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Resumo 

Esta dissertação aborda o uso da tecnologia DPWS para implementação de web-

services em dispositivos, explica as suas limitações e apresenta uma arquitectura para 

ultrapassá-las. 

Foi estudada uma arquitectura baseada em DPWS com o objectivo de tornar um 

dispositivo autónomo, chamada de DPWS Simples. Esta arquitectura é baseada na 

programação por módulos, sendo o esqueleto suportado por dois módulos obrigatórios, o 

módulo de comunicação e o Event Router-Scheduler. 

O módulo de comunicação controla a comunicação para o exterior, enquanto o ERS é 

responsável pela comunicação interna, em tempo real, entre os módulos. 

O toolkit do DPWS não oferece possibilidade de interagir com serviços que emergem 

em run-time. Foi necessário implementar algumas melhorias de modo a permitir ao DPWS ser 

mais dinâmico. Este novo serviço foi chamado Serviço Dinâmico. 

Foi realizada uma experiência fazendo ligação entre um serviço do DPWS e o mesmo 

serviço mas criado dinamicamente. Foi usado o exemplo das lâmpadas, que consiste em ligar 

e desligar uma lâmpada, e obter o seu estado. Uma interface gráfica foi implementada para a 

aplicação ter fácil utilização. Os resultados foram satisfatórios, pois a experiência funcionou 

plenamente. 
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Abstract 

This thesis approaches the use of the DPWS technology to implement web-services on 

small devices, addresses its limitations, and explains an architecture to solve it. 

An approach to an autonomous device’s simple architecture was realized, using 

DPWS, and was called Simple DPWS. The objective was to implement/simplify some 

features in a device in a way that the device can work on its own. The designed architecture is 

based on that each component has its framework of modules, having always at least the 

skeleton modules communication and Event Router-Scheduler. 

The communication module controls all the communication between the devices and 

the ERS is the responsible for the other modules’ real-time communication. 

The DPWS toolkit offers no capability of interacting with run-time-appearing services. 

Thus there was a necessity to do enhancements over the DPWS toolkit to have a dynamic stub 

and skeleton. This service was called the dynamic service. 

An experience was done connecting a DPWS toolkit sample service with the 

corresponding hand-created dynamic service. It was used the lighting service that consists on 

turning a lamp ON or OFF and getting its status. A GUI was done for the application to be 

more user-friendly. The results were satisfactory, as the connection worked. 
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Glossary of Abbreviations 

DPWS - Devices Profile for Web Services  

ERS - Event Router-Scheduler 

GUI – Graphical User Interface 

HAVi - Home Audio/Video Interoperability 

HTTP - Hypertext Transfer Protocol 

I/O - Input/Output 

ICT - Information and Communication Technologies 

IMS - Intelligent Manufacturing Systems  

IP - Internet Protocol 

ISC - International Security Controls  

JINI - Java Intelligent Network Infrastructure  

K/BIS - Kitchen and Bath Show  

LAN -Local Area Network 

MAS - Multi-Agent Systems 

MTOM - Message Transmission Optimization Mechanism 

OASIS - Organization for the Advancement of Structured Information Standards 

OSGi - Open Service Gateway Initiative 

PC - Personal Computer 

PLC - Programmable Logic Controller 

QoS - Quality of Service 

RMI – Remote Method Invocation 

SoA - Service-oriented Architecture  

SOA4D - SoA for Devices 

SOAP - Simple Object Access Protocol  

TCP - Transmission Control Protocol 

UDP - User Datagram Protocol 

UPnP - Universal Plug And Play 

URI – Uniform Resource Identifier 

URL – Uniform Resource Locator 

WS4D - Web Services for Devices 

WSDL - Web Services Description Language 
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XML - eXtended Markup Language 
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Chapter 1 

 

Introduction 

 

Contents 

 

1.1 – Research Problem ........................................................................................................ 17 

1.2 – Thesis outline ............................................................................................................... 21 

 

 

1.1 – Research Problem 

Modern manufacturing processes are focusing on flexibility, agility and re-

configurability. Production focus is shifting from mass production to mass customization. 

New revolutionary manufacturing concepts are, thus, emerging. Centralized architectures 

aren’t capable of dealing with the new reality of decentralized agile systems. As so, next 

generation manufacturing must support strong market responsiveness but low costs and high 

quality remain vital concerns. So, new technology is required to be considerably more flexible 

and adaptable. 
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Nowadays, the communication between manufacturing components is facilitated by a 

central system. This structure design approach fails when trying to use an intelligent control 

structure. Recent technology is capable of much more of what is being used. Such technology 

should be integrated with new engineering solutions that will support the research and 

implementation of new paradigms in automation and control. 

Besides this, a new approach to the enterprises is required, like intra-enterprise 

dynamic integration of modules and inter-enterprise dynamic cooperation. 

 

Some different approaches had been studied, like Multi-Agent Systems and Service-

Oriented Architectures. These technologies have been the subject of great attention, as they 

implement effectively two principles that may sound contradictory: autonomy and 

interoperability. 

 

On top of Service-oriented Architectures, a new technology called Devices Profile for 

Web Services (DPWS) is becoming steady in some areas. DPWS is a plug-n-play protocol 

middleware built on top of a set of Web Services specifications. Consequently, it is a 

distributed architecture. It leverages TCP/IP and the Web technologies to enable seamless 

proximity networking in addition to control and data transfer among networked devices in the 

home, office, and public spaces. 

DPWS objectives are similar to those of Universal Plug And Play (UPnP) but, in 

addition, DPWS is fully aligned with Web Services technology and includes numerous 

extension points allowing for seamless integration of device-provided services in enterprise-

wide application scenarios. 

 

In distributed automation and especially in the branch of production systems, the set of 

equipment and other components in the system may be comparable under some circumstances 
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to a society of living beings. Taken a closer look into a component itself, its internal 

mechatronical organization may correspond to functional organs that are responsible for 

specific tasks, providing the "vital" properties to be able to fulfill its requirements. A central 

question is how these functional modules or “organs” may be integrated, controlled and able 

to pass impulses between them and therefore to form complex and operational structures. 

Taking this in mind, an approach to an autonomous device was realized, using DPWS. 

It was called Simple DPWS (SDPWS), and is represented in figure 1.1. The main objective is 

to implement some features in a device in a way that the device can work on its own, owning 

the necessary features. This simplification and features were studied and engineered. The 

designed simplification is based on that each component has its framework of modules (figure 

1.1). There are two kernel (obligatory) modules, the communication module and the Event 

Router-Scheduler module (figure 1.1), and optional modules, and the work was based on the 

kernel ones, as they were studied and developed.  

 

 

Figure 1.1 – The SDPWS with the kernel modules 

 

The communication module controls all the communication between devices and, 

therefore, is responsible for using DPWS. The Event Router-Scheduler (ERS) is the 
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responsible for the other modules’ real-time communication. The optional modules are user-

defined and adapted to the respective component’s function. 

 

The DPWS toolkit generates compact code, creating a light weight resource-constraint 

program structure with a high performance predictive parser for each service. However, it 

offers no capability of interacting with new services that appear at run-time, and new code has 

to be generated and compiled on the client stub to integrate the unprecedented service. Thus 

there was a necessity to do some enhancements over the DPWS toolkit to have a dynamic 

stub and skeleton that can invoke and receive any kind of message, and thus, having the 

possibility to create or update services in real-time, without machinery shut-down. This 

would, among other benefits, greatly increase the agility of the shop floor, and consequently 

reduce maintaining costs. 

This new feature on automation components must accomplish some main objectives, 

like be able to read a new service at run-time and inform the other identical devices that a new 

service is available, as update a service and automatically send services to “new-born” 

identical devices. For this purpose, the component must have a built-in service-receiving and 

service-updating service, as also a service-spreading service, as shown in figure 1.2. 
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Figure 1.2 – Real-time Service Loading and Spreading 

 

The dynamic service cannot, however, throw away the DPWS capacity of maintaining 

the code compact and light-weight, as embedded memory becomes short rapidly, and costs 

must be kept low.  

 

Both Schneider-Electric colleagues and supervisors appreciated the concluded work, 

giving a very positive feedback.  

 

1.2 – Thesis outline 

This thesis is divided in eight chapters: “Introduction”, “The State of the Art in 

Industry”, “Supporting Technologies”, “SDPWS – the Living Components”, “The Event 
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Router-Scheduler”, “The Dynamic Service”, “SDPWS Complete Implementation” and 

“Conclusion”. 

 

This introductory chapter briefly explains the problem under research and presents the 

outline of this work. 

 

The second chapter, “The State of the Art in Industry”, explains the aging in currently 

used technologies in industry, comparing it to what is possible to do, and gives an example of 

emerging technologies that can be implemented in this sector, Service-oriented Architecture 

and Multi-Agent Systems. 

 

The third chapter, “Supporting Technologies”, presents the DPWS technology, a 

middleware which is used on top of web-services, and allows web-services on small devices. 

 

The fourth chapter, “SDPWS – the Living Components”, presents an enhanced and 

simplified architecture using DPWS, called Simple DPWS (SDPWS), which was designed to 

add the necessary features to a device using DPWS which would turn the device independent. 

 

The fifth chapter, “The Event Router-Scheduler”, shows the implementation of the 

intra-application module-communication-way module of the SDPWS and explains the 

advantages and importance of such module in real-time multi-tasking devices. 

 

The sixth chapter, “The Dynamic Service”, exposes the DPWS’ current version 

technological limitation of being a static, pre-compiled service-implementation, and presents 

a new architecture of turning those services dynamic, real-time implementable and self-

spreading between similar devices. 
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The seventh chapter, “SDPWS – Case Study”, presents exhaustively an 

implementation of all of the previously mentioned architectures and technologies. The 

example is a little Light ON/OFF service. 

 

The concluding chapter discusses the results of the complete implementation, and 

points future research directions. 
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Chapter 2 

 

The State of the Art in the Industry 

 

Contents 

  

2.1 – The industry is changing .......................................................................... 25 

2.2 – Emerging technologies: SoA and MAS ................................................... 28 

2.3 – The SoA technology and SoA for devices ............................................... 29 

2.4 – SoA and the automation industry - a society of service-oriented automation 

components ........................................................................................................ 30 

 

 

2.1 – The industry is changing 

Modern manufacturing processes are focusing on flexibility, agility and re-

configurability. Production focus is shifting from mass production to mass customization, and 

technology must follow new patterns to accommodate all the requirements. As so, new 

revolutionary manufacturing concepts and emerging technologies are being researched to take 

advantage of the newest mechatronics, information and communication technologies [11]. 



 

26 

 Nowadays, any enterprise with stability must be able to change promptly and 

dynamically its product or service catalogue to react to any unexpected disturbances or 

market’s new directions. Centralized architectures aren’t capable of dealing with this new 

reality, as the emergence of decentralized systems is a very important issue, for the systems to 

be capable of dealing with the fast changes in the production environment. These new systems 

must be agile and efficient to compete in a global market. The future of manufacturing will be 

characterized by rapidly changing markets, pressure from competition and continuously 

emerging technologies. Therefore, next generation manufacturing must support strong market 

responsiveness. However, low costs and high quality remain vital concerns, so new 

technology is required to be considerably more flexible and adaptable to changing than 

today’s technology. 

Approximately one third of the cost of a manufacturing plant over its lifetime is spent 

on installation and setup. Another substantial part of the costs is spent on maintenance. For a 

plant to be adapted to new products, it must change its process flow and its machines. This 

situation generates high costs and time spending. Actual components are inflexible, so 

communication between them is hard to configure, as is porting software applications to new 

machines. Industry has to develop, deploy and support automated systems on a global basis in 

ever shorter timeframes. Furthermore, the lifecycle engineering of production machines 

requires complex, innovative and timely interaction between geographically distributed 

members of project engineering teams comprising automation suppliers, control system 

suppliers, machine tool builders and end-user product, process and control engineers. 

Collectively they have responsibility for the implementation and lifecycle support of the 

automated system as product and production requirements change [5]. 

Currently, machines are categorized according to their functionality. As they are 

independent and can even be brand-mixed, programming is made individually. Thus, the 



 

27 

communication between them is facilitated by a central system. This structure design 

approach fails when trying to use an intelligent control structure. 

There are many factors why today’s technology is surpassed: 

• Increasing computational power and Ethernet are more and more available on ever 

smaller devices; 

• SOA based on Web service technology is more and more used in the world of 

automation technology and is already used as a platform for communication and 

control; 

• The entire lifecycle of a product and the equipment is considered at the planning 

phase; 

• Development and linkage of service components, as well as the design and modeling 

of application and workflows are already supported by engineering tools. 

• Simulation and emulation tools are available for control logic entities, but not at the 

same extent as those for distributed applications. 

 

These advances should be integrated with new engineering solutions that will support 

the research and implementation of new paradigms in automation and control in order to bring 

flexibility, agility and robustness to the production lines of the future. Such a tool would have 

to support the production line throughout the whole production lifecycle [10]. 

A new technology capable of hold a new generation of industrial components and 

architectures is desperately needed. A wide variety of open platforms has been proposed for 

years in the Information and Communication Technologies (ICT), which proposes industry to 

look at open solutions for manufacturing plants. Although several proposals have been 

submitted, today’s reality shows the still dominance of old standards that fight against 

progress. 
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Besides the requirements already mentioned above, there are some requirements 

needing to be satisfied in order to truly have a new generation of manufacturing system: 

• Intra-enterprise dynamic integration of modules, turning the whole system completely 

robust; 

• Inter-enterprise dynamic cooperation, opening a new vision to the actual enterprises’ 

services requested and offered 

• Non-disruptive scalability through addition of resources, either hardware or software; 

• Fault-tolerant, self-configuration and self-monitoring modules capable of automatic 

recovery. 

 

These issues have more importance than ever to maintain productivity and 

competitiveness. 

 

2.2 – Emerging technologies: SoA and MAS 

Some different approaches had been studied, developed and analyzed to cover the new 

requirements. Multi-Agent Systems and Service-Oriented Architectures are maybe the best 

implementation of such technology. These technologies implement effectively two principles 

that may sound contradictory: autonomy and interoperability. 

 These two technologies particularly have been the subject of great attention. However, 

despite their promise, they have not made significant inroads in manufacturing plants yet. The 

lack of widely accepted standards is resulting in variety of islands with poor scalability. 
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2.3 – The SoA technology and SoA for devices 

A Service-oriented Architecture (SoA) is as a group of services that communicate with 

each other, trading data and/or coordinating some activity together. This intercommunication 

implies the need for some means of connecting two or more services to each other. 

In theory, Service-Oriented Architectures offer the potential to provide the necessary 

system-wide visibility and device interoperability in complex collaborative automation 

systems subject to frequent changes. They are proven in a business system context, and initial 

analysis suggests that SoA could meet the technical and business level requirements for future 

automation systems. SoA is basically an architectural paradigm that defines mechanisms to 

publish, find and bind services. Message-based communication, loose coupling and open 

standards characterise SoA. Those features make it particularly applicable for a global multi-

vendor environment where interoperability is essential [5]. 

In practice, SoAs build applications out of spread software services. They typically 

implement functionality most humans would recognize as a service, such as filling out an 

online application for an account, viewing an online bank-statement, or placing an online 

booking or airline ticket order. Instead of services embedding calls to each other in their 

source code, they use defined protocols which describe how one or more services can 

communicate with each other. This architecture then relies on a business process to link and 

sequence services. This process is known as orchestration, and it allows meeting a new or 

existing business system requirement. 

The big breakthrough areas of SoA for devices are in particular the industrial sector 

and home automation. 

In home automation, SoA helps to bridge the heterogeneity of products and brings new 

opportunities for networking and interaction of diverse devices. For industry applications, 

SoA can be used for integration of equipment or even products themselves into the enterprise 
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infrastructures. This allows a higher level of transparency and opens completely new ways for 

optimization of business processes. 

Research activities in the last years have been dedicated to apply and evaluate SoA on 

medium sized embedded systems like embedded PC, PDAs or network routers. Development 

frameworks like gSOAP, Intel Authoring Tools or the aveLink suite for UPnP have been 

created to provide development support for SoA on these devices. For smaller embedded 

devices likes actuator and sensor nodes this is different. They focus on mechanisms to 

outsource computational load from the devices. Thus, a proxy approach is favored over direct 

implementation of SoA to compensate for the computational restrictions of the small devices 

[12]. 

2.4 – SoA and the automation industry - a society of service-

oriented automation components 

Production and automation systems are heterogeneous in nature, made of different 

components with distinguished roles. It is therefore predictable that the specifications of those 

systems are moving from the traditional central-controlled manner to the corresponding 

distributed counterpart, assimilating the natural appearance and layout of the real system. 

Thus, one promising guideline in this respect is to have a conglomerate of distributed, 

autonomous, intelligent, fault-tolerant, and reusable manufacturing units, which operates as a 

set of co-operating entities. Each entity is capable of dynamically interact with each other to 

achieve both local and global manufacturing objectives, from the physical/machine control 

level on the shop floor to the higher levels of the factory management systems [4]. This new 

generation of systems is referenced as Intelligent Manufacturing Systems (IMS) [17]. 

One of the rising solutions to adapt the majority of the concepts behind IMS into 

feasible principles is Service-oriented Architectures device communications using the devices. 
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The concept SoA has gained significant attraction in just a few years and will undoubtedly 

have a major impact in many branches of technology. According to [1], “A service-oriented 

architecture is a set of architectural tenets for building autonomous yet interoperable 

systems.” and this proposal is facing one of the challenges of IMS, namely providing 

interoperability between autonomous systems. 

Adapting the service-orientation concepts to the automation and production 

“ecosystem” at the shop floor and considering the principles of IMS, a “society” of service-

oriented automation components is born. Each participant in the system is referred as Service-

oriented Component and in some extends, Service-oriented Automation Component (when it 

has automatic control duties). Components may have different roles (e.g. production, 

transportation and monitoring) and operate autonomously. Since services are the main guide, 

these components should have the need of requesting services and also the desire in providing 

services to the community. Services itself are a form of providing resources and actions that 

are shared in some circumstances, much similar to the real-life services. 

Fig. 2.1 shows the basic description of a Service-oriented Component and its 

integration into the environment of automation and production shop floor. The given example 

is a component that represents a physical conveyor (Mediator of : Conveyor) and has the 

transportation role (Role: Transportation). Implicitly, the communication to the outside world 

would be via services (Orientation : Services), being able to provide and request services 

when needed. The integration into the IT enterprise is also reached by the service-orientation. 

A component has a set of tasks or activities (Tasks: Transport, Monitoring, etc.) and those 

may be used as services provided by the component. 
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Figure 2.1 – description scheme of a service-oriented component 

 

Interaction between components is done by the two-way service orientation, in sense 

of requesting and providing services. It is expected in production and automation that 

heterogeneous components work together for mutual benefit and global objectives. This can 

be distinguished as symbiosis, similar to the interactions between different biological species 

[6]. It is also possible that components may compete with each other for resources (services), 

but in the end the global goal must be respected. 

 

In simple scenarios, like lighting, the use of SOA has following benefits [12]: 

• Homogeneity: Heterogeneous systems become homogeneous using the notion of 

services. Although different vendors may provide different lighting systems, from the 

SoA point of view they will provide a service for switching the light on or off. 

Different vendors may even provide the exact same service for their devices. This 

allows our SoA-based switches to be used for nearly arbitrary lightings. 

• Dynamics: In a device centric SoA network, services are announced when devices 

become available. In our setup this means that when new lighting is installed, the 

respective lighting service is advertised. Next time a switch is pressed it can also 

switch the new lamp, as it is aware of all existing lighting services. 
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• Self-Description: Devices are enabled to find out what capabilities other devices have 

using the self descriptive notion of services. This supports dynamic behavior of a 

system. If a switch was supposed to create a light scene for watching movies, it would 

dim all lights that are dimmable and switch the rest off. The lighting itself will tell the 

switch if it is dimmable or not. 

 

In another example, the application case “information management for tracking & 

tracing of products for recycling”, which is part of the EU funded research project PROMISE, 

focuses on optimization of processes in a plastics recycling facility [13]. Wireless SoA-

enabled temperature sensors are used to monitor containers carrying milled plastic material 

that inheres the risk of self ignition. Each sensor provides a service which conveys its ability 

to monitor temperature to the facility’s management system. The management system uses 

these services to assign monitoring tasks to the sensors with an appropriate threshold with 

respect to its current load. Respectively, sensors will inform the management system if goods 

enter a critical state, so that appropriate countermeasures can be initiated. 

• Eventing: SOA is used to translate a physical value i.e. temperature into a system 

parameter. With this, the management system is now able to even react on physical 

events as they are now system events. In our case the violation of the temperature 

threshold will lead to an event based notification of the system, which then will start 

countermeasures. 

• Dynamics: Leveraging the dynamic lookup mechanisms of SOA, the management 

system is aware which containers are in the monitored storage area at any given 

moment and can automatically react on incoming or outgoing containers. 

• Distribution of responsibility: Furthermore, the intrinsic philosophy of SOA dictates 

that the sensor themselves are responsible to implement the actual monitoring and to 
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determine when a threshold has been reached. This minimizes management overhead 

in backend systems and prescribes adequate distribution of responsibilities. 

 

In some situations Service-oriented Components can be seen as software agents 

according to the definition given by (Schoop et al.) [3], adapted from (Jennings and 

Wooldridge) [2], to flexible production systems: 

 

“An agent is considered a software entity situated in a flexible production environment, with 

enough intelligence that is capable of autonomous control actions in this environment and of 

co-operation relationships by participating in associations’ agreements with other entities in 

order to meet its design objectives”. 

 

Moreover, Multi-agent Systems [7] are of special interest since these systems bring the 

idea of collaborative agent society, in which each of them can take autonomous actions over 

their environment or over the system that they represent. On the other hand and differentiating 

from the agent concepts, the true meaning of service-orientation is centered in the requirement 

of providing services and in the necessity of requesting services by a component in the 

system. The real architecture, habitat and objectives of the system are truly open to the 

developer and thus it may adopt different strategies to cover the requirements. 

2.5 – Existing SoA realizations for devices 

In reality, the SoA concept is not applied singly but needs a framework which 

provides means like protocols or data structures to bring SoA down to the implementation 

level. Over the years, so-called middlewares have been developed to implement different 

flavors of SoA. 
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Middlewares that are especially relevant in the area of SoA for devices are Jini, OSGi, 

UPnP and DPWS as they try to address the dynamic nature of device integration and/or have 

specifically been designed for application in this area. We will now briefly outline the main 

concepts of these frameworks: 

1. Jini  (www.jini.org) is a Java based solution which provides mechanisms for 

distributing and discovering services and supports migration of executable code from 

one computer to another. The core of a Jini system is a lookup-service which 

facilitates the search for services throughout the Jini network. Each service has to 

announce its existence to the lookupservice and to deposit a set of attributes as 

description of its features. The communication with the lookup-service is based on 

Java Remote Method Invocation (RMI) where the communication between server and 

client is defined by the drivers and may therefore use any proprietary protocol and 

format. Due to the RMI-based communication, Jini requires a participating device to 

execute a Java Virtual Machine and a respective Java application. 

 

2. OSGi (www.osgi.org) is targeted on the connection of various components in home 

networks. It is a Java centric approach where so-called bundles disclose capabilities of 

a device and allow interaction via local method invocation. A central device (the 

gateway) provides the necessary communication platform on which the bundles are 

executed. Additionally, standardized mechanisms are defined to dynamically install or 

remove bundles and respectively discover active bundles during runtime. 

Maintenance/installation of the bundles can be done locally on the gateway or even 

remotely via the Internet. Remote communication with bundles is not supported 

natively. For distributed communication a mapping between OSGi bundles and UPnP 

devices has been defined. 
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3. The Universal Plug and Play (UPnP) (www.upnp.org) Architecture uses open and 

standardized protocols based on XML to describe and control devices. Information is 

transferred over TCP/IP and UDP/IP using high-level communication protocols like 

SOAP. All interaction is done on top of the IP layer and is thus completely hardware-

independent. In UPnP, mechanisms for Addressing, Discovery, Description, Control, 

Eventing and Presentation are defined. A peer-to-peer philosophy is inherited in all 

these parts, so that no central component is needed to facilitate interaction among the 

participants of a UPnP network. 

 

4. Devices Profile for Web Services (DPWS) is the approach to make the successful 

’Web Services’ fit for usage on the device level. DPWS combines a set of 

functionalities taken from the existing WS protocol suite and specifies additional 

protocols on top of them (WS Eventing, WS Discovery). Like Web-services, DPWS 

uses SOAP for message transmission and XML as data format. The projects SIRENA 

[14], SODA [15] and SOCRADES [16] consider the application of DPWS in the 

industrial sector and until now have created a DPWS stack capable to be executed on 

embedded devices. 
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3.1 – The Device Profile for Web Services 

The Devices Profile for Web Services (DPWS) defines a minimal set of 

implementation constraints to enable secure Web Service messaging, discovery, description, 

and eventing on resource-constrained devices. 

Its objectives are similar to those of Universal Plug And Play (UPnP) but, in addition, 

DPWS is fully aligned with Web Services technology and includes numerous extension points 

allowing for seamless integration of device-provided services in enterprise-wide application 

scenarios. 

3.2 – DPWS description and history 

The Devices Profile for Web Services is a plug-n-play protocol middleware built on 

top of a set of Web Services specifications. This protocol middleware addresses discovery, 

description, and control of devices and services on local networks. It is a distributed 

architecture and leverages TCP/IP and the Web technologies to enable seamless proximity 

networking in addition to control and data transfer among networked devices in the home, 

office, and public spaces. 

DPWS specification began in 2002 under the initiative of Microsoft with the aim to 

become the second version of the basic protocol layers of UPnP™. However, since UPnP™ 

devices have emerged on the market and are not interoperable with the new DPWS 

specification, the UPnP™ Forum does not accept the proposed roadmap. 

Therefore, DPWS appears today as a competitor. Some implementations exist, like the 

one delivered open source by Schneider-Electric in ITEA SODA project. Microsoft well-

known Vista OS hosts DPWS tools beside the UPnP™ ones. 

DPWS is fully aligned on Web Services specification: WSDL 1.1, XML Schema, 

SOAP 1.2, WS-Addressing, WS-MetadaExchange, WS-Transfer, WS-Policy, WS-Security, 
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WS-Discovery and WS-Eventing. It leverages lower-level Internet components, including IP, 

TCP, UDP, HTTP, and XML. This alignment on Web Services technologies is an opportunity 

to benefit from successful specifications and to simply make a bridge between local networks 

and the World Wide Web. On local networks, DPWS refines the Web Services specification 

with a specific devices profile and leverages specific local mechanisms like multicast 

networking. The latter is used for device and service discovery on the Local Area Network 

(LAN). 

3.3 – DPWS overview 

In the last years has been noticed a convergence from user-controlled distributed 

systems to automatic distributed, autonomous and self-configurable systems. 

The emergent technology DPWS offers the possibility to use Web Services in 

electronic devices, taking in consideration their constraints and implementing the most recent 

key needs of technology: footprint, security, plug & play, asynchronous data exchange and 

event-driven data exchange, among others. 

DPWS permits many interactions as Discovery, which allows performing search 

operations and exposing operations, Eventing, which manages subscriptions between devices, 

Naming, allowing searching and indexing operations over data, and Description, which uses 

metadata to explain a device’s operations and services to other devices. 

The DPWS specification was initially published in May 2004 and was submitted for 

standardization to the Organization for the Advancement of Structured Information Standards 

(OASIS) in July 2008. 

However, DPWS is not the first SoA that targets device-to-device communication. As 

explained before, technologies such as Open Service Gateway Initiative (OSGi), Home 

Audio/Video Interoperability (HAVi), Java Intelligent Network Infrastructure (JINI) and 

Universal Plug and Play (UPnP) are similar approaches. 
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The OSGi specification defines a service platform that relies on Java. An OSGi service 

is a simple Java interface but the semantics of the service are not clearly specified. 

HAVi offers plug-and-play as well as Quality-of-service (QoS) capabilities and is 

restricted to the home domain. 

JINI was developed by Sun Microsystems for spontaneous networking of services and 

resources based on the Java technology. Services/devices carry the code (proxy) needed to use 

them. 

UPnP supports ad-hoc networking for devices and services and is easy to develop for. 

It has a very similar functionality in comparison to DPWS but does not address security issues 

and is only applicable for small networks (no service registry/proxy). 

The big advantage of DPWS compared to all other mentioned SoAs is the reliance on 

Web services which implies high acceptance among developers and platform as well as 

programming language independence. 

This technology allows devices to do a plug & play protocol when connected to the 

Ethernet, i.e., they know which devices are on the Ethernet, and the other devices know about 

it. So, any device with this technology can discover, invoke and offer services and 

functionalities. The concept is identical to the UPnP but it uses web-services to communicate. 

Support of discovery has led some to dub DPWS as "the USB for Ethernet." 

There are two types of services defined by DPWS: hosting services and hosted 

services. Hosting services are directly associated to a device. They play an important part in 

the device discovery protocol. Hosted services are mostly functional, and depend on their 

hosting device for discovery. 

3.4 – DPWS protocol 

DPWS is partially based on the Web Services Architecture (WSA) and uses further 

standards from the Web services protocol family, as seen next: 
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• WS-Addressing - The main objective is to provide an addressing mechanism for Web 

services as well as messages in a transport-neutral matter. By introducing both 

concepts endpoint references (EPR) and message information headers (MI) WS-

Addressing overcomes the lack of SOAP's independence of underlying protocols and 

secondly support of asynchronous message exchange. Both limitations are historically 

caused by the default SOAP to HTTP binding. 

• WS-Discovery - is a discovery protocol based on IP multicast for enabling services to 

be discovered automatically. Discovery introduces three different endpoint types: 

target service, client and discovery proxy. Target services are Web services offering 

themselves to the network. Clients may search for target services and discover them 

dynamically. Discovery proxy is an endpoint enabling discovery in spanned networks 

since simple discovery is limited to a multicast group and hence to local managed 

networks only. WS-Discovery defines four operations or messages to discover target 

services in a network. To explicitly discover target services in a network a client can 

use the Probe operation, send as multicast message. Matching target services will 

answer with the Probe Matches operation send as UDP unicast message to the client. 

To implicitly discover target services a client can listen for Hello and Bye messages. A 

target service announces its availability with these messages send as UDP multicast. 

To resolve logical addresses introduced with the endpoint structure in WS-Addressing 

a client can use the Resolve operation send as UDP multicast message. The 

corresponding target service responds with the Resolve Matches operation send as 

UDP unicast to the client. The discovery proxy does not need any additional 

operations. 

• WS-MetadataExchange / WS-Transfer – is a specification that defines data types and 

operations to retrieve metadata associated with an endpoint. This metadata describes 

what other endpoints need to know to interact with the described endpoint. WS-
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MetadataExchange defines the MetadataSection that divides the metadata into separate 

units of metadata with a dialect specifying its type. Until the latest version of DPWS 

only WSMetadataExchange was used for service and device description and retrieval. 

In the latest DPWS version of February 2006 WS-Transfer is used to retrieve the 

metadata. The structure of the metadata is still as specified in WSMetadataExchange. 

The main difference is that WSMetadataExchange defined operations to retrieve all or 

parts of the metadata of an endpoint, whereas WS-Transfer only can be used to 

retrieve all metadata of an endpoint. We expect that WS-Transfer and WS-

MetadataExchange will be merged closer in future releases. 

• WS-Eventing – defines a protocol for managing subscriptions for a Web services 

based eventing mechanism. This protocol defines three endpoints: subscriber, event 

source and subscription manager. Subscribers request subscriptions on behalf of event 

sinks to receive events from event sources. Subscription requests contain an event 

delivery mode and event filter mechanism to negotiate event delivery mechanisms and 

event filter mechanism. Subscription managers are responsible of holding 

subscriptions of event sources. 

 

The DPWS terminology is represented in figure 3.1. 
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Figure 3.1 – DPWS terminology 

 

Other used Web Services standards are XML, WSDL, XML Schema and MTOM. The 

DPWS protocol stack is shown in figure 3.2. 

 

 

Figure 3.2 – DPWS protocol stack 
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3.5 – DPWS architecture principles 

As said before, the DPWS specification defines an architecture in which devices can 

run two different types of services: hosting services and hosted services. 

DPWS is built on top of the SOAP 1.2 standard, and relies on additional Web Services 

specifications to further constrain the SOAP messaging model. 

The figure 3.3 taken from DPWS User Guide v2.9 shows the general architecture of a 

device compliant with DPWS. 

 

 

Figure 3.3 – architecture of a device compliant with DPWS 

 
In figure 3.3 can be seen: 

• User-defined services and events are shown in yellow. They are provided as user-

written code and generated code in the DPWS toolkit; 

• Predefined services are shown in grey. They are provided as run-time libraries in the 

DPWS toolkit; 
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• The two network interfaces are shown: the primary interface uses the standard SOAP 

1.2 over HTTP binding to exchange regular SOAP messages, while the discovery 

interface uses UDP and a multicast address to broadcast and listen to the predefined 

discovery messages. Both interfaces rely on a standard IP stack. 

3.6 – DPWS advantages and disadvantages 

DPWS strong points are the reliance on web services which developers highly accept, 

as well as it is platform and language independent. The number of functionalities that DPWS 

can offer at the time this thesis was written is vastly superior to any other similar technology. 

Devices implemented using DPWS can provide services to any application on the network. 

Thus, developers only must focus on the application itself. 

The DPWS technology is a web-service implementation, so it is totally compatible 

with the web-services architecture. Inheriting the same concepts, it is very easy and fast to 

add, replace or change components. Web-services provide high-level mechanisms that 

abstract away the low-level effort to build a distributed architecture. The capability of making 

a component itself independent, as its dependency from any other is non-existent, makes the 

DPWS a very propitious technology for implementing in manufacturing industrial devices. 

Also, DPWS have many practical advantages for developers, users and sellers: 

• Lower production costs; 

• Common solution to the industry; 

• Web-service extension to devices; 

• Strong security mechanisms embedded; 

• Known internet patterns; 

• Open-platform solution; 

• Common development tools; 
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• Easier configuration 

• Easier installation; 

• Easier connection; 

• Less product return; 

• Richer user experiences; 

• Better product differentiation; 

• New automation opportunities; 

• Lower support costs; 

• More product confidence; 

• Easy product upgrade. 

 

On the other side, embedded systems normally are short on memory, not having 

processing power to run some technologies used in DPWS as a Hypertext Transfer Protocol 

(HTTP) web server, Simple Object Access Protocol (SOAP) engine, and a XML parser. All 

this requires more RAM usage, and furthermore, increases bandwidth and operating costs. 

To allow SOAP implementation, the DPWS specifies limited constraints 

functionalities, allowing it to be implemented on small devices to restrict traffic. The protocol 

itself allows a large variety of options, but it also brings some complexity in the design of a 

concrete framework. 

The DPWS services’ interface description is made by the Web Services Description 

Language (WSDL). The current version of this technology (WSDL 1.1) is lacking 

information about more advanced interaction patterns. Therefore, additional methods are 

required for these purposes. However, the newer version WSDL 2.0 could offer better support 

and more realistic association with the service concept. 
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3.7 – DPWS – old and current implementations and application 

areas 

DPWS is an emerging technology used in many implementations and research projects. There 

are open toolkits enabling the development of service-oriented software components in 

DPWS as are SoA for Devices (SOA4D) and Web Services for Devices (WS4D). In the 

manufacturing industry there are many applications using DPWS, such as methods for 

developing efficient diagnosis mechanisms in devices [18]. 

In the content of this thesis, the obvious example is industrial automation. In this field, 

communication between devices is automatic, and the responsible people just either must pay 

attention to any warning given by some supervisor device, or give new orders to a specific 

device. This is a complete intelligent supervision and communication system, as it uses 

informative communication, intelligent control, supervising, etc 

There are many examples of DPWS applications, being one of the most noticed the 

Windows Rally, a set of technologies from Microsoft that integrates DPWS in a stack side-

by-side with other new web-based technologies. This turns many personal computers in the 

world compatible with this technology. 

In industry, there are some applications using DPWS, as methods for developing 

diagnosis mechanisms in devices. 

Another big application area is web-services it selves. For example, buying a flight 

ticket, the technology can be used as a client-to-machine connection, with the client at home 

buying to the air company server, or as a machine-to-machine connection, as the company 

server asks a printer to print the new (material) ticket, for example, or, more complex, alerts 

the police office for a just used stolen credit card. 

Companies are also using DPWS to create products that allow a new superior degree 

in smart homes, controlling the interaction between the human, the house and the compatible 
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devices on it. Infinity of possibilities is present here, as it can be used for controlling the 

house devices, it can be used for security, or even to control the devices remotely, by cell 

phone for example. Asking the microwave to start warming the food five minutes before 

arrive home is a very attractive idea. 

In this field, a new product is revealing itself very fast. It is called Life|ware™. This 

next-generation home technology was highlighted by an automation system that used DPWS 

to communicate with a lighting system, audio distribution system, security system, motorized 

shades, security cameras, thermostats, washers and dryers, and a motorized television mount. 

As it says on its website (www.life-ware.com): 

 

“Life|ware™ is a simple but sophisticated software program that works with Windows® 

Media Center to give you one-touch control of your home's climate, lighting, security, audio 

and entertainment systems. So you can worry less and do more.” 

 

For manufacturers, the first step towards DPWS adoption is the creation of a small 

device bridge between their native proprietary code and Web Services. At least 117 

automation products from 37 different vendors currently support DPWS this way. At the 

International Security Controls (ISC) trade show, a major security company demonstrated a 

security system that supported DPWS, while the Kitchen and Bath Show (K/BIS) saw two 

major appliance manufacturers demonstrating washers and dryers that communicated using 

DPWS.  
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4.1 – SDPWS: the autonomous component community 

An approach to an autonomous device was realized, using a DPWS simplification and 

enhancement. The temporary name of SDPWS (Simple DPWS) was given at its time, and 

from now on it will be used in this document. It is represented in figure 4.1. 
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Figure 4.1 – Simple DPWS architecture 

 

The main objective of this approach is to implement, with DPWS, a number of 

features in a device in a way that the device can work on its own, serving the others and using 

their services, be capable of interacting in as many ways as needed (I/O, Ethernet, User 

Interface, etc), and be capable of actualize its services in real-time, without shut down. 

To reach this goal, some features are needed and were engineered, as seen below: 

• The device must be able to run a DPWS client and a DPWS server, in order to 

offer services and use services; 

• The device must be divided in different modules, each one independent from the 

others, and with its own functionality (for example, a I/O module that cares of 

information passed to and by an I/O physical port, or a communication module, 

that uses the DPWS to communicate with the other devices); 

• It is needed a special module that will handle the internal communication of the 

device, i.e., the communication between modules; 

• It must be possible to update the services of the device in real-time, in order to add 

or remove services without recompiling code or shutdown any device, this means, 

the update itself must work like a service that will be sent by the programmers. 
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The architecture designed is made of several service-oriented components, with 

different roles. The interaction is implemented by providing and requesting services. Each 

component is made of a framework with several functional modules. 

Some modules are essential, like the communication module, which controls all the 

communication between devices and, therefore, is responsible for using DPWS, and the 

module responsible for the other modules’ communication, the Event Router-Scheduler 

(ERS), which will be explained exhaustively in the coming chapters. The other modules can 

be user-defined and adapted to the components function. For example, if the component is 

controlling an automation device, it will require the interface module to access the I/O’s, and 

probably will need some form of control module. 

4.2 – SDPWS: the communication module 

Modular programming concepts are applied in the communication module providing a 

higher level of abstraction and making de DPWS program interaction easier to understand. It 

has many functionalities of the DPWS toolkit and has a list of WSDL structures. Services can 

be added and removed from the list, and new services are analyzed to determine the presence 

of existing parameter and consequent reuse, minimizing the required memory. 

A dynamic stub and skeleton were implemented. This functionality is called Dynamic 

DPWS and will be exhaustively explained in chapter 6. This feature allows to dynamically 

add and remove services to the component, in real-time, and is made with C structures. 

This ability promotes the reuse of the DPWS component in other programs and 

increases greatly the agility and life cycle of the components. Time saving and speeding up 

development are the main advantages. 

The communication module offers a very useful set of technical functionalities. On the 

server side, it has the ability to support multiple devices (hosting devices), each one with one 

or more hosted services. The module uses the WS-Addressing protocol for coordination of 
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service operations and device identification. On the client side, it offers an easy way to 

implement and perform lookups, retrieve metadata from hosted services and devices, and 

subscribe/unsubscribe services to the user. 

As will be explained latter, the Event Router-Scheduler has a fundamental role 

offering a way of interacting between modules synchronous and asynchronously, making it 

not only extremely efficient, but also very easier to understand how to solve the problem of 

shared data between modules. 

4.3 – SDPWS: enhanced interaction patterns 

The new methodology resolves some of the previously mentioned DPWS limitations 

in terms of advanced interaction patterns. The devices can be both clients and servers, 

providing and requesting services, and are implemented as part of the distributed control 

approach at the shop-floor level in automation and production systems. 

All this process is made by the Communication module, generating the necessary 

events, through the Event Router-Scheduler (ERS) module, reaching the target functional 

modules. In the communication module, it is possible to create many ports, for the same 

service, and bound it with a port type. A new received message is automatically de-serialized 

into the C structures implemented by the ERS, and the entry port allows the developer to 

know which port type was intended. 

Traditionally, in service-oriented systems, a service is a set of ports, being each one an 

instance of a port type. A port type defines a set of interaction operations and the 

corresponding message transfers between the service provider and the service requesters. In 

the proposed methodology, a service involves several phases of interaction with its requesters, 

which must follow specific protocols associated to the instances of the port types (ports). 

The access to a service is done performing the following phases: 

• Discovery phase –  which is the ability to discover services; 
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• Negotiation phase –  for quality of service (QoS) discussion or different priorities, for 

example; 

• Operational phase – which is the service itself, with both mains ports and logical ports 

being used here. Before the use of a service, the client must search a one that 

completely fulfils its needs. After obtaining the interface, it can contact the provider, 

and then, if agreed, it uses the service as negotiated; 

• Termination phase – is the disconnect phase, when the service is not needed anymore. 

Consists on a finish message followed by a finish reply. 

 

The figure 4.2 shows a sequence diagram of the process to interact with services using 

the four phases. Besides that, the proposed methodology has some additional features. First, 

ports can be created dynamically, and a non-existent operational port can be created for a 

specific situation. Second, it is possible to provide similar ports for the same functionality, but 

instantiated from different port types. 

 

 

Figure 4.2 – Service Accessing Interaction Sequence 
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The interaction itself is separated into the four phases also. To each phase corresponds 

one or more port types with the associated access protocol that defines the interaction rules. 

The access of the requester is done to the instances of the port types. In generally, discovery 

phase can be associated to the facilities provided of DPWS and thus does not need special 

treatment for simple discovery processes. 

In service-oriented systems the interactions are made of requesting existing services 

by a client that want to use them and obviously coordinating the process. One approach is to 

use the WS-Discovery protocol that defines a dynamic multicast discovery mechanism 

without using any intermediate entity. Before the use of the service, the requester must search 

for a specific service that fulfills its needs. After obtaining the interface (which describes the 

service), it can contact the provider. 

Obviously it must first make a proposal to use the service. If not accepted, it may 

proceed to a more complex negotiation with the provider. After the operational phase, the 

termination phase may setup processes to conclude the usage of a service. 

The logical ports of the operational phases can be directly related to the physical ports 

of the devices. 

The interaction method may be complex. Semantic-rich descriptions allow using 

machine reasoning to perform automatic matchmaking of services using logical inference. 

This allows the use of services that did not exist or were not known when the client was 

programmed, as the services are selected dynamically. 
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5.1 – SDPWS: The Event Router-Scheduler module 

Automation and production systems are evolving in the direction of autonomous and 

collaborative components, approaching the idea of an ecosystem. Each habitant of this system 

is responsible for different and concurrent activities and thus requires an adapted anatomy that 

is balanced for the several requirements. 

The Event Router-Scheduler introduces an anatomical-like way for implementation of 

functional and reusable modules which constitute service-oriented automation components. 
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Paying attention to the internal software structure of the automation device, the ERS is the 

mechanism that binds the several modules together. The resulting software automation 

components are customized for different tasks due to the inclusion and management of the 

specialized functional modules, and provide the ability to operate in a service-oriented 

automation and production environment. 

 

 

Figure 5.1 – The Event Router-Scheduler in the application structure 

 

The ERS can be compared to the nervous system of living beings in sense of carrying 

impulses from and to different organs, and so, maintaining the dynamic information flow 

(figure 5.1). Intelligent behavior can be reached when these “nerves” are linked to the “brain”, 

that provides static control based on workflow processes and also autonomy to respond to 

unexpected events, undocumented situations and internal objectives. Being inserted in a 
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service-oriented environment, interaction with other components is achieved only by 

providing and requesting services o reach local and global objectives. 

5.2 – Event Router-Scheduler: Internal Anatomy of components 

Each Service-oriented Component may be implemented independently and differently. 

The only requirement is that it should share its functions as services and obey to the protocols 

of communication and processes. To be able to construct and deploy these components in a 

simple but functional way, an anatomical-like framework was specified. 

A general component is structured in an anatomical form comprising several “organs” 

(functional modules) that are responsible for individual tasks, as illustrated in Fig. 5.2: Logic 

Controller, Decision and Exception Handler, Communication, Device Interface and Event 

Router-Scheduler. These modules are included in the control component according to its 

needs and possibly implemented using different technologies. It is also possible to develop 

and integrate other modules for diverse functionalities, if they respect the rules provided by 

the framework for the integration (task of the Event Router-Scheduler). 

The Event-Router-Scheduler and Communication modules are the kernel modules to 

develop a Service-oriented Component based on the proposed anatomy. They are responsible, 

respectively, for the main framework of the component (event-based inter-module 

communication and integration) and external communication with other components (service-

oriented inter-component communication). Other modules may be added to the structure 

according to the component’s requirements. 
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Figure 5.2 – Anatomical-like structures component 

 

In more detail, the Communication module provides the necessary functions to expose 

the services from the associated component and request services from other components. 

Other functions include, among others, discovery and negotiation mechanisms. The remaining 

modules of the component may use the Communication module to access these functions 

through impulses (events) provided by the Event Router-Scheduler module. 

As an example, a conveyor may provide the Transfer service to handle the movement 

of pallets, which is controlled by the Logic Controller module and accessed by the Device 

Interface module. The Transfer service may be used by the other components, but the 

component itself can also call external services when needed (e.g. to be connected to other 

conveyor it requests the Transfer service of that conveyor) [8]. A suitable technological 

solution to implement the service-oriented communication module is to use Web technology, 

and most specifically Web services. At its core, Web services technology is quite simple and 

it is designed to move XML (eXtended Markup Language) documents between service 
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processes using standard Internet protocols. This simplicity helps Web services to achieve the 

primary goal of interoperability and also means that it is necessary to add other technologies 

to build complex distributed applications. 

The remaining modules are described briefly in Figure 5.2. The goal to include the 

other modules is to provide an example of a Service-oriented Automation Component that is 

mediator of some physical equipment with control capabilities. For example, the resulting 

component of Figure 5.2 represents a smart controller of a conveyor device, by providing 

several features such as control and access over the physical device, ability to decide in 

unexpected and undocumented situations and also the possibility of service-oriented 

communication to other components. Other example is a service-oriented PLC-like controller, 

which may interpret control models and give the necessary orders to other components via the 

invocation of the provided services by them. In this case, it is not necessary to have the 

Device Interface module, since it does not command directly the devices. 

Finally, the “nervous system” of the anatomy represented in Fig. 5.2 is managed by 

the Event Router-Scheduler. 

5.3 – Event Router-Scheduler: the module 

Components and devices that implement several of the expressed aspects of service-

orientation require a consistent anatomy to deal with the different function modules 

(“organs”) in order to fulfill the necessary requirement. Other problems may arise from the 

asynchronously operating modules, possible data inconsistencies and concurrent 

processes/threads. For this purpose, it is proposed a mechanism to provide an “impulse” 

(event) passing and scheduling feature to guide the impulses to different modules, thus 

permitting the synchronized communication between them. The heart of the component is the 

Event Router-Scheduler (ERS) module. 
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During the design phase it was clear that the ERS should meet the following 

objectives: 

• Common event routing/scheduling mechanism for the communication and integration 

of modules; 

•  Provide some transparent functions for creating and managing modules; 

•  Suitable for software application that are deployed both in traditional PC and 

embedded systems; 

•  High performance, especially in critical situations and targeting real-time 

applications; 

•  Use of C language, aiming to balance between performance, portability and features; 

•  Thread safety and management of data concurrency; 

•  Easy to use by developers, in sense of building modules and how events are 

processed. 

 

The function of the ERS is comparable in some parameters to the nervous system of 

living beings, including humans. H. Gray wrote in his book “Gray's Anatomy of the Human 

Body” [9]: 

“The Nervous System is the most complicated and highly organized of the various systems 

which make up the human body. It is the mechanism concerned with the correlation and 

integration of various bodily processes and the reactions and adjustments of the organism to 

its environment.” 

In the case of Service-oriented Components, the “environment” is captured and 

manipulated by specific modules (e.g. Communication and Device Interface), but the natural 

equilibrium with impulses (events) of the several modules and their integration is reached 

with the help of the ERS. 
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Figure 5.3 shows the generic conceptual structure of the Event Router-Scheduler. The 

feature groups are separated in blocks that correspond to the Scheduling and Routing of 

Events, Hardware/Software Abstraction, Threading and Data Consistency and 

Template/Interface for Event-based Modules. 

 

 

Figure 5.3 – the Event Router-Scheduler generic concept 

 

The main feature is to provide event-based communication between functional 

modules and the corresponding routing and scheduling of events (see Scheduling and Routing 

of Events block of Fig. 5.3). From the practical point of view, the component’s internal 

impulses (events) between its functional modules are integrally managed by the ERS. The 

ERS allows synchronous and asynchronous event calling between any modules (which is 

critical in real-time applications), and offers several additional procedures to realize more 

complex operations, like events generated by other events and time-triggered events. In the 

most basic form, a sender module must only emit an event to a specific destination (other 

module) and the ERS routes it to the destination. There are also other options for sending and 

processing events, such as events with reply and multicast events to several destination 

modules (see Fig. 5.4). 
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Figure 5.4 – ERS’ many possible operations 

 

An event is a structure with all the information a module needs to know regarding 

various possible situations. Besides the standard information as the intended action and the 

parameters from who the event came, it can ask for a reply, for an information forwarding, 

can have a fault message’s receiver, and the event’s receiver can check if it is a reply. Also, an 

event sent more than once, by error, is detectable. 

The ERS uses lists as a way of transmitting and queuing events between the modules, 

so the number of events waiting to be processed is only limited by the available memory. The 

ERS uses some techniques to avoid memory fragmentation, because the creation and 

elimination of new data is a very frequent operation in the modules, as the world is constantly 

changing. In some cases when the number of events is high, the ERS offers the possibility to 

give different priorities to the events. Like this, an event sent to a certain module will always 

pass by all the waiting events of that module which have lower priority than the sent one. 

Being capable of both synchronous and asynchronous operations, the asynchronous 

ones are managed using threads. The synchronous operations can be either freezing or non-
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freezing for the receiver. For example, on event reading the operation can be a module-freezer 

or not. In case of the freezing mode, the module freezes until any event arrives for it. After 

that, the module continues its normal proceeding, as shown in Fig. 5.5(a). This is a very low 

CPU resource-taking procedure, useful for embedded devices. However, it is not useful for 

real-time multi-task modules, as this kind of module should not freeze. On the other hand, the 

non-freezing event reading always receives an event. However, it can be an invalid event. An 

invalid event means that there were no events for the module, so it can continue processing its 

other tasks. Obviously, if it is a valid event, the module should process it. This is represented 

in Fig. 5.5(b). 

Asynchronous event triggering is also possible. Callbacks are used to perform this 

type of operation, as it must occur when it is called. However, the event is not triggered 

immediately, because of data-protecting, and it should only occur when the module activates 

an authorization (mutex) to allow callbacks, which will possibly change the module’s data. 

Each module has its mutex for this matter, and developers who want to enable asynchronous 

event handling should be very careful with this protection. 

 

 

Figure 5.5 – (a) ERS freezing event get and (b) ERS non-freezing event get operations 
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The remaining blocks of Fig. 5.3 are responsible for adjacent tasks of the Scheduling 

and Routing of Events block, specifically to its and other modules’ management. The 

Hardware/Software Abstraction provides some functions transparent to the system 

architecture that can be accessed by all modules. Since the ERS and other modules are in a 

multi-functional and concurrent environment, a special block of the ERS, namely the 

Threading and Data Consistency block, introduces simple thread manipulation and data 

protection (such as mutex). 

Finally, the Template/Interface for Event-based Modules block provides the basis for 

creating functional modules and associates them to the ERS. Each module can be 

programmed independently. This means that it is possible to remove, replace, upgrade or add 

new modules. This makes a program using the ERS very flexible. The module ID is the 

module’s identification and it is unique for each module. This variable is what the other 

modules need to know to send an event to a specific module. It is comparable to the code that 

the nerves carry to reach some organ. However, it is also possible to search a module by its 

type like “controller” or “user interface”, as this way is much more practical for a developer to 

reach a module without many information. 

5.4 – Event Router-Scheduler – implementation and operation 

A prototype implementation has been done to test the proposed framework, integrally 

coded using the C programming language and compatible with Windows and GNU/Linux 

operating systems (targeting also others, such as VxWorks). Some implementation details are 

given next. 

The functions provided by the framework to develop and operate components are 

explained with an example component representing a mechanical arm (articulated robot to 

move small objects) made of three modules (besides the ERS), represented in Fig. 5.6. The 
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modules correspond to a subset of the ones in Fig. 5.2 (excluding the Decision and Exception 

Handler module) that are briefly commented in chapter 5.2. The major difference is that it is 

connected to the mechanical arm via the Device Interface module, instead of the conveyor of 

Fig. 5.2. 

 

 

Figure 5.6 – Mechanical arm controller example using ERS 

 

In terms of data structures, the ERS includes several structure types for storing and 

relating different information about modules, events and other aspects. The Module Structure, 

which represents a module in the program, identifies its module by a unique ID. It also 

provides storage for local information such as the module’s incoming events list, which is 

where the module is going to get the events sent by the other modules and a pointer to the 

module’s callback implemented function, which is triggered by new events when the 

asynchronous mode is activated. The Event Structure has all the information to handle an 

event: action name, parameters, who is sending/sent it (module ID), and some variables for 

reply handling, an ID of the event and ID of the reply. Finally, the Database Structure of the 

ERS is where pointers to all modules are allocated. 

First the modules must be created. Thus, the respective function shall be called, and 

each module must have an ID and type, as seen below: 
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module_create(1,DEVICE_INTERFACE); 

module_create(2,LOGIC_CONTROLLER); 

module_create(3,COMMUNICATION); 

 

Sending and receiving events is very straightforward. For example, to send an event 

from module 1 to module 2, the developer must create an event, put the sender, the action and 

the parameters, and then send it with low or high priority, to the destiny, using the 

event_send() function. To read an event, presuming that callbacks are disabled, module 2 

must call the synchronous event handle by either freezing while there are not events, or not 

freezing. This variable is a parameter when calling the event-reading function, as it can be 

something like event_get(2, FREEZE) or event_get(2, NO_FREEZE).  

The not-freezing way of getting an event always returns an event, but it may be an 

invalid event. On this case, valid events always have valid senders, i.e., the from variable, 

which corresponds to the sender ID, is always bigger than zero. So, invalid events have 

negative sender IDs. If the module 2’s callback is ON instead, and if the callback mutex 

allows it, the new event would immediately trigger the callback, so it would run the function 

pointed on the module 2’s structure. 

More flexible operations can be done with multicasting and reply to events. In case of 

multicasting, there is a special function to emit an event to several destination modules: 

event_send_multicast().  One of the parameters is a list of destination modules that 

are intended to receive the event. Some events may expect replies and this can be done in two 

ways: asynchronously (nonfreezing) using the event_send() function with the attribute 

reply_id and synchronously (freezing) using the special event_send_with_reply() 

function. 

For the example, the modules of the mechanical arm component have simple 

functionalities. The Device Interface provides the access to the mechanical arm in sense of 
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calling the programs of pick & place to move the objects from one place to another. Its 

Communication module uses a service-oriented infrastructure, based on a DPWS 

implementation, namely SoA for Devices (SOA4D). Through the communication module, the 

component provides one service, Transfer, to be called externally in case objects are available 

to be transported. Finally, the Process Controller module is responsible for coordinating the 

components activity, generally synchronizing service calls with the pick & place program 

execution of mechanical arm. 

A simple algorithm is presented in Fig. 5.6 inside the Logic Controller module. Each 

time a function is required by one module to another one, events are sent through the ERS. In 

case of the algorithm of Fig. 5.6, an instance of it is executed when the Transfer service is 

requested and then the Communication module of the component emits an event to the Logic 

Controller. It is assumed that the Transfer service is called when an object is ready to be 

moved. From the other hand, the operation of pick & place program can only be started if the 

mechanical arm is not occupied and if the destination where to place the object is free. For the 

sake of simplification, these checking functions are represented in the algorithm but their 

behavior is absent in Fig. 5.6., which would involve sending/receiving events to/from the 

Device Interface and possible also an entity representing the destination place. On successful 

conclusion of the pick & place program of then Device Interface, an event is sent back to the 

Logic Controller, and by its turn to the Communication module that then notifies the external 

component and thus concludes the service usage. 
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Chapter 6 

 

The Dynamic Service 
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6.1 – DPWS service’s static creation 

 DPWS allows implementing web-services in electronic devices. These services are 

generated using the Web-Service Description Language (WSDL) file. 

The WSDL is an XML-based language that provides a model for describing web-

services. It defines services as collections of network endpoints or ports. The abstract 

definition of ports and messages are separated from their concrete use or instance, allowing 
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the reuse of these definitions. A port is defined by associating a network address with a 

reusable binding, and one or more ports define a service. Messages are abstract descriptions 

of the data being exchanged, and port types are abstract groups of supported operations. The 

concrete protocol and data format specifications for a particular port type constitutes a 

reusable binding, where the operations and messages are then bound to a concrete network 

protocol and message format. In this way, WSDL describes the public interface to the web 

service. 

The WSDL object hierarchy can be seen in figure 6.1. Here is the explanation of each 

object: 

• Element: consists of a unique name, and data type. The purpose of a WSDL element is 

to describe the data and define the tag which delimits the data sent in the message 

parameters.  

• Message: corresponds to an operation. The message contains the information needed 

to perform the operation. The message name attribute provides a unique name among 

all messages. The part name attribute provides a unique name among all the parts of 

the enclosing message.  

• Operation: can be compared to a method or function call in a traditional programming 

language. Here the soap actions are defined and the way the message is encoded for 

example, "literal." 

• PortType: defines a web service, the operations that can be performed, and the 

messages that are used to perform the operation. 

• Binding: Specifies the port type. The binding section also defines the operations. 

• Port: The port does nothing more than define the address or connection point to a web 

service. This typically is a represented by a simple http url string. 

• Service: can be thought of as a container for a set of system functions that have been 

exposed to the web based protocols. 
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Figure 6.1 – WSDL 1.1 object hierarchy 

 

The approach used by the DPWS toolkit is the same used by the gSOAP toolkit. It 

relies heavily on automatic code generation to map back and forth SOAP envelopes and C 

structures. Relatively to the service definition, which involves operations, data types used as 

parameters, and return values to those operations, the DPWS toolkit generates the required 

code to provide transparent access to the remote operations from a client. The only pieces left 

to implement by the developer are the implementation of the operations in the server and the 

Less 
specific 

More 
specific 
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implementation of the client that invokes the remote operations, with the respective 

arguments. The server then must process the new received value. 

The proxy, skeleton, and marshalling and de-marshalling (transformation between C 

structures and SOAP-XML messages) code is completely generated by the toolkit. The 

marshalling/un-marshalling code is the same in the client and the server. 

There are two types of messages. In one-way messages, only the request message is 

transmitted. On request/reply messages, SOAP responses are returned. 

gSOAP provides a code generator that transforms a WSDL document into an 

annotated header file ready for processing by the gSOAP compiler. The figure 6.2 

summarizes the various artifacts involved in Web service development, using gSOAP. 

. 

 

Figure 6.2 – gSOAP’s artifacts involved in web-service development 

 

The current DPWS toolkit extends the above code generation principles to take into 

account the WS-Addressing specification. This specification states that a SOAP response and 

fault message may be redirected at user choice to any endpoint, and not necessarily to the 
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origin of the request. This means that the standard, synchronous approach, which uses the 

HTTP response to carry the response or fault message associated to a SOAP request sent 

through an HTTP request, is not always applicable. So, the DPWS toolkit supports 

asynchronous transfer of response or fault messages to a specified endpoint. Such an endpoint 

should be ready to receive asynchronously SOAP responses and fault messages. The DPWS 

toolkit generates header and C files implementing the skeletons for the handlers, following the 

pattern used by the gSOAP service skeleton generation. A similar approach is used for 

handling events: endpoints that subscribe to events should be set up as message servers, and 

use the event handling skeletons generated by the DPWS toolkit to process received events. 

6.2 – Dynamic service: specifications 

As explained, the DPWS toolkit generates compact code, creating a light weight 

resource-constraint program structure with a high performance predictive parser for each 

service, allowing an efficient marshaling and un-marshaling of data. However it offers no 

capability of interacting with new services that appear at run-time, making it time costly and 

removing the ability to quickly react to changes since a new code has to be generated and 

compiled on the client stub to integrate the unprecedented service. For these reasons there was 

a necessity to do some enhancements over the DPWS toolkit to have a dynamic stub and 

skeleton that can invoke and receive any kind of message. 

This new feature must accomplish some objectives, whose will be explained next. 

First, the most obvious, it must be able to read a new service at run-time. This service 

will be written in a WSDL file and, somehow, passed to the device. So, the service-reading 

must be a service itself that will receive a WSDL file. So, this service must be built-in. 

Second, it must transform the WSDL file into a service’s code. This transformation 

will be made by a de-serialize algorithm implemented on the device. The final result in 

memory should be identical to the static DPWS. Notice that the WSDL must be validated 
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before loaded. Even if an error-catch algorithm can be implemented, it should be avoided, as 

the resource-taking from the device, principally the memory, should be minimal, and this kind 

of operation takes memory and processing time. However, the device must be capable of 

discard erroneous services, and, very important, warn the user about this service discarding 

decision, to avoid users to think the service is online and running. 

Third, the device must inform the other devices that a new service is available. DPWS 

informs about its services with the HELLO messages, when it starts running. In this case, the 

service is already running so it needs a procedure to send an HELLO-like message with, at 

least, the new service. 

Fourth, the device must be able to create, send, read and process a SOAP envelope, 

using its dynamic structures, just like it does in the original static implementation. For this 

purpose, there must be implemented a SOAP envelope serialize/de-serialize algorithm. Again, 

exists the possibility of, somehow, the received envelope from the communication module is 

containing an error, so this de-serialize algorithm should be capable of send back a message 

of non-existent service or any other error that can appear. 

Fifth, for maintenance purposes, it should be possible to import/export the actual state 

of the memory that represents the service. This means that the pairs <element, value>  

should be listed and then sent in to some debug application. At extreme debug conditions, it 

should be possible to send all the structure, as it would be not a difficult or resource-taking 

procedure, but it looks like unnecessary, as if there were any error in the structure, it would 

happen on the structure creation. This kind of error should be catch at programming time. 

6.3 – Dynamic Service: implementation 

According to the previous specifications, a dynamic stub and skeleton were 

implemented. Not all of them, but in the future it will be. At the time this thesis was written, 

the implemented specifications are explained next. 
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Using C structures, a replica of all existent WSDL objects were created. This means 

that any and all objects that came in a WSDL file can be passed to the device memory, more 

concretely to C structures. This is illustrated in figure 6.3.  

 

 

Figure 6.3 – WSDL to C structures transformation 

 

This copying operation always respects the WSDL architecture, as the creating 

procedures it selves do not allow invalid operations. This respect of the service architecture 

can be used as a WSDL error-catcher, because it cannot implement objects out of order. 

Figure 6.4 illustrates this situation. 
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Figure 6.4 – invalid WSDL cannot be implemented 

 

To use the dynamic stub, the client creates an URL-like path (URL – Uniform 

Resource Locator) that includes the service where it refers to, from Service down to Element. 

Also, it must send the arguments values of the Element he wants to change. This path 

corresponds to the Element position in the architecture which is seen in figure 6.1. This 

topology allows pointing to any element of the structure in memory, and this path allows any 

device with the same structure in memory to reach a specific object. 

The programmer, however, doesn’t need to know the entire path to the variable he 

wants to change. The path serialization and de-serialization is done automatically. If it is 

needed to change the value of an Element, the programmer only must call the proper 

procedure referring only that Element. That procedure is capable of getting the rest of the 

family of objects to the top object. So, the path generation is automatic, as the WSDL C 

structure present in the module fills the missing information necessary to construct the SOAP 
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message. This path is needed because the server may have n Elements with the same name. 

So, it is necessary to specify the respective path (Operation, PortType, etc) for the server to 

reach the correct Element. 

That means the dynamic server has a mechanism to always reach the correct Element, 

as the static DPWS can do. The programming over dynamic services is, consequently, as easy 

or difficult to do as the programming over the static services. 

The dynamic skeleton does the opposite process. It receives the SOAP message and 

with the help of the WSDL service in memory, it automatically de-serialized it into the C 

structures, following the received path, with the information of the service, operation id, the 

arguments types and values. Also, it changes the Element value, if it is the case. 

The static DPWS uses functions created at the WSDL-to-.h conversion. For example, 

in the following expression taken from a DPWS sample code, 

 

dpws_send___lit__Switch(&dpws, invokationEPR, 

lit__PowerState__ON) 

 

, the dpws_send___lit__Switch  procedure name, as well as the 

lit__PowerState__ON  command variable, are created when passing from WSDL to the 

application stub. This means that a different name, if not pre-created, is automatically not 

recognized and erroneous for the compiler. 

 The dynamic DPWS uses a generic dpws_send()  function present at the DPWS 

toolkit at the time this thesis was written. This procedure allows sending to an End Point 

Reference (EPR) any message the programmer wants to, and not just a pre-defined message. 

Here, the command argument is not pre-defined, so the Element’s tree path must be 

used here, for the reasons explained above. The send  function, however, builds the SOAP 

envelop automatically, leaving the programmer to define only the message. But, as said 
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before, the path creation is automatic, and the programmer only must specify the Element that 

is going to change, and the respective new value. This way, the SOAP message creation is 

automatic, as is the SOAP envelope, leaving nothing undone. Serializing and de-serializing 

the SOAP envelopes is, consequently, fully automatic, by the dpws_send()  function itself. 

6.4 – Dynamic DPWS: the Simple Service 

The created dynamic DPWS has all the structures needed to recreate the WSDL file 

services. However, some of the WSDL objects are constants or not used relatively to the 

shop-floor work at Schneider-Electric GmbH. For example, the binding object can be either 

RPC-literal or document-literal, but in this case is always document-literal. So, the WSDL 

binding’ respective structure doesn’t need to exist. This permits to avoid a structure that must 

contain pointers to a SOAP binding and the respective Port Type. This avoidance, joint with 

the others, will short significantly the memory usage. 

It was created, then, a shorter service in memory, capable of everything a normal 

(dynamic or not) service can do, but, besides dynamic, it occupies less memory than the 

normal dynamic service. It is called the Simple Service. 

The WSDL objects avoided on this approach are the HTTP interaction specification 

ones, that are the WSDL Bindings, the WSDL Operations and the Service Ports. In the 

dynamic DPWS Structures, however, the WSDL Bindings there are SOAP Bindings. So, this 

makes a total of five objects avoided in the family tree of an Element, which is what is being 

always accessed. 
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Figure 6.5 – DPWS Service vs. (Dynamic) Simple Service 

 

 However, the normal Service points to all of the above mentioned objects. The Service 

must exist, or else the path present is the SOAP message is incomplete, and the receiver 

doesn’t know which Element the message refers to. So, a simpler Service structure was 

created, the Simple Service structure. This service links directly to Port Types in the WSDL 

architecture. In figure 6.5 can be seen the difference between the two architectures that can be 

used in the dynamic service. 

 This simplification permits not only memory and time saving, but also an easier 

comprehension of the service itself by programmers, as the HTTP interaction part of the 

service is static, and so, it remains invisible to the programmers, who only must care about the 

services itselves. 
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6.5 – Dynamic Service: Benefits and Disadvantages 

The capability to dynamically add and remove services in real time promotes the reuse 

of the DPWS component in other programs and increases the agility and life cycle of the 

software. Advantages compared to the code generating techniques from gSOAP are the time 

saving and speeding up the development of projects. These factors represent too much money 

in the industry and should never be ignored. 

The service loading can be done from anywhere. It is not needed to be near the device 

to do it. If the device can be reached by DPWS, everything can be done as a DPWS service 

(figure 6.6).  

The capability of send services from devices to devices (figure 6.6) increases the fast 

upgrading capability of a shop floor, for example, as the new service configuration version 

must only be sent to one machine, and the identical machines automatically can ask for it. 

Besides upgrading, for first installation, the technique can be the same, as only one service 

installation is needed, because the service-sending and service-receiving must be built-in, the 

working device can send the service to all the other identical devices. This capability reminds 

the behavior of a virus, spreading itself, but in this case, with authorization. However, with 

this feature, security measures must be taken, because some bad-intentioned person can load a 

service into a device. 
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Figure 6.6 – service self-spreading to the other identical devices 

 

Reconfiguration of devices when new add-on hardware is available can be done 

quickly and easily. For example, if a new kind of grip is available to a pick-and-place 

operation, it is not needed to reconfigure the whole machine, but only the service 

corresponding to the grip description and working mode must be upgraded. 

 

On the down side, there are some things to point, tough. 

First, the WSDL-to-C structures de-serializer must be adapted to any eventual new 

versions of WSDL. The implemented parser, for example, is compatible with WSDL 1.1. 

However, WSDL 2.0 has a different structure. Consequently, the WSDL-reading service must 

be re-implemented. In this case, it cannot be done as a service, because it is built-in. So, here 

it is obligatory to shut down the devices and re-program its code. 

Second, the memory usage is, obviously, bigger than the static DPWS. Embedded 

memory on devices is short, so is important to try to consume as fewer resources as possible. 

The static DPWS creates fewer structures in memory, knowing its attributes and types from 

the variable declarations. On the dynamic DPWS, for example, an int number  declared in 
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the static DPWS must be a structure variable  with a string called “name” with the 

value “number”, the string variable called “type” with the value “integer”, and the value itself. 

Being a 4-to-1 number of variables in memory to declare just one simple variable, a service 

with a big number of types will accuse this difference in embedded memory. 
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7.1 – Objective 

An SDPWS implementation was made. It was used a sample from the DPWS toolkit, 

the lighting sample. The objective was to use the SDPWS, i.e., the device was both client and 

server, it used the ERS, and the lighting service was re-created using the dynamic service. The 

priority objective of the experiment was the compatibility between the normal DPWS lighting 

service and the new dynamic one. 
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7.2 – SDPWS Implementation 

 As already said, a re-creation of the lighting sample was made. It was used the Simple 

Service approach. The original WSDL service is overall very simple, and that’s why it was 

the chosen service to make the experience. 

 Explaining the service, it has a SimpleType named PowerState which values can be 

either ON or OFF. Then, it has three messages, a SwitchMsg (on-way) that takes one 

argument (ON/OFF), and a two-way Operation, that are in reality two messages, a 

GetStatusReqMsg (request) message and a GetStatusRespMsg (response) message. These are 

used to ask the lamp (server) for its status. 

 Finally, the PortType existent is named SwitchPower. It includes two Operations, one 

called Switch that uses the SwitchMsg, and the other called GetStatus that uses the two other 

messages. 

It was this information that was recreated in the dynamic service. The dynamic service 

was created with the proper implemented procedures but these procedures’ calling were hard-

coded, because the WSDL reader was not implemented at the time the experience was made. 

The creation hard-code is presented next: 

enum1 = enumeration_create(); 
enumeration_add_value(enum1, "ON"); 
enumeration_add_value(enum1, "OFF"); 
rest1 = restriction_create(GEN_ENUMERATION, (void*) enum1); 
type1 = simple_type_create("PowerState", GEN_TOKEN) ; 
simple_type_add_restriction(type1, rest1); 
 

In the sample, we can see the PowerState Type creation. Because this type accepts the 

constant values ON and OFF (so it is an enumeration), that was also created, and is called a 

restriction, as can be seen in figure 6.1. The other elements were created in an analog method. 

An element containing the Simple Type was created: 

element1 = element_create("Power", GEN_ARG_TYPE_SIM PLE, 
(void*)type1); 
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, where type1  is the Simple Type created before. The element is called “Power” because it 

represents the power status of the lamp. 

Next, the message must be created. The following code creates and inserts the 

respective element on message parts, and then creates the messages. 

part1 = message_part_create("PowerOut", element1); 
part2 = message_part_create("PowerIn", element1); 
msg1 = message_create("SwitchMsg"); 
message_add_part(msg1, part1); 
msg2 = message_create("GetStatusReqMsg"); 
msg3 = message_create("GetStatusRespMsg"); 
message_add_part(msg3, part2); 
 

 The first message part represents a message that deliveries the Power Status, i.e., sends 

the Power Output, and so its name is PowerOut. The second one has identical logic. The 

messages have its names and can have parts, depending on if it is needed any element value. 

Notice that the requesting status message (GetStatusReqMsg , msg2) has no message part 

in it, as it is only a request of a value, so it doesn’t need o transport any element. 

Now, the operations which contain the messages must be created: 

op1 = operation_create("Switch", msg1, 0); 
op2 = operation_create("GetStatusReq", msg2, 0); 
op3 = operation_create("Status", 0, msg3); 
op4 = operation_create("GetStatus", msg2, msg3); 

 

There are four operations represented here. The creating function receives three 

arguments: its name, and the respective request and response messages. So, the first operation 

is an one-way operation that asks to switch the power ON or OFF. The second one asks for 

the status of the lamp (server) in a one-way operation, and the third operation is the respective 

server answer, and is also a one-way operation. These operations 2 and 3 can be in only one 

2-way operation. The fourth operation implements it, as it is an operation that waits for the 

server’s answer. 
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The next step in the Simple Service creation is the Port Types creation. Is here that the 

operations will be inserted in. The code presented next shows how it is done. The process is 

very identical to the previous ones. 

port1 = port_type_create("SwitchPower"); 
port_type_add_operation(port1, op1); 
port_type_add_operation(port1, op4); 
 

 As seen, Port Types’ creation is very simple, just giving a name to it and inserting the 

intended operations. 

 Finally, the Simple Service itself is created. This only contains one Port Type, but it 

could be as much as it were needed. Obviously, the Service must have identifiers, that are 

passed between components for them to know which service is being refered. 

service_ns.ns_prefix = "lit"; 
 
service_ns.ns_uri = "http://www.schneider-
electric.com/DPWS/2006/03/Training/Lighting"; 
 
wsdl.target_ns = "http://www.schneider-
electric.com/DPWS/2006/03/Training/Lighting"; 
 
wsdl.location = "http://wsdl.schneider-
electric.com/Lighting.wsdl"; 
 
serv = simple_service_create("http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1", service _ns, wsdl); 
 
simple_service_add_port_type(serv, port1); 
simple_service_add_port_type(serv, port2); 
 

 As seen, the Simple Service has some properties, a name (declared in the Simple 

Service creation procedure simple_service_create ), a namespace prefix and URI 

(Uniform Resource Identifier), and a WSDL namespace and location. These properties are the 

same of the normal Service, and some of them are used in the already explained generated 

path to reach a specific element, like the service name. Also, the WSDL-related ones exist 
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only for compatibility with the respective static DPWS service, as they are obsolete in 

dynamic-only DPWS services. 

The created Simple Service scheme can be seen in figure 7.1. 

 

Figure 7.1 – Implemented Simple Service 

 

The Event Router-Scheduler was used to the communication between modules. This 

means the module-programming way was used. 

Only two modules were implemented for this example, as it is only to demonstrate it 

by the simplest way. The code of modules’ creation is shown next. 

module = module_create(1, ERS_USER_INTERFACE); 
if(module->id <= 0) { 
  printf("\nError creating an module_type!\n"); 
if(module->id == -1); 
  printf("Could not create a list!\n"); 
if(module->id == -2); 
  printf("Could not create a semaphore!\n"); 
} 
 
module_create(2, ERS_COMMUNICATION); 



 

88 

 

The module creation is very simple. Each module must have two parameters: an ID, 

that is a unique identifier (number), and a type. The existent types must exist in a proper ERS 

array. In this case, the two modules are the User Interface module and the Communication 

module. Notice that the ERS module does not need to be created (obviously), as it is built-in 

the application. Although the creation of modules is done with the calling of the proper 

function module_create , it can be useful to put some extra code like the one seen on the 

creation of the first (User Interface) module, for errors-catching, like memory shortage. 

 

Next is a self-explaining piece of code used. It belongs to the dynamic server, and this 

is specifically the message processing code: 

void handleMsg(){ 
  (…) 
  while(1){ 
    msg=event_get(1,ERS_BLOCK); 
    switch (msg.action) { 
    case DPWS_FAILURE: 
      exit(1); 
    case RECEIVED_DPWS_MSG: 
      controler=(controller_info*)msg.parameters; 
      if (!strcmp(controler->service_name,  "http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1")) 
      { 
   elem1 = controller_get_element(controler,"Power" ); 
   value=(char*)element_get_value(elem1); 
   printf("->light %s device %d \n", value, control er->device_id); 
      } 
      controller_info_free(controler); 
      break; 
    case RECEIVED_RESPONSE_DPWS_MSG: 
      event_send(1,ERS_HI,msg); 
      break; 
       
    } 
  } 
} 

 

As shown, the lamp module is blocked waiting for a message from the communication 

module (msg = event_get(2, ERS_BLOCK) ). The program only advances when a new 

message is available. Then it checks the action intended to be executed: if it is a failure 
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message, it quits the application, if it is a DPWS message from the communication module, it 

checks if it is an existent service ("http://www.schneider-

electric.com/DPWS/2006/03/Training/Light1") and if it is so, retrieves the value intended and 

writes on the console. Finally, if it is a message with an answer event, it forwards the message 

to the User Interface module (module 1), with high-priority (event_send(2, ERS_HI, 

msg) ). 

 

As already told, Graphical User Interface (GUI) module was created to be easy to 

understand the new features. The GUI was started to show the procedures happening with the 

background DPWS services. This implementation was done by Alexandre Rodrigues. 

A normal DPWS lighting server service was put running, alone. So, there were no 

devices. This s shows in figure 7.2, as there are no neighbors. 

 

Figure 7.2 – example GUI with no neighbors detected 

 

Then, some dynamic services were started, and the devices were found, as seen in 

figure 7.3. 
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Figure 7.3 – example GUI with some neighbors detected 

 

The next step was to select one neighbor, with the respective operational buttons 

appearing on the GUI. This is illustrated in figure 7.4. 

 

Figure 7.4 – neighbor selected and respective operating buttons 

 

Finally, a Switch ON order was given, with the virtual lamp turning ON. This is 

illustrated in figure 7.5. 
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Figure 7.5 – light turned ON 

 

 To finalize, next is shown the content of the SOAP envelope passed by the application. 

It can be seen the service name, the port type and the operation, as well as the intended value. 

xmlns:lit="http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1"> 
<SOAP-ENV:Header> 
  <wsa:To> 
    http://169.254.184.154:9876/d2ee4d54-9853-11dc- 8ba9-
001302e329dc 
  </wsa:To> 
  <wsa:Action> 
    http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1/Switch/Po wer 
  </wsa:Action> 
</SOAP-ENV:Header> 
<SOAP-ENV:Body> 
  <wsh:Power Value="ON" /> 
</SOAP-ENV:Body> 
 

The results were very satisfactory, because a most complete possible version of the 

SDPWS idea was successfully implemented. 
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Chapter 8 

Conclusion 

The results of this work show the feasibility of the improved support towards easy 

service creation, that enables novel device networking architectures and holds the promise of 

ease the development, integration, deployment, maintenance and lifecycle management of 

devices and services. Advantages of such a system are clear, services can be added directly 

and components of the device can be changed with minimal reconfiguration and without the 

need of re-deploy components. 

 

The adoption of a “bio-inspired” modular structure makes possible to design and 

develop modules with distinct and independent functions but complementary to each other, 

forming complex, intelligent and social components. The resulted component’s structure may 

help in decreasing the development time and effort in the integration into the system. The 

prototype development shows the feasibility and features of the concept, providing the 

possibility to develop reusable and functional modules and deploy them into service-oriented 

components. Developers just don’t need to care with inter-module synchronization, which is 

one of the main problems of real-time interaction. 

 

The dynamic creation of new services allows machine reconfiguration and reprogram 

without shutting down the system, and eases the maintenance. This strongly increases the 

shop-floor agility. 
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Future Work 

The main challenge is to deploy these techniques in real devices and proof their 

applicability in industrial automation systems. Other requirements are to stabilize the 

implementation and improve the interaction concepts among distributed components to meet 

the objectives of flexible production and automation. 

 

Also, it is needed to enhance both concept and development of the ERS and the 

Dynamic Service.  A special case is to enhance the flexibly in the deployment of components 

and its modules, by developing a specification of metadata for modules that would permit the 

creation of them without worrying about how the information comes from the other modules. 
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