Universidade do Porto e Faculdade de Engenharia

Engineering Software for the Cloud

A Pattern Language

Tiago Boldt Sousa

May 2020

Scientific Supervision by
Hugo Sereno Ferreira, Assistant Professor

Filipe Correia, Assistant Professor

In partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Informatics Engineering
by the

Doctoral Program in Informatics Engineering, FEUP

http://www.fe.up.pt
mailto:tiagoboldt@gmail.com

ii

Contact Information:

Tiago Boldt Pereira de Sousa
Faculdade de Engenharia da Universidade do Porto

Departamento de Engenharia Informatica

Rua Dr. Roberto Frias, s/n
4200-465 Porto
Portugal

Tel.: +351 22 508 1400
Email: tiagoboldt@gmail.com

This thesis was typeset on an Apple® MacBook® Pro running Mac OS® using a Vim-based editor and the free

XATEX typesetting system. The style is based on the one created by Hugo Ferreira for this own Ph.D. dissertation.

“Engineering Software for the Cloud: A Pattern Language”
Copyright © 2020 Tiago Boldt Sousa.
All rights reserved.

Abstract

The last decade brought exponential growth in the number of active users on the Internet.
Web application giants such as Google, Amazon, and Facebook achieved a user base
of billions. Software and their teams began to operate their web applications at an
unprecedented scale, vastly enabled by the introduction of cloud computing by Amazon
introduced in 2006, revolutionizing how professionals developed and operated their
software. The dynamic allocation of hardware facilitated (ultra-)large scale applications
to be attainable by any team, mostly due to the shift between CAPEX (the capital
cost of ownership of traditional data centers) to OPEX (the operational cost of paying
on-demand). However, along with new possibilities, cloud computing introduced new
development challenges: lack of broad expertise, novel architectures, new security threats,
new models of governance, and dynamic scalability are just some of the most impacting
ones. Recent surveys still evidence the lack of expertise as the principal challenge for cloud
development teams [Rigl9].

In this dissertation, we research how engineers address the intricacies of designing
software for the cloud. Documented practices in this domain fall in a wide range of
scientific validity, with most originating from limited observation or experience, lacking
empirical validation and thus being insufficient in supporting informed design decisions.
We set ourselves to identify and document successful design practices for cloud software

in a way that professionals can easily employ. With such a goal in mind, we claim that:

While engineering software for the cloud, there are categories of recurring
problems, which solutions converge from good design principles, that adjust
to the context where they emerge. Their adoption is a consequence of (1) the
awareness a team has of a problem, (2) the characteristics of the product and

the company, and (3) the way these solutions relate amongst themselves.

A preliminary study describes a reference cloud architecture for a research project that
supports Ambient Assisted Living. From that experience, we move to study cloud-related

practices and tools with a systematic interview of 25 Portuguese startups. This initial

iv

exploration bootstrapped a catalog of potential patterns, which we empirically assess
within a local startup, measuring the team’s performance before and after adopting the
pattern catalog. We observe improvements in operations, configurations management, and
build error frequency. This preliminary study provides plausibility to pursue our hypothesis
further.

We follow extensive literature research and experimentation to mine ten novel
cloud patterns, and document them, inspired by Gamma et al. [Gam+94], and the
subsequent Software Engineering pattern community. The novel patterns introduced
in this dissertation are: ORCHESTRATION MANAGER, CONTAINERIZATION, JOB
SCHEDULER, AUTOMATED RECOVERY, FAILURE INJECTION, EXTERNAL MONITOR, LOG
AGGREGATION, PREEMPTIVE LOGGING, SERVICE DISCOVERY, and MESSAGING SYSTEM.
We relate them into a pattern language, along with two practices already well described
in the literature: INFRASTRUCTURE AS CODE and AUTOMATED SCALABILITY.

To understand how technology companies adopt these patterns, we employed two
complementary empirical methods in industrial scenarios. The first is a case study with
five local startups, relating their practices with the ones proposed in the pattern language.
During this exercise, we were able to identify additional details used to improve the pattern
language. We also hypothesized that these patterns gain relevance for professionals as their
product and company matures, and would expect to observe the more mature companies
implementing an increased number of patterns. The second was a survey inquiring over
100 professionals about their cloud practices while querying their usage (either directly or
indirectly) of the identified patterns. We relate three variables with the number of patterns
adopted: product operation’s strategy, the number of active monthly users, and company
size. We conclude that for the three variables, the average pattern adoption increases with
increased maturity in that variable, with particular relevance in the number of monthly
active users, the only variable providing relevant statistical results.

Main future work will (1) expand the pattern language, (2) repeat our experimental
research with a broader population, and (3) perform controlled experiments to further

understand the impact of applying this pattern language.

Resumo

Durante a tultima década verificou-se um crescimento exponencial no nimero de
utilizadores ativos na Internet. Gigantes da web como Google, Amazon e Facebook
atingiram milhares de milhoes de utilizadores. Potenciadas pela computacao na nuvem
(cloud) introduzida pela Amazon em 2006, as equipas de software conseguem atingir uma
escala sem precedentes. A alocacao dinamica de hardware capacita o desenvolvimento de
aplicagoes em grande escala, principalmente devido a mudancga do paradigma financeiro
de CAPEX (o custo de propriedade dos data centers tradicionais) para OPEX (o custo
de utilizagdo de hardware como servi¢o). Juntamente com as vantagens, a introdugao
da cloud trouxe novos desafios de engenharia, como a falta de experiéncia, introducao
de novas arquiteturas, novas ameacas de seguranca, modelos diferentes de operacao e
escalabilidade dinamica, sao alguns dos exemplos com maior impacto. A literature mostra
que a falta de recursos e de conhecimento sao em 2019 dos maiores desafios para as equipas
de desenvolvimento [Rigl9].

Nesta dissertagao, investigamos como os engenheiros abordam a complexidade do
design de software para a cloud. De igual modo, demonstramos que as praticas
documentadas nao apresentam validade cientifica relevante, sendo que a maioria é produto
da observacao ou de experiéncia limitada, portanto, incapaz de apoiar a decisao informada
no desenho de software.

Neste sentido, pretendemos identificar e documentar boas praticas de design de
software para a cloud, de forma a serem facilmente aplicadas por profissionais. Com

hipétese principal, propomos demonstrar que:

Ao desenhar software para a cloud, existem categorias de problemas
recorrentes, para 0s quais 0s profissionais convergem para solucoes baseadas
em bons principios de desenho, adaptadas ao contexto onde sio observadas. A
adogao destas solugoes resulta da (1) consciéncia da equipa sobre a ezisténcia
do problema, (2) das caracteristicas do produto e da equipa, e (3) da forma

como estas solugoes se relacionam entre si.

vi

Num estudo preliminar, desenhamos uma arquitetura de referéncia para um projeto
de investigacdo no dominio de Ambient Assisted Living. Com base nessa experiéncia,
comecamos a investigar praticas e ferramentas relacionadas com a cloud, aplicando
entrevistas sistemdticas a 25 startups portuguesas. Esta investigacdo permitiu criar
um catalogo de padrdes que posteriormente avaliamos junto de outra startups. Como
resultado, foram observadas melhorias nas operac¢oes, na gestao de configuracoes e
menor frequéncia de erros de compilacao dessa startup. Este estudo preliminar fornece
credibilidade para continuarmos a investigar a hipétese apresentada.

De seguida, através de pesquisa bibliografica e experimentacao de tecnologias,
capturamos padroes de desenho de software para a cloud, baseadas no trabalho de
Gamma et al [Gam+94] e subsequentes contribuigdes da comunidade de padroes.
Os novos padroes introduzidos nesta dissertacdo sdo: ORCHESTRATION MANAGER,
CONTAINERIZATION, JOB SCHEDULER, AUTOMATED RECOVERY, FAILURE INJECTION,
EXTERNAL MONITOR, LOG AGGREGATION, PREEMPTIVE LOGGING, SERVICE DISCOVERY
e MESSAGING SYSTEM. Estes sao relacionados numa linguagem de padroes, juntamente
com duas praticas previamente descritas na literatura: INFRASTRUCTURE AS CODE e
AUTOMATED SCALABILITY.

Para entender como as empresas adotam estes padroes, realizamos dois estudos
empiricos complementares em ambientes industriais. O primeiro é um estudo de caso
com cinco startups, que relaciona as suas praticas com as que sao propostas na linguagem
de padroes. Durante este estudo, conseguimos identificar novos detalhes de implementacao
que nos permitiram melhorar a linguagem dos padroes. Nesta fase, levantamos a hipotese
de que nimero de padroes adoptado tende a crescer a medida que os produto e empresa
amadurecem. Com esta premissa, esperamos observar que empresas mais experientes
implementem um maior niimero de padroes.

De seguida fizemos um survey com o objetivo de recolher informacao de 100
profissionais sobre a utilizacao das praticas da linguagem de padrdes nos seus produtos.
Para tal, relacionamos trés varidaveis com o nimero de padroes adotados: a estratégia
de operagao do produto, o ntimero de utilizadores ativos mensalmente e o tamanho da
empresa. Concluimos que, para as trés variaveis, o nimero médio de padroes adotados
aumenta com o aumento da maturidade dessa varidavel, com particular relevancia no
numero de utilizadores ativos mensalmente, a tnica variavel que fornece resultados
estatisticos relevantes.

Como trabalho futuro destacamos a importancia de (1) expandir a linguagem de
padroes, (2) repetir o caso de estudo com maior amostra, e (3) realizar experiéncias

controladas para avaliar o impacto da utilizacao da linguagem de padroes.

Contents

List of Figures XV
List of Tables xvii
1 Introduction 1
1.1 Context e 2

1.2 Motivation e e 3

1.3 Engineering Software for the Cloud 3

1.4 Patterns and Pattern Languages)

1.5 Research Goals and Contributions 6

1.6 How to Read this Dissertation 7

2 Background 11
2.1 The World Wide Web 12
2.2 From SOA to Microservices v 13
2.3 Cloud Computing 14
2.3.1 Brief History of the Cloud 14

2.3.2 Service Models 15

2.4 A Note on Agile Software Development 18
2.5 DevOps . . . o e 19
2.6 Software Design and Design Patterns 19
2.6.1 Software Design Patterns 21

2.6.2 The Epistemology of Patterns 22

2.7 Summary ... oL 23

3 Designing Software for the Cloud 25
3.1 Intricacies from Cloud Software Development 25
3.1.1 A Survey over Cloud Adoption 26

3.1.2 Concerns from Cloud Design 28

viii

CONTENTS

3.1.3 Cloud Failures
3.1.4 Discussion e
3.2 Cloud Design Patterns oo
3.2.1 Arcitura Cloud Patterns
3.2.2 Cloud Computing Patterns Book
3.2.3 Amazon Web Services Reference Architectures
3.2.4 Azure Design Patterns oL
3.2.5 Pattern Language for Microservices
3.2.6 Delivery Patterns o
3.27 Other Works
3.2.8 Discussion
3.3 SUMMATY e

Problem Statement

4.1 Thesis Statement Lo
4.2 Research Questions
4.3 Research Strategy and Methodology
4.4 SUMMATY . . o o v v et e e e e e e

Preliminary Studies

5.1 Experimentation with Cloud Architectures
5.1.1 Project Overview
5.1.2 Development Considerations
5.1.3 Conclusion

5.2 A Pattern Catalog for DevOps and Cloud
5.2.1 Interviewing Process L.
5.2.2 Pattern Catalog L
5.2.3 FEmpirical Assessment of the Patterns in the Industry
524 Results
5.2.5 Conclusions Lo

5.3 SUMMATY o e e e

Engineering Software for the Cloud

6.1 Pattern Structureo L
6.2 Methodology
6.3 Pattern Language

6.3.1 Automated Infrastructure Management

47
47
48
50
52

55
55
56
60
61
62
62
63
64
66
66
67

10

6.3.2 Orchestration and Supervision
6.3.3 Monitoring Patterns
6.3.4 Discovery and Communication Patterns

6.4 Adopting the Language

6.4.1 Sequence for a Web Application

6.5 Summary

Orchestration and Supervision Patterns

7.1 Overview
7.2 Containerization
7.3 Orchestration Manager
7.4 Automated Recovery
7.5 Job Scheduler L.
7.6 Failure Injection L.
7.7 Summary

Monitoring Patterns

81 Overview
8.2 Preemptive Logging
8.3 Log Aggregation, .
8.4 External Monitoring
85 Summary

Discovery and Communication Patterns

9.1 Overview e
9.2 Messaging System
9.3 Service Discovery L.
9.4 Summary
Industrial Case Study
10.1 Goals
10.2 Methodology
10.3 Interview Protocol
10.3.1 Introduction
10.3.2 Infrastructure Management
10.3.3 Orchestration and Supervision

10.3.4 Monitoring L oL

CONTENTS

ix

X

CONTENTS

10.3.5 Discovery and Communication 157
10.3.6 Hypothetical Scenario L. 158
10.4 Case Study: LabOrders o 158
10.4.1 Product Overview 159
10.4.2 Infrastructure Management 160
10.4.3 Orchestration and Supervision 161
10.4.4 Discovery and Communication 161
10.4.5 Monitoring Lo 161
10.4.6 Summary 162
10.5 Case Study: HUUB 163
10.5.1 Product Overview 164
10.5.2 Infrastructure Management 165
10.5.3 Orchestration and Supervision 166
10.5.4 Discovery and Communication 166
10.5.5 Monitoring Lo 166
10.5.6 Summary 167
10.6 Case Study: Infraspeak oo 168
10.6.1 Product Overview 169
10.6.2 Infrastructure Management 170
10.6.3 Orchestration and Supervision 170
10.6.4 Discovery and Communication 171
10.6.5 Monitoring 171
10.6.6 Summary oL 171
10.7 Case Study: SwordHealth, 172
10.7.1 Product Overview 173
10.7.2 Infrastructure Management 174
10.7.3 Orchestration and Supervision 174
10.7.4 Discovery and Communication 175
10.7.5 Monitoring Lo 175
10.7.6 Summary e 176
10.8 Case Study: Velocidi L 177
10.8.1 Product overviewo 177
10.8.2 Infrastructure Management 178
10.8.3 Orchestration and Supervision 179
10.8.4 Discovery and Communication 180
10.8.5 Monitoringo 181

10.8.6 Summary
10.9 Discussion oo
10.10Conclusionso
10.11Threats to Validity
10.11.1 Internal Validity
10.11.2 External Validity
10.125ummaryo

11 Pattern Language Adoption Survey

11.1 Goalso
11.2 Methodology
11.2.1 On Using Questionnaires
11.2.2 Target Audience
11.2.3 Variable identification
11.2.4 Questionnaire
11.2.5 Design and Execution
11.3 Data Analysis

11.3.1 Respondents Characterization

11.3.2 Overall Pattern Adoption
11.3.3 Intent to Adopt
11.3.4 Pattern Relationships
11.3.5 Product Operation Strategy
11.3.6 Active Monthly Users
11.3.7 Company Size.
11.4 Discussion Lo o
11.5 Threats to Validity
11.5.1 Construct Validity
11.5.2 Internal Validity
11.5.3 External validity
11.6 Conclusion. L.

11.7 Summary

12 Conclusion

12.1 Research Questions
12.2 Hypothesis Revisited
12.3 Main Contributions

CONTENTS

Xi

xii

CONTENTS

12.3.1 Review of the State of the Art 223
12.3.2 Reference Cloud Architecture 223
12.3.3 A Pattern Catalog for DevOps and Cloud 224
12.3.4 Patterns and Pattern Language 224
12.3.5 Thesis Validationo oo 225
12.4 Future Work oL Lo 226
12.5 Epilogue 228
Appendices 229
A Cloud and DevOps Preliminary Survey 233
A.1 Interview Protocol 233
A.1.1 Interview Guide Product (IGP) 233
A12 Teams (T).o 233
A13 Pipeline (P)o 233
A.14 Infrastructure Management (IM) 234
A.1.5 Monitoring and Error Handling (MEH) 234
A.2 Preliminary Survey Responses 235
B Survey 239
B.1 Questions 239
B.2 Responses e 246
C Publications 255
C.1 Publications Resulting from this Research 255
C.1.1 Patterns for Software Orchestration on the Cloud 255
C.1.2 Engineering Software for the Cloud: Patterns and Sequences 256
C.1.3 Engineering Software for the Cloud: Messaging Systems and Logging257

C.1.4 Engineering Software for the Cloud: External Monitoring and Fault
Injection 257

C.1.5 Engineering Software for the Cloud: Automated Recovery and
Scheduler 258

C.1.6 Overview of a Pattern Language for Engineering Software for the
Cloud e 258
C.1.7 Design Patterns for Cloud Computing 259

C.2 Other Publications from the Author. 259

CONTENTS xiii

C.2.1 Dataflow Programming: Concept, Languages and Applications . . . 259
C.2.2 Scalable Integration of Multiple Health Sensor Data for Observing
Medical Patterns oo L 260

C.2.3 A Collaborative Expandable Framework for Software End-Users
and Programmers Lo o oo 261
C.2.4 Ubiquitous ambient assisted living solution to promote safer
independent living in older adults suffering from co-morbidity . . . 261
C.2.5 Object-Functional Patterns: Re-thinking Development in a
Post-Functional World L. 261
C.2.6 Monitor, Control and Process — An Adaptive Platform for
Ubiquitous Computing 262
C.2.7 Sensors, Actuators and Services: a Distributed Approach 262
C.2.8 Collaborative Web Platform for UNIX-Based Big Data Processing . 263
C.2.9 A Testing and Certification Methodology for an Ambient-Assisted

Living Ecosystem o oo 263

C.2.10 Testing and Deployment Patterns for the Internet-of-Things 263
C.2.11 Towards a Pattern Language for Writing Engineering Theses 264

C.3 Supervisions e 264

References 267

xiv. CONTENTS

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

5.1
5.2
5.3

6.1

7.1
7.2
7.3
7.4
7.5
7.6

The Iron Triangle 4
Document structure 7
Cloud provider market distribution 15
Google App Engine dashboard L 16
DevOps Periodic Table oo 20
Cloud budget optimization initiatives 27
Cloud adoption challenges 28
Cloud adoption challenges by maturity 28
Twitter Fail Whaleo oo 32
Cloud Computing Patterns Poster 35
Amazon Web Services (AWS) web hosting architecture 37
Chris Richardson patternmap 40
Friedrichsen map for his patterns of resilience 43
Loriedo pattern catalog for containers 44
Cloud computing tools ecosystem 45
Ambient Assisted Living for All (AAL4ALL) project architecture 57
Electrocardiography (ECG) reading use case in AAL4ALL 58
Sequence diagram for an ECG reading in AAL4ALL 59
Pattern language for engineering software for the cloud 72
Containerization forces Lo L 82
Containerization environment variables 83
Containerization resource usage comparison 87
Orchestration manager forces 90
Solution for the orchestration manager example 92

Automated recovery forces Lo 96

xvi

LIST OF FIGURES

7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5
9.6

10.1
10.2
10.3
10.4
10.5

11.3

12.1
12.2

Job scheduler forceso L 103
Chronos configuration interface L. 106
CRON format e 107
Failure injection forces Lo o 110
Preemptive logging forces oo L. 120
Log aggregation forces 124
Log aggregation entities Lo L 126
External monitor forces o o 129
Statuscake user interface L oo 131
Example of services cooperating via message passing 137
Messaging system forces oo L 139
Messaging system example resolvedo 141
Example for service discovery 144
Service discovery forces 145
Solution for service discovery example L. 147
LabOrders architecture o 159
Infraspeak’s architecture L oL 169
Velocidi services overview e 178
Velocidi communication strategy oL 181
Log visualization with Kibana 182
Conditional pattern adoption map 205
Research contribution items. L. 223

Pattern language for engineering software for the cloud 225

List of Tables

3.1
3.2

4.1

5.1
5.2

7.1
7.2
7.3

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2
11.3
11.4
11.5

11.6
11.7

11.8
11.9

Azure design patterns (1/2) 38
Azure design patterns (2/2)o 39
Fundamental research questions, 52
Pattern adoption from the pattern catalog for DevOps and cloud 64
Performance metrics at VentureOak 66
ORCHESTRATION MANAGER: example services 89
ORCHESTRATION MANAGER: example servers 89
ORCHESTRATION MANAGER: example solution 93
Pattern adoption by LabOrders 162
Pattern adoption by HUUB, 168
Pattern adoption by Infraspeak 172
Pattern adoption by SwordHealth 176
Pattern adoption by Velocidi 183
Pattern adoption by interviewed companies 184
Individual pattern adoption results from the survey 200
Pattern adoption intent L o 202
Conditional probability of pattern adoption 203
Pattern adoption per operation strategy 206
Statistical analysis between average pattern adoption and product

operation strategies oL Lo 207
Pattern adoption per active monthly users 208
Statistical analysis between average pattern adoption and active monthly

USETS © v v v o e e e e e e e e e e e e e e e 209
Pattern adoption per number company size 210
Statistical analysis between average pattern adoption and company sizes . 211

xviii

LIST OF TABLES

Al
A2

B.1
B.2
B.3
B.4
B.5
B.6

C.1
C.2
C.3

Responses to the preliminary survey (1/2) 236
Responses to the preliminary survey (2/2) 237
Respondent classification from survey (1/3) 248
Respondent classification from survey (2/3) 249
Respondent classification from survey (3/3) 250
Pattern adoption survey responses (1/3) 251
Pattern adoption survey responses (2/3) 252
Pattern adoption survey responses (3/3) 253
Published research from this researcho 256
Other publications 260

SUPETVISIONS o o e e e e e 265

Foreword by Joao Azevedo

Over the last decade, the way most software applications are delivered to end-users
changed significantly. The ubiquity of internet access shifted the paradigm from desktop
applications to web-based applications. This has made software applications more
accessible, data more readily available, and users more connected. This shift, allowed by
the widespread internet access, liberated engineers from challenges related to developing
for multiple operating systems, packaging, and distributing updates. It has, however,
introduced new challenges. There are higher security risks when using web-based
applications, internet connectivity impacts the experience, and maintenance fees are
higher, just to name a few. Cloud computing, introduced by Amazon Web Services,
democratized access to computing resources. While the idea of not having to physically
manage the required resources to run an application is compelling, it doesn’t come without
implications to the ways we design software.

As software engineers designing and developing applications that take advantage
of cloud computing, we are faced with problems orthogonal to the application domain.
How do we run our applications in an environment that we don’t manage? How do we
ensure that such an environment provides the resources we need? How do we make sure
that applications are running as expected? How do we handle unexpected loads to our
application that is now exposed to the web? The vast majority of these questions were
answered by multiple people, often in a similar fashion.

This thesis delivers solutions to common problems when designing and developing
software that runs or interacts with the cloud. It does so by identifying and documenting
patterns applied by the industry to solve common cloud-related issues. It also correlates
the adoption of these patterns with different software company categories, both validating
their relevance and applicability in different scenarios. This work is valuable for
software engineers venturing into cloud development for the first time, due to the
solutions presented here for problems that they’re likely to encounter. Experienced cloud
practitioners will also value it due to the case studies that showcase the usefulness and

applicability of the different patterns for different scenarios.

XX

LIST OF TABLES

I was fortunate to work with Tiago while he was writing this thesis, and we were
collectively struggling, as a company, with many of the issues whose possible solutions are
presented here. I, therefore, recommend this work to all software engineers working with

cloud solutions, regardless of their experience with it.

Preface

I often ask colleagues what drove them to become IT professionals, only to find the answer
is a cliché. I enjoyed playing video games as a kid, most say, so I went ahead and tried to
understand how the machine worked as well. My story was no different. I remember the
286 PC with DOS 5 at my grandparent’s house, around 1993, which my uncle used for his
terminal-based spreadsheets, with Lotus, I believe. I remember thinking how incredible
it was for it to be able to recalculate everything once a cell was changed. But, of course,
there was one thing that impressed me far more than the spreadsheets. Gorillas, a game
distributed with QBASIC as a demo for the programming language, hooked me to that
machine. Two gorillas had to throw a banana at each other, in turns, asking the player to
input the angle and speed of the throw. When you managed to hit the other, an incredible
explosion (by the standards at the time) would destroy your opponent. Browsing images
of the games today still brings me great memories.

By 1995, computers became a more affordable piece of technology and entertainment.
My enthusiastic wishing for one eventually led to my parents to acquire a Compaq Presario
486 PC, 8MB of RAM, 640 MB of disk space and the at-the-time disrupting compact disk
reader, running Windows 3.1. A free upgrade to Windows 95 would soon follow by mail
in a Compact Disk. I quickly managed to get some friends and family to lend me some
games in floppy disks, but I had no idea how to start them. However, I had an MS-DOS
user manual, so I experimented with the commands in the book and learned what they
did by experience. They were obviously in English, which I knew little at the time, so I
had to do it with a dictionary next to the manual or keep bothering my mother for help.
Along the way, I often deleted critical files from the file system, so next in the learning
process was how to reinstall the operative system, which became a rock star-like skill with
friends and family. A few years later, a friend lent me a photocopied manual for Visual
Basic 6, which I used to learn about programming and building little programs, like visual
calculators or simple games.

There was, though, one thing while using computers and consoles that I always felt

lacking. They were much more fun when shared than when used by myself. The late

xxii

LIST OF TABLES

’90s introduced me to the game-changing Internet. My first modem came inside the Sega
Dreamcast console. It had a browser, a keyboard, and it enabled accessing online chat
groups. During those early days, Internet access was limited in time and speed. Despite
this limitation, it seemed possible to read about anything and reach anyone on a global
scale. That felt incredible. As soon as I got an updated desktop computer, my Internet
time expanded, and I used it to further my computer knowledge, which at the time meant
building computer scripts and hacking into friends’ computers. How fun it was to have a
friend in a panic saying that their CD drive kept ejecting. The pleasure in it came not
from having control over a friend, but from having control over the machine.

At the age of 16, I became interested in Linux and managed to have a local cyber-cafe
owner teach me about it and get a dual boot at home soon after I compiled my kernel
with support for my graphics card to play games with it. I was already an engineer at the
time, by definition, so it was only natural to pursue a Masters in Informatics Engineering.

I was always inclined to learn more about how people could cooperate using computers.
Web 2.0 was happening in full effect during my Masters, and Internet reach was expanding
at an incredible pace. I was fortunate to do my Master’s dissertation on HTML5 and how
it enabled a new type of interactivity between users and web applications, which furthered
my curiosity about the architecture of web applications at scale.

Right after graduation, and a short trip through the industry as a contractor for
ShiftForward, my supervisor, Hugo, challenged me to go back to academia and work
on cool stuff. Whatever cool stuff interested me, as long as I was willing to work for it,
he would sponsor a Ph.D. proposal. The idea pleased me, so I got a scholarship with
INESC TEC to help them implement the infrastructure for a research project. The initial
experimentation with large scale architectures furthered my curiosity on the subject. With
Cloud Computing gaining traction, it became clear that I had found my cool stuff subject.

I set myself to research best practices to design software for the cloud, which led me
to today, dear reader, and the completion of this dissertation. I hope you find this work
meaningful for personal use. Feel free to share it with your peers. I believe its knowledge,
while respecting academic research guidelines, will be readily applicable in the industry
and help professionals design, improve, or validate their cloud architectures.

This dissertation would not have happened without people I hold dear supporting me
along the way, to whom I am immensely thankful. First and foremost, I dedicate this
work to my parents, who supported my curiosity for computers during my early years and
were encouraging me towards a Ph.D. since before I finished my Masters. To Mariana,
who (tried to) kept me sane by ensuring I had a life outside this research along the way.

To Joao and Sandra, for making dinner plans most weeks, allowing me to forget work for

LIST OF TABLES

some hours. To Hugo, who some (many) years ago challenged me into this path, and was
always available to discuss cool stuff, as far as it was after 14:00. To the team at Velocidi,
with whom I've been cooperating since 2011, for being incredible engineers, discussing,
and putting into practice most of the knowledge gathered in this dissertation, and to
Paulo Cunha, who taught me much about running a business. To Ademar Aguiar, who
co-supervised the early stages of this research and to Filipe Correira, who co-supervised
the later stages of this research. To Lina, Marisa, Sandra, and Pedro, the staff from the
Informatics Engineering Department from FEUP, for guiding me through the intricacies
of academic bureaucracy. Finally, to so many other colleagues, friends, and students, who
along the way positively influenced this research or my life: André Cardoso, André Restivo,
André Silva, Bruno Lima, Carlos Teixeira, Diana Norinho, Diogo Guimaraes, Diogo Sousa,
Francisco Almeida, Joao Azevedo, Joao Costa, Joao Pascoal Faria, Joao Pedro Dias, Joao
Pedro Pereira, Joao de Almeida, Luis Ferreira, Miguel Montenegro, Ruben Barros, Rui

Gongalves, Zé Miguel Neves, the PLoP community, and so many others.

-io.g,o @’&U/"A‘

xxiii

xxiv LIST OF TABLES

Chapter 1

Introduction

1.1 Context e 2
1.2 Motivation e 3
1.3 Engineering Software for the Cloud 3
1.4 Patterns and Pattern Languages)
1.5 Research Goals and Contributions 6
1.6 How to Read this Dissertation 7

Access to the Internet became a right in civilized countries [Uni03], enabling ultra-fast
communication and collaboration, facilitating a new generation of web-based applications.
These applications introduce requirements unprecedented to software engineering, such
as resiliency and scalability, ensuring that they are always available even under variable
demand. Cloud computing provided resources that enable developers to cope with
these requirements but demands a paradigm shift from their traditional approach to
software development and, mainly, operation. This work researches how cloud software is
engineered, from design to operation. We identify a lack of empirically validated knowledge
in this domain and contribute to it, with a set of ten solutions for recurrent problems (to
which we call patterns), that we relate in a pattern language. We validate the impact
of this knowledge via a case study with five startup companies and a survey with over
100 responses. This research enables cloud engineers to make informed decisions while

designing their cloud software.

INTRODUCTION

1.1 Context

The Internet is strongly influencing how we live our lives. The World Wide Web (WWW)
enables us to buy groceries, stream TV shows, and have all our colleagues, friends, and
family accessible on the other side of the smartphone that we carry on our pocket. Over
53% of the world’s population is online daily. These individuals are potential users
for any online businesses, making the WWW an appealing channel for businesses to
reach their target audience. That motivation resulted in the creation of over two billion
websites [Int19].

Over the years, websites became increasingly more complex, ranging from static
HTML sites to highly complex browser-based applications, such as Google Drive or
Facebook [And16]. They have also grown to manage large volumes of data for tens
of millions of users. Along the way, infrastructure and technologies had to adapt to
accommodate the increased complexity, motivating the birth of cloud computing.

While targeting a global market, development teams had to worry about scaling
their hardware and software. Scaling infrastructure required a preemptive investment
in hardware, which could be a prohibitive cost to some companies. Without the proper
preparation, traffic spikes could overwhelm the infrastructure supporting the application,
rendering it unresponsive, an unacceptable scenario, since users do not cope well with
failing software and quickly jump to the next available alternative. With the global reach
of web applications, and with demand varying during the day, dynamically scaling the
software became a latent necessity.

To address this opportunity, Amazon introduced the notion of cloud computing in
2006 [ZCB10]. Cloud deprecated the need to invest in infrastructure for operating software
over the Internet. Instead, it introduced a service model where software, platforms, or
infrastructure could be allocated on-demand, as a service, on a pay-per-use basis, working
as a commodity, just like electricity [Ban+11; TCB14]. Cloud providers achieved efficiency
through an economy of scale, benefiting both the provider and customer [Sav11]. This
approach enabled small software companies and individuals to become competitive at
building software for a global market. This was partially possible due to the ability to
dynamically scale their system, considering the current traffic generated by their users at
any given point in time [Bel+11].

Cloud empowered developers to operate their software at a larger scale while
introducing the challenge of operating at such a scale. New architectures, frameworks,

and tools were required for adopting this new paradigm.

MOTIVATION

1.2 Motivation

Software engineering is one of the fastest expanding branches of engineering, further
motivated by the widespread of the Internet and the explosive growth of software
businesses built on top of it. The demand for new engineers is growing at a higher rate than
the pace at which they are graduating [Tafl5]. Not only the human resources available
are scarce, but there is also a lack of high-quality support materials on how to develop
for the cloud [Rig19].

Given the limited human resources and lack of reliable knowledge sources, it is not
trivial for engineers to make informed decisions while building software. To facilitate their
job, we need to understand the complexity of the problems they most often address. What
recurrent problems can we observe while developing software for the cloud? Are there key
characteristics that influence when problems emerge? What strategies can we adopt to
solve them? How do the problems vary with the context, and how can we adapt to it? How
can we capture this knowledge and make it readily available to other cloud engineers? Are
companies even aware that these problems exist?

Cloud-related architectures, technologies, and overall knowledge have grown to a
proportion that became challenging to navigate. There is an evident lack of research
supporting architectures for cloud software [Rigl19], namely, identifying what forces drive
successful cloud software, and the guidelines to optimize them. While some authors are
working towards them, these are rarely supported by scientific evidence.

With this work, we propose to research the problem of designing software for the
cloud, deprecating the need for months of investment in Research and Development
(R&D), or preventing sub-optimal decisions while developing cloud products. We want
to provide developers with empirically validated knowledge that will help them make

informed decisions for their cloud architectures.

1.3 Engineering Software for the Cloud

Cloud adoption is growing, but not without its engineering challenges, as further
elaborated in Chapter 3 (p. 25). Software engineers are tasked with the challenge of
designing software for the cloud and ensure its success. Thinking about it, how do we
decide how to designing software? What makes it a complex task? Can we distinguish
good and bad design? What influences our implementations?

To address these questions, let us start by understanding what design is in the context

of software. The Merriam-Webster dictionary defines design as 1) “a particular purpose or

INTRODUCTION

intention held in view by an indiwvidual or group”, 2) “a plan or protocol for carrying out
or accomplishing something”, and 3) “an underlying scheme that governs functioning,
developing, or unfolding” [Mer]|. Software design relates to these three descriptions.
Engineers have to identify the purpose of the product that they want to build and
synthesize a plan to build it by defining the scheme or construct that will support its

development.

Time

Quality

Scope Cost

Figure 1.1: The Iron Triangle [Brol5; Atk99] depicts the competing forces that software
engineers need to balance while developing their software: time, cost, quality, and
scope. Changing one will always result in an impact on the others.

The development process is driven by the iron triangle! forces: time, cost, and scope,
and how they influence quality [Brol5; Atk99], depicted in Figure 1.1 (p. 4). These need
to be balanced appropriately for a successful outcome. For example, to achieve the same
result in less time, one either has to increase resources (cost) or accept an impact on
quality.

We believe that, just like with the iron triangle, a good design positively influences
the development phase and enables a sustainable product. A correlation between good
design and resulting software quality has been identified [MT10] and demonstrated by
multiple authors [BBM96; BM96]. The right design will result in higher software quality,
implemented in less time, with the same costs. Yoder and Foote claimed that if you think
good architecture is expensive, try bad architecture [FY99], referring to the fact that a bad
design can result in damaging costs to a software project.

A challenge with software design is that it is not an exact science. There is no golden
rule to solve all problems. The same solution might not be a viable solution to a similar
problem in a different context or one that needs to balance forces differently. Still, there
are invariant qualities that will positively influence cloud software from its development

to operations, as it is the case with testability, scalability, extensibility, amongst others.

I The iron triangle is a triangle because the initial version only considered time, cost, and quality as
forces. Several variations have been introduced since, with the scope being commonly accepted as the
fourth force.

PATTERNS AND PATTERN LANGUAGES

These are essential requirements for relevant cloud-related practices such as Continuous

Integration (CI)/Continuous Deployment (CD) or to build elastic applications?.

1.4 Patterns and Pattern Languages

Most often than not, software engineers are designing solutions to problems that others
have already worked on, benefiting from existing knowledge instead of having to reinvent
the wheel [Boo04]. As discussed in the previous section, the right design knowledge can help
engineers ensure software quality without impacting time or cost, resulting in improved
development efficiency for a given scope. These designs tend to naturally emerge in
multiple and independent approaches to the same problem and often share the same
qualities.

Christopher Alexander addressed the problem of capturing recurring problems and
their solutions in the context of civil architecture in the 1970s. In his work A Pattern
Language, Alexander struggled with the need to document and share architectural
knowledge, which could be easily applied by his peers. He came up with the concept
of patterns, which he describes as a recurrent problem and its respective solution in a
given context [AIS77].

Patterns often provide alternative solutions, adapting to the balance of forces in each
specific context. The forces identify the characteristics of the problem and its context and
often oppose each other, evidencing why the problem is complex to solve. Finding the
solution that balances the forces is necessary to make the solution fit the problem. An
example of how forces need to be balanced is related to the iron triangle. It is impossible
to create software that is complex and has high quality in a short time and without
little investment. So, scope, quality, time, and cost are competing forces that need to be
balanced according to a context to find the optimal development strategy for that same
context.

Along with patterns, Alexander introduced the concept of pattern languages. Kuhne
considers patterns as elements of grammar that, by when related, define a language that
tells us how to weave the patterns together [Kuh99]. Pattern languages are then a set
of patterns applicable in a specific domain that can be used together to solve related
problems.

Later, in his book The Timeless Way of Building, Alexander described his pursuit

2 Elasticity is the degree to which a system is able to adapt to workload changes by provisioning and
de-provisioning resources in an autonomic manner, such that at each point in time the available
resources match the current demand as closely as possible [HKR13].

ot

6

INTRODUCTION

for a quality without a name, an objective and precise quality that had no single word
to describe it. When achieved, the solution felt right for the problem. He used several
alternative words to describe this fitness, in the absence of one that would sum them up:
alive, whole, comfortable, free, exact, egoless, eternal. Such a solution made the architect
feel good with his work [Ale79]. Alexander went on to argue that patterns and pattern
languages were the gateway to achieve this quality without a mame. The patterns in
the pattern language would allow the adopter to design buildings just like words in our
language allow us to build sentences. Despite the architecture background, this quality, or
concept of ideal design, is common to all creative fields, namely in software engineering.
When a solution is just right, it benefits from the quality without a name.

The usage of patterns and pattern languages as a way for knowledge sharing
has later been adopted by software engineers to document effective software design
decisions [Fow06]. Design Patterns: Elements of Reusable Object-Oriented Software is the
most well-known work, adopting patterns to document Object-Oriented Programming
(OOP) design practices [Gam+94]. The book is often adopted to teach OOP design
practices in most software engineering degrees. Patterns and pattern languages went on
to provide not only knowledge but also vocabulary that adopters can use to argue about

their problems and solutions [SFJ96].

1.5 Research Goals and Contributions

With this work, we aim at identifying cloud design practices in the form of a pattern
language, facilitating the bootstrap and decision-making process while designing software
for the cloud. These patterns are empirically evaluated for their completeness and

relevance in the industry. The contributions of this research are:

A review of state of the art for cloud computing. Identifies recurrent challenges
for designing software for the cloud and how developers are addressing them. More
details in Chapter 3 (p. 25).

Preliminary study. Experiment with cloud technologies and designs to acquire the

expertise required to pursue this research.

A pattern language for engineering software for the cloud. Describes design
best practices for cloud computing, helping engineers design their applications. More
details in Chapter 6 (p. 69)

HOW TO READ THIS DISSERTATION

O 1. Introduction O 2. Background O 3. Designing Software for the Cloud
@ 4. Problem Statement @ 5. Preliminary Studies W 6. Engineering Software for the Cloud
Bl 7. Orchestration and Supervision Patterns B 8. Monitoring Patterns

Bl 9. Discovery and Communication Patterns B 10. Industrial Case Study
W 11. Pattern Language Adoption Survey B 12. Conclusion

Figure 1.2: Overview of the dissertation’s chapters and their relative dimensions.

Industrial case study. Interviews with five startups developing software for the cloud,
inquiring about their cloud designs and challenges, relating those to the described

pattern language. More details in Chapter 10 (p. 149).

Pattern language adoption survey. Recurs to over one hundred respondents from
professional software developers, enabling an evaluation of the individual adoption
of each pattern in the industry, and the discussion of how they relate to company
characteristics such as company size or operations strategy. More details in
Chapter 11 (p. 191).

1.6 How to Read this Dissertation

The target audience for this work are software engineers, designers, architects, developers,
or anyone involved in defining the architecture for a cloud application. This research
will empower the reader with a set of best practices that can bootstrap their cloud
development, significantly reducing the R&D time required to achieve a highly scalable
system. We also target this work at cloud researchers, providing them empirical data
regarding cloud adoption in the industry, and an extensive discussion relating the captured
data to the proposed best practices.

The remaining of this document is organized in eleven chapters. Figure 1.2 (p. 7)

provides a visual representation of the relative size of each chapter. These are:

o Chapter 2 (p. 11) describes cloud computing and its ecosystem as a platform upon
which scalable applications can be built. It briefly describes DevOps as a cultural
movement and how it expedites cloud development. We introduce the context and
concepts relevant to read the remaining of this work. Readers familiar with cloud

computing can skip the chapter.

« Chapter 3 (p. 25) describes the current state of the art of software development

for the cloud. The recurrent challenges and failures are introduced, along with the

8

INTRODUCTION

research from multiple authors on how to improve cloud development, namely by

using design patterns.

Chapter 4 (p. 47) discusses why the current state of the art provides insufficient
material for supporting the development of cloud software and elaborates on the

goals of this research.

Chapter 5 (p. 55) describes two cloud projects we have contributed to, as a strategy
to deepen our knowledge on the intricacies of cloud computing development. The
first describes the contribution of a reference cloud architecture for an e-health
European research project, with concrete scalability and privacy requirements. The
second describes preliminary industry research on cloud practices and how these
can be formalized and used to improve the cloud development practices of less

experienced teams, with a concrete case study.

Chapter 6 (p. 69) introduces our pattern language and the ten patterns that

currently compose it, as well as describing details regarding their implementation.

Chapter 7 (p. 77) details five patterns for cloud orchestration, supporting the

deployment and operation of cloud applications.

Chapter 8 (p. 117) details three patterns for monitoring the status and state of
cloud software, continuously verifying their correct execution or inspecting their

state when needed.

Chapter 9 (p. 135) details the last two patterns in the language, which facilitate

service discovery or communication, essential for cooperation between services.

Chapter 10 (p. 149) describes a case study with five interviews with Portuguese
startup companies to evaluate if their cloud architectures have intuitively
implemented the patterns from the pattern language, as well as trying to identify

possible implementation details that could improve the individual patterns.

Chapter 11 (p. 191) describes a survey of over 100 companies, evaluating their
adoption of the identified patterns. Their pattern adoption is correlated with
company size, active users, and product operations strategies in an attempt to

identify the factors that could motivate others to apply the patterns.

Chapter 12 (p. 217) revisits the contributions from this work and proposes possible

future research paths for continuing this research.

HOW TO READ THIS DISSERTATION 9

There are often references to pattern names during this research, which are identified

using SMALL CAPS.

10 INTRODUCTION

Chapter 2

Background

2.1 The World Wide Webo oo 12
2.2 From SOA to Microservices o 13
2.3 Cloud Computing i e 14
2.4 A Note on Agile Software Development 18
25 DevOps o e 19
2.6 Software Design and Design Patterns 19
2.7 SUMMAry e 23

This chapter introduces the topics of World Wide Web (WWW), cloud computing,
patterns, and pattern languages, and can be skipped by experts in these subjects.
We revisit the WWW has a channel for disseminating content online, which enabled
the natural evolution towards web applications. Cloud computing is described as the
infrastructure that empowered the WWW revolution. We introduce DevOps as a
mindset motivating autonomous teams that automate quality assurance, deployment,
and operations, eliminating the segregation of responsibilities and the need for human
intervention in software operations. Finally, we describe Design Patterns as a source
of knowledge for software designers to optimize their design decisions while minimizing

investment in Research and Development (R&D).

12

BACKGROUND

2.1 The World Wide Web

The WWW was invented at Conseil Européen pour la Recherche Nucléaire (CERN)!
in the late 1980s by Sir Tim Berners-Lee. There he built the first web server and
browser [Andl16]. In its original form, it was a collection of documents identified by a
Uniform Resource Locator (URL) made available using the Internet. Documents would
be either static web pages or files that could be remotely made available using a web
server. Albert compared the WWW to an elaborate graph whose vertices are documents
and edges are links between them [AJB99).

By that time, making software available to users was a troublesome process.
Programmers needed to compile their software for a given number of platforms, to
distribute their binaries to the user and for him to then install the software on his computer
or other devices. Several issues arise during this process, namely, software incompatibilities
across platforms, user permissions, insufficient hardware capabilities, or merely the lack
of technical knowledge from the user to install the software.

During 1999, the WWW went through a great evolution which DiNucci called Web
2.0 [DiIN99]. Web 2.0 introduced user-generated content, as opposed to traditional static
web sites. Web applications were built using web technologies that use web browsers as
clients, requiring only an Internet connection for the interaction between the users and
the remote server. Asynchronous JavaScript further improved this experience by allowing
interactions with the server without having to reload the web page, resulting in the
introduction of interactive and dynamic web pages [Mur(07]. During this time, applications
were deployed in pre-allocated infrastructure. Companies had to invest in data centers and
infrastructure and hire dedicated teams to operate them. The upfront investment was
prohibitive for most companies, rendering it very difficult for smaller players to launch a
business online [Gre+08]. However, as the Internet was growing?, it was the ideal channel
for disseminating content or supporting businesses. The opportunity for cloud computing
emerged when applications had to become elastic and scale horizontally [NS14] to multiple
machines. Cloud computing provided services to support the design, implementation,
and operation of such horizontally-scaled applications, meeting a demand for agile

infrastructure [Deb08| and cost-efficient operations.

! CERN is the European Organization for Nuclear Research. http://home.web.cern.ch/
2 Today, the Internet reaches over 53% of the world population [Int19]

http://home.web.cern.ch/

FROM SOA TO MICROSERVICES

2.2 From SOA to Microservices

Late in the ’90s, web software development observed a considerable increase in complexity.

A new architecture paradigm was introduced to keep development manageable, called
Service Oriented Architecture (SOA) [Nat03], as introduced by Gartner in 1996. SOA
proposed the decoupling of complex applications into smaller components, called
services, that could be individually implemented and deployed. With the appropriate
communication channels, they would be able to cooperate in providing parts of a complex
application [Ricl5].

As an example, consider a Representational State Transfer (REST) HTTP service
that relies on an external authentication service. Different development teams can own

the REST HTTP and the authentication services, given that they have agreed on how the

services cooperate, typically in the form of an Application Programming Interface (APT).

SOA’s relevance expanded during the 2000s, with the introduction of cloud computing
and web services. Initial implementations were mostly based on Simple Object Access
Protocol (SOAP) [Ricl5], later replaced by the less verbose REST [Fer+13].

During the early 2010s, some characteristics behind SOA begun to be questioned as
to their fitness for the agile development most teams were pursuing, as described by
Richards [Ric15]. In March 2012, James Lewis introduced Micro Services - Java, the Uniz
Way [Lew12], in what was possibly one of the first references to Microservices. Lewis

described the following characteristics for Microservices:

Each application only does one thing. Services must be atomic in their

responsibilities.

Small enough to fit in your head. Services are simple enough so that the developers

fully understand it.

Small enough that you can throw it away. Services are kept small to the point

that a rewrite would be easily attainable.

Microservices enabled the distributed ownership of application components by
individual development teams, facilitating how software development and operations could
scale [Lew12]. It later led to the DevOps mindset (see Section 2.5 (p. 19)), with developers
owning not only the implementation but also the operation of their service. Empowered by
cloud computing, development teams had a strategy to build and operate their software

at scale.

13

14

BACKGROUND

2.3 Cloud Computing

Amazon Web Services (AWS) introduced cloud computing in 2006 as a set of managed
services that provide building blocks for building software [Gar06]. These services were
provided as a commodity that could be acquired on a pay-as-needed basis, just like
water or electricity [MK10]. Tootsie described the cloud as a new paradigm for providing
services on a pay-as-you-go basis. It removed most upfront costs of setting up an IT
infrastructure, moving the cost of infrastructure from Capital Expenditures (CAPEX)
to Operational Expenditures (OPEX) [Feh+14], while enabling organizations to adjust
resources on demand [TCB14]. The name cloud came due to the use of a cloud as a
representation of the Internet on most architecture diagrams [Gar06]. Cloud services are
available at three different service models: Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS) [TSB10].

With the aforementioned Internet growth, the cloud became a preferred channel on
top of which applications are being developed, pushing the cloud market value in 2019
above US$220 billion [Garl19].

2.3.1 Brief History of the Cloud

The demand for computational power has been recognized for decades. By 1967, Irwin
predicted that the future would bring computational power at large scale, provided
by large data centers to the general public, in a way analogous to the distribution of
electricity [Irw67]. Amazon, in 2006, made that idea a reality through the introduction of
cloud computing [ZCB10]. AWS, a subsidiary of Amazon, introduced a set of services that
revolutionized how software was designed and deployed. Their goal was to provide any
software developer with infrastructure and software services on-demand to simplify their
software life cycle. Pay-per-use cloud services enabled small companies to build complex
products without requiring the funding for building data centers and have the team to
operate them.

AWS initially approached the market with three services: Elastic Compute Cloud
(EC2) provided on-demand computing infrastructure, Simple Storage Service (S3) a
managed file storage, and Simple Queue Service (SQS) a message queue service for
enabling service cooperation. The three were controlled programmatically and billed on a
per-use basis. Over the years, AWS added dozens of services to their list>.

Competition to AWS quickly followed. Google Cloud Platform launched its services

3 Late in 2019 AWS provided 165 different cloud services.

CLOUD COMPUTING

AWS
Azure

Google Cloud

VMware Cloud on AWS

IBM Cloud

® Currently use

Oracle Cloud

m Experimenting

Alibaba Cloud

Plan to use

Figure 2.1: Cloud provider market distribution in 2019. Several respondents adopt multiple
cloud providers. Credits: RightScale cloud report [Rigl9].

in April 2008, and Microsoft Azure arrived in February 2010. Together, they operate
most of the cloud market [Rig19], as depicted in Figure 2.1 (p. 15). It is observable that

many respondents to RightScale’s survey were using multiple cloud providers, a common

practice for improved performance and redundancy, as described in Section 2.3.2 (p. 17).

2.3.2 Service Models

Cloud computing enables software development by providing reusable components as a
service, often referred to as Everything as a Service (XaaS) [Ban+11]. The components are
often categorized into one of three categories of service commercialization: SaaS, PaaS, and
IaaS. All three service levels have been described in the National Institute of Standards
and Technology (NIST) definition of cloud computing [MG11].

Software as a Service SaaS provides services on demand. A wide range of services
are available today, such as databases or email sending services. These services
can be adapted to facilitate the development of new services by outsourcing part
of its required building blocks into them. Gartner describes it as software that is
owned, delivered, and managed remotely by one or more providers [Garl4]. The
provider delivers software in a one-to-many model to all contracted customers, on
a pay-for-use or subscription-based on use metrics. According to [Garl2], SaaS
revenue was forecast to reach $14.5 billion in 2012, a 17.9 percent increase from
2011. SaaS continued to grow steadily, reaching total revenue of $80 billion across

all public cloud providers by 2018 [Gar19]. Motivation to adopt SaaS is similar to the

motivation from developers to adopt third party libraries while developing software.

1

)

16 BACKGROUND

It provides reusable components they can adopt, focusing their development efforts
on the novelty of their product [Cus10; Garl4].

Platform as a Service PaaS provides a fully managed and scalable running
environment for applications built with the supported programming languages and
libraries [MG11]. The platform manages all server components, enabling developers
to focus only on the application itself. PaaS typically integrates well with the
development team’s source code management, being able to integrate deployments
with their Version Control System (VCS), often Git [Odel4].

Google Cloud Platform was the first large scale provider for PaaS services
with their App Engine, released in 2008 [Jac08]. PaaS often provides monitoring
dashboards for the allocated environment, showing metrics such as requests per
second or allocated machines. The team can often manually change the hardware
allocation in these dashboards. Google App engine dashboard is shown in Figure 2.2
(p. 16). PaaS providers often complement their offer with SaaS services that provide
components for developers to build their applications with, such as databases or

cache services.

Google Cloud Platform &

DASHBOARD ACTIVITY 2’ CUSTOMIZE
2@ Project info API APls & Google Cloud

Platform status

Project name Requests (requests/sec)
All services normal

Project ID

_ 0.8 => Go to Cloud status dashboard
Project number 0.6

0.4

02 & Billing

—> Goto project settings ’ .

Nov 17 Nov 17, 12:49 AM Estimated charges $0.00

For the billing period Nov 1 - 16, 2017
(M) Requests: 0.0167
&) Resources . ;
—> View detailed charges
) —> Goto APIs overview

ﬁ} Compute Engine

1 instance

@ Compute Engine ®) Error Reporting

Figure 2.2: Google’s App Engine dashboard, showing the incoming requests per second,
allocated computing instances, and estimated billing. Account details have been
redacted.

Infrastructure as a Service laaS stands at the lowest level, providing infrastructures

such as virtual machines and load balancers, providing the closes environment to

CLOUD COMPUTING

managing the actual hardware. Users are responsible for creating and managing
their environment, and then orchestrate their software on top of it. It is the lowest
abstraction level of cloud service, and often consists of computing, storage, load
balancers, networks, and other hardware (often virtualized [ZCB10]), that the user

must configure to adapt to the hosted application.

Multi-cloud Cloud providers have grown to offer hundreds of services, with a
geographically redundant availability [Ser19a]. Nevertheless, some applications have
particular cloud requirements that cannot be addressed by a single cloud provider.
Consider an application that for latency reasons requires being deployed in both
China and the Central United States. If we consider AWS and Google Cloud, AWS
is present in Beijing, China, but not in Central US, while Google Cloud has a
data center in Iowa, but not in China [Ser19a; Gool9]. Such applications can adopt
multiple clouds, or multi-cloud, where one or more cloud providers are used while

designing the cloud solution.

A common strategy to expand to multi-cloud consists of deploying decoupled
or replicated components from an application into different providers [AKL10].
Cooperation between them is achieved by using the Internet and service
communication using a broker* or APIs [Pau+14]. Chinneck states that for
optimal usage, multi-cloud requires automatic infrastructure management [CLW14].
Adopting multi-cloud is not a trivial decision, as it requires the team to prevent
vendor-lock in, a natural temptation considering the SaaS offering that each vendor

provides, which can decrease development time and complexity [Cusl0; Garl4].

Along with public clouds, private clouds can also be adopted for increased
privacy and cost efficiency, at the cost of initial hardware investment, physical

space allocation, and human resources [MK10].

Grozev et al [GB14] described a taxonomy for multi-cloud architectures and
surveyed 20 multi-cloud projects, concluding that these improve Service-level
Agreement (SLA) performance and often require a broker to connect them multiple
components. The Uni4Cloud project demonstrated how to increase redundancy
through the use of multi-cloud by deploying an application into laaS from
two different providers [SM11]. SeaClouds is another EU research project that

introduced tools for seamless adaptive multi-cloud management [Bro+14].

4 A message broker mediates messages between services. It can be implemented with a message queue
service such as AWS SQS.

18

BACKGROUND

2.4 A Note on Agile Software Development

Previous to the introduction of cloud computing, software development cycles were very
long. In the '90s, new software versions were available each 24 to 36 months. The early
days of the Internet businesses compressed this window to a much shorter cycle of three
to six months [Bas+01]. Companies were built to optimize their efficiency at the cost
of flexibility [Pos16]. Cloud computing, pursuing the increased Internet reach from the
mid-2000s, and the market competition that came with it, resulted in the demand for
software with shorter cycles, reducing the deployment cycle down from years to thousand
of deployments per day, as it is the current case of Netflix [DJG18].

Melvin Conway stated that Any organization that designs a system will produce a
design whose structure is a copy of the organization’s communication structure. [Con]. Just
like Conway stated, highly bureaucratic organizations, while possibly efficient, would be
highly bureaucratic at building their software, lacking the required flexibility demanded by
cloud software. Agile methodologies provided an initial step towards achieving flexibility
in software development by valuing individuals and their interaction over processes and
tools, working software over comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following a plan [Bec+01].

Scrum, one of the emerging agile methodologies from the early 2000s, prescribed
self-organizing and cross-functional teams [SS17]. This parted from the segregation of
responsibilities over multiple teams such as architects, developers, Quality Assurance
(QA), and operations. Self-organizing teams are never blocked by external parties and have
all the necessary resources at all times to attain excellent performance. Self-organizing
teams have proven to be successful at eliminating inefficiencies and reducing the
development cycle time, with companies like Microsoft and Netscape observing a reduction
in product development time by 50% [Bas+01].

The Scrum authors recommend the methodology for the operation of cloud
environments, as well as the products built for it [SS17]. In the context of cloud computing,
when development efficiency increased, the autonomous team had to spend vast amounts
of their time handling their operations, which non-exclusively including setting up new
infrastructure, deploying the software, or monitoring it, and, at the time, started by
being a mostly manual process. The need for automating operations was latent, leading
to DevOps.

DEVOPS

2.5 DevOps

Debois coined the term DevOps during the 2008 Agile Conference in Toronto. He
suggested that agility should be present beyond development, and software teams should
incorporate operations as part of their development process as well. DevOps improves
on the human-centric operations by leveraging a programmatic approach to automated
operations, developed as part of the software development process [Deb08].

DevOps is a mindset for software development that proposes the aggregation of
the development, QA, and operations teams into a single team that owns the whole
application lifecycle. Professionals in the team might still have different roles, but the team
will be autonomous and have a single agenda while engineering and orchestrating their
software [EAD14; Dia+18; SNP15]. Another strong position of the DevOps movement is
that QA and operations tasks need to be fully automated [Rocl3]. Automated tests and
scripted deployments would replace the manual process of testing and deploying software.
This change enables the adoption of Continuous Integration (CI) and Continuous
Deployment (CD), with the application being deployed automatically as soon as new
code is available and validated by automated tests [Loul2].

Despite its advantages, moving towards DevOps from a traditional software team
organization is not trivial. The human factor introduces a natural resistance to
change, compromising the transition from independent to multidisciplinary teams [Tec14].
Furthermore, the DevOps technological landscape quickly exploded with hundreds of tools,
making it difficult for newcomers to decide on the best tools to adopt.

The XebiaLabs DevOps periodic table, depicted in Figure 2.3 (p. 20), identifies the
top 120 technologies into fourteen categories that they consider the most relevant for
DevOps implementation [Xeb19a] at the current time. These are but the tip of the DevOps
iceberg, with an extensive list also from Xebial.abs containing, at the time of writing,
489 entries [Xeb19b]. This extraordinarily complex ecosystem is non-trivial to navigate,
resulting in too many open questions for newcomers, which must be addressed in not that

much time before their focus is moved to product development.

2.6 Software Design and Design Patterns

The definition of software design is often vague or misinterpreted. To better understand it,
we must understand what design is. According to the Merriam-Webster dictionary, design

is defined as (1) a particular purpose or intention held in view by an individual or group,

19

BACKGROUND

20

"SqeRIqEY WOI} 9[qe], orpolisd sdaa(] 9YJ, :¢°'g 2InSiq

apodesap Wy4aghD Knpiabey aluansdQ | |esyua) 9|iby suguoisiap ojja1L MON@32IAIDS
611 (144 v1L wy 901 sqejelqax@) mojjo] &

HneA 1SVS peduw| 1)
Cl L] solb Agdd Aq
s qnpJeuos sPnaxoelg xaeunpay> olbeN | ysJeasonse|3 | soweukgddy asesjeulq 19y MaN eueqpy sqeelgey oneg ssdions

AH| S| Pg XD IN E| dal N O IENE)Y sqeTeiqay [

0T £0T L6 v6 16

asiudisjug

ysayepod $o3SMY omod | omonyyo | xogopsea| eubuaid orasnao euso | sequinonp | PITESEND 122115 eoi0pad | 39%ongug
£ oy 2a eD q3 9 N no (¢]o} 1D qd
Pd 98 SO 8L 9L

S8 e £8

yseysbo
s

Pd SL €L

SHY J1ayduey [pROIILIdRT >o_%n_w%>ﬂw 03094494 m:__mHH ONisaL Buipes Aypues) 1DstnelL
SHY o) P> ad u| eo o1 1l
Pd 89 H 09

S9 29 6S 85 LS

josboopy

bW

Koidag

aepuado EV D) sndo3>0 sqeq @ineg aulwser PEIEINT wniusles ooqueg a1ebpay Kioyoeyuy
wo| M9 20 IS| er| wr| 3§ eg by
1S| Pd 0s Ly 144 V| 4 ra4 6% 8¢

aseajay 10329410 Koideg Kojdag1x
el01nid aovo sajausaqny sposueqin sqeTeigey wojelsa) Indeos diysepon supjuar xiydiea

id 20 ™| pal pIx 1 ng| ey sQ| ur| da

asesjay e oNseegq@| uoisiangng
apopuequn i

A\
in sdow i uonenbyuod . esudiequz [u3] o >
! zt
Kunoag .

sO 119
pno|o Bunsal .
pled E lesneq anHuo
uoljeI}SaYDIQ dses|ay . uoljesba3u| snonuiuod) . wnjwealq £0
BuLOpUOW . s1aueU0) . uonewolny sseqeleq . 2914 wy s

sonkleuy . juawioldag . “3wby [013U0D 924n0S . 9ounog uadp E !
19
(£A) STOOL SdOA3A 40 3719V.L D1dOI¥3d 2 g

SOFTWARE DESIGN AND DESIGN PATTERNS

(2) a plan or protocol for carrying out or accomplishing something, and (3) an underlying
scheme that governs functioning, developing, or unfolding [Mer].

In the context of software engineering, the definition still applies, with the plan being
made in software design being the plan of how the software is to be implemented. Ralph
and Wand highlighted the need for a formal definition of what design is in the context
of software. They have generically described software design as the a specification of an

object, manifested by an agent, intended to accomplish goals, in a particular environment,

using a set of primitive components, satisfying a set of requirements, subject to constraints.

In the context of Object-Oriented Programming (OOP), Booch described abstraction,
encapsulation, modularization, and hierarchy as the fundamental principles of software
design [Boo04].

During the design phase, the engineer needs to evaluate the software’s requirements
and create a viable plan for its implementation, respecting the known present and future
constraints. Faced with this challenge, what resources are there available to support design
decisions? In his Ph.D. dissertation, Christopher Alexander claims that most information
on any specific body of knowledge is hard to handle, widespread, diffuse, unorganized
and ever-changing, that this amount of information is increasingly growing beyond the
reach of a single designer [Ale64], which lead us to understand that the design process
is increasingly complex due to the vast amount of incongruous information available. To

address this issue, Alexander introduced the concept of design patterns.

2.6.1 Software Design Patterns

Based on the work of Christopher Alexander, A Pattern Language, where he presented
patterns for architecture and urban design [AIS77], software engineers recognized the
relevance of patterns and pattern languages as a strategy for disseminating their design
knowledge [Ale02; Ale79; Ale64]. In the context of software design, patterns continue to
refer to recurrent problems and their respective solutions, along with the forces that need
to be balanced for making the solution fit.

Design Patterns and pattern languages were first introduced in the context of
software engineering by Kent Beck and Ward Cunningham at OOPSLA® conference in
1987 [Sow87]. They recognized pattern languages for sharing design knowledge, which

could significantly improve the selection and application of design abstractions [Sow87].

5 Object-oriented Programming, Systems, Languages, and Applications, now part of ACM SIGPLAN
conference on Systems, Programming, Languages, and Applications: Software for Humanity.

21

22

BACKGROUND

By 1993, the Hillside Group® was founded as a non-profit organization with the mission
to disseminate the usage of patterns. By 1994, the first substantial contribution to software
engineering through patterns was published, with the book Design Patterns: Elements
of Reusable Object-Oriented Software, detailing a pattern language for object-oriented
programming [Gam+94].

Another usage for patterns and their languages was proposed by Christian Kohls, who
claims that patterns can be used to describe new theories as part of a scientific process
to propose and document new knowledge [KP10], even before its observation in the wild.
These are often called proposed patterns and follow the same structure, but disregard the
description of the known usage section. They can be used between engineers to share

potential solutions to their problems, even if not validated in practice.

2.6.2 The Epistemology of Patterns

By definition, patterns are the observation of a recurrent solution to a problem. Authors
write their patterns based on observation and experience, with any bias this might contain.
Still, engineers trust them as a reliable source of knowledge for guiding their design. Why
are engineers trusting pattern authors without negative results? Should they be doing it?

To ensure the validity of their patterns, authors often comply with the rule of three,
a practice that recommends at least three coherent observations of the solution before
documenting it as a pattern [KP10]. These known uses are one of the sections from most
pattern structures. However, is this a scientific approach? Would it be possible for an
author to observe a skewed reality and capture a misleading pattern? Yes, but it would
not be likely to happen. Kohls argues that it is unlikely that an author observes three
identical and independent solutions for the same problem, where the identified solution
does not fit the problem [KP10]. The most famous book on software design by the Gang
of Four (GoF) only described two known uses per pattern [Gam+94].

While the rule of three might ensure pattern with relevant solutions, that does not
mean that they are scientifically valid. Following their definition, patterns are, in fact,
items of empirically gathered knowledge, which makes them conjectures that, albeit

not scientifically proven, have accumulated enough evidence to at least be considered

6 The Hillside Group is an American non-profit organization that supports the dissemination of patterns
for capturing and sharing knowledge. The organization sponsors several pattern related conferences
worldwide, namely PLoP, EuroPLoP, ChiliPLoP, KoalaPLoP, VikingPLoP, SugarloafPLoP, or
EduPLoP. They have also been responsible for getting the Pattern Languages Of Program Design series
of books put together and published. An academic journal is also published as part of Springer’s Lecture
Notes in Computer Science (LNCS), entitled Transactions on Pattern Languages of Programming.

SUMMARY

as promising theories. In this regard, Kohls states that patterns can be a strategy for
proposing new design theories, even before use cases can be identified [KP10]

Epistemologically, what is missing is thus proving the theory, beyond mere recurrence.
In fact, the pattern context and forces establish the exact premises the designer would
agree with, before considering a pattern for selection. Balancing the forces for a pattern
ensures its fitness for a problem. The solution is thus an engineering apparatus that, under
proper evaluation, constitutes a complete theory towards being what we commonly call a
recurrent, good solution. Hence, if we are to focus on the scientific validity of each pattern,
we should carefully choose (on a case by case basis), what exactly is one to measure in
order to provide evidence of fitness.

Towards pattern validity, the observation process might follow empirical strategies —
the pattern community named this process as pattern mining [I[SM11; Sas+16; Han98|.
Kohls [KP10] states that patterns can be scientifically sound if the mining process follows
scientific methodologies as well.

In the research presented in Chapter 3 (p. 25), we highlight how many authors have
based their pattern writing in their expertise, providing little empirical evidence of their

fitness to the real world, possibly rendering their patterns misleading.

2.7 Summary

The World Wide Web, through cloud computing, enabled developers to build applications
targeting users on a global scale. Coping with such unprecedented scale disrupted software
design, mostly by reaching the limits of vertical hardware scaling, which popularized
horizontal scaling through SOA and Microservice architectures.

The Web 2.0 revolution, along with the introduction of cloud computing, motivated
developers to demand new practices and architectures to build web applications. Online
businesses became more agile at distributing their software, reducing the software release
cycle from months to hours. Manual operations became a bottleneck. The DevOps
culture pushed teams to own their operations through automation, expanding on the
recommendations for autonomous teams from agile methodologies. The relevance of
DevOps led to a technological explosion, with hundreds of tools made available, rendering
it difficult for engineers to decide their development stack.

The fast-paced cloud market left little time for experimentation, with decisions being
critical for the success of software companies. Software design patterns and their languages,

which were popular since the introduction of OOP design patterns, could facilitate

23

24 BACKGROUND

this knowledge and help engineers build systems faster. Still, not all patterns provide

scientifically valid knowledge, as further demonstrated in the following chapter.

Chapter 3

Designing Software for the Cloud

3.1 Intricacies from Cloud Software Development 25
3.2 Cloud Design Patterns, 33
3.3 SUMMATY o o o e e e e 44

Cloud computing enabled teams to build applications that reach users on a global
scale. The DevOps culture is expanding the concept of autonomous teams inherited
from the agile methodologies to also operate their software, through automation. Still,
while designing software for the cloud, engineers face a multitude of novel challenges,
characteristics of cloud development, that were not observed before. From having to
scale their systems horizontally to ensure the system is up and working as expected or
recovering in case of failure, these intricacies make cloud development not trivial. This
chapter identifies the existing best practices for building software for the cloud. These can
guide developers while engineering their cloud software. We conclude, claiming that the

existing body of knowledge is limited in both detail and validity.

3.1 Intricacies from Cloud Software Development

Exploiting cloud computing requires domain-specific knowledge that shifts from
traditional software development in several fronts, namely software architecture and
team organization. The software itself is no longer the single work item delivered by
the engineering team; automation, quality assurance, and operations became equally
essential [BCS15; Rocl3].

Being a fast-paced market, the ability to deliver software fast is key to success, under

26

DESIGNING SOFTWARE FOR THE CLOUD

the risk of having a larger competitor copying a slower team and gaining their market
share[DJG18]. Just as well, reliability is essential to retain the users’ trust [Kim+16].

In this section, we present the conclusions from multiple cloud-related publications,
identifying the requirements, challenges, and recurring failures of developing software for

the cloud.

3.1.1 A Survey over Cloud Adoption

RightScale’s inquired 786 IT professionals during January of 2019 [Rig19] for their annual
cloud survey. They report a cloud spend growth, with projected spend for 2019 being
24% higher than in 2018. The 13% largest enterprise spenders have a budget of over
$12 million a year for public clouds. 50% spend over $1.2 million annually. A total of
94% of enterprises have a cloud presence, using either public, private, or both clouds.
The percentage of respondents adopting at least one public and one private cloud in a
multi-cloud approach was 69%. Public cloud has an edge attracting practitioners, being
a top priority for 31% of the enterprises. Enterprises are running 33% of their workloads
on public clouds and 46% on private clouds. Still, public cloud spend is growing at three
times the rate of private cloud usage, with workloads slowly being migrated to public
clouds.

The report highlights the following challenges with development for the cloud:

Lack of expertise. As stated in Chapter 2 (p. 11), cloud computing promoted a
quick growth of a new software paradigm, leading to an explosion of technologies
and software designs that support it. This rapid expansion made it very hard for
engineers to stay on par with the new trends, requiring considerable research from
most to initiate their cloud development. While some became proficient with cloud,

they were insufficient to fulfill the demand for engineers savvy in cloud computing.

Cloud security. Data breaches or misuse has been a frequent discussion, as cloud
products exponentially increase the volume of data they capture from their users.
Data privacy laws, such as the European General Data Protection Regulation
(GDPR) [Unil6], along with security concerns, can constrain development teams
from trivially moving their applications to private clouds, but are a necessity for
ensuring data protection and a breach that could degrade the customers trust in
the product. Puthal claims that customers need to trust their cloud providers. Each
cloud layer addresses its security, and every layer must trust its underlying layers

to be trustful itself [Put+15]. As such, security threats resulting from adopting

INTRICACIES FROM CLOUD SOFTWARE DEVELOPMENT

third-party services are lower in Infrastructure as a Service (IaaS), increasing with
Platform as a Service (PaaS) and highest with Software as a Service (SaaS) since
service complexity increases at each of those levels. Private clouds tend to be more
secure than public clouds because these exist in dedicated hardware that operates in
isolated computer networks. Limiting the exposure to the Internet and not sharing
resources between multiple entities results in a reduction of the attack vectors to
it [RES10]. Data privacy in the cloud is another primary concern. Some cloud
providers lack external auditing that ensures their security practices [MIK10]. Despite

that, cloud adopters will have to trust their cloud providers with their private data.

Governance. Cloud governance relates to the process of cloud operation. It answers
the questions of how cloud orchestration should operate, addressing accountability,
decision rights, risk, and resource management [Grol6]. It addresses specific

questions such as change permissions, balancing forces like agility versus risk.

Shutdown workloads after hours
Rightsize instances 319 49%

Required tags

Specify expiration dates
Eliminate inactive storage

Software license compliance

Allowed instance sizes/types

Underutilized discounts

m Automated
Use lowest-cost cloud policies
Use lowest-cost regions - Mal?u_al
policies

Figure 3.1: Cloud budget optimization initiatives. Shutting down after-hours workloads,
adjusting instance sizes and labeling resources were the most relevant automated
policies [Rigl9].

Cloud spend. Cloud computing facilitates access to computing resources at scale, but
it still introduces a relevant impact on the monthly budget for companies developing
software for the cloud. Over 50% of the respondents claim to spend over $1.2 million
in it. There are several optimization strategies, such as yearly contracts or resource
optimization, which are not trivial for an engineer unfamiliar with them. Figure 3.1
(p. 27) lists the most adopted cost optimization strategies, according to the surveys’
respondents. Considering both manual and automated initiatives, adjusting instance

sizes is the most frequently applied strategy for cost optimization.

27

28

DESIGNING SOFTWARE FOR THE CLOUD

Governance

Lack of resources/expertise
Managing cloud spend
Security

Compliance

Managing multi-cloud

M Significant
Cloud migration 200 % challenge

g R e
a challenge

Figure 3.2: Cloud challenges for 2019. Overall, the lack of resources and expertise are the most
important open challenges in adopting cloud computing. Credits: RightScale cloud
report [Rigl9].

BEGINNER INTERMEDIATE ADVANCED

1. Governance (86%) 1. Governance (78%) 1. Governance (78%)

2. Lack of resources/expertise (85%) [FBUELECTRLCILELIL LA AL)] 2. Managing cloud spend (76%)

3. Compliance (76%)

3. Managing cloud spend (84%) 3. Lack of resources/expertise (76%)

4. Cloud migration (83%) 4, Security (76%) 4. Security (74%)

5. Security (82%) 5. Compliance (73%) 5. Lack of resources/expertise (73%)

Figure 3.3: Cloud challenges for 2019 by business maturity. Governance is a shared concern
across all respondents, with cloud spend and lack of resources or expertise following
closely. Credits: RightScale cloud report [Rig19].

We can see how vital these challenges are for the respondents in Figure 3.2 (p. 28) and
broken down by the level of expertise from the respondents in Figure 3.3 (p. 28). Still,
in 2019, the most significant challenge for cloud adoption is the lack of resources and
knowledge available to guide engineers, closely followed by governance and multi-cloud

management.

3.1.2 Concerns from Cloud Design

Designing software for the cloud imposes a complex paradigm shift from traditional
software development [UX13]. Developers now have to consider requirements that were

non-existent in the past, namely:

INTRICACIES FROM CLOUD SOFTWARE DEVELOPMENT

Scalable by design. When designing scalable software, it is expected that, when
an application meets its vertical scalability limit, it can continue to scale
horizontally [Ace+13; Stil5]. By design, monolithic services can only scale vertically,
which deems them unfit for scalable cloud architectures [Bonl6]. New architectures,
such as Microservices, must be adopted to separate services into smaller components,
which scale individually [VW12; UX13|, facilitating coping with the variable
demand often seen in cloud application [DL.12; Put+15]. Scalability must concern
all application components, such as data storage, messaging infrastructure, and
more [Ricl7b]. Nevertheless, Fowler raises awareness of the risks of preemptive
optimization, stating that it is the natural evolution for services to start as monoliths

and to be broken into microservices when needed [Fow15].

Dynamic infrastructure. To take advantage of microservice architectures and enable
cost-efficient scalability, the infrastructure needs to adapt to the application’s load,
scaling itself up and down dynamically [VW12; DL12; Savll; Put+15; Ace+13].

Service orchestration. While working at a large scale with services that exist across
tens to hundreds of servers, it is not practical to manage services running in
each server individually. Servers’ status and resource usage need to be abstracted,
enabling service placement in the cluster, with its allocation to a specific server
being autonomous. Just as well, the cluster should be autonomous at identifying
failing service instances, performing the required actions for recovering it: either

restart it or start it in a different server [DL12; Rigl7].

Service discovery. Deploying services in dynamic infrastructure introduces the need
for them to discover each other so that they can cooperate as expected. Dynamically
infrastructure makes this harder, as there is no fixed service address at the time of
deployment [Ace+13; TCB14].

Monitoring. Software fails. When deploying to the cloud, the software will run on
dynamically provisioned hardware, possibly in many geographically distributed
servers. To ensure that the system is running as expected, automated monitoring

of every server and service is essential to enable teams to detect and fix issues
faster [UX13; DL12; Put+15; Ace+13; Mic19].

Software isolation. Cloud computing provides computational resources using shared
servers and virtual machines. It is often observed the need to deploy multiple

services to the same virtual machine. When deploying software, all its dependencies

29

30

DESIGNING SOFTWARE FOR THE CLOUD

must be made available. Changing the virtual machine to accommodate a specific
service’s dependencies will leave a trail of files when that service is removed [Fel+12].
Additionally, deploying multiple services in the same virtual machine might result
in dependencies incompatibilities [Hwa+13]. Proper software isolation is required
to ensure that the service’s binary files and all of its dependencies are deployed,
providing an optimal environment for running the service. The same isolation should
ensure that the service can be upgraded and removed in the future without polluting

the virtual machine with its specific configurations or dependencies [UX13; Rigl7].

Messaging. The distributed nature of cloud applications requires a messaging

infrastructure that facilitates communication between services in a loosely coupled
manner to enable scalability [Cas+11]. Asynchronous messaging is widely used and
provides many benefits, but also brings challenges such as the ordering of messages,

poison message management, idempotency, and more [Mic19; Gar06].

Availability. Availability, or the percentage of time the system is available, is

essential for complying with contracts and keeping clients and users happy.
Disruptions can happen due to software and hardware errors, malicious attacks,
and unmanaged system load. Cloud applications typically provide users with a
Service-level Agreement (SLA), so applications must be designed to ensure their
availability [RES10; BHS07; UX13; Ace+13; Mic19];

Reliability. Reliabilities measures the probability of a system to produce the expected

output throughout time [UX13]. A reliable service performs consistently according

to what it was designed to do [Ace+13].

Resiliency. Resiliency evaluates the ability of a system to handle and recover

from failures gracefully, often referred to as being fault-tolerant [Mic19]. Cloud
applications often use shared platform services, are multi-tenant, compete for
resources and bandwidth, communicate over the Internet, and run on commodity
hardware means there is an increased likelihood that both transient and more
permanent faults will arise [BP19]. Detecting failures, and recovering quickly and

efficiently, is necessary to maintain resiliency [ECN15; Birl5].

Security. Exposed to the internet, cloud services are ideal targets for hacker attacks.

The software must be designed with security considerations to minimize the
probability of being compromised, while infrastructure must be carefully protected
to prevent unauthorized access to resources and data [RES10; Micl9; Gre+08;
Arm+10; Put+15].

INTRICACIES FROM CLOUD SOFTWARE DEVELOPMENT

Complying with these requirements provides the foundation for adequately designing
software for the cloud. For inexperienced engineers, these will require a sheer volume of
investment in Research and Development (R&D), with bad decisions being the most likely

reason for generating failures.

3.1.3 Cloud Failures

Cloud software, like all software, is subject to failure. We have discussed how reliability
influences user retention, which implies that failures can be the genesis for the termination

of some cloud businesses. The following failures have been identified as recurrent by

Gadish [Gadl14]:

Human error. The introduction of human error in software is not a matter of if it will
happen, but when it will happen. From development to operations, each day without
human error increases the likelihood that an error will be introduced soon. Hollnagel
describes human error as an identifiable human action that is seen as being the
cause of an unwanted outcome. He evaluates human reliability assessment strategies,
namely how those could be predicted [Hol05]. In the context of the cloud, human
error has a potentially catastrophic impact. Puthal describes how mistakes can lead
to the loss of cloud storage [Put+15]. Edelman describes how infrastructure changes
can be erroneous and interrupt service provisioning [Ede]. Greenberg describes how
humans can introduce significant performance issues [Gre+08]. Also, a debugging
exercise in 2017 at Amazon Web Services (AWS) resulted in service downtime and

the estimated loss of $150 million for major American companies [SvelT7].

Application bugs. Application failure due to software bugs is another recurring cause
of failure. Traditional I'T practices can help mitigate the issue, through automation
pipelines for testing and deploying applications [EAD14; Rocl3; Dia+18; Shalb;
Tecl4]. Armbrust describes how bugs in cloud applications are hard to debug, given
that it is often complex to expose the software to the level of stress it reaches in

production [Arm-10].

Cloud provider downtime. Cloud providers are becoming very reliable, providing the
tools and strategies to ensure redundancy for increased reliability. For example, AWS
provides multiple availability zones in each deployment region so that applications
can be deployed redundantly in a specific geography [Ser19b]. Still, some issues are
impossible to prevent, such as natural causes, and even top-tier providers might

be affected. A minor network disruption in AWS in 2015 led to over five hours of

31

32 DESIGNING SOFTWARE FOR THE CLOUD

intermittent service in multiple services, critical for many clients, rendering their
services unavailable [Ser15]. An outage in AWS during the 28" of February 2017
started by taking down Simple Storage Service (S3) and quickly degraded other
services as well. AWS status dashboard itself was malfunctioning, as it depended
on S3. The cause was eventually attributed to human error [Ser17]. Multiple cloud

applications were affected, namely Medium or Slack.

Figure 3.4: The Fail Whale from Twitter, a static page often seen by the social network’s users
during its first years due to inability to accommodate user demand.

Quality of service. The definition of a functioning service varies depending on the
business provided. While it might be acceptable for some applications to have
increased response times during some part of the day, to others, such as the video or
music streaming industries, any unexpected latency or inability to stream content
has a critical impact on the business. Also, user demand can harm the infrastructure
if resources are not preemptively allocated configured to scale automatically. A
well-known story of service disruption was observable during the early years of
Twitter, a time during which it was common to see their Fail Whale, depicted in
Figure 3.4 (p. 32), a static page that reported that something was not working as
expected with the application.

Privacy and security breaches. Security requirements are essential to ensure the
privacy of customer data and, into some businesses, mandatory for operation, such
as the GDPR [Unil6]. Enterprise clients often request for information security
management certifications before adjudicating their business, such as the ISO/TEC
27000 family of certifications [Int]. Cloud providers themselves will not be able to
ensure that deployed applications are accurate, and, as such, it is still up to the

development teams to ensure the continued security of their application.

CLOUD DESIGN PATTERNS

Lack of disaster recovery procedures. Disaster recovery has been common practice
for decades in physical data centers [Wol06]. Cloud providers offer a multitude
of strategies to address failure: multi-zone deployments, automated backups,
automated recovery on failure, and much more. These can lead to relaxation by
the engineering team, delegating the responsibility of business continuity to their
cloud provider. Such relaxation has more than once led the team to believe that
they had proper recovery strategies in place, only to learn that they were not
properly configured when they were needed. GitLab’s 2017 backup wipe and recovery
description is an excellent example of this failure: the team believed they had
multiple backup strategies in place, but most were not working as expected. After a
human error led to a partial database wipe, they took several hours to find a viable
recovery solution and ended up having to recover the database from cold storage,
which took over 18 hours [Git17].

3.1.4 Discussion

Developing software for the cloud extends traditional software development with a
multitude of requirements that demand extensive learning and practice from newcomer
engineers. The explosive growth in cloud technologies introduced hundreds of new tools,
services, and architectures for addressing cloud problems [Xeb19b], which further increases

the entropy for finding optimal solutions. Designing cloud software requires months of

research and experimentation to reach an ideal balance of cloud design and technologies.

Adding experts to the team can mitigate the time required to reach productivity, but
experts might not be available, either due to their increased demand in the market or due
to limited human resources budget [Rig19].

Failure to make the best design decisions can lead to extensive damages as failures
appear. We argue that cloud design decisions are critical to ensure that cloud requirements
are addressed while mitigating the likelihood of failure. It is paramount that engineers
have resources at their disposal, which can support their decisions to build and operate

cloud software better.

3.2 Cloud Design Patterns

Section 2.6 (p. 19) describes how patterns are a strategy for sharing knowledge regarding
recurring design problems and their solutions. The relevance of patterns amongst

Software Engineering communities led cloud computing researchers to also adopted

33

34

DESIGNING SOFTWARE FOR THE CLOUD

them to document their observed problems and solutions. Design patterns can help
development teams bootstrap their cloud development with confidence, reaching maturity
faster [Feh+14]. This section describes notable usages of design patterns for describing

architectures for creating cloud computing infrastructures and applications.

3.2.1 Arcitura Cloud Patterns

Arcitura Education' is a global provider of progressive, vendor-neutral training and
certification programs. Their programs are focused on Information Technology (IT), big
data, cloud, and Service Oriented Architecture (SOA). As part of their teaching strategy,
they develop their teaching materials, including multiple pattern books for the cloud,
namely Cloud Computing Design Patterns and Cloud Computing: Concepts, Technology
& Architecture [ECN15; EMP19]. The books present a catalog of patterns for cloud
computing, covering a vast array of topics, namely scaling, resilience, monitoring, data
management, storage, or containerization. An overview of these patterns is freely available
on their site [Arc19].

The authors describe at the time 89 cloud-related patterns in their work. More patterns
are available for SOA, microservices and containerization, DevOps, and other topics.
While extensive in numbers, each pattern includes only a single sentence for the problem,
solution, and application, some accompanied by a visual representation. It enables the
reader to get acquainted with the problem and the concept of its solution. It lacks proper
identification and discussion of the forces for a deeper understanding of the problem and

the description of known uses for the patterns.

3.2.2 Cloud Computing Patterns Book

The book Cloud Computing Patterns [Feh+14] describes cloud components and practices.
A map of the patterns and their relations is depicted in Figure 3.5 (p. 35). Patterns are

organized in the following categories:

Cloud computing fundamentals. Describes cloud service models and deployment
strategies, elaborating on how to decide between them considering for different

applications.

Cloud offerings. Describes the services available through cloud providers and how to

leverage them for building applications.

1 Learn more at https://www.arcitura.com/about/.

https://www.arcitura.com/about/

35

CLOUD DESIGN PATTERNS

61 y Ay i 10U 104 "PanIASIY SBY |

‘Auadoud paniadal
a.e safessaw Jey) ainsua 0} suondadal afessaw a8pajmoude BN
(6vT) A1an112a paseq-ynoawiy

Juauodwod Sulpuey e Aq panadal ale sadessaw

18U 21NSUB 0) 1XB)UO) [RUOLIBSUEI) B J2PUN SIFLSSAL AN3LII SIUID)
(9vT) A1anI2Q paseq-uondesues)

“22U0 1583] 18 PAJANI|3P 2Je A3L} 3.nsSE 0} PanIWSULAl

aJe safessaw ‘sso| adessaw 0) pea| 1ey) saJn|iey Jo 3sed u|

(vbT) A1aniIa@ 2du0-1583| Y

(92T) Aouaasisuo) [emuang
“sawy |[e 18 PaJNsud si sedljdal Jo AIUuaIsISU0I 3|Iym Adual|isal ain|iey
pue awy asuodsal an0.dwi 0] SUONEIO| UBIAYIP 1€ PAIOIS S| Bleq
(€21) Aduassisuo) s

‘Aujiqixay pue ‘Ayjiqe|iene ‘@duew.opad-ysiy ing 1oddns

BuiAsanb pajiwi| Yim paJo3s S| B1Ep PaINIINIISUN IO PAINIINIIS-IWIAS
(£0T) 38e1035 anjep-Aay

.

*SaWL] ||e 18 J0U pue Aj|enjuana Aoualsisuod g

ejep Sulnsua Aq pasealoul ale elep Jo AJjiqe|ieAe pue adUeWI0pdd M x
g

.

.ﬂﬂm_

“paJeys aq 0} suauodwiod 1310 SuIMO||e ||1S 3IYM SjueUd)}
03 Ajanisn|oxa papinoid a.e Ayjeuonauny [eautd uipinold syuauodwo)

(812) 3uauodwo) pajestpaq

*S]UBWIUOJIAUS Sulsoy Jo uoneldajul 3|qeud 03 J3)
paisoy si exep paieys pue se yans Ayjeuot I
(v€2) 49pInoad uoyessayu|

o.d ajesedas e Aq

‘suone|ngal AJUNas pue SMe| 393W 0} P333|3p PUe Pa3easnyqo
Ajleanewoine s ejeq ‘sualuuoIIAU3 3jdijnw Suowe pajeaydal st ereq
(1£2) uoneayday ezeq ueydwod

“Axoud e BuiAo|dap Aq Apdalip passadde aq Jouued y aiaym

W01} JUSWIUOIIAUS UE Ul 3jqejiene apeus st Juauodwios uogedljdde uy
(822) Ax01d Juauodwo? uogedyddy

“3uiessaw Bursn suauodwon uonesyidde 0} ss322e payiun apiroad 03
s19pIA0ad PNoJD JUBIBYIP U2aMIB Aj[EInELIOINE PanOW dJe saBessalN
(s522) Janoy a8essay

*SUOKILIISAI $53998 UO

paseq pajsnipe s| SJUSWILOJIAUS JUSIBLIP WO S1U3I|D 0} papiroid eleq
(222) wauodwo) ss920Y eIRQ PaILISAY

*uonUAAIRIUI UBWNY INOYLIM Ajjeanewolne

“Jeuoyesado sainieay |e3ia dasy 03 J9pJo Ul papesdap aJe saunjeay uoy
-ea)jdde awos ‘awy Ul $321n0sa1 palinbal apinoid 10UUED PNOJD BY} J|
(1£Z) s592014 usWwaTeuey Fej4 aanieay

“peoppom Bulseaidap 1o Buiseainul yum adod 03 Ajjednewoine
Ppanowal pue pappe a.e sasuesu

(£92) 5599014 3uawageueiy Ayouse|3

*saouejsul Juauodwiod uonedijdde Ayney Supejdas

pue Supioyuow Aq AjjeanewoIne saanjiey yam adod suogesddy
(092) Sopyrnem

*s3ouejsul Juauodwod uogeddde pasinbal jo

J3qwinu ay3 3snfpe o} pasn s| BuIBessaw el $3sSIIIL 4O JAGUINU BYL
(£s2) 3nanp dusel3

“saaueIsu| Jusuodwiod uogesyjdde painbal o

Jaquinu ay) 3snfpe 0} pasn I $355329. SNOUOIYIUAS JO Jaquinu ay|
(vsz) 42ouejeg peot anse|3

*saoueIsul JUaUOdWwod uoyesydde pasinbal Jo Jaguinu ay) Isnfpe 03
Pasn s| paisoy s1 uoyedljdde ue YoIym Uo $32IN0S3 || JO UOKEZIBN YL
(0s2) 498euey Ayduse|z

“Alsnoaueyjnwis paisnipe aq ued jeyy Joineyaq payiun e apiroid

0} uoyeINSYUD PaJo3s Aj[el3uad e asn sjuauodwod uoyedyddy
(£vz) uonesndyuo) padeuepy

‘Ayjjeuonauny uogeayidde woly J9pinid 343 YHM SUORIRIAI

10 5UIIUO) djesedas 0} paje|Nsdeaus aJe SIILHAIU IBPIAOI]

(€v2) 491depy Japinoid

‘sureyyed Surndwod pno Yy jo uoryejusserdal [ensia Y G ¢ 9anSiq

10T SIOyINY 3YL o

|eonewolne sajedljdnp adessaw a|qissod Sulialjy Aq aduo Apoexa
paJani|ap 5| a8essaw Yoea Jey) saunsua wajshs Suidessaw ay | @
(1pT) Asanijag aduo-Apexa | 1=
*sjew.oy ezep 4o ‘unnol ‘Suissaippe Jo Ayxa|dwod ayy
3up1y Aq 3|q/Xaly PUE ISNGOJ APEL S| UOUEDIUNWWOD SNOUOIYIUASY
(9€T) 24eM3|pPIN PajuaLI0-agessaly

J

“308J12)U] 21AI25-}[3S B BUISN SS3I0E 0WRJ PUE ‘S|[EMRIY ‘SHIOMIAU
21N84U02 0} SIBUIOISND 3|GRUD O} PAZI[ENLIIA 3Je $32AN0SBI BUPLIOMIAN
(z€T) BuppiomiaN enuin

“ejep pajpuey Jo sauanb aIssa1dxa sa|qeus pue uoejndiuew
e1ep BuULINP Pa2I0JuB SI 1By} BWAYDS B 0] BUIpI0IIE PaINIoN.IS S| e1eq
(STT) 9seqereq jeuonejay

‘uolysey I|-WIsAs 3|y

e Ul 3|qe|leAe apew e Jey3 Sajy a81e] JO W0y U papiAold S| eleq
(z11) 281035 qolg

“waisAs 3|y (20| 3Y3 1A 38103S SIY) 03 SSAJE J|qeud

01 BALP paeY [EI0] € SE SIaAI3S OJU) Pajeldalul s| a8el0ls pazi[eiua)
(011) 38e1035 ypolg

“Ajiqissa22e pue ‘Ayoedes age.o3s a|qeiene ‘aauewwiopad
painsse Suipiedal sJuUS) UBIMIB SIIUBN|UI SPIOAE JUBUOAWOD i
(v12) 3uauodwo) pajejosi-jueua)

“3eds o
S31WoU0D a8eJaNa] 03 SUBUR) Bjdi N Ag Passadde S| JuaUodwod
(012) 3uduodwo) paieys

218 (ol [9E

*sjusuodwod uonedijdde Suissadoid Suowe panquisip pue

S{UNY e3ep Jajjews 03Ul PAPIAIP aJe passadoid aq 03 s33s eyep agie

(90T) 2onpay dey

-A31EUORIUN UOWWIOD BUIpIACAd JUBWILC.IAUS BupsOy e 03 pako|dap

aue suoneadde ‘Ayjeuot 10 uoy 21e311dnp ploAe o)

— (pOT) 3USWUOIIAUZ UOBNIAXT
‘uonezijeniin a1empaey YSnoiy) PadNpPaJ i SIBAISS UOISSIWLO0IP
pue uoisioud 03 paJinbas 3w ay3 ‘spnojd Jo AJd1se|d 2y 3|qeus o)
(T0T) 0sin12dAH

sjuau0dwod uoyedljdde IO SIBAISS [ENLIIA SE YINS ‘SIPOU [ENPIAIPUL
Sunsoy IAUB 33 0 AYjIGe|Iee a3 Jopinoad pnop v
(86) Aunigelieny paseq-quatuuoiiauz

paisoy 1o “

4ons ‘sapou [enpiaipul J0 Al

1L ‘SI3AI3S [ENLIIA SB
leAe 3y} s9ajuesend Japinoid pnop v
(56) Auniqejieny paseq-apon ‘
510M]3U B JBAO 2DBLIAIUI BIIAIBS-J|3S B BIA PRIAYO S| 9FRI0)S EIEP PUB
“UogesIUNWWOD JjaY} ‘suoedy|dde Jo UOINIAXS 3y} 10§ SIEMBIPPIA
(16) waopeld duse|3
{I0MI3U B JINO 30BLIDIUI 3INIBS-J[3S B BIA P340 S| AYIAI2UL0D
}I0MI3U JO UOHeINSYUO pue ‘38..03S YSIP ‘SIBAIBS [ENUIA JO SUNSOH
(£8) 2annnsesyu) anse|3

e (2]l <)

1
3861015 UoREIUNWWOoD
= i
o pajsoy| uo pasoy
Juswageuepy
uonesado

Buisseooid juawuoliAug
) awguny pnop
uo paisoy uonedyddy pnojy
Joouejeg
anan; peol
eeq 21807 ssauisng mwmamcz [rrTT— dnoig Jasn
W M.v >

‘suonewixoidde pue suondellsqe Jo asn ayl ygnouyy agesols

e1ep Juaisisuod Ajlenjuane poddns Ajjuaiayul 03 pasaye si exeq

(v6T) J01RNSqY EIRQ

‘sjuawa|a e3ep o Ayjiqelsnipe ainsua pue ‘Aduaisisuod jeuonippe 3|q
-eud ‘Ayxa|dwod a3e|os! 1ey) syuauodwod Aq pajpuey si e3ep 03 $s30Y
(88T) 3uauodwo) ssady eleq

*SUONIPUOD 353Y) O} BUNWILLI 3¢ 0} PAUBISaP aJe IO

©1ep JUBISISUODU puE sagessaw 33eay|dnp 19913p suopauNny uogedddy
(£6T) 405592014 Juarodwap|

-8uIss220.d 2JNSUS 0} 1XIJUOI [BUOKIBSUEI] B JIPUN UOHEWLIOJ]
Paule1qo ay) ss320.d pue e1ep peal Jo saFessal aA1a23) S1UBUOdWO)
(102) 405539014 paseq-uondesuely

“uleSe passad0id s| 11 PadPaIMOUYIE 10U 5| IFeSSA € J) Passad0ld
ale sagessaw jeyy ainsua o3 Suissadoid afessaw agpajmoune sjualD
(#02) 105522014 28essa|n paseq-ynoawi)

“a|qiseay Buissaoud
UOD [BJUBWIUOIIAUS [BUN paAe|ap aJe sisanbay
(58T) 3uauodwo) Buissadoid yaneg

*sjuawalinbal Jualayip Joddns 03 3jqesndyuod apew si Ayljeuonouny
“sjuauodwod pajeds-Ajleduse|a Aq pajpuey st Ayjjeuonouny uissadold
(081) 3uauodwo) Suissadoid

“8u1jdn03 3500] 31nSUB 0} AISNOUOIYDUASE Pazijeal s| UoKIeIul [euIaIul
-uoneoy|ddy “suewny Aq passade aJe SadeLIBUI ISN A|GRZILIOISN)
(5£T) uauodwio) adepia3u 1asn

1SS! pue Buiuoisinoid 22npa 03 sawy
e 12 9AR9E 34 10U ABW 18U SIUBUOAWIOD 3|dRINW IS0Y SIBAIBS [ENLIA
(902) @8ew yuauodwod-BnN

*sa.n|iey Juauodwod 03 Juesa|o} 10w uonedljdde ayy ew o3 pue
1n0-uijeds asea 03 sjuauodwiod uoyedt|dde Jo [eusdIxa pajpuey i 33els
(T£1) 3uauodwo) ssajieis

“I0IABY3Q PaYIuN e 3piAoad 03 33e3s (eI JIBYY

az1uoaypuAs JuaUodwiod uoneaijdde 3no-pajeds e 4o saouelsul 3jddINIA
(897) 3uduodwio) |nya3e3s

‘Apuapuadapul 1no pajeds aq ued Jey) s)uauodwod uoyedijdde
3jdnnuw Suowe papinosd sapialp uonedyjdde pnoj v
(091) uonesyddy panquisia
"JeuI0) BIEP PUB ‘UOHEDIUNWWOD JO Sy ‘Wiope|d uonejuawa|dwy —
‘uopedol Jauyied uogedy 40 SUIU0D Jjoiq v g
3

(95T) Bujdno 85007

o lBimiie

—

840 susapned3unndwoopno:mmm//:dny

susaned sunndwo) pnopd

“JuaWUOIIAUB Bupsoy snoauagowoy

B W0j 0] pa)eSa)ul 3Je SI3)U3D BIEP JNEIS PUE SPNOJD UBIAYIA
(52) pnop pLgAH

*$324N0S3 JO 3SN S| IALLIOGR||0D 3|qRUS 0} JBPIO Ul JAY10 e
Sunsn) s1awosnd ajdu|NW 0} 331AI3S € se papiaoid aue s3dInosal ||
(1) pnop Ayunwiwo
“1sn13 pue A1noas ‘Adeud uo sJUBWEIINb3I 193U 01 J3PIO

Ul JaW0IsNI aUo 03 A|9AISN|OX3 31AIS B Se papiAoad aJe $324N0sal ||
(99) pnoy) a3enud

*Jood 921n05a1 1L)S B JO ISN ISEJD 3|GRUS O} JAPIO Ul

dnou8 Jawo3snd a81e| AJ3A € 0] 92IAI3S B Se PapiAoid 3. $32IN0sal ||
(29) pnoid d1and

ud asn-1ad-Aed pue ‘Kudsef pides ‘21nIas-J2s 3|qeus 0}
SI3WO1SND UaMIB PaJeys S| a1emyos uonedljdde ajgesn-uewny
(55) (Sees) 2a1n3s e se aiemyos

d asn-1ad-Aed pue ‘Aupusefs pidel ‘921A135-43s 3|qeus 03
$J9WO3ISNI UM paJeys S| Juawuoliaua Suysoy uogesydde uy
(6v) (seed) 2210135 € se wiopeld

“3uppud asn-1ad-Aed pue ‘Aauseld pides ‘9IAIIS-J[3S 3|qeUS 03 SIaW
-0315N2 UIIMISQ PaJBYS SJB S3IINOSBI || SIBMPIRY [ENLIA PUE [edIsAyd
(Sp) (Seey) 221135 e se ainjonasesyu|

“peopiiom BuiSueyd Asnonuguod aduapiadx awn
1310 A[JUBISUOD SYULIYS JO SMOIS 1By LUONEZI|LN & Y1IM S32IN0Sal ||
(0v) Peopiom SuiBuey Asnonuguod

“peOpLOM 3|gedIpaIdun 3auBLAdXS
13N 3|qe33SAI0JUN PUE WOPUEI € Y}IM S32IN0S3J ||
(9€) Peopiom a|qesipaidun

“PEOPIIOM SLUNaYI|-B-UJ-32UO 39U3LI3AXD 39UO AJUO Su1INII0 yead
Buons e Aq pagunisip awy JAA0 UOKEZIIUN [enba Ue M S32IN0SaI ||
(€€) peopjIOM wnayl|-e-u-2duQ

“peoppiom 1poiad aauanadxe

s|eAsa1U} Wy SULLIN23031 16 Uonez||aN Supjead e YIIm S32IN0sal 1|
(62) PeOPLIOM d1pOLI3d

‘peOpIOM JuelS

2oualIadxa W J9A0 uoKezIuN [enba ue yIm s321N0sal ||

(92) peopiom dness

3wy Jano uope:

“paisa) pue e dde aaym 1AU3 JsefD
Ue Ul payaow pue pajedljdal sl JUBWUOIIAUS wruns uondnposd y
(9z€) uawuouinug Juawdojanag pughH

*JUBWILOJIAUS 22UBWI0NAd-y3IY JUSE3 UE WO PAAISS BIE S3Y BIpawl
“QINIA “JUBWILOIIAUB J8E3S © W01y PAAIS AJUew S| JU33U0D S3ISGIM
(£2€) uoneyddy Gam eIPAWRINIAl PHAAH

“pnoj> 2use|d ue ur paisoy si Suljpuey eyep pue ‘Buissadold
‘sadepayul 13sn Aq papinoid Ayjeuonouny uogesijdde awos

(0z€) suonouny uoneayddy pugAH

“pNoja 21se[d Ue Ul pajsoy si pue speojyiom SuiAlen Supuatiadxa

s1 (28e1035 pue Buissad01d anisuajul-elep) Ayjeuonduny puaxoeg
(L1€) puaioeg pughn

“sasodind A13n031 J2IsesIp 10§ PNOJ JuSe[3

Ue Uy paayoae 3q 03 uonedijdde ue wouy pa1oeixs Ajjealpoiad si eleq
(v1€) drpeg pugA

“JUBLUUOIIAUB D1B]S B Ul SBPISaL uoneddde e Jo

J3pUIBW] 3Y3 3]IYM PNOJd J1Se|d UE Ul paisoy si azis ulhlen jo ejeq
(T1€) e3e@ puGAH

“JUBWILOJIAUB J5e3s € Ul S3PISa) uonedljdde e Jo Japulewa

3Y3 3|Iym pnojd Juseja ue ui paisoy si Ayjjeuoaouny uissadold

9AH
“JUSLILO.IAUS J1sE[S Ue Ul pajpuey s uogedydde ue

yam AjsnouoayduAse Sunaesaiu; dnois Jasn e wouy peopiiom Buikiep
(v0E) 23e3193u] 435N PLIGAH

*sjuawalinbal aduewlopad ssadde 393w 03 paynguUIsip Ajjeqo|s

ale way Aq pajpuey e1ep pue sadue)sul Juauodwod suonedddy
(00€) 310m3IaN uoun

‘sjuawia.inbal [enpIAIpUI 13y} 03 SUIPIOIJE WY} 3[edS 03 13N djed
-edas u| pazifeas aJe Sujpuey e1ep pue ‘2130| SSAUISNG ‘UOLEIUSAId
(v6z) uonesyddy pnoj) Ja11-231y1

*3[e3s 0} J3pJeY SI 1By} Ja1 elep ay} Wwouy pajeledas s 3| '3[eds o} Ased
118y} Ja $$3[21L3S U0 03 P3|puNg S| 2180] SSAUISNG PUB LUOWRIUISAI]
(062) uonedyddy pnoj) Ja11-omy

(0) K R 8 5 5 O) p B CY B)

36 DESIGNING SOFTWARE FOR THE CLOUD

Cloud application architectures. Details how applications should be organized in
the cloud.

Cloud application management. Elaborates on how applications should be managed

to ensure they continuously work as expected.

Composite cloud applications. Leverages multiple patterns together to address

complex scenarios.

These patterns are composed of an abstract to the pattern, the problem in the form
of a question, the context, solution, result, solution variation when applicable, related
patterns, and known uses. A visual representation often supports the solution.

The authors did not identify and discuss the forces for each pattern, and the description
of the known uses use generic examples, lacking factual application scenarios of the pattern.
The book is still thorough on covering many details of cloud computing, resulting in an

excellent reference over the properties of cloud development.

3.2.3 Amazon Web Services Reference Architectures

AWS Reference Architectures [Ama] is a repository of reference architectures by
Amazon, describing suggested solutions to specific application scenarios such as web
application hosting or batch processing. Amazon currently provides a total of 16 reference
architectures. Each reference architectures is visually described, identifying the services
that compose the solution and how they interact with each other. These guidelines are
not written in the form of patterns and are agnostic of the context where the solution can
be implemented.

Figure 3.6 (p. 37) depicts AWS web hosting reference architecture. Each service
composing the solution is briefly described on the bottom of the image, enabling the

reader to understand its relevance in the bigger picture.

3.2.4 Azure Design Patterns

Azure provides at this time a list of 24 design patterns for cloud computing. Azure
design patterns follow a traditional pattern structure, including a context and problem
description, the solution, a description of issues and considerations while adopting the
pattern, an example, either as code or described using diagrams, and a list of related
patterns. In some cases, a downloadable example is available [Mic19]. The patterns’
abstracts are listed in Table 3.1 (p. 38) and Table 3.2 (p. 39).

37

CLOUD DESIGN PATTERNS

"9INIDIYTDIE dOUDIAJAI SUIISOY (M SIITAIIG (OA\ UOZRWY :9°¢ 9InSIg

"(say uozewy)
9J0IAI9S aseqeje |euone|dy uozewy Jo juswhojdsp
(a1ay g pue y sauoz-sauoz Ajjigejieay ajdinw) zy:
e uo Apuepunpal pajsoy si ejep s,uopeoldde sujejuod a
658898_mco_a_e9:.z___gm__?m;m_r_mu_éaok

'S}S09 9Z|Wiujw 0} puewsap Buunp Ajjesnewoine sasessosp
pue oouewlopad uleulew o) sayids puewsp Buunp
Alssojweas saseasoul Buisn a1nok saduejsul g93 uozewy
JO Jdqwinu 8y} jey) ainsus ued noA ‘Buiedg oy UM
*aulap noA suonipuod 0} Buipiodoe umop Jo dn Ajoeded JnoA
sisnipe Ajjeanewoine buljeos ojny ‘dnoib Buijeas oiny
ue ul pakojdap aie siaalas uopeoldde pue s1aAIas gapn ﬁ

S90IAJIS (jOM

uozewe

JuswdojaAap gam ainjny Joy juiod
Buipels ayy swoosg Usy} [[IM [N WOISNO SIY| "SPasu Jiay}
0} }I 9ZIWOISND uay} pue (JNY) abew)| aulyose uozewy ue
10919s ||IM suoneziueblio }soj\ 'SeouBjsuUl ZDJ UOZewy ﬁ
uo pakojdep aie sienias uonediidde pue siaAIas o\

‘oljel} uoneolidde Buiwoosul 0} esuodsal ul papasu
Ayoedeo Buioueleq peo| jo junowe ayy Buipinoid Ajsssjwess
‘suoneoldde JnoA ul souels|o} jnej Jsjealb usAs ss|qeus
)| (szy) sauoz AjjiqejieAy ssoioe saouejsul (zo3) pnold
9)ndwo) onse|g uozewy a|dinw Buowe oyyel; uoneoldde
Buiwoour sajnquisip Ajleonewoine yoiym ‘burouejeg
peo oanse|3 Aq psjpuey jsiy ase sjsenbal 4] IH ﬁ

‘abeuo)s eyep Atewnd pue [eonL-UoISSIW J0) paubisap
ainjoniiseyur abesojs o|qeinp Aybly e ‘(gs) ao1A1es
abelo)g a|dwig uozewy U0 palo}s ale :o_«mo__aamﬁ
gem 3y} Ag pesn Jusjuod Oje}S PuUB SIINOSSY

‘aouewlopad
a|qissod }saq U} UM PaISAIBP SI JUSJUOD OS ‘uonedo| abps
}saleau ay} 0} pajnol Ajjeojewojne ase sjsenbay ‘suopedo|
abpa jo Miomjdu |eqolb e ‘Juoi4pno|) uozewy m
Aq palanlep S| Jusjuod olweuAp pue ‘Buiwesss ‘onels

'S9OIAIS g\ UOZEWwY
ul Buiuuni ainjonJjsesul 0} PaNoJ SI Jlel} YIOMIBN "9OIAI9S
(SNQ) weishks sweN utewoq 8jqejiere Ajybly e ,mm‘-
9Jnoy uozewy Aq paalas ale s}sanbal SN SJasn syl

*$9)EN)oN|} Oljel) J9WOoISND Se aWl) [eal Ul S}S0D || yojew
0} 2INJONUSELUI UMOpP-9]EdS puE Jno-sjeds ‘oised ue Bulgeus
alym suoneolidde gem Joj patinbal ainjoniseyul souewiopad
-ybly pue ‘esindas ‘s|geeds ‘s|gelp) ay} sapiroid SIVIAIBS
g9\ UOZEewy ‘alempley SAISUSdXa JO UONezIin MO| Ul }nsal
suiaped oyjesy ul sbBuims pjim pue spouad yead asuaq eaisuadxe
pue xs|dwod aq ued Bunsoy gam a|geleds pue djqejiere A|ybiH

ONILSOH

OIlLVOllddV 8dM

MIINIDAO
wa)sAg

DESIGNING SOFTWARE FOR THE CLOUD

38

‘[6To11N] sureyyed uSIsep aInzy oAJom) 9sIy oY) 10 ATewIUUNG :T°¢ S[qeL

sorLrenb

Aq peousIojor AJjuenboly ore jer) S0I03S RIJRP UL SPRY 97} IOAO SOXOPUI 91891
S[eAIojUI Ie[ngar je syurodpus pasodxe ysnory)

$S900® UeD S[00) [RUINIXD Jey} uorjeordde ue ur syooyp [euOIjoUN] juoTO[dW]
WaY[) Uoam)aq eyep pue sysonbai sossed pue ‘sysenbor

SOZIJIURS PUR S9)RPI[RA 9DIAISS 10 uoljeoridde o) pur sjuLI[D UMD IOOI(© Sk
S30® 1Y) 90URISUI }SOY POjedIpap ® Julsn AQ sooiAles pue suorjeosijdde 109301
Topraold A}UepI [RUIDIXS UR 0) UOIPRIIIUSINR 9)R3I[O(]

UOI}BI0] PIZI[RIJUAD ©

09 dgeyoed juowdordop uoryeosridde oy} JO INO UOIPRULIOFUT UOIPRINSHUOD dAON
UIRWIOP ® Ul B)RP UO USYR)

SUOT}O® 9(LIISIP R} SJUDAD JO SOLISS [[1J 9} PI0DdI 09 9109s A[uo-puodde ur os
jrun [euoryeindurod 9[Suls © ojul suoryeIodo 10 syse) o[dIjnur 9)epIjosuo))
[ouURYD FULSRSSOUL SUIRS

O} UO POAIIAI S$98eSSomW $$0001d 0} SIOWNSUOD JUSLINOU0D I[dInu o[qreuy
uorjeIodo Jua)SISu0d A[[RNIUOAD

uR ouUPep I9730803 WPIym ‘sdejs Jo sores e Aq pouriopred IIom o) opu()
soorjIUL 9RIRdOS

sursn Aq ejep orepdn jer) suorjeiodo woiy vyep peal jer) suoryeiodo 9)es0150G
90INOSAI IO 9IIAIOS 9JOWDI ® 0}

SUI)O/UUOD USYM XIJ 0} 9UIT) JO JUNOUWIR J[(RLIRA ® ¥} JYSIW e} SINe] o[pury
9I09S ®JRP ® WOIJ 9YDRD B OJUI PURWISOP UO R)RDP PROT

OIqBL Xopu]

urioyuoN yurodpur] Yol
Todooyoger)

A yuop] pojeIopoq

910G UOI)RINSYUO,) [RIULINIXH

SUIINOG JUOAH
UOI)ePI[OSU0)) 92IN0soY onduro))

sIewmnsuo)) surjeduwo))
uorjoesuel], surjyesuoduwo))
uoryese130g A)[IqIsuodsay AIong) pue pueuwwo;)

Ioyealg IMoIL)
OPISY-aTPR))

uor)drroso(g

owreN utoljed

39

CLOUD DESIGN PATTERNS

‘[61o1N] sueyed uBisep aInzy oAJoM) Jse] 91} I0] ATRIUING g€ S[qR],

"90IAIOS 10 9DINO0SAI OYIads ® 01 $S900R 109IIP POJOLIISOI M STUSI[D SoP1aoId Jei) Aoy 10 U0} ® 9S[)
ODTAIOS DIMUD UR IO

‘queud) renprarpul ue ‘uorjedidde ur Jo o0URISUL U A(POSN SODINOSOI JO UOIdWNSUOD 9} [0IIUO))
JUSID 9} 0 AIODIIP WAY) ISAI[DP URD R} 9IIAISS 9FRIO)S PISR(-PNO B 0 Juaju0d d1e)s Aofda(]
spreys 10 suorjryred [RIUOZLIOY JO 39S © OJUIL SI0)S BIRD © 9PIAL(]

S9OINOSAT 9JOUWIDI IO PUR SHOIAISS JO 39S PIINLIJSIP ® SSOIOR SUOIIOR JO 19S © 9)RUIPIOO))
uoryeordde oty

gurjrejsor 10 juswAo[dopal SULIMDaI JNOYIIM PaINSYuodal o ued)1 et} os uorjeorjdde ue usiso(]
porrey Arsnotaaad s gey) uonjerado ue Surdijer Apjuaredsuri) AQ 90IN0SII JIOMIOU 10

9DIAISS ® 07 109UU0D 09 SALIY J1 USYM soInjrej Areroduay ‘pajeddryue sfpuey 0y uoryesridde ue a[qruy
Speo| Aaeoy

JUOIHTULIOIUT YJOOUWIS 0 SONOAUL I JRY} 9OIAIOS © PUR NS} B UWooMIO(IOPN(B S s)0v Jey) ononb v as()
Ayurotad 1omol © M oS0y} ury) APPmb orow

possooold pue poAleddl ore ALIOLId IoUSIY © YIIm $1sonboal Jey) 0S SOOIAIOS 0} JUos $1sonbol oZI11LIoLI
posnal

9 wed Jey) sjuowse ajeredas Jo soLIas € ojul Julssenold xoiduod suriopred jey) yse) © umop yearq
suorjerodo A1enb peaxmbar 10j pajjyeuriof

A[[ROpI J0U ST BIRP O} USYM SOI0)S BIRP 9I0UW I0 OUO Ul RBIRP O} I0A0 smora pajendodord ojerouor)
soouR)SUL

I9)0 o1 Surseurul 10J AIGISUOdSOI SOWINSS® JRY) IOPRI[97} Sk 90URISUI 9UO SuI)0s[a Aq uoryeordde
POINQLIISIP B UL S9OURISUL ¥SB} SUIIRIOQR[[0D JO UOIIL[[0d ® A(pauLiojiod SUOI}OR 9Y) 9)RUIPIOO))

A9 19[RA

Suroryy,

SUIISOH ueIu0)) 213e}S
gurpreys

J0s1ATOdNG JUSSY IS[NPaYDS
UOT)RINSYUOIY OWIIPUIY
Ay

SUIPAS] PROTT pPaseg-onone)
onone) Ao g

s1991] pue sodrg

MOT\ POZI[RLIdIRIN

UOI109[] Iopeo]

uor}driosa(g

oureN uIdljed

40 DESIGNING SOFTWARE FOR THE CLOUD

3.2.5 Pattern Language for Microservices

Application
Motivating Solution VT 1
> [|
Pattern patterns " . :
! : i Consumer-driven | | | [Server-sidepage | |
Solution A -~ ~====-=-- > Solution B | | Iconsistency contract test | fragment |
| Aggregate ! composition !

{ U Sharea | ___, [Database por
General ————————Specific business capabilty | | daiabase Service !
Y | || Database architegt(ire |
Decompose by [St A W '
subdomain |
| il T ;
| Composition CaRs T

somngorioan | 1ifo |
{Decomposition |1 poiz Ctiorng / [Auatiogging

Distributed Health check
tracing API

Consumer-side
contract test
Service
Component Test

Testing

Gersar o] |
ampon | |

Event
sourcing

Application Infrastructure patterns Transaction

log tailing

Transactional
Outbox

Monolithic N Poling Exception Log
architecture Transachpnal publisher tracking aggregation
messaging

Microservice
Chassis

Externalized
configuration

Access Token

143 | , Log deployments and changes
| Remote Procedure | | |
' ‘ Messagng “ T ivocation F 5 '

| : Observability

N o~
! N 4" !
architecture Cross-cutting concerns Security | - [R—— o

1 Communication style

*

Application
architecture Client-side discovery ‘ Self registration
Wl
Infrastructure patterns \
API gateway
Muttple Services | __, [Single Service per
deployment Server-side Backends for
‘ Socorery 3rd party registration ‘ ackends ‘
Container Discovery External API
Sidecar Communication patterns
Service deployment
platiorm
Service mesh
D
Microservice patterns
Copyright © 2019. Chris Richardson Consulting, Inc. All rights reserved. Learn-Build-Assess Microservices _http://adopt.microservices.io

Figure 3.7: Chris Richardson pattern map representing his pattern language for managing
microservices.

Chris Richardson wrote the Microservices Patterns book [Ricl7b], along with
his website?, where he describes a pattern language for building and orchestrating
microservices in the cloud [Ric17al. So far, the pattern language is composed of more than
40 patterns, depicted in Figure 3.7 (p. 40). The language is being continuously expanded,
from the knowledge gathered by Richardson consulting services regarding microservices
architectures. While both the book and the web site approach the same topic, the website
has a description of the patterns in pattern form, using a problem, forces, solution,
example, resulting context, and related patterns form. The book does not describe
the patterns in this format but, instead, demonstrates how they can be implemented

technically, including several source code examples and architecture diagrams.

2 Available at https://microservices.io/patterns/

https://microservices.io/patterns/

CLOUD DESIGN PATTERNS

3.2.6 Delivery Patterns

Cycligent engineering team published a white paper of cloud patterns for Continuous
Integration (CI) and Continuous Deployment (CD). The patterns are described informally,
providing a brief description of the solution and known use cases for them [Cycl5]. The

patterns described are:

Blue/Green deployment. A deployment strategy where updates are made available

for a subset of the users to test changes minimizing possible negative impacts. The

current environment is typically labeled as blue, while the updated one is the green.

A routing strategy forwards the users from the blue to the green environment. In
case of failures, users can be reverted to the blue environment. Netflix, Localytics,

and Etsy are described as adopters of this strategy [Cycl5].

Canary release. Very similar to Blue/Green deployments, but enabling a gradual
migration of the users, instead of the all or nothing approach from blue/green
deployments. If the canary version is stable, additional users can be gradually
switched to this environment, until no users are left, when the previous environment

is shut down. Facebook, Box, and Wix are known to adopt this strategy [Cycl15].

Microservices. Already extensively described in the literature, Cycligent also
highlights the relevance of microservices for cloud applications and claim that Nike,

Karma, and Netflix are adopting them [Cyc15].

Containers. Also extensively described in the literature, Cycligent highlights the
importance of immutable environments built with containers for facilitated isolation

and portability.

Dark launching. Introduced in 2008 by Facebook [Cyc15], it consists of pushing hidden
features to the users and evaluate how the application behaves. If no abnormal

behavior is observed, the feature can gradually or at once be made available.

Feature flags. It can be used along with Dark Launching to identify to which users new
features should be made available. It facilitates toggling features for specific users
based on configuration or rules, for example, on the user’s details such as the country

of origin. Hootsuit, Spotify, and Flickr are said to adopt this strategy [Cycl5].

These set of practices are only briefly described and do not follow a pattern structure
but are relevant to the reader to get acquainted with CI/CD strategies and the companies

adopting them.

41

42

DESIGNING SOFTWARE FOR THE CLOUD

3.2.7 Other Works

Duvall summarized CD patterns and anti-patterns in the software life cycle. He
introduces patterns for configuration management, CI, testing, deployment pipeline,
builds and deployment scripting, deploying and releasing applications, infrastructure and
environments, data, incremental development, collaboration, and references some essential
tools [Duv10]. For each topic, there is a single paragraph describing the pattern, with a
related anti-pattern. For example, for parallel tests, the pattern is Run multiple tests
in parallel across hardware instances to decrease the time in running tests and the
anti-pattern Running tests on one machine or instance. Running dependent tests that
cannot be run in parallel. Duvall describes fifty patterns with this strategy, which can
raise the developer’s awareness for these solutions, and how to prevent implementation
errors with the anti-patterns description. Still, these summaries are insufficient to detail
how the developer could pursue an implementation.

Tsai describes how SOA architectures can be extended with the infrastructure provided
by cloud computing to make larger, more complex application [TSB10]. Tsai describes
how multiple clouds can be leveraged to increase further redundancy and, hence, the cloud
application’s availability. The work describes the need for multiple ontologies to be defined
and adopted by cloud providers to describe their cloud services, namely regarding storage,
computing, and communication, facilitating service allocation across cloud providers. He
moves on to theorize the concept of cloud brokers, that would be able to allocate resources
from multiple clouds described by such ontologies, facilitating cloud portability and
interoperability. A reference architecture of a multi-cloud application is described and
demonstrated in a prototype, which used Google Cloud for computation and Microsoft
Azure for a SQL database. This concept had mild adoption by cloud providers. As an
example, AWS provides Service Broker, which allows AWS services to be exposed directly
through third-party applications such as Red Hat OpenShift. This level of maturity is
only pursued by extensive cooperation and not really under the domain of our research.

Zimmermann et al. describe a pattern language for creating and evolving microservices.
While not directly related to cloud computing, their pattern language provides valuable
knowledge for designing services that scale [Zim+].

Friedrichsen introduces 22 patterns in his presentation Patterns of resilience [Fril4].
The patterns are informally and briefly described along a slide deck, and a pattern map
is facilitated to navigate the language, as depicted in Figure 3.8 (p. 43). The language is
particularly relevant to provide a vocabulary for discussing resilience, as the patterns are

insufficiently described to be applied by a development team.

CLOUD DESIGN PATTERNS

Fan out &
Idempotency quickest reply

.--- Bounded Queues
Relaxed \ 5
\ Se\f{onn nment /
Temporal bl i (uc}Brmko

Constraints

\ Shed Load / Larency Control \

Loose COU,O//f]g = Fw Fast Timeouts

Communication Location

/_/\ Iso/at/on B ——
Asynchronous \\
Bulkheads

\ Transparency Supervision
Event-Driven / Complete
' Parameter Error Handler
Stateless i \
Checng Monitor

-=--- Escalation

Figure 3.8: Friedrichsen pattern map representing his pattern language for resilience in cloud
applications.

Loriedo created a pattern catalog specific for container usage. The patterns are

organized into three categories: development, with 6 patterns, 2 patterns in distribution

and 10 patterns for runtime. They are made available online in the form of a presentation.

Each pattern briefly describes a container-related context, with a brief description and
diagram demonstrating its usage [Lorl19]. The reader learns about relevant container
concepts such as CONTAINER LAUNCHER or MOUNT SOURCES.

The Cloud Native Landscape is an initiative from the Cloud Native Computing

Foundation that aims to identify and categorize the most relevant tools for

supporting cloud development. They have aggregated a total of 1171 tools to date,

categorized under application definition and development, orchestration and management,

runtime, provisioning, platforms, observability, and analysis, serverless, and special (for
others) [Foul9]. The ecosystem is depicted in Figure 3.10 (p. 45).

3.2.8 Discussion

Cloud design patterns are a recognized asset for empowering engineers to build better
software. That motivated authors to publish their design knowledge as patterns, as
identified in this section. Despite the availability of such knowledge, one of the main
challenges of cloud development is still the lack of resources and experienced engineers for
building cloud applications, cf. Section 3.1.1 (p. 26).

From this literature review, we understand that the knowledge being made available

is vast. However, it rarely provides concrete implementation details. When it does, it is

43

44

DESIGNING SOFTWARE FOR THE CLOUD

@S development patterns CL
@I runtime patterns Containers
GEEE icribution patierns e

CS BFS

Copy Build From
Sources Scratch

SQI | HS

Dockerize Your Dependencies Source To Host Spoofing
Tools First Dockerfile Image

ONBUILD Mount Sources | Docker Socket ENTRYPOINT
images Mount CMD combined

Figure 3.9: Visual representation of the container catalog of patterns from Loriedo, organized
into three color-coded categories: development, runtime, and distribution.

often too strict and not adaptable to different contexts. Furthermore, authors tend to
document knowledge from their own experience without verifying its validity with other
professionals. There has been no empirical study evaluating the impact of patterns as
guidelines for defining the architecture of cloud application to the best of our knowledge.
No author presents a case study with practitioners evaluating the correctness and relevance
of their patterns, which let us believe that these are a product of personal experience and
not scientifically tested to ensure their relevance.

We believe that patterns are a good strategy for capturing design knowledge for the
cloud, and a pattern language for the cloud is ideal for supporting design decisions. Such
patterns would have to go further than the current state of the art, leveraging forces and

alternative solutions, to be applicable by most professionals.

3.3 Summary

Cloud computing demanded a considerable shift from software engineers to adapt to the
newly introduced requirements. RightScale’s survey for 2019 shows that lack of resources
or expertise is the most relevant cloud adoption challenge [Rigl9]. This is a factor in
the introduction of new software requirements such as scalability by design, dynamic
infrastructure, service orchestration, availability, reliability, resilience, and others. For a
multitude of reasons, cloud failures are an ordinary reality among practitioners, due to

human error, bugs, provider downtime, security, lack of recovery procedures, and others.

SUMMARY 45

‘uoryepunoy sunnduwo)) aA1jRN pnory) 9Yj 03 SUIPIodde ‘WYSAS0dd [00) PNO[) :0L'¢ 2InSI g

yred pajaes-jom Asenonsed Q| .L.O uo’ _
e bupuasaides sjoafoid 4ONI .
Ay o oneoydde saneu pnojo
adeaspue e buifoidsp o1 sainos Auew

pnojo jo uleis) paiieyoun

Ajsnoineud ayy ybnouyy dew e
NOLLVNNOA ONILNGWOD
SAIIVN G013 L] se papuaiu s1 adeospue siys

woRVH

Bujuoisinold

JuawaBeuepy Aoy

awnuny

ONDVHLNIAO.

QEIINN 3N s93u12qn

Juswabeuey
3 UOIBIISBYDI0

USSI 901AIBS femaien v 20 2INPa00Id S10WRY AISA0DSIQ OIAISS B UOREUIPIOOD uonensayaI0 g Bulinpayds

B

wawdoaraq pue uoniuyaq ddy

V) |

uuoneld AIaAI[ad 8 UONEIBBIU| SNONUUOY pling aBew g uonuiaq uonedrddy BuiBessaj 3 Buiweans aseqeieq

oI'Joud’| 1e a1e adedspue| aAlORISIUI 8Y) pue 1ey] de [1el] 4OND By} 83S 8Sed|d ¢PaW[dYMISAQ m%n“w”wﬂNmﬁw,ﬁzwﬂwwﬂwﬂwmﬁ

291005 Uad0 10u 310 5060, Pakas)

46

DESIGNING SOFTWARE FOR THE CLOUD

Good software design knowledge and practices could improve this scenario, and patterns
provide the ideal way of sharing that knowledge.

Cloud Design patterns can help development teams design architectures that cope
with cloud requirements faster, reducing the research time required. We have presented
the work from other authors who have produced hundreds of design patterns during this
chapter. While these should be improving the cloud success scenario, we have seen that

lack of cloud knowledge and expertise is still a dominant issue amongst practitioners.

Chapter 4

Problem Statement

4.1 Thesis Statement Lo 47
4.2 Research Questions 48
4.3 Research Strategy and Methodology 50
4.4 SUMMATY . . . o v v v e e e e e e 52

Chapter 3 (p. 25) presents the current challenges of cloud computing and how multiple
authors have addressed them using patterns and pattern languages. A multitude of design
patterns, tools, and applications are described. Despite those, businesses still struggle to
build reliable cloud architectures [Gadl4]. This chapter elaborates on how this research
contributes to the body of knowledge of cloud software development. We argue that
there is a lack of scientific literature describing how to build cloud software, supported
by systematically captured knowledge that can help teams build their cloud solutions.
We describe the hypothesis to be addressed, the associated research questions, and the

research strategy used to assess it.

4.1 Thesis Statement

The information made available for supporting cloud application design is often a result
of personal experience and observation, biased to specific application contexts, lacking in
scientific support and adaptability. As the central hypothesis from this research, we set

ourselves to provide evidence that

While engineering software for the cloud, there are categories of recurring

problems, which solutions converge from good design principles, that adjust

48

PROBLEM STATEMENT

to the context where they emerge. Their adoption is a consequence of (1) the
awareness a team has of a problem, (2) the characteristics of the product and

the company, and (3) the way these solutions relate amongst themselves.

These recurrent problems can be grouped in a limited number of categories. We believe
that engineers tend to converge into similar solutions by applying sound design principles
familiar to them. While doing so, even independently, they tend to converge to a similar
solution for the same problem, while adapted to the specific context they observe. For
these recurrent solutions to emerge, the team must be aware of the problem, and the
problem must be relevant enough to justify investing in it. While there is no golden rule
or set of strategies to create optimal cloud applications, engineers are likely to engineer
software that will comply better with their cloud requirements when provided with proper
resources.

We propose to research these practices, mined through observation and literature
review, using a pattern language as a systematization framework for knowledge that can
be readily applied by cloud developers. We provide evidence of their relevance in resorting
to appropriate research methods that involve practitioners that adopted cloud computing
to try to understand how factors such as company and product characteristics might

influence not only the adoption of each pattern but also the language as a whole.

4.2 Research Questions

As new engineering paradigms emerge, so do new software approaches. Cloud Computing
is no exception. To enable our contribution to the field of cloud engineering, we
set ourselves to understand what design decisions influence software development and
operation under this paradigm. In this regard, we identify five Research Questions (RQs)

for guiding this research.

RQ1. What are the recurrent problems when developing software for the
cloud?
What recurrent problems can we identify with the current approaches to cloud

development? What consequences result from sub-optimal design decisions?

RQ2. What strategies are adopted for addressing cloud problems?
The cloud problems identified in RQ1 are likely to be observed at some stage by any
companies developing for the cloud. How should developers address those problems?

Have developers converged to sound design decisions when solving these problems?

RESEARCH QUESTIONS

If so, is it possible to formalize these design decisions, making them reusable by
others? What relations can we identify that could motivate the joint implementation

of multiple strategies? What lessons can we learn from successful cloud designs?

RQ3. What driving forces influence how strategies are implemented?
Engineers often face difficulties while building cloud software. Not only is it hard
to find the ideal solution for a problem, but the same problem might also suffer
from varying configurations, or forces, which need to be balanced in a specific way
to fit each concrete observation of the problem. As such, engineers would be able
to better address cloud problems if they understood the forces involved, enabling
a proper adjustment of the solution to fit the problem’s specific configuration. In
this regard, for the identified problems, what forces influence the configuration of
the problem? How can those forces be balanced to make a fit solution for a given

context?

RQ4. Are companies that develop software for the cloud aware of these
problems and adopt the identified solution?
Previous questions search for cloud problems and their solutions and attempt to
document them so that professionals can apply them. Nevertheless, are they relevant
for professionals? Do they recognize the problems and are receptive to implementing

the solutions? What is their adoption frequency?

RQ5. What characteristics influence the emergence of specific problems when
developing software for the cloud?
RQ4 identifies which patterns are most adopted in the industry. What drives
the adoption of these problems? Do internal company characteristics influence
their observation? Can we establish a correlation between company characteristics
and the appearance of these problems? Identifying correlations between company
characteristics and recurrent cloud-related problems will enable companies to define
a cloud adoption strategy that can preemptively prepare them for those problems
before negatively impacting their operation. To the best of our knowledge, no
research correlated company characteristics with the observation of cloud problems

and their solutions.

50 PROBLEM STATEMENT

4.3 Research Strategy and Methodology

Zelkowitz and Wallace [MDO98a] categorized the experimental models for validating

technology into four categories. Quoting from their original paper:

Scientific method. Scientists develop a theory to explain a phenomenon; they propose
a hypothesis and then test alternative variations of the hypothesis. As they do so,
they collect data to verify or refute the claims of the hypothesis.

Engineering method. Engineers develop and test a solution to a hypothesis. Based
on the results of the test, they improve the solution until it requires no further

improvement.

Empirical method. A statistical method is proposed as a means to validate a given
hypothesis. Unlike the scientific method, there may not be a formal model or theory

describing the hypothesis. Data is collected to verify the hypothesis.

Analytical method. A formal theory is developed, and results derived from that theory

can be compared with empirical observations.

We structured this research into three stages: preliminary research, pattern
mining, and validation. We use the engineering and empirical methods for achieving
complementary results. To research our hypothesis while addressing the previously

identified research questions, we use the following strategies:

RQ1. What are the recurrent problems when developing software for the
cloud?
We start by identifying the challenges from cloud applications in Sections 3.1.1
and 3.1.2 (pp. 26 and 28), with a review of the current state of the art for
cloud software design practices and discussing their intricacies. We argue that the
current body of knowledge fails to provide reproducible guidelines for designing
cloud software. We move on to demonstrate how engineers are approaching these
problems in Chapter 5 (p. 55). We begin by designing a reference implementation
for a cloud application that orchestrates secure cooperation between sensors and
services with limited data and restricted permissions. We then identify a set of
practices, systematically captured as a pattern catalog built from interviewing
Portuguese startups whom we have inquired about their cloud development and
operations practices. We conclude demonstrating that these patterns are useful in

the industry by employing participant observation for two weeks, during which we

RESEARCH STRATEGY AND METHODOLOGY

were able to measure improvements in key metrics in the evaluated company due
to the implementation of some of those patterns. Chapter 5 (p. 55) provided the
opportunity to experiment with cloud technologies and get acquainted with the
industry’s cloud status quo, gathering the expertise to continue this research. Using
literature research and experimentation, we then mine these problems into a pattern
format, as introduced in Chapter 6 (p. 69) and elaborated in Chapters 7 to 9 (pp. 77,
117 and 135).

RQ2. What strategies are adopted for addressing cloud problems?
To understand how the industry is approaching these problems, in Chapter 5 (p. 55),
we describe the interview of 25 Portuguese startups, which we inquire about cloud
development and operation practices and write a pattern catalog out of them.
Chapter 6 (p. 69) further explores this subject, focusing on critical cloud design
decisions we have captured in the form of a pattern language. The pattern language
thoroughly describes ten frequent problems of cloud design under three categories:
the orchestration of infrastructure and services, cloud software monitoring, and
discovery and communication for facilitating collaboration between multiple services
that compose a cloud application. The 10 novel patterns from the pattern language
are further detailed in Chapter 7 (p. 77), Chapter 8 (p. 117), and Chapter 9 (p. 135).

RQ3. What driving forces influence how strategies are implemented?
Chapter 6 (p. 69) describes which forces influence the solutions captured as patterns.
Each pattern presents a frequent problem of software design for the cloud and its
conflicting forces. The proposed solution properly balances those forces, providing
a reliable implementation of the solution for the problem identified in the pattern.
The detailed pattern description from Chapter 7 (p. 77), Chapter 8 (p. 117), and
Chapter 9 (p. 135) thoroughly identifies the forces that guide the solution for each
pattern. We validate these forces by inquiring industry specialists in the case study
described in Chapter 10 (p. 149), which enables us to gain confidence in the forces
we have identified, just as well as identifying new ones that we can use to iterate

and improve our patterns.

RQ4. Are companies that develop software for the cloud aware of these
problems and adopt the identified solution?
While interviewing five local startups, we learn if they recognize these problems and
which strategies they solve by applying the pattern language. Chapter 10 (p. 149)
describes our findings. Chapter 11 (p. 191) describes how we have inquired over 100

52 PROBLEM STATEMENT

companies about their company and product characteristics and tried to correlate
those with the adoption level of each pattern identified in the pattern language. We
then discuss the identified correlations and how these can be used as guidelines for

when to consider implementing each pattern.

RQ5. What characteristics influence the emergence of specific problems when

developing software for the cloud?

In Chapter 10 (p. 149), we interview five companies that are developing their
software for the cloud. During each interview, we inquire the respondent about the
problems they have been through while developing their cloud application, which
we then discuss while considering the company’s size and application intricacies.
We then expand this research to over one hundred respondents in the questionnaire
presented in Chapter 11 (p. 191), acquiring the required data to identify correlations
between the characteristics of the respondents’ companies and the cloud problems

they have faced.

Table 4.1 (p. 52) summarizes how we address these research questions along in this

dissertation.

ID Research questions Related chapters

RQ1 What are the recurrent problems when developing Chapters 3 and 5 to 9
software for the cloud?

RQ2 What strategies are adopted for addressing cloud Chapters 5 to 9
problems?

RQ3 What driving forces influence how strategies are Chapters 7 to 10
implemented?

RQ4 Are companies that develop software for the cloud aware Chapters 10 and 11

RQ5

of these problems and adopt the identified solution?
What characteristics influence the emergence of specific Chapter 11
problems when developing software for the cloud?

Table 4.1: Fundamental research questions in this research and where they are addressed in this

4.4

document.

Summary

This chapter identifies the questions that will drive this research. We argue that there are

categories of problems while developing software for the cloud that recurrently challenge

engineers who lack appropriate resources to address them. With this work, we propose

SUMMARY

to explore those categories, their problems, and their solutions. We propose to capture
this knowledge as a pattern language. We subsequently propose to validate them through
industry interviews and questionnaires that can assert the awareness and relevance of

these patterns in the industry.

54 PROBLEM STATEMENT

Chapter 5

Preliminary Studies

5.1 Experimentation with Cloud Architectures 55
5.2 A Pattern Catalog for DevOps and Cloud 62
5.3 SUMMATry e e e 67

This research aims at supporting software engineers while designing their cloud software.
To do so, we felt the need to become experts at it, going beyond what Chapter 3
(p. 25) identifies as state of the art with practical experience. This chapter describes
two exploratory pieces of research. Section 5.1 (p. 55) describes the implementation of a
reference cloud architecture for a Portuguese research project regarding Ambient Assisted
Living, Ambient Assisted Living for All (AAL4ALL). Section 5.2 (p. 62) describes a survey
held with the Portuguese startup community, aiming to understand the practices and tools
they adopt in their cloud adoption. A pattern catalog resulted from this survey, which
we validate with a startup to measure the achievable improvement from applying the

patterns in an industry environment.

5.1 Experimentation with Cloud Architectures

AALAALL' was a Portuguese e-health research project held during 2011 and 2015 with
a consortium of 32 Portuguese partners from industry and academia, aiming at the
development of an open AAL ecosystem by providing an infrastructure for third parties

to integrate their sensors and services.

1 Learn more about the AAL4ALL project at http://www.aal4all.org/.

http://www.aal4all.org/

PRELIMINARY STUDIES

The project aimed at helping seniors (or care receivers) increase their independence,
by instrumenting their house with a set of sensors that could help their daily life. Several
use cases were implemented. As an example, the door and window sensors could warn
the care receiver about them being left open by mistake, preventing the security risk.
Another successful use case was to track Alzheimer patients continuously, providing an
alarm mechanism they could trigger if they ever got lost or confused, both in and outside
their home.

AALAALL required a generic software platform to orchestrate the information that
flowed in the ecosystem and to manage and identify users and services [Far+13; Far+-14].
We contributed with the design and implementation of a reference architecture that
supported the cooperation between services and devices developed by any partner from
the consortium. Given the medical nature of the data processed, message passing required
a centralized communications system to ensure the adequate authentication, routing, and

security of all data exchanged.

5.1.1 Project Overview

Figure 5.1 (p. 57) provides an overview of the project architecture. We contributed to this
project with the design and implementation of Ambient Assisted Living Message Queue
(AALMQ@), a cloud application for orchestrating the communication between any other
two entities in the project, for example, a heart rate sensor and the patient’s dashboard.

AALMQ provided a message queue where third-party services and devices exchange
data, subject to authentication and authorization. There were restrictions on what
information subscribers could receive, so we enforced the access to queues and what
message could be exchanged in each queue, so that only authorized publishers and
consumers could interact with a given queue, preventing data leakage. AALMQ was built
around RabbitMQ?, which provided many of the messaging functionalities. We had to
implement a companion service that kept RabbitMQ configured with the queues and
individual permissions that were configured in the ecosystem.

Figure 5.2 (p. 58) demonstrates the scenario where a Care Receiver (patient) owns
a scale, an electrocardiography reader (ECG), and an AAL Home Gateway at home.
Somewhere in the cloud, an AALMQ) node assures the communication between the AAL
Home Gateway and the Monitoring Web App and Monitoring Mobile App used by a

Healthcare Provider and a Healthcare Informal Provider, respectively. The Healthcare

2 RabbitM(Q is an open-source messaging system implementation. Learn more at https://www.rabbitmg.
com/.

https://www.rabbitmq.com/
https://www.rabbitmq.com/

EXPERIMENTATION WITH CLOUD ARCHITECTURES

Ecosystem Services
*
\)
: . Health Medicine : Health
Healthcare Provider Monitoring Disposal DUI’T‘I?tICS History o o o
. Services
= System Service Service
alh
Healthcare Informal
Provider
ICT Services Mobile Scenario
-
Registry D &Ih L}
II.."I
AALMQ -
- Smartphone Smart T-shirt
A
e o @ Care
Receiver
Home Scenario ({Tj"
e —_—
AAL Home Gateway Set Top Box .
I [| | [TV
MMEaTde g
Sensors and Actuators Care
Receiver

Figure 5.1: AAL4ALL project architecture [Far+14]. The ecosystem services enabled caretakers
and health professionals to interact with the care receiver. The ICT services enabled
project-wide functionalities; such keeps a care receiver location history. The care
receiver had a mobile and home scenario, where he would be monitored by different
sensors that would enable notifying the caretaker in case of emergency.

Provider represents an entity (doctor, nurse, group, or organization) that is responsible

for monitoring and responding to any problems that may arise with the Care Receiver.

At the same time, the Healthcare Informal Provider is a non-specialized person (family,
friend) that wants to stay informed about the status of the Care Receiver.

It is possible to identify different communication scenarios, one of which illustrated in
Figure 5.3 (p. 59). This scenario describes the mechanism for assuring that a Healthcare
Provider (p) receives an alert when the heart rhythm of a Care Receiver (r) is outside
a specified range. This description that all participants were previously set up and had

permission to exchange messages. The scenario works as follows:

o The Healthcare Provider (p) starts by interacting with the Monitoring Web App,
through its user interface, to request the monitoring of the heart rhythm signal of

the Care Receiver (r) with a specific period (t) and control range (min, max). This

o7

58 PRELIMINARY STUDIES

D-.

(<2 \‘
\(«I))) / Scale

.y
A\ 4
Healthcare Monitoring =
Provider Web App AAL Home
m Gateway Care
S\ / Receiver
U \ 7
i IO
. . -
Healthcare Monitoring ECG
Informal Provider Mobile App

Figure 5.2: Visualization of the intervening components for an Electrocardiography (ECG)
reading use case in the home environment of the care receiver [Far+14].

interaction is abstractly represented by the MonitorSignal message in the figure.

o The Monitoring web application prepares a RequestData message to be sent to the
AAL Gateway that serves the Care Receiver, having as parameters the type of signal,
the identification of the Care Provider requesting the data, the identification of the
Care Receiver to be monitored, and the period for data collection. The Monitoring
Web App transmits the message via the AALMQ node, by sending a Publish message
to the AALMQ node, having as parameters a routing key and the RequestData
message. In this case, the routing key is a topic that identifies the target of the
message, that is, the Care Receiver. If wanted, the RequestData message may be
encrypted by the Monitoring Web App, becoming completely opaque to the AALMQ

node.

o Assuming that the indicated AAL Home Gateway previously subscribed to the topic
that identifies the Care Receiver r, the AALMQ node forwards the RequestData
message to the AAL Gateway.

o The AAL Home Gateway then decrypts (if needed) and interprets the received
message. Based on configuration information, it first determines the device that
measures the requested signal (hearth rhythm) from the requested person (r). Then,
as indicated by the loop interaction operator in the figure, it periodically requests
(with period t) a reading from the device, which reports back the measured value
(x). For each value reported by the device, the gateway prepares a ReportData
message to be sent to the requester, having as parameters the type of signal, the

identification of the Care Receiver being monitored (r), the identification of the Care

EXPERIMENTATION WITH CLOUD ARCHITECTURES 59

:Monitoring AALMQ ‘Home ‘ECG
Web App Gateway
p: Healthcare r. Care Receiver
Provider | |

|

1 | |
ManitorSignal('HeartRhythm', r, t, min, max) I
= |

|
|
|
1 ‘ |
Publish (topic-r, FliequestData ('Hea naﬁythm" p., r.t) :

|
|
|
|
|
|
| |
Forward (RequestData('HeartRhythm', p, r, t))
l] |

|

1

|

|

|

|

|

|

|

loop /

|
|
|
|
i
H : Re questData ('HearthRh ythm")
[everyt time]
| |
|
|
|
|
|
|
|

| ;|
]
| : HeartRh ythm (x)

|
ReportData('HeartRhythm',x)

|
I
I 1]
: Publish (topic-p, RleportData('Hea rthlmythm‘, r, p, X))
| =
: Fo rward(FlteportData('HeartRhythm', r, p, x)
I =
}
opt |
[x < min orx > max] :

|
' 1
NolifyAI arm(' HeartRhylrthm‘, r, X)

Figure 5.3: Sequence diagram demonstrating message passing between cooperating services in
the use case of capturing a patients ECG reading [Far+14].

Provider that requested the data (p), and the actual measurement (x). The gateway
transmits the message via the AALMQ node, by sending a Publish message having
as parameters a routing key and the ReportData message. Like in the previous case,
the routing key is a topic that identifies the target of the message, which in this case,
is the Care Provider. Again, if wanted, the ReportData message may go encrypted,

becoming completely opaque to the AALMQ node.

o Assuming that the Monitoring Web App previously subscribed to the topic that
identifies Care Provider p, the AALMQ node forwards the ReportData message to
the Monitoring Web App.

o The Monitoring Web App then decrypts (if needed) and interprets the received

message. It appends the received value to its internal database for subsequent

60

PRELIMINARY STUDIES

consultation and, in case it lays outside the specified range, sends an alarm
notification message to the Care Provider, indicating the type of signal, the

identification of the Care Receiver (r) and the observed value (x).

The example presented is based on a small pilot case that was conducted to validate
and refine the testing and certification approach presented in this paper. A testing
infrastructure, comprising reusable test drivers and stubs, was developed to facilitate

the implementation and execution of unit test cases [Far+-14].

5.1.2 Development Considerations

The use cases identified before enabled us to elicit the requirements to AALMQ. Given
that it would orchestrate the message passing between any other two components in
the ecosystem, it must have been considered critical in the project. As such, its design,
development, and operations needed to prevent downtime. Changes to it, such as updates
or a change in the infrastructure, needed to ensure minimal to no downtime, minimizing
the impact in the ecosystem.

There were several challenges to ensure that the application met its requirements.

Particularly, we had to consider:

Packaging. Moving software between environments manually, such as copying files
between hosts, is not practical. At the time, the Docker container technology was
being introduced. We used Docker to package the two services that composed
AALMQ independently: the message queue software and the companion software
that manage access to it. Using Apache Mesos, a cluster orchestration software, we
could instruct it to deploy the containers redundantly on the infrastructure without

having to access each server manually, rendering deployments trivial.

Infrastructure orchestration. We quickly found that we would have to use multiple
machines to operate the application. A single machine was not enough to handle
the traffic at peak usage, and we wanted to provide a redundant system that would
continue to operate in case of failure from one node. It would not be trivial to
operate each machine, despite any automation adopted. We wanted to abstract the
underlying virtual machines and somehow prescribe how software operated in them.
We adopted Mesos and Marathon as orchestrating technology to deploy Docker
images. The orchestrator deployed the two services on all of the three servers that

composed the cluster for performance and redundancy. Additional servers could

EXPERIMENTATION WITH CLOUD ARCHITECTURES

be added on-demand, as well as services deployed to them by adjusting a simple

configuration.

Deployment automation. Initial deployments were triggered manually. We have
noticed that this process was time-consuming and required following a strict
script. A minor deviation from that script could render the system offline. Being
software engineers, we quickly felt the need to implement automation so that
the script could be executed by the computer, preventing human error. A small
deployment script was implemented and ensured that we had the correct source
code version locally, built and published a docker image from it, and then pulled
that image in the production environment’s orchestrator. At the time, deployment
automation frameworks were not widespread, so we have built that automation

strategy ourselves.

Availability and resilience. The research project had several field trials, both with
artificial and real patients. With AALMQ) being a single point of failure for the
whole AAL4ALL ecosystem, it had to be designed with strategies that minimized
the probability of it becoming unavailable. As long as that node was available,
requests coming into the system were forwarded to one of the nodes randomly.
Message ordering was not relevant to the project. If the deployed service stopped
working, the orchestrator attempted an automatic recovery. If that did not work,
an external monitoring system would notify us by email, enabling a fast manual

response.

Traffic and scale. Being an early proof of concept running field trials, the volume of
data being exchanged through the AALMQ was minimal. The peak traffic will rarely
exceed tens of messages per second. A single machine would be capable of managing
this volume of data. Redundancy was mostly motivated to provide availability and
resiliency than performance and scalability. Nevertheless, the adopted architecture

could quickly scale out to new machines to handle additional traffic.

5.1.3 Conclusion

Implementing AALMQ) provided an excellent opportunity to experiment with novel cloud
technologies and their orchestration. There were three contributions in AALMQ that
furthered our cloud knowledge. Mesos and Marathon acted as orchestration manager
and abstracted the infrastructure, facilitating service orchestration and scalability.

Docker provided service containerization, enabling execution in isolated and portable

62

PRELIMINARY STUDIES

environments. RabbitMQ provided a message queue service with restricted queue
interaction.

These design decisions coped with the requirements identified, providing a scalable and
secure system for routing messages between distributed cooperating services. Most design

decisions were aligned with the pattern catalog that we will later describe in Chapter 6
(p. 69).

5.2 A Pattern Catalog for DevOps and Cloud

Experimenting with cloud technologies was insufficient to understand if our perception
of the cloud ecosystem was coherent with the best practices adopted by other engineers.
Did we make optimal decisions? Did we use the best technologies? How could we further
optimize our setup? To answer these questions, it was no longer enough to experiment
with technologies by ourselves; we wanted to understand how the industry was tackling
the same challenges we did.

For that regard, we designed a survey for capturing this information with the
Portuguese startup community. Startups were ideal research candidates as they typically
work with limited teams and budgets, having to work very efficiently to succeed.
Furthermore, their goal is to typically scale, so their software designs are concerned with
such requirements from the get-go.

During the first months of 2016, we interviewed 25 Portuguese startups. Their
responses to the survey led to the creation of a pattern catalog of Cloud and DevOps
practices with 13 patterns.

The pattern implementation was evaluated using participant observation with a
startup that was in an early cloud adoption phase. We evaluated their development
and operations practices and measured how the implementation of our pattern catalog
improved them.

Carlos Teixeira collaborated with this research as partial fulfillment of his Master’s
thesis research [Teil6].

5.2.1 Interviewing Process

This research applied the interview to 25 startups. The interview covered the following

categories:

Product. The product section would try to understand what the company did and

A PATTERN CATALOG FOR DEVOPS AND CLOUD

secondly if there were any special requirements that would influence the company’s

choices.

Team management. Team sizes, interactions, project management techniques would

be analyzed here.

Software delivery pipeline. In this section, we identified if teams did Continuous
Integration, how did they handle the creation of environments for each of the pipeline

states and what teams did what in each state.

Infrastructure management. We tried to capture how the companies handled their

infrastructure. Did they use the cloud? Which processes did they automate?

Monitoring and error handling. With this section, we aimed to understand if the
companies were monitoring their infrastructure, how did they do it and, when errors

were detected, how were they responding?

5.2.2 Pattern Catalog

The responses to the interview allowed us to identify tendencies that eventually led to

capturing a pattern catalog of 13 development and operations patterns:

Alerting. Define a strategy to alert the team when the system is experiencing failures.

The whole team can be alerted, or there can be a sub-team responsible for evaluating
the alerts during a given period. Members from this sub-team can periodically

rotate.

Auditability. Monitor the application’s status and log outputs, raising alerts on failures

for quicker team responses when needed.

Cloud. Design the product to use cloud computing enables a faster development by

adopting cloud services.

Code review. Peer review source code before accepting it into the master branch to

minimize errors and share knowledge.

Communication. Define communication channels for the team so that they can easily

stay synchronized.

Continuous integration. Adopt a Continuous Integration (CI) system to
automatically test and build the system, alerting the development team of failures

in this process.

63

64

PRELIMINARY STUDIES

Deployment. Automate environment setup using deployment scripts and product

deployment using REPRODUCIBLE ENVIRONMENTS.
Job scheduling. Schedule job execution in the infrastructure.
Reproducible environments. Package software in a portable way between systems.

Scaling. Adopt vertical scaling, horizontal scaling, or increase the product’s availability

and capacity.

Team orchestration. Adjust development teams size to be smaller than ten members

and promote agile processes and communication.

Version control. Adopt a version control system to facilitate cooperation between

developers.

Table 5.1 (p. 64) identifies how many companies we have seen each pattern. These
patterns are further detailed in the Master’s thesis entitled Towards DevOps: Practices

and Patterns from the Portuguese Startup Scene [Teil6].

Pattern name

Adoption count

Communication
Version Control

Cloud

Auditability
Continuous Integration
Reproducible Environments
Error Handling

Scaling

Deployment

Code Review

Team Orchestration
Alerting

Job scheduling

25 I
24 I
21 I
17 I
16 I

15 I

15 I

12 I

11 ——

11 ——

9 .

9 .

By |

Table 5.1: Pattern catalog adoption from the 25 interviewed companies, sorted by the most
adopted.

5.2.3 Empirical Assessment of the Patterns in the Industry

We want to understand what was the actual impact of applying these patterns in the
industry. We expected to observe an improvement on those metrics by measuring key

productivity metrics before and after applying the patterns.

A PATTERN CATALOG FOR DEVOPS AND CLOUD

This evaluation was performed by applying a participant observation strategy with a
Portuguese startup, VentureOak?®. Participant observation enabled the systematic capture
of events, behaviors, and artifacts in the social setting chosen for study [MRO6]. This
methodology has the researcher joining a team in their daily activities as an additional
active member of that team. Other than being able to accurately capture all action from
the team, the observant also acts as an active team member, further influencing the team
to explore his hypothesis [Kaw05].

VentureOak developed cloud software for third parties and had at the time a little
over 20 employees. Their projects had a typical duration of three to six months, built by
teams of two to six elements.

VentureOak motivation for collaborating in this research was their own goal to improve
their cloud strategy, namely: (1) reduce the time spent deploying software by applying
automation, (2) reduce the time required to set up new development and deployment
environments by adopting programmatically reproducible environments, (3) minimize
state variations between development and production machines, and (4) modernize their
technology stack.

The experiment was limited in time to two weeks. Employing participant observation,
we acted as an active member of the team, helping them tackle their challenges by applying
patterns from our pattern catalog. Three, out of the thirteen patterns, were implemented
during this time.

The team needed to reduce the time it took to configure new environments and to
ensure consistency in their environments, despite if they would be running development,
staging, or production environments. REPRODUCIBLE ENVIRONMENTS pattern addressed
this problem, which the team approached by adopting container technology, specifically
Docker. The REPRODUCIBLE ENVIRONMENTS facilitated the implementation of the
CONTINUOUS INTEGRATION pattern, by leveraging pre-built containers to speed up the
testbed setup and reduce the overall test execution time.

Finally, the DEPLOYMENT pattern was adopted to ensure a clean environment was
created on every deployment, by having the CI process building a container image fit for
production, which the deployment process would then use while deploying a production
environment.

The implementation of these three patterns enabled the implementation of a trivial
Continuous Deployment (CD) system.

Despite the limited experiment duration, it was still possible to observe improvements

3 VentureOak was a software house from Porto. They are now part of the German professional network
Xing.

66

PRELIMINARY STUDIES

regarding the automation of deployments and the creation of development environments
with the team. This automation also enabled understanding which software version was

deployed at any given time, which was not possible previously.

5.2.4 Results

Table 5.2 (p. 66) identifies the metrics captured with VentureOak at the beginning and
end of the experiment. The automation of the deployment strategy slightly slowed down
the deployment duration as a side effect of always having to run all tests, which, on the
other end, increased the team’s confidence on each deploy. This automation increased the
developer’s awareness of issues with their codebase, reducing the frequency at which build

errors where observed.

Metric Initial value Final value

Deployment strategy (staging) Manual Automatic

Deployment duration (staging) 3 to 10 minutes 15 minutes

Deployment frequency (staging) When needed On every push

Environment set up strategy Manual Automatic

Environment set up time 5 minutes to hours, Usually less than b5
depending on developer minutes

Ease to make environment changes Low High

Build errors frequency Low Medium

Table 5.2: Observed performance metrics at VentureOak before and after the participant
observation experiment [Teil6].

Setting up new environments, either for new developers, staging, or production, had
the most significant impact, done in up to 5 minutes in any case, by pulling the proper
Docker image. A substantial improvement for a task that often required several hours
by less experienced team members. The frequency at which build errors where observed
resulted from an improvement in the build process that increased the errors detected
during the software build and was indeed a positive change.

While it is not possible to argue about the relevance of all patterns, we can conclude
that these three implemented patterns very positively influenced the development and

operations at VentureOak.

5.2.5 Conclusions

This section identifies recurrent problems and practices from developing cloud software by

interviewing professionals. We create a pattern catalog of 25 patterns and evaluate how

SUMMARY

often these are implemented in the industry. We then evaluate the impact for a company
to adopt these patterns by measuring development metrics before and after the team is
provided with the pattern catalog. We observe a performance increase in most metrics
measured. The exception is development time, which is slowed down due to the execution
of tests in the deployment pipeline. Nevertheless, this increased deployment time was seen

as positive, as it vastly increased the confidence over the deployed software.

5.3 Summary

In this section, we have described our initial research and contributions to cloud practices.

During this phase, we aimed to grasp a better understanding of the technologies,
architectures, and practices frequent in the industry, through both extensive literature
research, industry interviews, and actual experimentation.

The first contribution was to the AAL4ALL project, a publicly funded research project
to facilitate the continuous observation of caretakers by their caregivers. This project had
the contribution of 32 partners from industry and academia, each developing sensors or
software that would, in some way, improve the ease of caring for these patients. We have
contributed with an architecture and reference implementation to orchestrate the message
passing between components in the ecosystem, ensuring scalability, security, and privacy.

Secondly, we have interviewed 25 Portuguese startups to understand their cloud
technology adoption and practices. A pattern catalog of 13 patterns resulted from that
research. Some of these patterns were expanded and became part of the pattern language
presented in Chapter 6 (p. 69).

Finally, we have applied participant observation for two weeks at a startup and
demonstrated that the application of some of the patterns from the catalog positively
influences the development and operations of the companies that adopt them.

During this chapter, we address the following Research Questions (RQs):

What are the recurrent problems when developing software for the cloud?
We experiment with the intricacies of cloud design and development in Section 5.1
(p. 55), where we highlight the importance of packaging, orchestration, automation,

and availability in cloud development.

What strategies are adopted for addressing cloud problems?
Yet in Section 5.1 (p. 55), we describe our strategy to design and implement
a reference architecture for a cloud application to orchestrate messages between

third-party publishers and subscribers. In Section 5.2 (p. 62) we identify 25 recurrent

67

68

PRELIMINARY STUDIES

practices for the development and operation of cloud software, and evaluate how

these can improve the development efficiency of a company.

The work described in this chapter resulted in several publications, namely regarding
infrastructures for assisted living cloud systems [Pre+12a; Pre+12b], cloud systems for
monitoring and detecting patterns from sensor signals [FSM12], testing and certification
methodologies for cooperating services in the cloud [Far+413; Far+14], and cloud designs
and patterns [SM13; Soul3].

Chapter 6

Engineering Software for the Cloud

6.1 Pattern Structureo L 69
6.2 Methodology 71
6.3 Pattern Language 71
6.4 Adopting the Language 74
6.5 Summaryo ... 76

The previous chapters of this dissertation reflected on the intricacies of cloud development,
detailing why developers failed at building cloud software or why their efficiency is
paramount for businesses to succeed in such competing times. Through preliminary
research, we have contributed to a cloud project, going through the challenges of designing
for the cloud. We have also surveyed local startups to understand how they were tackling
their cloud development. We understood that patterns are a generally accepted strategy to
capture knowledge and that, while several authors have described cloud patterns, these
are often ill-detailed and, to our knowledge, never empirically validated. This chapter
introduces a pattern language for engineering software for the cloud. We propose ten
novel patterns and reference two others, relating them in a pattern language. We then
present how these can be implemented in an example application. The patterns are further

detailed in the following chapters.

6.1 Pattern Structure

The patterns described in this work use a structure inspired by the classical pattern
structure proposed in A Pattern Language for Pattern Writing [MD98b; WE12], which

70 ENGINEERING SOFTWARE FOR THE CLOUD

included the context, problem, forces, and solution. We developed a superset from it,

composed by the following sections:
Abstract. A brief description of the pattern and its applications.

Context. The circumstances that result in the manifestation of the problem. By reading
this section, the reader would understand what the driver is for the problem.

Experienced users will often relate the context with their previous experiences.

Example. Describes a concrete scenario aligned with the context, where the problem

is observable, highlighting the intricacies that make it a complex problem to solve.
Problem. Formalizes the problem, detailing why it is complex to be solved.

Forces. Identifies the forces that influence the design of the solution. Forces commonly
oppose each other, leaving for the reader to decide how to properly balance them

to customize the pattern’s implementation to his specific needs.

Solution. Describes how the pattern addresses the problem and describes its
implementation details, which often need to be adapted, considering how the forces

are balanced.

Example resolved. Describe how the pattern can be instantiated in order to address

the scenario described in the example above.

Resulting context. Elaborates on the benefits and liabilities introduced by this

pattern’s implementation.

Related patterns. Identifies which patterns can be used with or are incompatible with

the implementation of this pattern.

Known uses. Pattern should be extracted from recurring solutions to the same problem
observed in the wild. The section identifies implementations that motivated the

writing of this pattern.

Further considerations. An optional section in the pattern, where additional details

are shared, or a discussion is held, elaborating on the pattern’s intricacies.

While capturing this pattern language, some considerations were taken to ensure the
individual quality of each pattern. Inspired by the evaluation framework proposed by

Seidel [Seil7], the following attributes were considered:

METHODOLOGY

Completeness. Is the pattern description complete? [Ale79] A complete pattern
provides a level of detail that enables the reader to identify with the problem and

implement it.

Briefness. Does the pattern contain more information than what is strictly needed? A

brief pattern goes straight to the point, being easy to read and reproduce.

Validity. Is the stated solution valid and with enough known uses described? A valid

pattern documents an accepted good solution and justifies it with concrete examples.

6.2 Methodology

The patterns introduced were mined through observation and literature review, heavily
inspired by the first two suggest by Iva towards creating a pattern language in A Pattern
Language for Creating Pattern Languages [I116]. While doing so, we respect the rule of
three, cf. Chapter 2 (p. 11), providing at least three independent industry applications of
every pattern. Every pattern was peer-reviewed by the software engineering community
through publication in one of the Pattern Languages of Programs (PLoP) series of

conferences.

6.3 Pattern Language

The pattern language presented in this research is composed of twelve patterns, ten
of which novel, organized into four categories: automated infrastructure management,
orchestration and supervision, monitoring, and discovery, and communication. Figure 6.1
(p. 72) depicts the patterns in the language and elaborates on their relations. The

remaining of this section briefly describes each category and its patterns.

6.3.1 Automated Infrastructure Management

This category comprises two patterns that have already extensively described in the
literature: AUTOMATED SCALABILITY and INFRASTRUCTURE AS CODE. We have decided
to reference them from the work of other authors but still include them in the pattern
language, which is motivated by the relevance they have while designing software for the
cloud and how relevant they are for some of the other patterns in the language.
Operations can be decisive for a product’s success. Managing operations manually

is slow, error-prone, and costly, rendering it hard to trace changes and evolve the

71

72

ENGINEERING SOFTWARE FOR THE CLOUD

Infrastructure configures . B Service
> ¢ Job Scheduler
as Code®

a5y Discovery
(& K
Q s T
uses

Automated extends Orchestration
—_— »

co
uf Ureg

SOINSYUOD

Recovery ¢ Manager ®

hosts

Automated otructs @ Fallure disrupts
instructs AllUuI€ disrupts . . .
I . 4 COHtEilDCl’lZthlOH

Scalability @ o« Injection uses
A External feeds A Log feeds Preemptive uses Messaging
Monitoring Aggregation Logging A System ®

Figure 6.1: The pattern language for engineering software for the cloud, depicting the
relations between the patterns (arrows) and the categories that they fall into,
viz: (m) Discovery and Communication, () Orchestration and Supervision,
(a) Monitoring, and (@) Automated Infrastructure Management.

infrastructure. In order for teams to be efficient, they should automate their operations.
We have discussed automated quality testing through the adoption of automated tests and
Continuous Integration (CI). Operations should be equally automated, implemented as
part of the development process. INFRASTRUCTURE AS CODE enables this practice [Gucl7;
Dad18; Mor15].

Using a microservice architecture enables the separation of responsibility into multiple
smaller services that can be designed, scaled, or orchestrated independently. Multiple
microservices can be leveraged to create complex cloud applications [LEF14; NS14; Ricl7h].

Cloud applications can quickly move from being almost idle to serve millions of
requests per second. When developing software for the cloud, keeping up with high traffic
peaks is essential to ensure reliable user experience. AUTOMATED SCALABILITY is essential
to achieve continuous service performance, by monitoring resource to decide when to scale
the system automatically [Will2; ECN15].

6.3.2 Orchestration and Supervision

After the cloud infrastructure is allocated, software developers need to allocate and operate
their software on top of it. This category presents five patterns that help developers to

operate their software. These patterns are thoroughly described in Chapter 7 (p. 77).

PATTERN LANGUAGE

Traditionally, deploying software in a host coupled it with the operative system,
requiring dependencies to be installed and configurations defined that could introduce
side effects with other services in the same host. CONTAINERIZATION suggests the usage
of containers to package and deploy services in isolation, avoiding that they impact each
other or the host.

Deploying and updating software at scale manually is error-prone, slow, and costly.
ORCHESTRATION MANAGER can help automate this process by providing a programmatic
way to orchestrate services while abstracting the underlying infrastructure. The
orchestration can optionally monitor the running services and attempt an AUTOMATED
RECOVERY to return the service to a functioning state on failure. Finally, it can also be
set to periodically run jobs in the infrastructure, using the JOB SCHEDULER pattern that
can be integrated or external to the ORCHESTRATION MANAGER.

With software uptime being critical, developers tend to implement automated recovery
strategies, some of which described in the patterns above. With software being software,
the recovery strategies themselves are prone to failure and must be frequently exercised to
ensure their correctness. FAILURE INJECTION randomly introduces failures in the system

to exercise the recovery mechanisms and confirm that they are functional.

6.3.3 Monitoring Patterns

Software running on the cloud can be subject to a vast amount of traffic, which, eventually,
and provided enough time, will generate unexpected scenarios. While it is impossible to
prevent issues from happening, developers should implement the required strategies to
identify when and why issues happen with their software so that they can address them
quickly and right from their first occurrence, preventing it from impacting the software
again in the future. This category introduces three patterns for facilitating the observation
of the application’s behavior during execution, which are further detailed in Chapter 8
(p. 117).

PREEMPTIVE LOGGING describes a series of practices that ensure that runtime
information is captured and made available for developers to address issues on their first
occurrence. It does so by preemptively optimizing the level of logging an application
produces. LOG AGGREGATION then describes how these logs should be centralized, for
facilitated access, mostly relevant for distributed systems.

The logged information will be most relevant for detecting issues. Automated
monitoring strategies are recurrent and essential and can be internal or external to the

infrastructure running the cloud software. EXTERNAL MONITOR describes how internal

73

74

ENGINEERING SOFTWARE FOR THE CLOUD

monitoring is subject to biased observation, incapable of detecting, for example, internet
connectivity issues, since it is testing the software from the same local network and
proposes the introduction of an external entity to supervise the public interfaces of the

application.

6.3.4 Discovery and Communication Patterns

When applications scale, they eventually need to do so horizontally, resulting in the need to
deploy additional replicas of the application or, often, to decompose it in multiple services.
These services often need to cooperate in providing the application as a whole. Two
common strategies to facilitate communication between services are direct communication
or an intermediary message passing system. The two patterns from this category facilitate
the discovery and communication of services in a cloud environment, using one-to-one or
one-to-many strategies, further described in Chapter 9 (p. 135).

The SERVICE DISCOVERY describes how services can discover each other while
using an ORCHESTRATION MANAGER, enabling point to point service communication.
In some scenarios, point to point communication might not be ideal, namely when
multiple instances of a service exist. Those scenarios require a strategy to disseminate
messages through multiple instances of a service. This type of one-to-many communication
strategies can also address requirements like fine-grained control of what information each
service can receive or implement an underlying work queue, with a publisher-subscriber

strategy. MESSAGING SYSTEM describes such a strategy.

6.4 Adopting the Language

Resistance to change is, by itself, a pattern. Adopting a pattern language for developing
software for the Cloud requires the need for teams to adapt their mindset regarding their
organization, processes, and software architectures. While the team must be motivated
to change, this pattern language eases its adoption with thorough implementation
instructions that elaborate on how to balance the forces observed in a given context.
Adoption can also be partial or incremental, adjusting to the team’s needs.

This section was inspired by The Unfolding of a Japanese Tea Garden by Christopher
Alexander [Ale02]. It uses a sequence to describe how the patterns relate and complement
each other while describing how they could be implemented in a real-world scenario. We
present a sequence of pattern adoptions that describes how the patter language can be

leveraged iteratively to achieve a specific goal.

ADOPTING THE LANGUAGE

6.4.1 Sequence for a Web Application

Consider the scenario where a cloud practitioner needs to create and deploy a redundant
Web Application, composed by a client-facing HTTP server and a database. The
practitioner should design his HT'TP server and database as two cooperating microservices.
By using CONTAINERIZATION and one service per container, he would create two
container images, one of each service. These containers would be highly portable between
multiple environments such as local, staging, or production environments, configured
using the available environment variables. With INFRASTRUCTURE AS CODE, the
practitioner would describe the infrastructure required to set up the system. By executing
this programmatic description, the required infrastructure would become available.
AUTOMATED SCALABILITY can configure the infrastructure to scale horizontally if
needed.

To deploy his services in an isolated and scalable way, the infrastructure would be
abstracted thought the ORCHESTRATION MANAGER. ORCHESTRATION MANAGER would
be responsible for allocating the containers machines in the infrastructure optimally,
taking into consideration the total and available resources in each machine. JOB
SCHEDULER would be responsible for executing the daily database backup process to
an external site.

The web server would use the local network port 12345 to connect to the database,
enabled by SERVICE DISCOVERY. The pattern introduces a local reverse proxy on all
machines, that exposes a static service port for each service in the cluster. This scenario
would not require MESSAGING SYSTEM.

To ensure the service is working correctly, the practitioner would have to implement
monitoring techniques. EXTERNAL MONITOR service can monitor all Internet-facing
endpoints, ensuring that they are both online and responding appropriately. PREEMPTIVE
LOGGING can further increase awareness over the system’s state by configuring the services
with the appropriate logging level. The rationale is that relevant runtime information must
be captured for possible debugging porpuses when issues happen, making it very hard to
debug them otherwise. LOG AGGREGATION can centralize these logs, index, and make
them queryable for efficient usage.

Finally, the practitioner needs to ensure his resiliency strategies are enabled and
efficient. FAILURE INJECTION can exercise the existing resilience mechanisms by randomly
introducing errors in the infrastructure, such as randomly shutting down machines, and

verifying that the system recovers automatically.

76

ENGINEERING SOFTWARE FOR THE CLOUD

6.5 Summary

This chapter introduces a pattern language composed of ten novel patterns for designing
software for the cloud and two other available in the literature. The language is organized
into four pattern categories: automated infrastructure management, orchestration and
supervision, monitoring, and discovery, and communication. A hypothetical adoption
scenario of the patterns is described using an adoption sequence. The following three
chapters further detail these patterns.

With the introduction of this pattern language, we address Research Questions (RQs)

1 and 2, by identifying ten recurring problems of cloud development and their solutions.

Chapter 7

Orchestration and Supervision Patterns

7.1 Overview 78
7.2 Containerization e 80
7.3 Orchestration Manager 88
7.4 Automated Recovery 94
7.5 Job Scheduler 101
7.6 Failure Injection 108
T7 SUMMATY . . o o v ot e e e e e e e e 116

Cloud software requires infrastructure where it is executed. In the past, such an
environment required the acquisition of the hardware, setting it all up, including the
operative system, installing all dependencies, and then installing the software itself. Today,
most Cloud Providers use Virtualization [Sav1l; Ace+13; Grall], enabling the creation
and deletion of virtual machines on demand using APIs. Virtual machines are provided
as an almost limitless resource, facilitating the allocation of computing power on demand.
Platforms for setting up private cloud solutions also exist, enabling the same dynamic
allocation of resources on top of private bare-metal clusters using a similar API. This
category introduces five patterns for orchestration and supervision: CONTAINERIZATION,
ORCHESTRATION MANAGER, AUTOMATED RECOVERY, JOB SCHEDULER, and FAILURE
INJECTION.

78

ORCHESTRATION AND SUPERVISION PATTERNS

7.1 Overview

Creating development or production environments manually is a time-consuming process.
The probability of error is high, given the commonly large number of dependencies and
configurations required. Furthermore, these pollute the host, possibly preventing it from
hosting multiple applications. While Virtualization can create a portable environment
of the entire hardware and software stack, it always virtualizes the whole hardware
and software stack, which is very resource demanding. CONTAINERIZATION is a better
alternative, enabling the creation of immutable, reproducible, portable, and secure
software execution environments. Containers are considerably more lightweight than
full-stack virtualization, as there is no need to virtualize the Operative System layer.
Containers prevent polluting the host with dependencies and configurations, making them
easier to manage and deploy at scale [BCS15; Sch14]. This approach is also essential for
individually scaling each service.

Infrastructure empowering Software in the Cloud is typically volatile and dynamically
allocated. As such, orchestration plays a vital role in dynamically identifying the execution
setup and adapt the software to cope with it.

Servers in a cluster will differ in hardware details. While some might provide more
Central Processing Unit (CPU), others might have higher amounts of Random Access
Memory (RAM) available. Not all services are the same. As such, they need to be
co-located with the hardware that better meets their requirements. Also, some services
need to be co-located in the same host due to multiple reasons, such as latency. Service
allocation is not a trivial task. An ORCHESTRATION MANAGER can abstract the underlying
infrastructure composed by a varying number of servers with heterogeneous resources and
automatically solve the allocation of services to the hardware.

Asynchronous tasks, such as database maintenance, sending emails, or performing
backups, are often required to ensure that tasks are being executed at best possible time.
These might run at a given frequency or at a single point in time. JOB SCHEDULER can be
used to orchestrate the execution of these programs in a cluster and evaluate their result,
generating error reports when need.

Software fails [DJG18; PWBO07; Gadl4; Serl7]. That assumption is even further
relevant while orchestrating Software in the Cloud, given its typically large scale.
Accepting that it is not possible to prevent software from failing, supervision ensures
that services are running as expected, executing the proper action to recover them in case
of failure.

Services running inside containers should be resilient in case of failure, providing

OVERVIEW

AUTOMATED RECOVERY. Exploiting the immutability of containers, the container shall
restart itself automatically to try to recover the service whenever it detects a malfunction.
Advanced strategies might be applied to recover a service, or set of services, such as
restarting a list of services in a specific order. The ORCHESTRATION MANAGER should
decide on the best strategy for each scenario.

Mechanisms for improving software resiliency can be built by accepting that software
fails. By doing so, developers can hope that the system recovers in unexpected scenarios,
but cannot evaluate their confidence in them without testing unexpected scenarios. To
ensure reliability and resiliency, a FAILURE INJECTION mechanism can periodically or
continuously inject unexpected events in the system, evaluating if it continues to behave
appropriately. Fault injection can evaluate reliability by injecting unexpected values into
the service and observing if any unexpected behavior occurs. Resiliency can be tested
by randomly shutting servers down, ensuring they scale right back up without impacting
service quality.

This section introduces the following patterns:

Containerization. Deploying a service to a host couples it with the operative system,
possibly introducing side effects with other services in the same host, or the host
itself. Use a container to package the service and its dependencies and enable its

isolated programmatic deployment.

Orchestration Manager. Manually operating software at scale, particularly in
architectures that favor microservices and their cooperation, is an error-prone,
slow and costly process. Adopt an ORCHESTRATION MANAGER to coordinate,
manage and distribute multiple cloud services while abstracting the underlying

infrastructure, fulfilling the service requirements.

Automated Recovery. Services will eventually fail in the long run and need to be
recovered in a timely and orderly fashion. Include checks and recovery strategies
in the instructions provided to the ORCHESTRATION MANAGER to orchestrate

containers, enabling it to monitor and recover failing containers.

Job Scheduler. Short-running jobs need to be scheduled and orchestrated using
dynamic infrastructure without permanently allocating resources, possibly requiring
ephemeral hardware to execute. Deploy a scheduler service along with the
ORCHESTRATION MANAGER that can instruct it to allocate one time or periodic

jobs, releasing their resources for reuse in the cluster when they complete.

79

80 ORCHESTRATION AND SUPERVISION PATTERNS

Failure Injection. Resilience mechanisms are triggered when the software is failing.
Since systems are designed to work correctly, the status quo resists to a continuous
verification of the correctness of those mechanisms. To ensure resilience, we need
to exercise failures to evaluate their impact. Generate atypical events at both the
application and infrastructure level, exercising the available recovery mechanisms

to verify the application’s resilience.

7.2 Containerization

0{} Deploying a service to a host couples it with the operative system, possibly
¢ introducing side effects with other services in the same host, or the host itself.

Use a container to package the service and its dependencies and enable its

isolated programmatic deployment.

Context

Today’s hardware, with multi-core and multi-CPU architectures, is built to execute
multiple programs concurrently. Cloud computing often exploits resource sharing for
executing multiple services in a single host. Sharing the host’s operating system with the
hosted services might introduce software incompatibilities between them or quickly clutter
the host, as it must mutate its file system to accommodate each service’s dependencies.
Such introduced the need for isolated environments. Full-stack virtualization quickly
became the de facto standard approach to enabling resource sharing, allowing services
to be executed in a dedicated installation of the operating system. Paravirtualization
further improved that approach by exposing hardware resources directly to the virtualized
environment. Still, isolation is achieved with an increased cost of hardware usage required

to virtualize the operating system stack on each hosted environment.

Example

Consider a web application that has three services: an HTTP server, a database, and
an object caching service. These services share some core libraries, but each depends
on different versions. The development team uses a few different Linux distributions
for development, but production environments use another. All three services should

be deployed on a temporary host for testing purposes and afterward deployed in the

CONTAINERIZATION

production environment, with the respective configurations. It is not trivial to maintain
multiple environments manually while keeping the underlying infrastructure decoupled

from the software’s dependencies.

Problem

Deploying a service to a host couples it with the operative system, possibly introducing side
effects with other services in the same host, or the host itself.

Software deployments tend to couple services with their host environment, modifying
it according to their needs [Koul8]. When hosting multiple services that share resources,
namely file-system, CPU, memory, and network availability, unexpected behavior might
be observed as they compete for those resources. Furthermore, situations exist where
two services cannot coexist in the same environment due to incompatible dependencies,

requiring a dedicated environment for each service.

Forces

The following forces, represented in Figure 7.1 (p. 82), need to be balanced while

considering the adoption of this pattern:

Resource Management. Not using all the resources in a server is not cost-efficient,

while over-allocating services will degrade their performance.

Overhead. Decoupling services from the operating system might lead to computation

overheads.
Supervision. The service status must be monitored, triggering a recovery on failures.

Isolation. Installation of dependencies changes the host, possibly resulting in side effects

with other services in the same host.

Portability. Programmatic system deployment requires the packaged software to be

easily deployed in different environments.

Configurability. Programmatic system deployment requires a strategy for

configuration in execution time.

Security. Different approaches to isolation introduce different levels of security by
default.

81

82

ORCHESTRATION AND SUPERVISION PATTERNS

Solipsism. Each running environment should only manage itself, communicating with

external services resiliently.

Persistency. Persist data in the host beyond the service’s execution lifetime, possibly

being reused in future executions.

Configurability
facilitates
o e, o facilitates ..
> Portability < Solipsism
hinders
hinders
. facilitates . facilitates _ Resource
Persistency = Isolation >
enables facilitates Management
.. . introduces _
Supervision Security > Overhead

Figure 7.1: Relationship between CONTAINERIZATION forces.

Solution

Use a container to package the service and its dependencies and enable its isolated
programmatic deployment.

Full-stack virtualization provides an isolated environment for running software.
Despite that, the cost of virtualizing the operating system for each environment introduces
considerable overheads in CPU, memory. Portability is also limited, given the increased
disk usage. As such, this approach is not an optimal solution for cloud software.

A Dbetter solution exists in operating system-level virtualization, also known as
containers. A container is a self-contained, isolated environment with a virtual
file-system, network, and resource allocation, which is executed within a host operating
system [Sol+07].

The container can be created and started programmatically, with configurations
provided to the inner software as environment variables, making it portable between

hosts. Strict resource allocation ensures that the container will not overuse the available

CONTAINERIZATION

hardware resources. Figure 7.2 (p. 83) demonstrates how to configure and print
environment variables for a container.

Persistent storage can be set up in the container by exposing files or folders from
the hosting server inside the container. File system access is limited to those. When the
container is removed from the host, all its data is deleted as well. Only folders exposed to

the container, if any, are left behind.

On failure, it can restart itself with the same configurations and a clean environment.

®
PATH=/usr/local/sbin: /usr/local/bin:/usr/sbin: /usr/bin:/sbin:/bin
HOSTNAME=0d?P@8dab789
FOO=BAR

XP=TO

Figure 7.2: Running a containerized Ubuntu image with injected environment variables.
Environment variables are provided using the -e argument. This example executes
the ENV command and exits, which simply prints the environment variables.
Environment variables can be read by software running inside the container as
a way of providing runtime configurations.

There are multiple container implementations available today, with Docker! being the

most adopted.

Example Resolved

Each service would be packaged into a separate container. In a development environment,
the three containers could be started in the same host. A separate production environment
could have each container being executed in an independent host. No changes would have
to be made to the containers, other than starting them with the proper configuration as
environment variables, which can easily be automated.

If needed, each service can be scaled independently from the others by increasing the

number of instances for that specific container.

I Learn more about Docker at https://www.docker.com/.

83

https://www.docker.com/

84

ORCHESTRATION AND SUPERVISION PATTERNS

Resulting Context

This pattern introduces the following benefits:

e Resource use is optimized, with overheads being decreased when compared to
full-stack virtualization, as only a thin layer needs to be virtualized, improving

the performance achievable by a host.

» Resources can be allocated to the container, leveraging the available host’s resources
between multiple containers, as well as what is exposed from the container to the

host and vice-versa.

o Arguments can be provided to the container on execution to configure the service
running inside it. Due to its immutability, in case of failure, the container can restart

with the original configuration.

o Isolated environment can be easily ported between development and production
as the image size only packages the service and its dependencies, leaving out all

operating system’s components.

The pattern also introduces the following liabilities:

o Paravirtualization is a virtualization technique that exposes part of the host’s
hardware directly to the virtual machine. In some low-level hardware access

scenarios, paravirtualization might provide increased performance.

» Packaging services as containers will still introduce overheads when compared to

installing services directly in the host.

Related Patterns

Configuration might be required for a container to be adaptable to multiple hosts and
scenarios. Using the ENVIRONMENT-BASED CONFIGURATION pattern, it is possible to
use environment variables to configure running services at execution time.

Some containers might have the need to persist information between executions in the
host. That is the case of separate databases that cannot lose their data if the machine
reboots. With this goal in mind, the LOCAL VOLUMES pattern may be used to expose a

folder from the host inside the container.

CONTAINERIZATION

Known Uses

Containerization was first introduced in 1982 in the Seventh Edition Unix by Bell
Labs, as a tool for testing the installation and build system of the operating system,
providing an isolated file-system environment where services could be executed. By 2008
Linux Containers (LXC) was introduced in Linux Kernel version 2.6.24, reducing the
virtualization overhead and increasing efficiency [Fel+12]. By 2013 Docker was built, based
on LXC, to make containerization easier for a broader audience.

Docker is now the cloud standard for container-based deployment, with native support
with multiple cloud providers, such as Amazon Web Services and Google Cloud Platform,
both with native support for running Docker containers [Amal5; Gool5]. A draft is being
worked on to create a standard format for containers, with RunC being the reference
implementation for it, which can also run Docker-created containers [Inil5].

A study by DataDog in April 2018 showed that almost 25% of their clients were using
containers and about 50% some sort of ORCHESTRATION MANAGER [Dat18].

Discussion

While container adoption is rising, virtual machines will always be part of cloud computing
as the unit of provision of computation. For the development team, the question at hand is
if services should be deployed at the virtual machine or container level, their differences,
and how to decide. This section sheds some light on this decision. Given the specific
context of cloud computing, deploying natively is not within the scope of this discussion.

Providing some context over virtualization, it is built by leveraging a hypervisor to
create and execute virtual machines. Hypervisors are responsible for the virtualization of
the hardware in a virtual machine and are available in two different flavors: those who
run on bare metal, such as Xen, and those who require an underlying operating system
such as Kernel-based Virtual Machine (KVM)?2. In both scenarios, a virtual machine is
a fully virtualized computing environment, meaning that every hardware component the
virtual machine would see, namely the CPU, RAM, or graphical card, would, be a virtual
representation of such element. It is part of the hypervisor responsibility then to map
those virtual components to the actual ones available.

Containers work differently, by having the hosted services sharing resources with the
host environment, with the actual service execution being managed by the host’s kernel,

although in an isolated environment.

2 Xen and KVM are both open-source virtualization servers. Learn more about the projects at https:
//www.xenproject.org/ and https://www.linux-kvm.org/.

https://www.xenproject.org/
https://www.xenproject.org/
https://www.linux-kvm.org/

86 ORCHESTRATION AND SUPERVISION PATTERNS

Performance Performance is key in any system. Virtualization efficiency is typically
inverse to the overhead introduced by the virtualization system. As previously
described, each virtual machine requires its hypervisor to virtualize the hardware
and operating system layers, which introduces a large overhead. As such,
virtualization is less efficient than containers. Containers provide almost no overhead
compared to running in bare metal, given that they share their host’s operating
system kernel. Theoretically, containers are a much more efficient solution to deploy

multiple isolated environments in a server.

This theory has been validated by Xavier, who made an extensive
evaluation of native systems performance when compared to three container
implementations (LXC, OpenVZ, and VServer®) and the aforementioned Xen virtual

environments [Xav+13], visually represented in figure Figure 7.3 (p. 87).

Regarding computing performance, Xavier concluded that there were
no statistically significant differences between native and the container

implementations, but observed a 4.3% overhead with Xen virtualization.

The same study evaluated the memory performance of these three systems and
also concluded that containers have similar performance to native, but observed
a 31% overhead with Xen based virtualization. We identified this overhead as a
product of the hypervisor layer responsible for the virtual machine to native memory

address translation.

Finally, regarding disk 1O, again containers presented a similar performance to
native, with OpenVZ outperforming native. Xen, on the other hand, presented poor
results with its reading and writing performance about 50% less when compared to

native.

Resource Isolation When running multiple virtualized or containerized services in a
server, they should not negatively impact the performance of their neighbors. Such

is possible by setting hard-limits on resource usage.

With Xen, resource allocation is a requirement for the creation of the virtual
machine. These resources are reserved by the hypervisor, which will only expose to

the virtual machine the allocated resources.

Containers typically rely on the Linux Kernel Control Groups (cgroups) to

enforce resource allocation. Control Groups allow the creation of a resource pool to

3 LXC, OpenVZ and Vserver are three alternative container implementation. LXC was used internally by
Docker until version 0.9, being replaced by lib-container since. You can learn more about these projects
respectively at https://linuxcontainers.org/, https://openvz.org/ and http://linux-vserver.org/

https://linuxcontainers.org/
https://openvz.org/
http://linux-vserver.org/

Mflops

300
|
20

4000

200

. g Xen

100

CONTAINERIZATION

10000
J
I

8000
L
100

3000

80

W Native
@ LXC

@ OpenVZ
O VServer

6000
L

2000
]
&

Disk Throughput (MB/s)
60

Disk Throughput (MB/s)

4000

mrae [2 (MU B 20 WL B | S ysener

= LXC
@ Openvz
O Vserver

Memory Throughput (MBYs)

40

1000

O Xen

2000
L

Linpack
Add Copy Scale Triad Initial write Rewrite Read Re-rear d

Stream 10Zone Wiite: 10Zone Read

(a) Computing performance using Linpack (b) Memory throughput using STREAM. (c) Disk throughput using I0Zone.
for matrices of order 3000.

Figure 7.3: Comparison of (a) computation performance, (b) memory management and (c) disk

throughput, from Xavier’s work.

be allocated to a given subsystem, enabling resource attribution to those. In practice,

it limits the resources available to a service, and its descending processes [Men04].

Enforcing resource limitation introduces an overhead per se, which might have
an impact on remaining existing systems. In his research, Xavier ran more than
one virtualized or container system, with one trying to use more resources than

the ones allocated. He observed that for both Xen and LXC, CPU limitation

is effective, not imposing any performance impact on the other hosted system.

The same is not valid for memory management, with the Xen hosted service
having a minimal 0.9% performance impact, but with LXC presenting an impact of
88.2% [Xav+13]. Several other studies showed similar results, demonstrating that
containers introduce negligible performance impact [Sol4-07; RD10; Fel+12].

Security Security is essential when executing services inside isolated environments. The

service should not be able to access its host unless explicitly configured to do so.

Virtual machines, by design, provide optimal security to the host. A service running
inside a virtual machine will not be able to understand if it is executing in a native
or virtualized environment. Contrary to virtual machines, containers do present an
increased security thread. Given that the containerization engine is executed by
the host’s operating system kernel and that it requires root permissions, the kernel
itself becomes an attack vector. A set of security measures are recommended for
container administrators, namely ensuring that the host’s kernel is always using the
latest version, that hosted containers are from trusted sources, and that programs
within them are always executing using the least privilege possible, meaning that

they should only have the required permissions to execute their functions [Moul5].

87

88 ORCHESTRATION AND SUPERVISION PATTERNS

Flexibility Virtual machines provide the most flexibility for hosts and hosted
environments. Given the existence of a hypervisor for a given machine, it will be
able to create virtual machines and host any operating system with compatible
architecture. As for containers, they currently only run natively in Linux systems,
requiring some a virtualization layer in other operating systems to execute.
Furthermore, and focusing on the Docker implementation, containers will only Linux
as well [Builb].

Conclusion

We can conclude that containers are still more prone to security flaws than virtual
machines. New techniques for securing containers have been made available recently, and
more are expected to become available in the future, but it is imperative that the user

acknowledges the problem and evaluate its risks while using containers.

7.3 Orchestration Manager

O* Manually operating software at scale, particularly in architectures that favor
43 microservices and their cooperation, is an error-prone, slow and costly process.
Adopt an ORCHESTRATION MANAGER to coordinate, manage and distribute

multiple cloud services while abstracting the underlying infrastructure,

fulfilling the service requirements.

Context

Along with cloud computing came complex applications, typically composed of several
services that needed to scale out to multiple servers.

Traditional teams would have an operations team that would deploy and operate
the software built by the development team. This approach revealed itself impractical
due to slow deployments and recurrent conflicts between the two teams [DAC15] due to
miscommunication and finger-pointing. To avoid conflict and increase efficiency, DevOps
suggested merging both teams, having a single team responsible for the software life cycle.
For that to happen, operations needed to be fully programmatic [DAC15].

For achieving this level of automation, abstractions were required to facilitate building

ORCHESTRATION MANAGER

fully automated operation strategies. CONTAINERIZATION played an essential role in

enabling the programmatic deployment of software.

Example

An application is composed of two services that need to be orchestrated in an
infrastructure with four servers. The service requirements might change with time
and must be allocated to suitable hardware. Their current requirements are described
in Table 7.1 (p. 89).

Service name CPUs RAM Disk space Instances Constraints

HTTP 2 2 GB 5 GB 4 hostname=unique;
location=Europe

Database 2 8 GB 50 GB 2 hostname=unique;
SSD=true;

location=Europe

Table 7.1: List of services and their possible configurations for a production environment.

The servers might also change with time, with more powerful or specialized hardware

being allocated if need. The current servers available are described in Table 7.2 (p. 89).

Server name CPUs RAM Disk space Server details

Alpha 4 4GB 500 GB location=Europe
Beta 4 4 GB 500 GB location=Europe
Charlie 4 16 GB 1000 GB SSD=true; location=Europe
Delta 4 16 GB 1000 GB SSD=true; location=Europe

Table 7.2: List of servers available in the infrastructure, along with their resources and
meta-data.

Problem

Manually operating software at scale, particularly in architectures that favor microservices

and their cooperation, is an error-prone, slow and costly process.

Multiple variants can constraint the allocation of services to servers in an infrastructure.

Each service has its requirements, and each server provides a specific set of resources.

Furthermore, given the wide adoption of continuous integration and deployment strategies,
teams are increasing the frequency at which they deploy their services, with many
deploying several times per day [Cycl5], which demands automation in the deployment

process.

89

90

ORCHESTRATION AND SUPERVISION PATTERNS

A common requirement is to ensure that services are allocated to host machines that
fulfill its hardware requirements and that this happens without human interaction. Such
enables servers to run multiple services while ensuring their execution within the host’s
resource limits, guaranteeing the expected performance.

Cloud applications can also scale and the infrastructure empowering it must facilitate

such scaling as well to adapt to a change in the volume of activity, while optimizing costs.

Forces

The following forces, represented in Figure 7.4 (p. 90), need to be balanced while

considering the adoption of this pattern:

Infrastructure decoupling. The development process should not be constrained by

the running environment.

Resource allocation. Allocating services without ensuring their requirements will

result in unexpected behavior.

Allocation dependencies. Allocating services without ensuring their dependencies

will result in unexpected behavior.

Scalability. It must be possible to scale the system either up or down.

Infrastructure facilitates

i > Scalability
Decoupling
f'acilitatos
Resource cnables ~ Allocation
Allocation dependencies

Figure 7.4: Relationship between ORCHESTRATION MANAGER forces.

Solution

Adopt an ORCHESTRATION MANAGER to coordinate, manage and distribute multiple cloud
services while abstracting the underlying infrastructure, fulfilling the service requirements.
Adopting an ORCHESTRATION MANAGER provides abstraction and automation over

the orchestration of services. The abstraction is provided by having the ORCHESTRATION

10

11

12

13

14

15

16

17

18

19

ORCHESTRATION MANAGER

MANAGER evaluating each available server, service, and its requirements and use that
information to optimize service allocation. Automation is provided by exposing a

programmatic interface that facilitates orchestrating software in the infrastructure.

Services can be deployed programmatically after packaged using CONTAINERIZATION.

Using a declarative strategy, the ORCHESTRATION MANAGER can be told what services
need to be deployed and their requirements, leaving the responsibility of managing
the allocation. Resource allocation is enforced, ensuring that all services are provided

their required resources to execute correctly. Most ORCHESTRATION MANAGER enable

the specification of additional restrictions such as co-allocations or startup sequences.

Listing 7.1 (p. 91) demonstrates how to tell the Kubernetes ORCHESTRATION MANAGER

to instantiate two Nginx web servers [Kub)].

Listing 7.1 A Kubernetes specification for starting two instances of the Nginx web server.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchlLabels:
app: nginx
replicas: 2 # tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

ORCHESTRATION MANAGER work using a master-slave architecture, being the master
elected automatically and responsible for handling service allocation. Deployment requests
can often be issued to any slave, which proxies them to the master [Mes18]. This approach
facilitates electing a new master automatically if the current master fails.

Whenever a new slave joins the infrastructure, the master identifies its available
resources. When a new service allocation request is received, the master decides where the

service should be executed and instructs the slaves to start it. Figure 7.5 (p. 92) illustrates

91

92

ORCHESTRATION AND SUPERVISION PATTERNS

this interaction. Depending on the ORCHESTRATION MANAGER software adopted, it might
be possible to deploy multiple services with a single instruction, with the software being

able to automatically resolve service allocation dependencies.

| <<Actor>> | | :Master | | S1:Slave |

|j: Service description —p»
—————— ok —--=---+ -

Start service >

Start service ———p»

T
|

Figure 7.5: Sequence diagram representing communication between master and slaves for
service allocation.

If no slave is capable of hosting the service due to a mismatch on the service
requirements and those available in the servers of requirements, the master periodically

retries the service allocation until it succeeds.

Example Resolved

The team starts by deploying an ORCHESTRATION MANAGER that abstracts four existing
servers. By doing so, one of the servers will be automatically elected as master, with the
others proxying orchestration requests to it.

A descriptive file can be created for each service, describing how to obtain the
respective container and describing its requirements.

Finally, to deploy the services, a request similar to the one from Listing 7.1
(p. 91) is sent to the ORCHESTRATION MANAGER with each service description. The
ORCHESTRATION MANAGER master evaluates the resources required by the services and
the ones available in each server, instructing the selected servers to deploy the services.

In the example, we can see that the hostname must be unique, meaning that it is not
possible to deploy two HT'TP or database servers in the same host. Also, the selected
servers must be in Europe, with the database service in a server with SSD storage.

Considering those restrictions, the ORCHESTRATION MANAGER would compute a
viable solution to allocate the services in the infrastructure, which could be the one
identified in Table 7.3 (p. 93).

In this example, when deploying the services, all servers are at full capacity and can

fulfill the requested resources regarding CPU, RAM, and disk space. When the service is

ORCHESTRATION MANAGER

Service name Server name Applied constraints

HTTP server Alpha hostname=unique; location=Europe
HTTP server Beta hostname=unique; location=Europe:
database Charlie hostname=unique; SSD=true; location=Europe
database Delta hostname=unique; SSD=true; location=Europe

Table 7.3: The ORCHESTRATION MANAGER can automate service allocation in the available
servers. In this solution, two instances of the HT'TP server and another two of the
database were allocated, respecting the restriction of executing the database using
Solid State Drive (SSD) storage.

deployed to Alpha and Beta, the ORCHESTRATION MANAGER subtracts two CPUs, 2 GB
RAM, and 5 GB of storage from their available resources, influencing the allocation of

services in the future. When deploying the database service, only European servers with

SSD storage can be used, resulting in Charlie and Delta being the two only eligible hosts.

Resulting Context

This pattern introduces the following benefits:

Infrastructure decoupling. Service development can be agnostic of the host where
the service is going to be placed, describing only its requirements and packaging its

dependencies using CONTAINERIZATION.
Resource allocation. Services are allocated in servers that meet their requirements.

Allocation dependencies. Dependencies are respected, managed as constraints for

the allocation process.

Scalability. Scalability is achieved by adding slaves to the infrastructure and

individually change the number of instances for each service.
The pattern also introduces the following liabilities:

Suboptimal allocation. Allocation using a greedy placement algorithm might result

only in a locally-optimal solution.

Single point of failure. In some implementation where the master is not automatically
reelected in case of failure, using a single master node would result in a single point

of failure.

93

94

ORCHESTRATION AND SUPERVISION PATTERNS

Related Patterns

Some ORCHESTRATION MANAGER implementations might support additional strategies

for running software, but CONTAINERIZATION is the most common strategy.

Known Uses

Kubernetes, by Google, is the fastest-growing implementation of a ORCHESTRATION
MANAGER. It abstracts a set of machines, receiving requests for allocating containers in the
infrastructure. Kubernetes is under active development, widely adopted, and supported
across most cloud providers [Goal6].

Mesos and Marathon together provide another robust solution for achieving the same
goal. New services are submitted to the infrastructure using an HTTP Application
Programming Interface (API) describing its requirements and constraints. With this
information, the master communicates with the slaves, identifying a valid host, and issuing
the order for placing the service [HKZ11].

CoreOS offers similar technology, with a centralized registry made available using
Etcd [Corl5).

7.4 Automated Recovery

¢{} Services will eventually fail in the long run and need to be recovered in
% | a timely and orderly fashion. Include checks and recovery strategies in

the instructions provided to the ORCHESTRATION MANAGER to orchestrate

containers, enabling it to monitor and recover failing containers.

Context

At the scale that cloud software is operated, it is reasonable to accept that it will
eventually fail. Resilience is then an essential requirement while writing scalable cloud
software. The development team must introduce the necessary strategies to ensure that
the application is functioning correctly or that, at least, it can recover back to a functioning
state automatically.

This pattern extends the ORCHESTRATION MANAGER [BCS15] pattern, responsible

for executing services packaged using CONTAINERIZATION [BCS15].

AUTOMATED RECOVERY

Example

Consider a web server exposing an APlis running inside a container in an ORCHESTRATION
MANAGER. Suppose that the service had a memory leak, which gradually consumed
the memory allocated for the service, and thus making the service unresponsive. The
ORCHESTRATION MANAGER sees the container running, but it is still unable to respond

to requests while it is still executing.

Problem

Services will eventually fail in the long run and need to be recovered in a timely and orderly
fashion.

Cloud software is exposed to a variety of stress conditions, from public Internet
exposure to dynamic cloud infrastructure. As such, software should be designed with
resilience in mind to ensure it can recover from failures.

With a traditional operations approach, a team member is responsible for identifying
failures and deciding the best action to recover a failing system using the defined recovery
protocol. This approach is troublesome as it requires manual intervention, which is slow

and prone to errors.

Forces

The following forces, represented in Figure 7.6 (p. 96), need to be balanced while

considering the adoption of this pattern:
Resilience. Failing containers should recover to a healthy state when failure is observed.

Reliability. Monitoring strategies that are prone to false positives can trigger an

Unnecessary service recovery.

Automation. Requiring manual intervention for recovering a failing service is

error-prone, slow, and costly.

Solution

Include checks and recovery strategies in the instructions provided to the ORCHESTRATION
MANAGER to orchestrate containers, enabling it to monitor and recover failing containers.
AUTOMATED RECOVERY is available in most ORCHESTRATION MANAGER

implementations [Mes17; Kub18b]. The development team implements health checks for

96

ORCHESTRATION AND SUPERVISION PATTERNS

improves

Resilience = Reliability

improves improves

Automation

Figure 7.6: Relationship between AUTOMATED RECOVERY forces.

each container to verify if its service is behaving correctly. Most implementations provide
at least plain TCP and HT'TP checks. The health checks can be provided along with the
service description directly to the ORCHESTRATION MANAGER.

To implement recovery strategies, the team needs to evaluate each service individually,
deciding which check can be used to identify that the service is failing, how many times
each check needs to be retried, and how much time to wait between executing the checks
and considering a service as failing. A recovery protocol must be made available along
with the health checks to be automatically executed by the ORCHESTRATION MANAGER. to
attempt the service recovery. Health checks and recovery protocols need to be considered
part of the service’s development process.

Health checks will be particular to the service running in a container. These might
range from checking if a port is receiving connections in the container, to more advanced
HTTP-based checks, to executing a command inside the container and monitoring its exit
code.

TCP checks verify if a network port is open and accepting TCP connections. These
are typically binary checks that validate the service’s ability to receive connections.

HTTP checks are more advanced than their TCP counterparts since they can make
HTTP requests and validate the HT'TP return code and body, making way for more
advanced tests.

Developers can implement dedicated health checking endpoints to be queried by
AUTOMATED RECOVERY, providing responses that can be easily interpreted to verify
the service’s status.

While deciding on the supervision strategy, the team needs to evaluate how to prevent
false positives. A false positive might be a momentary request that fails, followed by
regular service operation. Failing to identify it as a false positive might lead the service
to be recovered when it is working.

The recovery operation itself is prone to failure. Implementing this pattern is

another step towards improving cloud software reliability, but cannot be relied upon

10

11

12

13

14

15

16

17

18

19

20

21

AUTOMATED RECOVERY

as unbreakable.

When a failure is identified and triggers a recovery, the ORCHESTRATION MANAGER
or adopted AUTOMATED RECOVERY service should log that event and its details. The
team can use this log as input for improving their software or to configure notifications to
be aware as soon as they happen. This is relevant because restarting the container might

only be a temporary solution or incapable of fixing the problem.

Listing 7.2 A Marathon service description, describing the health check policies for
AUTOMATED RECOVERY.

{
"id": "toggle",
"container": {
"docker": {
"image": "busybox"
}
},
"cpus": 2,
"mem": 32.0,
"healthChecks": [
{
"protocol": "HTTP",
"path": "/health",
"portIndex": O,
"gracePeriodSeconds": 5,
"intervalSeconds": 10,
"timeoutSeconds": 10,
"maxConsecutiveFailures": 3
}
]
}

Listing 7.2 (p. 97) demonstrates how a service can be started using the Marathon
ORCHESTRATION MANAGER, configuring an HTTP health check that verifies the
response code from the /health endpoint. From this example, the parameters used
are gracePeriodSeconds, which ignores errors for a given number of seconds after the
service starts; intervalSeconds, which configures the delay between checking the endpoint;
timeoutSeconds, which configures the maximum time to wait for a response from the
service; and maxConsecutiveFailures, which defines the number of times the health check
can fail before being restarted.

While implementing this pattern, one needs to decide on how to balance:

Interface coverage. We want to ensure the tests are as complete as possible, covering

97

98 ORCHESTRATION AND SUPERVISION PATTERNS

all application’s interfaces while balancing this investment with the available

development effort.

Frequency. We want to run the health checks as often as possible while balancing this

frequency with the increase in resource utilization.

Accuracy. We want to prevent false positives by confirming issues redundantly, such
as those who might result from a temporary slowdown in the system, automatically

recovered inside the container.

Example Resolved

While deploying a service with an ORCHESTRATION MANAGER with support for
AUTOMATED RECOVERY, the service definition specifies the set of health checks used
to verify the service’s status.

During execution, if a health check identifies a problem with a container, the respective
container is restarted automatically. While the fundamental issue might persist, the service
will once again become available without team intervention. Given the notification sent
to the team, they will be immediately aware of the issue and can focus on implementing

a proper solution.

Resulting Context

This pattern introduces the following benefits:

Resilience. The ORCHESTRATION MANAGER will be able to recover failing containers

automatically.

Reliability. Failing containers will be automatically identified using the implemented

health checks, which can have an advanced strategy to prevent false positives.

Autonomy. Failing services are restarted using the implemented recovery protocol so
that the system recovers its correct execution state automatically and without

requiring manual intervention.
On the other hand, the following liabilities are also introduced:

Relaxation. the development team might disregard software failures since they are

automatically recovered.

AUTOMATED RECOVERY

Unawareness. Without the proper monitoring and logging in place, considering that
failing services are automatically recovered, it might happen that the team is not

aware of the failure in the system.

Performance degradation. Running health checks against the container will
introduce additional load in the system, which might result in performance

degradation.

False positives. It might happen that the health checks are not accurate, and the

containers restarted while behaving correctly.

Unintended consequences. The service might be improperly designed and unable to

be restarted, leaving it inconsistent and requiring manual intervention after a restart.

In extreme scenarios, each recovery attempt might further increase the problem. An
example of such is when a backup system that is consistently failing during its
execution will keep increasing the disk space it occupies without ever having a

complete backup until no more space is available.

Related Patterns

The ORCHESTRATION MANAGER pattern describes how containers can be orchestrated in
infrastructure automatically, leveraging allocation rules, container scaling, and resource
availability. AUTOMATED RECOVERY is commonly related to ORCHESTRATION MANAGER,
given that most of its implementations provide some supervision strategy to ensure the
containers are working as expected [Mes17; Kub18b].

AUTOMATED RECOVERY enables the automatic recovery of services if their health
is degraded. This pattern is essential for implementing FAILURE INJECTION, where the
reliability and resilience of the system are tested automatically.

Dynamic Failure Detection and Recovery describes a subset of AUTOMATED

RECOVERY, by proposing the existence of a resilient watchdog component that monitors I'T

resources and, in case of failure, notifies the team and attempts automated recovery [Arc].

Known Uses

Most ORCHESTRATION MANAGER pattern implementations provide AUTOMATED
RECOVERY natively, as orchestration and supervision complement each other while
deploying services to the infrastructure.

Marathon supports multiple health check strategies. TCP and HTTP are implemented
as described in this pattern’s solution. Additionally, Marathon supports the COMMAND

99

100

10
11
12
13
14
15
16
17
18
19
20

21

ORCHESTRATION AND SUPERVISION PATTERNS

check, which consists of running a command within a container and evaluate its
output [Mes17]. Listing 7.3 (p. 100) demonstrates how a health check can be configured
for Kubernetes.

Kubernetes provides a similar approach to AUTOMATED RECOVERY [Kubl18b|, but
with additional features to it. With Kubernetes, developers can set two flavors of health
checks: readiness and liveliness. Readiness checks are considered right after the container
is instantiated and enable Kubernetes to check if the container is ready to start accepting
traffic. Only after the readiness checks pass is the container considered healthy and ready
to be used. Liveliness then works as health checks do in Marathon, periodically testing

the container for its status, automatically restarting it when unhealthy.

Listing 7.3 A Kubernetes service description, describing the health check policies for
HeALTH CHECK using HTTP.
apiVersion: vl
kind: Pod
metadata:

labels:

test: liveness

name: liveness-http
spec:

containers:

- name: liveness
image: k8s.gcr.io/liveness
args:
- /server
livenessProbe:
httpGet:
path: /healthz
port: 8080
httpHeaders:

— name: X-Custom-Header
value: Awesome
initialDelaySeconds: 3

periodSeconds: 3

Just like with Marathon, health checks are defined with the service definition, along
with the specification of what container to use and how to configure it, as demonstrated
in Listing 7.3 (p. 100).

Docker has a built-in supervision mechanism providing a simple restart strategy, which
automatically restarts a container either if it fails or when a health check is failing.

Health checks can be specified while creating the container [Doc18]. Docker health checks

JOB SCHEDULER

Listing 7.4 A Dockerfile for building a container based on the Nginx image, leveraging
Docker’s implementation of AUTOMATED RECOVERY by periodically checking the web

server’s health.
from nginx

HEALTHCHECK --interval=5m —--timeout=3s \
CMD curl -f http://localhost/ || exit 1

CMD nginx -g "daemon off;"

periodically execute a command within the container, verifying its exit code to evaluate
its status. Listing 7.4 (p. 101) demonstrates how to create a Dockerfile that builds a
Docker image from the Nginx image and executes Nginx on start, verifying every five
minutes if the webserver is responding to requests. If a request takes longer than three

seconds to respond, the health check fails, and the container is automatically restarted.

7.5 Job Scheduler

3 Short-running jobs need to be scheduled and orchestrated using dynamic
¢§ infrastructure without permanently allocating resources, possibly requiring
ephemeral hardware to execute. Deploy a scheduler service along with the
ORCHESTRATION MANAGER that can instruct it to allocate one time or
periodic jobs, releasing their resources for reuse in the cluster when they

complete.

Context

It is often required that jobs are executed periodically inside an infrastructure managed by

an ORCHESTRATION MANAGER. These jobs can range from internal system verifications,

maintenance, infrastructure scaling, and many others. These are not long-running services.

Hence they do not need to be continuously executing on the infrastructure, as doing so
reserves valuable resources that would be idle part of the time.

In a non-cloud context, job scheduling was typically provided by Cron (see Section 7.5
(p. 106)) or similar application. In the context of cloud, Cron is not a viable option, given

that it is local to a specific server and not aware of the whole infrastructure. While it can

101

102

ORCHESTRATION AND SUPERVISION PATTERNS

be argued that it is possible to run Cron in a machine in a cluster, the scheduling would
be disabled if that machine failed.
This pattern considers the adoption of CONTAINERIZATION for packaging the jobs to

execute and the presence of an ORCHESTRATION MANAGER.

Example

Consider a distributed database, replicated between multiple servers. Despite the
replication, keeping frequent backups in a secure remote location is relevant to recover the
database from an unexpected scenario in the infrastructure. This backup must happen

frequently and automatically, without the team’s intervention.

Problem

Short-running jobs need to be scheduled and orchestrated using dynamic infrastructure
without permanently allocating resources, possibly requiring ephemeral hardware to execute.

It is common for short-running jobs to be executed in an infrastructure, alongside the
hosted microservices. These can vary from database backups to internal system checks.
Traditionally, these operations would be the responsibility of the operations team. Some
degree of automation could be achieved by leveraging a job scheduler, such as Cron. In
the cloud, using Cron is not ideal given that the infrastructure is continuously evolving,
that containers are dynamically allocated to their host servers, and that co-location with
specific containers or resource allocation rules might exist for running these jobs. Also,
using Cron while using CONTAINERIZATION would require a container to be running for
the sole purpose of executing scheduled jobs, permanently reserving resources for the
container, or using the host’s Cron scheduler polluting the host, both less than ideal

approaches.

Forces

The following forces, represented in Figure 7.7 (p. 103), need to be balanced while

considering the adoption of this pattern:

Automation. Manual intervention is error-prone, slow, and costly.

Frugality. Permanent resource allocation to containers that are idle most of the time

is not resource-efficient for the infrastructure.

Reactiveness. Some short-running jobs need to execute as a reaction to an external

event (typically called triggers).

JOB SCHEDULER

Separation of concerns. Short-running jobs are bundled with the description of the
resources they require to execute, without needing to know anything about the

infrastructure where they will be executed.

Time synchronization. Maintain machine clocks synchronized across the
infrastructure to ensure that jobs are started at the correct time, despite what

machine is starting the execution.

Time
Synchronization
A
. requires
Separation facilitates facilitates

Automation — > Frugality

of concerns N

opposes

Reactiveness

Figure 7.7: Relationship between JOB SCHEDULER forces.

Solution

Deploy a scheduler service along with the ORCHESTRATION MANAGER that can instruct
it to allocate one time or periodic jobs, releasing their resources for reuse in the cluster
when they complete.

A JOB SCHEDULER extends the ORCHESTRATION MANAGER pattern, responsible for
executing services using CONTAINERIZATION, by enabling the scheduling and execution of
one time or periodic jobs in the infrastructure. The pattern can be implemented by using
a third-party JOB SCHEDULER that already integrates with the adopted ORCHESTRATION
MANAGER.

The JOB SCHEDULER service can expose a programmatic, graphical, or both,

configuration interface to manage job scheduling. A job specification is composed of the

instructions required to execute the job and its resource requirements and schedule details.

The exact information required for executing jobs will be specific to the adopted JOB
SCHEDULER implementation, but will typically require the details of a container image

to execute, along with a set of environment variables to configure it, supervision criteria

103

104

ORCHESTRATION AND SUPERVISION PATTERNS

and required execution resources such as the required number of CPU cores or amount of
RAM, just like any service would.

The JOB SCHEDULER should integrate with an ORCHESTRATION MANAGER, which is
responsible for executing the scheduled job inside a container, honoring its requirement
constraints. It works by instructing the ORCHESTRATION MANAGER to execute a container
for running the Job, while also providing the requirements for running it.

Allocated resources are freed upon job completion, becoming available for executing
other jobs. The integration with the ORCHESTRATION MANAGER ensures that jobs are
only started if their required resources are available and restarted in case of an unexpected
failure, observed through the job’s exit code.

An ORCHESTRATION MANAGER might also provide the possibility for restricting where
jobs are executed in the infrastructure, by tagging the available servers and limiting
allocation to servers which are tagged with a particular set of labels.

To ensure consistent behavior despite in which node the JOB SCHEDULER is deployed,

the hosts should have their clocks synchronized using an external time server.

Example Resolved

Deploy the scheduler service within the infrastructure. The backup operation would be
configured in the scheduler to execute every day. The ORCHESTRATION MANAGER would
be responsible for ensuring that the container responsible for executing the job is placed
in a server that provides the required resources to run the job. It must also ensure the
container is co-located with the server running the database, reducing network latency.

A retry mechanism can also be specified, ensuring that the backup job would
automatically retry up to a certain number of times in case of failure. If the failure
persists, the job’s execution is aborted, and the team is notified of the issue.

To ensure that all machines share the same date and time, and jobs are started at the

right time, a time synchronization service should be used.

Resulting Context

This pattern introduces the following benefits:

Automation. Jobs are automatically spawned on the infrastructure on their scheduled

times, without requiring manual intervention.

Frugality. Resources allocation is minimized for short-running jobs, being recovered by

the infrastructure once the job finishes.

JOB SCHEDULER

Separation of concerns. The scheduled job does not need to know details about the
infrastructure, only describe its requirements. The ORCHESTRATION MANAGER will

assume the responsibility of placing the container in the right host.
On the other hand, the following liabilities are introduced:

Single point of failure. When the scheduler fails, the ORCHESTRATION MANAGER will

not be instructed about the jobs it needs to execute.

Synchronism. Wrong clock synchronization or misconfigured timezones might result in
jobs being executed outside their expected times, which might introduce unexpected

results.

Reactiveness. This solution does not address reactive job execution.

Related Patterns

Being an extension to ORCHESTRATION MANAGER, choosing a JOB SCHEDULER
implementation typically is aligned with the ORCHESTRATION MANAGER choice.

Google also describes how to schedule jobs using their cloud reliably [Gool8]. Using
the Chronos JOB SCHEDULER on top of an Apache Mesos ORCHESTRATION MANAGER is
explicitly described, as also seen in Section 7.5 (p. 105).

Microsoft describes the behavior for a scheduler pattern [Mic17b], but it only explains
how to implement one. This pattern follows a different approach, detailing how to use
a JOB SCHEDULER with an ORCHESTRATION MANAGER instead then implementing one

from scratch.

Known Uses

Most infrastructure management environments have a companion scheduler service, either
bundled in or as a plug-in service.

Chronos is a distributed and fault-tolerant scheduler for the Apache Mesos
framework [Chr17]. It exposes an API and user interface with which jobs can be scheduled
and monitored. Figure 7.8 (p. 106) shows the Chronos user interface, with four jobs
configured. Their state and recurrence are quickly perceived in the status and state column,
respectively.

Kubernetes enables job scheduling by making available a built-in scheduler service.

Similar to Chronos, jobs can be managed using the user interface or API [Kubl7].

105

106

ORCHESTRATION AND SUPERVISION PATTERNS

CHRONOS

SUCCESS 4 FAILURE 1 FRESH 1] RUNNING O QUEUED 0 IDLE 5
JOB NEXT RUN STATUS STATE ACTIONS
backup-monthly in ~6 days failure idle m
marathon-metrics in <1 minute success idle > ?. x

marathon-autoscaler in <1 minute success idle m
data-integration in ~12 minutes success idle m

© 2016 Mesosphere, Inc.

Figure 7.8: The Chronos configuration user interface, showing four scheduled jobs. Chronos
enables job scheduling on top of Mesos using a graphical user interface.

Kubernetes API uses the YAML Ain’t Markup Language (YAML)* format to describe
jobs, as demonstrated in Listing 7.5 (p. 107).

Without using a ORCHESTRATION MANAGER, but with a similar objective, cloud
providers tend to provide their implementation of a scheduler, which can be used to
manipulate their environment or client applications directly [Amal7h; Micl7b]. These
typically enable calling the provider’s API to start some action, such as running an
anonymous function or starting a virtual machine or container.

It was also observed that some companies use a scheduler to periodically evaluate the

infrastructure’s load and appropriately resize it to cope with the current incoming traffic.

Further Consideration

Most JOB SCHEDULER implementation respect the syntax specified by the Portable
Operating System Interface (POSIX) utility Cron, as represented in Figure 7.9
(p. 107) [IO16], for scheduling jobs. This syntax, despite uncommon, has since been widely
adopted as the de facto syntax for describing recurrent jobs, as seen in Section 7.5 (p. 105).

While scheduling is a common approach to schedule one-time and recurring jobs, there
are other strategies. The event-driven community [Fow17] defends that a reactive is the
most efficient way to identify when jobs should be spawned [Bon-+14]. With this approach,

a JOB SCHEDULER would not be needed, but an additional component to register event

4 YAML is a human friendly data serialization standard for all programming languages. Learn more at
http://www.yaml.org/.

http://www.yaml.org/

10

11

12

13

14

15

16

17

18

JOB SCHEDULER

Listing 7.5 Kubernetes configuration for scheduling the execution of a container every

minute.

apiVersion: batch/vibetal
kind: CronJob
metadata:
name: hello
spec:
schedule: "*x/1 * *x x x"
jobTemplate:
spec:
template:
spec:

containers:

- name: hello
image: busybox
args:

- /bin/sh
- -C

- date; echo Hello from Kubernetes
restartPolicy: OnFailure

subscription could be adopted, defining which jobs should be spawned after a specific

event if observed. For the specific case of time-based execution, this component could

react to the clock ticks.

minute (0 - 59)

* * * *

hour (0 - 23)
day of month (1 - 31)

month (1 -12)
day of week (0 - 6) (Sunday =0 or 7)

’T_

command to be executed

Figure 7.9: Overview of the CRON format, a commonly adopted syntax used to specify the

date and time at which a job should be executed and repeated.

107

108

ORCHESTRATION AND SUPERVISION PATTERNS

7.6 Failure Injection

oy Resilience mechanisms are triggered when the software is failing. Since
0* systems are designed to work correctly, the status quo resists to a continuous
verification of the correctness of those mechanisms. To ensure resilience, we
need to exercise failures to evaluate their impact. Generate atypical events at
both the application and infrastructure level, exercising the available recovery

mechanisms to verify the application’s resilience.

Context

Software fails [Cha05]. This assertion is widely accepted and the motivation for writing
resilient software. Application failures can originate both from malfunctioning software or
due to external conditions, which might be impossible to predict, such as network failures
or defective hardware.

When running software at scale, issues are statistically guaranteed to happen [PWBO07].
As such, cloud software must be designed with resilience in mind, meaning that the
application should have a set of strategies to recover from problematic situations at both
the application and infrastructure layers. Still, resilience strategies are themselves software,

hence, prone to failure, limiting the confidence in their efficiency.

Example

Consider an online web application powered by a database. Such a database is essential for
the system to work. As such, the database is replicated in hot-standby mode, meaning that
the second instance has a complete copy of the first, being used for failover. Furthermore,
the database is frequently backed up to an off-site using Amazon Web Services (AWS)
Simple Storage Service (S3) and Azure disk snapshots.

Consider now that the second database has an issue and needs to be manually
resynchronized. By mistake, an operator manually deletes part of the production database,
leaving both inconsistent and lost of production data. When trying to recover the database
from the off-site backups, the operator identifies that the backups are not available and
identifies that the backup procedure has not been running as expected. No recent backup
is available, and the operator will not be able to recover the database to a recent state,

resulting in the actual loss of production data.

FAILURE INJECTION

The example above is a simplified version of an event from early 2017 when a GitLab
engineer accidentally deleted part of their production database. Only later, he understood
that the existing recovery mechanisms were not properly configured, leaving the system
down for over 18 hours and resulting in the actual loss of production data, namely in the
changes to projects, comments, user accounts, issues, and snippets. The issue took place
between 17:20 and 00:00 UTC on January 31, 2017 [Git17].

Problem

Resilience mechanisms are triggered when the software is failing. Since systems are
designed to work correctly, the status quo resists to a continuous verification of the
correctness of those mechanisms. To ensure resilience, we need to exercise failures to
evaluate their impact.

It has been previously asserted that software fails. That was the primary motivation
behind the let it crash philosophy in the Erlang language and other actor models, where
instead of defensively addressing all possible errors, the program was allowed to crash and
restarted in an attempt to recover normal execution [Cunl4]. The Reactive Manifesto also
addresses this type of recovery, with resilience through recovery as being one of the four
characteristics of reactive systems [Bon+14].

By relying on software as a recovery mechanism for other software, the recovery
mechanisms might fail as well. For that matter, just like any other application, the recovery
mechanisms themselves must be validated and frequently tested to ensure their correct
behavior.

While designing resilience processes for cloud software, these processes themselves
should be monitored, ensuring that the system can recover from a failure properly.

Verifying resilience presents the same problem as verifying software: it is impossible
to guarantee that the system is entirely resilient, only that it endures the identified test
scenarios. Furthermore, testing software for bugs is more straightforward than testing
resilience, as resilience might be influenced by the underlying infrastructure that hosts
the application, which might not be under the team’s control. As such, resilience testing
is not a one-time activity but needs to be continuously improved during the application’s
lifetime.

At its core, verifying resilience requires the implemented processes to be stressed,

putting the application through unexpected scenarios and verifying how well it behaves.

This might be problematic by itself if, at some point, the application is unable to recover

without manual intervention, rendering it in a degraded state.

109

110

ORCHESTRATION AND SUPERVISION PATTERNS

This problem becomes more complex as it is insufficient to verify resilience in a staging
environment, since resilience is highly influenced by multiple variables, such as the number
of allocated resources, how long they have been allocated, or how much load they are
handling. While it is possible to create a similar staging environment, even the specific
hardware allocated to production might present a different behavior from the staging
environment. The only way to increase trust over resilience for an environment is actually

to test it.

Forces

The following forces, represented in Figure 7.10 (p. 110), need to be balanced while

considering the adoption of this pattern:

Preemptive failure detection. Identify failures in the application before they

accidentally impact the application or are exploited by third parties.

Failure generation. Known failures are less likely to impact the system than artificially

generated ones.

Resilience. Failure injection might degrade the status of the system.

Failure facilitates Preemptive failure motivates _ .
. . > Resilience
generation detection

Figure 7.10: Relationships between FAILURE INJECTION force.

Solution

Generate atypical events at both the application and infrastructure level, exercising the
available recovery mechanisms to verify the application’s resilience.

To ensure that the system will recover when a problem arises, its resilience strategies
must be frequently exercised, even in production, ensuring that the system does recover
to the expected status when a failure happens.

An external piece of software can frequently generate unexpected events at both the
application and infrastructure level and monitor how the system behaves, verifying it if it
recovers as expected. These events can range from shutting down a container instance to
a full virtual machine server. In both scenarios, the resilience strategies should be able to
recover the application to the expected status, restarting the container in the first scenario

or the machine, and its hosted services in the second.

FAILURE INJECTION

The adopted strategy used for FAILURE INJECTION should be aware of the application
and infrastructure’s APIs and randomly inject invalid payloads or shutdown system
components.

While implementing this pattern, one must consider:

Completeness. Failures can be injected at both the infrastructure and application
level. Only by testing both can we maximize the level of confidence in the system’s

resiliency.

Frequency. We need to decide how often we will exercise the resilience mechanisms,
balancing the resources we are willing to allocate, which directly impacts execution

cost, and the level of trust we want to have over the system continuously.

Traceability. We need to understand the impact of injecting failures in the system, by
aggregating information from the failure injection system with the infrastructure
and application logs, facilitating the evaluation of the impact of a failure injection

on the system.

Programatic failure injection. We want to enable the developer to programmatically
describe his failures or failure generation logic, so that the failure injection can be
automated and executed automatically, reducing the need for manual intervention

while running failure injection tests.

There are several attack vectors and liabilities introduced while testing resilience. The

following scenarios should be considered:

Application misuse. Generate random inputs to the application’s interfaces, including
its APIs.

Unexpected load. Suddenly increase the system’s load by generating an abnormally

high amount of traffic.

Network degradation. Degrade or disable the network to a server, either by disabling

the server’s network card or use an application that consumes its bandwidth.

Resource depletion. Deplete available disk, RAM or CPU from a server, by starting

an application in the server that consumes such resources.

Unexpected component shutdown. Shutting down random servers or other system

components, up to disabling entire availability regions.

111

112 ORCHESTRATION AND SUPERVISION PATTERNS

While exercising the recovery mechanisms with FAILURE INJECTION, the system is

expected to be impacted, which should be carefully monitored by observing:

Latency. Some tests will degrade or shutdown resources. While doing so, application
latency should be monitored. An ideal resilience mechanism will recover from the
injected time without increasing latency above the expected limit. Data from the
EXTERNAL MONITOR pattern can be leveraged to observe the application’s latency

from the user’s perspective.

Recovery time. The application should recover within an expected duration.
Infrastructural and application logs can be used to verify if a recovery is taking
more time than expected, which will introduce the need to improve the resilience

mechanisms.

Data. A resilient application should be able to recover from a failure without losing or

corrupting data.

Security. During the recovery of the application, the system should remain secure,

ensuring that no temporary attack vector is introduced.

Supervision and monitoring patterns such as EXTERNAL MONITOR are companions to
FAILURE INJECTION. It is expected that some of the generated events will degrade the
system, but its resilience should enable automatic recovery, preventing any impact on the
application. If such does not happen, monitoring patterns should identify the degraded
system state, providing the required information for the development team to recover the
system and, afterward, implementing the required steps to improve its resilience.

It is arguable if FAILURE INJECTION should be applied to production environments,
given the risk to degrade them. To prevent impacting production systems, FAILURE
INJECTION should first be thoroughly tested in a development or staging environment,
being introduced into production when the level of confidence around the application’s
resilience if definitive. Some teams constrain its execution in production environments to
work hours, to ensure failures can be manually managed if the recovery strategies do not
function as expected.

While it is arguable if FAILURE INJECTION should be executed against production
systems, exercising its recovery mechanisms is the only way to ensure that they are working

correctly.

FAILURE INJECTION

Example Resolved

Adopt a FAILURE INJECTION tool and configure it to generate failures against the
application’s database and its infrastructure, ensuring that the system can recover
automatically.

By exercising the database reliability, the team would have been able to identify earlier
that the backup process was not working, just as well as it would be able to understand
that the hot-standby replication was not optimally configured. That information would
enable them to improve it and ensure the secondary server would be able to sustain the

expected level of service required by the application.

Resulting Context

This pattern introduces the following benefits:

Automated failure detection. The adopted tool will generate and inject random
events in the system, testing it thoroughly and continuously, identifying issues faster

than any manual testing could.

Awareness. Using the EXTERNAL MONITOR pattern, the team can be notified of a

degradation whenever a FAILURE INJECTION impacts the system.

Preemptive failure detection. By stressing the application with unexpected events,
the team is able to identify failures that could happen at any given time

preemptively.
On the other hand, the following limitations will be introduced:

Availability. While testing reliability, it might be the case that an issue is identified and
the system’s performance degraded. The team should be immediately alerted, take
the required actions to recover the system’s stability, and implement the required

automation to recover from the newly identified scenario.

Resource usage. Exercising resilience will only be possible when resilience mechanisms
are available. Often resilience requires redundancy to be implemented, which will

always increase the resources required to operate the application.

Unintended consequences. While the system might be able to recover, it might do so
while introducing unacceptable consequences. For example, a critical system might

lose data during a recovery process.

113

114

ORCHESTRATION AND SUPERVISION PATTERNS

Related Patterns

When implementing this pattern, SELF HEALING should have been implemented, enabling
both the application and infrastructure to recover automatically. FAILURE INJECTION can
also leverage LOG AGGREGATION for capturing its action.

The responsibilities for a FAILURE INJECTION tool have been described in the Software
Failure Injection Pattern System [LMRO1].

Known Uses

Netflix was one of the primary motivators behind FAILURE INJECTION with the
implementation of their open-source tool, ChaosMonkey. ChaosMonkey interacts with
an AWS account and randomly shutting down infrastructure components. At Netflix,
ChaosMonkey is executed against the production environment during business hours,
randomly terminating virtual machines. Their rationale is that exposing engineers to
failures motivates them to make their services more resilient [Net17]. ChaosMonkey is one
of the many tools available in the Simian Army, a set of open-source tools developed by
Netflix to help engineers improve their software’s reliability [Net11].

Motivated by the impact from the floods of Hurricane Sandy in 2012 in New Jersey,
Project Storm is Facebook’s approach to resilience testing. At its infancy, it was composed
of a set of small drills lead by a reliability team that was designed to replicate the
consequences of catastrophic natural events, just like Hurricane Sandy was, by degrading
or disconnecting small parts of their infrastructure. By 2014, the team behind Project
Storm upped their game, starting to disable entire data centers. The first drills enabled
the team to identify several unexpected points of failures [Hof16].

The Principles of Chaos Engineering motivate FAILURE INJECTION. Quoting, "Chaos
Engineering is the discipline of experimenting on a distributed system to build confidence
in the system’s capability to withstand turbulent conditions in production ” [Chal7]. In
practice, it consists of experimenting with the moving parts of the application, looking for
actions that might result in a system failure, such as crashing servers of malfunctioning

hard drives.

Further Considerations

Chaos engineering practices are implemented against systems expected to be reliable,
validating their reliability. It should be expected that failures are found, and the system
should recover without manual intervention. Still, for teams starting to implement

FAILURE INJECTION, its execution should be carefully monitored, as some failures might

FAILURE INJECTION

result in not considered scenarios, leaving the system in an unrecoverable state and
requiring manual intervention.
According to the Chaos Community, Chaos Engineer is based on the following

principles [Chal7].:

Build a hypothesis around steady-state behavior. Focus on the measurable output
of a system, rather than internal attributes of the system. Measurements of that
output over a short period constitute a proxy for the system’s steady state. The
overall system’s throughput, error rates, or latency percentiles could all be metrics
of interest representing steady-state behavior. By focusing on systemic behavior
patterns during experiments, Chaos verifies that it does work, rather than trying to

validate how it works.

Vary real-world events. Chaos variables reflect real-world events. Prioritize events
either by potential impact or estimated frequency. Consider events that correspond
to hardware failures like servers dying, software failures like malformed responses,
and non-failure events like a spike in traffic or a scaling event. Any event capable

of disrupting a steady state is a potential variable in a Chaos experiment.

Run experiments in production. Systems behave differently depending on

environment and traffic patterns. Since the behavior of utilization can change at

any time, sampling traffic is the only way to capture the request path reliably.

To guarantee both authenticity of the way in which the system is exercised and
relevance to the currently deployed system, Chaos strongly prefers to experiment

directly on production traffic.

Automate experiments to run continuously. Running experiments manually is
labor-intensive and ultimately unsustainable. Automate experiments and run them
continuously. Chaos Engineering builds automation into the system to drive both

orchestration and analysis.

Minimize blast radius. Experimenting in production has the potential to cause
unnecessary customer pain. While there must be an allowance for some short-term
negative impact, it is the responsibility and obligation of the Chaos Engineer to

ensure the fallout from experiments are minimized and contained.

116

ORCHESTRATION AND SUPERVISION PATTERNS

7.7 Summary

This chapter introduced five patterns for orchestrating and supervising services in
the cloud. CONTAINERIZATION provided a strategy for isolating and porting services.
ORCHESTRATION MANAGER abstracted the underlying infrastructure, automating service
placement using containers on top of it. AUTOMATED RECOVERY continuously monitored
these services, evaluating if they were or not responding as expected to specific inputs,
restarting them on failure. JOB SCHEDULER enabled running transient jobs in the
infrastructure at any given point in time and with a configured frequency, releasing the
resources once the job completes. Finally, FAILURE INJECTION generates failures in the
infrastructure and services, forcing them to recover as a strategy to validate their recovery
mechanisms continuously. These patterns facilitate the orchestration of services in the
cloud, as well as ensure their continuous execution.

The next chapter introduces the monitoring patterns category, where we describe three

patterns for observing service status and state.

Chapter 8

Monitoring Patterns

8.1 Overview L 117
8.2 Preemptive Logging L 118
8.3 Log Aggregation 123
8.4 External Monitoring oL 127
8.5 Summary 134

Monitoring evaluates the state of services continuously, alerting the team when something
is wrong. It is an essential practice to ensure the system is behaving as expected. When
a failure is detected, the team requires detailed information about what happened, when,
and a strategy to facilitate navigation from logs produced by the application. This category
introduces three patters for that: EXTERNAL MONITOR, PREEMPTIVE LOGGING, and LOG

AGGREGATION.

8.1 Overview

Monitoring can work reactively, by detecting issues using data generated by the
application, such as a log file, or actively, by interacting with the services directly and
verifying that it is behaving correctly. As such, developers must concern with having their
services provide relevant logs while having the service monitored actively. To prevent a
biased observation, the application should be monitored from the user’s perspective, from
outside the infrastructure where it is running, as suggested by EXTERNAL MONITOR.
Teams should adopt PREEMPTIVE LOGGING to ensure their services produce logs

with the adequate verbosity, that should be kept for the most prolonged period possible.

118

MONITORING PATTERNS

Having these logs provides valuable information for debugging the service when a failure
is observed.

Having distributed services producing logs will require developers to leverage multiple
log files to trace an issue. To cope with the large volume of distributed logs, the team
should adopt LOG AGGREGATION, by having a centralized view of all the logs generated
by all services in a queryable format.

This section introduces the following patterns:

Preemptive Logging. The information required to debug failures is often lost during
their first occurrence due to insufficient log verbosity. Adjust logging verbosity in
services and servers within acceptable resource limits, maximizing the probability
of capturing relevant information for addressing future issues right from their first

occurrence.

Log Aggregation. Services orchestrated at scale produce widely disperse information,
resulting in a complicated process to navigate and correlate multiple sources.
Aggregate and index all service and server logs in a central repository, providing

the team with a centralized system to query and visualize execution logs.

External Monitor. Monitoring an application from its inner layers results in an
incomplete or biased version of the reality. Test the application’s public interfaces

from an external source, increasing the confidence over the application’s status.

8.2 Preemptive Logging

¢ | The information required to debug failures is often lost during their first
0* occurrence due to insufficient log verbosity. Adjust logging verbosity in
services and servers within acceptable resource limits, maximizing the
probability of capturing relevant information for addressing future issues right

from their first occurrence.

Context

It is not possible to guarantee that software will behave as expected, so the best bet is to
expect the worst. When software fails, information is critical for debugging applications,

which makes having execution logs and metrics available from those unexpected scenarios

PREEMPTIVE LOGGING

the most relevant piece of information to understand what, how, and why the software
has failed.

Most third-party applications have adjustable verbosity logging capabilities, but
first-party applications sometimes neglect that need, causing the developers to lack the
required information to mitigate unexpected failures. Given that service cooperation is
essential in cloud applications, and considering the uncertainty of the events that lead to
unexpected errors, all services should equally generate logs that are the sole resource from

developers to understand and mitigate the issue.

Example

Consider a database service in a microservices architecture. The service is responsible for
persisting information necessary for other services in the application. At a given point in
time, the database crashes. Automated operations practices should ensure that the service
is automatically recovered, but, after a while, it crashes again. This behavior is recurrent

and without explanation from the development team. The team is expected to identify

and fix the issue but is not being able to reproduce it outside the production environment.

Without proper information about the production system, the team is rendered incapable

of adequately addressing the issue.

Problem

The information required to debug failures is often lost during their first occurrence due
to insufficient log verbosity.

Development teams tend to be conservative on their software instrumentation,
undervaluing the importance of capturing runtime information. When software fails, it
is common that the only debugging approach is to further instrument the software and
wait for the issue to repeat itself. This approach decreases the level of confidence in the
software quality, as well as requires the team to knowingly leave a bug in their software,

given the lack of information to fix it.

Forces

The following forces, represented in Figure 8.1 (p. 120), need to be balanced while

considering the adoption of this pattern:

Traceability. Development teams need as much data as possible to be available in order

to identify the conditions that may have triggered issues in a service.

119

120

MONITORING PATTERNS

Execution resources. Increasing the logging level increases the volume of resources

required to execute the service, such as Central Processing Unit (CPU) and memory.

Retention policy. Verbose logging can become expensive to collect and persist for long

periods.

Verbosity. Increasing the log verbosity provides additional information for posterior

debug, but it also requires additional storage space and human effort to process.

Allocated resource validation. Resources might be over or under-allocated to a

service, result in poor usage of the available infrastructure resources.

Privacy. Due to legislation, it might not be possible to persist in some data.

facilitates facilitates

> Traceability =

hinders - Execution B hinders . .
> < Retention Policy
Resources

Verbosity

hinders

hinders

\
Privacy

Allocated Resource
Validation

Figure 8.1: Relationship between PREEMPTIVE LOGGING forces.

Solution

Adjust logging wverbosity in services and servers within acceptable resource limits,
maximizing the probability of capturing relevant information for addressing future issues
right from their first occurrence.

Logging is often undervalued by less experienced developers, who are tempted to reduce
log verbosity in production to keep the system leaner. By doing so, they unintentionally
miss the opportunity of capturing information that would allow them to debug unexpected
runtime problems. This may prevent the development team from effectively tackle such
problems, unless they begin monitoring the service and server, hoping to observe the issue
happening again and capture enough information to identify the reasons behind it.

PREEMPTIVE LOGGING ensures that runtime information from both services and

servers is captured, and is an asset available for debugging runtime issues.

PREEMPTIVE LOGGING

Development teams should start by discussing and identifying all the information that
can be extracted from the service and respective server. From there, the team should
discard the items that will never be useful, setting the optimal log verbosity level for
them.

While deciding on what data to keep, resource usage should be discussed, as more
information is persisted, the higher the resource impact in the system. A retention policy
should also be set as the information becomes less relevant with time.

A scenario where all system events can be captured is ideal, as these can be reproduced
in a test environment to debug issues further. Also, once a bug is fixed, they can be
replayed in the production environment some types of failures, e.g., one where a specific
service is dropping the events sent to it.

Recent privacy trends, such as the European GDPR, might prevent some event data

from being physically persisted.

Example Resolved

The team responsible for the database service would discuss what logs and metrics would
be relevant to understand how the service is behaving. As an example, they could capture
the number of incoming connections, number of incoming queries, query response times,
programming exceptions, and the incoming queries themselves. Server metrics would also
be captured, namely disk 10, Random Access Memory (RAM), CPU, or network usage.

If the service revealed an issue, they would access the generated log files and use
them to understand what triggered it. They could start by understanding if the allocated
resources where enough to accommodate the service. If that hypothesis is excluded, they
could then dig into the service’s logs in order to understand when and why the service
started to misbehave.

A retention policy can automatically archive or delete older log entries. When adjusting
this policy, the team should allow enough time to ensure the logs are available during the

time period when they might be used, preventing them from getting discarded too soon.

Resulting Context

By adopting PREEMPTIVE LOGGING, development teams will gain:

Reproducibility. Service operations can be captured, helping the team understand how
it behaved. The whole input stream can be captured and replicated in a controlled
environment to understand how and why it reacted in a certain way to a given set

of inputs.

121

122 MONITORING PATTERNS

Allocated resource validation. Capturing logs from hardware usage from a server
will enable the team to understand better how the service consumes resources and

optimize resource allocation.

Security and auditing. The development team will be able to trace security problems
and threads.

While configuring the service’s logging levels, the following should be taken into

consideration:

Resources. Should be increased to cope with both the higher CPU and disk space

demand of increasing the log verbosity.

Retention policy. Increased retention policy will keep the logs available for a long time

period, but such will increase the required disk space required to persist the logs.

Verbosity. Again, the verbosity level should be adjusted to a value that balances an

adequate output, with the amount of disk space it will consume.

Security. An attack on this component would expose information from all others.

Related Patterns

The team job is simplified if it is able to query log entries from multiple sources,
understand what events were happening in each service. LOG AGGREGATION provides
this functionality by moving the logs from their origin to a centralized repository, where
they are aggregated and indexed, facilitating their usage. COLLABORATIVE MONITORING
AND LOGGING describes the importance of logging and its relevance while deployment
software on the cloud [Arc19]. Fernandez described how logs could be leveraged to audit

security in the AUDIT LOG pattern [Ferl3].

Known Uses

Amazon Web Services’ CloudTrail enables the capturing of all Application Programming
Interface (API)interactions in an Amazon Web Services (AWS) account, providing
complete traceability of all changes through it [Amal7al. Azure provides a similar
service [Azul7]. Spinellis identified log verbosity as a parameter to manually tweak in
production when looking for problems [Fu+14]. Fu elaborated on that problematic in his
survey [Fu-+14], theorizing automated log verbosity adjustment in production as a relevant

research topic.

LOG AGGREGATION 123

8.3 Log Aggregation

o{} Services orchestrated at scale produce widely disperse information, resulting
43 in a complicated process to navigate and correlate multiple sources. Aggregate
and index all service and server logs in a central repository, providing the team

with a centralized system to query and visualize execution logs.

Context

Cloud Computing application can execute at a vast scale, with some teams managing
hundreds of services orchestrated on top of thousands of servers. Both the hardware and
their hosted services continuously operate and producing relevant information, commonly
via log files. Those files must be accessed often, and it is not functional to keep them
dispersed in the infrastructure, forcing developers to individual access each machine and

respective service to access a given file.

Example

Consider the example from section Section 9.2 (p. 137), where each service is running on
its dedicated server. The three services are producing log files, along with the operative
system from their host. Imagine now that there was an issue with the AC service or server,
rendering the service unresponsive. The developers need to remotely log into the server to
access the required log file and debug the issue. Along this process, they understand that
the issue was due to a communication error with the messaging service. They now need
to access the machine hosting the messaging service in order to debug its log entries.
This process must be repeated for each service and server involved in the issue, going
back and forth until the problem is identified. This approach makes it troublesome and
inefficient to correlate log entries from different sources and demands that the developer

individually accesses each one of the machines.

Problem

Services orchestrated at scale produce widely disperse information, resulting in a
complicated process to navigate and correlate multiple sources.
Teams deploying software at scale can easily see their infrastructure grow to tens of

servers hosting hundreds of service instances. As suggested by PREEMPTIVE LOGGING,

124

MONITORING PATTERNS

these services should be verbose at producing logs. At this scale, it is troublesome for
developers to leverage these logs, given their sparsity across the infrastructure. The

strategy of individually accessing each server and service log file becomes unmanageable.

Forces

The following forces, represented in Figure 8.2 (p. 124), need to be balanced while

considering the adoption of this pattern:

Fragmentation. Scattered log files across servers incur in extra effort for the developers

to debug the application.

Network propagation. Transferring log data from its source to a central aggregation
point requires additional bandwidth and might incur in additional data transfer

costs.

Ordering. Propagation of logs through the Internet and unaligned clocks might result

in out of order log entries.

Querying. Querying in a log stream is essential to identify relevant information from

large collections of logs quickly.

Security. Sending logs across the network should use a secure channel, ensuring that
sensitive information is never stolen. The log storage should also guarantee that

they are not writable, preventing attackers or other software from changing them.

Security <

I hinders
hinders
. < hinders . increases Network
Querying Fragmentation ——— > .
lhinders Propagation
Ordering

Figure 8.2: Relationship between LOG AGGREGATION forces.

LOG AGGREGATION

Solution

Aggregate and index all service and server logs in a central repository, providing the team
with a centralized system to query and visualize execution logs.

Having logs available only at their source makes their usage troublesome, requiring the
user to log in to each system and either download them or use the set of tools remotely
available to query them. At scale, when tracing managed multiple services and servers,
this strategy becomes unmanageable and inefficient.

LOG AGGREGATION addresses this problem by providing a centralized system for
aggregating and visualizing all logs in an infrastructure. This solution is applied as (1)
a log aggregation service is deployed in the infrastructure, enabling the querying and
visualization of information from the logs and (2) each service daemon deployed along
with it must forward its logs to the log aggregation service. If the team is operating a
service not built by them, they can use a log forwarder to read the service logs and send
it to the LOG AGGREGATION system.

The centralized log service can persist the log entries in a database, exposing a query
interface. Developers can mix and match entries in a single location, facilitating the
observation of the infrastructure behavior as a whole, or filtering for a specific service
or server. Figure 8.3 (p. 126) represents the relevant components in this process as a class
diagram.

A secure channel should be used when sending logs from their origin to this centralized
database. Also, it should allow entries from being written but prevent them from being

changed, ensuring that logs are immutable.

Example Resolved

Each service and server would send their logs to a centralized log repository service. This
service would need to be instantiated in the infrastructure or adopted as an external
service. Within it, the developer would have a global view of all logs from all services in
the infrastructure. It would be possible to query those logs, filtering them specifically for

any specific service at any given time.

Resulting Context

This pattern introduces the following benefits:

Fragmentation. Developers can use an aggregation service to aggregate all the

information they need from any service or server in the infrastructure.

126 MONITORING PATTERNS

1

Log Repository quorics Log Viewer
T*
1 generates
Application — Log *>— Log Entry

* *

generates

hosts %

Server

Figure 8.3: Class diagram showing the entities involved in the log generation, persistence, and
querying process. Applications and Servers generate log files that are composed of
multiple log entries. Each log entry has relevant information about the team to use in
the future. Logs are persisted in a remote log repository. This repository aggregates
all sources of information, allowing the log viewer to query a single location.

Querying. Once aggregated in a single location, and data can be indexed, allowing
developers to query the logs, finding the information they need for their specific

task faster.

Security. Communicating logs using a secure channel is essential for keeping sensitive

data private. Also, the chosen log storage should be secured to prevent data leakage.

While deciding the technologies to implement this pattern, the following should be

taken into consideration:

Network propagation. In order to propagate logs to the aggregating server, additional

bandwidth will be consumed.

Ordering. Ordering will rely on the time stamp generated at the server. There might

be some errors in cases where the server’s clock is not synchronized.

Single point of failure. Without a redundant deployment, a failure in the log

aggregation system would revert this system’s benefits.

Related Patterns

REPOSITORY describes a generic approach to a data repository [HM]. Fernandez describes

the application of log aggregation in the security context to trace user actions [Ferl3].
MESSAGING SYSTEM can be used as a communication channel to propagate logs to the

log aggregation service. This pattern is further useful if PREEMPTIVE LOGGING is applied

in each service in the infrastructure.

EXTERNAL MONITORING

LOG AGGREGATION can be used as a source of information for REACT, feeding it with

the events used to trigger reactive actions.

Known Uses

Elastic, through their Elastic Stack, leverage Logstash as a tool for acquiring and
propagating logs from applications. Logs are propagated to a remote Elasticsearch, a
highly indexable JSON document storage. Information can then be queried and visualized
using Kibana, a dash-boarding tool for captured data [Elal7].

Loggly! is a subscription-based log aggregation cloud service. It provides clients for
acquiring logs from multiple platforms and services, making them available in a time-based
searchable history.

Roderick et al. have described how their logging service acquired over 50 TB per year,
making this data available for over 1000 users daily [RBK13].

8.4 External Monitoring

O* Monitoring an application from its inner layers results in an incomplete or
43 biased version of the reality. Test the application’s public interfaces from an

external source, increasing the confidence over the application’s status.

Context

While part of the development process is responsible for ensuring resilience, just like it is
impossible to ensure complete reliability using software testing [Mal+02], it is not possible
to ensure that a system is 100% resilient. Accepting that software will eventually fail is
essential to understand the need to increase awareness about the system’s status at all
times, motivating the need to adopt monitoring on all systems. Frequently, monitoring
systems live within the application’s infrastructure, which might bias the awareness about
the actual state of the application, given all the external variables introduced by using

the Internet as a distribution channel.

I Details at https://www.loggly.com/.

127

https://www.loggly.com/

128

MONITORING PATTERNS

Example

Consider an authentication service, part of a larger application. Provided with a valid
login, it should output an authentication token for interacting with the other services in
the application. Consider the scenario where when used from within the infrastructure, the
authentication service works as expected, but, when accessed from a remote application,
the authentication service is inaccessible. A misconfigured firewall can cause such
discrepancy.

This scenario demonstrates that a service can have different statuses depending if it

is observed from within the application’s infrastructure or a remote site.

Problem

Monitoring an application from its inner layers results in an incomplete or biased version
of the reality.

Software failures can be catastrophic to business owners. Application downtime
consequences can range from client complaints to loss of confidence in the application
and, ultimately, user abandonment or contractual breach. Given the ever-growing offer of
online services, a failing application can easily be replaced by a competitor.

In case of failure, the development team should quickly be aware of the application’s
status, facilitating a quick reaction.

This awareness must not depend on the application or its infrastructure, as that would
bias the observation. In the context of cloud computing, simply monitoring the application
alongside its execution is biased and prevents the detection of several unpredictable
Internet-related issues, such as misconfigured or failing routers, CDN, DNS, or firewalls
which would directly impact the client’s access to the application.

In the example from Section 8.4 (p. 128), a misconfigured firewall is inadvertently
blocking traffic from a valid source, leaving the service inaccessible from the outside. This
issue would not be identified by monitoring the application from within the infrastructure,

as the firewall would not be used between two internal services.

Forces

The following forces, represented in Figure 8.4 (p. 129), need to be balanced while

considering the adoption of this pattern:

Confidence. Maintain awareness of the system’s state without relying on its internal

information or be biased by internal monitoring.

EXTERNAL MONITORING

Recency. Be notified as soon as a possible complication is identified in the application.

Coverage. Confidence level increases with the increase of test coverage, that is, with

the increase in the number of public endpoints and their tested features.

Resource usage. Minimize the impact of monitoring on the application’s resource

requirements, directly impacting performance or cost.

Security. Minimize the attack vectors for the application. Exposing sensitive

application details to additional external tools will create a new attack vector.

Geographic description. Running tests from different world locations increases the

level of confidence that the system is working worldwide.

increases Resource
Recency —— >
increases Usage

increases
Coverage — > Confidence

increases

Programmatic facilitates Geographic hinders _
. = Security
configuration Distribution

Figure 8.4: EXTERNAL MONITOR forces relationships.

Solution

Test the application’s public interfaces from an external source, increasing the confidence
over the application’s status.

Resilience is an essential requirement of any cloud software. Still, just like with software
testing, it is impossible to guarantee that a system is resilient and will not fail. Besides
improving the system’s resilience, the development team should also invest in awareness
of the system’s status, reducing the time required to react to a failure.

EXTERNAL MONITOR consists of the frequent execution of tests against the public
interfaces of a live production system, evaluating if they are responding as expected. Tests
are configured and executed from a service running in a separate network environment

from the application itself and run without any knowledge of the application’s state (as

129

130

MONITORING PATTERNS

a black-box test), providing an accurate observation of the system’s status as seen from
across the Internet.

Test coverage can range from a basic status check to see if the service is up to having
a batch of tests covering all the application’s public interfaces and their different uses.
Such a level of coverage could be seen as black-box integration tests executed against a
live environment. It is up to the team to balance the level of coverage with the intended
level of confidence in the system’s status.

The team can either develop their EXTERNAL MONITOR tool or adopt one of the
many third-party tools available. Developing a tool for external monitoring would require
considerable investment in development and operations. On the other hand, adopting a
third-party tool introduces a financial cost for using the service, as well as it widens the
attack surface to the application, as sensitive information such as user credentials need
to be shared with the system. A hybrid approach could consider adopting an open-source
tool for doing external monitoring, which will prevent sharing sensitive credentials with
a third party while still requiring little investment in developing the software.

Some tests might require sensitive data to execute, such as user credentials. In case of
an attack on the monitoring platform, this might hinder security, leaving those credentials
exposed. Frequently rotating these credentials can help mitigate this issue.

While implementing this pattern, one must consider:

Recency. We need to decide how often we will run the external monitoring tests,
balancing how fast do we want to know when an issue appears with the system

as the load introduced by the tests will increase resource usage.

Development effort. We need to balance the completion of test coverage with the

time required for developing new tests.

Security. We need to decide which, if any, credentials should be made available in the
external system to test protected interfaces, at the cost of possibly exposing sensitive

data.

Accuracy. We want to prevent false positives by confirming issues redundantly, such

as those who might result from latency or network partitioning.

Geographical distribution. We might want to distribute tests geographically,
ensuring the application is working within the specified parameters, despite where
the traffic is originated. Geographically distributed monitoring also enables verifying

the correct behavior of distribution components such as CDNs.

EXTERNAL MONITORING 131

Traceability. We want to understand why a test has failed by evaluating the inputs and
outputs used to identify the failure. LOG AGGREGATION pattern can be leveraged
to combine logs from this pattern, as well as logs from FAILURE INJECTION and
the remaining components of the system, providing a unified view over the system’s

behavior.

Programmatic configuration. We want to manage monitoring tests automatically
as part of the deployment process, eliminating the need for manual configuration,

hence, increasing confidence in the tests.

Update a Basic HTTP(S) Test

Switch to the advanced editor.

WHICH WEBSITE DO YOU WANT TO MONITOR?

https://www.google.com/

HOW OFTEN SHOULD WE CHECK YOUR WEBSITE?

| ‘ | | ‘ | m |15Min‘ |30Mm| ‘1H0ur‘ ‘24Hours‘

WHERE SHOULD WE TEST FROM?

| | | | [erore] (e] [s2] | | Rancom |

WHO SHOULD THE ALERTS GO TO?
Click here to create or modify contact groups.

‘ Myself X ‘

SET TAGS FOR THIS TEST

Figure 8.5: Statuscake’s HTTP(S) test creation interface, showing a basic HTTP test for
Google’s homepage, which will execute every 5 minutes from a random server.

Third-party tools for implementing the pattern often allow tests to be created from
both a graphic interface, as seen in Figure 8.5 (p. 131) and a programmatic interface. The
latter enables tests to be configured as part of the application’s deployment process.

EXTERNAL MONITOR is not a new strategy for cloud computing. Cloud monitoring:
A survey [Ace+13] details thoroughly why monitoring is an essential aspect of cloud
applications and describes over twenty tools to implement it, ranging from commercial to
open-source offers, making it an excellent guide for selecting the tool used to implement

this pattern.

132

MONITORING PATTERNS

Example Resolved

Considering the example, this pattern would be implemented by adopting an EXTERNAL
MONITOR system that would make an authentication request to the authentication system
and confirm that the answer contained a proper authentication token. This test would be
configured in the monitoring platform at the end of the deployment process, ensuring that
the application is tested and working as expected right from the moment the deployment
is complete.

Tests would be executed at a configured frequency and from different geographic
locations to ensure that the application behaves correctly, despite where a request has
originated.

Possibly at a later stage, and for increasing test coverage, any other interface in the
service could be tested as well.

To enable interacting with authentication-protected areas of the application in
production, a mock user can be set up in the system. This way, in the case of data leakage
in the monitoring system, no significant impact would be observed on the monitored
application. Arguably, testing against a single user account that was created solely to test

the system might provide a bias per se.

Resulting Context

By adopting EXTERNAL MONITOR, development teams will gain:

Confidence. Given continuous independent monitoring, there is an added confidence

that the system is behaving as expected if no alarm is raised.

Traceability. The team will be able to understand what behavior was observed as a

response to any failing request using the EXTERNAL MONITOR logs.

Programmatic configuration. The team will be able to evolve test scenarios along
with their development, using the EXTERNAL MONITOR API to setup or update

tests.

On the other hand, the following liabilities can be introduced:

Security. When the communication channel is properly secure, no data leakage can
occur by executing the tests from a EXTERNAL MONITOR provider. The team
must trust the provider. Given an attack against it, sensible information might
be exposed. It is the team’s responsibility to minimize or eliminate the need for

sensitive information such as credentials for executing the tests.

EXTERNAL MONITORING

Resource usage. If careless, the team might create a large volume of tests at a high
frequency, which might generate enough load to degrade the application. It is up to

the team to properly balance the volume of tests and their frequency.

Related Patterns

EXTERNAL MONITOR providers expose APIs, which can be used to manage the tests
programmatically. A team that adopts INFRASTRUCTURE AS CODE will be more efficient
at managing their tests.

EXTERNAL MONITOR can be used to feed information for LOG AGGREGATION,
facilitating a centralized view of the issues observed in the application from this monitoring
strategy as well.

HeEALTH ENDPOINT MONITORING from Microsoft is similar to this pattern proposes
the creation of HT'TP health checks exposed by the application, so that an external tool
can verify the application status [Mic17a]. That implementation differs from EXTERNAL
MONITOR, as it requires specific endpoints to be implemented and tested from the external
health checking tool. Instead, EXTERNAL MONITOR proposes that the external tool
interacts with the application as a client would, using any public interface, not limited to
HTTP, validating that it is providing the expected answers.

The COLLABORATIVE MONITORING AND LOGGING pattern [ECN15] describes how
monitoring and logging activities can be coordinated between a cloud consumer and
provider, describing that monitoring and auditing requirements can be described by the
consumer but observed by the provider. This approach is similar to EXTERNAL MONITOR,
given that the monitoring behavior is extracted from the application the consumer is

developing and executed with an external tool, managed by the cloud provider.

Known Uses

Multiple services are available, providing the EXTERNAL MONITOR tool required to
implement this pattern. StatusCake, Pingdom, or NewRelic [Rell7; Pinl7; Stal7] are
only three of those applications. Pricing and features set them apart, with most being
able to test at the HT'TP and TCP layers.

Further Considerations

Juvenal, a first-century poet, in his Satires series of books wrote the famous Latin
quote “Quis custodiet ipsos custodes?”, roughly translated to who watches the

watchmen? [Win99]. This quote can still today motivate discussion around cloud

133

134

MONITORING PATTERNS

monitoring. By relying on an external tool to monitor the system, we are delegating
the responsibility of capturing failures to an external system. What must be taken into
consideration is that the external system is a piece of software as well, which might also.
In such a scenario, a failing system would not be detected since the monitoring system

would also be unavailable.

8.5 Summary

This chapter introduced three patterns for observing cloud software status and state.
PREEMPTIVE LOGGING recommends that developers preemptively adjust their logging
level to ensure they capture relevant information to debug potential future issues with
the system. LOG AGGREGATION facilitates working with logs from multiple sources,
aggregating them in a centralized platform where developers can slice and dice it for
quicker and more meaningful exploration. Finally, EXTERNAL MONITOR recommends
the monitoring of the public service endpoints from an external location, ensuring that
the system is monitored independently by interacting with the system as a user would,
generating alarms for the team on failures. These patterns help developers increase their
confidence in the correct operation of the application, providing the required data to
dissect issues when they are observed.

The next chapter introduces two discovery patterns that help developers design how

their services can cooperate, both synchronously and asynchronously.

Chapter 9

Discovery and Communication Patterns

9.1 OVerview 135
9.2 Messaging System 136
9.3 Service Discovery e 143
9.4 Summaryo .. e 148

In a microservice architecture, multiple services need to cooperate in providing the
application as a whole. Cooperation requires that the services first discover and
create communication channels between them. This introduces MESSAGING SYSTEM and

SERVICE DISCOVERY, two alternative strategies for service discovery and communication.

0.1 Overview

While using an ORCHESTRATION MANAGER that dynamically allocates containers, the
exact network location where another service is running is unknown. Using a SERVICE
DISCOVERY, a service location can be abstracted through a local network port exposed on
every machine that is always forwarded to one instance of the service, possibly balancing
traffic between multiple instances [Sch+4-06]. This is easily achieved by preemptively
creating a table that maps local ports to services. Whenever the port is mapped, the
service is up, and the communication established.

Some scenarios prevent communication from being point-to-point, for example, for
scalability reasons. A MESSAGING SYSTEM can be used to deliver messages between
microservices, eliminating the complexity associated with service discovery [Gaw(2], at

the cost of additional latency.

136 DISCOVERY AND COMMUNICATION PATTERNS

This section introduces the following patterns:

Messaging System. As the volume and complexity of interacting services
increase, point-to-point communication channels become unmanageable, hindering
fault-tolerance, resiliency, and scalability. Use a MESSAGING SYSTEM, colloquially
known as message queue, to abstract service placement and orchestrate messages

with the optimal routing strategy between them.

Service Discovery. In a dynamically allocated infrastructure, services require a
discovery strategy to establish a communication channel. Abstract service network
details by relying on an external mechanism that facilitates communication and

balances traffic between two services.

9.2 Messaging System

3 As the volume and complexity of interacting services increase, point-to-point
0* communication channels become unmanageable, hindering fault-tolerance,
resiliency, and scalability. Use a MESSAGING SYSTEM, colloquially known as
message queue, to abstract service placement and orchestrate messages with

the optimal routing strategy between them.

Context

The adoption of microservices as an architectural style introduced the need for services
to cooperate in a decentralized and possibly unreliable environment. It is not guaranteed
that every component is online at all times, nor that each service has a stable IP address
(Internet Protocol) or a fixed number of instances running.

These intricacies of cloud computing introduce several requirements. Namely,
services need to communicate with each other in an ever-changing environment,
the communication process must be fault-tolerant, ensuring that the system as a
whole is resilient when confronted with irregular behavior from either side of the
communication, and message passing should be asynchronous, decoupled, evolvable, using

a content-agnostic communication channel.

MESSAGING SYSTEM

Example

Consider an home automation solution that manages Air Conditioning (AC) systems.

Three services compose the solution: Sensor Reader, Data Receiver and AC Manager.

Sensor Reader is deployed inside the user’s house. It is responsible for acquiring and
forwarding temperature data. Data Receiver is a Web Server that receives temperature
metrics and persists them in a database. Data Receiver is also able to provide aggregations
over the data persisted in the database. AC Manager is responsible for managing AC
units by evaluating the average temperature over the past 10 minutes, configuring an
AC to generate cold or warm air. The three services must cooperate in providing a
complete solution for automated AC management. The expected interaction between

them is depicted in figure Figure 9.1 (p. 137).

| Sensor Reader | | Data Receiver | | Database | | AC Manager | | AC |
i i
U temperature > :
|- persist temperature —)J:|
& m - ok -
|I— Get last 10 minutes
l< — - - - last 10 minutgi|:|

_______________ >

Get last 10 minutes

A

L—L — - last 10 minutes ----—

I— Configure AC ——— >

T
I
I
|
I
I

Figure 9.1: A microservice architecture-based system to capture and persist temperature
metrics from a home environment, later used to configure an AC system. The arrows
in the sequence diagram represent the massages exchanged between the components.

Problem

As the wvolume and complexity of interacting services increase, point-to-point
communication channels become unmanageable, hindering fault-tolerance, resiliency, and
scalability.

Services in a cloud application need to communicate with each other to cooperate. A
typical communication strategy uses a client-server approach, limiting the communication

to the two intervening service instances and requiring that the client knows how to connect

137

138

DISCOVERY AND COMMUNICATION PATTERNS

to the server, namely its hostname and server port. Cloud applications are deployed into
dynamic hardware, which means that the internal server’s addresses are not available
during development time, rendering troublesome to use direct communication between
services. Furthermore, when multiple instances of a service exist, the traffic needs to be
balanced between all instances.

Considering the above, the need for abstraction over the communication between
services is identified. Such a channel must enable passing any messages and correctly
identify the sender and receiver of such messages. The communication channel must be
scalable, ensuring that latency requirements are met even when handling large volumes

of messages.

Forces

The following forces, represented in Figure 9.2 (p. 139), need to be balanced while
considering the adoption of this pattern:

The following forces influence this pattern:

Decoupling. A sender does not need to know the network address of a receiving service

to communicate with it.
Scalability. The communication channel needs to be itself scalable.

Resilience. Communication should be resilient, despite failures in the communication

channel.

Persistency. Messages between services should be persisted until there is a confirmation

that they have been processed.

Structure agnostic. The communication channel should be agnostic to the messages

it orchestrates.

Dynamic and flexible. The topology of the system will evolve with time, with new

services joining existing ones, and others leaving in real-time.
Payload security. The communication channel should support encrypted messages.
Channel security. The communication channel should be itself encrypted.

Latency. Introducing an indirection in communication increases the latency required

for passing a message between two services.

MESSAGING SYSTEM

Ordering and priority. The team needs to evaluate if message ordering and priority

are relevant for implementation.

Structure facilitates R . facilitates _ Dynamic and
. > Decoupling > .
Agnostic hinders Flexible
Channel !
annel hinders hinders .
. > Latency < Persistency
Security R
enables
improves
1. f(lt tes o1
Payload Scalability RS > Resilience
Security

Figure 9.2: Relationship between the MESSAGING SYSTEM forces.

Solution

Use a MESSAGING SYSTEM, colloquially known as message queue, to abstract service
placement and orchestrate messages with the optimal routing strateqy between them.

A MESSAGING SYSTEM is responsible for routing messages between services, which can
be both producers and consumers of messages. Messages can vary in size and contents,
since the channel is agnostic of their internal structure, as long as they respect the adopted
protocol.

MESSAGING SYSTEM works by creating one or more queues that work as a First in, first
out (FIFO) data structure. Some implementations provide the possibility of prioritizing
messages in the queue. Quality of Service (QoS) policies can also be applied, forcing
consumers to confirm that they have successfully processed the message before it gets
discarded from the queue. QoS ensures that a failing service will not remove a message
from the queue without it being processed. If a service fails to acknowledge that the
message has been processed in an acceptable period, the message becomes available for
another consumer to process.

Most implementations support multiple message delivery strategies. RabbitMQ, which
is one of the most adopted implementations, supports simple queues, exchanges with

multiples queues, routing, topic-based consumption, and RPC [Piv07].

139

140

DISCOVERY AND COMMUNICATION PATTERNS

When implementing Remote Procedure Call (RPC), services can issue requests to the
message queue and block waiting for an answer. A consumer would pick up the request,
process it, and send it back to the queue, destined to the request sender. That first server
would then receive his request and resume his computation.

Moving the responsibility of handling all communications to the Message Queue service
makes it a single point of failure. For this reason, messaging services are typically deployed
with redundancy, ensuring that communications between services will continue to work if
some instances fail.

The concept of message passing systems has been available for several years, as
middleware provides highly-observable communication strategies, namely one-to-many
communication, providing dynamic connections among services. The initial reference to
messaging applications as a means of communication between servers was first introduced
on the 2001 patent Message Queue Server System [YHO02]. More recently, several standards
have been introduced, namely the Advanced Message Queuing Protocol (AMQP) and the
Message Queue Telemetry Transport (MQTT) [Magl5].

Most implementations will enable the communication channel to use an encryption
algorithm to protect the communication channel. Being agnostic to the message’s contents,
the payload itself can also be encrypted when needed, preventing data leaks even if the
MESSAGING SYSTEM is compromised.

Ordering might or not be respected, depending on the adopted implementation.
RabbitMQ), for example, can ensure processing order and even has support for priority and

sharded queues [Rab20], with strategies other than a FIFO for delivering the messages.

Example Resolved

Considering the example described in section Section 9.2 (p. 137), the three services can
communicate using a message queue based distribution in a message system, as shown
in figure Figure 9.3 (p. 141). Message queues can be identified by a name and require
consumers to subscribe to the queues from which they want to receive messages.

Initially, the Data Receiver service would subscribe to queues metrics and requests.
AC Manager would subscribe to a queue named after it, manager.

Inside the house Sensor Reader would capture temperature metrics and send them
to the message queue using the metrics queue. Asynchronously, Data Receiver would
consume these messages and persist them in the database.

Periodically, AC' Manager would require the last 10 minutes of temperature metrics

to the message queue in the requests queue. Data Receiver would consume that message,

MESSAGING SYSTEM

gather that information from the database, and sent it back to the message queue using
the manager queue. Finally, AC Manager would consume those messages and configure

the AC system with the appropriate behavior.

| Message Queue H | Data Receiver Database | | AC Manager

Sensor Reader

«metrics, requestss
1: subscribe

F 3

«manager»
2 : subscribe

R D PR
F 3

«metrics»

13 : temperature
‘ ametrics»

4 : temperature

5 : persist temperature |
-

— L
‘ - e ?-OKU «requestss

7 : get last 10 minutes

A 4

«requests»
8 : get last 10 minutes

«managenrs
9 last 10 minutes

«imanager»
10 : last 10 minutes

= : 3 \\ 11 : Configure AC

Figure 9.3: Communication between the three described services, routed via a messaging system.
No two services communicate directly. Arrows represent the messages exchanged in
the systems.

A 4

Resulting Context

In the context of engineering software for the cloud, message queues can abstract where
services are located, eliminating the need for discovery mechanisms between them. Each
service can communicate directly with one or more queues, requiring only the address of
the Message Queue service.

Using message queues also facilitates service scaling. Services receiving traffic from
outside channels should be scaled in order to handle the traffic. These would then inject
messages in queues that are being consumed by other services. In such architecture, the
queue’s size can be used to understand if and how a service should be scaled, aiming at
always keeping the message queue as small as possible.

This pattern can positively improve a cloud application as follows:

Decoupling. Using the MESSAGING SYSTEM to orchestrate messages between services
further ensures their decoupling, facilitating the evolution of the application in a

microservice architecture.

141

142 DISCOVERY AND COMMUNICATION PATTERNS

Scalability. Queues can be shared by multiple instances of a service, acting as a load

balancer, rendering it trivial to scale a specific service.

Resilience. Messages can remain in the queue until its consumer marks them as
processed. In case of failure, another instance can retry processing a message. The
message queue software itself can also be deployed redundantly and have a disk

persistence of its messages, to ensure resiliency.

Availability. While the MESSAGING SYSTEM becomes a single point of failure to the
application, it can be deployed redundantly, ensuring its continuity if a node from

it fails.

Security. Security can be improved by obscurity, as the services receiving messages do
not need to be reachable from the message sending services. Also, the communication
channel uses encryption to enforce a secure communication of all messages sent

through it.
On the other hand, the following pitfalls are observable:

Complexity. , Increasing the level of indirection might make it harder to debug message
passing in the application. For this reason, Facebook’s Flux architecture, which is

partially event-driven, explicitly disallows sending nested events.

Latency. Again, the indirection introduced will forcefully increase the message-passing
latency when compared to point-to-point communication. Current message queue
implementations, when co-located with both services and given the appropriate

network conditions, can still ensure latency under 50 milliseconds [Ric].

Single point of failure. Without a redundant deployment, a failure in the messaging

system will halt all interaction between the services.

Ordering and priority. The implementation can support ensuring ordering and

priority if the team requires it.

Related Patterns

Message Queues are a more elaborate approach to Hohpe’s Message Buses, which provided
a basic communication channel between applications. In his book Enterprise Integration
Patterns, additional communication patterns that most message queue implementations
have adopted are described, such as PUBLISH-SUBSCRIBE CHANNEL or GUARANTEED
DELIVERY [HWO03].

SERVICE DISCOVERY

Another version of the Publisher-Subscriber pattern was also documented by [BMR96].

This pattern introduces an approach to allow services to communicate without
knowing their peers’ location. This might not be acceptable at all times, mostly due
to latency constraints. For those cases, SERVICE DISCOVERY [BCS15] can be applied.

A similar strategy described by the IO GATEKEEPER and related patterns in
the telecommunication domain for managing the interaction between humans and
systems [Han98].

SERVICE DISCOVERY can also be used to discover where the message queue is available
in the infrastructure.

Messaging systems can be used to implement LOG AGGREGATION, by having services
communicating their logs as messages, which are then aggregated by the log centralization

service.

Known Uses

MESSAGING SYSTEM has a wide range of adoptions. At Conseil FEuropéen pour
la Recherche Nucléaire (CERN), it was used to make information available for
multiple monitoring tools in multiple projects, namely in the Large Hadron Collider
(LHC) [Cas+11]. A similar environment to the one presented in section Section 9.2 (p. 140)
is described by Grgiém, along with details on how to instantiate it [GSH16].

In another example, [Her+16] demonstrates how message queues can be adopted
to acquire real-time data from trains and be used with Reactive Blocks' to facilitate

collaboration in development and maintenance of software systems.

9.3 Service Discovery

Q* In a dynamically allocated infrastructure, services require a discovery strategy
o establish a communication channel. stract service network details
4 | to establish ication channel. Abstract servi twork details by

relying on an external mechanism that facilitates communication and balances

traffic between two services.

I Project details available at www.bitreactive.com.

143

www.bitreactive.com

144

DISCOVERY AND COMMUNICATION PATTERNS

Context

Cloud applications are commonly composed of a multitude of services, which may be
spread over multiple physical servers in different networks. In order for services to
cooperate, they need to know how to communicate with each other, which implies the
need for configuration or discovery of the hostname or IP and port where the required
service can be reached. Furthermore, when a service has multiple instances, required
in high availability setups, there might be a need to distribute traffic between existing

instances evenly.

Example

An application server receives HTTP requests and queries a database server for
information required to process the HT'TP response. For scalability purposes, the database
is distributed with multiple read replicas that vary in the number of instances considering
the average system load. The service has no information about how the database servers
can be reached due to the dynamic allocation of database instances. Figure Figure 9.4

(p. 144) represent a possible distribution of services among the existing servers of such a

system.
Server 1 Server 3
HTTP Server Database Server
Server 2 Server 4
HTTP Server Database Server
Figure 9.4: The four members of an infrastructure, each hosting a service.
Problem

In a dynamically allocated infrastructure, services require a discovery strateqy to establish
a communication channel.
Service decoupling is required as software gets deployed and scaled automatically in

the cloud, enabling the scaling of individual software components when using dynamically

SERVICE DISCOVERY

provisioned hardware. Deploying in these conditions leaves the client services unaware of
where other services are allocated, requiring a discovery strategy to enable synchronous

communication between them.

Forces

The following forces, represented in Figure 9.5 (p. 145), need to be balanced while

considering the adoption of this pattern:

Real-time discovery. State must be updated when there is a change in the number of

instances in a service.

Location decoupling. Services do not need to know where others are deployed to

communicate with them.

Protocol agnostic. Work at the network level, supporting any protocol adopted by

the services.

Location hinders Real-time
_

decoupling discovery

Protocol Agnostic

Figure 9.5: Relationship between SERVICE DISCOVERY forces.

Solution

Abstract service network details by relying on an external mechanism that facilitates
communication and balances traffic between two services.

Use a new component to instruct a client service on how to reach the destination
service. Implementations can vary from using a DNS server of a reverse proxy within each
server.

The first approach consists of using a DNS service that is aware of the service
deployment, creating one DNS entry per service, and keeping it up to date so that it
will always resolve to the list of servers where the service is deployed. This approach
requires forcing the deployed client services to use this DNS server.

The reverse proxy approach relies on deploying a proxy in each server. The proxy

exposes a service port for each service and is aware of the deployment state so that it

forwards each local port to where the service is actually deployed within the infrastructure.

146

DISCOVERY AND COMMUNICATION PATTERNS

Proxies work at the network level, which makes them protocol agnostic, seamlessly
handling TPC, UDP, or HTTP.

Both strategies require that the proxy or DNS server be continuously aware of
the deployment state. There are multiple strategies for doing so. One is to have a
service registry where each service announces itself, along with dedicated software that
periodically reads this information and updates the proxies. Another alternative is to
query this information from an ORCHESTRATION MANAGER.

Both proxy and DNS servers can be configured on how to route traffic When multiple
instances of a service are available, acting as a load balancer. The balancing algorithm
might work, for example, by distributing the requests using a round-robin technique or in

a smarter way, according to the target’s resource availability.

Example Resolved

This technique requires an external orchestration mechanism to keep meta-information on
the services running in the infrastructure, regarding hosts and ports. Each host machine
has a proxy that periodically queries the orchestration manager and forwards a known
local port to the host(s) and port of where a service available in the infrastructure. The
applications expect a specific port to be available locally that will abstract the exact
port and host where the service is running. Consider the example previously described:
a web application is deployed with two HT'TP Servers receiving external requests, which
must communicate with one of the two other Database Servers to create a reply. For the
HTTP servers to communicate with the database, they connect to the known local port
instead of establishing a direct connection, leaving for the proxy to forward the request to
an available Database server. Scalability is achieved by varying the number of Database
or HT'TP Servers independently, relying on the proxies on the HTTP side to properly
identify available Database Servers and distribute the load between them, acting as an

internal load balancer. This example is represented in Figure Figure 9.6 (p. 147).

Resulting Context

This pattern introduces the following benefits:

Real-time discovery. Changes to the infrastructure are immediately identified by the

orchestration manager, which will reconfigure the proxies.

Location decoupling. Service development can ignore the actual physical location of
other services it is integrating with, relying on the reverse proxy to forward traffic

to the execution of the service.

SERVICE DISCOVERY

Orchestration

Manager
update
Server 1 ﬁj Server 3
HTTP Server |—>| Local Proxy I =I Database Server |—>| Local Proxy
P4
Server 2 Server 4
v A
HTTP Server |—>| Local Proxy I =I Database Server |—>| Local Proxy

Figure 9.6: Proxy configuration example.
Protocol agnostic. Proxies work at the transport OSI layer or lower, hence, are
protocol agnostic.
The pattern also introduces the following liabilities:

Monitoring. A mapping between a service and its running instances must be
maintained at all time so that the reverse proxies are properly configured and only

redirect traffic to active services.

Related Patterns

This pattern may be applied when CONTAINERIZATION is being used to isolate

applications, facilitating communication between containers hosted in different servers,

without requiring applications to integrate with discovery mechanisms individually.

Information about service ports in each container can be injected using environment
variables.

This pattern depends on an external mechanism that keeps track of each service in
the infrastructure. An ORCHESTRATION MANAGER holds this information and could be

queried for it.

Known Uses

A Dbasic approach is presented by Wilder, keeping an Nginx reverse proxy updated
according to meta-information extracted from running docker containers in the local
machine [Will5].

The reverse proxy Vulcanproxy [Coml15b], together with the distributed key-value

storage Etced [Coml1ba] provides a reverse proxy service agnostic to the software using it.

Integration with it requires each service to register itself with Etcd, or have an external

service monitoring, which is less automated than the other solutions described.

147

148

DISCOVERY AND COMMUNICATION PATTERNS

A better solution is based on Apache Mesos [Foul5], which allows jobs to be spawned
across multiple nodes, managing their allocation in Marathon, an infrastructure-wide init
and control system for Mesos [Incl5a]. Using meta-information available with Marathon,
a script can periodically update a proxy server on each machine in the infrastructure,
forwarding a TCP or UDP port, named the service port, to the actual address where the
application is running, despite it being local or in a remote machine [Wugl5]. There are
many implementations available to work with Marathon, including Bambo, an HAProxy
auto-discovery and configuration tool for Marathon [Wugl5]. There is also a script that
can configure a local HA proxy, made available by Marathon’s team [Inc15b].

Kubernetes has implemented this pattern by providing an embedded DNS server that

automatically exposes all services deployed with it [KKub18a].

9.4 Summary

This section introduced two patterns for supporting service cooperation. MESSAGING
SYSTEM introduces a message passing as a strategy to asynchronously exchange messages
between services, while SERVICE DISCOVERY facilitates service discovery in a cluster,
supporting synchronous interaction. Service discovery and communication are essential
to enable service cooperation and vertical service scaling.

This chapter detailed the last two patterns from the pattern language introduced in
Chapter 6 (p. 69). The following two chapters elaborate on how these patterns are being

used in the industry.

Chapter 10

Industrial Case Study

10.1 Goals o e 150
10.2 Methodology 150
10.3 Interview Protocol 151
10.4 Case Study: LabOrders L 158
10.5 Case Study: HUUB 163
10.6 Case Study: Infraspeak o 168
10.7 Case Study: SwordHealth 172
10.8 Case Study: Velocidi 177
10.9 Discussion Lo 185
10.10Conclusions L 186
10.11Threats to Validity 187
10.125ummary e e 189

We have elaborated on the intricacies of cloud development through literature research and
technology experimentation. We proceeded to present a pattern language for designing
cloud applications, enabling developers to make informed decisions for their cloud software
design. We now question what the actual impact of the patterns in this language can be
for developers. Are these patterns relevant? Are developers aware of the problems that
benefit from the application of these patterns? Through the application of Semi-structured
interview (SSI), we describe a case study with five local startup companies. The usage
of startups in this study was motivated by the facilitated access to them, building
cloud-centric products, and how much they depend on the efficient use of cloud computing.

We evaluate how their design relates to the patterns that we have identified. As a secondary

1

0

INDUSTRIAL CASE STUDY

objective, we expect our finding to provide valuable feedback to improve our patterns with

new forces and implementation details.

10.1 Goals

The pattern language described in the previous chapter is supported by research and
experimentation. Still, a pattern language is an ever-improving artifact. New information
and realities can provide insight for improvement at any time. With this case study,
we want to understand the correlation between a company’s maturity and its level of
adoption for the pattern language. We address Research Questions (RQs) 2, 4, and 5, by
inquiring companies about their cloud problems and solution strategies, learning about
their forces, and relating their pattern adoption with their company characteristics. During
this process, we expected to identify additional details regarding the strategies applied to
solve the identified recurrent problems, concretely new forces, and implementation details
that can further improve the pattern language.

We hypothesize that there is a a correlation between the maturity of a product
or its company and the number of patterns they adopt. We consider that a more
mature product or company operates at a larger scale, with a larger team, and possibly
with more complex operation requirements, such as geographic distribution. We consider
a product or company to be more mature than others if it has a bigger team or operates

on a larger scale.

10.2 Methodology

The case study works with five companies building cloud products and evaluates their
cloud practices. These companies share a similar business stage (not product stage), as
they were all past the seed stage and undergoing client expansion, with most already
having secured their first international clients.

For this case study, we aim to understand how each of these companies approached
cloud development. We had limited access time to each company, which discarded
observational methods. As such, this research was designed using SSIs [Adal5]. SSls
provide a framework for capturing qualitative data by following a script characterized by
its open questions. The interview protocol is described in Section 10.3 (p. 151). SSI ensures
the interviews capture detailed qualitative information while providing the possibility to
probe the respondent for additional information concerning his system, allowing him to

digress over details that might have been disregarded in a structured interview. The face

INTERVIEW PROTOCOL

to face interaction motivates respondents to be more invested in the study, providing
additional details about their systems that they would likely not provide in a closed
survey with a less interactive approach, such as using questionnaires [LLA94].

Interviewers can use probing during a SSI as a technique to stimulate the respondent
to clarify or elaborate on a topic. An example would be to ask “Can you please elaborate
on that?” on an incomplete response or echo the response so that the respondent evaluates
if he has missed any details [HB09]. It is up to the interviewer to understand when and
how to use probes during a SSI [HB09].

Lazarsfeld states that the SSI interviewer should be a domain expert, as much of the
dialogue might use ambiguous words [Laz54]. Barriball claims that an expert interviewer
can obtain more and better information out of an interview [LLA94]. To ensure consistency
and that an expert holds the interviews, the author was responsible for performing the
five interviews.

On the downside, SSIs are time-consuming, given the need to physically conduct

the interview and then process all the unstructured data captured from it [Adal5]. As

such, SSIs may need other supporting methods to achieve statistically relevant results.

Recording the session enables the interviewer to be focused on the respondent and his

answers while preventing the loss of valuable information from the session [CC06].

10.3 Interview Protocol

The following sections detail the interview script. Questions are organized into
the categories: Introduction (I), Infrastructure Management (IM), Orchestration and
Supervision (OS), Monitoring (M), Discovery and Communication (DC), and an

Hypothetical Scenario (HS).

10.3.1 Introduction

The interview begins by contextualizing the respondent about the process and goals
for the interview. The respondent is made aware that the conversation is informal and
semi-structured, motivating a deviation from our questions to further elaborate on any
relevant topics. We also made evident our goal to understand the team’s cloud software
practices and related business intricacies. We ask the following questions during this phase

of the interview:

I1. Briefly describe your business and product.

Different businesses demand different cloud strategies. Specific requirements, such

1

1

152 INDUSTRIAL CASE STUDY

as dynamic hardware scaling or high-frequency deployments range from irrelevant to
mandatory for the business to thrive. Asking the interviewees about their business

enables understanding the requirements and expectations set for the product.

I2. Who is the typical user of your software? What value is being added to
him?
This question improves on the previous one, surveying the respondent about the

relevance of his product, enabling us to familiarize ourselves with their operations.

10.3.2 Infrastructure Management

Cloud orchestration primes for its automation capabilities, which can be implemented
using INFRASTRUCTURE AS CODE or AUTOMATED SCALABILITY. This part of the
interview inquires about deployment strategies adopted. We ask the following questions

during this phase:

IM1. Would you describe your architecture as a monolith or a service-oriented
architecture? Has it always been that way? What made you design it as
it is?

Cloud applications typically start as monoliths [Fow15], given the development
agility and simplified operations that these require [Stil5; Bonl6; Ricl7b]. Service
Oriented Architecture (SOA), despite more complicated to operate, facilitate scaling
in the cloud. Most teams either adopt SOA from scratch or eventually refactor their
applications into using it. Understanding the respondent’s application architecture

allows us to infer their cloud approach strategy and vision.

IM2. Can you draw and describe your architecture? Can you identify the
critical components from your architecture?
An architectural draft identifies what services compose the product and how they
interact with each other. This provides a shared vocabulary to support the remaining

interview.

IM3. Can you describe how many users and traffic volumes you are managing
right now? If you have multiple deployments, consider the largest for this
question.

Active daily users and traffic volumes are critical metrics for adjusting the scale
at which an application needs to perform. Companies managing smaller volumes
might not have yet felt the need to scale their application, while large companies

are seasoned at handling scale variations.

INTERVIEW PROTOCOL

IM4. What cloud infrastructure do you use? Which services are they
providing you?
This question probes what cloud providers and external services are adopted, as well
as how they are configured and coordinated. Services are typically made available in
the form of metal, platform, infrastructure or software as a service. Different levels

require different investments in automation and orchestration management.

IM5. How many different instances of your application are you currently
managing? For what purposes? How are you managing them?
While some cloud applications are multi-tenant, others need to be deployed on a
per-client basis. Single-tenant applications have further isolation, which might be a
requirement from the product. Independent deployments per client require increased
operations effort, as more application instances introduce more possible points of

failure.

IM6. Can you describe your deployment strategy?
A manual deployment strategy is error-prone and demanding on human resources,
limiting the operations’ efficiency. By probing the respondent about their strategy,
we expect them to acknowledge this discuss their strategy and how their level
of automation influences operational errors and costs. We expect to observe that
less mature companies have less automation and more frequent errors during
deployments. In contrast, more mature companies use automation to make their
operations reproducible and less error-prone. Possibly related patterns: AUTOMATED

SCALABILITY, INFRASTRUCTURE AS CODE.

IM?7. Is there any deployment automation in place?
This question is aims at acquiring further deployment details that relate to
automation if such has not been presented in the previous answer. Possibly related

patterns: AUTOMATED SCALABILITY, INFRASTRUCTURE AS CODE.

IMS8. Can you describe any recurrent deployment issues?
Software development and orchestration of growing application will eventually
face issues. The way developers handle those issues, the frequency at which they
happen, and how comfortable the team is with coping with them on a daily basis
might define when a team stops further automating their operations. We want to
understand the respondents’ history with deployment issues, their impact, and how
the team addresses them. Possibly related patterns: AUTOMATED SCALABILITY,

INFRASTRUCTURE AS CODE.

1

4

INDUSTRIAL CASE STUDY

10.3.3 Orchestration and Supervision

Large scale software projects quickly require complex clusters composed of a multitude of
servers and services. Has the infrastructure grows, the team must assume the responsibility
of operating a more complex infrastructure. This part of the interview explores the level of
maturity for the interviewee’s operations, from the moment the software is packaged to its

daily orchestration. The following questions are asked during this phase of the interview:

OS1. How do you package your software?

Software development usually takes advantage of reusable pieces of other software.
As such, it typically requires a multitude of dependencies to execute, from libraries,
configurations, and the binaries themselves. All these items need to be present and
with the correct versions for the software to execute properly. Some strategies for
managing software dependencies are worst than others. For example, relying on
the operating system’s package manager to make a library available might result
in a wrong version installed at a given point in time. Packaging software as a
Zip file with all its dependencies would require a person or process to follow a
procedure to copy the package, install its dependencies, and sets up the application
so that it is correctly installed. Updating from a Zip file also requires a detailed
protocol, as some files might not be overwritten, while others might have to be
deleted, preventing a simple extraction of the Zip file. Using container technology
ensures that all dependencies are available using the proper versions and that the
software deployment is facilitated and configured via environment variables. This
question probes the respondent about their strategy to package software, capturing
the requirements and limitations that led to the adoption of this strategy. Possibly
related patterns: CONTAINERIZATION.

0OS2. How do you deploy your software packages?
Following the previous question, we want to understand what strategies the
respondent adopts to move his software from development to production. As seen
in previous chapters, a manual deployment operation is error-prone and time costly.
We expect less mature companies to use manual deployments and occasionally to
often struggle with deployments. At the same time, more mature companies would
use further automation, with a reduced failure rate and deployment time. Possibly

related patterns: CONTAINERIZATION, ORCHESTRATION MANAGER.

0OS3. Can you describe the process of setting up a new instance of your cloud

application?

INTERVIEW PROTOCOL

In the context of the cloud, it is necessary to allocate hardware before deploying the
software. Several criteria influence how often new systems are deployed, either for
development, staging, or production. This question probes the strategy for setting up
new product instances. Companies with small teams and single-tenant applications
will not have to do this often. They might be comfortable with manually allocating
the hardware required to run the new system using their cloud provider web interface
sporadically. Multi-tenant or more mature companies will want to automate this
process as part of their deployment automation, ensuring that the allocation of
cloud resources is just another step in their deployment pipeline, again, reducing
time and error-proneness. Possibly related patterns: AUTOMATED SCALABILITY,
INFRASTRUCTURE AS CODE, ORCHESTRATION MANAGER.

0OS4. Can you describe the process to update the application or part of it?
Previous questions have addressed the strategies to package the software, set up a
new environment, and move software onto it. That infrastructure and software will
not be static, but evolve with the product, as new requirements become features
and the product expands. We want to understand how the responded handles
their infrastructure evolution and software updates. Again, we expect to see less
mature companies updating the infrastructure manually via their cloud provider
web interface, as well as needing to introduce relevant downtime for updating the
system. On the other hand, we expect more mature companies to automate their
operations at the infrastructure and application level, requiring little to no downtime
to update. Possibly related patterns: AUTOMATED SCALABILITY, INFRASTRUCTURE

AS CODE, ORCHESTRATION MANAGER.

0OS5. Do you have any automation for identifying and recover failing software?
It is a generally accepted fact that software fails. Here we probe the respondent
about his strategy to stay aware of his software status and if he has any strategy
for automatic software recovery. Failure recovery automation can reduce system
downtime on failures, preventing the degradation of confidence from the users in
the product. Possibly related patterns: ORCHESTRATION MANAGER, AUTOMATED

RECOVERY.

0S6. Considering your recovery automation strategies, how do you ensure
these strategies are working?
Automated recovery strategies can significantly reduce system downtime.

Nevertheless, if these are not exercised frequently in a controlled way, they may

ot

156 INDUSTRIAL CASE STUDY

be themselves faulty, without the team being aware of it. We want to learn if the
respondent has any strategy to verify his recovery mechanisms, making sure that
the system will indeed recover in the event of a failure. Possibly related patterns:

FAILURE INJECTION.

OS7. Do you have scheduled jobs running in the system? If so, how are they
triggered, and where are they executed in the infrastructure?
Scheduled jobs are a ubiquitous requirement for cloud applications. Examples
range from running periodic backups to sending transactional emails. These can be
challenging to implement when the application begins to scale horizontally. Where
should the job execute? How to ensure it executes in the proper machine(s)? How to
implement redundancy to ensure jobs will still run even in case of failing machines?
These are just some of the recurrent problems that might appear. We prove how
the respondent addresses job scheduling, as well as which issues he often has with
their implementation. Possibly related patterns: ORCHESTRATION MANAGER, JOB

SCHEDULER.

10.3.4 Monitoring

Software is prone to failure, both from internal (e.g. faulty code) and external reasons (e.g.
faulty hardware). Quickly identifying failures is paramount for an also quick response. This
part of the interview probed the respondent about his strategies to identify failures in his

application. We ask the following questions:

M1. Do you have continuous monitoring for the application? If the whole
infrastructure suddenly fails, would you still be notified of the issue?
Monitoring is essential to reduce the team’s reaction time to issues that are
not automatically recovered. In such scenarios, monitoring from within the
infrastructure might provide a biased understanding of the actual application’s
state, reporting a functioning system that. in fact, is not. Here we probe the
monitoring strategies from the respondent to his system, evaluating their capacity to
prevent basic false positives. Possibly related patterns: ORCHESTRATION MANAGER,
AUTOMATED RECOVERY, EXTERNAL MONITOR.

M2. Do you store your log files? How and for how long?
The value of information is often under-appreciated, which can motivate its
premature destruction for diminishing cost savings. We want to understand how

these logs are stored and accessed. Keeping the logs close to their source can result

INTERVIEW PROTOCOL

in complex debugging scenarios, such as a team member having to access several
machines to gather data deemed relevant. We seek to understand if the respondent
has ever gone through a situation were relevant system information was unavailable
for this scenario and how easy it was for the team to explore log data from multiple

sources. Possibly related patterns: LOG AGGREGATION.

M3. What is your common application log level of verbosity? Have you ever
decided to increase the level of verbosity to ensure you capture valuable
information? Why and for long?

Decreasing log verbosity levels is common when the system is stable or even
right before the first deployment. Unexpected situations come unannounced, and a
reduced logging level can result in the developers’ loss of relevant debug information.
This question probes the respondent about their strategy to maintain a balanced

log verbosity level. Possibly related patterns: PREEMPTIVE LOGGING.

M4. Consider that the system is down. What would be the typical process
to diagnose the problem?
This question probes the respondents about their protocol for addressing failures. We
want to understand if there are clear protocols and strategies to identify and address
potential issues in the system. Possibly related patterns: LOG AGGREGATION,
PREEMPTIVE LOGGING.

M5. What would you need to do to leverage logs from multiple sources to
debug an issue?
Relevant information to debug an issue is typically spread between multiple
servers and services. Leveraging data from multiple sources might not be trivial.
This question probed the respondent about their protocol for addressing failures,
evaluating how easy it is to leverage logs disperse across multiple machines. Possibly

related patterns: LOG AGGREGATION, PREEMPTIVE LOGGING.

10.3.5 Discovery and Communication

Modern cloud software scales horizontally. While doing so, services require strategies to
discover and communicate in order to cooperate. We probe the strategies in place in
the respondent’s cloud application to enable cooperation between services. The following

questions are asked during this phase of the interview:

DC1. Do you dynamically scale your system? How often and how?

Dynamically scaling the system is essential for any cloud application to remain

158 INDUSTRIAL CASE STUDY

cost-efficient. It requires careful consideration regarding architecture, automation,
and monitoring, to name a few. We want to understand what architecture
considerations enable the product to scale seamlessly. Also, what strategies are
adopted to decide when and how to scale. Finally, we want to understand
the limitations of those strategies, how confident the respondent is on their
execution, and any frequent issues that result from them. Possibly related patterns:

AUTOMATED SCALABILITY, ORCHESTRATION MANAGER.

DC2. What technologies do you use for facilitating communication between
your services, either synchronously or asynchronously?
When applications scale, instances, or application components need to cooperate,
despite being allocated in dynamically allocated hardware. As such, the team must
adopt strategies for the services to find and communicate with each other, being
it synchronously or asynchronously. This question follows on the previous one by
probing the strategies adopted to facilitate cooperation between services. Possibly

related patterns: SERVICE DISCOVERY, MESSAGING SYSTEM.

10.3.6 Hypothetical Scenario

At this stage, the respondent is presented with the following hypothetical scenario:

HS1. Imagine that you have to cope with a tenfold traffic increase. I want to
revisit your previous responses and evaluate what you would like to do
differently.

The respondent must revisit his previous responses, discussing what would need to
change and how. The question is adapted per interview to ensure that a relevant
challenge is proposed to the respondent. Providing an extreme scaling scenario
ensures the respondent forces himself to consider all the intricacies of scaling his

application.

10.4 Case Study: LabOrders

LabOrders' is a marketplace where research laboratories can buy their equipment and
consumables. Sellers use the platform to expose their products to laboratory managers,
which can manage their purchases and laboratory budget. The interview with LabOrders
took place on October 18", 2018, with the CEO, Tiago Carvalho.

1 Learn more about LabOrders at https://home.laborders.com/.

https://home.laborders.com/

CASE STUDY: LABORDERS

10.4.1 Product Overview

LabOrders started their business to provide a unique marketplace for every material
a laboratory could require. Later on, they have grown into a full-fledged laboratory

management tool. At the time of the interview, LabOrders facilitates managing projects

and their budgets, grant reimbursement from financing institutions, and human resources.

From the laboratory side, there are two user personas: the researcher, which requires
material for his work, and the laboratory administrator, which manages the laboratories,
e.g., by approving the researcher’s orders.

Currently, LabOrders has over 3000 active monthly users and is ISO 27001 certified,
which ensures their information security practices [Int]. This certification required

extensive investment in infrastructure security. One of the requirements was to protect the

application behind a VPN server that runs on a separate server in the same infrastructure.

LabOrders architecture diagram, as provided by the team, is depicted in Figure 10.1
(p. 159).

LabOrders - Network Diagram

EC2 m1.small EC2 2.micro

Prod Test

aaaaa

Redmine

redmine laborders.com
5219.173.55

testlabord
54.171.145.174 demo laborders.com
52.16.15.93

|
I
I
I
I
I
I
PHP PHP PHP
® @ | (e
Apache
[5] nosne [5] soncre e ps Redmine I Amazon $3
Catalog Backups. | LabOrders
I | ouvsasarescom
WebServerSG
MasterSG RedminesG I
I
AN AN N &
/|
I
\ I
I
h \
mismal
TestDs I
I
- [—
MySQL |
I
DatabaseSG /‘
J /
- / -
(*************************************** ~

OTHER EC2 INSTANCES

Availability e ‘

\ (ﬂ o \

\ \

\\\g 77777777777777777777777777777777] 7777777)
= LabOrders

Figure 10.1: A graphical representation of the architecture for LabOrders, provided by the
respondent.

159

160

INDUSTRIAL CASE STUDY

At the time of the interview, LabOrders application was a monolith running on a single
server provided by Amazon Web Services (AWS) Elastic Compute Cloud (EC2). There
were external service dependencies, such as Sphinx?, which executed in the same server,
and a Structured Query Language (SQL) database provided by AWS Relation Database
Server (RDS).

Every three months, the team did a capacity review and estimation, manually
adjusting the infrastructure size to the upcoming trimester. By the time of the interview,
there had never been the need to allocate a second server, but instead, the existing
server scaled vertically, that is, by increasing the EC2 instance capacity (e.g., Disk Space,
Central Processing Unit (CPU), Memory, etc) that would best adapt to their expected

requirements.

10.4.2 Infrastructure Management

The infrastructure was allocated using the AWS web interface, and there was rarely
the need to change it. Dependencies installation and setup were automated using
INFRASTRUCTURE AS CODE with proprietary bash scripts that can Secure Shell (SSH)
into an EC2 instance and set it up to receive the application. The pattern was only
partially implemented since there was no automation for setting up the infrastructure
itself. The deployment process was described in the team’s wiki and performed manually
every time.

The respondent considered the deployment and migration process troublesome, given
that it is slow, requires downtime, and is error-prone. The average time for deploying the
system was of one hour, during which the system was offline — having the system offline
for such time required updates outside office hours, typically during the night and on
weekends. When the update process failed, there was no automated rollback strategy; the
team needed to recover a database backup and upload a previous code version to get the
application back up.

Despite disliking the complexity of the deployment process, LabOrders was yet to
explore new strategies as there had been little issues with their approach. The team was
not considering adopting automated deployments as they felt it would require a substantial
time investment. They were still motivated to explore additional automation to increase
the frequency at which they could update the application. At the time, they deployed on

average once every three weeks.

2 Sphinx is an open-source search engine. Learn more at http://sphinxsearch.com/.

http://sphinxsearch.com/

CASE STUDY: LABORDERS

Mercurial provided source code control version. The deployment process used the
production server as a Mercurial remote, with the team pushing the code to that remote
when they want to update the system. This action replaced the code in execution, which

acted as an update strategy. The team handled migrations manually.

10.4.3 Orchestration and Supervision

The application required communication to client’s Enterprise Resource Planning (ERP)
systems, protected via VPN connections. The production server kept an open VPN
connection for each client’s infrastructure. A Cron job frequently verified if the VPN
connections were active and restarted them if they dropped. Cron also triggered sending
emails to clients and the daily backups, which created a local data copy and uploaded

another to Simple Storage Service (S3).

10.4.4 Discovery and Communication

The application was deployed in a single server and connected to a single database with
a static address. Given that all components were statically allocated, the team believed

that there were no reasons to adopt a discovery strategy.

10.4.5 Monitoring

The EC2 server hosting the Virtual Private Network (VPN) server also executed a Nagios®
server. Nagios is a monitoring tool which was capturing metrics from the production server,
application logs from the webserver and application, and issued specific HT'TP requests
and verified their responses for correct behavior. In case of failure or high resource usage,
Nagios generated an alert for the team.

We can observe that deploying Nagios in the same Virtual Private Cloud (VPC)
to where the application was deployed did not implement EXTERNAL MONITOR, since
it could result in false positives regarding the system’s availability, as described in the
pattern description. A false positive could happen if the VPC blocked internet traffic but
allowed internal traffic.

Application log files were kept in the production server and backed up to S3 as part
of the daily backups. The application stored log files for three months.

3 From their website, Nagios provides enterprise-class Open Source IT monitoring, network monitoring,
server, and application monitoring. Learn more at https://www.nagios.org/.

161

https://www.nagios.org/

162

INDUSTRIAL CASE STUDY

The respondent described that they often adjust their level of PREEMPTIVE LOGGING
so that relevant debug information is available for the team to debug future issues.

LabOrders application had its proprietary implementation of LOG AGGREGATION,
given that the application’s web interface for administrators exposed a log viewing
interface. This implementation was limited, though, becoming unavailable if the
infrastructure went offline. Furthermore, the design only supported log files from one

server, and it would have to be rethought to cope with multiple servers.

10.4.6 Summary

Company name LabOrders
Company size 1-10
Active monthly users 1k — 10k

Product operation strategy

Pattern name

Single system, limited users

Adoption

INFRASTRUCTURE AS CODE

O

AUTOMATED SCALABILITY
CONTAINERIZATION O
ORCHESTRATION MANAGER [D)
AUTOMATED RECOVERY
JOB SCHEDULER
FAILURE INJECTION
PREEMPTIVE LOGGING
LOG AGGREGATION
EXTERNAL MONITOR
MESSAGING SYSTEM
SERVICE DISCOVERY
Adopted patterns count 1

OGN

Table 10.1: Overview of the pattern language adoption by LabOrders. @ is used when the
company has implemented the pattern; O is used when the pattern or a variation
from it is partially implemented, or implemented with limitations; © when the
company is implementing the pattern and an empty space for when no effort has
been started to implement the pattern. The last row provides the count of the
patterns each company has fully implemented.

Table 10.1 (p. 162) resumes the pattern adoption by LabOrders as gathered from this
interview.

The respondent identified that their design undermined scaling the system, recognizing
the need to change it in the future. The first change would move the system state from

being stored in files that reside in the server to external file storage, specifically an AWS

CASE STUDY: HUUB

S3 bucket. After the state had been moved away from the machines, it would become
possible to add additional machines and distribute traffic between them using a load
balancer. INFRASTRUCTURE AS CODE would have to be further implemented also to
orchestrate the infrastructure.

While scaling the monolith horizontally would enable scaling the system as a whole, it
would not allow for the most efficient resource allocation, as well as it would continue to
grow to a size that would be complex to develop. For optimizing infrastructure allocation
and facilitating scaling development, the respondent also considered that they needed to
redesign their monolith as microservices.

The update process was considered troublesome and slow. The team was evaluating the
possibility of always creating a new packaged environment for deploying the application
using Docker and CONTAINERIZATION, which could later enable the adoption of an
ORCHESTRATION MANAGER.

When asked about the possibility of handling the system at a larger scale, the
respondent considered the need for proper LOG AGGREGATION, so that it became
trivial to access log files from any machine and application instance in a single place,
opposed to having to access the server and its logs manually, which was how they
implemented PREEMPTIVE LOGGING. While they had monitoring over their application,
it was implemented with a Nagios server that shared the same infrastructure and could
have a biased observation of the system’s state. EXTERNAL MONITOR would provide a
more reliable observation of the system’s state.

Finally, when considering an increased scale and more frequent and automated deploys,
the respondent identified the need to create an automated test pipeline to increase his

confidence level.

10.5 Case Study: HUUB

HUUB* manages shipping logistics for e-commerce businesses, mainly focused on the
fashion industry.

The product manages the life cycle of their client’s supply chain. Clients send products
to their logistic centers, which stores and then forwards the goods to the customer. HUUB
handles the purchase order and guarantees that the product reaches the customer in a
timely fashion. The client has visibility of the individual tracking history of any product
through their platform.

4 Learn more about HUUB at https://www.thehuub.co/.

163

https://www.thehuub.co/

164

INDUSTRIAL CASE STUDY

HUUB operates out of two logistics centers, one in Portugal and another in the
Netherlands, managing about 300 daily shipments and rapidly growing. The interview
with HUUB happened on October 23", 2018, with senior engineer Luis Melo.

10.5.1 Product Overview

HUUB'’s platform core service, named Spoke, started as a monolith, but recent work has
decoupled its functionalities into microservices. Moving to microservices was motivated
by the need to adopt a more agile development framework than the one in which the
product was initially developed, as well as adopting newer technologies.

Initial decoupling served as a testbench for multiple technologies, resulting in different
services implemented with different frameworks. The original monolith, Spoke, was
implemented with the web2py Python web framework. The first services decoupled were
STEM and Quality Check, implemented using Laravel and Django, respectively. The team
adopted Django as the preferred framework and used it for all subsequent services.

At the time of the interview, several other services had already been decoupled. HUUB

was running the following services:

Spoke. The user interface for all account managers and clients to interact with the

product.

STEM. The shipping management system, responsible for overseeing the inbound and

outbound product shipping.

Quality check. Supported the manual process of checking product quality from

incoming batches, preventing faulty products from being shipped to final customers.

3PL. Integration with third-party logistics systems, enabled the creation of transport

requests with partner shipping companies.

Tracking. A redesign implementation of the tracking service. This service has been
decoupled from STEM.

Email. Send emails to clients regarding their shipped parcels. This service has also been
decoupled from STEM.

CASE STUDY: HUUB

10.5.2 Infrastructure Management

HUUB adopted AWS as cloud provider. At the time, there was no automation
implemented for setting up the infrastructure. Infrastructural changes were manually
performed using the AWS web interface by a team member, as needed.

There were two deployments environments of the whole application: one for production
and another for Quality Assurance (QA).

While infrastructure allocation was a manual process, deployments were automated
using a Jenkins pipeline. For the QA environment, commits to Git’s master branch
triggered the deployment pipeline, deploying the latest version of the application into
the QA environment automatically.

Automated deployments used INFRASTRUCTURE AS CODE by adopting AWS
CodeDeploy® service to deploy the application on the already allocated infrastructure.

The production environment used the same strategy, but the deployment pipeline was
triggered manually instead of automatically. Such enabled the team to control when and

what is deployed to the production system.

Each service had its deployment pipeline with a CodeDeploy configuration.

Configurations included the details required to establish the connection to the other
services.

CodeDeploy was configured to pull the latest source code version directly from the git
repository, set up the necessary dependencies, and deploy it. No packaging or software
isolation strategy was adopted.

A limitation of this approach was that there was no maintenance in the hosting
environment, which could clutter the servers. Previously installed dependencies remained
in the machine, even after they were no longer necessary. Eventually, there would be the
need for manual intervention to either remove unwanted or conflicting software from the
server or delete those servers and create new, for a fresh start.

A recurrent deployment issue with the production environment happened due to not
having the production service configurations versioned with the source code, for security
reasons. This option resulted in recurrent deployments with erroneous configurations,
which introduced runtime errors that required manual intervention.

Some services deployment was not yet automated using Jenkins and CodeDeploy,
requiring manual deployment to both the QA and production environments. The

respondent described an episode when he had to deploy one of these services but failed to

5 CodeDeploy is an AWS service for setting up infrastructure and deploying software onto it. Learn more
at https://docs.aws.amazon.com/codedeploy/latest /userguide /welcome.html.

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

166

INDUSTRIAL CASE STUDY

provide it with the required configurations, which resulted in downtime for that service
during the time required to acquire the proper configuration from his colleagues.

The team wanted to explore Terraform® for further increasing their adoption of
INFRASTRUCTURE AS CODE, enabling automating the orchestration of AWS services
programmatically as well. Doing so would provide ground for implemented AUTOMATED
SCALABILITY. Furthermore, using INFRASTRUCTURE AS CODE would further formalize
knowledge about the infrastructure using the source code, which could act as a reference

for new collaborators.

10.56.3 Orchestration and Supervision

To retrieve data from remote integrations, Jenkins periodically triggered jobs that
performed tasks in the application’s components, from databases to servers. Since the
hardware was static, these jobs had a static configuration, describing to which servers they
should connect and their behavior. This configuration was a simplified implementation
of a JOB SCHEDULER, without the support for running the jobs in dynamically allocated
hardware.

The team had no strategy implemented for AUTOMATED RECOVERY and had never
considered adopting an ORCHESTRATION MANAGER.

10.5.4 Discovery and Communication

Kafka, a MESSAGING SYSTEM, was used to queue asynchronous tasks such as sending
emails or process product tracking events. For synchronous communication, each service
had a bundled configuration file describing the connection details for any remote
services needed. Communication happened via HT'TP and Representational State Transfer
(REST) APIs.

The team had not implemented SERVICE DISCOVERY, but the respondent considered
adopting load balancers as a strategy for SERVICE DISCOVERY if, or when, he has to

address dynamically scaling the system.

10.5.5 Monitoring

The initial effort towards monitoring the system was pursued by having the team capture

server metrics using AWS CloudWatch. Captured CPU metrics from Spoke servers

6 Terrafom facilitates creating infrastructure as code operations. Learn more at https://www.terraform.

io/.

https://www.terraform.io/
https://www.terraform.io/

CASE STUDY: HUUB

generated an alarm sent to the team whenever their load was consistently above 80%.

Jenkins was also used to monitor the application by having a pipeline triggered every
thirty seconds, which made an HTTP request to an endpoint in each service. If the service
failed to respond, the team would become aware that there might have been an issue with
the service. This Jenkins instance was deployed in the same VPC as the application. As
such, this monitoring strategy does not qualify as a EXTERNAL MONITOR.

PREEMPTIVE LOGGING was considered, motivated by the multiple times the team
lacked relevant data for debugging issues observed in production. Third-party integrations,
such as having an e-commerce system notifying HUUB about new purchase orders,
generated most of these production issues. The respondent identified the need to further
improve their logging strategy by logging all incoming and outgoing requests to provide
a detailed history of all interaction with third-party services.

LOG AGGREGATION was partially adopted as each service also writes its log files to
its dedicated database. While there was not a single place where the team could mix and
match log files despite their source, they used a SQL client to connect to all relevant
databases and from a single client visualize log files from multiple sources. The team
experimented with Graylog for LOG AGGREGATION but had not had the time to implement

integration with it yet.

10.5.6 Summary

Table 10.2 (p. 168) summarizes the pattern adoption at HUUB. INFRASTRUCTURE
AS CODE and MESSAGING SYSTEM were fully implemented, with the team already
experimenting with LOG AGGREGATION and JOB SCHEDULER, and a roadmap for
implementing AUTOMATED SCALABILITY and PREEMPTIVE LOGGING. Probably related
to their intention to implement more patterns, HUUB was well aware of the limitations
they had at managing their infrastructure. The team was strongly committed to
automating infrastructure management programmatically. By doing so, HUUB would
enable AUTOMATED SCALABILITY, which would unlock new challenges such as the need
to route traffic across multiple instances of synchronous services or optimizing service

placement by having a single machine hosting multiple services.

167

168

INDUSTRIAL CASE STUDY

Company name HUUB
Company size 10 — 100
Active monthly users 1-100

Product operation strategy

Single system, limited users

Pattern name Adoption

INFRASTRUCTURE AS CODE o

AUTOMATED SCALABILITY ©

CONTAINERIZATION

ORCHESTRATION MANAGER

AUTOMATED RECOVERY

JOB SCHEDULER O

FAILURE INJECTION

PREEMPTIVE LOGGING ©

LOG AGGREGATION O

EXTERNAL MONITOR

MESSAGING SYSTEM o

SERVICE DISCOVERY

Adopted patterns count 2
Table 10.2: Overview of the pattern language adoption by HUUB. @ is used when the company

has implemented the pattern; O is used when the pattern or a variation from it is
partially implemented, or implemented with limitations; © when the company is
implementing the pattern and an empty space for when no effort has been started
to implement the pattern. The last row provides the count of the patterns each
company has fully implemented.

10.6 Case Study: Infraspeak

Infraspeak’ develops software as a service for facility managers and technical assistance.
The software facilitates preventive and corrective maintenance, identifying where
maintenance is going to be needed before failures happen. Furthermore, it manages
the intervention process of failures. Their clients range from hotels, facility management
companies, or retail. Infraspeak has clients in Portugal, Angola, Mozambique, Cape Verde,
Gibraltar, and Brazil.

The interview with Infraspeak took place on October 17", 2018, with the CTO of the

company, Luis Martins.

" Learn more about Infraspeak at http://home.infraspeak.com/.

http://home.infraspeak.com/.

CASE STUDY: INFRASPEAK

10.6.1 Product Overview

Infraspeak’s product supports maintenance businesses by tracking every maintainable
asset and providing a communication channel for tracking maintenance operations

between the stakeholders. The stakeholders are:
The customer. Reports issues with his assets through Infraspeak Direct;

The client. Pays for using the product and uses it to oversee all managed assets and

their state

The technicians. Employees from the client that have a mobile application to acquire

and update information from managed assets and their interventions.

Infraspeak designed its product as a monolith and has not yet felt the need to move
to microservices. The initial version was served out of a single machine, using a typical
Linux, Apache, MySQL and PHP (LAMP)® stack. At the time, Infraspeak was managing
800 000 tasks per month, translating to approximately 600 requests per second.

Route53 > Load Balancer
\
S —
RDS ‘ EC2 > New Relic

L ElasticCache

Figure 10.2: A graphical representation of the architecture for Infraspeak.

A

S3

Figure 10.2 (p. 169) shows the architecture for Infraspeak. Given the need to
preemptively prepare for horizontal scaling, the team migrated state to AWS Services,
namely by adopting AWS RDS for the database, AWS S3 for file storage and ElastiCache
for caching. At the time of the interview, there was no redundancy on service allocation,
which meant that a failure in any service would have a critical impact on the system.

When confronted with the need to scale the system, the respondent considered that
the initial scaling strategy would continue with a single-server system, but create one
replica for each geographic region, for example, have one for Portugal and another for

Brazil. A second scaling tier would change the EC2 instances, first by increasing them

8 LAMP, or Linux, Apache, MySQL, and PHP is a standard software stack for web development.

169

170

INDUSTRIAL CASE STUDY

vertically and then horizontally. The remaining services, given that AWS manages them,
would scale automatically, such as S3, or by increasing their instance sizes, such as RDS.

When considering the possibility of scaling the system, the respondent also identified
the possibility of decomposing the application monolith to multiple services. He also
described that the deployment could be customized so that the instance resources aligned

with the service’s requirements.

10.6.2 Infrastructure Management

There was no infrastructure automation. The AWS user interface was used to allocate and
manage infrastructural resources. Given the static nature of the allocated infrastructure,
INFRASTRUCTURE AS CODE was not adopted. Still, the importance of automation was
recognized but postponed to when infrastructure changes became more frequent.

At the time, a single EC2 instance handled all traffic, but the architecture was already
designed to scale horizontally, meaning that new instances could be added behind the

allocated load balancer at any time to scale the system.

10.6.3 Orchestration and Supervision

The team adopted Deployer? for deploying the software, facilitating deployments over SSH
to their allocated Virtual Machine (VM). Deployer executed in the application server, and
when required, it was instructed to update the application on the server. A SSH command
triggers its execution, which operates by pulling the latest source version from the master
branch of a git repository, running the necessary migrations, and attempting to start the
new version. The process would be rolled back automatically on failure. Deployer provided
an improvement from manual deployments, which had to be done outside office hours
and required several minutes of downtime. The responded stated that, at a larger scale,
Deployer would still be used, but the deployment strategy would have to be incremental
for the users, similar to a blue-green deployment [BP19].

CONTAINERIZATION was adopted for development to set up test environments with
all their dependencies quickly. The respondent has not yet felt the need to adopt
CONTAINERIZATION in the production environment. When faced with the possibility of
having to scale their system, the respondent considered Docker as a better alternative
than to manually configure the server to host the application.

There was no supervision in place. In the rare events when the team observed system

failures, a team member would access the server to inspect and recover it manually.

9 Deployer is a deployment tool of PHP. Learn more at https://deployer.org/

https://deployer.org/

CASE STUDY: INFRASPEAK

The respondent has never researched about ORCHESTRATION MANAGER and considers
premature any effort in that direction. Cron was used in the allocated server for executing
jobs periodically. The lack of an ORCHESTRATION MANAGER implementation discarded
the adoption of JOB SCHEDULER.

10.6.4 Discovery and Communication

Given the monolithic nature of the application, there was no need for implementing
the SERVICE DISCOVERY. RabbitM(Q was being evaluated for adoption to implement an
asynchronous MESSAGING SYSTEM to manage a queue of pending reports or sending emails
when there was less CPU demand. In the future, this responsibility could be decoupled

into a dedicated service and server.

10.6.5 Monitoring

Infraspeak used CloudWatch!'" and New Relic!! for server monitoring. CloudWatch
triggered alarms for the team using multiple channels. CloudWatch was used mainly for
AWS service metrics, such as CPU usage in an EC2 instance.

New Relic was used for application-related metrics, measuring error response rates
or response latency, and to monitor the public endpoints of the application. It was not
possible to understand the client for which errors were happening in an initial development
stage. The team has since been motivated to apply PREEMPTIVE LOGGING.

The two services together implement the LOG AGGREGATION and EXTERNAL
MONITOR patterns, which the respondent considered essential for understanding the
application’s state through an unbiased observation quickly. As such, the respondent
described that the typical process to identify failures is to first examine the status reported

by CloudWatch for infrastructure and New Relic for application details.

10.6.6 Summary

Table 10.3 (p. 172) summarizes pattern adoption by Infraspeak. We can see that the team
had mostly invested in their log management strategy, implementing LOG AGGREGATION
ant PREEMPTIVE LOGGING patterns, facilitating their debugging process.

The team was considering adopting the MESSAGING SYSTEM to handle asynchronous

tasks such as sending emails or generating reports during periods of less CPU usage.

10 CloudWatch is a monitoring and management tool from AWS. Learn more at https://aws.amazon.com/
cloudwatch/.
'New Relic is a commercial monitoring platform. Learn more at https://newrelic.com/.

171

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://newrelic.com/

172 INDUSTRIAL CASE STUDY

Company name Infraspeak
Company size 10 — 100
Active monthly users 100 - 1k

Product operation strategy Single system, limited users

Pattern name Adoption
INFRASTRUCTURE AS CODE ©
AUTOMATED SCALABILITY

CONTAINERIZATION O

ORCHESTRATION MANAGER
AUTOMATED RECOVERY
JOB SCHEDULER

FAILURE INJECTION
PREEMPTIVE LOGGING
LOG AGGREGATION
EXTERNAL MONITOR
MESSAGING SYSTEM
SERVICE DISCOVERY
Adopted patterns count 3

O

000

Table 10.3: Overview of the pattern language adoption by Infraspeak. @ is used when the
company has implemented the pattern; O is used when the pattern or a variation
from it is partially implemented, or implemented with limitations; © when the
company is implementing the pattern and an empty space for when no effort has
been started to implement the pattern. The last row provides the count of the
patterns each company has fully implemented.

Until the interview, Infraspeak had been able to operate its application using a single
VM, manually allocated through the AWS web interface. Nevertheless, motivated by
a recent investment round, the architecture had been redesigned to scale horizontally.
The system was ready to be scaled into additional VM instances, which would live
behind the already allocated load balancer. Such change can trigger the exploration of
INFRASTRUCTURE AS CODE. For the future, the team is considering experimenting with
microservices for optimized hardware allocation, which might lead to the implementation

of CONTAINERIZATION.

10.7 Case Study: SwordHealth

SwordHealth provides a physical therapy application for patients to perform physical
exercises right from their home. It uses a tablet to instruct the patient on how to perform
the exercises and a multitude of sensors to monitor the exercise execution, ensuring that

the patient makes the proper movements. Remote physical therapy is relevant for people

CASE STUDY: SWORDHEALTH

who live in remote locations with limited access to health care. The company is focused
on the American market, given the limited access to therapists in remote locations and
the high costs of health treatments.

The patient and his exercises can be followed remotely by a health professional,
ensuring that the patient is working correctly, making the treatment nearly as efficient
as possible if done in the presence of a professional. The application claims to be more
efficient at measuring the patient’s progress than a physical therapist. This is because
the multiple sensors are very accurate and can continuously monitor the user’s progress,
detecting any minimal change in the patient’s performance.

SwordHealth has published research that demonstrates that patients using
their product daily show faster recovery than those relying on visiting physical
therapists [Cor+18].

The interview with SwordHealth occurred on October 31, 2018, with Tiago Seabra,

VP of engineering.

10.7.1 Product Overview

The product started as a monolith. At the time of the interview, it was undergoing the
process of decoupling into microservices.

The decoupling was well thought and motivated. The first motivation was to take
the opportunity to refactor the initial prototyping code that no longer met the team’s
quality standards. Development isolation was also sought after, to prevent failures from
one component from interfering with others. It optimized the hardware required to scale
the application, scaling only instances for the services which see their usage change during
the day, without changing the ones that have a more stable demand. Dedicated storages
were also identified as more straightforward to manage and migrate when needed, as
opposed to using a single database for the whole product.

SwordHealth runs multiple instances of their product due to the medical nature of its

data, which must comply with each country’s privacy legislation. To increase the number

of regions where they can deploy, they work with both Microsoft Azure and Google Cloud.

The largest installation of SwordHealth is yet to scale above the thousands of users,
but they believe their user base will increase next year, motivated by the penetration in

the North American market.

173

174

INDUSTRIAL CASE STUDY

10.7.2 Infrastructure Management

Deployment pipelines were built using Jenkins pipelines. These created a software package
from the source code implementing CONTAINERIZATION and then used INFRASTRUCTURE
AS CODE to set up the required environment and deploy the containerized services on top
of it. When the team checked source code into their git’s master branch, which could
only be performed by senior developers, the associated Jenkins pipeline automated the
containerization of the services and updated the proper environments. Helm'? was used to
implement INFRASTRUCTURE AS CODE, being responsible for deploying software packages
in Kubernetes instances. Helm improved on the use of the default Kubernetes client by
facilitating the description of container dependencies or providing strategies for applying
migrations, reverting the deployment if the migration failed.

SwordHealth instantiated independent databases and virtual servers for each instance
of their application. Still, some supporting services were centralized and shared across all
deployment instances. That was the case for Google’s PubSub for MESSAGING SYSTEM,
Google Cloud Storage for file storage, and Big Query for sensor data without Personal
Identifiable Data (PII).

SwordHealth had a QA team that deployed testing environments to test the changes in
a branch manually. The QA team triggered the deployment of the branch to test directly
from Jenkins and had no interaction with the deployment process.

Due to insufficient code review practices and QA, migrations had failed in previous
deployments to production environments. These have required manual intervention for
recovery. That was the only deployment issue identified by the respondent. We can argue

that this is a development issue rather than a deployment one.

10.7.3 Orchestration and Supervision

SwordHealth used managed Kubernetes for implementing ORCHESTRATION MANAGER,
both in Azure and Google Cloud. Managed Kubernetes provides Kubernetes operated by
the cloud provides, which also ensures AUTOMATED SCALABILITY without intervention
from the team. Kubernetes also implemented AUTOMATED RECOVERY and JOB
SCHEDULER. The team actively used both, configured through Helm.

The team experimented with the concept of FAILURE INJECTION by manually killing
containers inside a cluster and verifying that they recovered automatically. Still, the

process was never automated, nor was there any plan to do so.

12Helm is a Kubernetes package manager. Find more at https://github.com/helm /helm.

https://github.com/helm/helm

CASE STUDY: SWORDHEALTH

Services were configured to scale automatically when their CPU usage was above a
given threshold. As described above, the infrastructure scaled automatically as well to
accommodate these new services. Despite the support for AUTOMATED SCALABILITY,
dynamic scaling was rarely observed given the reduced volume of users, easily handled by

the minimum hardware allocation.

10.7.4 Discovery and Communication

Asynchronous processing and requests between services were deferred using a MESSAGING

SYSTEM. All systems used a centralized Google PubSub service as a message queue.

Asynchronous tasks ranged from sending welcome emails to new users, to generating
user performance reports.
Within an application’s instance, services needed to also communicate with each

other synchronously. Kubernetes implemented SERVICE DISCOVERY with its internal

Domain Name System (DNS) server, providing a unique domain name for each service.

ORCHESTRATION MANAGER forwarded the traffic to the available instances using the

configured routing rules.

10.7.5 Monitoring

StackDriver was chosen to implement both EXTERNAL MONITOR and LOG AGGREGATION.

The team captured server metrics such as CPU, disk, or Random Access Memory (RAM)
usage and configured alerts over those to detect unexpected parameters. StackDriver
also queried the client-facing APIs in each geographic instance, generating notifications
whenever a service was misbehaving. StackDriver tagged logs and metrics by source so
that they can be mixed and matched for specific events that happened in specific services
in a given date range and deployment instance. The respondent considered StackDriver
limited regarding querying capabilities and considered migrating to an alternative in the
future, such as Prometheus'.

During development, each developer had the responsibility to decide the log verbosity
level to adopt towards implementing PREEMPTIVE LOGGING. This decision was often

promoted to a team-wide discussion.

176 INDUSTRIAL CASE STUDY

Company name SwordHealth
Company size 10 — 100
Active monthly users 100 - 1k

Product operation strategy Single system, limited users

Pattern name Adoption

INFRASTRUCTURE AS CODE
AUTOMATED SCALABILITY
CONTAINERIZATION
ORCHESTRATION MANAGER
AUTOMATED RECOVERY
JOB SCHEDULER

FAILURE INJECTION
PREEMPTIVE LOGGING
LOG AGGREGATION
EXTERNAL MONITOR
MESSAGING SYSTEM
SERVICE DISCOVERY
Adopted patterns count

—_
—_

Table 10.4: Overview of the pattern language adoption at SwordHealth. @ is used when the
company has implemented the pattern; O is used when the pattern or a variation
from it is partially implemented, or implemented with limitations; © when the
company is implementing the pattern and an empty space for when no effort has
been started to implement the pattern. The last row provides the count of the
patterns each company has fully implemented.

10.7.6 Summary

Table 10.4 (p. 176) summarizes the pattern adoption by SwordHealth at the time of
this interview. We have observed a great cloud maturity from SwordHealth, with all but
one patterns from our language implemented. The need to maintain multiple instances
geographically distributed, due to the privacy requirements from the health data the
company captures, motivated an increased company maturity.

FAILURE INJECTION was the only pattern not implemented from the pattern catalog.
The respondent told us that they would need an additional budget for investing in
redundancy to be comfortable exploring the implementation of this missing pattern while
mitigating the risk of impacting service continuity.

The respondent was pretty confident that their architecture would scale seamlessly
given the need, without any change or intervention from the team, other than adjusting

the size of their database instances.

13 Prometheus is a centralized monitoring solution. Read more at https://prometheus.io/.

https://prometheus.io/

CASE STUDY: VELOCIDI

10.8 Case Study: Velocidi

Velocidi'* helps direct to consumer brands to optimize their digital marketing budgets
with their Customer Data Platform (CDP). The typical client would interact with
hundreds of thousands of users monthly.

The interview with Velocidi took place on November 2", 2018, with lead engineer

Joao Azevedo.

10.8.1 Product overview

Velocidi provided three core functionalities:

Data collection. brought client data into the system by using any real-time data from
the interaction between the users and the brand. Data collection gathered data from
web browsing, mobile application, offline shopping, or any other viable data point
which could be used to enrich the user’s profile. Data collection also enabled offline

data imports, such as CRM data exports.

User segmentation. Facilitated the creation of user audiences. Audiences were lists of
anonymous user IDs that should see the same marketing campaigns. Audiences were
created using rules over any of the user data collected. An example of an audience
could be one that targets male users that live in London are in an age band of 20

to 65 and browsed car websites.

Data activation. The product itself did not enable the client to buy or run marketing
campaigns. For that purpose, the product sends user audiences to another marketing
platform responsible for running advertising campaigns. Audiences sent to other
marketing platforms as lists of anonymized user IDs such as email hashes or mobile

phone advertising IDs.

A vital characteristic of the product is that it is by design a first-party platform.

User audiences created with deterministic first-party data enabled the optimization of
marketing campaigns, which has been proven to increase marketing Return On Investment
(ROI) [Sim16]. As such, the company did not host the CDP for its clients or reuse data
across clients, but instead, it provides the software to its clients through a managed license,

with a dedicated deployment per client in his cloud account. Such guarantees that the

M Disclaimer: At the time of the interview, the author was employed by Velocidi. This research both
influenced and was influenced by the implementation of Velocidi’s product. Learn more about the
Velocidi CDP at https://www.velocidi.com/.

177

https://www.velocidi.com/

178

INDUSTRIAL CASE STUDY

ownership of data remains on the client-side, disregarding any need to have the data leave
his premises, at the added cost of operating one CDP instance per client.

With a team of seven engineers and clients using the software to manage data for
over 80 million user IDs in the most significant client, adopting best practices for cloud
development was essential.

Being a startup with limited resources, the only tangible way to achieve such complex
operation was through optimal architectural decisions and elaborated automation,

allowing a small team of fewer than ten engineers to sleep well at night.

10.8.2 Infrastructure Management

& SF/se

OUTPUT

EvRei?.I'-l'trggier Segmentation Prediction Activations

User Profile

Unification Recommendations

Product Feed Matching

Offline Data Import Spark Cluster

Data Querying
APIs

Offline Data

GUI Configuration Export

GUI Dashboard
and Reports

ERP/CRM
Data

Figure 10.3: A graphical representation of the services that composes Velocidi CDP. On the left
are the input services. In the middle, the data processing and storage services, and
the outputs are on the right. This figure refers to SF Private DMP, the original
product name before Shiftforward was acquired by the North American company
Velocidi in late 2018.

The CDP was composed of a multitude of services that collaborate to provide the
application as a whole. Figure 10.3 (p. 178) depicts its main services. Services on the
left side are the services responsible for receiving data into the system. In the middle are
services that provided persistent storage. On the right are the output services that make
information available to third parties, generate reports or product recommendations, and
much more.

Not all CDP instances required all these services, with each instance curated for
the client’s needs. The team deployed the CDP exclusively using AWS for the cloud
provider. It did so by using their proprietary deployment tool, Collie, which was their

implementation of INFRASTRUCTURE AS CODE. Collie relied on HashiCorp’s Terraform for

CASE STUDY: VELOCIDI

most of its automation. A configuration file per client defined the required infrastructure
and application pieces for him, which Collie deployed or updated.

While continuous integration was adopted to build all components automatically,
deployment was still manually triggered using Collie. The respondent considered this
a candidate for improvement in the future, mandatory for increasing the number of
clients managed. Once deployed, the CDP relied on AWS’s CloudWatch and Auto Scaling
Groups to dynamically scale the infrastructure up or down according to resource usage

and threshold policies.

10.8.3 Orchestration and Supervision

Docker provided CONTAINERIZATION, enabling isolated environments to be created once
and deployed for any client. During development, the latest version of each service was
packaged and uploaded to a private container repository, to which client cloud accounts
could pull the images. Containers facilitated orchestrating services programmatically in
different environments and clients with little to no added configuration. Environment
variables provided the specific configurations that changed per client to configure the
container. The team also creates client-specific configurations that are made available to
the container in run-time.

Velocidi adopted an ORCHESTRATION MANAGER around 2012 by using Mesos and
Marathon, moving away from Java ARchive (JAR) file deployments. Recently before
the interview, the team migrated to Kubernetes. This change was motivated by the
broader community and development speed of Kubernetes over Marathon. All new clients
were deployed with Kubernetes, but the team continued to support earlier systems using
Marathon, given the complexity of the migration.

Velocidi instantiated different types of machines and allocated services onto them
based on the machines’ specifications and the services’ requirements. As an example,
services that performed CPU intensive jobs were allocated to machines with better or
more CPUs.

The ORCHESTRATION MANAGER provided AUTOMATED RECOVERY strategies that

internally monitored and restarted services if needed. Restarting failing containers back

to a clean state was often able to get the system functional again, even if only temporarily.

As an example, the ORCHESTRATION MANAGER issued HTTP requests to the services,
observing their response. If the expected result was not received, the ORCHESTRATION
MANAGER restarted it.

AUTOMATED SCALABILITY was implemented using Amazon Web Services

179

180

INDUSTRIAL CASE STUDY

Auto-Scaling groups, which adjusted the number of allocated virtual machine instances
for the ORCHESTRATION MANAGER, taking into consideration CPU and RAM resource
usage. New instances joined the cluster automatically, becoming available for allocating
new services or service instances.

Chronos was used as a JOB SCHEDULER for Mesos for setting up scheduled tasks,
typically by providing a container image and its execution constraints and environmental
variables, like any other container. This way, Mesos could allocate the job in the cluster,
and once the job completed, the container stopped and the resources made again available

in the ORCHESTRATION MANAGER.

10.8.4 Discovery and Communication

Being a complex cloud application from the start, the CDP was initially designed to use
microservices. Doing so introduced the need for services to communicate with each other.
RabbitMQ was the adopted implemented MESSAGING SYSTEM to facilitate decoupling
services and their communication. Routing keys were used to route traffic. When services
connected to the MESSAGING SYSTEM, they described which keys they were interested in
consuming. The use of queues to distribute work facilitated scaling specific microservices.

Some services had only to communicate with each other, so direct communication was
preferred to using MESSAGING SYSTEM to increase performance and eliminate unnecessary
latency and resource usage with the RabbitM(Q indirection. SERVICE DISCOVERY provided
a strategy for services to find an establish direct communication, using a reverse proxy
with a known local service port used to forward traffic from one of the available instances
of the destination service. Marathon-1b was the adopted implementation, which natively
integrated with Mesos for service discovery and automatic port forwarding configuration.

An example of the two communication strategies described can be observed in the

communication between the following services:

Event tracker. a public-facing service, responsible for handling browser requests that

bring user events into the system:;

Event Augmenter. receives user events and enriches them with additional information,

such as geolocation data based on the user’s IP address;
Event storage. stores and provides access to other services to all user events;

User profile storage. stores and provides access to other services to user profiles,

namely, the user’s identifiers and attributes.

CASE STUDY: VELOCIDI

| Browser ||Event Tracker | | Message Queue | | Event Storage || Event Augmenter || User Profile Storage |

1 1
1 1
raw event
I_,—_I:_ -0k —-—--
raw event queue

raw event

raw event queue
raw event |__ augmentation

augmented queue

augmented event — user attributes update 9[: store user

— attributes

le——

augmented queue

- augmented event QI:I' store event

Figure 10.4: Sequence diagram representing the communication between services in the CDP,
using a MESSAGING SYSTEM or a SERVICE DISCOVERY.

Figure 10.4 (p. 181) demonstrates how the services described above cooperate. A
sequence diagram demonstrates the flow of data between them. The Fvent Tracker service
had an HTTP server that listened for browser requests, which, in this case, consisted of
browser events from the client. These events were sent to the MESSAGING SYSTEM. An
Fvent Augmenter service (not represented in Figure 10.3 (p. 178)) was listening in the raw
events queue from the MESSAGING SYSTEM, consuming all events, enriching them with
a new set of attributes according to its configuration. The Event Storage, represented
in the middle, was listening for augmented events from that queue and persisting them
permanently. These were then sent to the User Profile Storage, using its HT'TP API, which
was responsible for the permanent storage of user data. Given that the Fvent Augmenter
would only communicate with the User Profile Storage, their communication was direct,
facilitated by the adoption of SERVICE DISCOVERY with a different service port for each

service deployed.

10.8.5 Monitoring

Services forwarded their execution logs to an ElasticSearch database using LogStash!®,
implementing the LOG AGGREGATION pattern. Kibana, a visualization tool and part of
the Elastic Stack, provided a user interface for navigating the logs and the possibility of
creating data visualization dashboards. Such dashboards could be leveraged to identify

abnormal event patterns in the application. An example of visualization over the

15 ElasticSearch is an open-source full-text search database. LogStash is a server-side log processor that
transforms the logs and forwards them to persistent storage, in Velocidi’s case, ElasticSearch. Both are
part of the Elastic Stack, a set of open-source tools to enable the capabilities of ElasticSearch. Read
more about them at https://www.elastic.co/

181

https://www.elastic.co/

182

INDUSTRIAL CASE STUDY

100,000 | I
-
c
3
o ‘
0 m
2018-08-27 01:00 2018-08-28 01:00 2018-08-29 01:00 2018-08-30 01:00 2018-08-31 01:00 2018-09-01 01:00
@timestamp per 3 hours
Time sourceName avg metricName
» September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 114,294,784 jvm.memory
» September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 1,073,741,824 jvm.memory
» September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 83,886,080 jvm.memory
|z| September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 89 host.cpu
» September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 30,596,573 jvm.memory
» September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 10,354,688 jvm.memory
» September 1st 2018, 16:11:00.008 adstax-customer-1ifetime-value 32,899,072 jvm.memory QQ

Figure 10.5: Screenshot of a Kibana’s metrics visualization for seven days. The table allowed
expanding each event individually to its details. The visualization could be filtered
by date, source or event details.

aggregated data from a system is depicted in Figure 10.5 (p. 182). ElastAlert' was
used to identify issues in the captured metrics and raise alarms to the development team,
usually sent via email. The whole monitoring stack was deployed for each client, ensuring
proper data separation.

StatusCake'”, a service that monitors uptime and performance over HyperText
Transfer Protocol (HTTP) was used for implementing the EXTERNAL MONITOR pattern.
During the infrastructure orchestration and service deployment, StatusCake tests were
set up to verify that public endpoints were responsive continuously.

The respondent highlighted the importance of implementing EXTERNAL MONITOR. to
identify network misconfigurations, such as wrong firewall rules, that could prevent access
to the system from outside its network.

FAILURE INJECTION had not been implemented given the required level of investment
in both experimentation and infrastructure redundancy that could cope with the random

injection of failures, but it has been considered for the future.

16 ElastAlert is another application from the Elastic Stack, facilitating the creation of alarms out of the
captured data.
17StatusCake is a commercial monitoring tool. Learn more at https://statuscake.com.

https://statuscake.com

DISCUSSION

10.8.6 Summary

Company name Velocidi

Company size 10 — 100
Active monthly users > 1M
Product operation strategy One system per customer

Pattern name Adoption

INFRASTRUCTURE AS CODE
AUTOMATED SCALABILITY
CONTAINERIZATION
ORCHESTRATION MANAGER
AUTOMATED RECOVERY
JOB SCHEDULER

FAILURE INJECTION
PREEMPTIVE LOGGING
LOG AGGREGATION
EXTERNAL MONITOR
MESSAGING SYSTEM
SERVICE DISCOVERY
Adopted patterns count

00000000000

—_
—_

Table 10.5: Overview of the pattern language adoption by Velocidi. @ is used when the company
has implemented the pattern; O is used when the pattern or a variation from it is
partially implemented, or implemented with limitations; © when the company is
implementing the pattern and an empty space for when no effort has been started
to implement the pattern. The last row provides the count of the patterns each
company has fully implemented.

Table 10.5 (p. 183) summarizes the patterns that Velocidi has applied during the
development of their CDP. We could observe a level of maturity similar to the one
observed with SwordHealth with Velocidi, possibly also motivated by the need to deploy
one instance of their product per client, with the increased challenge of doing it in the
client’s cloud provider account. Velocidi implemented eleven out of the twelve in the
pattern language. Again, we found that FAILURE INJECTION was not implemented, given
the prohibitive infrastructure costs required for redundancy to implement the pattern.

To scale the number of clients, the respondent highlighted the need to enable
continuous deployment of their software for all client accounts, as manual deployments,

despite supported by INFRASTRUCTURE AS CODE, would become unsustainable.

183

INDUSTRIAL CASE STUDY

184

‘ureyyed e pojuewsduur eary Aqperired 10 ATy serwedurod

Aurtl MOY J9AO JUNOD B 9p1aoId uwnjod jsef o) o[iym ‘pojuoweiduur A[nJ sey Aueduwod yoeo suriojjed oyl Jo junod oY) sopraoid mor
gse] oY T, ‘uIojjed o) juowe[dwWI 01 PajIr]s U9s(SeY 1I0f0 OU Uoym I0J odoeds Ajduwre ue pue wrdjjed o) Surpuowo(dwil SULIOPISTOD ST
Auwedwod oy} woym (P :suorjejrwa] Yim pajuoterdur 10 ‘pojustrordurt Aperyred ST 41 WO} UOIJRLIRA ® 10 WIojjed o) woym pasn st O
‘wregyed o) payuswrerdut sey Aweduwrod o) Usym posn ST @ “soturduiod pomaralaul oy} Aq uorjdope agensue] wrvljed o) JO MOIAIOA() :9°0T O[qeL

€

—
i
—
i

00000
000

O

O

00000000000

®
owojsnd 1od SIOSN POYIWI] SI9STL POYIUI]
WOISAS OU() ‘WOISAS O[UIS ‘WIDISAS O[3UIS

000 000 T < 000T - 00T 000 T - 00T
00T - 0T 00T - 0T 00T - 0T

< AN AN HO F 0 A

d
L
SI9SN PoYIUI]
‘wo)sAs o[suIg
00T - T
00T - 0T

® OO

d

O
SIOSTL POJITUI]
‘we)SAS o[3uIg
000 OT - 000 T
0T -1

Junod swiejyed pojdopy
AHHAODSIA HDOIAYHS
INHLSAS DONIDVSSHIN
HOLINOIN TVNUHLXH
NOILVOHYDOV DOT

DONIDDOT HAILINAAYJ
NOILDHALNI HYNTIVA

HATNAAHDS dOr
AHHAODHY dALVINOLNY
HHOVNVIN NOLLVUH.LSHHOYO
NOILVZIdANIVLNOD
ALITIAVIVOS AALVINOLNV
HAOD SV HYNLONYLSVYUANI

A£8073e19s uoryerodo 1onpoiJ
SIoOSTL ATJUOUL SATIOY
oz1s Auedwo))

unop IPIDO[OA YieoHpioms eadseqjuy
sawreu Auedwo))

da4NnnNH

siepiQqe]

DISCUSSION

10.9 Discussion

This chapter described a case study over five companies whose main activity is developing
a cloud product, evaluating their cloud architecture and practices, and relating them with
the pattern language from Chapter 6 (p. 69). We aim to understand how the interviewed
companies apply the pattern language, what motivates them to do so, and, if possible,
capturing additional details for improving the language. Our findings are summarized in
Table 10.6 (p. 184).

LabOrders. The smallest of the five interviewed companies regarding the number

of users and team size. Their product served a small number of users and did
not have to scale dynamically. At the time, they were operating out of a single
server, which rarely needed to change and had basic operational requirements. They
adopted PREEMPTIVE LOGGING to help capture runtime issues with sufficient detail
for the team to address them. Still, this information was not readily available
to the team, so they considered LOG AGGREGATION essential at a larger scale.
To attain such a scale, they were considering moving towards microservices and
adopting INFRASTRUCTURE AS CODE to enable scaling and facilitate operations,
respectively. To overcome their timely and error-prone manual update process,
they considered implementing CONTAINERIZATION to package their application and
ORCHESTRATION MANAGER to run them at scale when needed.

HUUB. Huub was similar in operations strategy and user count as LabOrders. The

team was observing exponential growth, accelerated by the external investment they
had just received. An expanding engineering team enabled refactoring their initial
code, and, with it, they were starting to align with our pattern language. At the
time, they had already implemented INFRASTRUCTURE AS CODE for managing their
infrastructure, and MESSAGING SYSTEM, which enabled deferring computational
work outside business hours. Implementing AUTOMATED SCALABILITY was their
current priority, given the expected continued growth, followed by PREEMPTIVE

LOGGING for facilitated debugging of issues observed in production.

Infraspeak. Already at a later business stage than the previous two, at the time,

Infraspeak was expanding its market out of Europe to Africa and South America
at the time. While their software was still a monolith, a recent financial investment
enabled an increase in their team size, which bootstrapped the plans for decoupling
part of the logic into independent microservices. During this process, they

have implemented PREEMPTIVE LOGGING along with LOG AGGREGATION for

186

INDUSTRIAL CASE STUDY

facilitated observation of issues in production. They also monitored the system
using EXTERNAL MONITOR. The introduction of microservice was motivating the
adoption of MESSAGING SYSTEM to distribute asynchronous work, such as sending
email notifications. They were considering adopting AUTOMATED SCALABILITY and

INFRASTRUCTURE AS CODE for improved operations.

SwordHealth and Velocidi. These two companies presented a similar level of

architecture design maturity. Both companies operated multiple instances of
their product, deployed to different cloud regions or providers, mostly due
to privacy restrictions. Manage one product instance per client difficulted
operations, demanding automation across infrastructure management, discovery
and communication, and monitoring, leading both companies to adopt all but one
pattern from our language. In both cases, FAILURE INJECTION was not implemented,
justified by the prohibitive costs required to provide the redundancy required to cope
with random deletions of resources in the infrastructure to evaluate its automated

recovery.

The maturity from SwordHealth and Velocidi provided valuable input to improve
some of our patterns. SERVICE DISCOVERY changed the most, by extending the
initial version with adding DNS as a discovery strategy, along with the already

described local reverse proxy strategy.

10.10 Conclusions

From the interviews over the five companies, we reached the following conclusions:

Team maturity influences pattern adoption. In Section 10.1 (p. 150), we

hypothesize that there might be a correlation between the maturity of a
company and the number of patterns they adopt. This case study does show
that a company’s maturity influences pattern adoption, with companies with
more experience and more sophisticated products gravitating towards adopting an

increased number of patterns.

premature optimization. Infraspeak and LabOrders were not preemptively
optimizing their cloud approach. They considered that their current architecture
was able to address the volumes at which they were operating and felt no need

to optimize their cloud environment preemptively, despite recognizing the need

THREATS TO VALIDITY

to change their design and operations strategies to cope with a more extensive

operation scale.

Some patterns are likely more relevant than others. This small sample enabled
us to hypothesize on the relevance of each pattern for companies at different phases,
which could hint at an ideal implementation order. LOG AGGREGATION is the only

pattern addressed by all companies, which, in a cloud environment, is trivially

explained, as it is troublesome to access each allocated resource to evaluate its logs.

PREEMPTIVE LOGGING quickly follows, implemented by four companies, and under
evaluation by HUUB. The pattern is trivial to implement and can go a long way into
ensuring relevant information is available when an issue is observed in production,
capacitating the development team with the required knowledge to address the
issue. INFRASTRUCTURE AS CODE enables teams to prevent manual operation
errors and avoid time-consuming manual operations. EXTERNAL MONITOR provides
a holistic observation of the system, ensuring that the external user has the intended

experience.

failure injection is a likely outlier in the pattern language. FAILURE INJECTION
was not implemented by any company, showing that its relevance is likely not on
par with the other patterns from the language. The main reason for not addressing
this pattern was the lack of financial resources demanded to provide the required

redundancy to implement it.

10.11 Threats to Validity

The use of empirical methods for validation is not without shortcomings and can be
subject to multiple biases. This section identifies the most important ones and how we

address them in this work.

10.11.1 Internal Validity

Personal contacts. All but one respondents were personal contacts and shared an
engineering background with the interviewer. Such a relationship can lead to a
relaxed interview environment, which could lessen the respondent’s focus and result
in overlooking relevant details. Also, the shared educational background can lead to
similar strategies while designing software. We addressed this problem by designing

the interview as a SSI to ensure a steady pace and maintain the interviewee focused

187

188

INDUSTRIAL CASE STUDY

on the interview. We further address this threat with the complementing research
strategy described in Chapter 11 (p. 191), which surveys a broader audience, with
little to no personal contact. An ideal scenario would see the case study expanded

to additional interviews with a more randomized set of interviewees.

Interviewer and respondent bias. Interviewer experience influences the application

of SSI, along with the tacit domain knowledge from both the interviewer and
respondent. If either part uses terminology that the other is not familiar with,
there is a degradation of the communication, reducing the overall efficiency of the
interview [LA94]. All interviews were performed by the author, who had a deep
understanding of the domain, minimizing the risk of losing information from the

interview.

Interview Protocol. The use of SSI might lead the respondent to focus on the

questions asked, disregarding relevant information not directly asked, but might
be relevant for the research. In this regard, we have asked the respondents at the
beginning of the interview to diverge from the questions asked, encouraging them
to introduce relevant related details about their product, architecture, or practices

that might be anyhow related to the overall goal.

Information missed during the interview. The use of SSI with a single interviewer

might render the interviewer unable to cope with the volume of information
being shared. The audio from the interviews was recorded with the interviewees’
permission to prevent losing relevant information, allowing a complete revision of

the whole interview while analyzing it.

10.11.2 External Validity

Sample size and quality. Semi-structured interviews are very time-consuming. During

this research, we have interviewed five respondents, all operating from the same
city and with a similar engineering background, which provides limited statistical
significance and struggles to demonstrate the accuracy and completeness of the
pattern language per se within the whole industry. Statistically stronger results
require interviewing a larger sample, to which the necessary resources were not
available for this dissertation’s scope. We try to overcome the limited sample
observed with the research described in Chapter 11 (p. 191), which asked similar
questions to the ones in this case study in a survey responded by over a hundred

professionals.

SUMMARY

Geographic distribution. All interviewed companies are from the greater Porto
region, in Portugal. Local company and technological culture might influence all
these professionals, rendering a biased observation of the overall industry reality. We
address this limitation once more with the research described in Chapter 11 (p. 191),
which forwards the survey to professionals from geographic regions scattered around
the world.

10.12 Summary

We have described a case study of five companies developing their software for the cloud,
observing that all companies implement at least some patterns from the pattern language.
We could correlate the companies’ cloud maturity with the number of patterns they adopt.
We have observed that the two companies that needed to operate multiple instances
of their product have implemented all patterns from the language but one, FAILURE
INJECTION. We hypothesize this would be due to the unmanageable cost of redundancy,
for most companies, required to implement the pattern.

Despite the limited population used for this case study, the level of detail to which
we were able to discuss these use cases provided valuable insight into the reality of
these companies, enabling us to infer what struggles other companies might face as well.
This knowledge enabled the improvement of the pattern language with new forces and
implementation details, mostly for SERVICE DISCOVERY. We also verify that the industry
is aware of these patterns and that they are relevant for designing cloud software at any
stage, with new patterns implemented as the product matures.

Alternative validation strategies are still required, given the limited sample in this case
study. A more extensive survey would help us understand how widespread and essential
these patterns are. We address this in Chapter 11 (p. 191).

During this chapter, we address the following RQs:

RQ3. What driving forces influence how strategies are implemented?
While interviewing Velocidi, we have observed they their implementation of SERVICE
DISCOVERY was different from ours, which enabled us to improve the pattern

description with new forces and implementation details.

RQ4. Are companies that develop software for the cloud aware of these
problems and adopt the identified solution?
We observe that companies adopt the patterns from the pattern language to

design their cloud software. In the specific case of SwordHealth and Velocidi, they

189

190 INDUSTRIAL CASE STUDY

implement all but one pattern, verifying the relevance of these patterns for the

industry.

Chapter 11

Pattern Language Adoption Survey

11.1 Goals o o e 192
11.2 Methodology e 192
11.3 Data Analysis e 198
11.4 Discussion e e e e e e 212
11.5 Threats to Validity o 213
11.6 Conclusion e 215
11.7 Summary e 215

During this dissertation, we identify recurring design practices that facilitate the
development of cloud software. These practices were captured using patterns and
described in Chapters 6 to 9 (pp. 69, 77, 117 and 135). The conclusions from the case study
described in Chapter 10 (p. 149) further helped improve the pattern language, adding new
forces and implementation details to the patterns described in the previous chapters from
the experience of the interviewed companies. The previous chapter describes a case study
with five companies approaching cloud development and how they relate to the identified
patterns. From that limited population size, we observed that more mature companies
tend to adopt an increased number of patterns in the language. Would we still find
the same with a broader audience? Could there be a correlation between a company’s
characteristics and the number of patterns they implement? This chapter describes a
survey of over 100 professionals, whom we inquire about their company characteristics

and pattern adoption, and evaluate the existence of correlations between those.

192

PATTERN LANGUAGE ADOPTION SURVEY

11.1 Goals

The previous chapter presented insight regarding how companies build their software using
a Semi-structured interview (SSI) in a case study with the cooperation of five companies.
Due to time constraints, we were unable to conduct case studies with a broader audience.
Nevertheless, we want to understand how a wider audience is aware and implements our
pattern language.

We look forward to addressing RQ2 and RQ4 further, by asking respondents to identify
which strategies they apply, and RQ5, by classifying each response regarding three key
company characteristics which we attempt to then correlate with how often each pattern

is implemented.

11.2 Methodology

We used an online questionnaire to reach cloud professionals and gather quantitative
and qualitative data without requiring an interviewer. Online questionnaires facilitate the
dissemination of surveys without geographical barriers or temporal limitations [Pun+03].
We applied the guidelines from the Web Survey Methodology [CMV15], which provide
extensive details on how to create intuitive online questionnaires and minimize
nonresponse.

Given that the respondents were volunteers, we took into account that their availability
and willingness to spend significant time answering the questionnaire was limited. We
considered the number of questions and the time required to answer them, to reach a
balance that would allow acquiring as much knowledge as possible, while shortening the

time to respond. All questions were mandatory for submitting the form.

11.2.1 On Using Questionnaires

Contrary to interviews, questionnaires facilitate gathering data without the need for
an interviewer, requiring little time or money to reach the respondents [Owe02]. Web
questionnaires specifically facilitated the dissemination of the survey without geographical
and with less temporal limitations.

In this research, we followed guidelines from the Web Survey Methodology', which

L WebSM is a website maintained by the Faculty of Social Sciences from the University of Ljubljana,
aggregating bibliography and resources for creating and running surveys using the Web. Learn more
at http://www.websm.org/.

http://www.websm.org/

METHODOLOGY

provides extensive details on how to create intuitive online questionnaires and minimize
nonresponse.

Given that the respondents were volunteers, we took into account that their availability
and willingness to spend significant time answering the questionnaire was limited. In that
regard, we balanced the number of questions with the time required to answer them, to
reach a balance that would allow extracting as much knowledge as possible, while keeping
the time required to respond short. We did not accept partial responses, and all questions

were mandatory.

11.2.2 Target Audience

We targeted with this survey professionals building software for the cloud. The
questionnaire is trivial to reply to and includes only high-level questions, so we expect

most people familiar with the cloud architecture of their company to respond to them.

11.2.3 Variable identification

As we want to assess how widespread the patterns from the language are adopted in the
industry, we specifically asked if the respondent adopted each pattern and measured their
positive and negative answers. The pattern adoption is the dependent variable in this
study, and to characterize the respondents we used three independent variables: product

operation strateqy, active monthly users, and company size.

Product operation strategy pertains to how the software is deployed and operated.

These strategies are ordered by level of complexity, as operating additional customers and

independent systems will likely correlate with more complex and larger designs. They are:

o Single system, single customer (SSSC). A single deployment operated for a
well-known number of users. F.g., a corporate email server often has a well-known
scale of operation and does not have to be scaled dynamically, which makes this

strategy the simplest to operate.

o Single system, multiple customers (SSMC'). The application runs in a single instance
that has to adapt to a variable volume of customers, who can register themselves at
any time. Examples of such applications are Netflix or Facebook. The system needs

to scale dynamically to accommodate variations in traffic throughout the day.

o One system per customer (OSPC). A private deployment for each customer.

The scale at which each instance operates can itself be dynamic. The number

193

194

PATTERN LANGUAGE ADOPTION SURVEY

of independent systems needs to be scaled, and each one has to keep scaling
as well, typically through automation, i.e., without scaling an operations team
proportionally to the number of instances, which makes this the most complex

strategy to operate.

It is common to measure how large a cloud application is by evaluating its number of
active monthly users [AM17; Hub+13], which is the number of users that interacted
with the application at least once during a month. More users will result in increased traffic,
hence, demanding more complex operations supported by an appropriate infrastructure.
We could not identify a standard to measure active monthly users, so we decided to
use orders of magnitude with the intervals: (a) less than 100, (b) 100 — 1k, (c) 1k — 10k,
10k — 100k, (d) 100k — 1M, and (e) more than 1 million.

The third independent variable is company size. We analyzed how pattern adoption
varies considering the number of employees in the company, according to the European
Commission definition for company sizes [Eurl5], which classifies companies as micro,
small, medium, or large, according to their number of employees being 1 to 10, 11 to 50,

51 to 250, and over 250 employees, respectively.

11.2.4 Questionnaire

We organized the questionnaire into three categories. Company categorization (CC),
with three questions, categorized the respondent’s workplace. Pattern adoption (PA),
with twelve questions, described which patterns the respondent had implemented in his
workplace. Respondent classification (RC), with six questions, classified the respondent
in terms of geography, company size, and role in the company.

If not otherwise specified, the questions had the following possible response options:
(1) Yes, for the entire system; (2) Yes, partially; (3) Under assessment or development;
(4) No, but we would like to; (5) No, it is not relevant; (6) I don’t know I don’t want to
answer.

We describe the questions below, along with their rationale. The original questionnaire

and its responses are available in Appendix B (p. 239).

Company Categorization

CC1. Product Operation Strategy Consider how you deploy your software,
regarding the users that it is intended for.

Options: (1) OSPC — Private deployment for each customer, private to his users;

METHODOLOGY

(2) SSMC — shared platform for any customer, e.g. Netflix, Facebook; (3) SSSC —
only one deployment for a specific group of users.
Rationale: This question evaluates the complexity of the respondent’s operations.

We categorized product deployment strategy into three options:

Single System for Single Customer (SSSC). The team handles a single
deployment and operates it for a well-known number of users. An example of
such a strategy would be a corporate email server, where it is well known when
new users are added to the system. Knowing the scale at which an application
operates and not having to scale it dynamically makes this strategy the simplest

to operate.

Single System Multiple Customers (SSMC). The application runs in a single
instance that has to adapt to a variable volume of customers, who can register
themselves at any time. Examples of such applications are Netflix or Facebook.
The system needs to scale dynamically to accommodate variations in traffic

throughout the day.

One System Per Customer (OSPC). A private deployment for each customer,
to be used exclusively by his users. The scale at which each instance operates
can itself be dynamic. Velocidi and Swordhealth adopt these strategies, viz
Section 10.8 (p. 177) and Section 10.7 (p. 172). The team needs to scale the
number of independent systems they manage, as well as keeping each one of
those systems scaling as well, typically through automation, that is, without
scaling an operations team proportionally to the number of instances, which

makes this the most complex strategy to operate.

CC2. Active Monthly Users Consider the average number of users for your platform,
across all system instances.
Options: (1) < 100; (2) 100 - 1 000; (3) 1 000 - 10 000; (4) 10 000 - 100 000; (5) 100
000 - 1 000 000; (6) > 1 000 000.
Rationale: The infrastructure sizing will typically be proportional to the number
of active monthly users, with this number being a common indicator of scale with

startup companies.

CC3. Adopted Cloud Providers Which of the following cloud providers are you
using?
Options: (1) Amazon Web Services; (2) Google Cloud; (3) Microsoft Azure;
(4) Private Infrastructure; (5) Hybrid / Multi-cloud; (6) Virtual Private Server.

196 PATTERN LANGUAGE ADOPTION SURVEY

Rationale: While indicators for cloud providers adoption are already available in
Chapter 3 (p. 25), this question enabled us to verify how the respondents were

distributed in terms of provider adoption.

Pattern adoption

P1.

P2.

P3.

P4.

P5.

Pé6.

P7.

Have you adopted infrastructure as code? You automate your infrastructure

and deployment operations programmatically. Example: Terraform, chef, ansible.

Have you adopted automated scalability? Your system scales dynamically to
adjust to elastic traffic. Example: Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) Auto Scaling.

Have you adopted containerization? Deploying a service to a host couples it
with the operative system, possibly introducing side effects with other services in the
same host, or the host itself. Containerization proposes the usage of containers to
package the service and its dependencies and enable its isolated and programmatic

deployment. Example: Docker.

Have you adopted an orchestration manager? Deploying and updating
software at scale is an error-prone, slow and costly process. Such can be facilitated by
adopting an Orchestration Manager to coordinate, manage and distribute multiple
cloud services while abstracting the underlying infrastructure, fulfilling the service

requirements. Example: Kubernetes, Mesos + Marathon.

Have you adopted automated recovery? Services may fail during execution
and need to be recovered in a timely and orderly fashion. Including health checks and
recovery configurations in the instructions used for the Orchestration Manager to
orchestrate containers, enables it to monitor and recover failing containers. Example:

Kubernetes Pod Lifecycle.

Have you adopted a job scheduler? Cloud applications require frequent
short-running jobs to be scheduled, which must be orchestrated across a dynamic
infrastructure without permanently allocating resources. A scheduler service running
along with the Orchestration Manager can instruct it to allocate one time or periodic
jobs, recovering their resources to the infrastructure when they complete. Example:

Kubernetes Cronjobs.

Have you adopted service discovery? Services might lack the network

information required to communicate with other dynamically allocated services.

Ps.

P9.

METHODOLOGY

Communication can be achieved by abstracting service network details by relying on
an external mechanism that facilitates communication and balances traffic between

two services. Example: Kubernetes DNS, Marathon reverse proxy.

Have you adopted a messaging system? As service instances increase,
communication between services needs to be abstracted, enabling proper balancing
between instances. This communication strategy is required to be fault-tolerant and
scalable to maintain the application’s resiliency. As a solution, a messaging system,
colloquially known as message queue, can abstract service placement and orchestrate
messages with multiple routing strategies between them. Example: RabbitMQ,
Kafka.

Have you adopted failure injection? Resilience mechanisms are triggered when
software is failing. Since systems are designed to work correctly, the status quo
prevents us to from continuously verifying the correctness of those mechanisms. We
need additional strategies to minimize the probability of failure in production due to
faulty resilience strategies. Failure injection software can generate atypical events
at both the application and infrastructure level, exercising the available recovery
mechanisms, verifying the application’s resilience. Example: ChaosMonkey from
Netflix.

P10. Have you adopted preemptive logging? The information required to debug

issues in software is often lost during their first occurrence due to insufficient log
verbosity. By adjusting logging verbosity preemptively in services and servers within
acceptable resource limits (Central Processing Unit (CPU), storage, others), the
team maximizes the probability of capturing relevant information for addressing

future issues right from their first occurrence.

P11. Have you adopted log aggregation? Services orchestrated at scale produce

disperse logs, resulting in a troublesome process to acquire and correlate those who
come from multiple sources. This pattern suggests the Aggregation and indexing all
service and server logs in a central repository, providing the team with a centralized

system to query and visualize execution logs. Example: Kibana, GrayLog.

P12. Have you adopted external monitor? Monitoring an application from inside

the infrastructure that hosts it will result in an incomplete and biased version of
the reality, for example, given the inability to observe issues such as lack of Internet

connectivity or abnormal latency to the application. External Monitoring suggest

197

198

PATTERN LANGUAGE ADOPTION SURVEY

testing the application’s public interfaces from an external source, providing an

unbiased awareness of the application’s status. Example: StatusCake, Pingdom.

Respondent Characterization

RC1. Your role in the product development
Options: (1) CTO; (2) CEO; (3) CIO; (4) Senior Engineer; (5) Engineer;
(6) Architect; (7) Team leader; (8) Other.
Rationale: This response enabled the classification the respondent’s involvement

in the product development.

RC2. Number of collaborators in the company
Options: (1) 1 - 10; (2) 11 - 50; (3) 51 - 250; (4) > 250.
Rationale: The size of the company enabled us to infer the availability of
human resources, while possibility a co-relation between company size and pattern
adoption. The company sizes are adopted from the European Commission’s company

thresholds for micro, small, medium, and large companies [Eurl5].

RC3-6. Company Name, Country, and Comments Rationale: This information

further enabled classifying the respondent.

11.2.5 Design and Execution

The questionnaire was organized into two sections. The first part characterized the
respondents and their product, asking about their active monthly users, company size,
and operation strategy. Next, we asked if the respondent adopted each one of the patterns
described in Chapter 6 (p. 69). The questionnaire was built with Google Forms. It was
first piloted with fellow researchers and two cloud professionals, to optimize its clarity
and ensure the relevance of the gathered data. Once improved, it was disseminated via
email to software engineers, social networks, online forums, and local communities of
cloud professionals. The recipients were asked to answer the questionnaire and forward it
to their peers. The form was online from 2018/12/18 to 2019/1/29, during which time we
got 102 responses. The collected data is publicly available online [SFC20)].

11.3 Data Analysis

We start by characterizing the respondents and their companies (Section 11.3.1 (p. 199)).

Next, we assess the relevance of each pattern by how often it is implemented by

DATA ANALYSIS

professionals and by the intent to adopt it in the future (Sections 11.3.2 and 11.3.3
(pp. 199 and 202)), and infer relationships between them (Section 11.3.4 (p. 203)). We
then analyze how pattern adoption varies according to the three independent variables
that characterize the company and discuss the statistical significance of our findings using
a Student’s t-test and Analysis of Variance (ANOVA) (Sections 11.3.5 to 11.3.7 (pp. 205,
207 and 210)).

11.3.1 Respondents Characterization

Most respondents had a technical role in the company (82%), with a very balanced
distribution regarding company size. Geographically, most of the answers we received
were from Europe (70%), although a significant chunk of respondents refused to disclose
their geographical location (perhaps due to privacy concerns, or because they regarded the
company as international). We seem to have collected a reasonably balanced distribution
of the number of active monthly users, although the order of magnitude more than
one million users was (understandably) slightly under-represented. Figure 11.1 (p. 199)

summarizes the respondents’ characterization.

ArChltECt Role in the Company
CTO 13% Senior Engineer 30% Engineer 32%
ia Other Team Leader

Company Location

Undisclosed 18% Europe 70%

Amerlcas Company Size

1—-10 28% 11 —-50 28% 51 — 250 17% Bigger than 250 27%

Active Monthly Users

<100 17% 100 — 1K 17% 1K - 10K 21% 10K — 100K 16% 100K — 1M 21% 1M+ 8%

Operation Strategy

SSSC 10% SSMC 70% OSPC 20%

Figure 11.1: Demographic distribution of the survey.

11.3.2 Overall Pattern Adoption

Table 11.1 (p. 200) shows how frequently respondents have implemented each pattern.

Figure 11.2 (p. 201) shows the adoption rate in terms of the number of patterns.

From this data, we make the following observations:

199

PATTERN LANGUAGE ADOPTION SURVEY

Pattern name

Adoption per pattern (%)

LOG AGGREGATION
MESSAGING SYSTEM
INFRASTRUCTURE AS CODE
CONTAINERIZATION
AUTOMATED SCALABILITY
JOB SCHEDULER
EXTERNAL MONITOR
ORCHESTRATION MANAGER
AUTOMATED RECOVERY
SERVICE DISCOVERY
PREEMPTIVE LOGGING
FAILURE INJECTION

72
71 —
69 I
67 I
65> I
59 I——

57 I

49 I

A8 I

AT I

44 I

17

Mean pattern adoption 55.88 +15.82

Table 11.1: Percentage of respondents adopting each pattern, sorted by most adopted. The bar
on the right graphically represents the proportional adoption of each pattern.

o The mean pattern adoption is 56%, which translates to a reasonable coverage

of the pattern language, asserting its relevance amongst practitioners;

e 97% of the respondents adopt at least one pattern, with three respondents
claiming to not implement any: (1) one uses SSMC and manages 10k — 100k monthly
users in a company with less than ten employees, (2) another operates a SSSC and
manages < 100 monthly users in a company with over 250 employees, and (3) the
last one consists of a SSMC for < 700 monthly users in a company with over 250
employees. Although we believe these to be possible outliers, we do not discard

them from our analysis;

50%,
specifically LOG AGGREGATION, MESSAGING SYSTEM, INFRASTRUCTURE AS CODE,

e« 7 out of 12 patterns have an adoption rate of over
CONTAINERIZATION, AUTOMATED SCALABILITY, JOB SCHEDULER and EXTERNAL

MONITOR;

» log aggregation is the most adopted pattern. Just like in any other software
engineering domain, software is prone to failure. As the scale increases, so does
the complexity needed to understand how systems behave. Debugging can range
from being troublesome to nearly impossible without a platform that aggregates
data from all components producing relevant execution metrics, justifying LOG

AGGREGATION as the most adopted pattern from the language;

DATA ANALYSIS 201

=97 95

88
84

76

62
54

44

30
23

12

Adopted at least x patterns (%)

1 2 3 4 5 6 7 8 9 10 11 12

Figure 11.2: Adoption rate (in percentage) of the number of patterns. 97% adopted at least
one pattern, 62% half of the patterns, and 5% all the patterns in the language.

» messaging system is adopted by 71% of the respondents for asynchronous
work distribution, confirming its popularity to orchestrate messages between
services, facilitating their cooperation via message passing and offloading complexity

to a known middleware;

o infrastructure as code closes the top three most adopted pattern list
with 69%. Manual interaction in operations increase their error-proneness, which
justifies the increased adoption of this pattern to facilitate an infrastructure that

nowadays tends to be large, heterogeneous, and elastic;

o failure injection is the least adopted pattern, with just 17% of the respondents
using it, which deviates from the mean adoption by over two standard deviations
(three if we calculate the mean without considering it). We conjecture that the
lower adoption of FAILURE INJECTION could be due to its inherent complexity, the
substantial investment required in hardware redundancy and supervision for its
implementation, and the fact that the decision to deliberately increase the failure
of a running system (even if in the long-run it would decrease it) is a hard-selling

point.

202

PATTERN LANGUAGE ADOPTION SURVEY

11.3.3 Intent to Adopt

In a yes/no questionnaire, a negative response can be due to a multitude of reasons. We
have added an additional question for those that answered no to each pattern adoption,
attempting to distinguish between (a) those that eventually want or intend to use it in
the future (e.g. the adoption is under study or under development), from (b) those that
thought the pattern did not apply or was regarded as irrelevant to their system. Table 11.2

(p. 202) summarizes the data we collected, from which we make the following observations:

Pattern name Intention (%) Irrelevance (%)
LOG AGGREGATION 57.14 42.86
MESSAGING SYSTEM 44 .83 55.17
INFRASTRUCTURE AS CODE 58.06 41.94
CONTAINERIZATION 66.67 33.33
AUTOMATED SCALABILITY 62.86 37.14
JOB SCHEDULER 51.22 48.78
EXTERNAL MONITOR 44.19 55.81
ORCHESTRATION MANAGER 71.15 28.85
AUTOMATED RECOVERY 71.70 28.30
SERVICE DISCOVERY 42.59 57.41
PREEMPTIVE LOGGING 56.14 43.86
FAILURE INJECTION 64.29 35.71

Table 11.2: Respondents that, while not adopting a pattern, wanted or intended to do it in
the near future. The second column is the converse probability of the first, which
translated in the questionnaire to the option of the respondent considering it
irrelevant or not wanting to use it.

« Though failure injection is the least (17%) adopted pattern, 64% intend

to use it in the future, making it the fourth most considered pattern for adoption;

e On the other hand, service discovery not only ranks very low in the
overall adoption (47%) but also only 43% consider it relevant or applicable
to their system. With cloud computing providing the infrastructure to deploy
services dynamically [BCS15], we are surprised by this finding;

« automated recovery (72%) and orchestration manager (71%) rank very
high on the respondent’s adoption intent. As cloud systems evolve, managing
the infrastructure and services that compose them manually becomes unmanageable.
ORCHESTRATION MANAGER facilitates this task, with tools providing embedded

AUTOMATED RECOVERY, greatly easying the orchestration effort of the application.

DATA ANALYSIS 203

11.3.4 Pattern Relationships

v 5 9
> T E ¥

& g - g
g S = B g g % = g s:? Q
Q = o0 O o < [} +
e = 2 9 — o = o Q o > a
Cﬁ o = Q = b3 ; ® o) Q n
S E H £ 2oL B R OEOE ow

o o A= - o = Q Q < =
S 3 5 2 £ 8 f E g8 £ T O3
= £ % £ % E g % E % 8 &
< § © g ® g =% & o <o T 2
S % » £ 2 5 3% € % % &5 ¢
P(columnl|line) S g 2 a & &3 & 5 & o & H
CONTAINERIZATION .64 81 45 .64 .52 .20 .78 .74 .59 .59 .74
EXTERNAL MONITOR 75 .80 .41 .66 B8 .20 .78 .73 b9 b4 .75
LOG AGGREGATION .76 .64 Db .68 BT 23 .81 .72 62 .57 .80
PREEMPTIVE LOGGING .69 .53 91 71 .64 31 .71 .69 .56 B8 .82
JOB SCHEDULER 12 .64 .82 .52 61 .26 .74 .74 .59 .56 .85
AUTOMATED RECOVERY 73 .69 .86 b9 .76 31 .82 .80 .67 b9 .84
FAILURE INJECTION 78 .67 .94 78 .89 .83 94 78 72 78 .94
INFRASTRUCTURE AS CODE .76 .65 .85 .45 .63 .56 .24 .76 .63 B8 .82
AUTOMATED SCALABILITY .76 .64 .79 .46 .67 .58 .21 .81 63 .Bb8 .75
ORCHESTRATION MANAGER .82 .70 .92 .50 .72 .66 .26 .90 .84 66 .78
SERVICE DISCOVERY .85 .67 88 b4 71 .60 .29 85 .81 .69 .92

MESSAGING SYSTEM 70 .60 .81 b1 .71 .56 .23 .79 .68 .53 .60

Table 11.3: The conditional probability table, showing the likelihood of adopting the pattern
in the column, considering that the pattern in the line is known to have
been adopted. For example, line 2, column 1 represents the probability of
CONTAINERIZATION having been adopted, considering that EXTERNAL MONITOR
was, or P(CONTAINERIZATION | EXTERNAL MONITOR). We highlight the values with
probability equal or above 0.8.

Table 11.3 (p. 203) shows the conditional probability? between every two patterns in
the language, that is, the likelihood of one pattern to be adopted, given that the other is
adopted, P(X|Y). This information hints us on pattern dependencies and patterns that
are often implemented together. Considering that a probability of 80% or more means
that it is very likely for the pattern X to be implemented given that Y is, and that a
probability of 60 to 80% means that it is likely, we observe that:

« log aggregation and messaging system are very likely to be implemented
with other patterns, with 79% and 74% probability, respectively. This is not

surprising per se, given that these two patterns are the most adopted overall;

2 We are specifically looking beyond joint probability, to assess potential asymmetries in pattern adoption,
that is, situations where P(X|Y) differs significantly from P(Y|X).

204

PATTERN LANGUAGE ADOPTION SURVEY

e Those using orchestration manager are very likely also to be using

containerization (82%), but the opposite is not true (59%). When
using CONTAINERIZATION, one has multiple strategies to deploy and operate the
containers, not necessarily requiring an ORCHESTRATION MANAGER. On the other
hand, most ORCHESTRATION MANAGER’s incentivize the use of containers to run
the software, hence, the increased likelihood of adopting CONTAINERIZATION with

ORCHESTRATION MANAGER;

Those implementing failure injection are likely to also implement other
patterns in their systems (p > 67%). We believe that either (a) FAILURE
INJECTION requires a sophisticated system in place, or (b) that developers give
it a very low priority. We should note that this conditional probability is highly

asymmetric, as discussed in the next point;

No other pattern seems to increase the likelihood of adopting failure
injection significantly. FAILURE INJECTION evidences the lowest likelihood of
being adopted given any other patterns; we interpret this finding as a kind
of isolation/independence in the engineering decision of pursuing this pattern

concerning the rest of the language.

We are now able to draft a new pattern map (Figure 11.3 (p. 205)) that highlights the
relationships uncovered in Table 11.3 (p. 203), compare it to the original in Figure 6.1

(p. 72), and observe that:

The indegrees of log aggregation (10), infrastructure as code (6) and
messaging system (7) are very high when compared to the average (2.6).
This might be due to their being the top used patterns (> 69%); however,
CONTAINERIZATION, which follows immediately on the rank (67%), exhibits a much

lower indegree (2).

Only 50% of the original connections (8 out of 16) match those there were

inferred;

log aggregation and messaging system present a bidirectional
relationship, which might be interpreted as being most likely used in tandem.
The same can be observed with log aggregation and infrastructure as

code;

external monitor exhibits the lowest degree with just one outbound edge.

DATA ANALYSIS

Automated =
Scalability
Orchestration Service /
Manager > Discovery \N
AN v
: Automated Messaging
: \ Recovery System
Y Log “ A A
Containerization —> . <__/ '
Aggregation _ | / / :
LA " " Failure .
e Injection
: }
External Preemptive Job o '
Monitoring Logging Scheduler .-°

Figure 11.3: Pattern map inferred from the conditional probabilities in Table 11.3 (p. 203),
where if P(BJA) > 0.8, then A — B. Green dashed arrows match those originally
identified. Red solid arrows depict uncovered relationships.

11.3.5 Product Operation Strategy

We expected to observe a correlation between the complexity of the operation strategy
and the mean number of patterns adopted. We measure this by averaging the number of
patterns that each respondent implemented per operation strategy. We were able to draw

the following conclusions:

o« There is no statistical evidence of a relationship between product
operation strategy and pattern adoption. There is an increase in average
pattern adoption with the product operation strategy complexity, with means of 5.9,
6.7, and 7.2, as detailed in Table 11.4 (p. 206). We hypothesized that there might be
a statistically-significant variation between these populations, either pair-wise, one
versus all others, or in their total variance. Table 11.5 (p. 207) presents the t-test
and ANOVA statistical analysis for these tests, from which we can conclude that

there is no statistical significance (p < 0.05) in the variations observed;

« With OSPC, containerization (85%) and log aggregation (80%) are the

205

206 PATTERN LANGUAGE ADOPTION SURVEY

Product operation strategy

SSSC SSMC OSPC

Respondent count 10 72 20
Mean pattern adoption 5943 6.7+3.1 72+33
Pattern name Adoption per pattern (%)
LOG AGGREGATION 60.0v 72.2 80.0 A
MESSAGING SYSTEM 60.0 v 73.6 A 70.0
INFRASTRUCTURE AS CODE 60.0 ¥ 69.4 75.0 A
CONTAINERIZATION 60.0 v 63.9 85.0 A
AUTOMATED SCALABILITY 60.0V 68.1 A 60.0 v
JOB SCHEDULER 500w 59.7 65.0 A
EXTERNAL MONITOR 50.0v 59.7 A 55.0
ORCHESTRATION MANAGER 30.0v¥ 47.2 65.0 A
AUTOMATED RECOVERY 50.0 458 v 55.0 A
SERVICE DISCOVERY 400v 43.1 65.0 A
PREEMPTIVE LOGGING 50.0 A 44 4 400w
FAILURE INJECTION 20.0 A 194 100 v

Table 11.4: The first lines of the table show the average number of patterns adopted for each
operating strategy, the observed standard deviation and the respective number of
respondents with each strategy. On the following lines, we present the percentage of
respondents who have adopted each pattern, aggregated by their operating strategy.
The A and Vv icons identify which groups are the highest and lowest adopters.

highest adopted patterns, with CONTAINERIZATION being the overall most
adopted pattern with a 25% adoption increase from SSSC. We can theorize that
containers are essential for automating service deployment and more relevant with
more complex operation strategies. LOG AGGREGATION showed 80% adoption with
OSPC, as it streamlines the evaluation of the state of any service, despite the
customer where it executes. Deploying several systems presents increased complexity
when compared to single deployments, at least due to the number of deployments
the team needs to operate, which increases the probability of failure proportional

to the number of systems maintained;

o failure injection is less adopted with OSPC (10%) and most adopted
with SSSC (20%). Applying this pattern is by itself challenging, as it requires
very sophisticated automation in place, as well as an increased level of redundancy
to prevent unexpected failures or downtime. While this is hard to do for a single
system, it is even more complex for OSPC, given that failures could be introduced
in more than one system simultaneously, leaving the team overwhelmed. Also, the

required investment in redundancy can be prohibitively expensive, as each client will

DATA ANALYSIS

Product operation strategy

SSSC SSMC OSPC vs. Others ANOVA

SSSC — 0.46 0.28 0.39
SSMC — — 0.46 0.84 0.53
OSPC — — — 0.38

Table 11.5: Evaluation of the significant difference between the three populations. A t-test
is applied between every two populations. The vs. Others column compares the
population against the combination of all other strategies. For all tests, the
probability value is shown.

require his system to be scaled beyond its base requirements to recover seamlessly

from failures;

o orchestration manager is adopted ~2x more often in OSPC than in SSSC.

Applications built specifically for a customer are likely to be delivered in their
hardware and changed less often. When working for a variable number of users,
with SSMC or OSPC, the need to scale the system is latent. An ORCHESTRATION
MANAGER abstracts the underlying infrastructure and the effort to start/stop new

service instances;

e 71% of the respondents are using SSMC. Business to consumer web
applications adopts a SSMC operation strategy, allowing the user to register and
use a service on demand. We observed that most of the respondents adopted this

operation strategy, highlighting its prominence in cloud computing.

11.3.6 Active Monthly Users

We theorize that, as the number of active monthly users increase, so will the number of
patterns adopted to cope with the operation of the required infrastructure. The average
pattern adoption for each interval is presented in Table 11.6 (p. 208). We could draw the

following conclusions:

e The number of active monthly users grows in tandem with the average
pattern adoption, starting at 4.8 with < 7100 monthly users and reaching
nine at > 1M monthly users. The 10k - 100k bucket was the only exception,
arguably due to a non-representative sample. Considering the 4.1 standard deviation

observed, we exclude this bucket from the following discussion as an outlier. We

hypothesized that there might be a statistically-significant variation over these averages.

We evaluated the differences between each group pair-wise, each group compared to all

207

208 PATTERN LANGUAGE ADOPTION SURVEY

Active monthly users

2 =
-~ = o —
o L S L |
R -
Vv S = S = A
Respondent count 18 18 21 16 21 8
Mean pattern adoption 4.8 6.4 7.4 5.8 7.7 9.0
+31 +£26 £25 +£41 +£22 £32
Pattern name Adoption per pattern (%)
LOG AGGREGATION 389v 778 90.5 A 56.2 85.7 87.5
MESSAGING SYSTEM 55.6 ¥ 66.7 61.9 75.0 90.5 A 87.5
INFRASTRUCTURE AS CODE 66.7 72.2 61.9 50.0 v 85.7 87.5 A
CONTAINERIZATION 66.7 66.7 76.2A H00v 714 75.0
AUTOMATED SCALABILITY 55.6 ¥ 66.7 76.2 62.5 57.1 87.5 A
JOB SCHEDULER 444 v 50.0 71.4 50.0 71.4 75.0 A
EXTERNAL MONITOR 218 V¥ 889aA 714 37.5 57.1 62.5
ORCHESTRATION MANAGER 27.8 Vv 44.4 61.9 43.8 47.6 87.5 A
AUTOMATED RECOVERY 222v 333 52.4 50.0 66.7 75.0 A
SERVICE DISCOVERY 44 .4 33.3v 5H7.1 50.0 42.9 62.5 A
PREEMPTIVE LOGGING 222v 333 47.6 43.8 57.1 75.0 A
FAILURE INJECTION 11.1 11.1 14.3 06.2v 33.3 37.5 A

Table 11.6: The first lines of the table show the average number of patterns adopted for each
interval of monthly active users, the observed standard deviation and the respective
number of respondents with each user interval. The next lines show the percentage of
respondents who have adopted each pattern, aggregated by the number of monthly
users. We use “k” to represent thousands and “M” for millions. The A and ¥ icons
identify the population which adopts each pattern the most and least, respectively.

others, and all groups using a t-test and ANOVA. We observed that the variation of
the average pattern adoption is meaningful (p < 0.05) between the < 100 group and
the 1k — 10k, 100k — 1M, and > IM groups. The > 1M group also shows a significative
difference to the 100 - 1k group. When compared to others, < 100 and > 1M groups
show significative variation. Such is also observed when the variance of all groups is
tested with the ANOVA. This leads us to conclude that the number of active monthly

users is a relevant driver of pattern adoption;

« Companies operating over 1M monthly active users adopt the most
patterns. Other than FAILURE INJECTION, all patterns had a minimum adoption
rate of 62.5%. At this scale, it becomes very troublesome to operate cloud software

manually, which motivates the 87.5% adoption of ORCHESTRATION MANAGER,

DATA ANALYSIS

Active monthly users

= =
=~ = o —
S | | v =
8 o« & &8 7
vV — — — — N vs. Others ANOVA
< 100 — 0.10 0.01 046 <0.01 <0.01 < 0.01
100 — 1k — — 023 055 0.12 0.04 0.70
1k — 10k —_ — — 0.13 0.74 0.17 0.23 < 001
10k - 100k — — — — 0.08 0.06 0.18 :
100k - 1M — — — — — 0.21 0.11
> 1M — — — — — — 0.03

Table 11.7: Evaluation of the significant difference between the active users’ populations. A
t-test is applied between every two populations. The vs. Others column compares
the population against the combination of all other strategies. For all tests, the
probability value is shown.

AUTOMATED SCALABILITY, INFRASTRUCTURE AS CODE, MESSAGING SYSTEM, and
LOG AGGREGATION;

Companies operating less than 100 monthly users show high adoption of
infrastructure as code and containerization. Small companies tend to have
an increased pressure to optimize their operations, due to limited human resources.
Alongside with it, these are typically companies that are starting and so design their

system to be cloud-native;

There is a smaller representativity of companies with over 1M active users.

Managing over 1M active monthly presents a scaling challenge. We theorize that this
group presents a smaller number of respondents as it is the hardest to achieve, requiring

sustained success in retention and user acquisition;

The 10k — 100k population might not be representative, with an average of
5.8 patterns adopted, the group is second to last in average pattern adoption, being
surpassed only by the < 100 group. The standard deviation of 4.1, with only 16
responses, suggests an unbalanced group, possibly biased by some respondents. We
can confirm this hypothesis by looking into the individual responses from this group.
We can see that one respondent responded with 0 patterns, another with one pattern

and four with two patterns implemented, effectively biasing the group;

failure injection has the highest adoption with companies with > 1M active

users. We have discussed how few companies have the necessary resources to implement

209

210

PATTERN LANGUAGE ADOPTION SURVEY

FAILURE INJECTION. It then makes sense that the companies operating the higher
number of users will likely have the highest operation budget and be more capable of
implementing the pattern, which justifies why the population managing over 1M active

users claim to implement the pattern 37.5% of the times.

11.3.7 Company Size

Company size

Micro Small Medium Large

Respondent count 27 28 17 30
Mean pattern adoption 6.3+3 64+32 66+£25 74434
Pattern Name Adoption per pattern (%)
LOG AGGREGATION 63.0v 67.9 76.5 83.3 A
MESSAGING SYSTEM 63.0v 67.9 76.5 80.0 A
INFRASTRUCTURE AS CODE 74.1 A 67.9 58.8 ¥ 73.3
CONTAINERIZATION 519 v 78.6 A 64.7 73.3
AUTOMATED SCALABILITY 77.8 A 60.7 529 v 66.7
JOB SCHEDULER 55.6 53.6 V¥ 76.5 A 60.0
EXTERNAL MONITOR 63.0 64.3 A 471w 53.3
ORCHESTRATION MANAGER 44.4 429 v 52.9 56.7 A
AUTOMATED RECOVERY 37.0v 46.4 52.9 56.7 A
SERVICE DISCOVERY 44 .4 35.7v 47.1 60.0 A
PREEMPTIVE LOGGING 37.0v 46.4 471 A 46.7
FAILURE INJECTION 14.8 10.7 v 11.8 30.0 A

Table 11.8: The first three lines of the table show the average number of patterns adopted for
each company size, the observed standard deviation and the respective number of
respondents. Percentage of respondents who have adopted each pattern, aggregated
by the company size, according to the European Commission definition [Eurl5]. The
A and v icons identify the population which adopts each pattern the most and least,
respectively.

As larger companies have more resources available, we expected to observe a
correlation between company size and the number of patterns implemented in the

company. The results are detailed in Table 11.8 (p. 210), from where we observe:

e There is no statistical evidence of a relationship between company size
and pattern adoption. There is an increase in average pattern adoption along with
the increase in company size, means of 6.3, 6.4, 6.6, and 7.4, as detailed in Table 11.8
(p. 210). We hypothesized that there might be a statistically-significant variation

between these populations, either pair-wise, one versus all others, or in their total

DATA ANALYSIS 211

Company size

Micro Small Medium Large vs. others ANOVA

Micro — 0.84 0.66 0.19 0.39

Small — — 0.81 0.27 0.58 0.52
Medium — — — 0.44 0.93 '
Large — — — — 0.15

Table 11.9: Evaluation of the significant difference between company sizes. A t-test is applied
between every two populations. The wvs. Others column compares the population
against the combination of all other strategies. For all tests, the probability value
is shown.

variance. Table 11.9 (p. 211) presents the results of the t-test and ANOVA, from
which we can conclude that there is no statistical significance (p < 0.05) in the

variations observed;

e Micro companies lead infrastructure as code and automated scalability
implementation. When looking at the pattern adoption per company size, we
can observe that INFRASTRUCTURE AS CODE and AUTOMATED SCALABILITY both
show a higher percentage at both the micro and large companies, with a slightly
less adoption in small and medium companies. Small companies have limited human
resources, a driver for automating operations. On the other hand, large companies
have larger teams and can cope with less automation, but tend to have expertise in
house, resources, and time to invest in automation. Time and resources that might

not be available with small and medium companies;

e Medium-sized companies have less representation, about 42% less than
the micro and small company groups. We believe this may be a depiction of
reality. According to Eurostat, the number of persons employed for micro, small,

medium-sized, and large enterprises was 29%, 20%, 17% and 34%, respectively [18].

e There is a correlation between company size and pattern adoption. The
result shows that the variation between micro, small, and medium companies consist
of a slight increase in the number of patterns adopted, ranging from 6.3 to 6.6.
The increment to large companies is higher, with large companies implementing an
average of 7.4 patterns. Small companies implement over six patterns, which let us
theorize that many of these patterns are essential to companies of any size. We can
conclude that a correlation is observed between company size and the number of

patterns adopted.

212

PATTERN LANGUAGE ADOPTION SURVEY

« Company size may mislead for evaluating engineering expertise. The

number of employees is a good indicator of the resources available in the company,
but might not translate engineering expertise, as it does not reflect how many
employees are working on the product, how many of those are engineers, or
how much experience that engineering team shares. In retrospect, the number
of engineers in the team would likely provide a better relationship between the
resources available to build the product and the pattern adopted. Therefore, we
propose that replications of this study should replace this question by two others
— How many engineers are working on the product? and How much accumulated

experience do they share in years as software engineers?

11.4 Discussion

This survey sheds light on how the industry adopts the pattern language described in this
research, from the personal experience of 102 professionals.

We have reached new conclusions for each of the following questions:

RQ2. What strategies are adopted for addressing cloud problems? While we

do not evaluate alternative strategies, we can assert that the respondents adopt all
the solutions described in the pattern language to some extent. LOG AGGREGATION
is the most adopted pattern, with an average adoption of 72%. FAILURE INJECTION
is consistently the least adopted pattern with a 17% adoption rate and is a statistical
anomaly when compared to the average adoption rate from other patterns. Its
limited adoption is likely due to the redundancy it requires, making it prohibitively

expensive for most teams.

RQ4. Are companies that develop software for the cloud aware of these

problems and adopt the identified solution? Considering the positive pattern
adoption percentage, we can conclude that developers are aware of these problems,

and many already implemented some of our patterns to solve them.

RQ5. What characteristics influence the emergence of specific problems when

developing software for the cloud? The survey characterized the respondent’s
company using three variables: product operation strategy, company size, and
monthly active users. The collected data demonstrates that the mean pattern
adoption increases with company maturity for the three variables studied. The sole

exception was for companies with 10k — 100k active monthly users, possibly as a

THREATS TO VALIDITY

result of a non-representative sample in this population. While there is a noticeable
increase for all variables, only with the active monthly users can we observe a
statistically significant variation between the mean pattern adoption, specifically
with the < 100 and > 1M groups. We can conclude that the most influencing
company characteristic is the number of active monthly users. We believe that this
is the best driver for growth, hence, for inducing the scalability requirements that

motivate the adoption of the patterns in our language.

11.5 Threats to Validity

Other works before ours have sought to validate patterns empirically [Sal00; TKPO04;
Rol+00], but empirical research methods are not without liabilities that might limit the
extent to which we can answer our research questions. We identified the following threats

to the validity of the conclusions and discussed their impact on this research.

11.5.1 Construct Validity

Using a questionnaire is a common strategy to gather data from a broader audience, but

practical considerations tend to limit the type of data captured to be closed responses.

We could mitigate this by resourcing to other methods in the future, e.g. allowing arbitrary
text in the response form or performing direct interviews. That would enable a deeper
understanding of each approach and particularities, with the added challenge of scaling
the answers. Nonetheless, because each strategy has its specific advantages, this research
contributes to a future meta-analysis that could empower the statistical significance of

our findings.

11.5.2 Internal Validity

It is possible for the responses to be inaccurate due to poor question wording or
unclear language [MBV06]. We tried to minimize this threat by accompanying questions
with a description and rationale, including relatable examples whenever possible. The
questionnaire was disseminated online through social networks, direct contacts, and
forums. No measure was taken to verify the respondents’ identity, background, or the

truthfulness of their responses.

213

214

PATTERN LANGUAGE ADOPTION SURVEY

11.5.3 External validity

Coverage error, refers to the mismatch between the target population and the frame
population [Cou00]. In this scenario, our target population was cloud professionals, while
the frame population was all users who gained access to the link to the questionnaire. We
did not take any measures to verify the identity of the respondents. Therefore, some might
not possess the profile and knowledge needed to respond to the questionnaire. We have
included an introductory text in the questionnaire to filter out individuals not belonging
to our target population.

Sampling errors are possible, given that our sample is a small subset of the
target population. Repeating the experience would necessarily cover a different sample
population, and likely attain different results [Cou00]. Assuming that responses follow a
normal distribution about its mean, a large-enough sample can mitigate this threat, which
can be evaluated by seeing if 95% of the responses are within two standard deviations
from the mean.

Nonresponse errors are introduced by not receiving responses from the chosen target
population [Cou00]. Although we disseminated this survey through specific channels, we
cannot assess how many of these participated in the survey, so this is an unmitigated
risk. As the respondents were volunteers, there might be a bias towards those who have
an affinity with the topic. Professionals without interest in the subject would be less
likely to respond, as they might feel that they had nothing to contribute.

Multiple responses for the same project, which might result from different team
members answering the questionnaire, which would introduce errors in our analysis. We
mostly discard this threat by making sure that there are no repeated companies in the
answers.

Measurement errors refers to the deviation in a response from its actual value. It
can result from a lack of motivation, comprehension problems, or intent to damage the
study [Cou00] deliberately. To mitigate this risk, we made the questionnaire as short
and as clear as possible, so that any volunteer would reply to the questionnaire in a few
minutes while preventing partial submissions.

The expertise of engineers influences their cloud approach. The personal experience
might be derived from past projects or higher education. Similarly, incorrect project
perception would have lead to incorrect responses due to a misunderstanding of how
their system was designed. Given that we have not captured the respondents’ expertise,
we cannot evaluate how both threats impact our data.

The product’s start date can influence its cloud approach. A product started before

CONCLUSION

the cloud computing era may still make use of processes and practices that are not aligned
with cloud computing. We would like to capture this metric in future iterations of our

survey.

11.6 Conclusion

The goal of this survey is to shed some light on how the industry adopts the pattern
language for developing software for the cloud described in Chapter 6 (p. 69). It does
so based on the experience of 102 professionals and by seeking answers to three research

questions:

11.7 Summary

This chapter described a survey complementing the validation of our pattern language,
initially described in the case study from Chapter 10 (p. 149) by reaching a broader
audience and understand how they implement the pattern language.

The data analysis demonstrates that, despite small, there is a correlation between the
number of patterns adopted and the product operation strategy, number of active users,
or company size. We can use these correlations as an indicator of how relevant these
patterns are for maturing the cloud practices of cloud professionals.

During this chapter, we address the following Research Questions (RQs):

RQ2. What strategies are adopted for addressing cloud problems?
While we do not evaluate alternative strategies, we can assert that the respondents

adopt all the solutions described in the pattern language to some extent

Are companies that develop software for the cloud aware of these problems
and adopt the identified solution?
We observe that the overall adoption of all patterns is 55% and that most companies
implement at least one pattern, with only 2 out of the 102 not implementing any

pattern.

What characteristics influence the emergence of specific problems when
developing software for the cloud?
We survey 102 professionals and evaluate three company characteristics along
with their pattern adoption: product operation strategy, active monthly users, and

company size. For all three, we observe that there is an increase in mean pattern

216

PATTERN LANGUAGE ADOPTION SURVEY

adoption as companies mature, except for the 10k — 100k interval of active monthly
users, likely due to a bad sample. This observation is statistically significant with
the active monthly users variable, mainly with the < 100 and > 1M populations.
The active monthly users were the most influencing metric while evaluating the
number of patterns adopted, which allows us to conclude that the number of monthly
users influences the scalability requirements and motivate professionals to adopt new

patterns from our language.

While the results observed were aligned with our hypothesis, the volume of responses
and the queried population sample might not represent the global population of cloud
professionals. Future work should improve the number of responses to improve the results’
quality and correlation confidence. A new study could also try to understand the motives
for the variations in pattern adoption in the different analyzed intervals. A larger-scale
interview could provide relevant data for such an assessment.

Also, it would be relevant to analyze this data from an operations research standpoint
to identify the ideal order in which patterns should be adopted, creating a detailed
adoption guide for the pattern language. Such a study could benefit from company
characterization and identify optimal pattern implementation sequences for different

company characteristics.

Chapter 12

Conclusion

12.1 Research Questions 217
12.2 Hypothesis Revisited L o 221
12.3 Main Contributions 223
12.4 Future Worko 226
12.5 Epilogue oL 228

The widespread of the Internet-enabled unprecedented growth in the number of
applications achieving global reach. Cloud computing provided the technology to facilitate
building such applications. With the paradigm, along came the need for new architectures,
practices, and tools. With this work, we contribute to the field of Software Engineering,
specifically to the domain of cloud computing with a pattern language of twelve patterns,
ten of which novel from this work. We then validate the adoption of these patterns in
the industry employing a case study with five local startups and a survey with over 100
industry professionals. As a direct or indirect result of this research, we have authored 18

papers for peer-reviewed conferences, listed in Appendix C (p. 255).

12.1 Research Questions

The information made available for supporting cloud application design is often a result
of personal experience and limited observation, biased to specific application contexts,
lacking strong scientific support, and adaptability to specific contexts. That might be the
reason why still in 2019, the lack of cloud expertise is one of the most critical challenges

for cloud development [Rigl9].

218 CONCLUSION

This work was driven by five research questions directly related to our hypothesis. We

can conclude that:

RQ1. What are the recurrent problems when developing software for the
cloud?
Cloud applications introduce development challenges, viz., (1) being able to scale,
(2) coping with dynamic infrastructure and service orchestration, (3) discovery,
(4) monitoring, (5) isolation, (6) messaging, (7) availability, (8) reliability,
(9) resiliency, and (10) security (see Chapter 3). While cloud development has
been around since 2006, addressing these concerns continues to be challenging, with
lack of quality resources and expertise being the most severe limitation in cloud
development. In this dissertation we focus on 10 recurrent problems (P) in cloud
computing (cf. Chapters 6 to 9). There are obviously tens to hundreds of other
relevant recurrent problems while designing software for the cloud, which could be

researched in future iterations of this work. In this context, we address the following:

P1. Deploying a service to a host couples it with the operative system, possibly

introducing side effects with other services in the same host, or the host itself;

P2. Manually operating software at scale, particularly in architectures that favor

microservices and their cooperation, is an error-prone, slow and costly process;

P3. Services will eventually fail in the long run and need to be recovered in a timely

and orderly fashion;

P4. Short-running jobs need to be scheduled and orchestrated using dynamic
infrastructure without permanently allocating resources, possibly requiring

ephemeral hardware to execute;

P5. Resilience mechanisms are triggered when the software is failing. Since systems
are designed to work correctly, the status quo resists to a continuous verification
of the correctness of those mechanisms. To ensure resilience, we need to exercise

failures to evaluate their impact;

P6. The information required to debug failures is often lost during their first

occurrence due to insufficient log verbosity;

P7. Services orchestrated at scale produce widely disperse information, resulting

in a complicated process to navigate and correlate multiple sources;

P8. Monitoring an application from its inner layers results in an incomplete or

biased version of the reality;

RESEARCH QUESTIONS

P9. In a dynamically allocated infrastructure, services require a discovery strategy

to establish a communication channel;

P10. As the volume and complexity of interacting services increase, point-to-point
communication channels become unmanageable, hindering fault-tolerance,

resiliency, and scalability.

RQ2. What strategies are adopted for addressing cloud problems?
As developers attempt to address the aforementioned problems, recurrent solutions
began to emerge. The following solutions, that we captured in pattern form, address

those problems:

Containerization. Use a container to package the service and its dependencies

and enable its isolated programmatic deployment;

Orchestration Manager. Adopt an ORCHESTRATION MANAGER to coordinate,
manage and distribute multiple cloud services while abstracting the underlying

infrastructure, fulfilling the service requirements;

Automated Recovery. Include checks and recovery strategies in the instructions
provided to the ORCHESTRATION MANAGER to orchestrate containers, enabling

it to monitor and recover failing containers;

Job Scheduler. Deploy a scheduler service along with the ORCHESTRATION
MANAGER that can instruct it to allocate one time or periodic jobs, releasing

their resources for reuse in the cluster when they complete;

Failure Injection. Generate atypical events at both the application and
infrastructure level, exercising the available recovery mechanisms to verify the

application’s resilience;

Preemptive Logging. Adjust logging verbosity in services and servers within
acceptable resource limits, maximizing the probability of capturing relevant

information for addressing future issues right from their first occurrence;

Log Aggregation. Aggregate and index all service and server logs in a central
repository, providing the team with a centralized system to query and visualize

execution logs;

External Monitor. Test the application’s public interfaces from an external

source, increasing the confidence over the application’s status;

219

220 CONCLUSION

Service Discovery. Abstract service network details by relying on an external
mechanism that facilitates communication and balances traffic between two

services;

Messaging System. Use a MESSAGING SYSTEM, colloquially known as message
queue, to abstract service placement and orchestrate messages with the optimal

routing strategy between them.

RQ3. What driving forces influence how strategies are implemented?

Each problem described is frequent in the context of cloud development.
Nevertheless, the context under which the problem is observed can influence how
the solution needs to be curated to adjust to the specific case. Each problem will
have its variants that need to be considered and adapted while implementing the
solution. Our pattern language introduces a list of forces for each pattern, describing
how the problem can vary. Solutions can often be adjusted based on these forces for
a better fit in their context. The solutions to our patterns take into consideration
several forces, some of which being (1) automation, (2) decoupling, (3) isolation,
(4) latency, (5) portability, (6) reliability, (7) resilience, (8) resource allocation,
(9) scalability, (10) security, and (11) supervision, cf. Chapters 6 to 9 (pp. 69, 77,
117 and 135).

RQ4. Are companies that develop software for the cloud aware of these
problems and adopt the identified solution?
Patterns, by definition, are observations of the strategies applied by developers
to recurring problems. Such does not mean they capture (1) the best practice for a
problem, nor that (2) professionals are aware and use those practices. To validate our
pattern language’s relevance, we produce a case study by interviewing five companies
and evaluating how they are designing their cloud software. These interviews let us
understand which patterns they use and how. Companies that operate multiple
independent instances of their product implemented all but one pattern from our
language. They highlight that automation is essential to prevent human error and
make operations efficient. In contrast, the other companies implement at most three
patterns from the language, intending to adopt two more patterns in the near
feature. We ask the five companies what would be needed to scale their application
considerably, and those that adopted most patterns considered scaling to be trivial
to scale, given the required computational resources. The others considered they
would have to change their design, often referring to the need to implement new

patterns to cope with the new scale. The case study enabled us to iterate some of

HYPOTHESIS REVISITED 221

our patterns with new forces and implementation details that we have not previously
observed, cf. Chapter 10 (p. 149).

In addition to the case study, we also surveyed 102 industry professionals who
responded if they have implemented each pattern into their product, cf. Chapter 11
(p. 191). We learned that 98% of the professionals adopt at least one pattern and that
the mean pattern adoption was of 56% =+ 15.82, meaning that any given professional
is likely to implement a specific pattern 56% of the times. While evaluating the
average pattern adoption considering company and product characteristics, namely
operation strategy, active monthly users, and company size, we have observed an
increase in the average number of pattern adoption with the increase in maturity
for each variable. When hypothesized if there was a strong relationship between
maturity for each variable and the increase in pattern adoption, we only found
statistical significance with the number of active monthly users, which allow us to
conclude that user volume is the critical driver for the appearance of the problems

identified and the adoption of the related pattern.

RQ5. What characteristics influence the emergence of specific problems when
developing software for the cloud?
The pattern language addresses problems that might emerge at different stages for
different companies. To understand if and what company characteristics influenced
the adoption of specific patterns, we surveyed over 100 professionals, cf. Chapter 11
(p. 191). Along with their pattern adoption, we asked them to classify their company
regarding three variables: (1) operation strategy, (2) the number of active monthly
users, and (3) company size. We then analyzed the pattern adoption for each of
these variables. We learned that, as companies mature, that is, as the operation
strategy or volume of active monthly users increases or the company grows, they
tend to adopt more patterns. While the mean pattern adoption is increased for all
three variables, the difference is statistically significant only with the number of

active monthly users, mainly in the lowest and largest user bucket.

12.2 Hypothesis Revisited
The Research Questions (RQs) drove this research intending to address our main
hypothesis:

While engineering software for the cloud, there are categories of recurring

problems, which solutions converge from good design principles, that adjust

222

CONCLUSION

to the context where they emerge. Their adoption is a consequence of (1) the
awareness a team has of a problem, (2) the characteristics of the product and

the company, and (3) the way these solutions relate amongst themselves.

The answers to those RQ)s allow us to deconstruct and discuss how we have addressed

the hypothesis:

While engineering software for the cloud, there are categories of recurring
problems. We identify twelve of these recurring problems from cloud software
development. They are classified into four categories: automated infrastructure
management, orchestration and supervision, monitoring, and discovery, and

communication.

Solutions to recurring cloud problems converge from good design principles.
For each recurring problem, we were able to refer or mine a solution strategy in the
form of a pattern. The patterns could be observed in the wild with at least three
independent implementations. They provide engineers with detailed instructions to

solve the identified recurrent problems.

Solutions are adjusted to the context from where they emerge. Solutions mined
as patterns are flexible, with a set of forces that can be balanced in a multitude of
ways to fit the implementation’s context better. The proposed patterns identify such

forces and provide implementation details that balance these forces.

The solution’s adoption is a consequence of the awareness a team has of
a problem. We evaluate how familiar cloud professionals are with the identified
problems by performing a case study and a survey, measuring how often the pattern

language is adopted in the industry.

The adoption of the solutions is a consequence of the characteristics of the
product and company. We identify several relations between the product and
company’s maturity and the average number of patterns a team adopts. We observed

that these relations are particularly relevant to the volume of active monthly users.

The adoption of the solutions is a consequence of the way these relate amongst
themselves. In a given context, multiple recurring problems are likely to emerge
together. A pattern language goes beyond identifying solutions to independent
problems by elaborating on the relationships of the problems and solutions identified.
We not only identify the pattern relationships in our language but statistically verify

those relationships with our survey.

MAIN CONTRIBUTIONS

12.3 Main Contributions

This dissertation contributes to the field of software engineering, and particularly to cloud
computing, with (1) a literature review of the state of the art of design patterns for cloud
software development, (2) a reference architecture for cloud computing, (3) a pattern
catalog, and respective industry case study of cloud and DevOps practices, (4) the pattern
language, and (5) the validation composed by a case study with five companies and survey
with 102 professionals. Figure 12.1 (p. 223) visually identify the contributions made during
these stages towards the domain of Software Engineering, revisited in the remainder of

this section.

(Literature \
fundaments \ Review / fundaments

fundaments

A4

Cloud and
DevOps Patterns
Catalog

influences influences

Pattern
Language
validates

Industry Survey Indussttl:)éyc e

Figure 12.1: Relationship between the contribution items of this research.

Reference Cloud
Architecture

12.3.1 Review of the State of the Art

In this work, we revisit the concepts that motivated cloud computing in Chapter 2 (p. 11).
Later in Chapter 3 (p. 25), we identify the intricacies of cloud computing, along with the
resources available for supporting software development for the cloud. We acknowledge
and discuss the recurrent problems for developing for the cloud, asked in RQ1, recognizing
that the lack of expertise is the most relevant driver constraining cloud development. This
literature review systematizes knowledge regarding cloud design practices and how authors
have contributed to it using patterns. It supports the remaining of our research and can

be used by other authors to support their work as well.

12.3.2 Reference Cloud Architecture

As researchers and engineers, we considered essential to become experts in the topic

of cloud computing, not only theoretically, but with hands-on experience. Chapter 5

223

224

CONCLUSION

(p. 55) describes how we have approached the subject by contributing with a reference
architecture for a cloud application of a research project and a case study with Portuguese
startups regarding their cloud operations practices and tools.

Section 5.1 (p. 55) described the contribution for a publicly funded research Ambient
Assisted Living for All (AAL4ALL), to which we have supplied a reference cloud
architecture and prototype to orchestrate the message passing between components in
the ecosystem, ensuring scalability, security, and privacy. Despite being implemented
considerably before the development of the pattern language, it already applied several
of the patterns we would later identify and capture. Part of this contribution proposed
a test bench for experimenting with cloud architectures, which culminated in a journal
publication, in Appendix C.2.9 (p. 263).

12.3.3 A Pattern Catalog for DevOps and Cloud

Once we had sufficient experience with cloud architectures, tools, and practices, we
understood that we needed to learn how the industry was addressing those same challenges.
Section 5.2 (p. 62) described a case study where we have interviewed 25 companies
developing software, inquiring them about the tools and development practices and their
usage for cloud development, enabling us to address RQ2. We created a pattern catalog
with 13 patterns. We applied the catalog in an experiment with a local startup, which
demonstrated an increase in multiple development efficiency metrics after the team was

provided with the pattern catalog and two weeks to implement the patterns.

12.3.4 Patterns and Pattern Language

We captured recurring problems and their solutions in the form of ten novel patterns
supported by our previous research. Further literature research and experimentation
empowered us to address RQ3 and write these patterns. While trying to answer RQ4,
we identified the intricacies of each problem-solution pair as a list of forces. A particular
combination of these forces generated a unique configuration of the problem, which
required balancing to find a solution fit to the problem.

These ten novel patterns evolved into a pattern language, depicted in Figure 12.2
(p. 225), helping professionals navigate the language by clarifying the most relevant
pattern relationships. To further guide the cloud professional to implement these patterns,
Section 6.4 (p. 74) describes a particular sequence of adoption for these patterns for

implementing a simple web application.

MAIN CONTRIBUTIONS

Infrastructure configures B Service
¢ Job Scheduler
as Code®

a5y Discovery
(& \
Q s T
uses

Automated extends Orchestration
—_— »

v

co
Dfioy, reg

SOINSYUOD

Recovery ¢ Manager *

hosts

Automated otructs @ Fallure disrupts
instructs AllUuI€ disrupts . . .
I . 4 COHtHlDCl‘lZHthH

Scalability @ <« Injection uses
A External feeds A Log feeds Preemptive uses Messaging
Monitoring Aggregation Logging A System ®

Figure 12.2: Pattern map for the pattern language for engineering software for the cloud,
depicting the relations between the patterns. The dashed rectangles limit each
pattern category.

12.3.5 Thesis Validation

We have cited arguments in favor of the implicit validation of patterns, which state that
they are, by definition, valid, since they are just capturing the reality observed in the
wild, being accepted as such once three occurrences are observed. Nevertheless, we can
only say that patterns present a solution to which some developers converged, not the best
solution for a given problem. A perfect solution would demand a deterministic context,

which is nearly nonexistent in software engineering. We capture the drivers that make

each problem unique as pattern forces, which we help balance in our solution description.

Capturing forces is a continuous pursuit for the pattern author, as it is also difficult to
be sure that all possible drivers are identified.

To verify that our patterns were applicable to the industry, we designed a two-step
complementary validation strategy that provided us with additional knowledge for

iterating the pattern’s specification.

Industrial case study. We started with a case study with five startups to evaluate
how they related to the pattern language. We used semi-structured interviews,
following a script but motivating the respondents to delve into the intricacies of
their systems and design decisions. Using a methodology using open responses
enabled us to capture new knowledge that further improved our pattern language.
This process was described in Chapter 10 (p. 149) and addresses RQ2, RQ4, and

22

5

226

CONCLUSION

RQ5. Despite the confined statistical significance, we were able to gather additional
knowledge for iterating our pattern language with new forces and more detailed
solution descriptions. We observed that companies at different stages have different
cloud requirements, and that reflects on their practices and patterns implemented.
A study with a larger audience would help identify how company maturity was

influencing pattern adoption.

Pattern language adoption survey In Chapter 11 (p. 191), a survey inquired over
100 cloud professionals to understand what patterns they were applying in their
cloud products and classify their company maturity in terms of operation strategy,
number of active monthly users, and company size. We observed that for the three
variables, a correlation exists between the company maturity and the mean number
of patterns implemented. We were able to address RQ2, RQ3, and RQ5.

These two validation strategies complemented each other. The interviews provided an
understanding of how respondents build their cloud software despite the limited number
of interviewed subjects. The survey provided less information regarding the respondent’s
cloud design, but inquired a larger population, enabling statistically relevant conclusions
from the captured data. Together, they allowed to thoroughly understand how companies
address cloud development and the product and company characteristics that influence

pattern adoption.

12.4 Future Work

We have merely begun the work needed to thoroughly capture the vast cloud design
knowledge being applied by professionals for building cloud applications.

Expand the pattern language. This work addresses 12 recurrent problems from
engineering software for the cloud. These problems only begin to address the overall
set of problems developers have to address while designing their software. We would
like to see this language expanded to tens or hundreds of patterns and becoming a
reference for engineers. Expanding the language would benefit from the cooperation
with other authors, possibly expanding their existing work to the level of maturity

that we propose.

Evaluate the solution’s strategies. The solutions we capture on the ten novel

patterns in our pattern language describe strategies to address the identified

FUTURE WORK 227

recurrent problems. While we have observed multiple success cases with the
application of each one of these strategies, we cannot assert that these are the best
solutions for the problems. This research would be improved with an investigation
for alternative solutions for each problem identified, and an increased discussion on
how alternative implementation strategies influence the overall design of the product

and balance of the forces.

Pattern improvement Regarding the completeness and correctness of the pattern
language, we consider that both can continuously be improved, ideally via additional
case studies. Despite interacting with only five companies, we have acquired
knowledge regarding cloud approaches, capacitating us to improve and grow the
pattern language, making it more accurate, complete, and useful for the pattern
adopter. It is then logical that additional case studies would deepen the knowledge of
how professionals are addressing the cloud, which would translate into an enrichment
of the pattern language with more complete and original patterns. The ideal scenario
would be to continue to conduct case studies and improve the language for as long

as it will generating new knowledge.

Pattern adoption sequence guideline. Future work could apply observational
methods to evaluate how companies developing products from scratch address these
challenges. A large enough sample would allow capturing the natural adoption
sequence for the patterns in the pattern language, allowing the creation of a concrete

adoption guideline.

Improve the survey. The survey presented in Chapter 11 (p. 191) is not without
flaws. We concluded that the number of employees in the company is not a relevant
metric to evaluate, given that this does not hint on the size and experience of the
engineering team working on the product. Repeating the survey asking how many
engineers are working on the product and what is their accumulated experience could

provide new insights on how engineering expertise can influence pattern adoption.

Pattern Language impact experiment. We would like to evaluate the impact of
the pattern language in a controlled experiment, where a first would solve a cloud
challenge empowered with the pattern language, while the control group would have
to solve the same challenge without the language. We theorize that the first group
would outperform the other in terms of development speed and overall solution
quality. We expect this study to be complex to execute, as the challenge would be

troublesome and require several days to complete. Obtaining a relevant sample of

228

CONCLUSION

professionals, or ideally, of teams of professionals, with the availability to commit
to the experience, would likely be very difficult without paying those professionals.
On a smaller scale, a quasi-experiment could also be designed with volunteers who
would have to solve a set of smaller cloud-related problems, with and without the
pattern language, evaluating the efficiency and quality that adopting the pattern

language could bring to cloud software development in the short-term.

Participatory Observation. We would like to conduct an experiment with
participatory observation, similar to the one described at the end of Section 5.2
(p. 62), in which we would provide the pattern language to actual professionals,
evaluating how they improve their practices when while applying it. We would
evaluate performance metrics from the company before, during, and after the

experiment to measure improvements resulting from adopting the pattern language.

Bridge knowledge to other application domains. Cloud computing pioneered
the facilitated access to large scale computation, which motivated several new
topics within Software Engineering, such as Serverless, Internet of Things, or Fog
Computing to emerge. We believe that most concepts introduced in this research
apply to those fields as well, while at a different scale, or requiring minor adjustments.
We would like to cooperate with researchers from these fields to evaluate if some of

these patterns could be expanded or rewritten in the context of their research field.

12.5 Epilogue

Cloud Computing brought exciting changes to how we build software. On the one hand,
it provides building blocks to develop very complex applications. On the other hand,
it enabled developers to run their applications at an unprecedented scale without a
prohibitive initial cost. Together, they empower developers to build applications that
reach users on a global scale, making technology an incredibly attractive platform to
develop new or improved businesses.

Enabled by cloud computing, technology continues to expand to new domains.
Smartphones and Internet of Things (IoT) are becoming ubiquitous, factories and cities
becoming smart, and Machine Learning enabling personal assistants to each one of us.
With only 14 years since the cloud was introduced, we can only imagine how the future
will be. We hope this work can keep expanding and empower future generations of cloud

applications.

EPILOGUE

To those reading this dissertation as inspiration for your own, allow me to share with
you the advice I got from a senior professor when I was starting. If you want to complete
your Ph.D., dont change the place where you live, don’t get a new girlfriend, don’t get a
job, don’t change a thing, focus on your Ph.D., work hard, you’ll have time for everything
else once you are done. You will have plenty of time to do everything else later in life. Well,
I failed to follow this advice. All of it. Multiple times. But I was pretty happy at failing
them. By doing so, I have learned a lot in life and in the industry along the way. That
positively reflects on who I am today, personally and professionally, and in the contents
of my Ph.D. So, my advice differs from the one above. To become a Doctor in Philosophy
is an arduous path. If you are to cross it, find a subject you are passionate about, which
you would even research in your free time. Keep your head high during stressful times,
and there will be some. Please don’t ignore the outside world. You can learn much from
it. Work a lot and have fun! If you stay focused, the rest will play out by itself. If you
need more help, we wrote a paper that might help [FRS19]!

A final word goes into answering that recurrent uncomfortable question: have you

finished your dissertation yet? Yes!

229

230 CONCLUSION

Appendices

Appendix A

Cloud and DevOps Preliminary Survey

A.1 Interview Protocol

A.1.1 Interview Guide Product (IGP)

IGP1. What type of product do you develop?
IGP2. What is the scale of that product? Number of countries, number of users?

IGP3. Do you have an SLA or some requirements that impact your work?

A.1.2 Teams (T)

T1. How many teams do you have?

T2. What is the size of each team?

T3. Are teams specialized, or do they have multiple specializations working together?
T4. Do teams interact with each other?

T5. How are teams seen from an external perspective? Are they autonomous?

T6. How do you manage your workload? Do you use SCRUM, Kanban, or other?

T7. How do team members communicate among themselves?

A.1.3 Pipeline (P)

P1. How long does your code take to go from idea to production?

234

CLOUD AND DEVOPS PRELIMINARY SURVEY

P2.

P3.

P4.

P5.

P6.

pP7.

Ps.

What are the states that your code goes through before reaching a production

environment?
What triggers the transition between states?

What kind of tests do you develop? Which teams are involved in that process?
When do they run?

What happens in each of the pipeline states?
In each state, which teams intervene and what do they do?

What processes did you automate? Did you choose not to automate some? If so,

why?

How do you handle your deployment process? Which tools do you use? Do you use

containers or Virtual Machines (VMs)?

A.1.4 Infrastructure Management (IM)

IM1. How do you scale? Horizontally or vertically?

IM2. Does scaling happen automatically?

IM3. What can make infrastructure scale up/down?

IM4. How is infrastructure increased?

IM5. How do you lift new instances of your infrastructure? Is it automatic

A.1.5 Monitoring and Error Handling (MEH)

MEH1. What metrics do you collect from running servers?

MEH2. What do you see as errors?

MEH3. What process do you follow to solve errors after they are detected?

MEH4. When errors are detected, who is notified? How is the notification sent?

MEHS5. If errors are detected before the software reaches production, what do you do?

PRELIMINARY SURVEY RESPONSES 235

A.2 Preliminary Survey Responses

Responses were gathered by individually interviewing 25 companies, mostly based out of
Porto and Lisbon, Portugal. Results are described in Table A.1 (p. 236) and Table A.2
(p. 237).

CLOUD AND DEVOPS PRELIMINARY SURVEY

236

(z/1) Aeams Areurwroid oyj 0y sesuodsoy] :1°V S[qeL

[JoNON NON NoNON N NoNON N N N NON NON N N NONONGR-

00 0000000000000 000000000 0

—
i

| JONOCHORONONORON N NORON RONON N N NON N N NONON J

NN NN NN NN NN NON N N N NN NON N N N NON I

JoN NoN NoNoN N N N NoN N N N NoN NoN N N NONON Juw

CNONON HONCHONON N HNONON RONON RON NON N N NONORGN-:

[e10L
ONPIAN

110J¢

TR SN A
[Pqequn
omoymiqn
XO0ddOoL
0OT[OqUUIRDILG

PIeMIOJIS
OISeUWog

RIOPUITN
I_[qUIRIDS
IRId)]

pnoy) Areurgeuy
sqepdAy
nvzd
Surppiqrenry
Ko>epon)
AppoIP
jouye))

v Auweduwo))
021e7

JISNUIN]

AMY
SonATeary
[essAqy

uorjersouy
snonuijuo))

uorjesrunuwitio))

moraoy
apo)H

pnoryH

AyMiqeypny

Surrary

aureN
Auedwio)

237

PRELIMINARY SURVEY RESPONSES

‘(z/2) Aoams Areurwipid oyj 03 sesuodsoy] :Z'V S[qeL

0000000000000 00000600OC0 00000

| HONON NON N NON N HONONORCNON RONONONON N NONORGN-:

0000000000000 0 000000000 0OOOE

O000000000 000000000 000000

CHONOHNORONCHONON NON NONCH NONOCRCHNONONONONCGNONONGN

0000000000 0000000000000 0OS

—
i

CNON N RON N NON N HORON RONON RON NONCHON N NONG

[e10L
ONPIAN

110J¢

TR SN A
[Pqequn
omoymiqn
XO0ddOoL
0DT[OqUIRDIIG

PIeAMIOJIS
OISeUWog

RIOPUITN
I_[qUIRIDS(

IRId)]

pnoy) Areurgeuy
sqepdAy

nvzd
Surppiqrenry
£o>epon)

ApPoIP

jouye))

v Auweduwo))
0217

JISNUIN]

AMY

SonATeary
[essAqy

[o13U0)
UOISIOA

UO0I1YeI)SOYIQ)
weay,

guipesg

SIUOWIUOIIAUL
s[qronpoadoyg

sqor

Surpuey
JOoIay

quawAorda(q

aureN
Auedwio)

238 CLOUD AND DEVOPS PRELIMINARY SURVEY

Appendix B

Survey

B.1 Questions

The following pages describe the survey disseminated amongst industry professionals to
assess their pattern language adoption, detailed in Chapter 11 (p. 191). The following
pages include the original questionnaire, while Appendix B.2 (p. 246) describes the

individual responses.

Cloud Patterns Adoption Survey

The answers to this questionnaire will create a clear picture of how cloud patterns are adopted
throughout software development companies of all sizes. The patterns were captured as part of the
Ph.D. work by Tiago Boldt Sousa at the Faculty of Engineering, University of Porto.

If you are working with multiple cloud applications, please consider your main/largest product or the
one you are more familiar with for answering these questions.

Please leave your email in the comments if you would like to get further information about this
research.

Thanks in advance,
Tiago Boldt Sousa

* Required

1. Product operation strategy *

Consider how you deploy your software, regarding the users that it is intended for.
Mark only one oval.

One system per customer (Private deployment for each customer, private to his users)

Single system, multiple customers (shared platform for any customer, e.g. Netflix,
Facebook)

Single system for single customer (only one deployment for a specific group of users)

Other:

2. Active monthly users *

Consider the average number of users for your platform, across all system instances
Mark only one oval.

<100

100 - 1 000
1000 - 10 0000

10 000 - 100 000
100 000 - 1 000 000
> 1000 000

3. Adopted Cloud Providers *
Check all that apply.

Amazon Web Services
Google Cloud
Microsoft Azure
Private Infrastructure
Hybrid / Multicloud

Virtual Private Server

Other:

4. Have you adopted Infrastructure as Code? *

You automate your infrastructure and deployment operations programmatically. Example:
Terraform, chef, ansible.
Mark only one oval.

Q Yes, for the entire system

() Yes, partially

Q Under assessment or development
() No, but we would like to

(") No, itis not relevant

Q | don't know / | don't want to answer

5. Have you adopted Automated Scalability? *

Your system scales dynamically to adjust to elastic traffic. Example: AWS EC2 Auto Scaling.
Mark only one oval.

@ Yes, for the entire system

() Yes, partially

Q Under assessment or development
(") No, but we would like to

(") No, itis not relevant

Q | don't know / | don't want to answer

6. Have you adopted Containerization? *

Deploying a service to a host couples it with the operative system, possibly introducing side

effects with other services in the same host, or the host itself. Containerization proposes the
usage of containers to package the service and its dependencies and enable its isolated and
programmatic deployment. Example: Docker

Mark only one oval.

Q Yes, for the entire system

Q Yes, partially

Q Under assessment or development
Q No, but we would like to

(") No, itis not relevant

Q | don't know / | don't want to answer

7. Have you adopted an Orchestration Manager? *

Deploying and updating software at scale is an error-prone, slow and costly process. Such can be
facilitated by adopting an Orchestration Manager to coordinate, manage and distribute multiple
cloud services while abstracting the underlying infrastructure, fulfilling the service requirements.
Example: Kubernetes, Mesos + Marathon.

Mark only one oval.

Q Yes, for the entire system

() Yes, partially

Q Under assessment or development
(") No, but we would like to

Q No, it is not relevant

Q | don't know / | don't want to answer

8. Have you adopted Automated Recovery? *

10.

Services may fail during execution and need to be recovered in a timely and orderly fashion.
Including health checks and recovery configurations in the instructions used for the Orchestration
Manager to orchestrate containers, enables it to monitor and recover failing containers. Example:
Kubernetes Pod Lifecycle.

Mark only one oval.

Q Yes, for the entire system

() Yes, partially

Q Under assessment or development
(") No, but we would like to

(") No, itis not relevant

@ | don't know / | don't want to answer

. Have you adopted a Job Scheduler? *

Cloud applications require frequent short-running jobs to be scheduled, which must be
orchestrated across a dynamic infrastructure without permanently allocating resources. A
scheduler service running along with the Orchestration Manager can instruct it to allocate one
time or periodic jobs, recovering their resources to the infrastructure when they complete.
Example: Kubernetes Cronjobs.

Mark only one oval.

Q Yes, for the entire system

() Yes, partially

Q Under assessment or development
(") No, but we would like to

Q No, it is not relevant

(") Idon'tknow / I don't want to answer

Have you adopted Service Discovery? *

Services might lack the network information required to communicate with other dynamically
allocated services. Communication can be achieved by abstracting service network details by
relying on an external mechanism that facilitates communication and balances traffic between two
services. Example: Kubernetes DNS, Marathon reverse proxy.

Mark only one oval.

Q Yes, for the entire system

Q Yes, partially

Q Under assessment or development
() No, but we would like to

(") No, itis not relevant

C} | don't know / | don't want to answer

1.

12.

13.

Have you adopted a Messaging System? *

As service instances increase, communication between services needs to be abstracted, enabling
proper balancing between instances. This communication strategy is required to be fault-tolerant
and scalable to maintain the application's resiliency. As a solution, a messaging system,
colloquially known as message queue, can abstract service placement and orchestrate messages
with multiple routing strategies between them. Example: RabbitMQ, Kafka.

Mark only one oval.

O Yes, for the entire system

() Yes, partially

D Under assessment or development
(") No, but we would like to

(") No, itis not relevant

O | don't know / | don't want to answer

Have you adopted Failure Injection? *

Resilience mechanisms are triggered when software is failing. Since systems are designed to
work correctly, the status quo prevents us to from continuously verifying the correctness of those
mechanisms. We need additional strategies to minimize the probability of failure in production due
to faulty resilience strategies. Failure injection software can generate atypical events at both the
application and infrastructure level, exercising the available recovery mechanisms, verifying the
application's resilience. Example: ChaosMonkey from Netflix .

Mark only one oval.

Q Yes, for the entire system

() Yes, partially

Q Under assessment or development
(") No, but we would like to

(") No, itis not relevant

O | don't know / | don't want to answer

Have you adopted Preemptive Logging? *

The information required to debug issues in software is often lost during their first occurrence due
to insufficient log verbosity. By adjusting logging verbosity preemptively in services and servers
within acceptable resource limits (CPU, storage, others), the team maximizes the probability of
capturing relevant information for addressing future issues right from their first occurrence.

Mark only one oval.

O Yes, for the entire system

() Yes, partially

O Under assessment or development
() No, but we would like to

() No, itis not relevant

O | don't know / | don't want to answer

14.

15.

16.

17.

18.

Have you adopted Log Aggregation? *

Services orchestrated at scale produce disperse logs, resulting in a troublesome process to
acquire and correlate those who come from multiple sources. This pattern suggests the
Aggregation and indexing all service and server logs in a central repository, providing the team
with a centralized system to query and visualize execution logs. Example: Kibana, GrayLog.
Mark only one oval.

Q Yes, for the entire system

() Yes, partially

C) Under assessment or development
(") No, but we would like to

(") No, itis not relevant

@ | don't know / | don't want to answer

Have you adopted External Monitoring? *

Monitoring an application from inside the infrastructure that hosts it will result in an incomplete and
biased version of the reality, for example, given the inability to observe issues such as lack of
Internet connectivity or abnormal latency to the application. External Monitoring suggest testing
the application's public interfaces from an external source, providing an unbiased awareness of
the application's status. Example: StatusCake, Pingdom.

Mark only one oval.

C) Yes, for the entire system

() Yes, partially

Q Under assessment or development
(") No, but we would like to

Q No, it is not relevant

() Idon'tknow / I don't want to answer

Your role in the product development *
Mark only one oval.

CTO

CEO

ClO

Senior Engineer
Engineer
Architect

Team leader

Other:

00000000

Number of collaborators in the company *
Mark only one oval.

() 1-10
() 11-50
() 51-250
() >251

Company name

19. Country

20. Comments

Please let us know if you have any interesting detail to share regarding your infrastructure,
application architecture, or this questionnaire. Feel free to share your email if you want to receive
further details about this research.

Thanks for your collaboration!

246

SURVEY

B.2 Responses

We got 102 responses to the survey from companies from all geographic regions,
sizes, and levels of maturity. Some respondents shared their place of work, so we
know we have reached the following companies: ABC, Agfa Healthcare, B6, Barkyn,
be.ubi, BySide, BytePitch, Codavel, Comcast, CompStak, CustomerGauge, Dataform,
Desjardins, DigitalOcean, E-goi, Eondeotec, FARO Technologies, Facebook, Feedzai,
Hostelworld, InVision, Infraspeak, Insight Software, Lead Forensics, Loqr, Mindera,
OLR/E2X, PaddyPowerBetfair, Pigeonlab, Playax, Reach plc, Scalyr, Smarkio, Trinity
Mirror, Ultimaker, Utility warehouse, VMuse, Lda, Velocidi, XING, Yahoo!JAPAN, and
Yapily.

Responses are individually listed in the tables in this section. Responses are identified
with an anonimized sequential ID to hide the relation between the company name and
their responses. Table B.1 (p. 248), Table B.2 (p. 249), Table B.3 (p. 250) classify the
respondent regarding country, respondent role, product strategy, active monthly users,
and company size. Table B.4 (p. 251), Table B.5 (p. 252),and Table B.6 (p. 253), identify
which patterns the respondent adopted in their product.

Some respondents provided some comments with their responses. Most were email

contacts to receive a follow-up regarding this research. The others were the following:

C1. We are still in a first stage of deploying services to the cloud that support our
desktop software. Current services help bridge customers with the software we
build (logging, crash detections, updates). We started with Azure Web apps (non
containerized, but isolated deployment) and are currently moving to IaC and
containerized apps to make the delivery process better and scalable. Mentioned
collaborator numbers are only for the Portugal team, as though the company is

global, teams work more or less independently.
C2. Hope I didn’t break any nda.

C3. You should have a section for serverless, we did a mixture of containers and Lambda

for our architecture but I couldn’t accurately reflect that given the questions.

C4. Some costumers are on prem, some are on Amazon Web Services (AWS). System
is horizontally scalable (to a degree) and fault tolerant. Cloud patterns adoption
depends on the project / client, going from rudimentary per-machine Ansible to

automated blue green deployments on AWS.

C5. Multiple dozens of billions of requests processed per day.

RESPONSES

C6. I answered single deploy, but in reality we deploy 3 times. We cluster our customer
geographically and we deploy on US, Europe and Australia and each customer have

their own database.

C7. Sorry for not sharing company name - you're asking for potentially sensitive

information. I would not even include that question.

247

248

SURVEY
ID Country Role Product Active Company
strategy = monthly size
users

R1 Portugal Engineer SSMC 1k — 10k 51 — 250
R2 Portugal CTO SSMC 10k — 100k 11 - 50
R3 — Engineer SSMC 10k — 100k 1-10
R4 Portugal Engineer OSPC < 100 > 251
R5 Spain Team Leader SSMC 100k — 1M > 251
R6 Portugal Senior Engineer SSMC 100 - 1k 11 - 50
R7 Portugal Engineer SSMC 100 — 1k > 251
R8 Portugal Senior Engineer SSSC 1k — 10k > 251
R9 Portugal Senior Engineer SSMC 10k — 100k 11 - 50
R10 Portugal CTO SSMC < 100 1-10
R11 Portugal Senior Engineer OSPC 100k — 1M > 251
R12 U.K. Senior Engineer OSPC 1k — 10k 51 — 250
R13 Portugal Engineer SSMC 100 - 1k 1-10
R14 Portugal CEO SSMC 100 — 1k 11 - 50
R15 Canada Developer OSPC 10k — 100k > 251
R16 Portugal Engineer SSMC 100k — 1M 51 — 250
R17 U.K. Engineer SSMC > 1M > 251
R18 Portugal Consultant SSMC 1k — 10k 1-10
R19 Portugal Team Leader SSMC 1k — 10k 11 - 50
R20 Portugal CTO OSPC 100 — 1k 11 - 50
R21 — Engineer SSMC 1k — 10k 1-10
R22 U.K. Team Leader SSMC < 100 1-10
R23 — Senior Engineer OSPC 10k — 100k 11 - 50
R24 Portugal Senior Engineer SSMC 100 - 1k 1-10
R25 Portugal Engineer SSMC 100k — 1M 11 - 50
R26 Germany Engineer SSMC 100k — 1M > 251
R27 U.S.A. Architect SSMC 1k — 10k 1-10
R28 U.K. Senior Engineer SSMC > 1M 51 — 250
R29 U.K. Senior Engineer SSMC 100 — 1k 11 - 50
R30 Portugal Engineer OSPC 100k — 1M 51 — 250
R31 U.K. Senior Engineer SSMC 100 - 1k 11 - 50
R32 — Product owner SSMC 10k — 100k > 251
R33 Portugal Team Leader SSMC 1k — 10k 11 - 50
R34 Portugal Senior Engineer SSSC < 100 > 251
R35 Portugal Engineer OSPC > 1M 1-10

Table B.1: Classification of the respondent from the questionnaires responses (1/3). The product
strategy uses the following acronyms: One System Per Customer One system
per customer (OSPC), Single System Multiple Customers Single system, multiple
customers (SSMC), and Single System for Single Customer Single system, single
customer (SSSC) The responses are divided in two parts. Questions not responded

are identified with a "—

” character.

RESPONSES
ID Country Role Product Active Company
strategy monthly size
users
R36 U.S.A. Senior Engineer SSMC 100k — 1M > 251
R37 Portugal Senior Engineer OSPC > 1M 51 — 250
R38 Germany Senior Engineer SSSC 1k — 10k 11 - 50
R39 Portugal CEO SSMC < 100 1-10
R40 Switzerland CTO SSMC 100 — 1k 1-10
R41 Portugal Senior Engineer SSMC 10k — 100k > 251
R42 Brazil CTO SSMC 100 — 1k 1-10
R43 Portugal Senior Engineer SSMC 100k — 1M > 251
R44 Portugal Engineer SSMC < 100 > 251
R45 — Engineer SSMC 100k — 1M 51 — 250
R46 U.S.A. Senior Engineer OSPC 100k — 1M > 251
RA47 — Team Leader SSSC < 100 > 251
R48 Portugal Senior Engineer SSSC 1k — 10k 1-10
R49 U.K. Senior Engineer OSPC < 100 51 — 250
R50 — Engineer SSSC 1k — 10k 1-10
R51 — CTO SSMC 1k — 10k 1-10
R52 U.K. Engineer SSMC > 1M 51 — 250
R53 Portugal Engineer SSMC < 100 1-10
R54 Portugal Head of SSMC 100k — 1M 51 — 250
Innovation and
Research

R55 Portugal CTO SSMC 100k — 1M 11 - 50
R56 Portugal Senior Engineer SSMC < 100 1-10
R57 Portugal Engineer SSMC < 100 11 - 50
R58 Spain Architect SSMC 100k — 1M 51 — 250
R59 U.S.A. Senior Engineer SSMC 100k — 1M > 251
R60 — Architect SSSC < 100 1-10
R61 U.K. Engineer SSMC 1k — 10k > 251
R62 Germany Team Leader SSMC 10k — 100k > 251
R63 Portugal CTO SSMC < 100 1-10
R64 Portugal Architect SSSC < 100 11 - 50
R65 U.S.A. Engineer OSPC 10k — 100k 11 - 50
R66 Ireland Engineer SSMC > 1M 11 - 50
R67 — Team Leader SSMC 100 — 1k 11 - 50
R68 Netherlands Engineer SSMC 1k — 10k 11 - 50
R69 Portugal Engineer SSMC > 1M > 251
R70 Luxembourg Product Manager SSMC 100 - 1k > 251

Table B.2: Classification of the respondent from the questionnaires responses (2/3). The product
strategy uses the following acronyms: One System Per Customer OSPC, Single
System Multiple Customers SSMC, and Single System for Single Customer SSSC
The responses are divided in two parts. Questions not responded are identified with

a ”—” character.

249

SURVEY

ID Country Role Product Active Company

strategy = monthly size

users
R71 Italy Senior Engineer SSMC 10k — 100k 11 - 50
R72 U.K. CTO SSMC < 100 1-10
R73 — Team Leader SSSC 100 — 1k 51 — 250
R74 — Senior Engineer SSMC 100 - 1k 1-10
R75 Netherlands Senior Engineer SSMC 1k — 10k 1-10
R76 — Engineer OSPC 100k — 1M 51 — 250
R77 — Engineer OSpPC 100 — 1k 11 - 50
R78 — Team Leader SSMC 1k — 10k > 251
R79 U.K. Senior Engineer OSPC < 100 11 - 50
R8O U.S.A. Architect SSMC 100k — 1M > 251
RS81 U.K. Senior Engineer SSMC 10k — 100k > 251
R82 Ireland Engineer SSMC 10k — 100k > 251
R8&3 Portugal Senior Engineer SSMC 100k — 1M 11 - 50
R84 Portugal CTO SSSC 100k — 1M 1-10
R85 U.K. Head of SSMC 10k — 100k > 251
Reliability
Engineering

R86 — Engineer SSMC 100k — 1M > 251
R&7 — Architect OSPC 1k — 10k > 251
RS88 Andorra Engineer OSPC 1k — 10k 1-10
R89 U.S.A. Senior Engineer SSMC 100k — 1M 51 — 250
R90 U.K. CTO SSMC 10k — 100k 11 - 50
R91 U.S.A. Dev Rel SSMC 1k — 10k 11 - 50
R92 — Architect SSMC 10k — 100k 51 — 250
R93 Japan Senior Engineer OSPC 100 - 1k 11 - 50
R94 India Engineer SSMC 10k — 100k > 251
R95 Portugal CTO SSMC 100 — 1k 11 - 50
R96 Portugal Team Leader OSPC 1k — 10k > 251
R97 Portugal CEO SSMC 100 — 1k 1-10
R98 Germany Product Owner OSPC < 100 51 — 250
R99 Singapore Engineer SSMC 100k — 1M 11 - 50
R100 U.K. CTO SSMC > 1M 1-10
R101 Denmark Senior Engineer SSMC 1k — 10k 51 — 250
R102 Portugal Engineer SSMC < 100 1-10

Table B.3: Classification of the respondent from the questionnaires responses (3/3). The product
strategy uses the following acronyms: One System Per Customer OSPC, Single
System Multiple Customers SSMC, and Single System for Single Customer SSSC
The responses are divided in two parts. Questions not responded are identified with

a "—" character.

251

RESPONSES

JOJTUOTA] [EUIDIXTH
uorye3do1s3y Sul3sor]
Surd3or aAarydwoaag
ATISA0DSI(] 991AIOS
W)SAS SUISeSSOIA
ompeyos qor
AISA009Y pojemio)ny
uoljeziIourejuo))
uorjoofuy aanjreq

9poO)) se aanjonajiserjuy
Ayiqereosg pajewony
Ia8eURA\] UOIJRIISIYII()

A

O

R1

R2

R3

R4

® OO

R5

R6

R7

® O

R8
R9

R10

R11

R12

R13

[
[
O
o
O
O

R14
R15

R16
R17

R18

R19

R20

R21

R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35

Table B.4: Pattern adoption per respondent (1/3). Positive response are identified with @,

O identified negative responses and "—” is used when the user did not provide

a response to the question.

SURVEY

252

JOJTUOTA] [EUIDIXTH
uorye3do1s3y Sul3sor]
Surd3or aAarydwoaag
ATISA0DSI(] 991AIOS
W)SAS SUISeSSOIA
ompeyos qor
AISA009Y pojemio)ny
uoljeziIourejuo))
uorjoofuy aanjreq

9poO)) se aanjonajiserjuy
Ayiqereosg pajewony
Ia8eURA\] UOIJRIISIYII()

A

®
®
O
O
O

R36

R37
R38

ON®;

R39
R40
R41
R42
R43

O

R44
R45
R46

R47
R48
R49
R50

R51

R52
R53

O
O

R54

R62
R63
R64

Table B.5: Pattern adoption per respondent (2/3). Positive response are identified with @,

O identified negative responses and "—” is used when the user did not provide

a response to the question.

253

RESPONSES

JOJTUOTA [BUIDIXT
uorye39133y Surs3ory
Sui8380 oarpdweoag
AISA0ISI(] 991AIOG
weSAS Surdesson
Iompoayos qor
AIOA029Y pojremwolny
uoljezIIourejuo))
uorjosfuy aanjreq

9pOo)) Sk 2INJONI)seruy
AIqe[eds pejremwiony

.H@WNGNH\/._” uorjealsayoa(

=

R71
R72

R73
R74
R75
R76
R77
R78
R79
R80

® O

R81

R82
R83
R84
R85
R86
R87
R88
R89
R90
R9I1

[
O
®
®
| J

R92

]
O
[
O
®
|
O

R96
R97
R98
R99

R100

R101

O

R102

Table B.6: Pattern adoption per respondent (3/3). Positive response are identified with @,

O identified negative responses and "—” is used when the user did not provide

a response to the question.

254 SURVEY

Appendix C

Publications

C.1 Publications Resulting from this Research 255
C.2 Other Publications from the Author. 259
C.3 Supervisions e 264

During this research, the author published 18 peer-reviewed papers and supervised
10 Bachelor and Master’s students. These resulted in 119 citations, an h-index of 5, and
an i10-index of 3'. The next sections detail the publications resulting from this research,

other publications from the author, and his (co-)supervisions.

C.1 Publications Resulting from this Research

Contributions from this research led to the publication of several peer-reviewed papers,
listed in Table C.1 (p. 256).

C.1.1 Patterns for Software Orchestration on the Cloud

20M Pattern Languages of Programs. Pittsburgh, Pennsylvania, USA. 2015.

Abstract: Software businesses are redirecting their expansion towards service-oriented
business models, highly supported by cloud computing. While cloud computing is not
a new research subject, there is a clear lack of documented best practices on how to
orchestrate cloud environments, either public, private or hybrid. This paper is targeted

at DevOps practitioners and explores solutions for cloud orchestration, describing them

I Using Google Scholar as reference, according to https://scholar.google.pt/citations?hl=en&user=
Q6DV2ZcAAAAI

https://scholar.google.pt/citations?hl=en&user=Q6Dv2ZcAAAAJ
https://scholar.google.pt/citations?hl=en&user=Q6Dv2ZcAAAAJ

256 PUBLICATIONS

Title Citations Year
A Survey on the Adoption of Patterns for Engineering — submitted
Software for the Cloud

Design Patterns for Cloud Computing — submitted
Overview of a Pattern Language for Engineering Software for 2 2018
the Cloud

Engineering Software for the Cloud: External Monitoring and 2 2018
Failure Injection

Engineering Software for the Cloud: Automated Recovery and 2 2018
Scheduler

Engineering Software for the Cloud: Messaging Systems and 6 2017
Logging

Engineering Software for the Cloud: Patterns and Sequences) 2016
Patterns for Software Orchestration on the Clouds 14 2015

Table C.1: Peer-reviewed published work from the author. The publication count was obtained
from Google Scholar on December 12th, 2019.

as three patterns: a) SOFTWARE CONTAINERIZATION, providing resource sharing with
minimal virtualization overhead, b) LOCAL REVERSE PROXY, allowing applications to
access any service in a cluster abstracting its placement and c¢) ORCHESTRATION BY
RESOURCE OFFERING, ensuring applications get orchestrated in a machine with the
required resources to run it. The authors believe that these three DevOps patterns will
help researchers and newcomers to cloud orchestration to identify and adopt existing best

practices earlier, hence, simplifying software life cycle management. [BCS15]

C.1.2 Engineering Software for the Cloud: Patterns and Sequences

11" Latin American Conference on Pattern Languages of Programs (SugarLoaf PLoP).
Buenos Aires, Argentina. 2016.

Abstract: Software businesses are quickly moving towards the cloud. While cloud
computing is not a new research subject, engineering software for the cloud is still a
challenge, demanding broad knowledge over a multitude of processes and tools that
most software development teams lack. This paper identifies and briefly describes the
practices required to efficiently engineer software for the cloud. The authors use the
concept of patterns to capture and share those practices and describe their possible usage
in an exemplar sequence. Patterns are aggregated into categories, namely: development,
deployment, execution, discovery and communication, monitoring and supervision. An
example sequence of application for these patterns is described. The paper is targeted at

newcomers, practitioners and expert developers of software for the cloud, guiding them

PUBLICATIONS RESULTING FROM THIS RESEARCH

through architectural decisions, at solving specific issues or just validating their decisions.

[Bol+16]

C.1.3 Engineering Software for the Cloud: Messaging Systems and
Logging

22" Buropean Conference on Pattern Languages of Programs (EuroPLoP). Irsee, Bavaria,
Germany. 2017.

Abstract: Software business continues to expand globally, highly motivated by the
reachability of the Internet and possibilities of Cloud Computing. While widely adopted,
development for the cloud has some intrinsic properties to it, making it complex to any
newcomer. This research is capturing those intricacies using a pattern catalog, with this
paper contributing with three of those patterns: Messaging System, a message bus for
abstracting service placement in a cluster and orchestrating messages between multiple
services; Preemptive Logging, a design principle where services and servers continuously
output relevant information to log files, making them available for later debugging failures;

and Log Aggregation, a technique to aggregate logs from multiple services and servers in a

centralized location, which indexes and provides them in a queryable, user friendly format.

These patterns are useful for anyone designing software for the cloud, either to guide or

validate their design decisions. [Bol+17]

C.1.4 Engineering Software for the Cloud: External Monitoring and

Fault Injection

23" Buropean Conference on Pattern Languages of Programs (EuroPLoP). Irsee, Bavaria,
Germany. 2018.

Abstract: Cloud software continues to expand globally, highly motivated by the how
widespread the Internet is and the possibilities it unlocks with Cloud Computing. Still,
cloud development has some intrinsic properties to it, making it complex to unexperienced
developers. This research is capturing those intricacies in the form of a pattern language,
gathering over 12 patterns for engineering software for the cloud. This paper elaborates
on that research by contributing with two new patterns: External Monitoring, which
continuously monitors the system as a black box, validating its status and Fault
injection, which continuously verifies system reliability by injecting failures into the cloud

environment and confirming that the system recovers from it. The described patterns are

2

7

PUBLICATIONS

useful for anyone designing software for the cloud, either to bootstrap or validate their

design decisions and ultimately enable them to create better software. [Bol+18b]

C.1.5 Engineering Software for the Cloud: Automated Recovery and
Scheduler

23" Buropean Conference on Pattern Languages of Programs (EuroPLoP). Irsee, Bavaria,
Germany. 2018.

Abstract: Cloud software continues to expand globally, highly motivated by the how
widespread the Internet is and the possibilities it unlocks with Cloud Computing. Still,
cloud development has some intrinsic properties to it, making it complex to unexperienced
developers. This research is capturing those intricacies in the form of a pattern language
which gathers over 12 patterns for engineering software for the cloud. This paper
elaborates on that research by contributing with two new patterns: Automated Recovery
which checks if a container is working properly, automatically recovering it in case
of failure and Scheduler, which periodically executes actions within the infrastructure.
The described patterns are useful for anyone designing software for the cloud, either to
bootstrap or validate their design decisions and ultimately enable them to create better

software. [Bol+18a]

C.1.6 Overview of a Pattern Language for Engineering Software for
the Cloud

25t Pattern Languages of Programs (PLoP). Portland, Oregon, USA. 2018.

Abstract: Software businesses are continuously increasing their cloud presence in the
cloud. While cloud computing is not a new research topic, designing software for the cloud
still requires engineers to make an investment to become proficient working with it. This
paper introduces a pattern language for cloud software development and briefly describes
details pattern. Design patterns can help developers validate or design their cloud software.
The language is composed by ten patterns novel patterns organizes in three categories:
Orchestration and Supervision, Monitoring and Discovery and Communication. Finally,
the paper demonstrates how to adopt the pattern language using a pattern application
sequence. [SFCI1§]

OTHER PUBLICATIONS FROM THE AUTHOR

C.1.7 Design Patterns for Cloud Computing

Submitted to Springer’s Lecture Notes of Computer Science journal Transactions on

Pattern Languages of Programming, ISSN 1869-6015. Pending acceptance and publication.

Abstract: Software businesses are continuously increasing their presence in the cloud.

While cloud computing is not a new research topic, designing software for the cloud
is still a challenge, requiring from engineers a vast investment in research to become
proficient at working with it. To facilitate cloud adoption, design patterns can be
used, as they provide valuable design knowledge and implementation guidelines for
recurrent engineering problems. This work introduces a pattern language for designing

software for the cloud. We believe developers can significantly reduce their Research and

Development (R&D) time by adopting these patterns to bootstrap their cloud architecture.

The language is composed by 10 patterns, organized into four categories: Automated
Infrastructure Managements, Orchestration and Supervision, Monitoring, and Discovery

and Communication.

C.2 Other Publications from the Author

Contributions to other lines of research, along with student supervision, led to the

publication of several peer reviewed papers, listed in Table C.2 (p. 260).

C.2.1 Dataflow Programming: Concept, Languages and Applications

7™ Doctoral Symposium in Informatics Engineering. Lisbon, Portugal, 2012.

Abstract: Dataflow Programming (DFP) has been a research topic of Software
Engineering since the ’70s. The paradigm models computer pro- grams as a direct
graph, promoting the application of dataflow diagram principles to computation, opposing
the more linear and classical Von Neumann model. DFP is the core to most visual
programming languages, which claim to be able to provide end-user programming:
with it’s visual interface, it allows non-technical users to extend or create applications
without programming knowledges. Also, DFP is capable of achieving parallelization
of computation without introducing development complexity, resulting in an increased
performance of applications built with it when using multi-core computers. This survey
describes how visual programming languages built on top of DFP can be used for end-user
programming and how easy it is to achieve concurrency by applying the paradigm, without
any development overhead. DFP’s open problems are discussed and some guidelines for

adopting the paradigm are provided. [Soul2]

2

9

260 PUBLICATIONS

Title Citations Year
Towards a pattern language for the masters student — 2019
Testing and deployment patterns for the internet-of-things — 2019
A Testing and Certification Methodology for an Open 7 2014
Ambient-Assisted Living Ecosystem

Collaborative Web Platform for UNIX-Based Big Data Processing — 2014
Sensors, actuators and services: a distributed approach — 2013
A testing and certification methodology for an Ambient-Assisted 4 2013
Living ecosystem

Monitor, Control and Process — An Adaptive Platform for — 2013
Ubiquitous Computing

Object-Functional Patterns: Re-thinking Development in a — 2012
Post-Functional World

Ubiquitous ambient assisted living solution to promote safer 26 2012
independent living in older adults suffering from co-morbidity

A Collaborative Expandable Framework for Software End-Users — 2012
and Programmers

Scalable Integration of Multiple Health Sensor Data for Observing 4 2012
Medical Patterns

Dataflow Programming: Concept, Languages and Applications 47 2012

Table C.2: Peer-reviewed published work from the author not directly related to this research.
The publication count was obtained from Google Scholar on December 12th, 2019.

C.2.2 Scalable Integration of Multiple Health Sensor Data for
Observing Medical Patterns

9" Cooperative Design, Visualization, and Engineering Conference. Osaka, Japan. 2012.
Abstract: With an aging global population, Ambient Assisted Living (aal) attempts to
improve life expectancy and quality of life through the remote monitoring of various health
signals using personal and home-based sensors. Possible medical conditions can be early
ascertained by observable patterns over the patients’ health data. However, aggregating
multiple raw signals and matching against medical protocols can be computational and
bandwidth intensive. Moreover, adding new protocols requires non-trivial expertise to
define necessary rules. This paper describes a lightweight, scalable, and composable
mechanism that captures, processes and infers possible health problems from raw data

obtained from multiple sensors. [F'SM12]

OTHER PUBLICATIONS FROM THE AUTHOR

C.2.3 A Collaborative Expandable Framework for Software End-Users

and Programmers

9" Cooperative Design, Visualization, and Engineering Conference. Osaka, Japan. 2012.
Abstract: Monitor, control and process data on top of distributed networks has been
a trending topic in the past few years, with ubiquity being adjective to computing and,
gradually, the Internet of Things becoming a reality in home and factory automation or
Ambient Assisted Living (aal). Still, there is a general lack of knowledge and best practices
on how to build systems that integrate devices and services from third-parties which
connect dynamically with each other. Recurring problems such as security, clustering,
message passing, deployment and other orchestration details also lack a standardized
solution. The authors describe a platform that simplifies the bootstrap and maintenance
of such complex systems, presenting its application in an aal scenario. Such platform could
orchestrate most distributed systems, possibly setting a pattern for distributed ubiquitous
computing. [AFB12]

C.2.4 Ubiquitous ambient assisted living solution to promote safer

independent living in older adults suffering from co-morbidity

34" Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). San
Diego, CA, USA. 2012.

Abstract: This paper describes the development, deployment and trial results from 9
volunteers using the eCAALYX system. The eCAALYX system is an ambient assisted
living telemonitoring system aimed at older adults suffering with co-morbidity. Described
is a raw account of the challenges that exist and results in bringing a Telemedicine system
from laboratory to real-world implementation and results for usability, functionality and
reliability. [Pre+12b]

C.2.5 Object-Functional Patterns: Re-thinking Development in a
Post-Functional World

8" Internal Conference on Quality of Information and Communications Technology
(QUATIC). Lisbon, Portugal. 2012.

Abstract: Programing paradigms define how to think and design while creating software.
Object-Oriented and Functional paradigms are two of the most adopted for synthesizing it.
Modern languages, attempting to provide higher abstractions, are increasingly supporting

native multi-paradigm programming styles. The Object-functional approach still uses

261

262

PUBLICATIONS

classes for information and high-level structure, but allows algorithms to be implemented
functionally. New challenges now exist and there is a general lack of knowledge on best
practices for adopting this paradigm. This research proposes the systematic usage of
software patterns to capture these new recurring problems and their solutions, though
not discarding the identification of new algorithms and designs. We will use Scala
as a base language, and will attempt to validate our hypothesis through multiple
methodologies, including quasi-experiments and case studies. We expect to provide a
basis for improvement for programming languages (through pattern absorption) and for

software engineering professionals. [BF12]

C.2.6 Monitor, Control and Process — An Adaptive Platform for
Ubiquitous Computing

10" Cooperative Design, Visualization, and Engineering Conference. Mallorca, Spain.
2013.

Abstract: Monitor, control and process data on top of distributed networks has been
a trending topic in the past few years, with ubiquity being adjective to computing and,
gradually, the Internet of Things becoming a reality in home and factory automation or
Ambient Assisted Living (aal). Still, there is a general lack of knowledge and best practices
on how to build systems that integrate devices and services from third-parties which
connect dynamically with each other. Recurring problems such as security, clustering,
message passing, deployment and other orchestration details also lack a standardized
solution. The authors describe a platform that simplifies the bootstrap and maintenance
of such complex systems, presenting its application in an aal scenario. Such platform could
orchestrate most distributed systems, possibly setting a pattern for distributed ubiquitous

computing. [SM13]

C.2.7 Sensors, Actuators and Services: a Distributed Approach

18" conference on Systems, Programming, Languages, and Applications: Software for
Humanaty. Indianapolis. 2013.

Abstract: Proliferation of the Internet is enabling the use of sensors and actuators to
capture data and control devices remotely in a multitude of domains. Still, there is a
general lack of best practices while designing such large scale real-time systems. This
paper describes a generic architecture used on the implementation of a framework for

deploying such systems in the cloud, enabling run-time evolution of the system with

OTHER PUBLICATIONS FROM THE AUTHOR

new sensors, actuators or services possibly developed by third-parties being integrated
dynamically. Such architecture orchestrates the flow of information in the ecosystem
and scales transparently to external components when needed, requiring no change in
them. Adoption in the Portuguese nation-wide AAL project AAL4ALL is then described.
[Soul3|

C.2.8 Collaborative Web Platform for UNIX-Based Big Data

Processing

11" Cooperative Design, Visualization, and Engineering Conference. Seattle, WA, USA.
2014

Abstract: UNIX-based operative systems were always empowered by scriptable shell
interfaces, with a core set of powerful tools to perform manipulation over files and data
streams. However those tools can be difficult to manage at the hands of a non-expert
programmer. This paper proposes the creation of a Collaborative Web Platform to easily
create workflows using common UNIX command line tools for processing Big Data through
a collaborative web GUI. [CFS14]

C.29 A Testing and Certification Methodology for an

Ambient-Assisted Living Ecosystem

International Journal of E-Health and Medical Communications in 2014.

Abstract: To cope with the needs raised by the demographic changes in our society,
several Ambient-Assisted Living (AAL) technologies have emerged in recent years, but
those ‘first offers’ are often monolithic, incompatible and thus expensive and potentially
not sustainable. The AAL4ALL project aims at improving that situation through the
development of an open ecosystem of interoperable products and services for AAL, tied
together via an integration infrastructure. To that end, the project encompasses the
specification of a set of reference models and requirements for interoperable products and
services, against which candidate products and services can be tested and certified, and
subsequently integrated as components of the ecosystem. This paper proposes a testing

and certification methodology for such an ecosystem. [Far+13]

C.2.10 Testing and Deployment Patterns for the Internet-of-Things

24" Buropean Conference on Pattern Languages of Programs. Irsee, Bavaria, Germany.

Abstract: As with every software, Internet-of-Things (IoT) systems have their own

263

264

PUBLICATIONS

life-cycle, from conception to construction, deployment, and operation. However, the
testing requirements from these systems are slightly different due to their inherent
coupling with hardware and human factors. Hence, the procedure of delivering new
software versions in a continuous integration/delivery fashion must be adopted. Based
on existent solutions (and inspired in other closely-related domains), we describe two
common strategies that developers can use for testing IoT systems, (1) Testbed and
(2) Simulation-based Testing, as well as one recurrent solution for its deployment (3)
Middleman Update. [DFS19]

C.2.11 Towards a Pattern Language for Writing Engineering Theses

24" Buropean Conference on Pattern Languages of Programs. Irsee, Bavaria, Germany.
Abstract: Every year, thousands of new students begin their Masters in Science
dissertation in computer science/engineering and other Science, technology, engineering,
and mathematics related topics. Despite being regarded as a common occurrence by
the faculty, it represents the culmination of years of studying and preparation for their
professional life. Notwithstanding, these students face well-known recurrent problems: how
to choose a topic, how to choose an advisor, how to start researching, and how to deal
with all the unknown associated to the contact with academic research. Although there are
several books on how to write a thesis, most of them avoid prescriptive recommendations
on topics beyond research per se or focus on doctoral students, for which the duration and
motivation are significantly different. In this paper, we draft a pattern language comprised
of thirty patterns that we have observed from supervising over a hundred masters students
with within the last decade. [FRS19]

C.3 Supervisions

The author (co-)supervised 10 students pursuing their Bachelor and Master’s degree, from
Faculdade de Engenharia da Universidade do Porto (FEUP) and Instituto Superior de
Engenharia do Porto (ISEP). Table C.3 (p. 265) identifies these supervisions.

265

SUPERVISIONS

suonnqLuod juopuadopur 1y 300foxd oures oy} 03 pojyeradood RIMION I0}IA PUE BA[IS 0501 ,
"(¢9g “d) q 93013004 990G ,,

"SJUOPNYS SISO} S,I9ISRIN pPuk Io[pyoeq pasiatedng :g¢:D o[qel,

uoryisoduro) syusuoduo))

ZI0C epw[y OSeL], dNa4d SISOU T, S I0ISRJ\ [BUSIA O[(eSNoY YSNOIY) SOOIAd(] O[IOJ\ U] SUTWWRISOL] I9S)-Pus]
2102 RA[IS 0S0I(] dHASI 10001 S, I0[oyORY ¢SOSOPT op 0BIRZIIONUOIN eIed prorpuy oedeordy
2107 ®IDION IOMA dHASI 100lo1g s J0[oyPRYg »SOSOP] 9p ordezLojtuoly ered proipuy ordeordy
JUOUIUOIIAUG]

€10% O[LIY) 00SBA dNA4d SISO T, S, I9ISRJ\ QAL 9[qISUl)IXY UR SpIemo) syijduiy e[eog Jo A[IqIxey oY) sSuriojdxy
TVV UL S9OIAS(] JO UOIRISOIU]

€103 SOA[Y ORO[f dNAA SISO T, S, J9ISR]\| pUR UOIRIISOUDI() 10 IOMOWRI] POSRURIN-J[OS © SpIeRMO]T,
SMOPIOAN

€10¢ oI)se)) IRW() dNAA SISO T, S, 10158\ XIN[] 10} o8engue] SUruwrI3olJ [BNSIA OAI}RIO(R[[0)) © SPIRMO],
LdS pue

71I0C ®O9SUO, SIN'] dNA4d SISO T, S, 101se]\ ®e[edg Uym proipuy 10} juswdofess(uonyestiddy pidey Suriojdxy
SOOIAIOG T,SHY oFeS-odA T, A[[eorie)g JO UOIRIDUL)

GI0Z eIeAl() odiig dNnHd4a SISOU [, S, I9ISR]\ Pose(-[opOIN oWl], o[iduwo)) 10] WoISAG OIdeRJN e[ed§ o) Suriojdxsyy
0107 solreq uaqmy JdASI SISO T, S,101SeIN MOLIOWOT, 10} sordojouyda], sdO)ro(
oua0g dnjreig

0107 ®RIXIQT, SO[IR)) dNA4A SISO T, S, I9ISRJ\ 9SonSNjIod oY) WOl suIdljed pue seonoeid :sdOas(] spiemo],

Te9x Ioyny uoINIIYsu] MI0M S[NL

266 PUBLICATIONS

References

[18]

[Ace+13]

[Adalb]

[AFB12]

[AIST7]

[AJB99)

[AKL10]

[Ale02]

[Ale64]

[Ale79]

Key figures on Europe — Statistics Illustrated. 2018. Do1: 10.2785 /594777
(cit. on p. 211).

Giuseppe Aceto et al. “Cloud monitoring: A survey.” In: Computer Networks
57.9 (2013), pp. 2093-2115. 18sN: 13891286. DO1: 10.1016/j.comnet.2013.04.
001 (cit. on pp. 29, 30, 77, 131).

William C. Adams. “Conducting Semi-Structured Interviews.” In: Handbook
of Practical Program Evaluation: Fourth Edition August (2015), pp. 492-505.
1SSN: 0190-0447. por: 10.1002/9781119171386.ch19. arXiv: arXiv:1011.1669v3
(cit. on pp. 150, 151).

Tiago Almeida, H.S. Hugo Sereno Ferreira, and Tiago Boldt Sousa.
“A Collaborative Expandable Framework for Software End-Users and
Programmers.” In: 9th Cooperative Design, Visualization, and Engineering.
Vol. 7467 LNCS. Osaka, Japan: Springer Berlin Heidelberg, 2012, pp. 163-166.
ISBN: 9783642326080. por: 10.1007/978-3-642-32609-7_22 (cit. on p. 261).

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern
Language: Towns, Buildings, Construction. Ed. by S Ishikawa and
M Silverstein. Vol. 2. Center for Environmental Structure 0. Oxford
University Press, 1977. Chap. 52, pp. 503-521. 1SBN: 0195019199 (cit. on
pp. 5, 21).

Réka Albert, Hawoong Jeong, and Albert Laszl6 Barabasi. “Diameter of the
world-wide web.” In: Nature 401.6749 (1999), pp. 130-131. 1SSN: 00280836.
DOI: 10.1038/43601. arXiv: 9907038 [cond-mat]. URL: http://www.nature.
com /doifinder/10.1038/43601 (cit. on p. 12).

Stephen Abrams, John Kunze, and David Loy. “An Emergent Micro-Services
Approach to Digital Curation Infrastructure.” In: International Journal of
Digital Curation 5.1 (2010), pp. 172-186. 1SSN: 1746-8256. DO1: 10.2218/ijdc.
v5il.151 (cit. on p. 17).

C Alexander. The Nature of Order, Book 2: The Process of Creating Life.
Center for Environmental Structure, 2002, p. 636. ISBN: 9780972652926
(cit. on pp. 21, 74).

Christopher Alexander. Notes on the Synthesis of Form. 1964. ISBN:
0-674-62751-2 (cit. on p. 21).

Christopher Alexander. The Timeless Way of Building. Oxford University
Press, 1979. 1sBN: 0195024028 (cit. on pp. 6, 21, 71).

https://doi.org/10.2785/594777
https://doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/10.1016/j.comnet.2013.04.001
https://doi.org/10.1002/9781119171386.ch19
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/978-3-642-32609-7_22
https://doi.org/10.1038/43601
https://arxiv.org/abs/9907038
http://www.nature.com/doifinder/10.1038/43601
http://www.nature.com/doifinder/10.1038/43601
https://doi.org/10.2218/ijdc.v5i1.151
https://doi.org/10.2218/ijdc.v5i1.151

268

REFERENCES

[AM17]

[Ama)
[Amalb]
[Amal7al

[AmalTb]

[And16]

[Arc]

[Arc19]

[Arm-+10]

[Atk99]

[Azul7]

[Ban+11]

[Bas—+01]

[BBMO6]

Saleem Alhabash and Mengyan Ma. “A Tale of Four Platforms: Motivations
and Uses of Facebook, Twitter, Instagram, and Snapchat Among College
Students?” In: Social Media and Society 3.1 (2017). 1SSN: 20563051. DOT:
10.1177/2056305117691544 (cit. on p. 194).

Amazon. AWS Architecture Center. URL: https: / / aws . amazon . com /
architecture/ (visited on 12/01/2019) (cit. on p. 36).

Amazon. Amazon EC2 Container Service. 2015. URL: https://aws.amazon.
com/docker/ (visited on 12/01/2019) (cit. on p. 85).

Amazon. Amazon Cloudtrail. 2017. URL: https://aws.amazon.com /cloudtrail /
(visited on 12/01/2019) (cit. on p. 122).

Amazon. Scheduled Tasks (cron). 2017. URL: http:/ / docs.aws.amazon .
com /AmazonECS /latest / developerguide /scheduled % 7B %5C_%7Dtasks. html
(visited on 12/01/2019) (cit. on p. 106).

Paul Anderson. Web 2.0 and beyond: Principles and technologies. CRC Press,
2016, pp. 1-412. 1SBN: 9781439828687. DOI: 10.5860/choice.50-3893 (cit. on

pp. 2, 12).
Arcitura Education Inc. Dynamic Failure Detection and Recovery. URL:
http: / / cloudpatterns . org / design % 7B % 5C _ %7Dpatterns / dynamic % 7B %

5C _ %7Dfailure % 7B % 5C _ %7Ddetection % 7B % 5C _ %7Dand % 7B % 5C _
%7Drecovery (visited on 12/01/2019) (cit. on p. 99).

Arcitura Education Inc. Cloud Patterns. 2019. URL: https://patterns.arcitura.
com/cloud-computing-patterns (visited on 09/24/2019) (cit. on pp. 34, 122).

Michael Armbrust et al. “A view of cloud computing.” In: Communications
of the ACM 53.4 (2010), pp. 50-58. 1sSN: 00010782. po1: 10.1145/1721654.
1721672. URL: http://portal.acm.org /citation.cfm?doid=1721654.1721672
(cit. on pp. 30, 31).

Roger Atkinson. “Project management: Cost, time and quality, two best
guesses and a phenomenon, its time to accept other success criteria.” In:
International Journal of Project Management 17.6 (1999), pp. 337-342. 1SSN:
02637863. por: 10.1016/50263-7863(98)00069-6 (cit. on p. 4).

Azure. Azure Logging and Auditing. 2017. URL: https://docs.microsoft.com /en-
us/azure/security /azure-log-audit (visited on 12/01/2019) (cit. on p. 122).

Prith Banerjee et al. “Everything as a service: Powering the new information
economy.” In: Computer 44.3 (2011), pp. 36-43. 1ssN: 00189162. por: 10.1109/
MC.2011.67 (cit. on pp. 2, 15).

Richard Baskerville et al. “How internet software companies negotiate
quality.” In: Computer 34.5 (2001), p. 51. 1ssN: 00189162. por: 10.1109 /
2.920612 (cit. on p. 18).

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A wvalidation of
object-oriented design metrics as quality indicators. Tech. rep. 10. Maryland,
USA: Univ. of Maryland, Dep. of Computer Science, 1996, pp. 751-761. DOTI:
10.1109/32.544352 (cit. on p. 4).

https://doi.org/10.1177/2056305117691544
https://aws.amazon.com/architecture/
https://aws.amazon.com/architecture/
https://aws.amazon.com/docker/
https://aws.amazon.com/docker/
https://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled%7B%5C_%7Dtasks.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduled%7B%5C_%7Dtasks.html
https://doi.org/10.5860/choice.50-3893
http://cloudpatterns.org/design%7B%5C_%7Dpatterns/dynamic%7B%5C_%7Dfailure%7B%5C_%7Ddetection%7B%5C_%7Dand%7B%5C_%7Drecovery
http://cloudpatterns.org/design%7B%5C_%7Dpatterns/dynamic%7B%5C_%7Dfailure%7B%5C_%7Ddetection%7B%5C_%7Dand%7B%5C_%7Drecovery
http://cloudpatterns.org/design%7B%5C_%7Dpatterns/dynamic%7B%5C_%7Dfailure%7B%5C_%7Ddetection%7B%5C_%7Dand%7B%5C_%7Drecovery
https://patterns.arcitura.com/cloud-computing-patterns
https://patterns.arcitura.com/cloud-computing-patterns
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
https://doi.org/10.1016/S0263-7863(98)00069-6
https://docs.microsoft.com/en-us/azure/security/azure-log-audit
https://docs.microsoft.com/en-us/azure/security/azure-log-audit
https://doi.org/10.1109/MC.2011.67
https://doi.org/10.1109/MC.2011.67
https://doi.org/10.1109/2.920612
https://doi.org/10.1109/2.920612
https://doi.org/10.1109/32.544352

[BCS15]

[Bec+01]

[Bel+11]

[BF12]

[BHS07]

[Birl5]

[BMO6]

[BMRI6]

[Bol+16]

[Bol+17]

[Bol+18a]

[Bol+18b)]

REFERENCES

Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira.
“Patterns for Software Orchestration on the Cloud.” In: 22nd Conference on
Pattern Languages of Programs. Pittsburgh, Pennsylvania, USA., 2015. 1SBN:
9781941652039 (cit. on pp. 25, 78, 94, 143, 202, 256).

Kent Beck et al. Manifesto for Agile Software Development. 2001. URL: http:
//agilemanifesto.org/ (cit. on p. 18).

Dominique Bellenger et al. “Scaling in cloud environments.” In: Recent
Researches in Computer Science - Proceedings of the 15th WSEAS
International Conference on Computers, Part of the 15th WSEAS CSCC
Multiconference (2011), pp. 145-150 (cit. on p. 2).

Tiago Boldt Sousa and Hugo Sereno Ferreira. “Object-Functional Patterns:
Re-thinking Development in a Post-Functional World.” In: 8th Quality of
Information and Communications Technology (QUATIC). Lisbon, Portugal:
IEEE, 2012, pp. 348-352 (cit. on p. 262).

Frank Buschmann, Kevlin Henney, and Douglas Schmidt. Pattern-Oriented
Software Architecture Volume 4: A Pattern Language for Distributed
Computing. 2007, p. 639. 1SBN: 9780470059029. pot1: 10.1007 /s13398-014-
0173-7.2. arXiv: 1011.1669v3. URL: http://www.citeulike.org/group /1660 /
article/1686652 (cit. on p. 30).

Jim Bird. Devops for Finance. Vol. 1. 2015. 1SBN: 9788578110796 (cit. on
p. 30).

Fernando Brito e Abreu and Walcelio Melo. “Evaluating the impact of
object-oriented design on software quality.” In: International Software
Metrics Symposium, Proceedings (1996), pp. 90-99. po1: 10.1109 / metric.
1996.492446 (cit. on p. 4).

F Bushmann, R Meunier, and H Rohnert. Pattern-oriented software
architecture: A System of Patterns, Volume 1. Vol. 1. Wiley Publishing, 1996,
p. 476. 1SBN: 9780471958697 (cit. on p. 143).

Tiago Boldt Sousa et al. “Engineering Software for the Cloud - Patterns
and Sequences.” In: 11th Latin American Conference on Pattern Languages
of Programs Programs. 11. Buenos Aires, Argentina, 2016, p. 8. ISBN:
9781941652053 (cit. on p. 257).

Tiago Boldt Sousa et al. “Engineering Software for the Cloud: Messaging
Systems and Logging.” In: 22nd Furopean Conference on Pattern Languages
of Programs. Irsee, Bavaria, Germany, 2017. 1SBN: 978-1-4503-4848-5. DOT: 10.
1145/3147704.3147720. URL: http://doi.acm.org/10.1145/3147704.3147720
(cit. on p. 257).

Tiago Boldt Sousa et al. “Engineering Software for the Cloud: Automated
Recovery and Scheduler.” In: 23rd Furopean Conference on Pattern Languages
of Programs. Irsee, Bavaria, Germany., 2018 (cit. on p. 258).

Tiago Boldt Sousa et al. “Engineering Software for the Cloud: External
Monitoring and Fault Injection.” In: 23rd Furopean Conference on Pattern
Languages of Programs. Irsee, Bavaria, Germany., 2018 (cit. on p. 258).

269

http://agilemanifesto.org/
http://agilemanifesto.org/
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2
https://arxiv.org/abs/1011.1669v3
http://www.citeulike.org/group/1660/article/1686652
http://www.citeulike.org/group/1660/article/1686652
https://doi.org/10.1109/metric.1996.492446
https://doi.org/10.1109/metric.1996.492446
https://doi.org/10.1145/3147704.3147720
https://doi.org/10.1145/3147704.3147720
http://doi.acm.org/10.1145/3147704.3147720

270

REFERENCES

[Bon+14]

[Bon16]

[Boo04]

[BP19)

[Bro+14]

[Bro15]

[Buil5]

[Cas+11]

[CCO6]

[CFS14]

[Cha05]

[Chal7]
[Chrl7]

[CLW14]

[CMV15]

Jonas Bonér et al. “The Reactive Manifesto (Version 2.0).” In:
Reactivemanifesto.Org 2.16 September 2014 (2014), pp.1-2. URL: http://
www.reactivemanifesto.org (cit. on pp. 106, 109).

Jonas Bonér. Reactive Microservices Architecture Design Principles for
Distributed Systems. 2016, p. 54. 1SBN: 978-1-491-95779-0 (cit. on pp. 29,
152).

Grady Booch. Object-Oriented Analysis and Design with Applications
(3rd Edition). Addison Wesley Longman Publishing Co., Inc., 2004. I1SBN:
9780201895513 (cit. on pp. 5, 21).

Morgan Bruce and Paulo A. Pereira. Microservices in action. Manning
Publications, 2019, p. 366. ISBN: 1617294454 (cit. on pp. 30, 170).

Antonio Brogi et al. “SeaClouds.” In: ACM SIGSOFT Software Engineering
Notes 39.1 (2014), pp. 1-4. 1SsN: 01635948. po1: 10.1145/2557833.2557844
(cit. on p. 17).

Malcolm Bronte-stewart. “Beyond the Iron Triangle: Evaluating Aspects
of Success and Failure using a Project Status Model.” In: Computing &
Information Systems 19.2 (2015), pp. 21-37 (cit. on p. 4).

Thanh Bui. “Analysis of Docker Security.” In: Computing Research Repository
abs/1501.0 (2015), p. 7. arXiv: 1501.02967. URL: http://arxiv.org/abs/1501.
02967 (cit. on p. 88).

James Casey et al. “A messaging infrastructure for WLCG.” In: Journal of
Physics: Conference Series 331.PART 6 (2011). 1SSN: 17426596. po1: 10.1088/
1742-6596/331/6,/062015 (cit. on pp. 30, 143).

D Cohen and B Crabtree. Semi-structured Interviews. 2006. URL: http://www.
qualres.org/HomeSemi-3629.html (visited on 12/01/2019) (cit. on p. 151).

Omar Castro, Hugo Sereno Ferreira, and Tiago Boldt Sousa. Collaborative
Web Platform for UNIX-Based Big Data Processing. Seattle, WA, USA, 2014.
DOI: 10.1007/978-3-319-10831-5_30 (cit. on p. 263).

Robert N. Charette. Why Software Fails. 2005. por: 10.1109/MSPEC.2005.
1502528. URL: http://spectrum.ieee.org/computing /software /why-software-
fails (cit. on p. 108).

Chaos Community. Principles of Chaos Engineering. 2017. URL: http://
principlesofchaos.org/ (visited on 12/01/2019) (cit. on pp. 114, 115).

Chronos. Chronos. 2017. URL: https://mesos.github.io/chronos/ (visited on
12/01/2019) (cit. on p. 105).

John Chinneck, Marin Litoiu, and Murray Woodside. “Real-time multi-cloud
management needs application awareness.” In: ICPE 2014 - Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering
(2014), pp. 293-296. po1: 10.1145/2568088.2576763 (cit. on p. 17).

Mario Callegaro, Katja Lozar Manfreda, and Vasja Vehovar. Web survey
methodology. Sage, 2015 (cit. on p. 192).

http://www.reactivemanifesto.org
http://www.reactivemanifesto.org
https://doi.org/10.1145/2557833.2557844
https://arxiv.org/abs/1501.02967
http://arxiv.org/abs/1501.02967
http://arxiv.org/abs/1501.02967
https://doi.org/10.1088/1742-6596/331/6/062015
https://doi.org/10.1088/1742-6596/331/6/062015
http://www.qualres.org/HomeSemi-3629.html
http://www.qualres.org/HomeSemi-3629.html
https://doi.org/10.1007/978-3-319-10831-5_30
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1109/MSPEC.2005.1502528
http://spectrum.ieee.org/computing/software/why-software-fails
http://spectrum.ieee.org/computing/software/why-software-fails
http://principlesofchaos.org/
http://principlesofchaos.org/
https://mesos.github.io/chronos/
https://doi.org/10.1145/2568088.2576763

[Com1bal
[Com15b]
[Con]

[Cor+18]

[Corl5]
[Cou00]
[Cunl4]

[Cus10]

[Cycl15]

[DAC15]

[Dad18]

[Dat18]

[Deb08]

[DFS19]

[Dia-+18]

REFERENCES

CoreOS Community. Eted Project Page. 2015. URL: https:/ /github.com /
coreos/eted (visited on 12/01/2019) (cit. on p. 147).

Vulcanproxy Community. Vulcanprozy Project Page. 2015. URL: http://www.

vulcanproxy.com/ (visited on 12/01/2019) (cit. on p. 147).

Mel Conway. Conway’s Law. URL: http:/ /www . melconway.com /Home /
Conways%7B%5C_%7DLaw.html (visited on 12/01/2019) (cit. on p. 18).

Fernando Dias Correia et al. “Home-based Rehabilitation With A Novel
Digital Biofeedback System versus Conventional In-person Rehabilitation
after Total Knee Replacement: a feasibility study.” In: Scientific Reports 8.1
(2018), pp. 1-12. 1SSN: 20452322. pOI: 10.1038/s41598-018-29668-0 (cit. on
p. 173).

CoreOS Community. CoreOS Project Page. 2015. URL: https://coreos.com/
(visited on 12/01/2019) (cit. on p. 94).

Mick P. Couper. “Web Surveys.” In: Public Opinion Quarterly 64.4 (2000),
pp. 464-494. 1ssN: 0033362X. DoI: 10.1086/318641 (cit. on p. 214).

Ward Cunningham. Let It Crash. 2014. URL: http://wiki.c2.com/?LetltCrash
(cit. on p. 109).

Michael Cusumano. “Cloud computing and SaaS as new computing
platforms.” In: Communications of the ACM 53.4 (2010), pp. 27-29. ISSN:
00010782. po1: 10.1145/1721654.1721667 (cit. on pp. 16, 17).

Cycligent. Continuous Delivery Patterns for Design and Deployment.

Tech. rep. 2015 (cit. on pp. 41, 89).

Maximilien De Bayser, Leonardo G. Azevedo, and Renato Cerqueira.

“ResearchOps: The case for DevOps in scientific applications.” In: Proceedings
of the 2015 IFIP/IEEE International Symposium on Integrated Network

Management, IM 2015 (2015), pp. 1398-1404. por: 10.1109 /INM.2015.

7140503 (cit. on p. 88).

Armon Dadgar. What is infrastructure as code and why is it important? 2018.

URL: https:/ /www.hashicorp.com /resources /what-is- infrastructure- as- code
(visited on 12/01/2019) (cit. on p. 72).

DataDog. Docker Adoption. 2018. URL: https://www.datadoghq.com /docker-
adoption/ (visited on 12/01/2019) (cit. on p. 85).

Patrick Debois. Agile Infrastructure € Operations. Toronto, 2008. URL: http:
/ /www.jedi.be /blog/2008,/10/09/agile-2008- toronto- agile-infrastructure-and-
operations-presentation/ (cit. on pp. 12, 19).

Joao Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. “Testing
and Deployment Patterns for the Internet-of-Things.” In: 24th FEuropean

Conference on Pattern Languages of Programs. Irsee, Bavaria, Germany, 2019.

ISBN: 9781450362061 (cit. on p. 264).

Jessica Diaz et al. DevOps in practice. 2018, pp. 1-3. DOI: 10.1145/3234152.

3234199 (cit. on pp. 19, 31).

271

https://github.com/coreos/etcd
https://github.com/coreos/etcd
http://www.vulcanproxy.com/
http://www.vulcanproxy.com/
http://www.melconway.com/Home/Conways%7B%5C_%7DLaw.html
http://www.melconway.com/Home/Conways%7B%5C_%7DLaw.html
https://doi.org/10.1038/s41598-018-29668-0
https://coreos.com/
https://doi.org/10.1086/318641
http://wiki.c2.com/?LetItCrash
https://doi.org/10.1145/1721654.1721667
https://doi.org/10.1109/INM.2015.7140503
https://doi.org/10.1109/INM.2015.7140503
https://www.hashicorp.com/resources/what-is-infrastructure-as-code
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
http://www.jedi.be/blog/2008/10/09/agile-2008-toronto-agile-infrastructure-and-operations-presentation/
http://www.jedi.be/blog/2008/10/09/agile-2008-toronto-agile-infrastructure-and-operations-presentation/
http://www.jedi.be/blog/2008/10/09/agile-2008-toronto-agile-infrastructure-and-operations-presentation/
https://doi.org/10.1145/3234152.3234199
https://doi.org/10.1145/3234152.3234199

272

REFERENCES

[DiN99)]

[DJG18]

IDL12]

[Docl8]

[Duv10)]
[EAD14]

[Eurl5]

[Far+13]

[Far+14]

[Feh+14]

[Fel+12]

Darcy DiNucci. “Fragemented Future.” In: Print 53.4 (1999), p. 2 (cit. on
p. 12).

Dr. Nicole Forsgren, Jez Humble, and Gene Kim. Accelerate: State of DevOps
2018 Strategies for a New FEconomy. Tech. rep. 2018, p. 78. URL: https://
cloudplatformonline .. com /rs / 248- TPC- 286 / images / DORA - State % 200f %
20DevOps.pdf (cit. on pp. 18, 26, 78).

Elias Adriano Nogueira Da Silva and Daniel Lucrédio. “Software engineering
for the cloud: A research roadmap.” In: Proceedings - 2012 Brazilian
Symposium on Software Engineering, SBES 2012 September 2012 (2012),
pp. 71-80. 1ssN: 00010782. por: 10.1109/SBES.2012.12 (cit. on p. 29).

Docker. Dockerfile reference. 2018. URL: https://docs.docker.com /engine/
reference/builder (cit. on p. 100).

Paul Duvall. “Continuous Delivery Refcardz.” In: (2010), p. 497 (cit. on p. 42).

Floris Erich, Chintan Amrit, and Maya Daneva. DevOps Literature Review.
Tech. rep. February. 2014, p. 27. por: 10.13140/2.1.5125.1201 (cit. on pp. 19,
31).

Thomas Erl, Robert Cope, and Amin Naserpour. Cloud Computing Design
Patterns. 2015, p. 552. 1SBN: 9780133858624 (cit. on pp. 30, 34, 72, 133).

Jason Edelman. Network Automation with Ansible. 1SBN: 9781491937839
(cit. on p. 31).

Elastic. The Open Source Elastic Stack. 2017. URL: https://www.elastic.co/
products (visited on 12/01/2019) (cit. on p. 127).

Thomas Erl, Zaigham Mahmood, and Ricardo Puttini. Cloud Computing:
Concepts, Technology € Architecture. Vol. 51. 05. 2019, pp. 51-2714-51-2714.
ISBN: 9780133387520. DOI: 10.5860/choice.51-2714 (cit. on p. 34).

European Commission. User guide to the SME Definition. 2015, pp. 1-60.
por: 10.2873/782201 (cit. on pp. 194, 198, 210).

Joao Pascoal Faria et al. “A testing and certification methodology for
an Ambient-Assisted Living ecosystem.” In: 2013 IEEE 15th International
Conference on e-Health Networking, Applications and Services, Healthcom
2013. Vol. 5. Healthcom. 2013, pp. 585-589. 1SBN: 9781467358019. port: 10.
1109/HealthCom.2013.6720744 (cit. on pp. 56, 68, 263).

Joao Pascoal Faria et al. “A testing and certification methodology for an open
Ambient-Assisted Living ecosystem.” In: International Journal of E-Health
and Medical Communications 5.4 (2014), pp. 90-107. 1SSN: 19473168. DOL:
10.4018/ijehmc.2014100106 (cit. on pp. 56-60, 68).

Christoph Fehling et al. Cloud Computing Patterns. 2014, pp. 239-286. ISBN:
978-3-7091-1567-1. por: 10.1007/978-3-7091-1568-8 (cit. on pp. 14, 34).

Wes Felter et al. IBM Research Report An Updated Performance Comparison
of VirtualMachines and Linux Containers. Tech. rep. 2012, pp. 25482-1407.
URL: http://domino.watson.ibm.com /library / CyberDig.nsf /home. (cit. on
pp. 30, 85, 87).

https://cloudplatformonline.com/rs/248-TPC-286/images/DORA-State%20of%20DevOps.pdf
https://cloudplatformonline.com/rs/248-TPC-286/images/DORA-State%20of%20DevOps.pdf
https://cloudplatformonline.com/rs/248-TPC-286/images/DORA-State%20of%20DevOps.pdf
https://doi.org/10.1109/SBES.2012.12
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder
https://doi.org/10.13140/2.1.5125.1201
https://www.elastic.co/products
https://www.elastic.co/products
https://doi.org/10.5860/choice.51-2714
https://doi.org/10.2873/782201
https://doi.org/10.1109/HealthCom.2013.6720744
https://doi.org/10.1109/HealthCom.2013.6720744
https://doi.org/10.4018/ijehmc.2014100106
https://doi.org/10.1007/978-3-7091-1568-8
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

[Fer+13]

[Fer13]

[Foul5|

[Foul9]

[Fow06]

[Fow15]

[Fow17]

[Fril4]

[FRS19]

[FSM12]

[Fu+14]

[FY99]

REFERENCES

Joel L. Fernandes et al. “Performance evaluation of RESTful web services
and AMQP protocol.” In: International Conference on Ubiquitous and Future

Networks, ICUFN (2013), pp. 810-815. 1sSN: 21658528. Do1: 10.1109/ICUFN.

2013.6614932 (cit. on p. 13).

Eduardo B Fernandez. Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. 2013, p. 584. 1sSBN: 1119970482 (cit. on
pp. 122, 126).

Apache Foundation. Mesos Project Page. 2015. URL: http://mesos.apache.

org/ (visited on 12/01/2019) (cit. on p. 148).

Cloud Native Computing Foundation. CNCF Cloud Native Interactive
Landscape. 2019. URL: https: / /landscape.cncf.io (visited on 12/01/2019)
(cit. on p. 43).

Martin Fowler. Writing Software Patterns. 2006. URL: http : / / www .

martinfowler . com / articles / writingPatterns . html (visited on 12/01/2019)
(cit. on p. 6).

Martin Fowler. Monolith First. 2015. URL: https://martinfowler.com /bliki/
MonolithFirst.html (visited on 01/10/2020) (cit. on pp. 29, 152).

Martin Fowler. What do you mean by “Event-Driven”? 2017. URL: https:
//martinfowler.com/articles/201701-event-driven.html (visited on 12/01/2019)
(cit. on p. 106).

Uwe Friedrichsen. Patterns of Resilience. 2014. URL: https://www.slideshare.

net/ufried /patterns-of-resilience (cit. on p. 42).

Hugo Sereno Ferreira, André Restivo, and Tiago Boldt Sousa. “Towards a
Pattern Language for the Masters Student.” In: 2/th European Conference
on Pattern Languages of Programs. Irsee, Bavaria, Germany, 2019. ISBN:
9781450362061. DOI: 10.1145/3361149.3361184 (cit. on pp. 229, 264).

Hugo Sereno Ferreira, Tiago Boldt Sousa, and Angelo Martins. “Scalable
integration of multiple health sensor data for observing medical patterns.”
In: Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7467 LNCS.

Osaka, Japan, 2012, pp. 78-84. 1SBN: 9783642326080. por: 10.1007 /978-3-
642-32609-7_11 (cit. on pp. 68, 260).

Qiang Fu et al. “Where do developers log? An empirical study on logging
practices in industry”” In: 36th International Conference on Software
Engineering, ICSE Companion 2014 - Proceedings (2014), pp. 24-33. 1SSN:
02705257. pot: 10.1145/2591062.2591175 (cit. on p. 122).

Brian Foote and Joseph Yoder. Big Ball of Mud. Tech. rep. Department of
Computer Science University of Illinois at Urbana-Champaign, 1999. URL:
http://www.laputan.org/mud/ (cit. on p. 4).

273

https://doi.org/10.1109/ICUFN.2013.6614932
https://doi.org/10.1109/ICUFN.2013.6614932
http://mesos.apache.org/
http://mesos.apache.org/
https://landscape.cncf.io
http://www.martinfowler.com/articles/writingPatterns.html
http://www.martinfowler.com/articles/writingPatterns.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/articles/201701-event-driven.html
https://martinfowler.com/articles/201701-event-driven.html
https://www.slideshare.net/ufried/patterns-of-resilience
https://www.slideshare.net/ufried/patterns-of-resilience
https://doi.org/10.1145/3361149.3361184
https://doi.org/10.1007/978-3-642-32609-7_11
https://doi.org/10.1007/978-3-642-32609-7_11
https://doi.org/10.1145/2591062.2591175
http://www.laputan.org/mud/

274

REFERENCES

[Gad14]

[Gam-+94]

[Gar06]

[Garl2]

[Garl4]

[Gar19]

[Gaw02]

[GB14]

[Git17]

[Goal6]
[Gool5]

[Gool8§]

[Gool9]

[Grall]

Ofer Gadish. Top 9 Reasons for Cloud Application Failure. 2014. URL: https:
/ /webcache. googleusercontent.com /search?q=cache:wD3pBZHZnxUJ:https:
/ /www . cloudendure.com / blog / top- 9- reasons- cloud- application- failure / + %
7B%5C& %7Dcd=1%7B%5C& %7Dhl=en%7B%5C& %7Dct=clnk%7B%5C&
%7Dgl=pt (visited on 07/01/2017) (cit. on pp. 31, 47, 78).

Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Ed. by Addison-Wesley Pub Co. Addison Wesley Professional
Computing Series. Addison Wesley, 1994, 395So. 1SBN: 0201633612. DOTI:
10.1016/j.artmed.2009.05.004 (cit. on pp. iv, vi, 6, 22).

Simson L Garfinkel. An Fvaluation of Amazon’s Grid Computing Services :
EC2, 83 and SQS. Tech. rep. 2006, pp. 1-15 (cit. on pp. 14, 30).

Gartner. “Gartner Says Worldwide Software-as-a-Service Revenue to Reach
$14.5 Billion in 2012 In: Press Release (2012). URL: http://www.gartner.
com/newsroom /id/1963815 (cit. on p. 15).

Gartner. Software as a Service (SaaS). 2014. URL: https://www.gartner.com/
it-glossary/software-as-a-service-saas/ (cit. on pp. 15-17).

Gartner. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5
Percent in 2019. Tech. rep. 2019. URL: https://www .gartner.com /en/
newsroom / press- releases / 2019 - 04 - 02 - gartner - forecasts - worldwide - public-
cloud-revenue-to-g (cit. on pp. 14, 15).

Dieter Gawlick. “Message Queuing for Business Integration.” In: {eAl}
Journal October 2002 (2002), pp. 30-33 (cit. on p. 135).

Nikolay Grozev and Rajkumar Buyya. “Inter-Cloud architectures and
application brokering: Taxonomy and survey.” In: Software - Practice and
Ezperience 44.3 (2014), pp. 369-390. 1sSN: 00380644. po1: 10.1002/spe.2168
(cit. on p. 17).

Gitlab. Postmortem of database outage of January 31. 2017. URL: https:
/ /about.gitlab.com /2017 /02 /10 / postmortem-of-database-outage- of- january-
31/ (cit. on pp. 33, 109).

Sébastien Goasguen. Docker in the Cloud. Second Edi. O’Reilly Media, 2016,
p. 41. ISBN: 9781491940976 (cit. on p. 94).

Google. Google Cloud Container Service. 2015. URL: https:/ /cloud.google.
com/container-engine/ (visited on 12/01/2019) (cit. on p. 85).

Google. Reliable Task Scheduling on Google Compute Engine. 2018. URL:
https: / /cloud.google.com /solutions / reliable- task- scheduling- compute- engine
(visited on 12/01/2019) (cit. on p. 105).

Google. Google Cloud locations. 2019. URL: https:/ /cloud.google.com /about/
locations/ (cit. on p. 17).

Cd Graziano. “A performance analysis of Xen and KVM hypervisors for
hosting the Xen Worlds Project.” In: Master’s Thesis (2011) (cit. on p. 77).

https://webcache.googleusercontent.com/search?q=cache:wD3pBZHZnxUJ:https://www.cloudendure.com/blog/top-9-reasons-cloud-application-failure/+%7B%5C&%7Dcd=1%7B%5C&%7Dhl=en%7B%5C&%7Dct=clnk%7B%5C&%7Dgl=pt
https://webcache.googleusercontent.com/search?q=cache:wD3pBZHZnxUJ:https://www.cloudendure.com/blog/top-9-reasons-cloud-application-failure/+%7B%5C&%7Dcd=1%7B%5C&%7Dhl=en%7B%5C&%7Dct=clnk%7B%5C&%7Dgl=pt
https://webcache.googleusercontent.com/search?q=cache:wD3pBZHZnxUJ:https://www.cloudendure.com/blog/top-9-reasons-cloud-application-failure/+%7B%5C&%7Dcd=1%7B%5C&%7Dhl=en%7B%5C&%7Dct=clnk%7B%5C&%7Dgl=pt
https://webcache.googleusercontent.com/search?q=cache:wD3pBZHZnxUJ:https://www.cloudendure.com/blog/top-9-reasons-cloud-application-failure/+%7B%5C&%7Dcd=1%7B%5C&%7Dhl=en%7B%5C&%7Dct=clnk%7B%5C&%7Dgl=pt
https://webcache.googleusercontent.com/search?q=cache:wD3pBZHZnxUJ:https://www.cloudendure.com/blog/top-9-reasons-cloud-application-failure/+%7B%5C&%7Dcd=1%7B%5C&%7Dhl=en%7B%5C&%7Dct=clnk%7B%5C&%7Dgl=pt
https://doi.org/10.1016/j.artmed.2009.05.004
http://www.gartner.com/newsroom/id/1963815
http://www.gartner.com/newsroom/id/1963815
https://www.gartner.com/it-glossary/software-as-a-service-saas/
https://www.gartner.com/it-glossary/software-as-a-service-saas/
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://doi.org/10.1002/spe.2168
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://cloud.google.com/solutions/reliable-task-scheduling-compute-engine
https://cloud.google.com/about/locations/
https://cloud.google.com/about/locations/

[Gre+08]

[Grol6]

[GSH16]

[Gucl7]

[Han98|

[HB09)

[Her+16]

[HKR13]

[HKZ11]

[Hol05)

REFERENCES

Albert Greenberg et al. “The cost of a cloud.” In: ACM SIGCOMM Computer
Communication Review 39.1 (2008), p. 68. 1SSN: 01464833. por: 10.1145/
1496091.1496103 (cit. on pp. 12, 30, 31).

The Open Group. Cloud Computing Governance Framework. 2016. URL: https:
/ / www . opengroup . org / company - reviews (visited on 12/01/2019) (cit. on
p. 27).

Kresimir Grgi¢, Ivan Speh, and Ivan Hedi. “A web-based IoT solution for
monitoring data using MQTT protocol.” In: Proceedings of 2016 International
Conference on Smart Systems and Technologies, SST 2016. IEEE Computer

Society, 2016, pp. 249-253. 1SBN: 9781509037186. DOI: 10.1109 /SST.2016.

7765668 (cit. on p. 143).

Sam Guckenheimer. What is Infrastructure as Code? 2017. URL: https://
docs. microsoft.com /en-us/azure /devops/learn /what-is-infrastructure- as-code
(visited on 12/01/2019) (cit. on p. 72).

Robert Hanmer. “An Input and Output Pattern Language.” In: Design
Patterns in Communications Software. c. Cambridge University Press, 1998,
pp. 95-129. 1SBN: 0-521-79040-9 (cit. on pp. 23, 143).

Margaret Harrell and
Melissa Bradley. Data Collection Methods Semi-Structured Interviews and
Focus Groups. 2009, p. 148. 1sSBN: 9780833048899 (cit. on p. 151).

Peter Herrmann et al. “Collaborative model-based development of a remote
train monitoring system.” In: ENASE 2016 - Proceedings of the 11th
International Conference on Fwvaluation of Nowvel Software Approaches to
Software Engineering. 2016, pp. 383-390. 1SBN: 9789897581892. po1: 10.5220/
0005929403830390 (cit. on p. 143).

Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. “Elasticity in
Cloud Computing : What It Is , and What It Is Not.” In: Presented as
part of the 10th International Conference on Autonomic Computing (2013),
pp. 23-27. 1SSN: 1540-9740. URL: http://sdqweb.ipd.kit.edu/publications/pdfs/
HeKoRe2013-1CAC-Elasticity.pdf (cit. on p. 5).

Benjamin Hindman, Andy Konwinski, and Matei Zaharia. “Mesos: A
platform for fine-grained resource sharing in the data center.” In: Proceedings
of the .. (2011), p. 32. URL: http://dl.acm.org/citation.cfm?id=1972457.
1972488 (cit. on p. 94).

Edward Hieatt and Rob Mee. Repository Pattern. URL: https://martinfowler.
com/eaaCatalog/repository.html (visited on 12/01/2019) (cit. on p. 126).

Robert Hof. Meet Project Storm, Facebook’s SWAT team for disaster-proofing
data centers. 2016. URL: https://siliconangle.com/2016/08 /31 /meet-project-

storm- facebooks- swat- team- for- disaster- proofing- data- centers/ (visited on
12/01/2019) (cit. on p. 114).

Erik Hollnagel. “Human reliability assessment in context.” In: Nuclear
Engineering and Technology 37 (2005), pp. 159-166 (cit. on p. 31).

https://doi.org/10.1145/1496091.1496103
https://doi.org/10.1145/1496091.1496103
https://www.opengroup.org/company-reviews
https://www.opengroup.org/company-reviews
https://doi.org/10.1109/SST.2016.7765668
https://doi.org/10.1109/SST.2016.7765668
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
https://doi.org/10.5220/0005929403830390
https://doi.org/10.5220/0005929403830390
http://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-Elasticity.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-Elasticity.pdf
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
https://martinfowler.com/eaaCatalog/repository.html
https://martinfowler.com/eaaCatalog/repository.html
https://siliconangle.com/2016/08/31/meet-project-storm-facebooks-swat-team-for-disaster-proofing-data-centers/
https://siliconangle.com/2016/08/31/meet-project-storm-facebooks-swat-team-for-disaster-proofing-data-centers/

276

REFERENCES

[Hub+13]

[HWO03]

[Hwa+13]

(1116

[Incl5a]

[Inc15b]

[Inil5]

[Int]

[Int19]
1016]

[Irw67]

[ISM11]

[Jac08§]

[Kaw05]

Markus Huber et al. “Applnspect: Large-scale evaluation of social networking
apps.” In: COSN 2013 - Proceedings of the 2013 Conference on Online Social
Networks (2013), pp. 143-154. po1: 10.1145/2512938.2512942 (cit. on p. 194).

Gregor Hohpe and Bobby Woolf. “Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions.” In: FEnterprise integration
patterns designing building and deploying messaging solution (2003), p. 736.
ISSN: 14602105. pOI: 10.1525/vs.2009.4.3.toc (cit. on p. 142).

Jinho Hwang et al. “A component-based performance comparison of
four hypervisors.” In: Proceedings of the 2013 IFIP/IEEE International
Symposium on Integrated Network Management, IM 2013 (2013), pp. 269-276
(cit. on p. 30).

Takashi Iba and Taichi Isaku. “A Pattern Language for Creating Pattern
Languages.” In: 23rd Conference on Pattern Languages of Programs. 2016
(cit. on p. 71).

Mesosphere Inc. Marathon Project Page. 2015. URL: https:/ / mesosphere .
github.io/marathon (visited on 12/01/2019) (cit. on p. 148).

Mesosphere Inc. Mesosphere Service Discovery € Load Balancing. 2015. URL:
https://mesosphere.github.io/marathon /docs/service-discovery-load-balancing.
html (visited on 12/01/2019) (cit. on p. 148).

Open Container Initiative. Open Containers Project Page. 2015. URL: http:
//www.opencontainers.org/ (visited on 12/01/2019) (cit. on p. 85).

International Organization for Standardization. ISO/IEC 27000 family. URL:
https:/ /www . iso . org / isoiec- 27001 - information - security . html (visited on
12/01/2019) (cit. on pp. 32, 159).

Internetlivestats.com. Number of Internet users in the world. 2019. URL: http:
//www.internetlivestats.com /internet-users/ (cit. on pp. 2, 12).

IEEE and The Group Open. crontab. 2016. URL: http://pubs.opengroup.org/
onlinepubs/9699919799/ utilities /crontab.html (cit. on p. 106).

Manley R. Irwin. “The Computer Utility: Competition or Regulation?” In:
The Yale Law Journal 76.7 (1967), p. 1299. 1sSN: 00440094. por: 10.2307/
794825 (cit. on p. 14).

Takashi Iba, Mami Sakamoto, and Toko Miyake. “How to Write Tacit
Knowledge as a Pattern Language: Media Design for Spontaneous and
Collaborative Communities.” In: Procedia - Social and Behavioral Sciences
26 (2011), pp. 46-54. 1ssN: 18770428. por: 10.1016/j.sbspro.2011.10.561
(cit. on p. 23).

Jack Schofield. Google angles for business users with platform as a service.

2008. URL: https://www.theguardian.com /technology /2008 /apr/17 /google.
software (cit. on p. 16).

Barbara B. Kawulich. “Participant observation as a data collection method.”
In: Forum Qualitative Sozialforschung. Vol. 6. 2. 2005. por: 10.17169/fqgs-
6.2.466 (cit. on p. 65).

https://doi.org/10.1145/2512938.2512942
https://doi.org/10.1525/vs.2009.4.3.toc
https://mesosphere.github.io/marathon
https://mesosphere.github.io/marathon
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
http://www.opencontainers.org/
http://www.opencontainers.org/
https://www.iso.org/isoiec-27001-information-security.html
http://www.internetlivestats.com/internet-users/
http://www.internetlivestats.com/internet-users/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://doi.org/10.2307/794825
https://doi.org/10.2307/794825
https://doi.org/10.1016/j.sbspro.2011.10.561
https://www.theguardian.com/technology/2008/apr/17/google.software
https://www.theguardian.com/technology/2008/apr/17/google.software
https://doi.org/10.17169/fqs-6.2.466
https://doi.org/10.17169/fqs-6.2.466

[Kim-+16]

[Koul§]

[KP10]

[Kub]

[Kub17]

[Kub18a)
[Kub18b]

[Kuh99)]

[LA94]

[Lazb4]

[Lew12]

[LF14]

[LMRO1]

[Lor19]

REFERENCES

Gene Kim et al. The DevOps Handbook: How to Create World-Class Agility,
Reliability, and Security in Technology Organizations. 2016, p. 480. ISBN:
9781942788003. DOT: 2016951904 (cit. on p. 26).

Petros Koutoupis. Fverything You Need to Know about Linux Containers,

Part II: Working with Linuz Containers. 2018. URL: https://www.linuxjournal.

com/content/everything-you-need-know-about-linux-containers- part-ii-working-
linux-containers-Ixc (cit. on p. 81).

Christian Kohls and Stefanie Panke. “Is that true...?- Thoughts on the
epistemology of patterns.” In: ACM International Conference Proceeding
Series (2010), 9:1-9:14. Do1: 10.1145/1943226.1943237 (cit. on pp. 22, 23).

Kubernetes. Run a Stateless Application Using a Deployment. URL: https:
/ / kubernetes . io / docs / tasks / run - application / run - stateless - application -
deployment/ (cit. on p. 91).

Kubernetes. Kubernetes Cron Jobs. 2017. URL: https://kubernetes.io/docs/
concepts / workloads / controllers / cron-jobs/ (visited on 12/01/2019) (cit. on
p. 105).

Kubernetes. DNS for Services and Pods. 2018. URL: https:/ /kubernetes.io/
docs/concepts/services-networking/dns-pod-service/ (cit. on p. 148).

Kubernetes. Pod Lifecycle. 2018. URL: https:/ /kubernetes.io/docs/concepts/
workloads/pods/pod-lifecycle/ (cit. on pp. 95, 99, 100).

Thomas Kuhne. “A Functional Pattern System for Object-Oriented Design.”
PhD thesis. 1999. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.92.1134%7B%5C&%7Drep=rep1%7B%5C& %7Dtype=pdf (cit. on p. 5).

Barriball K. Louise and While Alison. “Collecting data using a
semi-structured interview: a discussion paper.” In: Journal of Advanced
Nursing 19.2 (1994), pp. 328-335 (cit. on pp. 151, 188).

P.F. Lazarsfeld. “The art of asking why three principles underlying the
formation of questionnaires.” In: Public opinion and propaganda: A book of
readings 1.1 (1954), pp. 26-38. DOI: 10.2307/4291274 (cit. on p. 151).

James Lewis. “Micro services - Java, the Unix Way” In: 33rd
Degree Conference (2012). URL: http : / / 2012 . 33degree . org / pdf /
JamesLewisMicroServices.pdf (cit. on p. 13).

James Lewis and Martin Fowler. Microservices. 2014. URL: http : / /
martinfowler.com /articles/microservices.html (cit. on p. 72).

Nelson G M Leme, Eliane Martins, and Cecilia Rubira. “A Software Fault
Injection Pattern System.” In: Pattern Languages of Programs. 2001. URL:
https: / / hillside . net / plop / plop2001 / accepted % 7B % 5C _ %7Dsubmissions /
PLoP2001 /ngmleme3 /PLoP2001%7B%5C_%7Dngmleme3%7B%5C_%7D3.
pdf (cit. on p. 114).

Mario Loriedo. Containers Patterns. 2019. URL: https: / /10rd . github . io /
containerspatterns/%7B%5C#%7D6 (cit. on p. 43).

277

https://doi.org/2016951904
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc
https://doi.org/10.1145/1943226.1943237
https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/
https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/
https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1134%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1134%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://doi.org/10.2307/4291274
http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf
http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://hillside.net/plop/plop2001/accepted%7B%5C_%7Dsubmissions/PLoP2001/ngmleme3/PLoP2001%7B%5C_%7Dngmleme3%7B%5C_%7D3.pdf
https://hillside.net/plop/plop2001/accepted%7B%5C_%7Dsubmissions/PLoP2001/ngmleme3/PLoP2001%7B%5C_%7Dngmleme3%7B%5C_%7D3.pdf
https://hillside.net/plop/plop2001/accepted%7B%5C_%7Dsubmissions/PLoP2001/ngmleme3/PLoP2001%7B%5C_%7Dngmleme3%7B%5C_%7D3.pdf
https://l0rd.github.io/containerspatterns/%7B%5C#%7D6
https://l0rd.github.io/containerspatterns/%7B%5C#%7D6

278

REFERENCES

[Loul2]

[Mag15]

[Mal4-02]

[MBV06]

[MD98a)

[MDO8b)]

[Men04]
[Mer|

[Mes17]

[Mes18]
MG11]

[Micl7a]

[Mic17b]

[Mic19]

[MK10]

[Mor15]

Mike Loukides. What is DevOps? - Infrastructure as Code. O’Reilly Media,
2012, p. 20. 1SBN: 978-1-4493-3910-4 (cit. on p. 19).

L. Magnoni. “Modern messaging for distributed sytems.” In: Journal of
Physics: Conference Series 608.1 (2015), p. 012038. 1SSN: 17426596. DOI:
10.1088/1742-6596,/608/1/012038 (cit. on p. 140).

Yashwant K. Malaiya et al. “Software reliability growth with test coverage.”
In: IEEFE Transactions on Reliability 51.4 (2002), pp. 420-426. 1SSN: 00189529.
DOI: 10.1109/TR.2002.804489 (cit. on p. 127).

Katja Lozar Manfreda, Zenel Batagelj, and Vasja Vehovar. “Design of
Web Survey Questionnaires: Three Basic Experiments.” In: Journal of
Computer-Mediated Communication 7.3 (2006). 1SsN: 1083-6101. por: 10.
1111/j.1083-6101.2002.tb00149.x (cit. on p. 213).

V Marvin and R Dolores. “Experimental Models for Validating Technology.”
In: Computer May (1998), pp. 23-31 (cit. on p. 50).

Gerard Meszaros and Jim Doble. A Pattern Language for Pattern Writing.
1998. URL: http://hillside.net/index.php/a-pattern-language-for-pattern-writing
(visited on 12/01/2019) (cit. on p. 69).

Paul Menage. CGROUPS. Tech. rep. 2004. URL: https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt (cit. on p. 87).

Merriam-Webster English Dictionary. Design. URL: https://www.merriam-
webster.com /dictionary/design (visited on 12/01/2019) (cit. on pp. 4, 21).

Mesosphere. Marathon Health Checks. 2017. URL: https://mesosphere.github.
io/marathon /docs/health-checks.html (visited on 12/01/2019) (cit. on pp. 95,
99, 100).

Mesosphere. Marathon API. 2018. URL: https://docs.mesosphere.com/1.11/
deploying-services/marathon-api/ (cit. on p. 91).

Peter Mell and Timothy Grance. “The NIST definition of cloud computing.”
In: NIST Special Publication (2011) (cit. on pp. 15, 16).

Microsoft. Health Endpoint Monitoring pattern. 2017. URL: https: / /docs.
microsoft.com /en-us/azure/architecture / patterns / health-endpoint- monitoring
(visited on 12/01/2019) (cit. on p. 133).

Microsoft. Microsoft Azure Scheduler. 2017. URL: https:/ /azure.microsoft.
com /en-us/services/scheduler/ (visited on 12/01/2019) (cit. on pp. 105, 106).

Microsoft. Cloud Design Patterns. 2019. URL: https://docs.microsoft.com/en-
us/azure/architecture /patterns/ (visited on 12/01/2019) (cit. on pp. 29, 30,
36, 38, 39).

Shivaji P. Mirashe and N. V. Kalyankar. “Cloud Computing.” In: 2.3 (2010),
pp. 78-82. arXiv: 1003.4074v1 (cit. on pp. 14, 17, 27).

Kief Morris. Infrastructure as Code. O’Reilly Media, Inc., 2015. ISBN:
9781491924334 (cit. on p. 72).

https://doi.org/10.1088/1742-6596/608/1/012038
https://doi.org/10.1109/TR.2002.804489
https://doi.org/10.1111/j.1083-6101.2002.tb00149.x
https://doi.org/10.1111/j.1083-6101.2002.tb00149.x
http://hillside.net/index.php/a-pattern-language-for-pattern-writing
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.merriam-webster.com/dictionary/design
https://www.merriam-webster.com/dictionary/design
https://mesosphere.github.io/marathon/docs/health-checks.html
https://mesosphere.github.io/marathon/docs/health-checks.html
https://docs.mesosphere.com/1.11/deploying-services/marathon-api/
https://docs.mesosphere.com/1.11/deploying-services/marathon-api/
https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://azure.microsoft.com/en-us/services/scheduler/
https://azure.microsoft.com/en-us/services/scheduler/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://arxiv.org/abs/1003.4074v1

[Moul5]

[MRO6]

[MT10]

[Mur07]

[Nat03]

[Net11]

[Net17]

INS14]

[Odel4]

[Owe02]

[Pau+14]

[Pin17]

[Piv07]

[Pos16]

REFERENCES

Adrian Mouat. Docker Security. Tech. rep. 2015. URL: http://www.oreilly.

com /webops-perf/free/docker-security.csp (cit. on p. 87).

Catherine Marshall and Gretchen B. Rossman. “Designing qualitative
research. Sage Publication.” In: Newbury Park, California (2006), p. 114
(cit. on p. 65).

Nenad Medvidovic and Richard N. Taylor. “Software architecture:
Foundations, theory, and practice” In: Proceedings - International

Conference on Software Engineering 2 (2010), pp. 471-472. 1sSN: 02705257.

DOI: 10.1145/1810295.1810435 (cit. on p. 4).

San Murugesan. “Understanding Web 2.0.” In: IT Professional 9.4 (2007),
pp. 34-41. 1ssN: 15209202. por: 10.1109/MITP.2007.78 (cit. on p. 12).

Yefim V Natis. “Service-Oriented Architecture Scenario” In: Gartner
Research AV-19-6751.April (2003), p. 6 (cit. on p. 13).

Netflix. The Netflix Simian Army. 2011. URL: https://medium.com /netflix-
techblog/the-netflix-simian-army-16e57fbab116 (cit. on p. 114).

Netflix. Chaos Monkey. 2017. URL: https://github.com /Netflix/chaosmonkey
(visited on 12/01/2019) (cit. on p. 114).

Dmitry Namiot and Manfred Sneps-Sneppe. “On Micro-services
Architecture.” In: International Journal of Open Information Technologies
2.9 (2014), pp. 24-27. 18SN: 2307-8162 (cit. on pp. 12, 72).

Andrew Odewahn. Field Guide To The Distributed Development Stack.
Vol. 53. 2014, p. 160. 1SBN: 9788578110796. po1: 10.1017/CB0O9781107415324.

004. arXiv: arXiv:1011.1669v3 (cit. on p. 16).

L Owens. Introduction To Survey Research Design. 2002. URL: http:/ /
www . researchgate . net / profile / Linda % 7B % 5C _ %7DOwens / publication /
253282490% 7B %5C _%7DINTRODUCTION % 7B %5C_%7DTO % 7B %5C _
%7DSURVEY % 7B % 5C _ %7DRESEARCH % 7B % 5C _ %7DDESIGN / links /
545abeld0cf2c46f6642734c.pdf (cit. on p. 192).

Subharthi Paul et al. “Application delivery in multi-cloud environments using

software defined networking.” In: Computer Networks 68 (2014), pp. 166-186.

I1SSN: 13891286. DOT: 10.1016/j.comnet.2013.12.005 (cit. on p. 17).

Pingdom. Pingdom. 2017. URL: https:/ /www . pingdom .com/ (visited on
12/01/2019) (cit. on p. 133).

Pivotal. RabbitM(@Q Tutorials. 2007. URL: https:/ /rabbitmq.docs. pivotal.io/
35 /rabbit-web-docs /tutorials / tutorial-one-java.html (visited on 12/01/2019)
(cit. on p. 139).

Christian Posta. Microservices for Java Developers. A Hands-on Introduction
to Frameworks and Containers. 2016, p. 129. 1SBN: 9781491962077 (cit. on

p. 18).

279

http://www.oreilly.com/webops-perf/free/docker-security.csp
http://www.oreilly.com/webops-perf/free/docker-security.csp
https://doi.org/10.1145/1810295.1810435
https://doi.org/10.1109/MITP.2007.78
https://medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116
https://medium.com/netflix-techblog/the-netflix-simian-army-16e57fbab116
https://github.com/Netflix/chaosmonkey
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
http://www.researchgate.net/profile/Linda%7B%5C_%7DOwens/publication/253282490%7B%5C_%7DINTRODUCTION%7B%5C_%7DTO%7B%5C_%7DSURVEY%7B%5C_%7DRESEARCH%7B%5C_%7DDESIGN/links/545a5e1d0cf2c46f6642734c.pdf
http://www.researchgate.net/profile/Linda%7B%5C_%7DOwens/publication/253282490%7B%5C_%7DINTRODUCTION%7B%5C_%7DTO%7B%5C_%7DSURVEY%7B%5C_%7DRESEARCH%7B%5C_%7DDESIGN/links/545a5e1d0cf2c46f6642734c.pdf
http://www.researchgate.net/profile/Linda%7B%5C_%7DOwens/publication/253282490%7B%5C_%7DINTRODUCTION%7B%5C_%7DTO%7B%5C_%7DSURVEY%7B%5C_%7DRESEARCH%7B%5C_%7DDESIGN/links/545a5e1d0cf2c46f6642734c.pdf
http://www.researchgate.net/profile/Linda%7B%5C_%7DOwens/publication/253282490%7B%5C_%7DINTRODUCTION%7B%5C_%7DTO%7B%5C_%7DSURVEY%7B%5C_%7DRESEARCH%7B%5C_%7DDESIGN/links/545a5e1d0cf2c46f6642734c.pdf
http://www.researchgate.net/profile/Linda%7B%5C_%7DOwens/publication/253282490%7B%5C_%7DINTRODUCTION%7B%5C_%7DTO%7B%5C_%7DSURVEY%7B%5C_%7DRESEARCH%7B%5C_%7DDESIGN/links/545a5e1d0cf2c46f6642734c.pdf
https://doi.org/10.1016/j.comnet.2013.12.005
https://www.pingdom.com/
https://rabbitmq.docs.pivotal.io/35/rabbit-web-docs/tutorials/tutorial-one-java.html
https://rabbitmq.docs.pivotal.io/35/rabbit-web-docs/tutorials/tutorial-one-java.html

280

REFERENCES

[Pre+12a]

[Pre+12b]

[Pun+03]

[Put+15]

[PWBO7]

[Rab20]

[RBK13]

[RD10]

[Rell7]
[RES10]

[Ric]

Sandra Prescher et al. “Ubiquitous ambient assisted living solution to
promote safer independent living in older adults suffering from co-morbidity.”
In: Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS. SanDiego, CA, USA:
IEEE, 2012, pp. 5118-5121. 1SBN: 9781424441198. po1: 10.1109/EMBC.2012.
6347145 (cit. on p. 68).

Sandra Prescher et al. “Ubiquitous ambient assisted living solution to
promote safer independent living in older adults suffering from co-morbidity.”
In: Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS 2012 (2012),
pp. 5118-5121. 1sSN: 1557170X. por: 10.1109/EMBC.2012.6347145 (cit. on
pp. 68, 261).

Teade Punter et al. “Conducting on-line surveys in software engineering.”
In: 2003 International Symposium on Empirical Software Engineering, 2003.
ISESE 2003. Proceedings. IEEE. 2003, pp. 80-88 (cit. on p. 192).

Deepak Puthal et al. “Cloud computing features, issues, and challenges: A
big picture.” In: Proceedings - 1st International Conference on Computational
Intelligence and Networks, CINE 2015 (2015), pp. 116-123. 1SSN: 2375-5822.
pol: 10.1109/CINE.2015.31 (cit. on pp. 26, 29-31).

Eduardo Pinheiro, WD Weber, and LA Barroso. “Failure trends in a large disk
drive population.” In: Proceedings of the 5th USENIX Conference on File and
Storage Technologies (FAST 2007). Vol. 7. February. 2007, pp. 17-29 (cit. on
pp. 78, 108).

RabbitMQ. Queues. 2020. URL: https://www.rabbitmq.com /queues. html
(visited on 01/01/2020) (cit. on p. 140).

C Roderick, L Burdzanowski, and G Kruk. The CERN Accelerator Logging
Service- 10 Years in Operation: A Look at the Past, Present and Future.
Tech. rep. CERN, 2013. URL: http://cds.cern.ch /record /1611082 (cit. on
p. 127).

Nathan Regola and Jean Christophe Ducom. “Recommendations for
virtualization technologies in high performance computing.” In: Proceedings
- 2nd IEEFE International Conference on Cloud Computing Technology and
Science, CloudCom 2010 (2010), pp. 409-416. por: 10.1109/CloudCom.2010.
71 (cit. on p. 87).

New Relic. New Relic. 2017. URL: https://newrelic.com/ (cit. on p. 133).

S. Ramgovind, M. M. Eloff, and E. Smith. “The management of security in
cloud computing.” In: Proceedings of the 2010 Information Security for South

Africa Conference, ISSA 2010 (2010), pp. 1-7. por: 10.1109 /ISSA.2010.
5588290 (cit. on pp. 27, 30).

Mark Richards. Microservices AntiPatterns and Pitfalls. ISBN: 9781491963319
(cit. on p. 142).

https://doi.org/10.1109/EMBC.2012.6347145
https://doi.org/10.1109/EMBC.2012.6347145
https://doi.org/10.1109/EMBC.2012.6347145
https://doi.org/10.1109/CINE.2015.31
https://www.rabbitmq.com/queues.html
http://cds.cern.ch/record/1611082
https://doi.org/10.1109/CloudCom.2010.71
https://doi.org/10.1109/CloudCom.2010.71
https://newrelic.com/
https://doi.org/10.1109/ISSA.2010.5588290
https://doi.org/10.1109/ISSA.2010.5588290

[Ric15]

[Ricl7a]
[Ric17b]

[Rigl7]

[Rig19

[Roc13]

[Rol-+00]

[Sal00]

[Sas+16]

[Sav1l]

[Sch+-06]

[Sch14]

[Seil7]

[Ser15]

REFERENCES

Mark Richards. Microservices wersus SOA. 2015, pp. 1-55. ISBN:
9781491941614. URL: https:/ /www . nginx.com / microservices-soa/ (cit. on

p. 13).
Chris Richardson. A Pattern Language for Microservices. 2017. URL: http:
//microservices.io/patterns/ (visited on 12/01/2019) (cit. on p. 40).

Chris Richardson. Microservices Patterns. 2017. arXiv: 1-933988-16-9. URL:
https://microservices.io/ (cit. on pp. 29, 40, 72, 152).

RightScale. State of the Cloud Report. Tech. rep. 2017, p. 38. URL: http:
/ /www.rightscale.com /blog /cloud-industry-insights / cloud- computing- trends-
2017-state-cloud-survey (cit. on pp. 29, 30).

RightScale. 2019 State of the Cloud Report. 2019. URL: https://www.flexera.

com /2019-cloud-report (visited on 04/01/2020) (cit. on pp. iii, v, 3, 15, 26-28,
33, 44, 217).

James Roche. “Adopting devops practices in quality assurance.” In:
Communications of the ACM 56.11 (2013), pp. 38-43. 1sSN: 00010782. DOI:
10.1145/2524713.2524721 (cit. on pp. 19, 25, 31).

Colette Rolland et al. “Evaluating a pattern approach as an aid for
the development of organisational knowledge: An empirical study.” In:
International Conference on Advanced Information Systems Engineering.
Springer. 2000, pp. 176-191 (cit. on p. 213).

Nikos A Salingaros. “The structure of pattern languages.” In: ARQ:
Architectural Research Quarterly 4.2 (2000), pp. 149-162 (cit. on p. 213).

A. Sasabe et al. “Pattern Mining Patterns A Search for the Seeds of Patterns.”
In: Pattern Language of Patterns (2016), pp. 1-16 (cit. on p. 23).

Laura Savu. “Cloud computing: Deployment models, delivery models, risks
and research challanges.” In: 2011 International Conference on Computer and
Management, CAMAN 2011 (2011), pp. 1-4. 18SN: 03605442. pot: 10.1109/
CAMAN.2011.5778816 (cit. on pp. 2, 29, 77).

Markus Schumacher et al. Security Patterns: Integrating Security and Systems
Engineering. 2006, p. 600. 1SBN: 9780470858844 (cit. on p. 135).

Mathijs Jeroen Scheepers. “Virtualization and Containerization of
Application Infrastructure : A Comparison.” In: 21st Twente Student
Conference on IT (2014), pp. 1-7 (cit. on p. 78).

Niels Seidel. “Empirical evaluation methods for pattern languages: Sketches,
classification, and network analysis.” In: ACM International Conference
Proceeding Series. Vol. Part F1320. 2017, p. 24. 1SBN: 9781450348485. DOTI:
10.1145/3147704.3147719 (cit. on p. 70).

Amazon Web Services. Summary of the Amazon DynamoDB Service
Disruption and Related Impacts in the US-FEast Region. 2015. URL: https:
//aws.amazon.com/message/5467D2/ (visited on 12/01/2019) (cit. on p. 32).

281

https://www.nginx.com/microservices-soa/
http://microservices.io/patterns/
http://microservices.io/patterns/
https://arxiv.org/abs/1-933988-16-9
https://microservices.io/
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
https://www.flexera.com/2019-cloud-report
https://www.flexera.com/2019-cloud-report
https://doi.org/10.1145/2524713.2524721
https://doi.org/10.1109/CAMAN.2011.5778816
https://doi.org/10.1109/CAMAN.2011.5778816
https://doi.org/10.1145/3147704.3147719
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/5467D2/

282

REFERENCES

[Ser17]

[Ser19a]

[Ser19b]

[SFC18]

[SFC20]

[SFJ96]

[Shal5|

[Sim16]

[SM11]

[SM13]

[SNP15]

[Sol+07]

Amazon Web Services. Summary of the Amazon S8 Service Disruption in
the Northern Virginia (US-EAST-1) Region. 2017. URL: https://aws.amazon.
com/message/41926/ (visited on 12/01/2019) (cit. on pp. 32, 78).

Amazon Web Services. AWS Global Infrastructure. 2019. URL: https://aws.
amazon.com/about-aws/global-infrastructure/ (cit. on p. 17).

Amazon Web Services. Regions and Awvailability Zones. 2019. URL: https:
//docs.aws.amazon.com /AWSEC2 /latest /UserGuide / using- regions- availability-
zones.html (visited on 12/01/2019) (cit. on p. 31).

Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia.
“Overview of a Pattern Language for Engineering Software for the Cloud.”
In: 25th Conference on Pattern Languages of Programs. Portland, Oregon,
USA, 2018. 1sBN: 9781941652091 (cit. on p. 258).

Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Correia. A Survey on
the Adoption of Patterns for Engineering Software for the Cloud - dataset.
Zenodo, 2020. DOI: 10.5281/zenodo.3755046. URL: https://doi.org/10.5281/
zenodo.3755046 (cit. on p. 198).

Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. “Software
Patterns.” In: Communications of the ACM 39.10 (1996), pp. 37-39. ISSN:
00010782. por: 10.1145/236156.236164 (cit. on p. 6).

Mojtaba Shahin. “Architecting for devops and continuous deployment.”
In: ACM International Conference Proceeding Series 28-Septemb (2015),
pp. 147-148. por: 10.1145/2811681.2824996 (cit. on p. 31).

Jack Simpson. What are first, second and third-party data? 2016. URL: https:
/ /econsultancy.com /blog /67674-what- are-first-second- and- third- party- data
(cit. on p. 177).

Americo Sampaio and Nabor Mendongca. “Uni4Cloud: An approach based on
open standards for deployment and management of multi-cloud applications.”
In: Proceedings - International Conference on Software Engineering (2011),
pp. 15-21. 1ssN: 02705257. por: 10.1145/1985500.1985504 (cit. on p. 17).

Tiago Boldt Sousa and Angelo Martins. Monitor, control and process-an
adaptive platform for ubiquitous computing. Vol. 8091 LNCS. September.
Alcudia, Mallorca, Spain, 2013, pp. 47-50. ISBN: 9783642408397. por: 10.
1007,/978-3-642-40840-3-7 (cit. on pp. 68, 262).

Jens Smeds, Kristian Nybom, and Ivan Porres. “DevOps: A definition and
Perceived Adoption Impediments.” In: Lecture Notes in Business Information
Processing 212 (2015), pp. 166-177. 1sSN: 18651348. DO1: 10.1007/978-3-319-
18612-2_14 (cit. on p. 19).

Stephen Soltesz et al. “Container-based operating system virtualization.” In:
ACM SIGOPS Operating Systems Review 41.3 (2007), p. 275. 1SN: 01635980.
DOI: 10.1145/1272998.1273025 (cit. on pp. 82, 87).

https://aws.amazon.com/message/41926/
https://aws.amazon.com/message/41926/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://doi.org/10.5281/zenodo.3755046
https://doi.org/10.5281/zenodo.3755046
https://doi.org/10.5281/zenodo.3755046
https://doi.org/10.1145/236156.236164
https://doi.org/10.1145/2811681.2824996
https://econsultancy.com/blog/67674-what-are-first-second-and-third-party-data
https://econsultancy.com/blog/67674-what-are-first-second-and-third-party-data
https://doi.org/10.1145/1985500.1985504
https://doi.org/10.1007/978-3-642-40840-3-7
https://doi.org/10.1007/978-3-642-40840-3-7
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1145/1272998.1273025

[Soul2]

[Soul3|

[Sow87]

9S17]

[Stal7]

[Sti15]

[Svel7]

[Tafl15]

[TCB14]

[Tecl4]

[Teil6]

REFERENCES

Tiago Boldt Sousa. “Dataflow Programming: Concept, Languages and

Applications.” In: 7th Doctoral Symposium on Informatics Engineering. Vol. 7.
Lisbon, Portugal, 2012, p. 13. 1SBN: 9789727521418. URL: http://paginas.fe.

up.pt/%7B~%T7Dprodei/dsiel2 / papers / paper%7B%5C_%7D17.pdf (cit. on
p. 259).

Tiago Boldt Sousa. “Sensors, actuators and services - A distributed
approach.” In: SPLASH 2013 - Proceedings of the 2013 Companion
Publication for Conference on Systems, Programming, and Applications:
Software for Humanity (2013), pp. 161-165. po1: 10.1145/2508075.2508464
(cit. on pp. 68, 263).

Henry A. Sowizral. “Design methodology for object-oriented programming
OOPSLA’87 panel session” In: Addendum to the Proceedings on
Object-Oriented Programming Systems, Languages and Applications
(Addendum), OOPSLA 1987 1987-Janua.October (1987), pp. 91-95 (cit. on

p. 21).
Ken Schwaber and Jeff Sutherland. “The Scrum Guide: The Definitive The

Rules of the Game.” In: Scrum.Org and ScrumlInc November (2017), p. 19.

1SSN: 00195847. po1: 10.1053/j.jrn.2009.08.012. arXiv: arXiv:1011.1669v3
(cit. on p. 18).

Statuscake. StatusCake. 2017. URL: https://www.statuscake.com/ (visited on
12/01/2019) (cit. on p. 133).

Matt Stine. Migrating to Cloud-Native Application Architectures. O’Reilly
Media, Inc., 2015. 1SBN: 9780470873939 (cit. on pp. 29, 152).

Yevgeniy Sverdlik. AWS Outage that Broke the Internet Caused by Mistyped
Command. 2017. URL: https://www.datacenterknowledge.com/archives/2017/
03 /02 / aws- outage- that- broke- the- internet- caused - by - mistyped - command
(cit. on p. 31).

Darryl Taft. How the Skills Gap Is Threatening the Growth of App Economy.

2015. URL: http://www.eweek.com/developer/slideshows/how-the-skills-gap-is-
threatening-the-growth-of-app-economy.html (cit. on p. 3).

Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya.

“Interconnected Cloud Computing Environments.” In: ACM Computing
Surveys 47.1 (2014), pp. 1-47. 1ssN: 03600300. DOT: 10.1145/2593512 (cit. on
pp. 2, 14, 29).

Saugatuck Technology. Why DevOps Matters : Practical Insights on
Managing Complex & Continuous Change. Tech. rep. 2014 (cit. on pp. 19,
31).

Carlos Teixeira. “Towards DevOps: Practices and Patterns from the
Portuguese Startup Scene.” Master’s Thesis. Faculty of Engineering,
University of Porto, 2016 (cit. on pp. 62, 64, 66).

283

http://paginas.fe.up.pt/%7B~%7Dprodei/dsie12/papers/paper%7B%5C_%7D17.pdf
http://paginas.fe.up.pt/%7B~%7Dprodei/dsie12/papers/paper%7B%5C_%7D17.pdf
https://doi.org/10.1145/2508075.2508464
https://doi.org/10.1053/j.jrn.2009.08.012
https://arxiv.org/abs/arXiv:1011.1669v3
https://www.statuscake.com/
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
https://www.datacenterknowledge.com/archives/2017/03/02/aws-outage-that-broke-the-internet-caused-by-mistyped-command
http://www.eweek.com/developer/slideshows/how-the-skills-gap-is-threatening-the-growth-of-app-economy.html
http://www.eweek.com/developer/slideshows/how-the-skills-gap-is-threatening-the-growth-of-app-economy.html
https://doi.org/10.1145/2593512

284

REFERENCES

[TKP04]

[TSB10]

[Uni03]

[Unil6]

[UX13]

[VW12]

[WF12]

[Wil12]

(Wil15]

[Win99)]

[Wol06]

[Wugl5]

E Todd, E Kemp, and Chris Phillips. “What makes a good User Interface
pattern language?” In: Proceedings of the fifth conference on Australasian
user interface- Volume 28. Australian Computer Society, Inc. 2004, pp. 91-100
(cit. on p. 213).

Wei Tek Tsai, Xin Sun, and Janaka Balasooriya. “Service-oriented cloud
computing architecture.” In: ITNG2010 - 7th International Conference on
Information Technology: New Generations (2010), pp. 684-689. bor: 10.1109/
ITNG.2010.214 (cit. on pp. 14, 42).

International Telecommunication Union. Building the Information Society: a
global challenge in the new Millennium. Tech. rep. 2003. URL: https://www.
itu.int/net/wsis/docs/geneva/official /dop.html (cit. on p. 1).

The European Parliament Union. EU Data Protection Rules. 2016. URL: https:
/ /eur-lex.europa.eu /legal-content /EN / TXT / 7qid = 1528874672298 % 7B %
5C&%7Duri=CELEX%7B%5C%%7D3A32016R0679 (visited on 12/01/2019)
(cit. on pp. 26, 32).

Sultan Ullah and Zheng Xuefeng. “Cloud Computing Research Challenges.”
In: (2013), pp. 1397-1401. arXiv: 1304.3203. URL: http://arxiv.org/abs/1304.
3203 (cit. on pp. 28-30).

Sitalakshmi Venkatraman and Bimlesh Wadhwa. “Cloud Computing A
Research Roadmap in Coalescence with Software Engineering.” In: Software
Engineering: An International Journal (SELJ). Vol. 2. No. 2. September 2012.
2.2 (2012) (cit. on p. 29).

Tim Wellhausen and Andreas Fiesser. “How to write a pattern? A rough guide
for first-time pattern authors.” In: ACM International Conference Proceeding
Series (2012), pp. 1-9. por: 10.1145/2396716.2396721 (cit. on p. 69).

Bill Wilder. Cloud Architecture Patterns.
2012, p. 182. 1SBN: 978-1-4493-1977-9. por: 10.1007 /978-3-642-20917-8
(cit. on p. 72).

Jason Wilder. Automated Nginx Reverse Proxy for Docker. 2015. URL: http:
/ / jasonwilder.com /blog /2014 /03 / 25 / automated - nginx- reverse- proxy - for-
docker/ (visited on 12/01/2019) (cit. on p. 147).

E. O. Winstedt. “A Bodleian MS. of Juvenal” In: The Classical Review
13.4 (1899), pp. 201-205. 18SN: 14643561. por: 10.1017,/50009840X00078409
(cit. on p. 133).

Geoffrey H Wold. “Disaster Recovery Planning Process.” In: Disaster
Recovery Journal 5.1 (2006), pp. 1-8 (cit. on p. 33).

Patrick Wuggazer. “Evaluation of an Architecture for a Scaling and
Self-Healing Virtualization System.” PhD thesis. University of Magdeburg,
2015, pp. 7-35 (cit. on p. 148).

https://doi.org/10.1109/ITNG.2010.214
https://doi.org/10.1109/ITNG.2010.214
https://www.itu.int/net/wsis/docs/geneva/official/dop.html
https://www.itu.int/net/wsis/docs/geneva/official/dop.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298%7B%5C&%7Duri=CELEX%7B%5C%%7D3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298%7B%5C&%7Duri=CELEX%7B%5C%%7D3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528874672298%7B%5C&%7Duri=CELEX%7B%5C%%7D3A32016R0679
https://arxiv.org/abs/1304.3203
http://arxiv.org/abs/1304.3203
http://arxiv.org/abs/1304.3203
https://doi.org/10.1145/2396716.2396721
https://doi.org/10.1007/978-3-642-20917-8
http://jasonwilder.com/blog/2014/03/25/automated-nginx-reverse-proxy-for-docker/
http://jasonwilder.com/blog/2014/03/25/automated-nginx-reverse-proxy-for-docker/
http://jasonwilder.com/blog/2014/03/25/automated-nginx-reverse-proxy-for-docker/
https://doi.org/10.1017/S0009840X00078409

[Xav-+13]

[Xeb19a]

[Xeb19b]

[YH02]

[ZCB10]

[Zim+]

REFERENCES

Miguel G. Xavier et al. “Performance evaluation of container-based
virtualization for high performance computing environments.” In: Proceedings
of the 2013 21st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2013 LXC (2013), pp. 233-240. DOI:
10.1109/PDP.2013.41. arXiv: 1709.10140 (cit. on pp. 86, 87).

XebiaLabs. Periodic Table of DevOps (v3). 2019. URL: https://xebialabs.com/
periodic-table-of-devops-tools/ (visited on 12/01/2019) (cit. on p. 19).

XebiaLabs. The Ultimate DevOps Tool Chest. 2019. URL: https:/ /xebialabs.
com/the-ultimate-devops-tool-chest/ (visited on 12/01/2019) (cit. on pp. 19,
33).

Graham Yarbrough and Sandy Hook. Message Queue Server System. 2002.
URL: https://www.google.com/patents/US20020004835 (cit. on p. 140).

Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud computing: State-of-the-art
and research challenges.” In: Journal of Internet Services and Applications 1.1
(2010), pp. 7-18. 1sSN: 18674828. DOI: 10.1007 /s13174-010-0007-6 (cit. on
pp. 2, 14, 17).

Olaf Zimmermann et al. Microservice API Patterns. URL: https : / /
microservice-api-patterns.org/ (visited on 01/10/2020) (cit. on p. 42).

28

5

https://doi.org/10.1109/PDP.2013.41
https://arxiv.org/abs/1709.10140
https://xebialabs.com/periodic-table-of-devops-tools/
https://xebialabs.com/periodic-table-of-devops-tools/
https://xebialabs.com/the-ultimate-devops-tool-chest/
https://xebialabs.com/the-ultimate-devops-tool-chest/
https://www.google.com/patents/US20020004835
https://doi.org/10.1007/s13174-010-0007-6
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/

	Contents
	List of Figures
	List of Tables
	1 Introduction
	Contents
	1.1 Context
	1.2 Motivation
	1.3 Engineering Software for the Cloud
	1.4 Patterns and Pattern Languages
	1.5 Research Goals and Contributions
	1.6 How to Read this Dissertation

	2 Background
	Contents
	2.1 The World Wide Web
	2.2 From SOA to Microservices
	2.3 Cloud Computing
	2.4 A Note on Agile Software Development
	2.5 DevOps
	2.6 Software Design and Design Patterns
	2.7 Summary

	3 Designing Software for the Cloud
	Contents
	3.1 Intricacies from Cloud Software Development
	3.2 Cloud Design Patterns
	3.3 Summary

	4 Problem Statement
	Contents
	4.1 Thesis Statement
	4.2 Research Questions
	4.3 Research Strategy and Methodology
	4.4 Summary

	5 Preliminary Studies
	Contents
	5.1 Experimentation with Cloud Architectures
	5.2 A Pattern Catalog for DevOps and Cloud
	5.3 Summary

	6 Engineering Software for the Cloud
	Contents
	6.1 Pattern Structure
	6.2 Methodology
	6.3 Pattern Language
	6.4 Adopting the Language
	6.5 Summary

	7 Orchestration and Supervision Patterns
	Contents
	7.1 Overview
	7.2 Containerization
	7.3 Orchestration Manager
	7.4 Automated Recovery
	7.5 Job Scheduler
	7.6 Failure Injection
	7.7 Summary

	8 Monitoring Patterns
	Contents
	8.1 Overview
	8.2 Preemptive Logging
	8.3 Log Aggregation
	8.4 External Monitoring
	8.5 Summary

	9 Discovery and Communication Patterns
	Contents
	9.1 Overview
	9.2 Messaging System
	9.3 Service Discovery
	9.4 Summary

	10 Industrial Case Study
	Contents
	10.1 Goals
	10.2 Methodology
	10.3 Interview Protocol
	10.4 Case Study: LabOrders
	10.5 Case Study: HUUB
	10.6 Case Study: Infraspeak
	10.7 Case Study: SwordHealth
	10.8 Case Study: Velocidi
	10.9 Discussion
	10.10 Conclusions
	10.11 Threats to Validity
	10.12 Summary

	11 Pattern Language Adoption Survey
	Contents
	11.1 Goals
	11.2 Methodology
	11.3 Data Analysis
	11.4 Discussion
	11.5 Threats to Validity
	11.6 Conclusion
	11.7 Summary

	12 Conclusion
	Contents
	12.1 Research Questions
	12.2 Hypothesis Revisited
	12.3 Main Contributions
	12.4 Future Work
	12.5 Epilogue

	Appendices
	A Cloud and DevOps Preliminary Survey
	A.1 Interview Protocol
	A.2 Preliminary Survey Responses

	B Survey
	B.1 Questions
	B.2 Responses

	C Publications
	Contents
	C.1 Publications Resulting from this Research
	C.2 Other Publications from the Author
	C.3 Supervisions

	References

