a WSDL error-catcher, because it cannot implement objects out of order.

Figure 6.4 illustrates this situation.

76

Figure 6.4 – invalid WSDL cannot be implemented

To use the dynamic stub, the client creates an URL-like path (URL – Uniform

Resource Locator) that includes the service where it refers to, from Service down to Element.

Also, it must send the arguments values of the Element he wants to change. This path

corresponds to the Element position in the architecture which is seen in figure 6.1. This

topology allows pointing to any element of the structure in memory, and this path allows any

device with the same structure in memory to reach a specific object.

The programmer, however, doesn’t need to know the entire path to the variable he

wants to change. The path serialization and de-serialization is done automatically. If it is

needed to change the value of an Element, the programmer only must call the proper

procedure referring only that Element. That procedure is capable of getting the rest of the

family of objects to the top object. So, the path generation is automatic, as the WSDL C

structure present in the module fills the missing information necessary to construct the SOAP

77

message. This path is needed because the server may have n Elements with the same name.

So, it is necessary to specify the respective path (Operation, PortType, etc) for the server to

reach the correct Element.

That means the dynamic server has a mechanism to always reach the correct Element,

as the static DPWS can do. The programming over dynamic services is, consequently, as easy

or difficult to do as the programming over the static services.

The dynamic skeleton does the opposite process. It receives the SOAP message and

with the help of the WSDL service in memory, it automatically de-serialized it into the C

structures, following the received path, with the information of the service, operation id, the

arguments types and values. Also, it changes the Element value, if it is the case.

The static DPWS uses functions created at the WSDL-to-.h conversion. For example,

in the following expression taken from a DPWS sample code,

dpws_send___lit__Switch(&dpws, invokationEPR,

lit__PowerState__ON)

, the dpws_send___lit__Switch procedure name, as well as the

lit__PowerState__ON command variable, are created when passing from WSDL to the

application stub. This means that a different name, if not pre-created, is automatically not

recognized and erroneous for the compiler.

 The dynamic DPWS uses a generic dpws_send() function present at the DPWS

toolkit at the time this thesis was written. This procedure allows sending to an End Point

Reference (EPR) any message the programmer wants to, and not just a pre-defined message.

Here, the command argument is not pre-defined, so the Element’s tree path must be

used here, for the reasons explained above. The send function, however, builds the SOAP

envelop automatically, leaving the programmer to define only the message. But, as said

78

before, the path creation is automatic, and the programmer only must specify the Element that

is going to change, and the respective new value. This way, the SOAP message creation is

automatic, as is the SOAP envelope, leaving nothing undone. Serializing and de-serializing

the SOAP envelopes is, consequently, fully automatic, by the dpws_send() function itself.

6.4 – Dynamic DPWS: the Simple Service

The created dynamic DPWS has all the structures needed to recreate the WSDL file

services. However, some of the WSDL objects are constants or not used relatively to the

shop-floor work at Schneider-Electric GmbH. For example, the binding object can be either

RPC-literal or document-literal, but in this case is always document-literal. So, the WSDL

binding’ respective structure doesn’t need to exist. This permits to avoid a structure that must

contain pointers to a SOAP binding and the respective Port Type. This avoidance, joint with

the others, will short significantly the memory usage.

It was created, then, a shorter service in memory, capable of everything a normal

(dynamic or not) service can do, but, besides dynamic, it occupies less memory than the

normal dynamic service. It is called the Simple Service.

The WSDL objects avoided on this approach are the HTTP interaction specification

ones, that are the WSDL Bindings, the WSDL Operations and the Service Ports. In the

dynamic DPWS Structures, however, the WSDL Bindings there are SOAP Bindings. So, this

makes a total of five objects avoided in the family tree of an Element, which is what is being

always accessed.

79

Figure 6.5 – DPWS Service vs. (Dynamic) Simple Service

 However, the normal Service points to all of the above mentioned objects. The Service

must exist, or else the path present is the SOAP message is incomplete, and the receiver

doesn’t know which Element the message refers to. So, a simpler Service structure was

created, the Simple Service structure. This service links directly to Port Types in the WSDL

architecture. In figure 6.5 can be seen the difference between the two architectures that can be

used in the dynamic service.

 This simplification permits not only memory and time saving, but also an easier

comprehension of the service itself by programmers, as the HTTP interaction part of the

service is static, and so, it remains invisible to the programmers, who only must care about the

services itselves.

80

6.5 – Dynamic Service: Benefits and Disadvantages

The capability to dynamically add and remove services in real time promotes the reuse

of the DPWS component in other programs and increases the agility and life cycle of the

software. Advantages compared to the code generating techniques from gSOAP are the time

saving and speeding up the development of projects. These factors represent too much money

in the industry and should never be ignored.

The service loading can be done from anywhere. It is not needed to be near the device

to do it. If the device can be reached by DPWS, everything can be done as a DPWS service

(figure 6.6).

The capability of send services from devices to devices (figure 6.6) increases the fast

upgrading capability of a shop floor, for example, as the new service configuration version

must only be sent to one machine, and the identical machines automatically can ask for it.

Besides upgrading, for first installation, the technique can be the same, as only one service

installation is needed, because the service-sending and service-receiving must be built-in, the

working device can send the service to all the other identical devices. This capability reminds

the behavior of a virus, spreading itself, but in this case, with authorization. However, with

this feature, security measures must be taken, because some bad-intentioned person can load a

service into a device.

81

Figure 6.6 – service self-spreading to the other identical devices

Reconfiguration of devices when new add-on hardware is available can be done

quickly and easily. For example, if a new kind of grip is available to a pick-and-place

operation, it is not needed to reconfigure the whole machine, but only the service

corresponding to the grip description and working mode must be upgraded.

On the down side, there are some things to point, tough.

First, the WSDL-to-C structures de-serializer must be adapted to any eventual new

versions of WSDL. The implemented parser, for example, is compatible with WSDL 1.1.

However, WSDL 2.0 has a different structure. Consequently, the WSDL-reading service must

be re-implemented. In this case, it cannot be done as a service, because it is built-in. So, here

it is obligatory to shut down the devices and re-program its code.

Second, the memory usage is, obviously, bigger than the static DPWS. Embedded

memory on devices is short, so is important to try to consume as fewer resources as possible.

The static DPWS creates fewer structures in memory, knowing its attributes and types from

the variable declarations. On the dynamic DPWS, for example, an int number declared in

82

the static DPWS must be a structure variable with a string called “name” with the

value “number”, the string variable called “type” with the value “integer”, and the value itself.

Being a 4-to-1 number of variables in memory to declare just one simple variable, a service

with a big number of types will accuse this difference in embedded memory.

83

Chapter 7

SDPWS – Case Study

Contents

7.1 – Objective .. 83

7.2 – SDPWS Implementation ... 84

7.1 – Objective

An SDPWS implementation was made. It was used a sample from the DPWS toolkit,

the lighting sample. The objective was to use the SDPWS, i.e., the device was both client and

server, it used the ERS, and the lighting service was re-created using the dynamic service. The

priority objective of the experiment was the compatibility between the normal DPWS lighting

service and the new dynamic one.

84

7.2 – SDPWS Implementation

 As already said, a re-creation of the lighting sample was made. It was used the Simple

Service approach. The original WSDL service is overall very simple, and that’s why it was

the chosen service to make the experience.

 Explaining the service, it has a SimpleType named PowerState which values can be

either ON or OFF. Then, it has three messages, a SwitchMsg (on-way) that takes one

argument (ON/OFF), and a two-way Operation, that are in reality two messages, a

GetStatusReqMsg (request) message and a GetStatusRespMsg (response) message. These are

used to ask the lamp (server) for its status.

 Finally, the PortType existent is named SwitchPower. It includes two Operations, one

called Switch that uses the SwitchMsg, and the other called GetStatus that uses the two other

messages.

It was this information that was recreated in the dynamic service. The dynamic service

was created with the proper implemented procedures but these procedures’ calling were hard-

coded, because the WSDL reader was not implemented at the time the experience was made.

The creation hard-code is presented next:

enum1 = enumeration_create();
enumeration_add_value(enum1, "ON");
enumeration_add_value(enum1, "OFF");
rest1 = restriction_create(GEN_ENUMERATION, (void*) enum1);
type1 = simple_type_create("PowerState", GEN_TOKEN) ;
simple_type_add_restriction(type1, rest1);

In the sample, we can see the PowerState Type creation. Because this type accepts the

constant values ON and OFF (so it is an enumeration), that was also created, and is called a

restriction, as can be seen in figure 6.1. The other elements were created in an analog method.

An element containing the Simple Type was created:

element1 = element_create("Power", GEN_ARG_TYPE_SIM PLE,
(void*)type1);

85

, where type1 is the Simple Type created before. The element is called “Power” because it

represents the power status of the lamp.

Next, the message must be created. The following code creates and inserts the

respective element on message parts, and then creates the messages.

part1 = message_part_create("PowerOut", element1);
part2 = message_part_create("PowerIn", element1);
msg1 = message_create("SwitchMsg");
message_add_part(msg1, part1);
msg2 = message_create("GetStatusReqMsg");
msg3 = message_create("GetStatusRespMsg");
message_add_part(msg3, part2);

 The first message part represents a message that deliveries the Power Status, i.e., sends

the Power Output, and so its name is PowerOut. The second one has identical logic. The

messages have its names and can have parts, depending on if it is needed any element value.

Notice that the requesting status message (GetStatusReqMsg , msg2) has no message part

in it, as it is only a request of a value, so it doesn’t need o transport any element.

Now, the operations which contain the messages must be created:

op1 = operation_create("Switch", msg1, 0);
op2 = operation_create("GetStatusReq", msg2, 0);
op3 = operation_create("Status", 0, msg3);
op4 = operation_create("GetStatus", msg2, msg3);

There are four operations represented here. The creating function receives three

arguments: its name, and the respective request and response messages. So, the first operation

is an one-way operation that asks to switch the power ON or OFF. The second one asks for

the status of the lamp (server) in a one-way operation, and the third operation is the respective

server answer, and is also a one-way operation. These operations 2 and 3 can be in only one

2-way operation. The fourth operation implements it, as it is an operation that waits for the

server’s answer.

86

The next step in the Simple Service creation is the Port Types creation. Is here that the

operations will be inserted in. The code presented next shows how it is done. The process is

very identical to the previous ones.

port1 = port_type_create("SwitchPower");
port_type_add_operation(port1, op1);
port_type_add_operation(port1, op4);

 As seen, Port Types’ creation is very simple, just giving a name to it and inserting the

intended operations.

 Finally, the Simple Service itself is created. This only contains one Port Type, but it

could be as much as it were needed. Obviously, the Service must have identifiers, that are

passed between components for them to know which service is being refered.

service_ns.ns_prefix = "lit";

service_ns.ns_uri = "http://www.schneider-
electric.com/DPWS/2006/03/Training/Lighting";

wsdl.target_ns = "http://www.schneider-
electric.com/DPWS/2006/03/Training/Lighting";

wsdl.location = "http://wsdl.schneider-
electric.com/Lighting.wsdl";

serv = simple_service_create("http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1", service _ns, wsdl);

simple_service_add_port_type(serv, port1);
simple_service_add_port_type(serv, port2);

 As seen, the Simple Service has some properties, a name (declared in the Simple

Service creation procedure simple_service_create), a namespace prefix and URI

(Uniform Resource Identifier), and a WSDL namespace and location. These properties are the

same of the normal Service, and some of them are used in the already explained generated

path to reach a specific element, like the service name. Also, the WSDL-related ones exist

87

only for compatibility with the respective static DPWS service, as they are obsolete in

dynamic-only DPWS services.

The created Simple Service scheme can be seen in figure 7.1.

Figure 7.1 – Implemented Simple Service

The Event Router-Scheduler was used to the communication between modules. This

means the module-programming way was used.

Only two modules were implemented for this example, as it is only to demonstrate it

by the simplest way. The code of modules’ creation is shown next.

module = module_create(1, ERS_USER_INTERFACE);
if(module->id <= 0) {
 printf("\nError creating an module_type!\n");
if(module->id == -1);
 printf("Could not create a list!\n");
if(module->id == -2);
 printf("Could not create a semaphore!\n");
}

module_create(2, ERS_COMMUNICATION);

88

The module creation is very simple. Each module must have two parameters: an ID,

that is a unique identifier (number), and a type. The existent types must exist in a proper ERS

array. In this case, the two modules are the User Interface module and the Communication

module. Notice that the ERS module does not need to be created (obviously), as it is built-in

the application. Although the creation of modules is done with the calling of the proper

function module_create , it can be useful to put some extra code like the one seen on the

creation of the first (User Interface) module, for errors-catching, like memory shortage.

Next is a self-explaining piece of code used. It belongs to the dynamic server, and this

is specifically the message processing code:

void handleMsg(){
 (…)
 while(1){
 msg=event_get(1,ERS_BLOCK);
 switch (msg.action) {
 case DPWS_FAILURE:
 exit(1);
 case RECEIVED_DPWS_MSG:
 controler=(controller_info*)msg.parameters;
 if (!strcmp(controler->service_name, "http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1"))
 {
 elem1 = controller_get_element(controler,"Power");
 value=(char*)element_get_value(elem1);
 printf("->light %s device %d \n", value, control er->device_id);
 }
 controller_info_free(controler);
 break;
 case RECEIVED_RESPONSE_DPWS_MSG:
 event_send(1,ERS_HI,msg);
 break;

 }
 }
}

As shown, the lamp module is blocked waiting for a message from the communication

module (msg = event_get(2, ERS_BLOCK)). The program only advances when a new

message is available. Then it checks the action intended to be executed: if it is a failure

89

message, it quits the application, if it is a DPWS message from the communication module, it

checks if it is an existent service ("http://www.schneider-

electric.com/DPWS/2006/03/Training/Light1") and if it is so, retrieves the value intended and

writes on the console. Finally, if it is a message with an answer event, it forwards the message

to the User Interface module (module 1), with high-priority (event_send(2, ERS_HI,

msg)).

As already told, Graphical User Interface (GUI) module was created to be easy to

understand the new features. The GUI was started to show the procedures happening with the

background DPWS services. This implementation was done by Alexandre Rodrigues.

A normal DPWS lighting server service was put running, alone. So, there were no

devices. This s shows in figure 7.2, as there are no neighbors.

Figure 7.2 – example GUI with no neighbors detected

Then, some dynamic services were started, and the devices were found, as seen in

figure 7.3.

90

Figure 7.3 – example GUI with some neighbors detected

The next step was to select one neighbor, with the respective operational buttons

appearing on the GUI. This is illustrated in figure 7.4.

Figure 7.4 – neighbor selected and respective operating buttons

Finally, a Switch ON order was given, with the virtual lamp turning ON. This is

illustrated in figure 7.5.

91

Figure 7.5 – light turned ON

 To finalize, next is shown the content of the SOAP envelope passed by the application.

It can be seen the service name, the port type and the operation, as well as the intended value.

xmlns:lit="http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1">
<SOAP-ENV:Header>
 <wsa:To>
 http://169.254.184.154:9876/d2ee4d54-9853-11dc- 8ba9-
001302e329dc
 </wsa:To>
 <wsa:Action>
 http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1/Switch/Po wer
 </wsa:Action>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <wsh:Power Value="ON" />
</SOAP-ENV:Body>

The results were very satisfactory, because a most complete possible version of the

SDPWS idea was successfully implemented.

92

93

Chapter 8

Conclusion

The results of this work show the feasibility of the improved support towards easy

service creation, that enables novel device networking architectures and holds the promise of

ease the development, integration, deployment, maintenance and lifecycle management of

devices and services. Advantages of such a system are clear, services can be added directly

and components of the device can be changed with minimal reconfiguration and without the

need of re-deploy components.

The adoption of a “bio-inspired” modular structure makes possible to design and

develop modules with distinct and independent functions but complementary to each other,

forming complex, intelligent and social components. The resulted component’s structure may

help in decreasing the development time and effort in the integration into the system. The

prototype development shows the feasibility and features of the concept, providing the

possibility to develop reusable and functional modules and deploy them into service-oriented

components. Developers just don’t need to care with inter-module synchronization, which is

one of the main problems of real-time interaction.

The dynamic creation of new services allows machine reconfiguration and reprogram

without shutting down the system, and eases the maintenance. This strongly increases the

shop-floor agility.

94

Future Work

The main challenge is to deploy these techniques in real devices and proof their

applicability in industrial automation systems. Other requirements are to stabilize the

implementation and improve the interaction concepts among distributed components to meet

the objectives of flexible production and automation.

Also, it is needed to enhance both concept and development of the ERS and the

Dynamic Service. A special case is to enhance the flexibly in the deployment of components

and its modules, by developing a specification of metadata for modules that would permit the

creation of them without worrying about how the information comes from the other modules.

95

References

[1] Jammes, F., Mensch, A., Smit, H., 2005, Service-oriented device communications using
the devices profile for web services, Proc. of the 3rd international workshop on Middleware
for pervasive and ad-hoc computing, ACM Press, 1-8

[2] Jennings, N. R., Wooldridge, M., 1998, Applications of intelligent agents, Springer-Verlag
New York, Inc., 3-28

[3] Schoop, R., Neubert, R., Colombo, A., 2001, A multiagent-based distributed control
platform for industrial flexible production systems, 27th Annual Conference of the IEEE
Industrial Electronics Society, 1: 279-284

[4] Colombo, A., Neubert, R., Schoop, R., 2001, A solution to holonic control systems,
Proceedings of the 8th IEEE International Conference on Emerging Technologies and Factory
Automation, 2: 489-498

[5] Colombo, A., Jammes, F., Smit, H., Harrison, R., Lastra, J., Delamer, I., 2005, Service-
oriented Architectures for Collaborative Automation, 32nd Annual Conference of IEEE
Industrial Electronics Society, 6

[6] Moran, N. A., 2006, Symbiosis, Current Biology, Cell Press, Elsevier Inc., 16/20: 866-871

[7] Wooldridge, M., 2002, Introduction to MultiAgent Systems

[8] Mendes, J. M., Leitão, P., Colombo, A. W., Restivo, F., 2008, Service-oriented Control
Architecture for Reconfigurable Production Systems, to appear in the Proceedings of the 6th
IEEE International Conference on Industrial Informatics

[9] Gray, H., 2000, Gray's Anatomy of the Human Body, 20th Edition (Original by
Philadelphia: Lea and Febiger, 1918), New York: Bartleby.com

[10] Cachapa, D, Colombo, A, Feike, M, Bepperling, A, “An approach for integrating real
and virtual production automation devices applying the service-oriented architecture
paradigm”, Proc. of the IEEE Conference on Emerging Technologies & Factory Automation,
pp. 309-314, 2007

[11] Ribeiro, L, “A Diagnostic Infrastructure for Manufacturing Systems”, 2007, Master
Thesis, New University of Lisbon

[12] Barisic, D, Krogmann, M, Stromberg, G, Schramm, P, "Making Embedded Software
Development More Efficient with SOA," ainaw,pp.941-946, 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07), 2007

[13] European 6th Framework Project. PROMISE - Product Lifecycle Management and
Information Tracking using Smart Embedded Systems. http://www.promise.no/, 2005-2008

96

[14] SIRENA. Service Infrastructure for Real-time Embedded Networked Applications.
http://www.sirena-itea.org, 2005

[15] SODA. Service Oriented Device and Delivery Architecture. http://www.soda-itea.org,
2006

[16] European 6th Framework Project. SOCRADES – Service Oriented Cross-layer
Infrastructure for Distributed smart Embedded Devices. http://www.socrades.eu/, 2006

[17] Hayashi, H., 1993, The IMS International Collaborative Program, Proceedings of the 24th
ISIR, Japan Industrial Robot Association

[18] J. Barata, L. Ribeiro and A. Colombo, “Diagnosis using Service Oriented Architectures”,
Proceedings of the IEEE International Conference on Industrial Informatics, Vol. 2, pp.1203-
1208, 2007

