FACULDADE DE
c t CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Departamento de Engenharia Electrotécnica e de
Computadores

Bio-Inspired Anatomy for Autonomous

DPWS-Compliant Automation Components

José Eduardo Bruno de Sousa

Dissertacao apresentada na Faculdade de Ciénéragemharia da Universidade Nova de

Lisboa para obtencéo do grau de Mestre em EngenBeattrotécnica e de Computadores
Orientador: Prof. José Barata

Lisboa
Fevereiro de 2009

Acknowledgements

This work is the last movement of one more stempiong journey on studies.

Among all my university colleagues, there were savhe | had the pleasure of work
with, and within these, there were some who rdatijpped me on this journey. | would like to
thank here all of them, with no special order: Daikodrigues, Rodrigo Guerreiro, Nuno
Garrido, Paulo Bonifacio, Jodo Oliveira, Carlos Bar David Valério, Filipe Lopes, José
Serra and Ricardo Mendes.

However, one special colleague was Alexandre Radsggwho, besides helping me at
university, came with me to Schneider-Electric Gmland helped me with not only my
work, but also programming a higher-level applieatihat uses my work demonstrating it.

Also, | would like to thank all my colleagues ath8eider-Electric GmbH, as they
were my family there, again with no special ordeaniel Cachapa, J. Marco Mendes, Nuno
Barral, Axel Bepperling, Natalyia Popova, Viktohdnhh Pham, Dimitri and Matrtin.

| must also send a very special thanks to all raghers, who, some more, others less,
cared about my work as a student. A particular wadrdratitude goes to my supervisor Prof.
José Barata, whose support and motivation wereafuedtal, as was the opportunity to
realize my training/dissertation at Schneider-ElecembH.

My experience at Schneider-Electric GmbH was natsfide, however, without the
authorization and support of Armando Colombo antf Raubert, who had always time to
oversee the progress of my work despite having basy work schedules.

There is also a group of friends who | must showgratitude, as they always cared
about my studies even being nothing to do witbavid Freitas, Tania Braganca, Ana Lucia,
Diogo Santos, Pedro Dias, Pedro Leiria, Janetetifay$edro Tomaz e Ana Maria.

However, the biggest debt | have goes to my fanilyey always supported me,

principally in the most difficult times, and | knowcan always count on them.

Resumo

Esta dissertacdo aborda o uso da tecnologia DPW ipglementacdo de web-
services em dispositivos, explica as suas limitagéeapresenta uma arquitectura para
ultrapassa-las.

Foi estudada uma arquitectura baseada em DPWS cobjeotivo de tornar um
dispositivo autébnomo, chamada de DPWS Simples. BEstpitectura é baseada na
programacao por modulos, sendo o esqueleto supopad dois modulos obrigatorios, o
modulo de comunicagéo e o Event Router-Scheduler.

O modulo de comunicacao controla a comunicagao garderior, enquanto o ERS é
responsavel pela comunicacéo interna, em tempoeamaé os modulos.

O toolkit do DPWS néo oferece possibilidade derag& com servicos que emergem
em run-time. Foi necessario implementar algumasioniels de modo a permitir ao DPWS ser
mais dinamico. Este novo servico foi chamado Serlipamico.

Foi realizada uma experiéncia fazendo ligacédo enmtreservico do DPWS e 0 mesmo
servico mas criado dinamicamente. Foi usado o elkedgs lampadas, que consiste em ligar
e desligar uma lampada, e obter o seu estado. hherdaice gréafica foi implementada para a
aplicacao ter facil utilizacdo. Os resultados forsatisfatorios, pois a experiéncia funcionou

plenamente.

Abstract

This thesis approaches the use of the DPWS teagytboimplement web-services on
small devices, addresses its limitations, and éxplkan architecture to solve it.

An approach to an autonomous device’s simple archite was realized, using
DPWS, and was called Simple DPWS. The objective teasmplement/simplify some
features in a device in a way that the device carkwn its own. The designed architecture is
based on that each component has its framework aafules, having always at least the
skeleton modules communication and Event Routee@der.

The communication module controls all the commuiocabetween the devices and
the ERS is the responsible for the other moduksd-time communication.

The DPWS toolkit offers no capability of interagiwith run-time-appearing services.
Thus there was a necessity to do enhancementshre/&PWS toolkit to have a dynamic stub
and skeleton. This service was called the dynaemndce.

An experience was done connecting a DPWS toolkihpda service with the
corresponding hand-created dynamic service. Itwsasl the lighting service that consists on
turning a lamp ON or OFF and getting its statusGlAlI was done for the application to be

more user-friendly. The results were satisfactasythe connection worked.

Glossary of Abbreviations

DPWS - Devices Profile for Web Services
ERS - Event Router-Scheduler

GUI — Graphical User Interface

HAVi - Home Audio/Video Interoperability
HTTP - Hypertext Transfer Protocol

I/O - Input/Output

ICT - Information and Communication Technologies
IMS - Intelligent Manufacturing Systems

IP - Internet Protocol

ISC - International Security Controls

JINI - Java Intelligent Network Infrastructure
K/BIS - Kitchen and Bath Show

LAN -Local Area Network

MAS - Multi-Agent Systems

MTOM - Message Transmission Optimization Mechanism

OASIS - Organization for the Advancement of Struetinformation Standards

OSGi - Open Service Gateway Initiative
PC - Personal Computer

PLC - Programmable Logic Controller
QoS - Quality of Service

RMI — Remote Method Invocation

SOA - Service-oriented Architecture
SOA4D - SoA for Devices

SOAP - Simple Object Access Protocol
TCP - Transmission Control Protocol
UDP - User Datagram Protocol

UPNP - Universal Plug And Play

URI — Uniform Resource Identifier

URL — Uniform Resource Locator
WS4D - Web Services for Devices
WSDL - Web Services Description Language

10

XML - eXtended Markup Language

11

Table of Contents

L4 o= o) (= i P 17
1] 0o [0t i o] o PP PP 17
1.1 — ReSearch ProbIemeee e 17
1.2 — TRESIS OULINE ... e e e 21
L@ =T o) (= SR 25
The State of the Artin the INAUSEIY ..o e, 25
2.1 — The iNdUStry iS ChAaNQINGuuueeiime e e e e e e e e e e e e e eeeeeaeeeeeeeennne 25
2.2 — Emerging technologies: SOA and MAS ... 28
2.3 — The SoA technology and SOA fOr EVICES. ceeeeevrrniiiiei i 29

2.4 — SOA and the automation industry - a societyservice-oriented automation

(070 0] 010 aT=T o] 53U UPPPTPPPRTRPPPIN 30
2.5 — EXxisting SOA realizations fOr dEVICES ...uueaiiiiriiiiiiiiiiiiie e 34
L@ g =T o) (= SRR 37
YW1 o] oo g ([T N I=Tex o1 o] [0 o | 1= 37
3.1 — The Device Profile for Web ServiCes ... ureiiiiiiiiiiiiiiieiiiiiee e 38
3.2 — DPWS description and NISTONYouceeenniieeeeeeeeeeeeeeeeeessinnnsnnnnnnnnnn 38
3.3 — DPWS OVEIVIEW ...t meee ettt e s e e e e e e e e e e 39
3.4 — DPWS PrOTOCOL.uuiiiiee e e e ettt s e e e e e e e e e e e e e aaaeeaaeeeeeeeenesnannnes 40
3.5 — DPWS architecture PrinCIPIES ... eeeeeeiemuiiiiaaaaaae e e e e e eeeeeeeeeeeeaeeeeeeeeenennes 44
3.6 — DPWS advantages and diSadvantages .o oeeveieiiiiiiiiieeeee e eeeeeeeeeeeeee e 45

3.7 — DPWS - old and current implementations ampdi@giion areasccccccvvvvvennnnnnn. 47

12

(@4 gF=T o] (=] g PP P PR RUPPPPPRPPPPPTRN 49
SDPWS — to support Autonomous COMPONENTS ..oooeeiiiieiiiiiie e 49
4.1 — SDPWS: the autonomous cOmMpPoNEeNt COMMUILLY .. oeeeeeeeveeeeeiiiiiiniiiaaaeeenes 49
4.2 — SDPWS: the communication MOdUlecccoooiiiiiiiiiiiiii e 51
4.3 — SDPWS: enhanced interacCtion PatternS cocee.oooooiiiiiiiiiiiiiii e 52
(@4 gF=T o] (=] gt TP OURUPPPPPTPPPPPTRIN 55
The Event ROULEr-SCREAUIETcoo i 55
5.1 — SDPWS: The Event Router-Scheduler module..............ooooeiiiiiiiiiiiiiiiiiie, 55
5.2 — Event Router-Scheduler: Internal Anatomyariponentscccceeeeeeeevieeieiiinnes 7.5
5.3 — Event Router-Scheduler: the MOdUIe .. .eeveveiiiiiiiiieeeeiee 59
5.4 — Event Router-Scheduler — implementation greaiioncccccvvvvveiiinnennnn. 64.
(@4 gF=T o] (=] g PR ORPUPPPPPRRPPPRTRIN 69
THE DYNAMIC SEIVICEttt e e e e e e e e e eees 69
6.1 — DPWS Service’s StatiC CreatiONccceeeeeieririiiiiiiiaaaae e e e e e e e eeeeeeeeeeieeeeeeeeeeeennnne 69
6.2 — Dynamic service: SPECIfICAtIONS.......cooiiiiiiiiiiiiiie e 73
6.3 — Dynamic Service: Implementation.......ccccc..uueeeiiiiiii e 74
6.4 — Dynamic DPWS: the SIMple SerIVICE......ucar i 78
6.5 — Dynamic Service: Benefits and Disadvantages...............uuuvveiiiiiiiineeeeeeeeeenen. 80
(@4 gF=T o] (=] o AR PO U RUPPPPPRRPPPPTRIN 83
SDPWS — CASE STUAY ...t eeeeeeeee ettt a e e e e ena e e e e e e e e e e aaeeeeeeeennnes 83
A R ©] o =T ox 11 SRR 83
7.2 — SDPWS IMPIemMENTAtIONevvueees e eeeeetteees s e e e e e e eeeeeeaeseeesssenennseeessssnnnns 84
(@ T o] (=] gt SRS 93

(040] o (ol 111710] o ISR 93

Future Work

References..

14

15

Table of Figures

Figure 1.1 — The SDPWS with the kernel modules.........ccocco i, 19
Figure 1.2 — Real-time Service Loading and Spreadin...............ccooeviiivie e ennne. 21
Figure 3.1 — DPWS terminolOogy........ovuiiniie e et et e e e e e e e 43
Figure 3.2 — DPWS protoCol StacK...........ccouuiiii i i e e e e eeee e 43
Figure 3.3 — architecture of a device complianbidPWS...............cooviiiiiiiiinnnn. 44
Figure 4.1 — Simple DPWS architeCture............oooiiiii i e s e e e 50
Figure 4.2 — Service Accessing Interaction SeqUEeNCEe..........c.ocvveeviveiieienienanen, 53
Figure 5.1 — The Event Router-Scheduler in theiagipbn structure.......................... 56
Figure 5.2 — Anatomical-like StructureS COMPONENT e cevveviieieie e 58
Figure 5.3 — the Event Router-Scheduler generic@oin..c.coooevii i i viiiiinnns 61
Figure 5.4 — ERS’ many possible operations................o.out e e venveeieieiaeeaaas 62

Figure 5.5 — (a) ERS freezing event get and (b) BE&&freezing event get operations....63
Figure 5.6 — Mechanical arm controller example g&RS.....................................65

Figure 6.1 — WSDL 1.1 object hierarchy............ccooeiiii i e, 71
Figure 6.2 — gSOAP’s artifacts involved in web-segwdevelopment......................... 72
Figure 6.3 — WSDL to C structures transformation... ..c.......cooovviiii i e e ienne. 75
Figure 6.4 — invalid WSDL cannot be implemented........cccc.ccooiiiiii i, 76
Figure 6.5 — DPWS Service vs. (Dynamic) Simple Berv. ..o, 79
Figure 6.6 — service self-spreading to the othentidal devices............................... 81
Figure 7.1 — Implemented Simple Service...... ..., 87
Figure 7.1 — example GUI with no neighbors detected...................ccevveeen.......89
Figure 7.2 — example GUI with some neighbors detkct..............ccoooiiiiiiiiiiiienn, 90
Figure 7.3 — neighbor selected and respective Gpgrbuttons...................coceeveennen. 90

Figure 7.4 —light turned ON..........ooiii it i e ien e wwn . 91

16

17

Chapter 1

Introduction

Contents
1.1 — RESCAICH PrODICM ..o e e eeaan 17
1.2 — TESIS QUL .. e e e e e e e e e e e aeaanas 21

1.1 - Research Problem

Modern manufacturing processes are focusing onibildy, agility and re-
configurability. Production focus is shifting fromass production to mass customization.
New revolutionary manufacturing concepts are, therserging. Centralized architectures
aren’'t capable of dealing with the new reality @cedntralized agile systems. As so, next
generation manufacturing must support strong madsgionsiveness but low costs and high
guality remain vital concerns. So, new technolaysequired to be considerably more flexible

and adaptable.

18

Nowadays, the communication between manufacturimgponents is facilitated by a
central system. This structure design approach faflen trying to use an intelligent control
structure. Recent technology is capable of mucherobrvhat is being used. Such technology
should be integrated with new engineering solutitmst will support the research and
implementation of new paradigms in automation anarol.

Besides this, a new approach to the enterpriseedsired, like intra-enterprise

dynamic integration of modules and inter-enterpdgeamic cooperation.

Some different approaches had been studied, likii-®Mgent Systems and Service-
Oriented Architectures. These technologies have blee subject of great attention, as they
implement effectively two principles that may sourmbntradictory: autonomy and

interoperability.

On top of Service-oriented Architectures, a nevhnetogy called Devices Profile for
Web Services (DPWS) is becoming steady in somesaf2BWS is a plug-n-play protocol
middleware built on top of a set of Web Servicegcdrations. Consequently, it is a
distributed architecture. It leverages TCP/IP amel ¥Web technologies to enable seamless
proximity networking in addition to control and datansfer among networked devices in the
home, office, and public spaces.

DPWS objectives are similar to those of UniverskigPAnd Play (UPnP) but, in
addition, DPWS is fully aligned with Web Serviceschinology and includes numerous
extension points allowing for seamless integratbmlevice-provided services in enterprise-

wide application scenarios.

In distributed automation and especially in thenbraof production systems, the set of

equipment and other components in the system mapigarable under some circumstances

19

to a society of living beings. Taken a closer looko a component itself, its internal
mechatronical organization may correspond to fometi organs that are responsible for
specific tasks, providing the "vital" propertiestie able to fulfill its requirements. A central
guestion is how these functional modules or “or§anay be integrated, controlled and able
to pass impulses between them and therefore todomplex and operational structures.

Taking this in mind, an approach to an autonomawsce was realized, using DPWS.
It was called Simple DPWS (SDPWS), and is represkmt figure 1.1. The main objective is
to implement some features in a device in a wayttltedevice can work on its own, owning
the necessary features. This simplification andufes were studied and engineered. The
designed simplification is based on that each caormapbhas its framework of modules (figure
1.1). There are two kernel (obligatory) moduleg tdommunication module and the Event
Router-Scheduler module (figure 1.1), and optianatlules, and the work was based on the

kernel ones, as they were studied and developed.

Optional Modlules Kernel Modules Components

!
(s) @ @ P
lek: s ?

A

™

' I %mm- | Mechatronic ;(:‘..
- grgr\wftﬁ)- Component
o = I_l MeC
Decision and LOgiC Contraller (J Process Control

Exception Handler Compenent (PCC)

Integrating
|| Modules

Event Router-
Scheduler

Mechatronic Intelligence

Device nterface Component Skeleton Component Support
(SMeC) Component (ISC)

Other Modules

network

Figure 1.1 — The SDPWS with the kernel modules

The communication module controls all the commuiaca between devices and,

therefore, is responsible for using DPWS. The EvRauter-Scheduler (ERS) is the

20
responsible for the other modules’ real-time comitation. The optional modules are user-

defined and adapted to the respective componentiibn.

The DPWS toolkit generates compact code, creatiightweight resource-constraint
program structure with a high performance predectparser for each service. However, it
offers no capability of interacting with new semscthat appear at run-time, and new code has
to be generated and compiled on the client stuhteégrate the unprecedented service. Thus
there was a necessity to do some enhancementsh®/&PWS toolkit to have a dynamic
stub and skeleton that can invoke and receive amy &f message, and thus, having the
possibility to create or update services in reakti without machinery shut-down. This
would, among other benefits, greatly increase thiktyaof the shop floor, and consequently
reduce maintaining costs.

This new feature on automation components mustnaglish some main objectives,
like be able to read a new service at run-timeiafadm the other identical devices that a new
service is available, as update a service and aiticatly send services to “new-born”
identical devices. For this purpose, the componadgt have a built-in service-receiving and

service-updating service, as also a service-sprgadirvice, as shown in figure 1.2.

21

Ne.w ser\;iy'
| /\ N .
New sé;vice ‘Qﬁ\l

— Newservice
Nl
&)
el

Figure 1.2 — Real-time Service Loading and Spreadin

The dynamic service cannot, however, throw awayDXR8/S capacity of maintaining
the code compact and light-weight, as embedded mebecomes short rapidly, and costs

must be kept low.

Both Schneider-Electric colleagues and superviapmeciated the concluded work,

giving a very positive feedback.

1.2 - Thesis outline

This thesis is divided in eight chapters: “Introtloc”, “The State of the Art in

Industry”, “Supporting Technologies”, “SDPWS - th&ing Components”, “The Event

22
Router-Scheduler”, “The Dynamic Service”, “SDPWS nijdete Implementation” and

“Conclusion”.

This introductory chapter briefly explains the gesb under research and presents the

outline of this work.

The second chapter, “The State of the Art in Indtisexplains the aging in currently
used technologies in industry, comparing it to whatossible to do, and gives an example of
emerging technologies that can be implementedisdctor, Service-oriented Architecture

and Multi-Agent Systems.

The third chapter, “Supporting Technologies”, présethe DPWS technology, a

middleware which is used on top of web-serviced, @lows web-services on small devices.

The fourth chapter, “SDPWS - the Living Componenfgesents an enhanced and
simplified architecture using DPWS, called SimpleWS (SDPWS), which was designed to

add the necessary features to a device using DPNMUS$ wwould turn the device independent.

The fifth chapter, “The Event Router-Scheduler’pwh the implementation of the
intra-application module-communication-way modulé the SDPWS and explains the

advantages and importance of such module in need-thulti-tasking devices.

The sixth chapter, “The Dynamic Service”, exposke DPWS’ current version
technological limitation of being a static, pre-qued service-implementation, and presents
a new architecture of turning those services dynameal-time implementable and self-

spreading between similar devices.

23

The seventh chapter, “SDPWS - Case Study”, presebBaustively an
implementation of all of the previously mentionecchatectures and technologies. The

example is a little Light ON/OFF service.

The concluding chapter discusses the results ofctmplete implementation, and

points future research directions.

24

25

Chapter 2

The State of the Art in the Industry

Contents
2.1 — The industry iS Changingcooiooc e 25
2.2 — Emerging technologies: SOA and MAS ..., 28
2.3 — The SoA technology and SoOA for deviCesS...ce.ccvvveeieiiiiiiiiieeeeeeiiin. 29

2.4 — SOoA and the automation industry - a societyservice-oriented automation

(o70] g1 010 T=T o T PSPPI 30

2.1 - The industry is changing

Modern manufacturing processes are focusing onibiley, agility and re-
configurability. Production focus is shifting fromass production to mass customization, and
technology must follow new patterns to accommodatethe requirements. As so, new
revolutionary manufacturing concepts and emergaapriologies are being researched to take

advantage of the newest mechatronics, informatnhcammunication technologies [11].

26

Nowadays, any enterprise with stability must bdeato change promptly and
dynamically its product or service catalogue tocte® any unexpected disturbances or
market’s new directions. Centralized architectuaesn’t capable of dealing with this new
reality, as the emergence of decentralized systemsery important issue, for the systems to
be capable of dealing with the fast changes irptbduction environment. These new systems
must be agile and efficient to compete in a glabatket. The future of manufacturing will be
characterized by rapidly changing markets, presswoe competition and continuously
emerging technologies. Therefore, next generatianufacturing must support strong market
responsiveness. However, low costs and high quaktyain vital concerns, so new
technology is required to be considerably moreilfilexand adaptable to changing than
today’s technology.

Approximately one third of the cost of a manufaictgrplant over its lifetime is spent
on installation and setup. Another substantial pathe costs is spent on maintenance. For a
plant to be adapted to new products, it must chatsgerocess flow and its machines. This
situation generates high costs and time spendirguad components are inflexible, so
communication between them is hard to configures gorting software applications to new
machines. Industry has to develop, deploy and stigpwomated systems on a global basis in
ever shorter timeframes. Furthermore, the lifecyelgineering of production machines
requires complex, innovative and timely interactibatween geographically distributed
members of project engineering teams comprisingpnaation suppliers, control system
suppliers, machine tool builders and end-user prpdprocess and control engineers.
Collectively they have responsibility for the implentation and lifecycle support of the
automated system as product and production regairesthange [5].

Currently, machines are categorized according #r tfunctionality. As they are

independent and can even be brand-mixed, progragnsirmade individually. Thus, the

27
communication between them is facilitated by a m@nsystem. This structure design
approach fails when trying to use an intelligenttecol structure.

There are many factors why today’s technology rpassed:

Increasing computational power and Ethernet areenamd more available on ever

smaller devices;

 SOA based on Web service technology is more ande nosed in the world of
automation technology and is already used as doptatfor communication and
control;

« The entire lifecycle of a product and the equipmientonsidered at the planning
phase;

» Development and linkage of service components, elkag the design and modeling
of application and workflows are already suppotigangineering tools.

e Simulation and emulation tools are available fontoal logic entities, but not at the

same extent as those for distributed applications.

These advances should be integrated with new esgngesolutions that will support
the research and implementation of new paradignasiiomation and control in order to bring
flexibility, agility and robustness to the produstilines of the future. Such a tool would have
to support the production line throughout the whaleduction lifecycle [10].

A new technology capable of hold a new generatibindustrial components and
architectures is desperately needed. A wide vaoéypen platforms has been proposed for
years in the Information and Communication Techg@s (ICT), which proposes industry to
look at open solutions for manufacturing plantsthAlgh several proposals have been
submitted, today’s reality shows the still dominanaf old standards that fight against

progress.

28
Besides the requirements already mentioned abdwee tare some requirements

needing to be satisfied in order to truly have & generation of manufacturing system:

Intra-enterprise dynamic integration of modulesnitng the whole system completely

robust;

* Inter-enterprise dynamic cooperation, opening a memon to the actual enterprises’
services requested and offered

* Non-disruptive scalability through addition of resces, either hardware or software;

» Fault-tolerant, self-configuration and self-monibgr modules capable of automatic

recovery.

These issues have more importance than ever to tamairproductivity and

competitiveness.

2.2 - Emerging technologies: SoA and MAS

Some different approaches had been studied, deactlypd analyzed to cover the new
requirements. Multi-Agent Systems and Service-Qe@nArchitectures are maybe the best
implementation of such technology. These technebgnplement effectively two principles
that may sound contradictory: autonomy and intenaipéty.

These two technologies particularly have beerstligect of great attention. However,
despite their promise, they have not made sigmficaoads in manufacturing plants yet. The

lack of widely accepted standards is resultingarniaty of islands with poor scalability.

29

2.3 - The SoA technology and SoA for devices

A Service-oriented Architecture (SoA) is as a grofigervices that communicate with
each other, trading data and/or coordinating soctigiy together. This intercommunication
implies the need for some means of connecting twoare services to each other.

In theory, Service-Oriented Architectures offer fyaential to provide the necessary
system-wide visibility and device interoperabilitpg complex collaborative automation
systems subject to frequent changes. They are piiave business system context, and initial
analysis suggests that SoA could meet the techar@hbusiness level requirements for future
automation systems. SoA is basically an architattparadigm that defines mechanisms to
publish, find and bind services. Message-based aomuation, loose coupling and open
standards characterise SoA. Those features malegticularly applicable for a global multi-
vendor environment where interoperability is esséfi].

In practice, SoAs build applications out of spreadtware services. They typically
implement functionality most humans would recognémea service, such as filling out an
online application for an account, viewing an oelibank-statement, or placing an online
booking or airline ticket order. Instead of sergioembedding calls to each other in their
source code, they use defined protocols which desdiow one or more services can
communicate with each other. This architecture ttedies on a business process to link and
sequence services. This process is known as oratiest and it allows meeting a new or
existing business system requirement.

The big breakthrough areas of SoA for devices arpaiticular the industrial sector
and home automation.

In home automation, SoA helps to bridge the hetmedy of products and brings new
opportunities for networking and interaction of @lise devices. For industry applications,

SO0A can be used for integration of equipment ongu@ducts themselves into the enterprise

30
infrastructures. This allows a higher level of sparency and opens completely new ways for
optimization of business processes.

Research activities in the last years have beeitaed to apply and evaluate SoA on
medium sized embedded systems like embedded PCs BDAetwork routers. Development
frameworks like gSOAP, Intel Authoring Tools or theeLink suite for UPnP have been
created to provide development support for SoA lmesé devices. For smaller embedded
devices likes actuator and sensor nodes this ferdift. They focus on mechanisms to
outsource computational load from the devices. Thysoxy approach is favored over direct
implementation of SOA to compensate for the contpartal restrictions of the small devices

[12].

2.4 - SoA and the automation industry - a society of service-

oriented automation components

Production and automation systems are heterogeniaonature, made of different
components with distinguished roles. It is therefpredictable that the specifications of those
systems are moving from the traditional centraltadled manner to the corresponding
distributed counterpart, assimilating the natupgdesarance and layout of the real system.

Thus, one promising guideline in this respect ifdawe a conglomerate of distributed,
autonomous, intelligent, fault-tolerant, and relsabanufacturing units, which operates as a
set of co-operating entities. Each entity is capaisldynamically interact with each other to
achieve both local and global manufacturing obyestj from the physical/machine control
level on the shop floor to the higher levels of thetory management systems [4]. This new
generation of systems is referenced as Intelliariufacturing Systems (IMS) [17].

One of the rising solutions to adapt the majorifytttee concepts behind IMS into

feasible principles is Service-oriented Architeeggevice communications using the devices.

31
The concept SoA has gained significant attractrofjust a few years and will undoubtedly
have a major impact in many branches of technoldggording to [1], ‘A service-oriented
architecture is a set of architectural tenets fowilBing autonomous yet interoperable
systems. and this proposal is facing one of the challengésIMS, namely providing
interoperability between autonomous systems.

Adapting the service-orientation concepts to theomation and production
“ecosystem” at the shop floor and considering thecpples of IMS, a “society” of service-
oriented automation components is born. Each paaint in the system is referred as Service-
oriented Component and in some extends, Serviested Automation Component (when it
has automatic control duties). Components may hditierent roles (e.g. production,
transportation and monitoring) and operate autonmtyo Since services are the main guide,
these components should have the need of requestimiges and also the desire in providing
services to the community. Services itself arerenfof providing resources and actions that
are shared in some circumstances, much simildretogal-life services.

Fig. 2.1 shows the basic description of a Serviterted Component and its
integration into the environment of automation @naduction shop floor. The given example
IS a component that represents a physical conv@ylediator of: Conveyoy and has the
transportation roleRole: Transportation. Implicitly, the communication to the outside \br
would be via servicesQrientation: Service}y being able to provide and request services
when needed. The integration into the IT entergas®so reached by the service-orientation.
A component has a set of tasks or activititasks Transport, Monitoring etc.) and those

may be used as services provided by the component.

32

IT-enterprise level ...),":

vertical
integration
via services

Service-oriented Automation and Production system's shop floor

Mechatronic device (conveyor) Other Components

Figure 2.1 — description scheme of a service-orieed component

Interaction between components is done by the tagp-service orientation, in sense
of requesting and providing services. It is expécte production and automation that
heterogeneous components work together for muterafit and global objectives. This can
be distinguished asymbiosissimilar to the interactions between differentlbgical species

[6]. It is also possible that components may compéth each other for resources (services),

but in the end the global goal must be respected.

In simple scenarios, like lighting, the use of S@es following benefits [12]:

 Homogeneity: Heterogeneous systems become homagenesng the notion of
services. Although different vendors may providiedent lighting systems, from the
SoA point of view they will provide a service fowisching the light on or off.
Different vendors may even provide the exact saergice for their devices. This
allows our SoA-based switches to be used for nealdigrary lightings.

» Dynamics: In a device centric SOA network, serviees announced when devices
become available. In our setup this means that wieam lighting is installed, the
respective lighting service is advertised. Nextetia switch is pressed it can also

switch the new lamp, as it is aware of all exisfighting services.

33
» Self-Description: Devices are enabled to find obttvcapabilities other devices have
using the self descriptive notion of services. Téigpports dynamic behavior of a
system. If a switch was supposed to create a $ighme for watching movies, it would
dim all lights that are dimmable and switch thd g6 The lighting itself will tell the

switch if it is dimmable or not.

In another example, the application caggfdrmation management for tracking &
tracing of products for recyclirigwhich is part of the EU funded research propBOMISE,
focuses on optimization of processes in a plaggcycling facility [13]. Wireless SoA-
enabled temperature sensors are used to monitdaigers carrying milled plastic material
that inheres the risk of self ignition. Each senz@vides a service which conveys its ability
to monitor temperature to the facility’'s managemseydtem. The management system uses
these services to assign monitoring tasks to theose with an appropriate threshold with
respect to its current load. Respectively, senadrsnform the management system if goods
enter a critical state, so that appropriate conm@sures can be initiated.

* Eventing: SOA is used to translate a physical valeetemperature into a system
parameter. With this, the management system is aial& to even react on physical
events as they are now system events. In our ta&seiolation of the temperature
threshold will lead to an event based notificatadrthe system, which then will start
countermeasures.

* Dynamics: Leveraging the dynamic lookup mechanish$SOA, the management
system is aware which containers are in the madt@storage area at any given
moment and can automatically react on incomingubga@ng containers.

» Distribution of responsibility: Furthermore, thetrinsic philosophy of SOA dictates

that the sensor themselves are responsible to mgpiethe actual monitoring and to

34
determine when a threshold has been reached. Tihimimes management overhead

in backend systems and prescribes adequate digtnlnf responsibilities.

In some situations Service-oriented Components lmanseen as software agents
according to the definition given by (Schoop et) 48], adapted from (Jennings and

Wooldridge) [2], to flexible production systems:

“An agent is considered a software entity situaiteé flexible production environment, with
enough intelligence that is capable of autonomaargrol actions in this environment and of
co-operation relationships by participating in asgdions’ agreements with other entities in

order to meet its design objectives”.

Moreover, Multi-agent Systems [7] are of speci&iast since these systems bring the
idea of collaborative agent society, in which eatlthem can take autonomous actions over
their environment or over the system that theyesgnt. On the other hand and differentiating
from the agent concepts, the true meaning of semientation is centered in the requirement
of providing services and in the necessity of retjng services by a component in the
system. The real architecture, habitat and objestigf the system are truly open to the

developer and thus it may adopt different stratetpecover the requirements.

2.5 - Existing SoA realizations for devices

In reality, the SoA concept is not applied singlyt meeds a framework which
provides means like protocols or data structurebriog SoA down to the implementation
level. Over the years, so-called middlewares hasenbdeveloped to implement different

flavors of SoA.

35
Middlewares that are especially relevant in the@aeSoA for devices are Jini, OSGi,
UPnP and DPWS as they try to address the dynamucenaf device integration and/or have
specifically been designed for application in tarea. We will now briefly outline the main
concepts of these frameworks:

1. Jini (www.jini.org) is a Java based solution which provides mechanidon
distributing and discovering services and suppartgration of executable code from
one computer to another. The core of a Jini sysiena lookup-service which
facilitates the search for services throughout im network. Each service has to
announce its existence to the lookupservice andejmosit a set of attributes as
description of its features. The communication witle lookup-service is based on
Java Remote Method InvocatigRMI) where the communication between server and
client is defined by the drivers and may therefose any proprietary protocol and
format. Due to the RMI-based communication, Jimjuiees a participating device to

execute a Java Virtual Machine and a respectiva dpplication.

2. OSGi (www.osgi.org is targeted on the connection of various comptmenhome

networks. It is a Java centric approach where #eechundles disclose capabilities of
a device and allow interaction via local methodoeation. A central device (the
gateway) provides the necessary communicationgptation which the bundles are
executed. Additionally, standardized mechanismslafmed to dynamically install or

remove bundles and respectively discover active dlesn during runtime.

Maintenancel/installation of the bundles can be dooelly on the gateway or even
remotely via the Internet. Remote communicationhwhiindles is not supported
natively. For distributed communication a mappimgween OSGi bundles and UPnP

devices has been defined.

36

3. The Universal Plug and Play (UPnPYwww.upnp.org Architecture uses open and

standardized protocols based on XML to describecamtrol devices. Information is
transferred over TCP/IP and UDP/IP using high-les@hmunication protocols like
SOAP. All interaction is done on top of the IP lagad is thus completely hardware-
independent. In UPnP, mechanisms for Addressinggdery, Description, Control,
Eventing and Presentation are defined. A peer-&r-péilosophy is inherited in all
these parts, so that no central component is needigtilitate interaction among the

participants of a UPnP network.

. Devices Profile for Web Services (DPWSis the approach to make the successful

'Web Services’ fit for usage on the device levelPWS combines a set of
functionalities taken from the existing WS protosalite and specifies additional
protocols on top of them (WS Eventing, WS Discoyetyke Web-services, DPWS
uses SOAP for message transmission and XML asfoiateat. The projects SIRENA
[14], SODA [15] and SOCRADES [16] consider the amgion of DPWS in the
industrial sector and until now have created a DP3té8k capable to be executed on

embedded devices.

Chapter 3

Supporting Technologies

37

Contents
3.1 — The Device Profile for Web ServiCesuvuiiiiiiiiiiiiiiiiiiiis 38
3.2 — DPWS description and NIiStOrY ... 8.3
3.3 — DPWS OVEIVIEW ...t e e e e e 39
3.4 — DPWS PrOtOCOL.....uuiiieieieeee et 40
3.5 — DPWS architecture princCiples ... eeeeeeiieeieeiiiiiiiciineeeeeen L A4
3.6 — DPWS advantages and disadvantages .occcoeee-oooovvveeeeiiiiiiiiiiinneennn 45

3.7 — DPWS - old and current implementations, gpdieation areas 47

38

3.1 - The Device Profile for Web Services

The Devices Profile for Web Services (DPWS) defines minimal set of
implementation constraints to enable secure Webi&emessaging, discovery, description,
and eventing on resource-constrained devices.

Its objectives are similar to those of UniversalgPAnd Play (UPnP) but, in addition,
DPWS is fully aligned with Web Services technol@yd includes numerous extension points
allowing for seamless integration of device-prodidervices in enterprise-wide application

scenarios.

3.2 - DPWS description and history

The Devices Profile for Web Services is a plug-aiypbrotocol middleware built on
top of a set of Web Services specifications. Thisqrol middleware addresses discovery,
description, and control of devices and serviceslaral networks. It is a distributed
architecture and leverages TCP/IP and the Web ttohies to enable seamless proximity
networking in addition to control and data transfienong networked devices in the home,
office, and public spaces.

DPWS specification began in 2002 under the init@tdf Microsoft with the aim to
become the second version of the basic protocelrsagf UPnP™. However, since UPnP™
devices have emerged on the market and are notopse@ble with the new DPWS
specification, the UPnP™ Forum does not accepptbposed roadmap.

Therefore, DPWS appears today as a competitor. $oplementations exist, like the
one delivered open source by Schneider-Electri€TEBA SODA project. Microsoft well-
known Vista OS hosts DPWS tools beside the UPnP&$.on

DPWS is fully aligned on Web Services specificatiddSDL 1.1, XML Schema,

SOAP 1.2, WS-Addressing, WS-MetadaExchange, WSsfeanWS-Policy, WS-Security,

39
WS-Discovery and WS-Eventing. It leverages loweeldnternet components, including IP,
TCP, UDP, HTTP, and XML. This alignment on Web Ses technologies is an opportunity
to benefit from successful specifications and topty make a bridge between local networks
and the World Wide Web. On local networks, DPW3nexf the Web Services specification
with a specific devices profile and leverages dpedocal mechanisms like multicast
networking. The latter is used for device and sendiscovery on the Local Area Network

(LAN).

3.3 - DPWS overview

In the last years has been noticed a convergemre frser-controlled distributed
systems to automatic distributed, autonomous alfi¢@efigurable systems.

The emergent technology DPWS offers the possibildyuse Web Services in
electronic devices, taking in consideration theinstraints and implementing the most recent
key needs of technology: footprint, security, pglay, asynchronous data exchange and
event-driven data exchange, among others.

DPWS permits many interactions as Discovery, whatlows performing search
operations and exposing operations, Eventing, winahages subscriptions between devices,
Naming, allowing searching and indexing operatiomwsr data, and Description, which uses
metadata to explain a device’s operations and &3\ other devices.

The DPWS specification was initially published iraj12004 and was submitted for
standardization to the Organization for the Advameet of Structured Information Standards
(OASIS) in July 2008.

However, DPWS is not the first SOA that targetsickeyo-device communication. As
explained before, technologies such as Open Se@@eway Initiative (OSGi), Home
Audio/Video Interoperability (HAVi), Java Intelligg¢ Network Infrastructure (JINI) and

Universal Plug and Play (UPnP) are similar appreach

40

The OSGi specification defines a service platfonat telies on Java. An OSGi service
is a simple Java interface but the semantics o$dineice are not clearly specified.

HAVi offers plug-and-play as well as Quality-of-giere (QoS) capabilities and is
restricted to the home domain.

JINI was developed by Sun Microsystems for sportaseetworking of services and
resources based on the Java technology. Servigesdearry the code (proxy) needed to use
them.

UPnP supports ad-hoc networking for devices andicas and is easy to develop for.
It has a very similar functionality in comparisan@PWS but does not address security issues
and is only applicable for small networks (no seeviegistry/proxy).

The big advantage of DPWS compared to all othertimeed SoAs is the reliance on
Web services which implies high acceptance amongeldpers and platform as well as
programming language independence.

This technology allows devices to do a plug & ppagtocol when connected to the
Ethernet, i.e., they know which devices are onEtieernet, and the other devices know about
it. So, any device with this technology can disecpvimvoke and offer services and
functionalities. The concept is identical to thendPPout it uses web-services to communicate.
Support of discovery has led some to dub DPWShesUSB for Ethernet.”

There are two types of services defined by DPWSstihg services and hosted
services. Hosting services are directly associtdesi device. They play an important part in
the device discovery protocol. Hosted servicesmostly functional, and depend on their

hosting device for discovery.

3.4 - DPWS protocol

DPWS is partially based on the Web Services Archute (WSA) and uses further

standards from the Web services protocol familysesen next:

41

WS-Addressing The main objective is to provide an addressing mecm for Web

services as well as messages in a transport-nemiatier. By introducing both
concepts endpoint references (EPR) and messagemetion headers (MIl) WS-
Addressing overcomes the lack of SOAP's indeperedehcinderlying protocols and
secondly support of asynchronous message exchBotelimitations are historically
caused by the default SOAP to HTTP binding.

WS-Discovery- is a discovery protocol based on IP multicasteisabling services to

be discovered automatically. Discovery introducksed different endpoint types:
target service, client and discovery proxy. Targ@tices are Web services offering
themselves to the network. Clients may searchdiget services and discover them
dynamically. Discovery proxy is an endpoint enatpldiscovery in spanned networks
since simple discovery is limited to a multicasbup and hence to local managed
networks only. WS-Discovery defines four operatiansnessages to discover target
services in a network. To explicitly discover targervices in a network a client can
use the Probe operation, send as multicast mesbégehing target services will
answer with the Probe Matches operation send as Wwidast message to the client.
To implicitly discover target services a client desten for Hello and Bye messages. A
target service announces its availability with thesessages send as UDP multicast.
To resolve logical addresses introduced with thedpemt structure in WS-Addressing
a client can use the Resolve operation send as WUiDRicast message. The
corresponding target service responds with the IReddatches operation send as
UDP unicast to the client. The discovery proxy doed need any additional
operations.

WS-MetadataExchange / WS-Transfeis a specification that defines data types and

operations to retrieve metadata associated witerapoint. This metadata describes

what other endpoints need to know to interact with described endpoint. WS-

42

MetadataExchange defines the MetadataSection iided the metadata into separate
units of metadata with a dialect specifying itsaypntil the latest version of DPWS
only WSMetadataExchange was used for service anideddescription and retrieval.
In the latest DPWS version of February 2006 WS-3i@mis used to retrieve the
metadata. The structure of the metadata is stiipesified in WSMetadataExchange.
The main difference is that WSMetadataExchangenddfoperations to retrieve all or
parts of the metadata of an endpoint, whereas Vé8ster only can be used to
retrieve all metadata of an endpoint. We expectt té5-Transfer and WS-
MetadataExchange will be merged closer in futukeases.

WS-Eventing— defines a protocol for managing subscriptions &oWeb services
based eventing mechanism. This protocol defineseti®ndpoints: subscriber, event
source and subscription manager. Subscribers regulescriptions on behalf of event
sinks to receive events from event sources. Suiigumi requests contain an event
delivery mode and event filter mechanism to negetevent delivery mechanisms and
event filter mechanism. Subscription managers aespansible of holding

subscriptions of event sources.

The DPWS terminology is represented in figure 3.1.

43

DEVICE 1
{Hosting SERVICE)

: HOSTED
U4 | SERVICEs

CLIENT 1

DEVICE m

CLIENT n {Hosting SERVICE)

HOSTED
4 | SERVICEs

MESSAGEs include discovery,
description, control, and |

aventing. |

Figure 3.1 — DPWS terminology

Other used Web Services standards are XML, WSDLL>3dhema and MTOM. The

DPWS protocol stack is shown in figure 3.2.

Application-specific protocols

WS-Discovery WS-Eventing

WS-Security
WS-Policy
WS-MetadataExchange
WS-Addressing

SOAP 1.2
WSDL 1.1, XML Schema
HTTP 1.1
UDP
TCP
IPv4/IPv6

Figure 3.2 — DPWS protocol stack

44

3.5 - DPWS architecture principles

As said before, the DPWS specification defines r@hitecture in which devices can
run two different types of services: hosting seegiand hosted services.

DPWS is built on top of the SOAP 1.2 standard, ieaties on additional Web Services
specifications to further constrain the SOAP messpmodel.

The figure 3.3 taken from DPWS User Guide v2.9 shive general architecture of a

device compliant with DPWS.

Device Lex .
* Device address (logical)

 Policies (security, efc.)

|T'I' “ a |

Hosted service
* Device address
+ ServicelD

[App services J

» Policies (security, etc.)

Events }5 : o

Notification o

‘ ubscription Everits L

: i < £ -\
Execution Services Eventing Services Discovery Services
*» SOAPI1.2 engime + Subscription » I ocal metadata publishmg
+ Addressmg API management » Remote metadata cache

* Address
) < o J

I [|

Primary interface
* Physical address

SOAP1.2 Bl WS-Eventing
WS-Addressing @UIVS-Security

Figure 3.3 — architecture of a device compliant wit DPWS

i |

Discovery interface

SOAP1.2 over UDP B WS-Discovery
WS-Addressing8l WS-Policy

In figure 3.3 can be seen:

» User-defined services and events are shown inwellhey are provided as user-
written code and generated code in the DPWS tqolkit

* Predefined services are shown in grey. They areiged as run-time libraries in the

DPWS toolkit;

45

e The two network interfaces are shown: the primatgrface uses the standard SOAP
1.2 over HTTP binding to exchange regular SOAP agess, while the discovery
interface uses UDP and a multicast address to basadnd listen to the predefined

discovery messages. Both interfaces rely on a atdri@ stack.

3.6 - DPWS advantages and disadvantages

DPWS strong points are the reliance on web servitesh developers highly accept,
as well as it is platform and language independeme. number of functionalities that DPWS
can offer at the time this thesis was written istiyasuperior to any other similar technology.
Devices implemented using DPWS can provide serviceany application on the network.
Thus, developers only must focus on the applicatsmif.

The DPWS technology is a web-service implementatganit is totally compatible
with the web-services architecture. Inheriting #ane concepts, it is very easy and fast to
add, replace or change components. Web-servicegidprdhigh-level mechanisms that
abstract away the low-level effort to build a dlsited architecture. The capability of making
a component itself independent, as its dependewcy &ny other is non-existent, makes the
DPWS a very propitious technology for implementingnanufacturing industrial devices.

Also, DPWS have many practical advantages for dgegk, users and sellers:

* Lower production costs;

e Common solution to the industry;

* Web-service extension to devices;

» Strong security mechanisms embedded;
* Known internet patterns;

* Open-platform solution;

« Common development tools;

46
» Easier configuration
» Easier installation;
» Easier connection;
» Less product return;
* Richer user experiences;
» Better product differentiation;
* New automation opportunities;
* Lower support costs;
* More product confidence;

» Easy product upgrade.

On the other side, embedded systems normally ave sim memory, not having
processing power to run some technologies usedPW® as a Hypertext Transfer Protocol
(HTTP) web server, Simple Object Access Protoc@AB) engine, and a XML parser. All
this requires more RAM usage, and furthermore gases bandwidth and operating costs.

To allow SOAP implementation, the DPWS specifiesnitkd constraints
functionalities, allowing it to be implemented anall devices to restrict traffic. The protocol
itself allows a large variety of options, but isalbrings some complexity in the design of a
concrete framework.

The DPWS services’ interface description is maddhgyWeb Services Description
Language (WSDL). The current version of this tedbgp (WSDL 1.1) is lacking
information about more advanced interaction pasteifherefore, additional methods are
required for these purposes. However, the newesiarebVSDL 2.0 could offer better support

and more realistic association with the serviceceph

a7

3.7 - DPWS - old and current implementations and application
areas

DPWS is an emerging technology used in many impteat®ns and research projects. There
are open toolkits enabling the development of seroriented software components in
DPWS as are SoA for Devices (SOA4D) and Web SesvimeDevices (WS4D). In the
manufacturing industry there are many applicatiosghg DPWS, such as methods for
developing efficient diagnosis mechanisms in dey/[d8].

In the content of this thesis, the obvious exangladustrial automation. In this field,
communication between devices is automatic, andesgonsible people just either must pay
attention to any warning given by some supervisariae, or give new orders to a specific
device. This is a complete intelligent supervisemd communication system, as it uses
informative communication, intelligent control, supising, etc

There are many examples of DPWS applications, beimegof the most noticed the
Windows Rally, a set of technologies from Microstfat integrates DPWS in a stack side-
by-side with other new web-based technologies. Tiriss many personal computers in the
world compatible with this technology.

In industry, there are some applications using DP\A&S methods for developing
diagnosis mechanisms in devices.

Another big application area is web-services ivagl For example, buying a flight
ticket, the technology can be used as a clientd@chime connection, with the client at home
buying to the air company server, or as a maclor@dchine connection, as the company
server asks a printer to print the new (materiaket, for example, or, more complex, alerts
the police office for a just used stolen crediidcar

Companies are also using DPWS to create produatsatltow a new superior degree

in smart homes, controlling the interaction betwdenhuman, the house and the compatible

48

devices on it. Infinity of possibilities is presemére, as it can be used for controlling the
house devices, it can be used for security, or egerontrol the devices remotely, by cell
phone for example. Asking the microwave to startrmag the food five minutes before

arrive home is a very attractive idea.

In this field, a new product is revealing itselfrydast. It is called Lifelware™. This
next-generation home technology was highlightecbyutomation system that used DPWS
to communicate with a lighting system, audio dmsition system, security system, motorized
shades, security cameras, thermostats, washemdrgerd, and a motorized television mount.

As it says on its websitev(vw.life-ware.con):

“Lifelware™ is a simple but sophisticated softwgseogram that works with Windows®
Media Center to give you one-touch control of ybame's climate, lighting, security, audio

and entertainment systems. So you can worry lesslamore.”

For manufacturers, the first step towards DPWS twllops the creation of a small
device bridge between their native proprietary caoel Web Services. At least 117
automation products from 37 different vendors auityesupport DPWS this way. At the
International Security Controls (ISC) trade shownajor security company demonstrated a
security system that supported DPWS, while the h€@icand Bath Show (K/BIS) saw two
major appliance manufacturers demonstrating wasiredsdryers that communicated using

DPWS.

49

Chapter 4

SDPWS — to support Autonomous

Components

Contents
4.1 — SDPWS: the autonomous component COMMUNItY o .vvevvvvveeneennnnnn.. 49
4.2 — SDPWS: the communication module ..., 51
4.3 — SDPWS: enhanced interacCtion PatterNS ceeeeeeevvvveeieeeeeeeeeeeeeeeeeeeeenannns 52

4.1 - SDPWS: the autonomous component community

An approach to an autonomous device was realizdguwa DPWS simplification and
enhancement. The temporary name of SDPWS (SimpW®Pwvas given at its time, and

from now on it will be used in this document. Irépresented in figure 4.1.

50

Optional Modules Kernel Modules Components

= |
: S : I= b,
i el S)UWel iy
£ i ‘) I (%gm:z‘- | Mechatronic 1(: o
y g— et Compenent
- _J_I (MeC) Process Control
Logic Controller

Decisian and
Exception Handler

Component (FCC)

Integrating
) Modules

Component

&0
Deployment

Event Router-
Scheduler

_— Mechatronic

Device Iterface Component Skeleton Component
(SMeC)

Intelligence
Support
‘Component (ISC)

neftwork

Other Modules

Figure 4.1 — Simple DPWS architecture

The main objective of this approach is to implememith DPWS, a number of
features in a device in a way that the device carkwn its own, serving the others and using
their services, be capable of interacting in as ynaays as needed (I/O, Ethernet, User
Interface, etc), and be capable of actualize ng&es in real-time, without shut down.

To reach this goal, some features are needed armdengineered, as seen below:

* The device must be able to run a DPWS client amP®/S server, in order to

offer services and use services;

* The device must be divided in different modulegheane independent from the
others, and with its own functionality (for exampte I/O module that cares of
information passed to and by an I/O physical porta communication module,
that uses the DPWS to communicate with the othécds);

* It is needed a special module that will handleititernal communication of the
device, i.e., the communication between modules;

* It must be possible to update the services of #wcd in real-time, in order to add
or remove services without recompiling code or dbwin any device, this means,

the update itself must work like a service that i sent by the programmers.

51

The architecture designed is made of several seniented components, with
different roles. The interaction is implemented frpviding and requesting services. Each
component is made of a framework with several fionet modules.

Some modules are essential, like the communicatiodule, which controls all the
communication between devices and, therefore, spamsible for using DPWS, and the
module responsible for the other modules’ commuimna the Event Router-Scheduler
(ERS), which will be explained exhaustively in tt@ming chapters. The other modules can
be user-defined and adapted to the componentsidandtor example, if the component is
controlling an automation device, it will requitgetinterface module to access the 1/O’s, and

probably will need some form of control module.

4.2 - SDPWS: the communication module

Modular programming concepts are applied in thernamcation module providing a
higher level of abstraction and making de DPWS mauyginteraction easier to understand. It
has many functionalities of the DPWS toolkit and hdist of WSDL structures. Services can
be added and removed from the list, and new serace analyzed to determine the presence
of existing parameter and consequent reuse, mimmthe required memory.

A dynamic stub and skeleton were implemented. Tumstionality is called Dynamic
DPWS and will be exhaustively explained in chafieihis feature allows to dynamically
add and remove services to the component, in ieal-and is made with C structures.

This ability promotes the reuse of the DPWS compobrie other programs and
increases greatly the agility and life cycle of tmmponents. Time saving and speeding up
development are the main advantages.

The communication module offers a very useful $&¢chnical functionalities. On the
server side, it has the ability to support multiperices (hosting devices), each one with one

or more hosted services. The module uses the W®easlithg protocol for coordination of

52
service operations and device identification. Oa ttent side, it offers an easy way to
implement and perform lookups, retrieve metadatanfhosted services and devices, and
subscribe/unsubscribe services to the user.

As will be explained latter, the Event Router-Salled has a fundamental role
offering a way of interacting between modules syaobus and asynchronously, making it
not only extremely efficient, but also very eagemunderstand how to solve the problem of

shared data between modules.

4.3 - SDPWS: enhanced interaction patterns

The new methodology resolves some of the previoosntioned DPWS limitations
in terms of advanced interaction patterns. The adsvican be both clients and servers,
providing and requesting services, and are impléateas part of the distributed control
approach at the shop-floor level in automation pradiuction systems.

All this process is made by the Communication medglenerating the necessary
events, through the Event Router-Scheduler (ERSjuhep reaching the target functional
modules. In the communication module, it is possitd create many ports, for the same
service, and bound it with a port type. A new reedimessage is automatically de-serialized
into the C structures implemented by the ERS, &edentry port allows the developer to
know which port type was intended.

Traditionally, in service-oriented systems, a se#\vs a set of ports, being each one an
instance of a port type. A port type defines a sktinteraction operations and the
corresponding message transfers between the sgmoe&ler and the service requesters. In
the proposed methodology, a service involves sepbiases of interaction with its requesters,
which must follow specific protocols associatedrte instances of the port types (ports).

The access to a service is done performing thevimtlg phases:

» Discovery phase which is the ability to discover services;

53

« Negotiation phase for quality of service (QoS) discussion or eli#int priorities, for

example;

» Operational phase which is the service itself, with both mainstsand logical ports

being used here. Before the use of a service, lieatanust search a one that
completely fulfils its needs. After obtaining th&arface, it can contact the provider,
and then, if agreed, it uses the service as negdtia

« Termination phase is the disconnect phase, when the service ise@tied anymore.

Consists on &inish message followed byfaishreply.

The figure 4.2 shows a sequence diagram of theepsoio interact with services using
the four phases. Besides that, the proposed mdtmpdbas some additional features. First,
ports can be created dynamically, and a non-exigiparational port can be created for a
specific situation. Second, it is possible to pdevsimilar ports for the same functionality, but

instantiated from different port types.

Phases

L~
«K Discovery

(‘ﬂ Negotiation

@ Operational

| Termination

Ports

F
o

Discovery Ports

Negotiation Ports

Operational Ports

Ll Termination Ports

|
|
Port types and I
access protocols |

Figure 4.2 — Service Accessing Interaction Sequence

54

The interaction itself is separated into the fobages also. To each phase corresponds
one or more port types with the associated accedeqol that defines the interaction rules.
The access of the requester is done to the ingasfale port types. In generally, discovery
phase can be associated to the facilities provafddPWS and thus does not need special
treatment for simple discovery processes.

In service-oriented systems the interactions ardend requesting existing services
by a client that want to use them and obviouslyrdimating the process. One approach is to
use the WS-Discovery protocol that defines a dycsamulticast discovery mechanism
without using any intermediate entity. Before tise of the service, the requester must search
for a specific service that fulfills its needs. é&ftobtaining the interface (which describes the
service), it can contact the provider.

Obviously it must first make a proposal to use $eevice. If not accepted, it may
proceed to a more complex negotiation with the jiev After the operational phase, the
termination phase may setup processes to condhedestige of a service.

The logical ports of the operational phases caditeetly related to the physical ports
of the devices.

The interaction method may be complex. Semantlt-descriptions allow using
machine reasoning to perform automatic matchmakingervices using logical inference.
This allows the use of services that did not ewistvere not known when the client was

programmed, as the services are selected dynaynicall

55

Chapter 5

The Event Router-Scheduler

Contents
5.1 — SDPWS: The Event Router-Scheduler module................cccvvvvinnnnnn. 55
5.2 — Event Router-Scheduler: Internal Anatomyasfiponents..................... 57
5.3 — Event Router-Scheduler: the module.. . oooeeeeeiiiiiiiiiiiiiiiiciiiee.. 59
5.4 — Event Router-Scheduler — implementation geation........................ 64

5.1 - SDPWS: The Event Router-Scheduler module

Automation and production systems are evolvinghi direction of autonomous and
collaborative components, approaching the ideanada@system. Each habitant of this system
is responsible for different and concurrent adggitand thus requires an adapted anatomy that
is balanced for the several requirements.

The Event Router-Scheduler introduces an anatoshikealvay for implementation of

functional and reusable modules which constituteise-oriented automation components.

56

Paying attention to the internal software structofehe automation device, the ERS is the
mechanism that binds the several modules togefhiee. resulting software automation
components are customized for different tasks duthé inclusion and management of the
specialized functional modules, and provide thditgbto operate in a service-oriented

automation and production environment.

Communication
Sorvi jentaed
{ Emi::ehnnﬁnﬂ]
f"é‘\. Modules

Decision and
Exception Handler
Lagic
Controller

Scheduler

= EE—

Device Heriace

Figure 5.1 — The Event Router-Scheduler in the apfation structure

The ERS can be compared to the nervous systemig Ibeings in sense of carrying
impulses from and to different organs, and so, taaimg the dynamic information flow
(figure 5.1). Intelligent behavior can be reachdtewthese “nerves” are linked to the “brain”,
that provides static control based on workflow gsses and also autonomy to respond to

unexpected events, undocumented situations andnahtebjectives. Being inserted in a

57
service-oriented environment, interaction with othdmponents is achieved only by

providing and requesting services o reach localgioldal objectives.

5.2 - Event Router-Scheduler: Internal Anatomy of components

Each Service-oriented Component may be implemeantipendently and differently.
The only requirement is that it should share itscfions as services and obey to the protocols
of communication and processes. To be able to naistnd deploy these components in a
simple but functional way, an anatomical-like framoek was specified.

A general component is structured in an anatonfgzah comprising several “organs”
(functional modules) that are responsible for imdlnal tasks, as illustrated in Fig. 5.2: Logic
Controller, Decision and Exception Handler, Commoation, Device Interface and Event
Router-Scheduler. These modules are included inctdmrol component according to its
needs and possibly implemented using differentreldgies. It is also possible to develop
and integrate other modules for diverse functidieslj if they respect the rules provided by
the framework for the integration (task of the Bveouter-Scheduler).

The Event-Router-Scheduler and Communication madate the kernel modules to
develop a Service-oriented Component based onrtdpoped anatomy. They are responsible,
respectively, for the main framework of the compangevent-based inter-module
communication and integration) and external comatron with other components (service-
oriented inter-component communication). Other nheglumay be added to the structure

according to the component’s requirements.

58

interferes in the normal control when complex
decisions are needed or in abnormal situations

Exception Handler

B 3

Juulm Decision and W

o

controls partial actions/behavior =it - i provide/request services
based on predefined models 1 to/from other components
‘."H - 1 L_,_.— —— 'a___c A -
k.. : ! ommunication
¥ ‘-’i:{;@ Logic Gantroller ‘ g S (Service-oriented)
|~y = -
A
=]
& _5
| S e e
& L)
@ Device Interface) il !) Other Module(s)
access physicallvirtual devices) other modules can be developed and
- added to cover required features

interconnects modlules together and permits
event-based communication between them

Compone®®

Figure 5.2 — Anatomical-like structures component

In more detail, the Communication module providesnecessary functions to expose
the services from the associated component andesé@gervices from other components.
Other functions include, among others, discove @@gotiation mechanisms. The remaining
modules of the component may use the Communicatiodule to access these functions
through impulses (events) provided by the Eventt&e8cheduler module.

As an example, a conveyor may provide Thansferservice to handle the movement
of pallets, which is controlled by the Logic Corliieo module and accessed by the Device
Interface module. Thdransfer service may be used by the other components, lat th
component itself can also call external servicegwheeded (e.g. to be connected to other
conveyor it requests th&ransfer service of that conveyor) [8]. A suitable technadad)
solution to implement the service-oriented commation module is to use Web technology,
and most specifically Web services. At its core,bVgervices technology is quite simple and

it is designed to move XML (eXtended Markup Langelaglocuments between service

59
processes using standard Internet protocols. Timiglisity helps Web services to achieve the
primary goal of interoperability and also meand th& necessary to add other technologies
to build complex distributed applications.

The remaining modules are described briefly in Fegh.2. The goal to include the
other modules is to provide an example of a Serer@nted Automation Component that is
mediator of some physical equipment with contrgbatalities. For example, the resulting
component of Figure 5.2 represents a smart coetrofl a conveyor device, by providing
several features such as control and access ogepltisical device, ability to decide in
unexpected and undocumented situations and alsoptssibility of service-oriented
communication to other components. Other exampdesisrvice-oriented PLC-like controller,
which may interpret control models and give theassary orders to other components via the
invocation of the provided services by them. Insthase, it is not necessary to have the
Device Interface module, since it does not comntdirettly the devices.

Finally, the “nervous system” of the anatomy reprged in Fig. 5.2 is managed by

the Event Router-Scheduler.

5.3 - Event Router-Scheduler: the module

Components and devices that implement severaleoExpressed aspects of service-
orientation require a consistent anatomy to deah whe different function modules
(“organs”) in order to fulfill the necessary reqement. Other problems may arise from the
asynchronously operating modules, possible dataonsgistencies and concurrent
processes/threads. For this purpose, it is propasetechanism to provide an “impulse”
(event) passing and scheduling feature to guideirtimulses to different modules, thus
permitting the synchronized communication betwdwmt. The heart of the component is the

Event Router-Scheduler (ERS) module.

60
During the design phase it was clear that the ER&uld meet the following
objectives:
» Common event routing/scheduling mechanism for ttraraunication and integration
of modules;
* Provide some transparent functions for creatingraadaging modules;
* Suitable for software application that are deploywmath in traditional PC and
embedded systems;
 High performance, especially in critical situatiorend targeting real-time
applications;
* Use of C language, aiming to balance between padoce, portability and features;
* Thread safety and management of data concurrency;
 FEasy to use by developers, in sense of building utesdand how events are

processed.

The function of the ERS is comparable in some patars to the nervous system of
living beings, including humans. H. Gray wrote is book “Gray's Anatomy of the Human
Body” [9]:

“The Nervous System is the most complicated andyhigbanized of the various systems
which make up the human body. It is the mechanmmeerned with the correlation and
integration of various bodily processes and thectems and adjustments of the organism to
its environment.”

In the case of Service-oriented Components, thesifemment” is captured and
manipulated by specific modules (e.g. Communicatiod Device Interface), but the natural
equilibrium with impulses (events) of the severadules and their integration is reached

with the help of the ERS.

61
Figure 5.3 shows the generic conceptual structtitheoEvent Router-Scheduler. The
feature groups are separated in blocks that canespo the Scheduling and Routing of
Events, Hardware/Software Abstraction, Threadingd aata Consistency and

Template/Interface for Event-based Modules.

-
Event Router-Scheduler r" |
for L)
:3“ ‘!»@ events i
Scheduling and Routing of Events :
o Module X y
) —_— /
Thikading : > Templatelinterface for | | 1,
and S v ﬁ ¢ 4

= Event-based modules

' "Data Consistency ¥ events P

|‘>\ o

8 Hardware/Software Abstraction)
e basic structure for

module deployment

Figure 5.3 — the Event Router-Scheduler generic coppt

The main feature is to provide event-based comnatioic between functional
modules and the corresponding routing and scheglofievents (see Scheduling and Routing
of Events block of Fig. 5.3). From the practicalimpoof view, the component’s internal
impulses (events) between its functional modulesiaregrally managed by the ERS. The
ERS allows synchronous and asynchronous evenngadietween any modules (which is
critical in real-time applications), and offers seal additional procedures to realize more
complex operations, like events generated by athents and time-triggered events. In the
most basic form, a sender module must only emiexant to a specific destination (other
module) and the ERS routes it to the destinatitverd are also other options for sending and
processing events, such as events with reply anlticasi events to several destination

modules (see Fig. 5.4).

62

-

Receiver Module 1

& ER-S ‘r" lJ
i

,(< lJ & # normal event)
L
— ' & event expecting reply E i L
- it Q___yrepfytoevenf 5) ‘l\; Seiles
Sendor Py eceiver Module
Module S@Tuficsstevent || .. P
r _’J
| T
Receiver Module 3
7
J

> -
P

Receiver Module 4

s

Figure 5.4 — ERS’ many possible operations

An event is a structure with all the informationmedule needs to know regarding
various possible situations. Besides the standdaimation as the intended action and the
parameters from who the event came, it can ask fi@ply, for an information forwarding,
can have a fault message’s receiver, and the evedgiver can check if it is a reply. Also, an
event sent more than once, by error, is detectable.

The ERS uses lists as a way of transmitting andiiqgeevents between the modules,
so the number of events waiting to be processedlislimited by the available memory. The
ERS uses some techniques to avoid memory fragnamtabecause the creation and
elimination of new data is a very frequent operairothe modules, as the world is constantly
changing. In some cases when the number of eveiigh, the ERS offers the possibility to
give different priorities to the events. Like th&) event sent to a certain module will always
pass by all the waiting events of that module wihnatie lower priority than the sent one.

Being capable of both synchronous and asynchroonpesations, the asynchronous

ones are managed using threads. The synchronouatiope can be either freezing or non-

63
freezing for the receiver. For example, on eveatiieg the operation can be a module-freezer
or not. In case of the freezing mode, the modwdeZes until any event arrives for it. After
that, the module continues its normal proceedisgsteown in Fig. 5.5(a). This is a very low
CPU resource-taking procedure, useful for embedtsdces. However, it is not useful for
real-time multi-task modules, as this kind of madshould not freeze. On the other hand, the
non-freezing event reading always receives an evwever, it can be an invalid event. An
invalid event means that there were no eventd#®ntodule, so it can continue processing its
other tasks. Obviously, if it is a valid event, thedule should process it. This is represented
in Fig. 5.5(b).

Asynchronous event triggering is also possible.lidaks are used to perform this
type of operation, as it must occur when it is esllHowever, the event is not triggered
immediately, because of data-protecting, and iukhonly occur when the module activates
an authorizationnjutey to allow callbacks, which will possibly changestmodule’s data.
Each module has itmutexfor this matter, and developers who want to enablgichronous

event handling should be very careful with thistpetion.

ezing event_get()

i# event invalid " S yalid

I:.If'- @ ; +
((|s . processing ,
e d=, processing
8- C i @
[o ‘;‘ :L 4
- e e it A

(a) (b)

Figure 5.5 — (a) ERS freezing event get and (b) ER®n-freezing event get operations

64

The remaining blocks of Fig. 5.3 are responsibleaftjacent tasks of the Scheduling
and Routing of Events block, specifically to itsdaother modules’ management. The
Hardware/Software Abstraction provides some fumdiotransparent to the system
architecture that can be accessed by all modulase $he ERS and other modules are in a
multi-functional and concurrent environment, a spledlock of the ERS, namely the
Threading and Data Consistency block, introducesple thread manipulation and data
protection (such asutey.

Finally, the Template/Interface for Event-based Med block provides the basis for
creating functional modules and associates themthto ERS. Each module can be
programmed independently. This means that it isiptesto remove, replace, upgrade or add
new modules. This makes a program using the ER$ flexible. The module ID is the
module’s identification and it is unique for eaclodule. This variable is what the other
modules need to know to send an event to a specdttule. It is comparable to the code that
the nerves carry to reach some organ. Howeves, atso possible to search a module by its
type like “controller” or “user interface”, as thigay is much more practical for a developer to

reach a module without many information.

5.4 - Event Router-Scheduler - implementation and operation

A prototype implementation has been done to tesptioposed framework, integrally
coded using the C programming language and conpatilth Windows and GNU/Linux
operating systems (targeting also others, suchxdgdvks). Some implementation details are
given next.

The functions provided by the framework to develpd operate components are
explained with an example component representimgeahanical arm (articulated robot to

move small objects) made of three modules (beshieE£RS), represented in Fig. 5.6. The

65
modules correspond to a subset of the ones inBR2gexcluding the Decision and Exception
Handler module) that are briefly commented in cbapt2. The major difference is that it is
connected to the mechanical arm via the Devicafate module, instead of the conveyor of

Fig. 5.2.

é} X External
/g e Component
ER-S = P
==+ Logic Controller —~ s 7
& .7 L | 4
event=event get (LOGIC CONTROLLER, no fresze); ..g & > o |
if (event == TRANSFER REQUEST EVENT); o
. =
if (check robot occupation() && o 8
check destination availability())
{ & ; 3
event send(COMMUNICATION, TRANSFER START); !’a
event send with reply(DEVICE INTERFACE, TRANSFER START): Device
event send(COMMUNICATION, TRANSFER_FINISH): o Interface
} Lz -
else = '/Fa : é
{ %2 2 | Mechanical
event send (COMMUNICATION, TRANSFER ERROR); : : Arm
) B
} - pick&place program

Figure 5.6 — Mechanical arm controller example usig ERS

In terms of data structures, the ERS includes séwructure types for storing and
relating different information about modules, eeand other aspects. The Module Structure,
which represents a module in the program, idestifte module by a unique ID. It also
provides storage for local information such as tiedule’s incoming events list, which is
where the module is going to get the events serthéyther modules and a pointer to the
module’s callback implemented function, which isggered by new events when the
asynchronous mode is activated. The Event Strudtaseall the information to handle an
event: action name, parameters, who is sendingfsémiodule ID), and some variables for
reply handling, an ID of the event and ID of thelye Finally, the Database Structure of the
ERS is where pointers to all modules are allocated.

First the modules must be created. Thus, the réspdanction shall be called, and

each module must have an ID and type, as seen below

66
module_create(1,DEVICE_INTERFACE);
module_create(2,LOGIC_CONTROLLER);

module_create(3,COMMUNICATION);

Sending and receiving events is very straightfodw&or example, to send an event
from module 1 to module 2, the developer must eraatevent, put the sender, the action and
the parameters, and then send it with low or higiority, to the destiny, using the
event _send() function. To read an event, presuming that callbagk disabled, module 2
must call the synchronous event handle by eithesazing while there are not events, or not
freezing. This variable is a parameter when caltimg event-reading function, as it can be
something likeevent _get (2, FREEZE) orevent _get (2, NO _FREEZE).

The not-freezing way of getting an event alwaysimet an event, but it may be an
invalid event. On this case, valid events alwaygehealid senders, i.e., tHa omvariable,
which corresponds to the sender ID, is always bighgen zero. So, invalid events have
negative sender IDs. If the module 2’s callbackON instead, and if the callback mutex
allows it, the new event would immediately trigglee callback, so it would run the function
pointed on the module 2’s structure.

More flexible operations can be done with multicagstand reply to events. In case of
multicasting, there is a special function to emt event to several destination modules:
event _send_mul ticast (). One of the parameters is a list of destination uexlthat
are intended to receive the event. Some eventsexyasct replies and this can be done in two
ways: asynchronously (nonfreezing) using éheent _send() function with the attribute
reply i dand synchronously (freezing) using the spesiegnt _send with_repl y()
function.

For the example, the modules of the mechanical aomponent have simple

functionalities. The Device Interface provides Huress to the mechanical arm in sense of

67
calling the programs of pick & place to move thgeoks from one place to another. Its
Communication module uses a service-oriented itnfreire, based on a DPWS
implementation, namely SoA for Devices (SOA4D). dugh the communication module, the
component provides one servideansfer to be called externally in case objects are aléel
to be transported. Finally, the Process Contragtiedule is responsible for coordinating the
components activity, generally synchronizing sexvaalls with the pick & place program
execution of mechanical arm.

A simple algorithm is presented in Fig. 5.6 instde Logic Controller module. Each
time a function is required by one module to anotree, events are sent through the ERS. In
case of the algorithm of Fig. 5.6, an instanceta$ iexecuted when the Transfer service is
requested and then the Communication module ofdhgonent emits an event to the Logic
Controller. It is assumed that tAgansferservice is called when an object is ready to be
moved. From the other hand, the operation of pigilde program can only be started if the
mechanical arm is not occupied and if the destnatthere to place the object is free. For the
sake of simplification, these checking functions aepresented in the algorithm but their
behavior is absent in Fig. 5.6., which would inwlsending/receiving events to/from the
Device Interface and possible also an entity reprsg the destination place. On successful
conclusion of the pick & place program of then @evinterface, an event is sent back to the
Logic Controller, and by its turn to the Communicatmodule that then notifies the external

component and thus concludes the service usage.

68

69

Chapter 6

The Dynamic Service

Contents
6.1 — DPWS service’s StatiC Creation........ccccccveeeieeiiieieeeeeiiiiiiee e 69.
6.2 — Dynamic service: SPeCIfiCationNsccccceeeeoeeeiiiiiiiiiiiiiiee s 3.
6.3 — Dynamic Service: implementationccccccooooeeeiiiiiiieiiiiii e 74
6.4 — Dynamic DPWS: the Simple ServiCecccceeeiiiiiiiiiiiiiiiiceee e 78
6.5 — Dynamic Service: Benefits and Disadvantages..........cccccccuvvvvvennnnn. 80

6.1 - DPWS service’s static creation

DPWS allows implementing web-services in electodevices. These services are
generated using the Web-Service Description Lang(&gsDL) file.

The WSDL is an XML-based language that provides aeh for describing web-
services. It defines services as collections ofwodt endpoints or ports. The abstract

definition of ports and messages are separated fin@m concrete use or instance, allowing

70
the reuse of these definitions. A port is defingddssociating a network address with a
reusable binding, and one or more ports definendcee Messages are abstract descriptions
of the data being exchanged, and port types arteaabgroups of supported operations. The
concrete protocol and data format specifications doparticular port type constitutes a
reusable binding, where the operations and messagethen bound to a concrete network
protocol and message format. In this way, WSDL diess the public interface to the web
service.

The WSDL object hierarchy can be seen in figure Bdre is the explanation of each
object:

» Element consists of a unique name, and data type. Thaogerof a WSDL element is
to describe the data and define the tag which dkslithe data sent in the message
parameters.

* Messagecorresponds to an operation. The message contansformation needed
to perform the operation. The message name a#rimavides a unique hame among
all messages. The part name attribute providesquemame among all the parts of
the enclosing message.

* Operation can be compared to a method or function call fraditional programming
language. Here the soap actions are defined anddliehe message is encoded for
example, "literal.”

* PortType defines a web service, the operations that carmpdréormed, and the
messages that are used to perform the operation.

» Binding: Specifies the port type. The binding section alefines the operations.

» Port The port does nothing more than define the addvesonnection point to a web
service. This typically is a represented by a senitp url string.

» Service can be thought of as a container for a set akeaysunctions that have been

exposed to the web based protocols.

71

Service
Less
‘ specific
Binding k
(Port Type) Transps:rn
—(Element):_ ____________ | E——
Simple
.".I-'f. v
Restriction | Enumeration
More
specific

Figure 6.1 — WSDL 1.1 object hierarchy

The approach used by the DPWS toolkit is the saseel by the gSOAP toolkit. It
relies heavily on automatic code generation to foagk and forth SOAP envelopes and C
structures. Relatively to the service definitiorhigh involves operations, data types used as
parameters, and return values to those operatibasDPWS toolkit generates the required
code to provide transparent access to the rema&eatpns from a client. The only pieces left

to implement by the developer are the implementadiothe operations in the server and the

72
implementation of the client that invokes the reenaiperations, with the respective
arguments. The server then must process the n&iveecvalue.

The proxy, skeleton, and marshalling and de-malisgaftransformation between C
structures and SOAP-XML messages) code is complaeherated by the toolkit. The
marshalling/un-marshalling code is the same irctiemt and the server.

There are two types of messages. In one-way messagly the request message is
transmitted. On request/reply messages, SOAP respa@te returned.

gSOAP provides a code generator that transforms SDM document into an
annotated header file ready for processing by tB®OAP compiler. The figure 6.2

summarizes the various artifacts involved in Watvise development, using gSOAP.

Developer WSDL "

Optional T
Generated
Generic —

e e el e SRR
exjes Hes e e e

r
i I
Generated 1 Generated | Generated
proxy (client) [marshalling | | skeleton (server)
I I
: |
I I

E‘] gSOAP runtime [

Client
implementation

Service

Appl. mam() implementation

L-———_ - O . - -

Server side

L———————————

Figure 6.2 — gSOAP’s artifacts involved in web-serge development

The current DPWS toolkit extends the above codesiggion principles to take into
account the WS-Addressing specification. This dmation states that a SOAP response and

fault message may be redirected at user choiceycendpoint, and not necessarily to the

73
origin of the request. This means that the standamchronous approach, which uses the
HTTP response to carry the response or fault mesaagociated to a SOAP request sent
through an HTTP request, is not always applical8e, the DPWS toolkit supports
asynchronous transfer of response or fault mesgagespecified endpoint. Such an endpoint
should be ready to receive asynchronously SOAPoresgs and fault messages. The DPWS
toolkit generates header and C files implementgskeletons for the handlers, following the
pattern used by the gSOAP service skeleton genaraf similar approach is used for
handling events: endpoints that subscribe to evemsild be set up as message servers, and

use the event handling skeletons generated by W ®toolkit to process received events.

6.2 - Dynamic service: specifications

As explained, the DPWS toolkit generates compaciecareating a light weight
resource-constraint program structure with a higihfqgmance predictive parser for each
service, allowing an efficient marshaling and urnrshaling of data. However it offers no
capability of interacting with new services thapeagr at run-time, making it time costly and
removing the ability to quickly react to changescsi a new code has to be generated and
compiled on the client stub to integrate the unpdeated service. For these reasons there was
a necessity to do some enhancements over the DRWISt tto have a dynamic stub and
skeleton that can invoke and receive any kind cssage.

This new feature must accomplish some objectivéese will be explained next.

First, the most obvious, it must be able to reag\a service at run-time. This service
will be written in a WSDL file and, somehow, pasdedhe device. So, the service-reading
must be a service itself that will receive a WSe.{So, this service must be built-in.

Second, it must transform the WSDL file into a ss#is code. This transformation
will be made by a de-serialize algorithm implementan the device. The final result in

memory should be identical to the static DPWS. &otihat the WSDL must be validated

74

before loaded. Even if an error-catch algorithm bbanmplemented, it should be avoided, as
the resource-taking from the device, principally themory, should be minimal, and this kind
of operation takes memory and processing time. Wewethe device must be capable of
discard erroneous services, and, very importantnitze user about this service discarding
decision, to avoid users to think the service ignenand running.

Third, the device must inform the other deviceg thaew service is available. DPWS
informs about its services with the HELLO messagédn it starts running. In this case, the
service is already running so it needs a procettuseend an HELLO-like message with, at
least, the new service.

Fourth, the device must be able to create, serd, aad process a SOAP envelope,
using its dynamic structures, just like it doeshe original static implementation. For this
purpose, there must be implemented a SOAP enveknedize/de-serialize algorithm. Again,
exists the possibility of, somehow, the receivedetope from the communication module is
containing an error, so this de-serialize algoritsimuld be capable of send back a message
of non-existent service or any other error that appear.

Fifth, for maintenance purposes, it should be fbssb import/export the actual state
of the memory that represents the service. Thisnséaat the pairselement, value>
should be listed and then sent in to some debulicappn. At extreme debug conditions, it
should be possible to send all the structure, asiuld be not a difficult or resource-taking
procedure, but it looks like unnecessary, as ifdheere any error in the structure, it would

happen on the structure creation. This kind ofreshmuld be catch at programming time.

6.3 - Dynamic Service: implementation

According to the previous specifications, a dynansitib and skeleton were
implemented. Not all of them, but in the futurevitl be. At the time this thesis was written,

the implemented specifications are explained next.

75
Using C structures, a replica of all existent WSa@lljects were created. This means
that any and all objects that came in a WSDL fde be passed to the device memory, more

concretely to C structures. This is illustratedigure 6.3.

Struct
complexType

N Struct

WSDL
| sequence

Struct

Struct]
simpleType]

attribute

Struct
element

Figure 6.3 — WSDL to C structures transformation

This copying operation always respects the WSDLhitecture, as the creating
procedures it selves do not allow invalid operagiohhis respect of the service architecture
can be used as a WSDL error-catcher, because ntotamplement objects out of order.

Figure 6.4 illustrates this situation.

76

An Element can
containa

SimpleType. Not
the reverse.

<simpleType>
<element>

(.-)

<\element>
<\simpleType>

<element>
<simpleType>

()

<\simpleType>
<\element>

¥

Struct
element

Struct
simpleType

Figure 6.4 — invalid WSDL cannot be implemented

To use the dynamic stub, the client creates an UKLpath (URL — Uniform

Resource Locator) that includes the service whenefers to, fromServicedown toElement

Also, it must send the arguments values of the Efgnhe wants to change. This path

corresponds to the Element position in the architecwhich is seen in figure 6.1. This

topology allows pointing to any element of the stawe in memory, and this path allows any

device with the same structure in memory to reaspegific object.

The programmer, however, doesn’'t need to know titeeepath to the variable he

wants to change. The path serialization and dedszaiion is done automatically. If it is

needed to change the value of an Element, the gmoger only must call the proper

procedure referring only that Element. That proceds capable of getting the rest of the

family of objects to the top object. So, the padneration is automatic, as the WSDL C

structure present in the module fills the missimigimation necessary to construct the SOAP

77
message. This path is needed because the servehawag Elements with the same name.
So, it is necessary to specify the respective f@fferation, PortType, etc) for the server to
reach the correct Element.

That means the dynamic server has a mechanismvayslreach the correct Element,
as the static DPWS can do. The programming oveamyaservices is, consequently, as easy
or difficult to do as the programming over theistaervices.

The dynamic skeleton does the opposite processcdives the SOAP message and
with the help of the WSDL service in memory, it @ugtically de-serialized it into the C
structures, following the received path, with théormation of the service, operation id, the
arguments types and values. Also, it changes the&itt value, if it is the case.

The static DPWS uses functions created at the W@Bh-conversion. For example,

in the following expression taken from a DPWS sanqualde,

dpws_send___lit Switch(&dpws, invokationEPR,

lit__PowerState ON)

, the dpws send _lit Switch procedure name, as well as the
lit__PowerState ON command variable, are created when passing froDMt8 the
application stub. This means that a different naihept pre-created, is automatically not
recognized and erroneous for the compiler.

The dynamic DPWS uses a genatjpws_send() function present at the DPWS
toolkit at the time this thesis was written. Thi©gedure allows sending to an End Point
Reference (EPR) any message the programmer waraisdamot just a pre-defined message.

Here, the command argument is not pre-definedhedElement’s tree path must be
used here, for the reasons explained above.s€éhd function, however, builds the SOAP

envelop automatically, leaving the programmer tdingeonly the message. But, as said

78

before, the path creation is automatic, and thgnaramer only must specify the Element that
is going to change, and the respective new valhes Way, the SOAP message creation is
automatic, as is the SOAP envelope, leaving nothimgone. Serializing and de-serializing

the SOAP envelopes is, consequently, fully autoemal thedpws_send() function itself.

6.4 - Dynamic DPWS: the Simple Service

The created dynamic DPWS has all the structuredatke® recreate the WSDL file
services. However, some of the WSDL objects arestemts or not used relatively to the
shop-floor work at Schneider-Electric GmbH. For repde, the binding object can be either
RPC-literal or document-literal, but in this caseaiways document-literal. So, the WSDL
binding’ respective structure doesn’t need to exikis permits to avoid a structure that must
contain pointers to a SOAP binding and the resped®ort Type. This avoidance, joint with
the others, will short significantly the memory gea

It was created, then, a shorter service in memecapable of everything a normal
(dynamic or not) service can do, but, besides dymainoccupies less memory than the
normal dynamic service. It is called the Simplev@er.

The WSDL objects avoided on this approach are th&RHinteraction specification
ones, that are the WSDL Bindings, the WSDL Operatiand the Service Ports. In the
dynamic DPWS Structures, however, the WSDL Binditingge are SOAP Bindings. So, this
makes a total of five objects avoided in the faniige of an Element, which is what is being

always accessed.

79

Struct
Simple Service

i Struct E
i Service Port i
i i
i ! Struct |
L WSDLBind i
1
\(Struct E
E | WSDL Operation ¢ |
e o e e e e o o o o o o o o o e e e e A]

(Struct] [Struct]

| PortType Port Type

f Struct Struct

. Operation Operation

Figure 6.5 — DPWS Service vs. (Dynamic) Simple Séce

However, the normal Service points to all of thexee mentioned objects. The Service
must exist, or else the path present is the SOABsage is incomplete, and the receiver
doesn’t know which Element the message refers ¢p.aSsimpler Service structure was
created, the Simple Service structure. This seruntes directly to Port Types in the WSDL
architecture. In figure 6.5 can be seen the diffeeebetween the two architectures that can be
used in the dynamic service.

This simplification permits not only memory andné saving, but also an easier
comprehension of the service itself by programmassthe HTTP interaction part of the
service is static, and so, it remains invisibléhi® programmers, who only must care about the

services itselves.

80

6.5 - Dynamic Service: Benefits and Disadvantages

The capability to dynamically add and remove s@&wian real time promotes the reuse
of the DPWS component in other programs and inesedéise agility and life cycle of the
software. Advantages compared to the code gengreahniques from gSOAP are the time
saving and speeding up the development of projébisse factors represent too much money
in the industry and should never be ignored.

The service loading can be done from anywherea. iot needed to be near the device
to do it. If the device can be reached by DPWSryhigng can be done as a DPWS service
(figure 6.6).

The capability of send services from devices toiaksy(figure 6.6) increases the fast
upgrading capability of a shop floor, for examps, the new service configuration version
must only be sent to one machine, and the identizathines automatically can ask for it.
Besides upgrading, for first installation, the teicjue can be the same, as only one service
installation is needed, because the service-seratidgservice-receiving must be built-in, the
working device can send the service to all the roithentical devices. This capability reminds
the behavior of a virus, spreading itself, buthistcase, with authorization. However, with
this feature, security measures must be takenusecsome bad-intentioned person can load a

service into a device.

81

Figure 6.6 — service self-spreading to the other &htical devices

Reconfiguration of devices when new add-on hardwaravailable can be done
quickly and easily. For example, if a new kind ofpgis available to a pick-and-place
operation, it is not needed to reconfigure the whaohachine, but only the service

corresponding to the grip description and workingdenmust be upgraded.

On the down side, there are some things to paogf.

First, the WSDL-to-C structures de-serializer moistadapted to any eventual new
versions of WSDL. The implemented parser, for eXdamis compatible with WSDL 1.1.
However, WSDL 2.0 has a different structure. Consatjy, the WSDL-reading service must
be re-implemented. In this case, it cannot be égmna service, because it is built-in. So, here
it is obligatory to shut down the devices and regpam its code.

Second, the memory usage is, obviously, bigger thanstatic DPWS. Embedded
memory on devices is short, so is important tadrgonsume as fewer resources as possible.
The static DPWS creates fewer structures in mentorgwing its attributes and types from

the variable declarations. On the dynamic DPWSek@ample, amnt number declared in

82

the static DPWS must beséructure variable with a string called “name” with the
value “number”, the string variable called “typeitlwthe value “integer”, and the value itself.
Being a 4-to-1 number of variables in memory tolalecjust one simple variable, a service

with a big number of types will accuse this difiece in embedded memory.

83

Chapter 7

SDPWS - Case Study

Contents
A R @] o) = Tox 1)U T SRR PPPUPUPUPRRRRT 83
7.2 — SDPWS IMPIeMENTALIONccooiii oottt e e en e e e e e e e e e e e e e 84

7.1 - Objective

An SDPWS implementation was made. It was used gleafrom the DPWS toolkit,
the lighting sample. The objective was to use th&WS, i.e., the device was both client and
server, it used the ERS, and the lighting servias me-created using the dynamic service. The
priority objective of the experiment was the conighty between the normal DPWS lighting

service and the new dynamic one.

84

7.2 - SDPWS Implementation

As already said, a re-creation of the lighting penwas made. It was used the Simple
Service approach. The original WSDL service is allarery simple, and that's why it was
the chosen service to make the experience.

Explaining the service, it has SimpleTypenamedPowerStatewhich values can be
either ON or OFF. Then, it has three messagesSwitchMsg(on-way) that takes one
argument (ON/OFF), and a two-way Operation, tha ar reality two messages, a
GetStatusRegMs@equest) message andsatStatusRespMgqgesponse) message. These are
used to ask the lamp (server) for its status.

Finally, the PortType existent is nam®ditchPowerlt includes two Operations, one
called Switch that uses tl8witchMsg and the other calle@etStatughat uses the two other
messages.

It was this information that was recreated in tlggainic service. The dynamic service
was created with the proper implemented proceduneshese procedures’ calling were hard-
coded, because the WSDL reader was not implementdee time the experience was made.
The creation hard-code is presented next:
enuml = enumeration_create();
enumeration_add_value(enum1, "ON");
enumeration_add_value(enum1, "OFF");
restl = restriction_create(GEN_ENUMERATION, (void*) enuml);
typel = simple_type_create("PowerState”, GEN_TOKEN) ;
simple_type_add_restriction(typel, restl);

In the sample, we can see fewerStatelype creation. Because this type accepts the
constant value®N andOFF (so it is an enumeration), that was also created,is called a
restriction, as can be seen in figure 6.1. Theratl@ments were created in an analog method.

An element containing the Simple Type was created:

elementl = element_create("Power", GEN_ARG_TYPE_SIM PLE,
(void*)typel);

85

, Wheretypel is the Simple Type created before. The elemeandlied “Power” because it
represents the power status of the lamp.

Next, the message must be created. The followinde coreates and inserts the
respective element on message parts, and theestbat messages.
partl = message_part_create("PowerOut”, elementl);
part2 = message_part_create("PowerIn”, elementl);
msgl = message_create("SwitchMsg");
message_add_part(msgl, partl);
msg2 = message_create("GetStatusReqMsg");
msg3 = message_create("GetStatusRespMsg");
message_add_part(msg3, part2);

The first message part represents a messageeihadrebs the Power Status, i.e., sends
the Power Output, and so its name is PowerOut. SBm®nd one has identical logic. The
messages have its names and can have parts, degpendif it is needed any element value.
Notice that the requesting status mess&ptatusRegMsg , msg2) has no message part
in it, as it is only a request of a value, so iesiot need o transport any element.

Now, the operations which contain the messages beusteated:
opl = operation_create("Switch", msgl, 0);
op2 = operation_create("GetStatusReq", msg2, 0);
op3 = operation_create("Status”, 0, msg3);
op4 = operation_create("GetStatus”, msg2, msg3);

There are four operations represented here. Thatimge function receives three
arguments: its name, and the respective requesteapdnse messages. So, the first operation
IS an one-way operation that asks to switch thegpad®N or OFF. The second one asks for
the status of the lamp (server) in a one-way oeraand the third operation is the respective
server answer, and is also a one-way operationselbperations 2 and 3 can be in only one

2-way operation. The fourth operation implementsa# it is an operation that waits for the

server’s answer.

86

The next step in the Simple Service creation i Types creation. Is here that the
operations will be inserted in. The code presentd shows how it is done. The process is
very identical to the previous ones.
portl = port_type_create("SwitchPower");
port_type_add_operation(portl, opl);
port_type add_operation(portl, op4);

As seen, Port Types’ creation is very simple, giging a name to it and inserting the
intended operations.

Finally, the Simple Service itself is created. sSTbinly contains one Port Type, but it
could be as much as it were needed. ObviouslySd#m@ice must have identifiers, that are
passed between components for them to know whisticsas being refered.
service_ns.ns_prefix = "lit";

service_ns.ns_uri = "http://www.schneider-
electric.com/DPWS/2006/03/Training/Lighting";

wsdl.target_ns = "http://www.schneider-
electric.com/DPWS/2006/03/Training/Lighting";

wsdl.location = "http://wsdl.schneider-
electric.com/Lighting.wsdI";

serv = simple_service_create("http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1", service _ns, wsdl);

simple_service_add_port_type(serv, portl);
simple_service_add_port_type(serv, port2);

As seen, the Simple Service has some propertiegnege (declared in the Simple
Service creation procedurmple_service_create), a namespace prefix and URI
(Uniform Resource Identifierand a WSDL namespace and location. These prepexte the
same of the normal Service, and some of them a¥d ursthe already explained generated

path to reach a specific element, like the sermame. Also, the WSDL-related ones exist

87
only for compatibility with the respective staticP®/S service, as they are obsolete in

dynamic-only DPWS services.

The created Simple Service scheme can be segguimefr.1.

[Simple Service]
http://www.schneider-electric.com/DPWS/2006/03/Training/Light1
Operation Operation
Switch GetStatus
[Message] [Message] [Message]
SwitchMsg GetStatusReqMsg GetStatusRespMsg
MessagePart MessagePart
PowerOut Powerln
Element1 [Element 1] Element1
S i Power N
(" SimpleType: |nos
TOKEN

e
Spp——

[Restriction]

-
-—‘-' -.-.-'“Iu
-

- -
-~ -
-

-y

[ON, OFF]

H .

[Enumeration]

Figure 7.1 — Implemented Simple Service

The Event Router-Scheduler was used to the commtimicbetween modules. This

means the module-programming way was used.

Only two modules were implemented for this exampkejt is only to demonstrate it
by the simplest way. The code of modules’ creaitashown next.

module = module_create(1, ERS_USER_INTERFACE);
if(module->id <= 0) {

printf("\nError creating an module_type\n");
if(module->id == -1);

printf("Could not create a list'\n");
if(module->id == -2);

printf("Could not create a semaphore!\n");

}
module_create(2, ERS_ COMMUNICATION);

88

The module creation is very simple. Each moduletrhase two parameters: an ID,
that is a unique identifier (number), and a typlee Existent types must exist in a proper ERS
array. In this case, the two modules are the Usiarface module and the Communication
module. Notice that the ERS module does not nedxk toreated (obviously), as it is built-in
the application. Although the creation of modulesdone with the calling of the proper
functionmodule_create , it can be useful to put some extra code likeahe seen on the

creation of the first (User Interface) module, éorors-catching, like memory shortage.

Next is a self-explaining piece of code used. lobgs to the dynamic server, and this

is specifically the message processing code:

void handleMsg(){
(-..)
while(1){
msg=event_get(1,ERS_BLOCK);
switch (msg.action) {
case DPWS_FAILURE:
exit(1);
case RECEIVED_DPWS_MSG:
controler=(controller_info*)msg.parameters;

if (Istrcmp(controler->service_name, "http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1"))
{
eleml = controller_get_element(controler,"Power");
value=(char*)element_get_value(elem1);
printf("->light %s device %d \n", value, control er->device_id);

controller_info_free(controler);
break;
case RECEIVED_RESPONSE_DPWS_MSG:
event_send(1,ERS_HI,msg);
break;

As shown, the lamp module is blocked waiting fon@ssage from the communication
module fnsg = event_get(2, ERS_BLOCK)). The program only advances when a new

message is available. Then it checks the actioendded to be executed: if it is a failure

89
message, it quits the application, if it is a DPW&ssage from the communication module, it
checks if it IS an existent service ("http://wwwvheeider-
electric.com/DPWS/2006/03/Training/Light1") andtifs so, retrieves the value intended and
writes on the console. Finally, if it is a messagg an answer event, it forwards the message

to the User Interface module (module 1), with hpylority (event_send(2, ERS_HI,

msg)).

As already told, Graphical User Interface (GUI) miedwas created to be easy to
understand the new features. The GUI was startstide the procedures happening with the
background DPWS services. This implementation vese dy Alexandre Rodrigues.

A normal DPWS lighting server service was put ragnialone. So, there were no

devices. This s shows in figure 7.2, as there aneanghbors.

Menu
Back Meighbours Front Meighbours

Frendly Marme Device Id Frendly Marme Device Id

Dpws has started. ...

Figure 7.2 — example GUI with no neighbors detected

Then, some dynamic services were started, and e¢blieas were found, as seen in

figure 7.3.

90

Menu

Back Meighbours Fronk Meighbours

Frendly Mame Device Id Frendly Mame Device Id
Light 1805 1 Light 1805 1

Light 1795 2 Light 1795 2

Light 1779 3 Light 1779 3
Conveyor 1544 7 Conveyor 1544 7
Conveyor 1873 g Conveyor 1873 g

Dpws has started....

Figure 7.3 — example GUI with some neighbors detead

The next step was to select one neighbor, withréspective operational buttons

appearing on the GUI. This is illustrated in figurd.

Fronk Meighbours

: Frendly Mame Cevice Id
:Ligh 1795 z2

] Light 1779

Ifu:un'-.few:ur 1544 7
Conveyor 1873 g

‘ Set Light OM ‘

‘ Set Light OFF ‘

Figure 7.4 — neighbor selected and respective opdiragy buttons

Finally, a Switch ON order was given, with the wat lamp turning ON. This is

illustrated in figure 7.5.

91

Front Meighbours

Frendly Mame Cevice Id
iLight 1795 i1

Light 1779 2

Light 1799 3

Figure 7.5 — light turned ON

To finalize, next is shown the content of the SG&Relope passed by the application.
It can be seen the service name, the port typerendperation, as well as the intended value.

xmins:lit="http://www.schneider-
electric.com/DPWS/2006/03/Training/Light1">
<SOAP-ENV:Header>
<wsa.To>
http://169.254.184.154:9876/d2ee4d54-9853-11dc- 8ba9-
001302e329dc
</wsa:To>
<wsa:Action>
http://www.schneider-
electric.com/DPWS/2006/03/Training/Lightl/Switch/Po wer
</wsa:Action>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<wsh:Power Value="ON" />
</SOAP-ENV:Body>

The results were very satisfactory, because a wmsplete possible version of the

SDPWS idea was successfully implemented.

92

93

Chapter 8

Conclusion

The results of this work show the feasibility oetimproved support towards easy
service creation, that enables novel device netwgr&rchitectures and holds the promise of
ease the development, integration, deployment, ter@aamce and lifecycle management of
devices and services. Advantages of such a systerolear, services can be added directly
and components of the device can be changed witinmal reconfiguration and without the

need of re-deploy components.

The adoption of a “bio-inspired” modular structureakes possible to design and
develop modules with distinct and independent flonst but complementary to each other,
forming complex, intelligent and social componeifitise resulted component’s structure may
help in decreasing the development time and effothe integration into the system. The
prototype development shows the feasibility andiuies of the concept, providing the
possibility to develop reusable and functional mMedwand deploy them into service-oriented
components. Developers just don’t need to care imtdgr-module synchronization, which is

one of the main problems of real-time interaction.

The dynamic creation of new services allows machgwenfiguration and reprogram
without shutting down the system, and eases th&terance. This strongly increases the

shop-floor agility.

94

Future Work

The main challenge is to deploy these techniqueseah devices and proof their
applicability in industrial automation systems. @threquirements are to stabilize the
implementation and improve the interaction concept®ng distributed components to meet

the objectives of flexible production and automatio

Also, it is needed to enhance both concept andlolevent of the ERS and the
Dynamic Service. A special case is to enhancdleiély in the deployment of components
and its modules, by developing a specification etadata for modules that would permit the

creation of them without worrying about how theoimhation comes from the other modules.

95
References

[1] Jammes, F., Mensch, A., Smit, H., 2005, Seraigtented device communications using
the devices profile for web services, Proc. of #feinternational workshop on Middleware
for pervasive and ad-hoc computing, ACM Press, 1-8

[2] Jennings, N. R., Wooldridge, M., 1998, Applicais of intelligent agents, Springer-Verlag
New York, Inc., 3-28

[3] Schoop, R., Neubert, R., Colombo, A., 2001, Altlagent-based distributed control
platform for industrial flexible production system®7th Annual Conference of the IEEE
Industrial Electronics Society, 1: 279-284

[4] Colombo, A., Neubert, R., Schoop, R., 2001, &uson to holonic control systems,
Proceedings of the 8th IEEE International Confegemrt Emerging Technologies and Factory
Automation, 2: 489-498

[5] Colombo, A., Jammes, F., Smit, H., Harrison, Rastra, J., Delamer, I., 2005, Service-
oriented Architectures for Collaborative Automai;io®2‘d Annual Conference of IEEE
Industrial Electronics Society, 6

[6] Moran, N. A., 2006, Symbiosis, Current Biologell Press, Elsevier Inc., 16/20: 866-871
[7] Wooldridge, M., 2002, Introduction to MultiAgesystems

[8] Mendes, J. M., Leitdo, P., Colombo, A. W., Rast F., 2008, Service-oriented Control
Architecture for Reconfigurable Production Systetnsappear in the Proceedings of the 6th
IEEE International Conference on Industrial Infotiosa

[9] Gray, H., 2000, Gray's Anatomy of the Human Bo®Q. Edition (Original by
Philadelphia: Lea and Febiger, 1918), New York:tieay.com

[10] Cachapa, D, Colombo, A, Feike, M, Bepperlidg,“An approach for integrating real
and virtual production automation devices applyitfte service-oriented architecture
paradigm”, Proc. of the IEEE Conference on Emerdiaghnologies & Factory Automation,
pp. 309-314, 2007

[11] Ribeiro, L, “A Diagnostic Infrastructure for dhufacturing Systems”, 2007, Master
Thesis, New University of Lisbon

[12] Barisic, D, Krogmann, M, Stromberg, G, Schrap) "Making Embedded Software
Development More Efficient with SOA," ainaw,pp.9946, 21st International Conference on
Advanced Information Networking and Applications k&hops (AINAW'07), 2007

[13] European 6th Framework Project. PROMISE - BobdLifecycle Management and
Information Tracking using Smart Embedded Systdtip://www.promise.no/, 2005-2008

96

[14] SIRENA. Service Infrastructure for Real-timenBedded Networked Applications.
http://www.sirena-itea.org, 2005

[15] SODA. Service Oriented Device and Delivery Witecture. http://www.soda-itea.org,
2006

[16] European 6th Framework Project. SOCRADES -viSer Oriented Cross-layer
Infrastructure for Distributed smart Embedded Desidttp://www.socrades.eu/, 2006

[17] Hayashi, H., 1993, The IMS International Cbbeative Program, Proceedings of thd'24
ISIR, Japan Industrial Robot Association

[18] J. Barata, L. Ribeiro and A. Colombo, “Diagisosgsing Service Oriented Architectures”,
Proceedings of the IEEE International Conferencéndnstrial Informatics, Vol. 2, pp.1203-
1208, 2007

