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Abstract  

Increasing market demands for highly customised products with shorter time-to-market and 

at lower prices are forcing manufacturing systems to be built and operated in a more efficient 

ways. In order to overcome some of the limitations in traditional methods of automation 

system engineering, this thesis focuses on the creation of a new approach to Virtual 

Commissioning (VC). 

In current VC approaches, virtual models are driven by pre-programmed PLC control 

software. These approaches are still time-consuming and heavily control expertise-reliant as 

the required programming and debugging activities are mainly performed by control 

engineers.  Another current limitation is that virtual models validated during VC are difficult 

to reuse due to a lack of tool-independent data models. Therefore, in order to maximise the 

potential of VC, there is a need for new VC approaches and tools to address these limitations. 

The main contributions of this research are (1) to develop a new approach and the related 

engineering tool functionality for directly deploying PLC control software based on 

component-based VC models and reusable components, and (2) to build tool-independent 

common data models for describing component-based virtual automation systems in order to 

enable data reusability. This research is part of the BDA (Business Driven Automation) 

project conducted by the Automation Systems Group. The aim of BDA is to provide a new 

component-based VC framework which minimises the time and expertise required to 

commission automation systems. This thesis details the development of the approaches as 

well as related engineering tool features required by the new VC framework for achieving 

control software deployment and efficient data reuse. In order to simplify PLC control 

software development, a novel approach and related engineering tool functions for directly 

deploying the PLC control software of automation systems based on the control behaviour of 

the component-based virtual models have been designed and implemented. To achieve 

efficient reuse of validated virtual models, a new common data model for describing the 

component-based virtual systems has been developed utilising the domain-specific open 

standard-AutomationML.  

 Keywords: Component-Based Automation, Virtual Commissioning, Direct Deployment, 

Common Data Model, AutomationML.   
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Chapter 1. Introduction 

This chapter introduces the area of research and targeted problem, the objectives, and the 

adopted methodologies.  

1.1. Background 

Nowadays manufacturing enterprises are under unprecedented pressure resulting from the 

turbulent market environments with aggressive competition on a global scale [1-3]. Due to 

the competition for key market share, automotive enterprises are forced to shorten production 

time when introducing new products. It is recognised that the delay in the launch of a new 

product can directly cause a significant reduction in profit margin [4].  

Traditional manufacturing automation systems are normally implemented in rigid 

hierarchical structures. In the current approach, the design, build and validation of automation 

systems take place sequentially and system validation cannot be carried out until the last 

stage of the system’s development, when all electrical, mechanical units and the control 

software have been integrated. It is obvious that any unforeseen delays that occur during 

these activities will result in the delay of succeeding activities and hence delay the system 

delivery date.  This adversely affects the lead time of a production machine and thus results 

in a failure to gain a competitive edge and market share [1].  Moreover, such an engineering 

approach heavily relies on the knowledge and experience of the engineering team. The 

control code developed for such systems is often monolithic and unstructured, making it 

difficult to understand, modify and reuse. Due to this, any alteration in the automation system 

is time consuming, complex, error prone and expensive. This results in an adverse impact on 

the commissioning and ramp-up time and might lead to performance degradation.   

1.2. Research Motivation 

To gain a competitive edge in the market by providing more product variants more rapidly, 

innovative approaches to automation system engineering are required to achieve agility in the 

manufacturing systems. An important consideration is that new production systems must be 

scalable in capacity and functionality thereby making them able to convert quickly to produce 

new products [5]. In this context, modular production systems, which are one type of 

Reconfigurable Manufacturing System (RMS), are designed at the onset to be re-configurable 
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and created from basic hardware and software modules which can be re-arranged quickly and 

reliably [6]. Using a modular approach, machine builders are able to build a new system by 

combining the needed components, potentially from different component vendors, without 

the need to understand their potentially complex implementation details. The modular 

approaches radically change the way of automation system engineering and can significantly 

reduce the complexity of control systems engineering. 

However, few of existing modular approaches have been applied to large scale industrial 

applications. PLC-based control systems are widely used by industry and the time to build 

and validate such systems increases as the system complexity grows [4]. However, the 

competition for key market shares makes shorter time in production ramp-ups of key 

importance [7]. The correction of defective control software consumes up to 60% of 

commissioning time and accounts for 15% of time-to-delivery [7]. This challenge can be 

relieved by Virtual Commissioning (VC), in which a virtual model of the to-be system is used 

to validate the control software on an actual Programmable Logic Controller (PLC) and 

Human-Machine Interface (HMI) before the physical integration of all the devices occurs on 

the shop-floor, thereby a saving of ramp-up time can be achieved.    

Current VC approaches can be classified into Hardware-in-the-Loop (HIL) and Software-

in-the-Loop (SIL) [7]. The SIL approach includes a simulation of the production equipment 

as well as the control hardware itself. Therefore, it can be carried out without the control 

system hardware. In a HIL simulation, on the other hand, the control software are tested 

under more realistic conditions by connecting the virtual model of a machine to real control 

hardware, thereby avoiding making changes to the software runtime environment afterwards.  

In general, the HIL and SIL approaches both have their respective advantages and 

shortcomings summarised as follows: 

• HIL has been widely accepted to perform virtual commissioning as it realises the 

validation against real PLC control code. However, HIL relies on the expertise of 

control engineers since the PLC codes need to be manually developed before VC and 

subsequently the debugging of the PLC control software during VC is also the 

responsibility of control engineers. Obviously, control hardware is required and the 

connections with virtual models need to be created first.  



 Chapter 1 Introduction 

3 

 

• SIL does not require physical PLCs and therefore the connections between real PLC 

and virtual models are not required. However, manual programming and debugging is 

still required. Another penalty is that low availability of up-to-date control simulation 

packages for a particular PLC normally leads to less realistic commissioning.   

• Additionally, the virtual models validated by either HIL or SIL can rarely be shared 

between different related engineering tools as no common data models are available 

for achieving efficient data exchange of these virtual models. As a result, the virtual 

models are mainly restricted to be (re)used by the engineering tool in which they are 

created. 

1.2.1. Justification for Research 

Automation systems have a key role to play in the process of building and operating 

manufacturing systems in the following aspects: 

• Machine ramp-up time 

• Control software validation during commissioning 

• Remote support and diagnostic during machine operative phase 

The inherent attributes of VC make it an appropriate way to relieve the challenges raised 

from the above factors. However, it is observed that limitations still exist in the current VC 

approaches. Time-consuming and expertise-reliant manual programming is still required and 

validated virtual models cannot be efficiently reused during the lifecycle of automation 

systems. Research is therefore needed to further explore the potentials of VC to meet the 

increasing demand for more a rapid and economical way of automation system engineering 

and operation. 

1.2.2. Problem Statement 

In order to develop and manage automation systems rapidly and cost-efficiently through 

maximising the contributions of VC, VC approaches should become more efficient and 

validated virtual models need to be efficiently reused. Considering the plurality of PLC 

platforms and the diversity of current VC engineering tools, the problem statement can be 

therefore formulated as follows:  
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How to (1) enable a VC approach which better facilitates manufacturing systems building 

and the resultant control software development, and (2) impact systems development and 

management throughout its lifecycle through efficient reuse of validated virtual models?  

1.3. Research Description 

1.3.1. Hypothesis 

The principle hypotheses for this work include (1) if an automation system has been 

virtually prototyped and commissioned using the component-based approach in a virtual 

engineering tool, the required PLC control software of this system can be directly deployed 

based on the component-based virtual model and pre-developed reusable runtime components, 

and (2) the virtually built components and systems can be further reused during the system’s 

lifecycle and this can be achieved via a tool-independent common data model described in an 

open standard.  

1.3.2. Objectives 

The research work documented in this dissertation is part of the group research work 

carried out by the Automation Systems Group (ASG) which was formerly at Loughborough 

University UK and moved to the University of Warwick UK in April 2013. This research 

work mainly took place at Loughborough University and now continues at the University of 

Warwick. The overall objective of the group’s research is to develop an innovative open VC 

framework, which is named VCOM (Virtual Commissioning using Components) and 

presented in the section 3.1 of this thesis.  The research required to achieve the desired 

framework is summarised in Figure  1-1. Of this research, the component-based approach as 

the theoretical basis of the whole research work has been proposed by Harrison et al. in [4, 8]. 

The component-based simulation engineering toolset, introduced in the section 2.3.3.2, and 

the new control software architecture for facilitating the direct deployment of PLC control 

software based on the component-based virtual models, presented in the section 3.4, were 

respectively developed by other researchers of this group.  

The research work conducted by the author, illustrated as the green part of Figure, is 

focused on the technologies to enable the openness and the direct deployment function of this 

framework. The principal objective is to develop the required approaches and engineering 

tools for achieving control software deployment and efficient virtual model reuse. To be more 
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specific, the objectives are to (1) propose and develop a solution that supports the direct 

deployment of PLC control software based on the control logic of the component-based 

virtual models, (2) develop open standard-based common data models to describe virtual 

models of component-based automation systems, and (3) develop related tool functionality to 

map component-based virtual models to the common data models. In order to support lossless 

and efficient data reuse, the proposed common data models must cover the multi-disciplinary 

data which comprise the virtual models. To facilitate the efficient development of error-free 

PLC control software, the proposed approach to direct deployment must maximise the 

automated reuse of validated component-based control logic and minimise required manual 

work in the process of deployment.  

 

Figure  1-1: research focus and other related researches 

1.3.3. Focus and Related Research 

The focus of the author’s research has been placed on proposing new approaches to 

achieve the objectives specified above. In order to demonstrate the achievement of these 

objectives, an engineering tool to implement the proposed approaches to direct deployment 

and virtual model mapping is needed. In this research, the required engineering tool has been 

developed jointly by the author and another researcher of the ASG. Also, some of the 

functions developed by the author are according to the new PLC control software architecture 

and the new HMI software architecture developed by other researchers of ASG. In order to 
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clarify the development work conducted by the author and its relationship with the work of 

other ASG researchers, Figure  1-2 illustrates the division of the related work.  

 

Figure  1-2: Development work conducted by the author and other ASG researchers 

In the process of developing the engineering tool (detailed description can be found in 

section 4.1.2), the author was mainly focused on designing and implementing: 

• The common data models for describing component-based virtual models 

• The virtual model mapping module of the engineering tool for mapping component-

based virtual models to the common data models 

• The control software deployment module  

The author was also involved in the joint design and implementation of the following 

modules of the engineering tool: 

• Database 

• Database management module 

The new deployable control software architecture, according to which the PLC control 

software can be generated by the control deployment module, is described in section 3.4.  The 

new HMI software is able to generate the HMI screens based on the predefined HMI screen 
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templates and the runtime control models in PLC program. The HMI software is used for the 

experimental studies (see section 4.4.4.2) of this research and more details about it can be 

found in [9, 10]. 

The engineering tool for virtually prototyping component-based automation systems is 

described in Section 2.3.3 and more details can be found in the dissertations of another 

researcher[11]. Also, it is not the purpose of this work to develop the reusable runtime 

components which are developed and validated by control engineers during component 

building phase and are used as black-boxes in direct deployment of control software for 

systems. Details of developing the runtime components can be found in [12]. 

1.3.4. Methodology 

The following steps are followed in the documented research. 

Survey of related methods and engineering tools 

Extensive review of literature and industrial practices precedes the development of any 

original contribution. In order to propose domain-specific common data model,   available 

VC engineering tools and data exchange formats related to automation system engineering 

have been reviewed. Existing methods of PLC software development from both academic 

researchers and commercial vendors have been assessed, in order to leverage an applicable 

solution for component-based direct deployment of control software during subsequent 

research activities. 

Design of a direct deployment approach 

A direct deployment approach is proposed and developed in order to reuse the control logic 

lying in the validated virtual models and to subsequently achieve the direct deployment of 

complete PLC control software. This is achieved by: 

1. Specifying the workflow for component-based automatic generation of PLC control 

software. 

2. Defining data structures for describing the simulated control logic as PLC-

interpretable runtime control models. 
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3. Providing a means to automatically translate the control behaviours of virtual actuator 

components into runtime control models for populating the Human Machine Interface 

(HMI). 

4. Providing a means to automatically populate the aforementioned runtime control 

models by extracting the control logic from virtual models.  

5. Providing a means to build the communication between the runtime control models 

and corresponding runtime components. 

Design and development of common data models 

Assuming that the hypothesis holds, common models that enable efficient data reuse 

should be designed and developed and represented using an appropriate open standard data 

formats selected from the surveyed ones.  

Development of a virtual model mapping approach 

An approach to mapping component-based virtual models into the proposed HIL common 

data models is designed and also implemented using XSLT. This is needed due to the fact 

that HIL is currently the most widely accepted VC approach and the HIL models can be 

potentially reused throughout the lifecycle of automation systems. 

Development of the related engineering tool 

An engineering tool is developed in order to implement the proposed approaches. The 

engineering tool supports automatic generation of executable control software for the selected 

PLCs and the mapping of virtual models. These functionalities are realised by: 

1. Implementing the proposed direct deployment approach.  

2. Managing the reusable runtime components, PLC-specific common information and 

other reusable data. 

3. Providing a user interface for facilitating I/O mapping.  

4. Automatically generating source code of executable PLC control software by 

combining related reusable data with runtime control models that are dynamically 

generated. 

5. Calling the developed XSLT files to implement virtual model mapping function.  

Empirical study 
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A set of experiments has been carried out in order to validate the hypothesis of this 

research and to evaluate the performance of the proposed approaches and the developed 

engineering tool. A test rig and the component-based simulation engineering toolset named 

Core Component Editor (CCE) are used to illustrate the approach in different cases of interest: 

1. Data exchange through the proposed common data model: requires virtual model of 

the test rig developed in CCE to be mapped into the proposed common data models 

which are then reused by another engineering tool. 

2. Automatic generation of PLC control software with automatic operation mode: 

demonstrates the applicability of the approach to generating executable PLC control 

software for two PLCs from different vendors. 

3. Automatic generation of PLC control software including both automatic and manual 

operation modes: demonstrates the applicability of the approach to generating both 

executable PLC control software and the related control data models for HMI 

software for the Siemens S7 platform. 

1.3.5. Contributions 

The main contributions presented by this dissertation can be classified into new 

methodologies and new technologies introduced herein. 

1.3.5.1. New methodology 

Component-based approach to automated control software engineering 

A new approach in which PLC control software can be directly deployed based on the 

component-based control logic which is validated by CCE. In this approach, PLC control 

software of a desired machine is deployed by automatically combining pre-defined runtime 

components with runtime control models, generated by translating the component-based 

control logic, so that required manual work during the system engineering phase has been 

significantly reduced. This approach reduces the time and complexity of control software 

development. Hence, control software engineering does not rely so heavily on the expertise 

of control engineers and can be performed at an earlier phase of automation system 

engineering. This approach significantly overcomes the limitations in existing VC approaches. 

Common data models for Modular Automation Systems 
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A set of new data models for describing virtual models of Component-based Automation 

Systems is proposed. These new models represent the components of a virtual modular 

automation system as a whole by integrating the constituent information from different 

disciplines. The model is represented by combining well-recognised XML-based domain 

specific open standards which provide semantics to the data models; therefore it significantly 

facilitates the data reuse of virtual models.  

1.3.5.2. New Technology  

Engineering tools and solutions 

A consolidated set of functions and user interfaces that serve as an infrastructure for 

interpreting virtual models and generating executable PLC control software are developed. 

The engineering tool also provides functions for transforming the component-based virtual 

models into the corresponding proposed HIL common data models. This eliminates the data 

exchange gaps between VC applications and other related applications. The engineering tool, 

which simplifies the process of control system engineering by automating the majority of the 

required work, provides the required functions for achieving enhanced agility, reusability and 

adaptability in reconfigurable manufacturing systems.  

1.3.6. Research Scope 

Automation can be applied to many domains such as packaging, warehousing and building 

automation and each of them has its domain specific requirements. However, the author has 

been involved in the project for discrete part manufacturing with in the automotive industry. 

Therefore, the work presented in this dissertation has been carried out focusing on the domain 

of automation of automotive assembly.  

1.4. Thesis Structure 

The rest of the dissertation is structured as follows. Chapter 2 provides a review of relevant 

methods, engineering tools, data formats and research practices, and concludes with an 

assessment of the state of the art in the field of the dissertation. Chapter 3 presents the 

proposed data models, approaches and the design of the engineering tool to implement the 

proposed approaches. Chapter 4 describes the implementation of the engineering tool, the 

conducted experimental work to demonstrate that the research hypothesis is held and to 
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evaluate the performance of the proposed approaches. Chapter 5 summarises the main 

contributions of the work and suggests potential future research work.                   
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Chapter 2. Literature Review: State-Of-The-Art 

Automation System Engineering 

This chapter provides a review and assessment of existing relevant work. The chapter 

begins with a review of terms related to reconfigurable manufacturing systems and system 

architectures proposed by the state-of-the-art modular approaches to automation system 

engineering.  

Two groups of methodologies of PLC control software engineering are then separately 

reviewed. Traditional approaches, which are being widely used by the current manufacturing 

industry, to developing and verifying control software are covered first. Subsequently, 

emerging approaches from both academia and industries for facilitating the control software 

engineering are then reviewed.  

Consequently, Virtual Commissioning (VC), which is considered as a promising way of 

reducing the time and cost of control software validation, is then separately reviewed. The 

HIL and SIL approaches as the current mainstream approaches to VC, are reviewed. The 

CCE toolset, a component-based simulation engineering tool used for the new VCOM 

approach is then described. 

Lastly, openness of VC tools is assessed from the perspectives of why openness is needed, 

how to achieve the needed openness, the openness of existing engineering tools and existing 

relevant open standards which can be potentially adopted to achieve the needed openness.  

The chapter concludes with an assessment the state of the art and an identification of the 

research gaps.  

2.1. Reconfigurable Manufacturing Systems 

2.1.1. The Need for RMS 

In order to cope with the new challenges characterised by growing demand for more 

customer-oriented product variants with reducing development time, an important 

consideration is that new production systems must be scalable in capacity and functionality 

thereby making them able to convert quickly to produce new products [5]. In this context, the 

Reconfigurable Manufacturing System (RMS) paradigm is widely considered as promising 
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key technology to enable responsiveness in the mass-customisation production era [13].  

RMS is a new manufacturing paradigm aiming at meeting the objectives of cost-effective and 

rapid system changes.  Compared with Flexible Manufacturing Systems (FMS) providing 

generalised flexibility, RMS provides customised flexibility [14]. Moreover, with RMS, more 

economic objectives can be achieved by permitting: a) reduced lead time to launch new 

systems and reconfiguration of existing systems, and b) rapid upgrading and quick integration 

of new functionalities into existing systems  [5].  

2.1.2. Re-configurability 

According to Koren and Ulsoy, an RMS has the ability to reconfigure hardware and control 

resources at all of the functional and organisational levels, in order to quickly adjust the 

production capacities and functionalities in response to sudden changes in market or in 

regulatory requirements[15]. The characteristic feature that defines an RMS is the possibility 

of being changed easily in order to adapt to changing production requirements.  

2.1.2.1. Qualitative Attributes 

Reconfigurability refers to the possibility of making changes to a system in order to 

implement a different set of processes. Theoretically speaking, any system can be 

reconfigured if enough effort is invested [16].  Practically, for a system to be considered as an 

RMS it must be possible to make changes with minimum effort. Since to date there is no 

method for calculating how much effort is required to reconfigure a system before knowing 

the type of reconfigurations that will be needed, it is only possible to consider re-

configurability as a qualitative attribute.  

Several attributes of system architecture can define the reconfigurability of a system in the 

different scenarios and stages. Table  2-1 summarises a compilation of qualitative attributes [5] 

that can be used to assess reconfigurability.  

It must be noted that different approaches to building RMSs might have different strategies 

to achieve specific attributes of system reconfigurability in one way or another. A typical 

example is that Delamer considered modularity as the most influential facilitator for 

achieving integrability, convertibility and reusability [16]; while Harrison et al. emphasised 

the importance of reusability in building reconfigurable modular automation systems [6]. 
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Table  2-1 Key characteristics of a reconfigurable manufacturing system  

Attribute Description 

Modularity Design all system components, both software and hardware, to be modular. 

Integrability Design systems and components for both ready integration and future 
introduction of new technology 

Reusability The capability to reuse elements in different systems without making changes to 
those elements 

Convertibility Allow quick changeover between existing products and quick system adaptability 
for future products. 

Adaptability The capability of the system to adapt to different known situations, i.e. to make 
changes within the intrinsic flexibility of the system. 

Interoperability The capability to utilise different types, models of elements those implement the 
same functionality in different systems. 

2.1.2.2. Critical Design Issues 

The reconfigurability of RMS can be achieved by reconfiguring hardware and/or software 

resources. System reconfigurability can be classified in terms of the levels where the 

reconfigurable actions are taken. Reconfigurability, at lower levels, is mainly achieved by 

changing hardware resources while it is achieved, at higher levels, mainly by changing 

software resources. The critical issues in designing a RMS can be categorised as architecture 

design, configuration design and control design, all of which were reviewed in details in [17]. 

• Architecture design is to design system components as encapsulated modules and 

define their interactions for the options when the modules are assembled.  

• Configuration design determines system configuration under given system 

architecture for a specific task. A configuration is an assembly of the selected 

modules in order to fulfil the given task optimally. 

• Control design is to design the appropriate control software for a reconfigurable 

system so that a configuration can be operated to fulfil the task satisfactorily.  

2.1.3. Modular Approaches to Automation System Engineering 

The traditional approach to automation system engineering is supported by well-

established and well proven methods [18]. This approach is relatively effective but the 

process of designing and building the automation system is almost entirely sequential and 
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heavily segmented into different engineering disciplines. As shown in Figure  2-1, in the 

traditional approach, the design, implementation and validation of automation systems take 

place sequentially.  This leads to time-consuming tasks which are difficult to accommodate 

unexpected changes occurring during the task duration and heavily rely on the knowledge 

and experience of the engineer team. The control codes developed for such systems are often 

monolithic and unstructured, making them difficult to understand, modify and reuse. Due to 

this, any alteration in the automation system is time consuming, complex, error prone and 

expensive. This results in an adverse impact on the commissioning and ramp-up time and 

also leads to performance degradation[8].   

 

Figure  2-1: Current process of automation system engineering [1] 

Modular approaches have been regarded as an answer for organizations to manage 

complexities and adapt to changes rapidly. Instead of building a system from scratch in a 

sequential manner, modular approaches facilitate system development using previously 

developed system elements. It encourages and enables system development by building on 

and reusing past experiences and knowledge.  

The advantages of modular approaches can be summarised as low degree of coupling, 

concurrent and independent component build and validation, and reduced system ramp-up 

time. These will bring significant benefits to industry. According to Harrison and Colombo, a 

potential saving of 20 million Euros can be gained by saving 50% in the ramp-up time on a 

typical European automotive engine production line installation project [19]. To gain these 

advantages, reconfigurable modular production systems are designed at the onset to be re-
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configurable and created from basic hardware and software modules that can be re-arranged 

quickly and reliably.   

2.1.3.1. Mechatronic-based Modular Architecture 

The basic hardware elements of assembly automation systems are field-level sensors and 

actuators, which are combined with mechanical structures to create composite production 

units that implement assembly or material handling processes. In the current modular 

approaches found in the relevant literatures, a recent trend is to encapsulate sensors and 

actuators into modular subsystems called mechatronic devices, which typically encapsulate 

additional control software elements. Once defined, these mechatronic units can be used as a 

whole along the process of whole production system engineering.  

For different modular approaches, terms used for naming the basic constituent blocks can 

be various. Also, the approaches of defining the control software encapsulated in constituent 

blocks normally vary from one modular approach to another. However, these approaches are 

all typically mechatronic-based, in which mechatronic units are considered as manufacturing 

components with embedded control intelligence. A mechatronic unit can be generally 

described as a combination of physical, electrical, and control elements.  

 The structure of a complete mechatronic unit was summarised and illustrated in Figure  2-2. 

For different kinds of application areas, mechatronic units might contain only part of the 

attributes illustrated in Figure  2-2[20]. 

 

Figure  2-2 Information sets of mechatronical object [20] 

2.1.3.2. Modular Control Software  

At the hardware level, with mechatronic devices, rapid integration and reconfiguration can 

be enabled. However, a huge reprogramming effort is still required at the software level [21]. 
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In addition, compared to hardware reconfiguration, the integration and reconfiguration of 

software elements is more complex and currently requires highly qualified and trained 

labour[16].  In this context, most of the efforts had been invested on the modularity of the 

control software. The control software elements can be functionally classified into the logic 

control and the coordination control according to their levels of control. Different modular 

approaches respectively focus on different levels to achieve reconfigurability. 

The coordination control sometimes also called supervisory control organises the execution 

sequence of logic control applications. The elements of coordination/supervisory control 

provide the set-point control signals to logic-controlled operations. The events used by the 

coordination control algorithms notify of conditions such as reaching the commanded set 

point. By configuring the logic-controlled operations, the control signal set points and the 

sequence of invocations, different types of processes can be achieved. In many cases this 

functionality could be implemented directly within the logic control, for instance to 

coordinate the devices which compose a mechatronic machine that won’t change its structure. 

But for many cases in which modules are elements of a reconfigurable system the 

coordination control was separated from the logic control [21]. 

A. Agent-based Modular Control  

Many modular approaches aim at revising the coordination/supervisory control to 

facilitate the reconfiguration. Of these modular approaches, agent-based paradigms and 

multi-agent modular paradigms seem promising and have been heavily studied. This can be 

observed from the large amount of existing relevant literature. Leitao reviewed existing 

agent-based approaches and summarised an agent as ‘‘An autonomous component that 

represents physical or logical objects in the system, capable to act in order to achieve its 

goals, and being able to interact with other agents, when it does not possess knowledge and 

skills to reach alone its objectives’’[22] . 

The most important properties of an agent were identified as the autonomy, intelligence, 

adaptation and co-operation. Of these properties, autonomy and intelligence refer to the 

ability to act autonomously to deal with unpredictable circumstances, while adaption and 

cooperation refer to the ability to communicate and collaborate with other agents or effective 

components to achieve the best solution for the control task [22]. An example of a multi-

agent system was given by Colombo as shown in Figure  2-3. In this system, a set of agents 
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represent the objects of a system. In such a system, the agents need to be able to 

communicate in order to achieve a pre-defined goal or solve a problem.  Agents interact with 

others, when some of them do not have enough knowledge and/or skills to achieve 

individually their objectives. These features allow a high performance against disturbances. 

In addition, the expansibility of the system is easier by only modifying the functioning of 

some agents or adding new agents to the control system[23]. 

 

Figure  2-3 Agent-based control in manufacturing [23] 

B. Holonic Modular Control 

Holonic control is another modular approach which is similar to agent-based approach. A 

holon can represent a physical or logical activity, such as a robot, a machine, an order, a 

flexible manufacturing system or even an human operator[24]. Agent-based and holonic 

manufacturing paradigms have been developed under the same fundamental principles of 

autonomy and co-operation. The implementation of the holonic manufacturing concepts can 

be done using agent technology. The use of agent technology addresses mainly the high-level 

of abstraction [25], as illustrated in Figure  2-4. In the low level control, logic control 

functions interconnect with the physical sensors and actuators. Currently, the lowest level 

real-time control is usually carried out by industrial PLCs running in a classical scan-based 

manner.  In the area of holon and multi-agent automation systems, the Rockwell Automation 

has invested heavily and has presented a set of methodologies and tools to support the 

development of the agent-based applications. The details of the research activities of 

Rockwell Automation can be found in [26].  
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Figure  2-4 Control system with agent and holon [27] 

C. IEC61499 Standard for Distributed Control 

The IEC61499 standard is developed by the International Electrotechnical Commission 

(IEC) as an extension of the IEC61131 standard [28], which will be introduced in Section 

2.2.1.3. The IEC 61499 standard is mainly used for the development of distributed control 

systems. It defines a distributed model for splitting different parts of an industrial automation 

process and complex machinery control into functional modules called function blocks. Apart 

from the normal function blocks introduced by the IEC61131, IEC61499 also defines 

communication function blocks which can coordinates the communication between normal 

function blocks. The communication function blocks can be programmed in different 

programming languages and support different forms of network access. Therefore, the 

function blocks of control software can be distributed to different network devices and can 

communicate with each other through communication function blocks [29].  

IEC61499 has been regarded by many researchers as a basis to resolve the requirements for 

portability, configurability and interoperability of control systems [29, 30]. However, the 

literature review also suggests that it has been mainly promoted by the academic community 

and some researchers express doubt about whether the aforementioned advantages can be 

brought to control systems [31].  

D. Component-based Approach to Logic/Loop Control 

Logic control is achieved using control algorithms that process the data provided by 

sensors and command signals to the actuators at the device level. The plant models used at 

the loop control level can be either continuous time dynamic models or discrete-event 

dynamic models. In the scope of assembly automation, the logic control is based on discrete-
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event dynamic models, which normally use logic-based evaluation of sensor and control 

signals to create different actuation signals when certain discrete conditions are met. 

The literature suggests that many of the approaches to modular control were focused on 

revising the coordination control paradigm to achieve reconfigurability. On the other hand, 

modular approaches which focus on logic control are rare. A typical example of such an 

approach found in the existing literature is the Component-Based Approach (CBA) proposed 

by Harrison et al [4, 8]. The CBA proposes a new approach of implementing a fully 

distributed network-based control system without any master controller. The automation 

system is composed of autonomous mechatronic units known as components.  

In the CBA, a component physically is a mechatronic-like unit which is composed of a 

microprocessor, interface electronics and the automation device. The component can be 

integrated into the desired automation system as a common reusable building block without 

the need to know its low-level implementation details. The interfacing electronics are used to 

condition and translate the output control signals from the controller to the automation device 

and the input signals from the device to the controller. Therefore, a component is a self-

contained unit that is ready to be deployed immediately to an automation system. 

Apart from the physical elements, a component also contains a control application which 

describes the generic control behaviour of the automation device. Sensors can be potentially 

contained in a component if it is necessary to provide local close-loop control. The 

application provides local control to the automation hardware and communicates with other 

components in the network in a peer-to-peer fashion. The control behaviour of a component 

is represented by a Finite State Machine (FSM). The FSM provides an abstract description of 

the component's embedded control behaviour. A FSM is an abstract machine that has only a 

finite, constant number of states. Each state has transitions to one or more states. The 

transition from one state to another is governed by conditions or rules. Some examples of the 

control behaviours represented in FSM were shown in Figure  2-5. 

Regarding the coordination/supervisory control between the components, in the CBA it is 

realised by interlocking components together directly without using agent-like supervisory 

components. Via the interface, components can be interlocked - associating the conditions for 

the transition as a logical combination of the states of other components. The states of the 

component (FSM) are available through the component's logical interface. System 
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application is defined through the process of component interlocking. An example of the 

interlocking between components can refer to Figure  2-5 and more pertinent details can be 

found in [8]. This paradigm allows a component to be developed separately and then 

reconfigured (interlocked) later to particular control system requirements.  

 

Figure  2-5 System level control development by interlocking components [8] 

Apart from the CBA, there were also a few similar approaches found from existing 

research; however, few details about their design and implementations are available. For 

example, the VIR-ENG project designed and implemented a virtual environment for 

validating modular automation systems [32]. The virtual system was built based on 

mechatronic models and using traditional PLC-based logic control system. However, few 

details about its control software have been presented.   

2.2. PLC Control System Engineering 

The aforementioned modular approaches brought radical changes to traditional processes 

of automation control system engineering. However, these new paradigms have only led to 

some laboratorial prototypes or industrial test prototypes. Few of them have actually resulted 

in a large scale of industrial applications. This is mainly due to several issues related to 

conceptual efficiency and some development-related issues, both of which were summarised 

by Leitao in [22]. In the current practice of many industries, PLCs are still established as the 

device of choice for implementing the control functionality [33].  

PLC control software development is one of the most time-consuming and important 

portions of control system engineering. This section first reviewed the industrial practices in 
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PLC control software development and then reviewed the related emerging methodologies 

from both academia and industry. 

2.2.1. Current Practices in PLC Control Software Development 

2.2.1.1. General Process of Control Logic Development 

The process of control-related development in current industries was overviewed by Lucas 

and Tilbury [34] and was illustrated in Figure  2-6. The control engineers get project-specific 

specifications from engineers of other disciplines both before the commencement of the logic 

design. Project specific requirements include details about the actions the machine must 

perform to create parts, diagrams of physical and electrical components, and a description of 

the diagnostics desired. Control engineers combine the project-specific specifications with an 

additional set of standard specifications, which are usually from previous projects, to create 

the logic needed to control the machine. The standard specifications include the details of 

implementing the system and also include the needed safety and reliability requirements. On 

the other hand, some potentially unspecified requirements could be given to the control 

engineer during the logic design phase. The unspecified requirements normally are late 

changes or unexpected constraints in the machine or electronics.   

 

Figure  2-6 Overview of logic development process [34] 

2.2.1.2. Activities in Control Software Development 

In the current practices of industrial control development, most of the development work is 

mainly completed by control engineers despite the input of requirements from engineers of 

other disciplines.  Activities that are performed by the control engineers to successfully 
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generate industrial logic can be further categorised into project coordination and 

documentation, memory management, logic programming, diagnostic and HMI development 

and the final debugging step. Based on the study conducted by Lucas and Tilbury in [34], 

these activities and their respective key features are briefed in Table  2-2. 

Table  2-2 Activities for control software development 

Activity Descriptions and Features 

Project coordination and 
documentation 

• Coordinating between control engineers working on a project to ensure 
consistent communications between various processors in the system. 

Memory management • Creating or modifying the manually allocated PLC memory space of the 
project. 

Logic programming • Developing the desired control program by creating new logic or potentially 
reusing existing logic from different sources. 

• Code reuse Mainly through copying and pasting 

HMI & Diagnostic  
development 

• Creating an HMI with the functions for manual control and diagnostics and 
connecting the HMI with the corresponding PLC control software. 

• Mainly based on vendor-specific templates. 

• PLC control, HMI and diagnostics are developed separately and connected 
manually.  

Debugging • Testing developed logic and making any necessary changes. 

• Mainly performed by control engineers on real machine 

2.2.1.3. Control Software Programming Standard 

The size and complexity of some software application programs, which typically lack 

modularity and are difficult to reuse, has led to considerable research into structured methods 

of programming.  Additionally, the increasing number of control hardware options and 

related programming languages results in inefficient reusability and maintainability and has 

aroused the need for standard programming languages.  

 In this context, many initiatives and research projects have been conducted aiming at 

providing either standard programming languages or uniform program structures. Resultant 

achievements include the standard programming languages defined in IEC61131-3, related 

standards defined by PLCOpen organisation [35] for facilitating the application of IEC61131-

3, EDDI from Ford, FOM from TKSE and Zone Logic. Some of these have been widely 
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adopted by industry, e.g., IEC61131-3, EDDI and POLARIS, while some had been 

abandoned, such as SIMPLE and Zoner Logic. This section will provide a review of 

IEC61131-3 which is the most widely used programming standard in various industries 

including the automotive industry, EDDI which has been widely used in the European 

automotive industry, and FOM which is used by the representative machine builder 

ThyssenKrupp System Engineering (TKSE). 

PLC Programming Standard IEC61131-3 

Table  2-3 IEC61131-3 programming languages [35] 

Language Description Example 

Statement List A low level textual language consisting of 
simple operation codes and analogous to ladder 
logic. 

LD %IX20 

AND Valve2 

JMPNC Lab6 

ST Tank_Level 

Structured Text A high-level programming language with 
syntax similar to Pascal and designed to make 
PLCs more accessible to programmers familiar 
with traditional programming languages. 

IF TANK2 > 50 THEN 

     Valve1 := ON; 

ELSE Valve1 := OFF; 

END_IF; 

Function Block 

Diagram 

A graphical language for depicting signal and 
data flow through Function Blocks. The blocks 
are reusable software elements. 

 

Ladder Diagram The most traditional and commonly used 
graphic programming language. 

 

Sequential Function 

Charts (SFC) 

A language made up of graphical elements 
called steps and transitions and derived from 
Petri-nets. 

 

IEC61131 is the International Electrotechnical Commissions (IEC) standard for PLCs. The 

details of IEC61131 can be found in the official website of IEC [28]. The IEC61131-3 is part 

3 of this standard. It describes standard programming languages for PLCs in an attempt to 

provide an open, vendor-independent, consistent and structured approach to the development 

of control software. The standard enables algorithms to be written in any of the five 

languages defined within the scope of the standard as illustrated in Table  2-3 and packaged as 
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reusable software Function Blocks. Function blocks have well-defined interfaces with input 

and output parameters so that they can be readily interconnected. 

The IEC61131-3 programming languages are currently the most widely used languages in 

many different industries.  Most of the PLC programming tools on the market support, either 

fully or partially, the programming languages of IEC61131-3. In addition, the organisation 

PLCOpen, found in 1997, is dedicated to developing technical specifications around 

IEC61131-3. In order to eliminate the barriers arising from various data formats of different 

PLC vendors, PLCOpen has developed an independent standard data format PLCOpenXML 

based on IEC61131-3 and XML to achieve efficient data exchange of programs developed in 

languages of IEC61131-3.  

EDDI 

EDDI (Error Diagnostic Dynamic Indicator) has been the most widely used supplier 

independent programming structure in the Automotive Industry. EDDI was a European 

initiative led by Ford. Currently, in their European operations, Ford, Jaguar and General 

Motors apply various forms of EDDI or its successor STEPS however all contain the same 

basic principles. [36] 

The EDDI is an application software structure in its purest form which does not require 

special hardware or software and can be applied on a variety of PLC and PC based software 

platforms. It can also be applied within the constraints of the IEC61131-3 specifications. 

The EDDI contributes a number of innovative concepts and principles to control software 

development.  It is a no- proprietary software structure for use with PLC systems. It provides 

a document system that can be specified by end users and taught to operators, maintenance 

staff and if necessary machine tool builders. Diagnostics can be fully integrated with the 

EDDI sequence control program.  

Function Oriented Modularity (FOM) 

Function Oriented Modularity (FOM) is a control software structure introduced by TKSE 

for programming assembly automation systems. The purpose of this new structured 

programming is to enhance the reusability of the control code and avoid end-user specific 

standards by offering a common solution to their customers. The reuse of the control code is 

handled by encapsulating generic code in function blocks for a family of mechanisms. Instead 
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of cutting and pasting sections of the code, a selected set of function blocks can be 

instantiated and configured as required. 

The overall software structure is shown in Figure  2-7. Unit and Process Step are the basic 

building blocks of the software structure. Unit is the smallest and lowest level enclosing 

working functionality and might represent mechanics, electrics, and control or their 

combination. Units appear as black boxes and can only be parameterised.  A unit not only 

controls the behaviour of a mechanism but it has integrated fault diagnostic and generates the 

required HMI screens for manual mode control. Whereas, Process Step is a function for the 

sequencing of a specific task (such as nut running) and typically consists of one or more 

Units. A Process Step can also be used as an enclosed object. It reads the RFID data-tag at 

start of operation and writes the status back to the tag when the operation completes. A 

Process Step consists of a number of sub tasks (such as open clamp, close clamp) known as 

‘Process Single Steps’. All subtasks are coordinated via a process coordinator and designed in 

a combination of FBs and LD.  

FOM has been used in a number of automotive companies, such as at Ford and Volvo. 

From the program development point of view, its implementation is fairly easy for 

ThyssenKrupp engineers. However, FOM has not received much recognition from end-user 

engineers. Due to the black box nature of the code, FOM programs are regarded as very 

complicated and difficult to understand as compared to alternative programming structures 

based on LDs and SFCs.[12] 

 

Figure  2-7  FOM Structure [12] 

2.2.2. Emerging Approaches to Efficient Development of Control Logic 

Existing emerging approaches to facilitating the development of control logic or control 

software include formal methods, automatic code generation and virtual commissioning. The 
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following sub-sections provide a review of the former two types of approaches while the 

virtual commissioning is reviewed separately in section 2.3.    

2.2.2.1. Formal Methods 

Formal methods refers to mathematical reasoning about system model properties [37]. The 

complexity of programming and verifying large systems has resulted in interest in the 

possibility of using formal modelling and analysis techniques [38, 39]. The key benefit of 

formal methods in controls engineering is to authenticate the control code by performing 

mathematical analysis to check stability, reachability and deadlock. Typically, these methods 

comprise the formalisation of informal specifications followed by automatic synthesis and 

implementation of the PLC code [40]. The most common languages used for formal 

modelling are Petri Net (PN) and finite state automata [40]. 

The use of Petri Nets (PN) has gained many interests as a potential tool for design and 

verification of PLC programs. A Petri Net is essentially a graphical method of defining 

discrete event systems, consisting of places, tokens, transition, and arcs. This section briefly 

names a few examples of existing researches.  Uzam et al. proposed the use of Petri Net to 

synthesise a supervisor [41]. This supervisor can be converted to Ladder Diagram via a token 

passing logic controller. Feldamann and Colombo developed an approach to validating 

control logic and generating PLC code according to the standard IEC1131 in [42]. They also 

utilised Petri Net to develop high level model-based monitoring systems for monitoring the 

operations and behaviours of flexible production systems[43].  Frey et al. presented 

researches using PNs  to model controller using graphical description[44-46].  

The views of research community on the use of PNs seem to be divided. Some researchers, 

such as Lee [47], referred to PN as a flexible method which is easier to use than ladder logic. 

This statement is based on comparing the number of logical elements or conditions in LD and 

PN programs. However, Ljungkrantz [48] stated that the number of logical conditions and 

elements does not represent the work required to configure a control system. Hajarnavis et al. 

stated that such a comparison of methods is “questionable and not fair” [49]. Practitioners in 

industry have shown very little enthusiasm for the direct use of PN [49].  

Finite state automata have also been considered by many researchers to model and analyse 

manufacturing systems. However, finite state automata (as well as Petri Nets) suffer from 

state explosion when reachability analysis is conducted for a complex system with too many 
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reachable states. To avoid state explosion, Endsley et al. used an extension to finite automata 

called modular finite state machines to generate a verifiable controller [50]. The control 

system is divided into modules. From the modules control behaviour can be built and verified. 

However, the control behaviour is not translated into standardised IEC language. Thapa et al. 

presented a number of research on control logic modelling using formalism using timed-

MPSG (Message-based Part State Graph) [38, 51, 52], an extended version of finite state 

automata. The model is then converted into a textual specification for formal verification 

using a model checker tool. The formal model of the system can also be interfaced with a 3D 

model via simulator for validation. The simulator matches the formal model with the 

corresponding 3D model and then executes the motion in the virtual environment to validate 

the system. After validation, the input and outputs of the formal model are then mapped with 

the I/O addresses and the executable PLC code is then generated for Siemens Step7. 

The use of formal methods has received great attention from academia but has received 

very little attention from industry. The formal methods are normally performed using 

languages that are very mathematical. Therefore the modelling complexity and non-

familiarity of the modelling languages to control engineers make them unattractive to 

industry. As a consequence these methods are still confined in research laboratories [53]. 

According to Lucas the benefit of these new methods over the current practice have not been 

well demonstrated [54].  According to Thapa et al. the PN approach does not fit within the 

current engineering practices and is not well known to control engineers and technicians [38]. 

Logic design using PN is quite different and complex compared to existing approaches used 

in industry. For example, enabling/firing of transitions can be a quite cumbersome task. 

According to Danielsson et al. [55] formal methods require users to learn new skills (such as 

new modelling languages and computer programming), which are complex compared to the 

conventional PLC programming methods. Some researchers have developed tools for 

formalisation of existing IEC 61131 PLC code. But this still requires the user to learn new 

languages and tools for the specification development [56].  

2.2.2.2. Automatic Code Generation 

The current practice of logic design relies excessively on copying, pasting and adaptation 

of functionality from one project to another project, which requires highly experienced 

programmers. Manually coded programs are highly time consuming, vulnerable to errors and 

inconsistencies. Any modification in the program is quite cumbersome and often results in 
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discrepancies. Another problem is the redundancy of the previous work at the time of logic 

design and verification. For example, control logic is specified within the virtual engineering 

tools to simulate the machine behaviour. However, due to the lack of integration between 

virtual engineering and PLC programming tools, the same control logic is then re-

implemented manually in the PLC programming tools. In order to cope with these limitations, 

new planning methodologies are necessary to enable collaborative and integrated engineering 

of automation systems [38]. Automating the process of generating PLC control software 

based on existing process data or simulated control logic is another way of facilitating control 

software development.  

In the past decade, the concept of automatic generation of control logic emerged and 

received attention of both academia and industry. As virtual resource models encompass 

almost all information about the control aspects of a manufacturing cell; therefore, the 

machine configuration data required to generate control code can be extracted from these 

virtual models [57]. This will not only avoid manual programming but will also ensure 

consistency in the structure and quality of the control programs [58]. As the control code for 

the HMI and PLC are generated from the same model, thus discrepancies between HMI and 

PLC can be avoided. Automatic generation of control code is potentially the most efficient 

and effective way to significantly compress the development and commissioning time of 

control programs [51]. 

In this context, a number of automatic code generation methodologies have been proposed 

by academic researchers as well as some vendors of commercial engineering tools.  

A. Academic Methodologies 

Estevez [59] described an approach to generating platform-specific PLC software by 

transforming the existing PLC program developed for another platform. Steinegger [60] 

presented a general paradigm of generating a PLC program by integrating related data 

existing in related engineering tools. However, the proposed methods are conceptual and no 

practical solution has so far been presented yet. Approaches to generate PLC code from 

control logic described in different graphical forms have been proposed and implemented. 

Bevan [61] presented an approach to generating PLC code for components of transitic 

systems from control logic described in Petri Net form. Thapa [62] also proposed and 

implemented the automatic code generation method based on virtual models described using 
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t-MPSG. Bergert [63] presented a framework for the automatic generation of PLC programs 

from digital process information extracted from work cells modelled in DELMIA Process 

Engineer. In this approach, the cell specific process plan developed using a pert chart was 

converted into SFC. The SFC is then connected to manually coded resource specific PLC 

function blocks which describe the behaviour of the manufacturing resources and contain all 

I/O signals from the resource. Some other automatic code generation approaches proposed 

before 2007 were reviewed by Bergert in [63]. 

These approaches from academic researchers are mainly focused on generating the source 

code of a specific function block or a specific program rather than the whole PLC control 

software. In reality, this only represents a small percentage of the machine control software. 

Furthermore, most of these tools do not support integration with high-level engineering tools.  

B. Siemens  - SIMATIC Automation Designer  

SIMATIC Automation Designer is built to enable the reuse of information from planning 

phase to develop control software. It allows integrated engineering of mechanical, electrical, 

and control aspects of a component and enables modular configuration of a system [64]. 

Automation Designer includes tools for the automatic generation of PLC code for Siemens 

Step7 and HMI screens for WinCC flexible. The PLC code and HMI screen generation is 

essentially based on the use of standard templates. A template in Automation Designer 

represents a real world object and contains information about the object including hardware 

information, PLC code, and HMI screens. The templates for the generation of the PLC 

program can either be written inside Automation Designer or be imported from the S7 library  

A tree structure of the required templates is then created in Automation Designer to 

describe the hierarchical structure of a to-be system. The simulation model of the system 

output from Process Simulate is then imported into the Automation Designer. Based on the 

tree structure and the simulation model, the configuration of the system can be achieved in 

Automation Designer and the PLC and HMI code can be generated. The generated PLC code 

mainly consists of the required function blocks, hardware configurations, HMIs and the 

connections between HMIs and PLCs. However, it does not include control logic for 

coordinating sequence and therefore manual programming is still needed.  

A number of research activities which adopt Automation Designer to achieve automatic 

code generation have been found in the literature. Falkman [58] conducted a thorough review 
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of the potential of Automation Designer. The case study presented involves the use of a 

simulation study and templates to automatically generate the PLC code and HMI screens to 

the Volvo Car Corporation’s standard. Andersson and Helander report research activities 

conducted in Chalmers University of Technology of Sweden to automatically generate the 

PLC code and HMI screens for three stations in the Volvo Car Corporation using Automation 

Designer [65].  

C. Dassault Systems  - Delmia Automation 

Delmia Automation extends the suite of Dassault System’s end-to-end Process Lifecycle 

Management (PLM) solution by providing a tool dedicated to a) the implementation of 

production system 3D models, and b) the editing, testing and debugging of system control 

logic against the 3D model. It provides a software module for the manual programming of the 

control logic in the standard IEC 61131 languages, which can be validated against a 3D 

simulation model. This validated code can be automatically translated into platform-specific 

code for PLCs from different vendors such as Schneider, Siemens and Omron.  

D. Allen Bradley - Enterprise Controls 

Enterprise Controls and RS TestStand, from Rockwell Automation, were designed to 

improve the efficiency of the logic development process in automotive industry. The concept 

was essentially based on visual verification of the manufacturing process and reusable control 

libraries. RS TestStand and Enterprise Controls do not use common database, therefore an 

application is written twice, i.e. once for virtual model and then for code generation. 

TestStand allows simulating the behaviour on a machine in a virtual environment using 

animation elements or importing CAD models. Once verified, the logic can then be 

developed in Enterprise Control by creating device templates to control a particular class of 

mechanisms. The device template includes integrated HMI generation, and error handling 

and diagnostic capabilities. Once tested, these generic templates are then stored in a library 

for use. These templates are then automatically translated into ladder logic code. 

Control application is prepared by creating a required sequence of operations. The 

sequence of operation calls relevant actions predefined in the device template. The inputs and 

outputs can be associated with real I/Os or virtual model of RS TestStand. Once the 

application definition completes then the control code is automatically generated for Allen-
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Bradley HMI and PLC and can be connected to virtual model in the RS TestStand via OLE 

for Process Control (OPC) for virtual verification. 

E. Siemens – eM-PLC 

eM-Engineering and eM-PLC are applications from Siemens Tecnomatix that enable the 

generation of PLC logic code and provide a simulation environment for control verification.  

Of these two applications, eM-Engineer is used to develop the 3D based visualisation virtual 

model of a machine and eM-PLC enables users to edit control information to the virtual 

model and generate PLC control code for Siemens Step 7. The generated PLC code can be 

further validated against the virtual models through connecting the Step 7 program on the 

PLC with eM-Engineer via an OPC link. 

3D visualisation virtual models can be created in eM-Engineer by importing existing CAD 

data and then adding a kinematic specification.  The input information required for automatic 

code generation needs to be created in eM-Engineer and eM-PLC. The control sequence is 

added to the virtual models in the form of Gantt Chart and validated first in eM-Engineer.  In 

eM-PLC, the control actions, namely the switching of a signal bit, and supervision conditions 

and interlocks, namely boolean variables in logic equations,are then added. Based on the 

control actions, conditions, interlocks and the sequences imported from eM-Engineer, eM-

PLC converts each sequence to a S7 Graph (similar to SFC) function block. Each operation 

corresponds to a step in an SFC function block.  

It can be seen that the automatic code generation of eM-PLC is actually the conversion of 

the entered specifications into Step7 graph.  The preparation of the specifications requires 

users to consider detailed control behaviours and logic. This is as difficult and tedious as 

usual programming. Moreover, the control code generated by eM-PLC might not be able to 

control the real machine without manual modification in Step 7 environment. In some cases, 

unnecessary control states and signals, which are not used in physical machine but required in 

controlling virtual models, have to be removed. 

F. Summary 

A summary of existing approaches to automatic code generation is presented in Table  2-4. 

These approaches are mainly assessed from the aspects of required input, namely how the 

logic is specified as the input of the generation approach, and the output, namely what logic 
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code is generated.  It can be seen that these existing approaches both have their respective 

merits and limitations.  

The academic approaches normally model the logic use mathematical modelling languages 

therefore normally no complex engineering tools are required.  However, the mathematical 

languages are difficult to be understood by control engineers. Moreover, these approaches 

can only generate pieces of control code instead of the complete desired control software 

therefore manual modifications are still required.  

The commercial vendors, on the other hand, provide more powerful solutions which can 

generate applicable code in the ways that are more acceptable for control engineers. However, 

the limitations of these solutions lie in the way of modelling input logic.  The required input 

logic is normally created in the way which is similar to that of manual programming therefore 

still complex and time-consuming. Also, for most of the vendors, the automatic code 

generation solutions are vendor-specific, which means only the control code for their own 

PLCs can be generated.  

Table  2-4 Summary of existing approaches to automatic code generation 

Approach/Tool Input Logic Output  Advantages Disadvantages 

Academic 
Approaches 

• Mainly 
mathematical 
models 

• Function blocks or 
programs for 
specific control 

• Requires only 
simple 
modeling tools 

• Very 
mathematical 

• Only partial 
generation of 
code 

Siemens – 
Automation 
Designer 

• PLC control 
templates 

• HMI templates 
• Simulation 

models 
• I/Os 

• PLC code without 
sequence control 

• HMI with 
connections to 
PLC 

• Configurations   
 

• Generate 
structure of 
complete Step 7 
projects even 
including HMI 
and hardware  
configuration 

• Manual 
programming for 
sequence control 
still required 

• Only for Siemens 
PLCs 

Dassault – Delmia 
Automation 

• Complete PLC 
code in 
IEC61131-3 
languages  

• PLC code for 
different PLCs 

• Generate 
complete PLC 
code 

• PLC-
independent. 

• Requires manual 
programming to 
complete PLC 
code. 

Allan Bradley – 
Enterprise 
Controls 

• Sequence 
• I/Os 
• Machine-

specific code 
• Templates with 

diagnostic  

• Ladder logic code 
for Allen-Bradley 
PLC 

• Generate both 
PLC and HMI  

• Can only 
generate SFC 
code 

• Only for AB 
PLCs. 

Siemens – eM-
PLC 

• Sequence 
• Conditions 
• Interlocks 
• I/Os 

• SFC function 
blocks for Step 7 

• Generated code 
can be validated 
virtually first.  

• Only generate 
SFC FBs 

• May need 
manual change 

• Only for Siemens 
PLCs. 
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2.3. Virtual Commissioning 

After a manufacturing system is physically built, the ramp-up phase starts and it ends when 

full target quality at a specified cost and output rate are achieved. The ramp-up can be 

divided into the commissioning phase and the following run-up phase. The commissioning 

phase ends with up the production of the first product that meets the specification and the 

acceptance of the customer while the run-up phase transfers the operational production 

system into stable production conditions in compliance with target cost, demanded quality 

and output [7]. Issues arise during the actual commissioning phase when unseen design errors 

translate into non-working machine, unmatched functionalities and sometimes catastrophic 

failures (e.g. collisions between actuators/products). Such unforeseen events are due to the 

fact that prior to commissioning engineers do not have any means to check the consistency of 

mechanical and process with control engineers together. To relieve this situation, virtual 

engineering technologies, especially virtual commissioning, can be highly effective for 

reducing ramp-up cost and time by testing different ‘what-if’ scenarios in a virtual 

environment prior to the physical system building.  

2.3.1. Overview 

2.3.1.1. Concept and Methods 

Virtual Commissioning technology has been researched for more than a decade however 

no explicit and formal definitions have been found in the literature.  Some literature [66-68] 

identifies that the essential requirements of virtual commissioning to include ‘virtual plant’, 

‘real PLC’ and ‘real control code’ while some other literature [7] asserts that virtual 

commissioning can also be performed using a simulated PLC and simulated control code. 

The author defines the Virtual Commissioning in the context of this research as: 

“To detect and correct the errors generated during planning, design and control 

engineering prior to the physical assembly of the real machine through running a 3D virtual 

model of a desired machine which can be driven by either real PLC code running on PLC 

controllers (either physical or simulated) or simulated control logic.” 

Obviously, virtual commissioning is a type of virtual engineering technology. Currently, 

there are also other different types of virtual engineering techniques employed which are 

summarised by Kuhn in [69]. For these different types of approaches with different purposes, 
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the level of details and the required resources are different. Figure  2-8 summarises and 

demonstrates the differences between some other techniques employed in the current 

industrial practices.  

 

Figure  2-8 Required details and resources of different virtual engineering technologies 

Some similarities and differences between the involved techniques can be seen from 

Figure  2-8: 

• For each type of simulation, virtual models are required. 

• Virtual commissioning requires specification of control level functionality while 

other simulations only need higher level details. For example, the layout simulation 

only needs static virtual plants and details of plant level while process simulate and 

process planning requires a dynamic virtual models and details at process level.  

• For different types of VC approaches, which will be introduced in the following 

two sections, the required resources are different. HIL requires real PLCs while SIL 

does not.  

The main benefit of VC is the achievement of a shorter production ramp-up time which is 

an important factor for a product’s economic success. According to an analysis of critical 

points of the ramp-up process of a final assembly, Eversheim et al determine control system 

malfunctions to be a major source of time delay[70]. The particular reasons mostly lie within 

untested and newly developed control systems, new communication technology and the lack 
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of adequate monitoring and diagnosis system. However, according to Glas, control software 

engineering is responsible for over 50% of the functionality of highly automated production 

equipment [71]. An investigation for the German Association of Machine Tool Builders 

(VDW) showed that the commissioning phase of a production system accounts for up to a 25% 

of the total project cycle time [72]. A remarkable 90% of the commissioning time is used for 

delays and activities related to electric and control devices. Again, 70% of this time delay 

was associated with errors in control software. In other words, the correction of defective 

control software consumes up to 60% of commissioning time or 15% of time-to-delivery. 

 

Figure  2-9 Time benefit of VC [7] 

2.3.1.2. Existing VC Approaches 

The method or workflow typically implemented through the use of VC solution is to build 

a virtual equivalent of the physical system that comprises 3D geometrical (shape) and 

kinematic (possible motion) data. The real time control data is then implemented and mapped 

to the possible 3D model motion in order to merge 3D and control model behaviours. At this 

stage, most of the system can be tested and both mechanical and control engineers use an 

engineering tool that allows them to coordinate design process. Additional digital design can 

be conducted to model product flow, safety features, human operation ergonomics etc.  

Current approaches to building a prototype for virtual commissioning can be classified as 

either Software-In-the-Loop (SIL) or Hardware-In-the-Loop (HIL) simulation, as shown in 

Figure  2-10. Under the Software in the Loop (SIL) method, the control programs for the 

resource controllers (PLC or other) are downloaded to virtual controllers and TCP/IP 

connection is established between the mechatronic object and the software-emulating 
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controllers. It is obvious that the main advantage of the SIL approach is that no hardware is 

required during the designing and validation of control software, while standard desktop PCs 

can be used for its implementation. On the other hand, often simulated packages do not 

support all the versions of a specific PLC family therefore the exact replication of the 

physical PLC might not be achieved [7]. The second method, known as hardware in the loop 

(HIL), involves the simulation of production peripheral equipment in real time, connected to 

the real control hardware via fieldbus protocol. Under this setup, commissioning and testing 

of complex control and automation scenarios, under laboratory conditions, can be carried out 

for different plant levels (field, line, or plant) [73]. 

Relevant literature [66-68] suggests that most of the researchers agreed that using real 

control code is one of the key requirements of VC. In spite of using different control systems, 

both SIL and HIL validate the control logic based on real control code. SIL or HIL approach 

has been adopted by most researchers to perform VC.  

 

Figure  2-10 Software in the Loop (SIL) and Hardware in the Loop (HIL)  

2.3.2. Hardware/Software-In-the-Loop (HIL/SIL) 

The involvement of real control code in SIL or HIL approaches ensures the control 

software can be tested under more realistic conditions without the necessity to make changes 

to the software afterwards. Moreover, this enables a seamless transition of control logic from 

virtual commissioning to physical commissioning, which eliminates the potential of bringing 

in new errors through later manual work. In both approaches, production peripheral 

equipment is simulated in real time and connected to the control systems. The only difference 

between these two approaches is that HIL involves real control hardware while in SIL 

simulated controllers are used. Therefore, the required engineering tools for SIL and HIL 
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might be different. Apart from this, from the users’ point of view, there is no significant 

difference between SIL and HIL in terms of the related data modelling process.   

2.3.2.1. Data Modelling  

For separate verification of mechanical design, a 3D simulation of the expected and 

specified mechanical behaviour is sufficient. For separate validation of the control programs, 

a simulation reflecting the specified behaviour of the manufacturing system mechanics at I/O 

level is required. However, the principle of VC is to detect errors in the control software 

through observing the simulated mechanical behaviour of the virtual systems, If the impact of 

control programs on the 3D mechanical behaviour of the manufacturing system is to be tested 

in detail in an integrated manner, the modelling and simulation of the complete functional 

chain from control programs through sensors, actuators and drives onto the mechanical 

movements, is necessary. This includes both, simulation of mechanical behaviour and of  the 

control programs. [67] 

 

Figure  2-11 System architecture for HIL/SIL 

As it has been identified, a HIL/SIL VC system is normally built by integrating three 

subsystems, as shown in Figure  2-11, which include (a) a simulation model composed of 

mechatronic units including actuators, sensors, and behavioural description of a system 

related functional model, (b) a machine control system, including its input and output signals, 

and (c) connections between the simulated sensors/actuators and the control [74]. This 



 Chapter 2 Literature Review: State-Of-The-Art Automation System Engineering 

39 

 

section is dedicated to describing the activities involved in building such a HIL/SIL VC 

system.  

a. Simulation Model Development 

This step refers to the development of the required 3D visualisation model upon which the 

control software will be validated. Existing data from related engineering tools can be used 

for the detailing of the resources, followed by their conversion into the needed data formats. 

The simulation model is developed in a 3D environment through the following steps:  

(1) Create 3D simulation models of mechatronic units of the machine to be commissioned. 

The simulation models mainly contain the respective properties of geometry, kinematic 

behaviour, and electronic connection interfaces.  

(2) Assemble the virtual mechatronic units into the desired machine and specify the layout 

of the production cell, involving exact placing of resources and all relevant equipment. 

 (3) Define the material flow in the virtual machine, involving sequence of operations and 

interdependencies between the production processes. The behaviour model of the production 

system is completed at this step by defining all simulation activities (such as operator paths) 

and realising any software interlocks in the control simulation software. 

 (4) Assign the I/O signals to corresponding mechatronic units. I/O signals list used by the 

PLC or soft PLC, namely emulated PLC, can be imported from existing files. According the 

material flow defined, the I/O signals are then assigned to the corresponding sensors, 

actuators and any other resource entities. 

b. Control System Development 

In the HIL/SIL approach, the control software needs to be developed separately using the 

approaches which were described in section 2.2.1. The developed control software can be 

executed on either the actual control systems (for HIL) or the emulation software (for SIL) to 

control the simulation model of the machine. In the case of SIL, where no actual hardware is 

available for the validation procedure, the human machine interfaces (HMI) also needs to be 

simulated in a virtual environment.  Additional capabilities, like safety systems, can be 

programmed in the control system in order for the operation of the virtual cell to be validated 

sufficiently.  
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c. Interconnection between Virtual Models and Real Control Systems 

 The interconnection is mainly implemented based on an IT infrastructure, such as software 

drivers and communication protocols for the networking between the control system and the 

simulation model. The communication protocols are normally TCP/IP. Currently the required 

IT infrastructure is normally a standard third-party application such as the Object Linking and 

Embedding (OLE) for Process Control (OPC). Before these standard third-party applications 

released, the required IT infrastructure was also part of the VC environment development 

work [75].   

2.3.2.2. Related Researches and Engineering Tools 

As identified in the last section, the most important factors of HIL/SIL are visualisation 

tools, simulation tools, control technology as well as I/O connections. In early applications of 

VC approach, many efforts had been made in connecting the controllers to the discrete event 

simulation tools since there was no standard application available for data exchange between 

different control devices.   Schludermann et al. presented a typical example of performing 

HIL VC based on user-defined I/O connection middleware [75].  In order to establish a 

connection between the visualisation model and the PLC, in this research, a communication 

protocol and the related I/O device driver were developed first. This situation has been 

greatly relieved since the OPC were developed as a standard specification. OPC was 

developed in 1996 by an industrial automation industry task force, and now are widely 

accepted by the industry as a standard for device communication.  OPC is a data integration 

middleware in the industrial control field, which defines an industry standard for exchanging 

data between field devices, control systems and other applications [76]. It now has been 

widely supported by both device vendors and engineering tool vendors.  

Over the last years, a plethora of commercial packages that can be used for the 

implementation of a VC project, are available on the market. Delmia from Dassault Systems 

allows the virtual prototyping of PLC control systems for cells, machines and production 

lines which uses OPC communication for the coupling of the real control system with the 

simulated resource. Similarly, the Process Simulate commissioning package from 

Tecnomatix, enables users to simulate real PLC code with the actual hardware by using OPC 

and the actual robot programs, thus enabling the most realistic virtual commissioning 

environment. Generally speaking, the current Virtual Engineering tool market is mainly 

http://en.wikipedia.org/wiki/Industrial_automation
http://en.wikipedia.org/wiki/Task_force
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driven by Dassault Systems and Unigraphics/Siemens. Apart from these two providers, many 

other VC tools are also widely used by the researchers from both industrial and academia.  A 

typical example of HIL is the HIL environment realised in VIR-ENG project [32], which 

adopted IGRIP and Quest for virtual model prototyping and ISaGRAF PRO IEC1131-3 for 

PLC code programming. Researchers from Daimler are working on building virtual 

commissioning environment for modular automation systems using INVISION for 3D 

modelling and WinMOD for modelling control behaviours [77]. WindMOD and INVISION 

are also adopted by Markris et al for the VC of an assembly cell with cooperating robots [68].    

Apart from the commercial VC tools available in the market, a few VC environments have 

been proposed and implemented by academic researchers in order to implement innovative 

approaches to data modelling. For example, Qin et al. described a 3D simulation environment 

with an embedded programmable logic controllers (PLC) for the development and test of a 

cell control [78].  

2.3.3. CCE - A VC Engineering Tool for VCOM  

The Core Component Editor (CCE) toolset is currently being developed by the ASG 

researchers based on the component-based approach. In the Virtual Commissioning using 

Component (VCOM) framework, it is used to perform virtual prototyping, simulation and 

validation of both process and control logic. This section briefly describes its functions and 

its component-based architecture (more details can be found in [11]).  

A. Function description 

The CCE toolset provides a lightweight, non-proprietary package to support production 

system lifecycle management enabling a) the design, visualisation, testing and debugging of 

control logic and b) a 3D modelling environment for building machine models against which 

the control logic can be tested. The CCE tool set uses standard VRML formats for 3D 

modelling and generic State-Transition Diagrams to support control logic 

editing/visualisation. 

The CCE Toolset provides User Interface (UI) and functions dedicated to the design of 

automation systems’ control layout as well as lightweight 3D virtual environment that can be 

linked to the real-time control simulation engine in order to visualise, test, debug and validate 

the system behaviour in a virtual form. Logic editing and virtual modelling environment are 



 Chapter 2 Literature Review: State-Of-The-Art Automation System Engineering 

42 

 

integrated around a common data structure referred to as common model architecture, which 

describes a hierarchical system as a composition of “component”.  A set of system 

representations (state transition, sequence interlock, timing/Gantt chart diagrams) provides a 

variety of specialist and none-specialist views that are designed to support both detailed 

engineering tasks and general collaboration between project partners and engineers from 

different domains. 

B. Component-based architecture 

The whole CCE tools development is driven by the concept of “component” and 

“component-based” system architecture [4, 8] which seek to enable re-usability and re-

configurability of basic modelling constructs. The concept of a “Component”, which is 

defined as a re-usable, reconfigurable data block providing the data integration mechanisms 

for control, 3D modelling, kinematics and other data types describing a particular resource, is 

central to the CCE tool development. 

 

Figure  2-12 theoretical basis of CCE - the Component-Based Approach 

Using the CCE tool, the overall control design and simulation model editing workflow is 

broken down into two main tasks which are the “component (library) editing” and “system 

editing”, as outlined in Figure  2-12. The component editing task consists of building up a 

library of reusable system components which encapsulate both modelling (3D geometry, 

kinematics data) and control behaviour (as a set of state, possible state transitions and 

associated conditions), as shown in Figure  2-13. 
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Figure  2-13 Component behaviour modelling in CCE  

The complete system model editing task consists in assembling components together by 1) 

defining a spatial layout using a unique assembly point and 2) a control layout by defining 

sequence logic, as illustrated in Figure  2-14.  
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Figure  2-14 Building system control logic by interlocking behaviours of components 

2.4. Openness of VC  

In the context of this research, openness refers to the ability of engineering tools to 

interoperate or exchange data with other related tools or systems.  
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The current approach to the development of increasingly complex automation systems is 

to break down the overall complexity a system to different sub tasks. Accordingly different 

structures for each sub task need to be developed [79]. Different technologies and 

engineering tools are developed to solve subtask specific problems. Typically, during the 

process of complex automation system engineering, a range of engineering disciplines need 

to cooperate [80], which means the interoperability of the different engineering tools in the 

process is unavoidable. Before commissioning, different categories of data are integrated to 

build the machine, as shown in Figure  2-15. 

 

Figure  2-15 Commissioning requires data from different phases 

As the virtual equivalency of the to-be physical system, the virtual model used in virtual 

commissioning also needs to be built by integrating data of different disciplines. Currently, 

the virtual model can be seen as a simplified equivalency of the physical system. Normally 

only the data required to create the 3D visualisation, kinematic movement, process logic and 

control logic are involved. The data flow of virtual commissioning is shown in Figure  2-16.  

 

Figure  2-16 Data flow of Virtual Commissioning 

It can be observed that virtual commissioning requires transfer of data between different 

engineering tools, due to the necessary hybrid data inputs in the form of digital product and 



 Chapter 2 Literature Review: State-Of-The-Art Automation System Engineering 

45 

 

resource as well as control data [77]. Currently, data exchange between virtual 

commissioning toolsets and discipline-specific engineering tools has been achieved based on 

available neutral data formats, such as STEP, JT for the CAD exchange, VRML for 3D data 

exchange, PLCOpenXML for the control logic exchange. However, the data exchange of 

virtual models between engineering tools that need to reuse the validated virtual models has 

drawn little attention. The following section will now discuss the need for openness between 

engineering tools and how this might best be achieved. 

2.4.1. Why openness needed - Potentials of reusing virtual models 

In order to perform Virtual commissioning, it is essential to first get the relevant data such 

as CAD and control logic to build the virtual models. In the current practice, these data can 

be efficiently exchanged via corresponding available open standards. However, the openness 

required to exchange the validated virtual models as integrated objects between engineering 

tools has been neglected.  

VC is part of a larger concept which is referred as Virtual Engineering, which is also part 

of another larger concept – Digital Factory [69]. Openness and tool integration are key 

requirements of implementing the concept of the Digital Factory. The Digital Factory is 

defined as “The generic term for a comprehensive network of digital models, methods, and 

tools – including simulation and 3D/Virtual Reality visualization – which are integrated by a 

continuous data management system”[69].   The virtual model validated by VC can be seen 

as the virtual equivalency of the to-be realistic system. Although it does not include all the 

data of the realistic system currently, the information it contains can still be used to make 

further contributions so that the cost-value ratio of the virtual model can be further reduced.  

Unfortunately, research in this field is rather rare. Even though, in the later phases of the 

production system lifecycle, there are many scenarios in which the HIL virtual models can be 

reused. Also, virtual models can also be reused by different VC engineering tools during the 

subsequent system redesign or reconfiguration phase. 

2.4.1.1. Data reuse during system operation phase 

Related literature suggests that, after VC, the virtual models can be potentially reused for 

different operative purposes.  
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To build the digital factory, a virtual model can be involved in a feedback loop in order to 

update general data, model structure and model parameters with the actual situation from the 

factory. In this feedback loop, the virtual model used as a reference model plays the same role 

as it does in the virtual commissioning phase, as shown in Figure  2-17.  Changes to the 

control logic can be pre-tested against the virtual models. On the other hand, it is also used 

for the purpose of real-time monitoring. The runtime status of the real machine can be 

collected and duplicated by the virtual models and then feedback to the control design for 

making further potential improvement.  

 

Figure  2-17 Virtual models used as reference models during operative control [66] 

During the system operation phase, the validated HIL models can also be used for 3D 

based diagnosis or monitoring in a number of scenarios [81-86], as summarised and 

illustrated in Figure  2-18. Using HIL simulation models for diagnosis is based on online 

comparison between the values of the measured signals of the plant and those of the 

simulation. Concerning diagnosis two approaches can be applied [87]. In the first approach, 

the required behaviours of the production plant were emulated by the HIL simulation. In case 

of deviations between simulation and real plant, non-intended behaviours of the plant can be 

detected easily and an appropriate reaction can be executed. In the second approach, different 

incorrect behaviours of the plant were emulated and compared to the real plant. If the 

measured behaviour of the plant matches with one of these models, a specific incorrect 

behaviour of the real plant can be detected [87]. 

The HIL models are particularly useful for remote diagnosis or remote monitoring. Kain et 

al. present a general discussion of reusing HIL for further diagnosis or control system 

optimisation [88], however, no further details and methodologies are proposed. The typical 

scenarios found in the relevant literature which are capable of reusing HIL models include the 

press line and diagnosis system presented by Ng et al. in [85], the 3D visualisation-based 
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manufacturing and facility control system presented by Alabdulkarim et al. in [86], and the 

real-time event-based 3D-monitoring of material flow systems described by Feldhorst et al. in 

[89].  

In addition to the scenarios mentioned above, there are other potential scenarios to the 

adoption of digital factory concept. As summarised by Leitao et al. in [24], the VC models 

can be reused for operator training and maintenance, and the simulations can be repeated as 

many times as necessary to aid the correct understanding and tuning of the system control. 

 

Figure  2-18 Scenarios of reusing HIL models during system operation phase 

2.4.1.2. Data reuse during system design phase 

Another scenario in which the reuse of VC models is necessary is to duplicate the same 

simulation models in different engineering tools. The reusability is required even between the 

engineering tools from the same discipline in some situations for the reusability of existing 

data. One example for this situation exists between the Original Equipment Manufacturing 

(OEM) and its suppliers[90], as illustrated in Figure  2-19. In a specific supply chain, each 

OEM usually requires their suppliers to use the appointed engineering tools to avoid system 

heterogeneity. However, the suppliers usually work for more than one OEM, which means 

they have to use more than one engineering tools. In this situation, to avoid redundant works 

which is a waste of time, finance and human cost, the seamless interoperability for data 

exchange between the systems one supplier adopt is of great importance. Furthermore, to date, 
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the design of VC models has certainly required a high level of expertise and considerable 

effort, which makes virtual commissioning unattractive, especially for small and medium-

sized enterprises [67]. This situation can be relieved if the models can be efficiently reused 

between different enterprises.    

 

Figure  2-19 need for data reuse driven by the need of OEMs 

2.4.2. How to achieve openness – Approaches to data exchange 

Achieving openness, in the context of this research, refers to enabling an engineering tool 

to interact with other related engineering tools. The ability of engineering tools to interact is 

normally called interoperability [91]. Interoperability can be achieved by either tool 

integration towards a “tool suite” or a file-based data exchange. Of these two approaches, 

integration involves some degree of function dependence while tools interacting based on 

data exchange can function independently [92]. Therefore, tool integration normally works 

with tools of the same vendors while file-based data exchange is applicable for tools from 

any vendor [93]. This research is focused on the approaches to file-based exchange. 

Basically, there are three types of approaches to data exchange, as shown in Figure  2-20. 

Obviously, compared to data exchange via point-to-point interfaces or standard interfaces, the 

approach to exchanging data based on a common data format significantly reduces the 

number of interfaces and associated problems. Apart from the function as a data exchange 

format, the common data format can also be used as a platform for automated mechanisms of 

information technology [94, 95]. 

For the data of specific disciplines involved in VC, there are widely accepted standard 

formats available, which enable different engineering tools to be able to exchange data 

efficiently.  For geometry and kinematic data, the Standard for the Exchange of Product 
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model data (STEP) has been widely supported by many engineering tools. There are also 

some other open standards available for mechanical data exchange, such as JT, IGES etc. 

Therefore, efficient data exchange from CAD tools to the VC tools can be achieved. The 

issues lie in the exchange of VC models which are integration of data of multi-disciplines.  

Common 
model

Point to point connections Standard interface Common data model  

Figure  2-20 Existing approaches of data exchange 

2.4.3. Data Representation of VC Models 

VC tools make use of 3D modelling technologies to provide an intuitive model the 

characteristics (spatial and behavioural) of which result from the integration of various types 

of engineering data. The number, type and format of the data that can be integrated depend on 

the particular tool being used. The review of relevant engineering tools suggests that the 

virtual models of components or systems are normally composed of the following 

information, as shown in Figure  2-21:  

- 3D geometry and modelling data 

- Mechanical behaviour data 

- Real time behaviour modelling data 

- Modelling data integration 
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Figure  2-21 Virtual models integrates information from multi-disciplines  
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A. Geometry and kinematic data representation 

In the current available VC tools, the data architecture and data format used for 

representing the validated VC models vary from tool to tool. The geometry data is normally 

modelled as virtual reality models. According to the review, VRML data format is widely 

supported by many VC engineering tools. The typical VRML-based VC tools are INVISION 

and Winmod. Another two widely used engineering tools - Delmia Automaiton from 

Dassault and Process Simulate from Siemens have their respective proprietary data format 

and they also support the importing and exporting of VRML data. Apart from VRML, 

another open standard – COLLADA is also a widely used data format. The kinematic and the 

motion behaviour i.e. reachable positions, on the other hand, are normally represented in tool-

specific data format since there is no well-accepted standard for describing these kinds of 

data.  

B. Control logic representation 

In HIL and SIL, the control logic used is typically real PLC control code which is mainly 

represented as graphical languages, such as ladder logic, function block or SFC diagram. 

However, although IEC61131-3 has been recognised as an industrial standard for years, 

vendor-specific PLC programming languages still exist and are being used.  A typical 

example is the SFC+ of Siemens Step 7. In terms of the data format for describing the PLC 

control code, the diversity is even more than that for programming languages. Although the 

PLCOpen organisation has made many efforts in defining PLCOpenXML for describing 

control code in IEC61131-3 programming language and striving to make it and industrial 

standard, vendor-specific data formats are still supported by respective PLC platforms. For 

example, the Siemens Step 7 still uses its own plain-text-based data format for importing and 

exporting PLC control source code and Schneider PLC use a vendor specific XML-based 

data format.    

C. Hierarchical topology data representation 

Regarding the representation and storage of hierarchical data, which represents the 

integration of mechanical data and control logic, currently no description framework or 

language for describing hierarchical information is widely accepted by the industry. The 

ways of storing this sort of information vary from one tool to another. Although most of the 

engineering tools can export these data as XML-based files, the semantic is still an issue to be 
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resolved since the terminologies are mainly tool-specific and are thus difficult to be 

interpreted by other tools.  

A comparison of the data formats of different related engineering tools is presented in 

Table  2-5. 

Table  2-5 Data representation in representative VC tools 
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2.4.4. Tool-independent Data Description 

Facing the increasing number of heterogeneous engineering tools with individual and often 

proprietary data formats, the data exchange has been a significant bottleneck for the 

interoperability of these tools [96]. Therefore, as pointed out in section 2.4.2, a cross-function 

data exchange based on a tool-independent data format is of key importance.  

Current approaches to achieving efficient data exchange during automation system 

engineering are mainly based on three different types of data description approaches, namely 

XML-based, formal description-based and open standard based. 

2.4.4.1. XML-based 

It is evident that following the data exchange approach based on a common data format can 

significantly reduce the number of interfaces as well as the expenditure on maintenance.  To 

realise the interoperability of engineering tools, the eXtensible Markup Language (XML) 

[97]was regarded as a promising technology for exchanging data or metadata over different 

platforms and systems. Obviously, XML has its own merits to be used for inter-tool data 

exchange due to its characteristics of platform-independence and flexibilities. However, a big 
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limitation of XML is that it cannot provide semantic interoperability, which refers to 

providing systems with a consistent way to interpret the meaning of data, information and 

knowledge, for data exchange [98].  

Existing XML-based data exchange approaches described by other researches normally 

adopt XML as the basis of data exchange format but they only describe the approaches 

conceptually.  To achieve an open architecture for the Digital Factory, Kuhen[69] proposed 

an XML-based scalable digital enterprise backbone as a common data model to transform the 

process of digital manufacturing within the digital factory, as shown in Figure  2-22. An 

XML-based information model which facilitates data exchange among the machine shop’s 

manufacturing execution system, scheduling system, and simulation system, has been 

developed at the National Institute of Standards and Technology (NIST) and was described 

by Yan et al. in [99]. Using this model, the data transformation and exchange between a 

database system and an XML can be realised.   

Data management
Product
Process
Model

Resource

Digital Factory

Digital Product Digital Process

Real Product Real Process

Digital Factory

Open factory backbone (XML)

 

Figure  2-22 XML-based communication and integration in Digital Factory [69] 

2.4.4.2. Formal description methods 

XML can be used for data exchange however extra efforts are still required to achieve 

semantic interoperability. In order to achieve semantics, the simplest solution is to build 

shared meta data repositories that describe the shared data in the same ways. However, this is 

not efficient and also impossible to achieve due to both technical and business related issues. 

Another solution is to develop an ontology to support interoperability.  

The most commonly quoted definition of the ontology is “a formal, explicit specification of 

a shared conceptualization” [100].  Compared with XML, ontology provides formal and 

explicit description of shared concepts and the relations between the concepts. Ontology has 

been widely accepted as the de facto standard way of achieving semantics, especially in the 
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area of the semantic web. Ontology is a comprehensive concept and enormous amount of 

literatures related to ontology can be found. This section only covers the ontology-related 

research in the domain of manufacturing and automation.  

In the area of automation, many researchers have adopted ontology to achieve semantic 

data interoperability.  Moser et al [80] proposed an ontology-based data modelling approach 

focused on providing links between data structure of engineering tools to support the 

semantic integration in manufacturing automation system engineering. This approach, named 

Engineering Knowledge Base (EKB) aims to support explicitly modelling of existing 

knowledge in machine-understandable syntax. The main objective of EKB is to facilitate the 

efficient data exchange between tools and data sources by providing an explicit and machine-

understandable representation of the so-called Virtual Common Data Model (VCDM). Based 

on this data exchange, more complex engineering process tasks like performing analyses 

across tools can be supported. Another ontology-based information integration framework for 

mechatronics system is presented by Bi et al. in [101]. The framework adopts component-

based architecture which facilitates the design and simulation applications plug-and-play in 

the framework to meet the requirement of mechatronics system multi-disciplinary design and 

to guarantee extensibility. Two main aspects of this framework are Mechatronics System 

Ontology (MSO) to capture key concepts and relationships in mechatronics system multi-

disciplinary design process, and standard component interfaces which specifies the interfaces 

in an abstract form which are used to exchange information among components in a standard 

way.  

Considerable researches have been done to identify the relationships and differences 

between ontologies and other data formats or programming languages [102-104]. Some 

features of ontology-based approaches can be observed from the existing research and 

comparisons. Firstly, ontology languages are more difficult to learn and require mathematical 

training as they normally provide mathematical rigor for analysis and prototyping of designs. 

Current ontology languages are mainly designed for and used by web-based applications 

which requires not only semantic sharing of knowledge but also additional functions for 

reasoning and querying. Reasoning is necessary to derive the information that is not 

expressed explicitly in the shared information, for example to retrieve all products that 

produced by a specific manufacturer. Enabling reasoning and querying capacity is the reason 

why shared information should be described in formal language. They are essential for data 
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integration and web-based searching. Data models described using formal approaches are 

normally impossible to read directly by human beings.  Although OWL is accepted as a de 

facto standard language for web-based ontology, there are simply too many ontologies in 

other domains and no commonly agreed standard representation of these ontologies [98]. In 

this context, additional transformations between ontologies are required. 

2.4.4.3. AutomationML - A neutral data format for automation engineering 

Data exchange based on domain-specific open standards is another effective way of 

achieving interoperability.  In the domain of manufacturing automation, there are a number of 

existing domain-specific standards. However, these standards or data formats are mainly 

specific to data description within respective disciplines. Typical examples include STEP and 

IGES for CAD data exchange, JT, VRML and COLLADA as 3D data formats, 

PLCOpenXML [105] as a control logic data format. Considering that the virtual models 

required in VC are the integration of multi-disciplinary data, the following sections will not 

elaborate on these discipline-specific data formats. They will provide an overview of 

AutomationML, a new data format which is specific to the domain of automation and 

provides capabilities of describing multi-disciplinary data. 

Complexity of interfaces 
without AutomationML

Complexity of interfaces  
with AutomationML

 

Figure  2-23 AutomationML reduces complexity and closes gaps [106] 

AutomationML (Automation Markup Language) [106], a neutral data format usable for 

data exchange among the various discipline-specific engineering tools involved in the whole 

process of manufacturing systems engineering, was developed and released in 2009 by the 

AutomationML organization the members of which include Daimler AG, ABB, Siemens, 

Rockwell, Kuka, netAllied, Zühlke and the University of Karsruhe and so on. The goal of 

AutomationML  is  to interconnect  engineering  tools  from  the  existing  heterogeneous  

tool  landscape  in  their  different  disciplines,  e.g. mechanical  plant  engineering,  electrical  

design,  process  engineering,  process  control engineering, HMI development, PLC 
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programming, robot programming etc, as illustrated in Figure  2-23.   In the following 

subsections, the general architecture, capability of information exchange and base library of 

AutomationML will be described. 

A. Object-oriented architecture 

AutomationML is an XML schema-based data format designed for the vendor 

independent exchange of plant engineering information. AutomationML  stores  engineering  

information  following  the  object-oriented  paradigm, which is introduced by CAEX,  and  

allows modelling  of  real  plant  components  as  data  objects  encapsulating  different  

aspects typically consisting of its geometry, kinematic, behaviour, position within the 

hierarchical plant topology and the relations to other objects.   An  object  can consist  of  

other  sub-objects,  and  can  itself  be  part  of  a  larger  composition  or  aggregation. 

 

Figure  2-24 Architecture of AutomationML[106] 

As shown in Figure  2-24, AutomationML combine existing industry data formats for the 

storage of different aspects of engineering information: COLLADA is used for storage of 

geometric and kinematic information, PLCopen XML serves for the storage of sequences and 

behaviour and CAEX is used as the top level format that connects the different data formats 

to comprise the plat topology. Therefore, AutomationML has inherent distributed document 

architecture. Moreover, there are many advantages of this architecture: (1) usage of proven 

and established file formats which reduces the specification effort for AutomationML, (2) the 

distribution of data to different files which eases the handling of bulk information, (3) the 

simplified usage of library files which can be stored, exchanged and accessed separately, and 

(4) the ability to store different geometry variants separately. 
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According to the description in object-oriented programming, before an object is created, 

a class need to be defined as first the blueprint (template) of this object.  Therefore, 

AutomationML provides the definition of following basic classes and libraries consisting of 

corresponding classes: 

Interface Class: Interfaces classes describe relations between objects. AutomationML 

provides a predefined interface library consisting of a number of abstract interface classes for 

general automation systems. These classes are syntactically and semantically well-defined 

and allow the modelling of user defined interface instances.   

Role Class: A role class describes the general functionality of a CAEX object within its 

context, for example, a robot, a roller bed, a PLC etc. A role class facilitates semantic 

interpretability of a user defined object.   

SystemUnitClass: SystemUnitClass refers user-defined classes for specific objects. The 

class must be defined based on standard role classes.   

B. Capability of information representation and storage 

The information that can be stored and exchanged with AutomationML includes 

(illustrated in Figure  2-25): 

 

Figure  2-25 information covered by AutomationML[106] 

Plant topology information: The plant topology describes a plant as a hierarchical 

structure composed of plant objects which describe respective items comprising the plant.  

Different components of an item are described as corresponding AutomationML objects 

which are stored in a certain level of detail, e.g. robot, gripper, but not axles or joints; an 

object has its individual properties and interfaces to other objects in their hierarchical 
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structure.  The plant topology as the top level data structure is stored by means of the CAEX 

data format according to IEC 62424.  

Geometry information and Kinematics information: Both geometry and kinematics 

information are stored in separate files using the file format “COLLADA” of the Khronos 

Group [107]. These files can be referenced out of CAEX and can be linked within CAEX 

using CAEX link mechanisms. The interfaces of geometry and kinematics information with 

CAEX can be “published” as CAEX External Interfaces within the top level format for later 

interlinking.  

Logic information:  The logic information refers to the PLC control software. This 

information is stored in external files by means of the data format PLCopenXML. Variables 

or signals in these files can be “published” as CAEX ExternalInterfaces which enables these 

files to be referenced out of CAEX and linked within CAEX.  

Reference and relation information: Embodied in AutomationML references and 

relations are different concepts. References describe links from a CAEX file to other 

distributed files while relations depict associations between CAEX objects;  

C. Existing researches on AutomationML 

Since it was released in 2009, AutomationML has been adopted in many research projects 

from both academia and industry.   

Many academic researchers have discussed the potential of adopting AutomationML to 

improve the data exchange efficiencies [80, 108-112]. However, these discussions are just 

generally conceptual and at a very basic level. Some researchers partially investigated 

specific formats of AutomationML.  For example, Persson et al. proposes an approach which 

focuses on converting CAEX files into RDF triples to expose them via a SPARQL endpoint 

via which other applications can access and query the information [113]. Researchers from 

Dortmund University have developed an importer of AutomationML for a Robot 

programming and simulation environment, however, only the import of COLLADA is 

supported [109].  

AutomationML has also drawn the attentions of industry. Members of the AutomationML 

organisation, such as Siemens, ABB and Kuka, have announced the support of 

AutomationML in their engineering tools. However, no engineering tools with such 



 Chapter 2 Literature Review: State-Of-The-Art Automation System Engineering 

58 

 

functionality have been released yet.  The members of the AutomationML organisation have 

also been striving to promote AutomationML and some resultant achievements can be seen. 

Drath from the ABB Corporation has contributed several key papers and made presentations 

in recent domain-specific international conference [91, 93]. Part one of the AutomationML 

specifications has been accepted as an IEC standard (IEC 62714) and promises to be an open 

standard in the domain of automation.   

2.4.4.4. Summary 

Based on the review, the features of the reviewed methods or formats for tool-independent 

data representation can be summarised as follows (also see Table  2-6): 

• XML is widely used for data description and data exchange; however, it does not 

provide any semantics and this could potentially leads to misunderstanding. 

• Formal methods provide explicit and formal description and therefore can guarantee 

semantics; however, formal methods are complex and normally not used for data 

exchange between engineering tools. They are mainly used for web-based 

applications and knowledge management applications. 

•  Existing domain-specific open standards are mainly focused on data description of 

specific disciplines and therefore not suitable for the description of component-based 

virtual models which integrate multi-disciplinary data.  

• The newly released standard AutomationML has a suitable architecture and data 

description capability required for describing virtual component-based automation 

systems. However, currently few tools support AutomationML. 

Table  2-6 Comparison of existing data representation methods and formats 

Options Languages/ 

Formats 

Advantages/Features Limitations 

XML 
• XML • Simple 

•  Widely used 
• No semantics 

Formal 
Description 

• OWL, 
• RDF 
• etc. 

• Guarantee semantics of data models 
• Object-oriented architecture 
• Mainly XML-based 
• Widely used in web-based applications 

and knowledge description 

• Complex 
• Poor readability 
• Not suitable for 

inter-tool data 
exchange 

AutomationML 
• CAEX, 
• COLLADA 
• PLCOpenX

ML 

• IEC Standard 
• XML-based 
• Object-Oriented 
• Provides domain-specific semantics 

• New standard  
• Not widely 

supported 
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2.5. Assessment and Summary 

2.5.1. Assessment of state-of-the-art 

Modularity, of both hardware and software elements, is a facilitator for rapid system 

(re)configuration by providing units that can be (re)assembled in different combinations to 

achieve different functionalities. Existing modular approaches use mechatronic devices 

encapsulating control functions as the basic building blocks of RMS. Modularity of either 

high level (coordination) control or low level (logic) control has been covered by the 

reviewed modular approaches. However, the survey of current industrial practices indicates 

that few of these modular control approaches has been adopted in a large scale by industry. 

PLC-based control systems are still widely used by industry. The traditional process of 

PLC control software development and validation is mature and stable; however, it is also 

time-consuming and expertise-reliant since all the work is manually carried out by control 

engineers at the last stage of manufacturing system engineering. In order to relieve this 

situation, efforts have been made and a number of new approaches have been proposed.  The 

approaches, which aim at improving rather than radically revising the existing process of 

PLC control software development, are helpful but limited in their impact. Of the emerging 

approaches from academia, formal verification enables some aspects of control engineering 

to be better analysed thereby compressing the overall time of automation system engineering. 

However, its high modelling complexity and required languages, which are normally very 

mathematical and totally different from the traditional ones used for programming, hinder it 

from being adopted by industry. On the other hand, the approach to automatically generating 

PLC code based on high level models seems promising since it automates the control 

software development. Unfortunately, the current approaches from both academia and 

commercial tools can only generate pieces of PLC control software and manual programming 

of the remaining pieces is still required.  

VC mainly aims to facilitate the validation of control logic. The HIL and SIL approaches 

reduce the time of control software engineering by bringing control software validation 

activities forward to be performed in an virtual environment thereby also decreases the cost 

of system building. The problems of HIL/SIL observed are that PLC control software still 

needs to be programmed manually before performing VC and extra time and efforts are 

needed to connect virtual models to real or simulated PLC controllers.  
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From the review of current research it can be seen that the virtual models validated by VC 

can be further reused during the machine operation phase as well as during the system re-

design phase; however, the current diversity of data representation approaches and data 

formats of different engineering tools also present significant barriers to reuse these virtual 

models. There are many neutral data formats for describing specific aspects of VC models. 

However, in order to support a modular approach, a VC mechatronic model, which is an 

integration of multi-disciplinary information, needs to be reused as a whole. To date, no well-

recognised data format for describing the hierarchical topology information has been widely 

adopted.  A neutral data format – AutomationML, which is specific for the automation 

domain and can potentially become an open standard, is suitable for the data representation 

and data exchange of modular VC models. Nevertheless, no modular virtual models 

completely described in AutomationML have been found. 

The state of the art is summarised in Table  2-7. 

Table  2-7 A summary of the state of the art 

 State of the art 

Modular approaches to  
Automation System 
Engineering 

• Few existing modular control paradigms have been adopted by 
industry on a large scale 

Control system engineering • Mainly PLC-based control systems 
• Traditional manual process of control software engineering is being 

used 
• Emerging approaches of automatic code generation still have 

limitations 

Virtual Commissioning • Mainly Hardware/Software-in-the-Loop which requires PLC code 
• Manual programming is required 

Openness of VC Tools • Reuse of virtual models is needed 
• Lack tool-independent model to represent VC virtual models 

2.5.2. Identification of research gaps 

Based on the assessment of the state-of-the-art researches reviewed, the following research 

gaps are identified: 
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• In order to build the new component-based VC framework, a direct deployment 

approach, which automates the way of deploying executable PLC control software 

based on the virtual models, is needed. This approach is proposed by the author and is 

described in Section 3.5 of this thesis. 

• Related engineering tool features for implementing the proposed direct deployment 

approach are needed and currently missing from the functionality of the engineering 

tool involved in the new VCOM virtual commissioning framework. The needed tool 

functionality is designed by the author and is presented in Section 3.6. The 

implementation is also described in Section 4.1.2. 

• Common data models for representing the component-based virtual models, which 

play a key role in efficient inter-tool data exchange, are needed. This gap is addressed 

in this research by creating the required data models which are described in Section 

3.2. 

• Engineering tool features for mapping the tool-specific component-based virtual 

models into the proposed common data models are needed. The needed functionality 

is developed in this research and the design and implementation are respectively 

presented in Section 3.3 and Section 4.1.2.  
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Chapter 3. Approach and Methodology 

This chapter describes the enabling technologies developed in this research to realise the 

control deployment function and the data reusability of the new VCOM framework. The 

chapter begins with an overview of the framework and the required key enablers. 

After the overview is given in section 3.1, the discussion is organised in six sections. 

Section 3.2 covers the common data models used to provide semantic descriptions of virtual 

models for facilitating data exchange and data reuse. The functions required for transforming 

component-based virtual models to the proposed common data models are described in 

section 3.3.  Section 3.4 and section 3.5 describe the two steps of work for deploying the 

control software based on the control logic validated using the component-based approach. 

Section 3.4 presents a deployable PLC control software architecture proposed to facilitate the 

deployment while section 3.5 describes the approaches to the direct deployment based on the 

deployable architecture. Section 3.6 describes and illustrates the general design of an 

engineering tool that facilitates control software deployment as well as virtual model 

mapping. Section 3.7 summarises the work presented in this chapter.  

3.1. VCOM - A New Open VC Framework  

This section provides an overview of the desired open VCOM framework. First, based on 

the summarisation of the state-of-the-art VC approaches, the need for an open VC framework 

is justified. Subsequently, the VCOM, a new open VC framework, which enhances virtual 

model reusability and automates control software deployment, is described and illustrated.  

3.1.1. The Need for the Open VC Framework 

The literature review suggests that VC, mainly HIL or SIL, has been regarded as an 

effective approach to facilitating control software development and validation. In the current 

HIL approaches, Virtual Reality (VR)-based 3D models are normally driven by pre-

programmed control software which run on either real PLCs or simulated soft-PLCs. This 

method is very mature and adopted by most of the mainstream VC engineering tools. It can 

be also observed, from existing relevant research, that there are also increasing demands for 

the VR-based applications during the operational phase of automation systems. These 

applications actually involve the similar virtual models to those used for VC. However, the 

efforts to date have been mainly invested in developing VC engineering tools and applying 
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these tools in actually performing VC. This is often because the virtual models built using a 

particular VC tool are constrained inside this tool or other tools from a specific vendor. Due 

to data format diversity, the need for reusing VC models is thus poorly supported. 

The current approach of validating real PLC codes using HIL approach has proved to be 

effective and reliable. However, a number of drawbacks exist in the HIL approach. First of all, 

the way in which related engineers other than control engineers cannot be involved in control 

engineering has not been changed. The development and debugging of PLC control programs 

still heavily rely on the experience of control engineers. Secondly, building the connections 

between virtual models and PLC control system is time-consuming. Although the CCE tool 

can only validate component-based control logic instead of real PLC control software, the 

above shortcomings of HIL do not exist in CCE.  

Given the above facts, this research develops the technologies required to realise a new 

VCOM VC framework which resolves the mentioned limitations of current VC approaches. 

3.1.2. Overview of the Open VC Framework 

The new VCOM open VC framework is shown in Figure  3-1. Automation systems are first 

virtually prototyped and commissioned using component-based approach in the engineering 

tool CCE. After VC, the validated component-based virtual models are then mapped to a 

common data model for further reuse. The PLC control software is then directly deployed 

based on the control logic of component-based virtual systems. 

The work carried out by the author in this research to make this VCOM framework feasible, 

open, and efficient is marked in green in Figure  3-1. First of all, common data models for 

describing component-based virtual models are proposed and designed. This is mainly to 

eliminate the data exchange barriers between virtual engineering tools which hinder the reuse 

of HIL virtual models by other relevant applications. A common data model for describing 

modular virtual models is defined and represented in a well-accepted domain-specific 

standard data format. Subsequently, in order to map the component-based virtual models to 

the proposed common data model, the approach to the mapping is then designed and 

implemented. It is worth mentioning that the author’s approach mainly covers mapping of 

hierarchical topology data. 3D geometric and kinematic data is not the focus of this research 

due to the fact that standard engineering tools for the transformations of such data are already 

available.   



 Chapter 3 Approach and Methodology 

64 

 

 

Figure  3-1 the objective open VC framework - VCOM 

Table  3-1 Summary of research work covered 

Work Description Section 

Common data models Data models created using AutomationML’s data description 
approach for describing component-based virtual models. 

3.2 

Virtual model mapping Maps component-based virtual models into the corresponding 
HIL common data models. 

3.3 

Deployable PLC control 

software architecture 

Introduces a new PLC control software architecture which is the 
basis of the proposed direct deployment approaches. 

3.4 

Direct deployment 

approach 

Generates PLC control software automatically, with the 
proposed deployable architecture, through reusing the 
component-based virtual models and pre-programmed runtime 
components. 

3.5 

Engineering tool - 

VCMapper 

An engineering tool which implements the functions of virtual 
model mapping and control software deployment. 

3.6 

The author’s approach to deploying complete PLC control source code based on the 

control logic of component-based virtual models are then proposed and designed. The 

objective of the direct deployment approach proposed in this research is to enable the 

automatic generation of source code for complete PLC control software based on the 

component-based control logic validated by CCE. To achieve this objective, a new control 
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software architecture, which was created by the Automation Systems Group for facilitating 

the direct deployment, is described first. Design of the direct deployment approach based on 

the deployable architecture is then presented.  

Lastly, design of an engineering tool to implement the virtual model mapping and the 

direct deployment is described.  

3.2. Virtual Modular Common Data Model (VMCDM) 

This section describes the common data models that are proposed to provide semantics for 

virtual models of component-based automation systems.  

First, the requirements of the common data models are considered.  The common data 

models are built based on AutomationML which provides the basic structure, terminology 

and data formats for describing automation systems. Then, the classes required for describing 

the classification of objects and relationships between objects are presented. These classes 

were designed by inheriting the standard classes of AutomationML.  

Consequently, the classes for describing the different concrete objects of the virtual models 

are presented.  

3.2.1. Basis of VMCDM  

The common data model, which is named Virtual Modular Common Data Model 

(VMCDM), involved in this research was designed with the aim of facilitating data reuse 

between different VC engineering tools. Before finally building the desired common data 

model, it is necessary to first clarify the requirements of the common data model for this 

purpose and then justify for the adoption of AutomationML as the description framework. 

3.2.1.1. Requirements of the Common Data Models 

The key characteristics of ontology, which is widely adopted to provide semantics, are 

formal, explicit and shared. The generic definitions of these characteristics were provided by 

Ushold et al. [114]. Ushold also categorised different ontology application scenarios. For 

different scenarios, the specification of the ontology and the languages required can be 

different. For instance, the work presented by Runde and Fay specified the data format 

required for data exchange in building automation system engineering [94]. The common 

data model proposed in this research is to be used for the purpose of “common access to 
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information”.  To achieve this, the requirements of the common data model proposed in this 

research are identified as following: 

Object-oriented architecture 

The virtual models used to perform VC in this research are built according to the 

Component-Based approach [4]. A component encapsulates information of multiple 

disciplines and is used in a black-box manner when a system is built.  To describe the 

components and the systems based on such an approach, the required data model should 

support the object-oriented architecture.  

Semantic Requirements 

Semantic interoperability implies that terms used in a given engineering tool can be 

interpreted by other engineering tools.  To achieve semantic interoperability in this research, 

the common data models were created with reference to the method of creating ontology. The 

key elements required to create an ontology have been summarised in many articles [102, 114, 

115]. In the case of this research, the desired data model, which is used for describing the 

hierarchical topology information, should contain the following concepts: 

• Properties including data types and relations which are used to describe hierarchical 

information. 

• Classes for defining the data models of constituent objects of component-based 

automation systems 

• Classes for defining the integration between the hierarchical objects and the related 

disciplinary objects such as 3D geometry model and control logic. 

• Instances of the defined classes. 

XML-based data format 

XML schema cannot provide the required semantics. The differences between XML 

schema and ontology has been identified by Klein [102]. However, most of the ontology 

description languages still adopt XML as the data exchange format. XML has been regarded 

as an open and effective way of resolving syntax issues and syntax interoperability is also a 

basic requirement of tool interoperability. Therefore, the proposed Virtual Modular Common 

Data Model (VMCDM) should be described in XML-based data formats. The platform-
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independent feature of XML also guarantees that the VMCDM is usable by different 

applications running in different operating platforms.   

3.2.1.2. Common Data Model based on AutomationML 

Based on the requirements summarised above, the author adopted the AutomationML as 

the basis of the proposed common data model. AutomationML, instead of being built from 

scratch, is built based on the existing XML-based data format - CAEX. This section provides 

a discussion of the respective contributions of CAEX, AutomationML and VMCDM to 

generally show that why AutomationML is adopted and how the desired VMCDM is built. 

CAEX – A generic description framework 

CAEX is an XML-based neutral data format which is generic for describing hierarchy 

information of various domains such as buildings, machinery, plant, etc. The general goal of 

CAEX is the vendor independent storage of hierarchical object information. Although CAEX 

is a semi-formal description framework rather than a formal language, it still provides some 

essential concepts required for describing semantic.  First of all, it supports library concepts 

and object-oriented architecture. Secondly, it defines the vocabulary of properties for 

describing hierarchical information. Additionally, the terms for describing relationships 

between classes and instances are also defined in CAEX.  

As shown in Figure  3-2, at the top level, the CAEX data model consists of: three different 

types of libraries – RoleLirary, InterfaceLibrary and SystemUnitLibrary – and the specific 

plant structure- InstanceHierarchy.  The information of a specific system, named 

InstanceHierarchy in CAEX, is built by combining the instances of predefined classes in the 

SystemUnitClass Library. Before defining the SystemUnitLibrary, the RoleLibrary and 

InterfaceLibrary need to be defined.  RoleClasses are defined in order to assign a role to an 

instance object and to describe its general requirements. The main goal of the CAEX role 

concept is the separation of abstract role information and the definition of concrete 

implementation information which is included in SystemUnitClass.  InterfaceClasses, on the 

other hand, are used to describe the relations between different items. The relations between 

those four concepts are illustrated in Figure  3-2.  

In the CAEX approach, prior to the definition of system unit classes for describing 

components, required roles and interfaces need to be defined. The roles implement an “I am 
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a…” relationship while interfaces determine the type of relation and the semantic meaning of 

the connection between two objects that are connected via their respective interfaces. 

 

Figure  3-2  CAEX items and their relations [116] 

AutomationML – Defining domain-specific terms for automation systems 

  While the concepts and architecture for describing object-oriented approach have been 

defined in CAEX, CAEX does not provide the definitions of domain-specific RoleClass and 

InterfaceClass. Also, SystemUnitClass and InstanceHierarchy obviously are not defined since 

they are user-specific.  In this context, AutomationML defines role classes and interface 

classes which are specific for the automation domain. This is of significant importance to 

enable the semantic data exchange in the domain of automation systems.  Nevertheless, 

AutomationML only defines the names and descriptions of these roles and interfaces. The 

concrete implementations still need to be defined according to the users’ needs. Extended 

user specific roles or interfaces can also be defined by inheriting the normative roles of 

AutomationML. Despite the user specific items still existing, the semantics of those items 

call be obtained considering they are derived from predefined standard concepts. 

Domain specific roles and interfaces related to automation system engineering have been 

defined in AutomationML’s normative library, however, these definitions only include names 

and descriptions and are basic and high level ones, for instance, top level roles - resource, 

product, process and top level interfaces – COLLADAInterface, PLCOpenInterface. 

Depending on the granularity and aspect of the classification, user specific sub-roles and sub-

interfaces still need to be defined by inheriting the normative ones. It is worth noting that 
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increasing number of user defined roles and interfaces potentially lead to weaker semantics. 

Therefore, user specific roles and interfaces should be defined only if they are really required 

and are missing from the normative library. 

Common Data Model based on AutomationML 

The essential characteristics of a formal language for describing ontology are object-

oriented architecture, vocabulary of properties and relations, and logic descriptions for 

reasoning and querying. AutomationML supports object-oriented architecture and provides 

domain-specific vocabulary but no capability for reasoning and querying.  However, the 

function of reasoning and querying is mainly used for web-based data integration and not 

required for data reuse between engineering tools.  

The object-oriented architecture of AutomationML is suitable for describing component-

based modular automation systems. Also, the role classes and interface classes defined by 

AutomationML are suitable for describing automation systems. However, roles and interfaces 

specific for describing virtual models are missing from the corresponding library of 

AutomationML. Therefore, role classes and interface classes required for representing 

VMCDM need to be defined. 

Moreover, the SystemUnitClasses of AutomationML which corresponds to the components 

of VMCDM are completely user-specific. Therefore, the classes for describing different types 

of components of VMCDM are then defined.  Obviously, the HierachicalInstance which is 

used to describe a specific system is mainly system-specific and can be created based on the 

SystemUnitClasses created in this research.  

The comparison of the respective contributions of CAEX, AutoamtionML and VMCDM 

are summarised and demonstrated in Figure  3-3.  CAEX provides vocabularies of generic 

concepts and relations required for describing hierarchical data models, and then 

AutomationML adds the role classes and interface classes to CAEX as domain-specific 

standard classes for describing automation systems. Finally, based on the standard classes of 

AutomationML, VMCDM defines the specific role classes, interface classes and system unit 

classes for describing the virtual models of component-based automation systems.  
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Figure  3-3 CAEX, AutomaitonML and VMCDM and respective contributions 

3.2.2. VMCDM for Component-based Automation Systems  

The constituent objects of a component in the component-based approach have been 

described by Harrison et al. [8]. In current virtual commissioning approaches, the virtual 

prototype of a physical system normally contains part of the constituents which are required 

for the validation of control logic. The main objective of designing the VMCDM is to bring 

semantics to the data representation of virtual models. In order to achieve semantic 

representation, as analysed in section 3.2.1, it is of key importance to define all the required 

properties and objects based on AutomationML. The required properties and objects are 

determined by the constituents of virtual components to be described. The constituents of a 

virtual component are shown in Figure  3-4. 

As it can be observed from Figure  3-4, in order to integrate the disciplinary constituent 

information, the hierarchical topology of a virtual component has the following data:  

• Interfaces to geometric elements: each element has an interface to its 3D geometry 

information which is saved separately. 

• Object for describing state behaviour: for an actuator, the state behaviour is 

represented using position information and time. For a sensor, it is described using 

different colours.  

• Interfaces to the control software: one for reporting the status and another for 

receiving commands. 
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• Object for connecting a specific behaviour to the related control interfaces, which 

control the state behaviour, and the related geometry interface, which specifies 

which 3D geometry model performs the mechanical behaviour. 

 

Figure  3-4  Constituents of a virtual component 

It is worth mentioning that, some components, a floor for instance, have no mechanical 

behaviour and control behaviour. For those components, only interfaces to the geometry data 

are needed.  

According to the architecture of the components, the architecture of VMCDM is built 

based on AutomationML’s approach and is illustrated using Unified Modelling Language 

(UML) in Figure  3-5.  

Based on the architecture in Figure  3-5, the required classes and elements that are not 

included in the standard library of AutomationML will be defined and described in the 

following sections. These objects include role classes, interface classes, system unit classes 

and some constituent objects of system unit classes. 
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Figure  3-5 Structure relationship between objects of VMCDM 

3.2.3. VMCDM-specific Role Classes and Interface Classes 

The normative library provided by AutomationML defines classes of roles and interfaces 

required for describing automation systems. A virtual model, which can be seen as the virtual 

equivalence of the corresponding physical system, typically integrates only geometry, 

kinematic and control logic information. However, in order to integrate relevant data together 

into final data sets that describe virtual models, additional classes still need to be defined.  

3.2.3.1. VC-specific Interface Classes 

In order to connect the mechanical behaviours of a virtual model to its corresponding 

control behaviours, an interface class called VCInterface is defined. The VCInterface is 

defined by inheriting PLCOpenInterface which is a normative AutomationML interface class 

for connecting hierarchical data with control software. As shown in Figure  3-6, the 

VCInterface contains the following properties: 

• RefBaseClassPath: a standard attribute defined by CAEX to specify the parent class 

of current class.  

• Direction: an attribute which indicates direction of the signal exchange between 

control systems and the related machine component. Its value can be either “In” or 

“Out”. 
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Other attributes can be potentially added when it is instantiated and included in a 

mechanical behaviour, as shown in Figure  3-6. Although AutomationML supports the object-

oriented concept, there are still several differences between AutomationML and object-

oriented programming languages. One of important differences is that the structure of a class 

can be changed when it is instantiated. 

 

 

Figure  3-6 User-defined interface - “VCInterface” for connecting states with PLC control 
logic 

3.2.3.2. VC-specific Role Classes 

An important mechanism of AutomationML to achieve semantic definition is that every 

object must be assigned a role which should be predefined in the role library. The domain-

specific standard role classes defined by AutomationML can be used as the roles for 

components of component-based automation systems. However, role classes for the internal 

elements contained in components are not defined in AutomationML therefore need to be 

defined. In order to achieve semantics, these roles must be defined by inheriting 

corresponding normative role classes. 

Table  3-2 Role classes defined in this research for description of VC models 

Role Name Description Parent Normative Role 

DigitalDrive Used for objects those contain the info of states 
which drive corresponding mechanical behaviors 
of actuators.  

AutomationMLCSRoleClassLib
/ControlEquipment/Actuator/Ac
tuatingDrive/ 

SensorState Used for objects those contain the info of sensor 
states. 

AutomationMLCSRoleClassLib
/ControlEquipment/Sensor/ 
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In this research, as presented in Table  3-2, two roles classes required specifically for 

describing virtual models of component-based automation systems are defined and presented 

as follows. According to the specification of CAEX, a role class only indicates the abstract 

requirements of the related element and does not contain the concrete implementation 

information of the defined role classes. These roles are only defined by specifying its parent 

normative roles.  

DigitalDrive for actuator states 

In physical automation systems, actuators can be driven by various types of power source 

e.g., electric, pneumatic and hydraulic. In the normative role library of AutomationML, there 

is a role class named “Actuator/ActuatingDrive” used for representing the role of a physical 

unit for driving mechanically actuated controlling element.  

In contrast to the physical systems, in the virtual models for virtual commissioning, 

behaviours of an actuator are simply defined and driven by “states” each of which is 

composed of a set of parameters including position information and time or speed 

information. This is because the focus of virtual commissioning is to validate control logic 

rather than to simulate how the movements of actuators are driven. In the context of virtual 

commissioning, a role class named “DigitalDrive” is defined by inheriting the role 

“Actuator/ActuatingDrive” in AutomationML’s informative library for control systems.  

SenorState for sensor states 

In the component-based approach, a binary sensor component has two states indicating the 

“ON” and “OFF” states. In virtual models, each state of a sensor component has an interface 

for publishing its state to related control behaviour and attributes for describing 

corresponding colour which represents the corresponding working state of the sensor. A role 

named “SensorState” is defined to represent the state behaviour of a sensor. In the normative 

role library of AutomationML, there is a role class “Sensor” and no other role classes specific 

for representing the states of sensors. Therefore, the role inherits informative role “Sensor” of 

AutomationML.  

3.2.4. Element representation 
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According to the data structure of a component illustrated in Figure  3-4 of section 3.2.2, 

the constituent items of the hierarchical information of a virtual component can be classified 

as follows: 

• Attributes:  for describing the general properties of a component. 

• Interfaces:  reference to its 3D geometry file. 

• Attributes: for describing the position information of the 3D geometric data.  

• Internal objects: for describing the state behaviour of actuator or sensor 

components. The internal object “state” of actuator components has different 

attributes from the “state” of sensor components. Therefore, the object “state” can 

be further classified.  

The concept “component” of component-based automation systems corresponds to the 

“SystemUnitClass” of AutomationML. According to the definition of the “SystemUnitClass” 

of AutomationML, a component consists of the following properties or sub-classes: 

• Attribute: allows the specification of object attributes 

• ExternalInterface: allows the specification of object interfaces 

• InternalElement: allows the specification of nested internal objects 

• SupportedRoleClass: allows specification of supported RoleClasses 

• InternalLink: allows specification of relations between interfaces 

Of the properties, “Attribute” and “InternalLink” are standard concepts of CAEX while 

interface classes and role classes have been defined in AutomationML. However, the classes 

for internal elements still need to be defined. Therefore, prior to defining the classes for 

representing components, the classes for elements are defined first. An element can be either 

a simple one or a composite one which further contains nested elements.  

Based on the respective data structures of “Component” and its corresponding term 

“SystemUnitClass”, three types of element are defined and presented in the following sub-

sections.  

3.2.4.1. Actuator element 

A virtual actuator component is further decomposed into an actuator element and other one 

or multiple static elements. A static element mainly contains an interface to its geometric data. 
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The actuator element, on the other hand, contains all state behaviour of an actuator 

component. An actuator element is further decomposed into the following properties and 

internal objects: 

• “Rolerequirement”: property specifying its role class which should be the standard 

AutomationML role- “Actuator”. 

• “InternalElements”: internal objects which represent the states each of which 

contains all the properties related to the state behaviours.   

The state behaviour integrates the information of mechanical behaviour and the related 

interfaces to control software. The standard role “DigitalActDrive” of AutomationML is 

assigned to the “Rolerequirement” of each state behaviour element.  

A state element is composed of three attributes which are used by engineering tools’ 

functions to control the distance and speed of a kinematic movement driven by this actuator. 

• “StartPosition”: attribute that indicates the beginning position of a mechanical 

behaviour.  

• “EndPosition”:  attributes that indicates the end position of a mechanical behaviour.  

• “Time”: the time the mechanical behaviour takes to move from the StartPosition to 

the EndPosition. 

The specifications of the attributes are also defined. For a dynamic state, for example 

“Moving to Work Postion”, the value of attribute “Time” should be bigger than 0 and the 

“EndPostion” is not equal to “StartPosition”. For a static state, like “At Work Position”, 

“Time” is 0 and the “EndPostion” should be equal to “StartPosition”. These specifications 

will be implemented in the XML schema of the VMCDM.  

Also, a state element contains the following two VCInterfaces which are used to connect a 

state with its related control variable.   

• “StateCmd”: the command variable received from the control software to trigger 

the mechanical behaviour. Its direction is “IN”. 

• “Status”: the variable for reporting the current status of the mechanical behaviour to 

the control software. Its direction is “OUT”. 
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Additionally, in order to provide a classified view on different types of attributes of an 

object, a role class “Facet” is defined in AutomationML.  Internal elements with the role 

“Facet” can be added to an object in addition to its normal constituent items. The attributes of 

the “Facet” elements must be the existing attributes of the object. In the case of the actuator 

element, two facet elements are defined as following.  

• “BehaviourFacet”: The BehaviourFacet is an internal element used for providing a 

view on the attributes related to the mechanical behaviours of actuators or sensors, 

namely attributes representing the information of time and position. Apart from the 

attributes, it should also be assigned a role “Facet”. 

• “ControlFacet”: The “ControlFacet” is an element used for providing a view on the 

interfaces connecting to the PLC control software. It also has the normative role- 

“PLCFacet”. 

Based on the above definitions, the data structure of an actuator element is illustrated in 

Figure  3-7. 

 

Figure  3-7 Data structure of an actuator element 

3.2.4.2. Sensor Element 

As defined in the component-based approach, a sensor component also has state behaviour 

and corresponding interfaces to PLC control software. The only differences between the state 

behaviours of sensor components and those of actuator components lie in the attributes for 

representing the states. Therefore, a sensor element for representing the state behaviours of a 

virtual sensor component is also defined in the same manner as that for defining actuator 

element.  This section only describes the differences between a sensor element and an 

actuator element.  
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First of all, in VC, state behaviours of a sensor are represented by changing colour instead 

of position and time. A composite attribute “Colour” is contained in the sensor element; 

• “Colour”: attribute that indicates the colour of the sensor state behaviour.  

Secondly, given the fact that no command from the control software is needed, a virtual 

sensor only has one PLCInterface “Status” to report its real-time state to the PLC.  

The sensor element also has the generic attribute “RoleRequirement” and two facet 

elements “BehaviourFacet” and “ControlFacet”. However, the “BehaviourFacet” is a view on 

the attribute “Colour”. 

3.2.4.3. Static element  

A static element contains all the attributes and interfaces that relate to the 3D geometry 

data of a component. Obviously, a static element does not have any state behaviour or 

interface to respond to control signal. Therefore, as shown in Figure  3-8, a static element is 

described using the following items: 

• “RoleRequirement”: for specifying the role this element plays, normally set to the 

standard role “StaticObject”. 

•  “Frame”: attribute for saving the relative location of a 3D geometry model. It is a 

standard AutomatinML attribute and described as {x, y, z, Rx, Ry, Rz}, where x, y, 

and z represent the relative position and Rx, Ry and Rz represents the rotation. 

• “ColladaInterface”: external Interface reference to its geometry data.  

 

Figure  3-8 Data structure of static element 

 

3.2.5. Virtual Component  
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In the component-based approach, resource components can be categorised into actuator 

components, sensor components and non-control components. As aforementioned, the 

concept ‘component’ of component-based automation corresponds to the ‘SystemUnitClass’ 

of AutomationML.  Based on the standard items defined by AutomationML and the elements 

defined in the above section, the corresponding ‘SystemUnitClass’ for these three types of 

components are defined and presented in the following sections. 

3.2.5.1. Actuator Component 

An actuator component is typically composed of static elements, an actuator element and 

other attributes, as shown in Figure  3-9.  The static elements encapsulate the attributes and 

interfaces related to the geometry data while the actuator element encapsulates the integration 

of state behaviours and interfaces to the control logic. The attribute “SupportedRoleClass” of 

an actuator component should be set to a specific normative role, such as “Conveyor”, 

“Pusher”, et al.  

-RefBaseRoleClass
-Name
-SupportedRoleClass

Actuator Component

-Name
-RefBaseRoleClass
-ColladaInterface
-Frame

Static Element

-Name
-RefBaseRoleClass

Actuator Element -Name
-VCInterface
-Position
-Time

ActuatingDrive

-VCInterface
-Position
-Time

PLCFacet

1* 1
1

1

*

1 1

 

Figure  3-9 Actuator Component described in UML 

3.2.5.2. Sensor Component 

In the virtual models, a sensor component is defined as the integration of a 3D geometry 

model and two states.  In VMCDM, correspondingly, the “SystemUnitClass” for describing a 

sensor component consists of a static element and a sensor element. It also contains an 

attribute of “SupportedRole” the value of which is set to the normative role “Sensor”, as 

illustrated in Figure  3-10. 
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Figure  3-10 Sensor Component represented in VMCDM 

3.2.5.3. Non-control Component 

Non-control components refer to static objects, a fence or a floor for instance, which are 

only composed of geometry data. A non-control component has no mechanical behaviours 

and obviously it has no control behaviour either. In VMCDM ontology, a non-control 

component is composed of at least one static element. Its attribute “SupportedRole” for 

specifying the role should also be set to as either a normative role or a user-defined role. An 

example is given in Figure  3-11. 

 

Figure  3-11 SystemUnitClass for Non-control Component 

3.3. Mapping Component-based Virtual Models to VMCDM 

This section describes the approach to mapping the component-based virtual models 

described in XML into the proposed VMCDM described in AutomationML.  The data model 

mapping is required to achieve efficient data exchange based on common data models. 

3.3.1. Overall process 

The process of exchanging data based on a neutral data model between different 

engineering tools can be divided into four steps, as illustrated in Figure  3-12.  Firstly, the 
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source engineering data is exported by a data exporter from a source engineering tool. 

Subsequently, the engineering data is mapped from the proprietary tool-specific data model 

into the common data model. The following two steps mirror the previous two steps. In step 3, 

the engineering data will be mapped from common data model into the proprietary data 

model of the target engineering tool, and then the target engineering tool imports the data 

using a data importer in step 4. In some particular circumstances, the step 2 and/or step 3 

might not be necessary if the involved engineering tools directly support the common data 

model.  

In the case of this research, data model mapping is required since few engineering tools has 

been found supporting AutomationML. This research is mainly focused on the step 2, namely 

mapping from component-based virtual models to the VMCMD. 

 

Figure  3-12  Process of Data Exchange based on Neutral data model 

As analysed in the previous section, AutomationML can be seen as a semi-formal 

description framework which is between XML schema and ontology.  Given the fact that the 

tool-specific data models are stored as XML files and AutomationML is also XML-based, the 

approach to mapping the data models in this research learns from the approaches to mapping 

between XML files and approaches to mapping between ontologies.   

3.3.1.1. Existing approaches to data mapping 

For data mapping between different XML files, Extensible Stylesheet Language 

Transformations (XSLT) has been widely adopted. XSLT  is a language 

for transforming XML documents into other XML documents or other objects such 

as HTML for web pages, plain text, and so on [117].  Data mapping from XML to ontologies 

http://en.wikipedia.org/wiki/XML_transformation_language
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/Binary_and_text_files


 Chapter 3 Approach and Methodology 

82 

 

has been widely researched and many effective approaches have been proposed [103, 118]. 

Also, the ontology mapping process has been defined and researched by many literatures 

[119, 120].  

Through the study of the existing ontology-related mapping approaches from the literature, 

the process of ontology mapping is summarised in Figure  3-13.  The ontology mapping 

process normally begins with normalisation which focuses on raising all data to be mapped 

onto the same representation level. The objective of normalisation is to cope with syntactical, 

structural and language heterogeneity between source data and target data. In normalisation, 

both ontologies must be normalised into the uniform representation thus eliminating syntax 

differences and make semantic difference more apparent [121]. The second step – semantic 

bridging, is responsible for establishing correspondence between entities from the source and 

target ontology. The entities involved in the bridging include concepts, relations and 

attributes. In the following step – execution, the instances of source model are actually 

transformed into corresponding target instances based on the semantic mapping rules. An 

additional post-processing step can be potentially needed to check and improve the 

transformation result. The result of post-processing step can be used as feedback to further 

improve the whole mapping process. 

 

Figure  3-13 Ontology mapping process [119] 

3.3.1.2. Approaches to mapping Component-based models to VMCDM 

Based on the existing relevant approaches [120, 122, 123], the approach to mapping 

component-based virtual models described in XML to the VMCDM described in 

AutomationML is designed by the author and is illustrated in Figure  3-14.  
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In the case of this research, XML is regarded as the data format for normalisation, 

considering that XML is widely supported by most engineering tools and also the target data 

format – AutomationML is also XML-based. Therefore, before establishing the semantic 

bridging, the XML schema of the source data model needs to be generated first if it is not 

available. The schema of the target data model can be generated according to the VMCDM 

proposed in the section 3.2. This step will not be elaborated since a XML schema can be 

easily created or generated from the existing XML file.  

 

Figure  3-14 Process of mapping from CCE virtual models to VMCDM  

The following section is focused on the required semantic bridging to transform 

component-based virtual models to the VMCDM. The semantic bridging process is 

implemented using XSLT. The execution of the XSLT is performed by the engineering tool 

which is designed by the author and described in section 3.6. It should be also notified that 

semantic bridging only covers mapping of the hierarchical data of the virtual models while 

the control logic mapping and geometry mapping are not involved. This is due to the fact that 

standard transformation tools for geometry data mapping are normally available while the 

control logic mapping will be realised by the direct deployment approach which is elaborated 

separately in section 3.5.  

3.3.2. Semantic Bridging 

Process of semantic bridging can further divided into a number of sub-steps which were 

presented by Maedeche [119]. Through analysing the data models involved in this research 
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and referring to the semantic mapping process proposed by Maedeche, the approach to 

semantic mapping is built from three dimensions those are concept mapping, property 

mapping and mapping functions, as illustrated in Figure  3-15. 

 

Figure  3-15 Semantic bridging for mapping CCE to VMCDM 

3.3.2.1. Concept mapping 

Concept mapping is to identify the pairs of concepts to be bridged. According to the 

mapping relation between a source concept and its corresponding target concept, three 

distinct cases are identified in this research.  

The first case refers to that a source concept corresponds to a target concept. This implies 

that a source instance will give rise to just one instance of the target concepts. In this case, the 

main job is to map the data architecture of source concept to that of the corresponding target 

concept.  In our case, the mapping is realised in a top-down manner. Due to the adoption of 

object-oriented architecture of both the component-based virtual models and the VMCDM, 

the concept system and component can be directly mapped to the “InstanceHierarchy” and 

“SystemUnitClass” of VMCDM. By further decomposing a component, the information for 

integrating its different aspects, are respectively mapped to corresponding concepts of 

VMCDM. The information of integrating geometry data is mapped to “Static element” and 

the mechanical behaviours for integrating kinematic data and control logic are mapped to 

“Actuator elements” or “Sensor elements”.  The state behaviour of an actuator or a sensor in 

the component-based approach is mapped to the “InternalElement” with the role of 

“DigitalDrive”.  
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In the second case, some target concepts are completely new concepts for the source 

concept. In this research, these concepts refer to the “Role class” and “Interface class”. In the 

component-based approach, no concepts corresponding to “role” and “interface” have been 

defined. In this case, these required classes that are predefined in VMCDM will be directly 

included in target data models.  

The last case refers to that a source concept does not have a specific counterpart target 

concept.  In the case of this research, the control logic of component-based virtual models is 

normally modelled as State Transition Diagrams. Obviously, it is not applicable to the 

VMCDM in which the control logic is modelled as real control code. In the component based 

approach, the control behaviours of an actuator component are composed of state, transitions 

and conditions of transitions. However, in the VMCDM, only the “state” is used as an 

internal element with role “DigitalDrive” . The transitions and conditions will be translated 

into control software and are not included in the VMCDM. Therefore, in the concept 

mapping, the concepts of “transition” and “condition” are discarded. 

An example of the architecture mapping from the source model- component-based virtual 

models to the target common model – VMCDM is demonstrated in Figure  3-16.  
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Figure  3-16  Architecture mapping described in UML  

3.3.2.2. Property mapping 

Property mapping is a complementary step to the concept mapping. Its main objective is to 

map the terminologies and values of attributes. In this research, for a static source attribute 
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for which a corresponding fixed target attribute can be found, the mapping is realised in a 

XSLT file. In the XSLT file, such kind of attributes will be directly translated into the 

corresponding target attributes.  

On the other hand, for some attributes, their values can vary depending on the parent 

objects. For instance, the attribute “RoleRequirement” of actuator components can be various, 

such as pusher, conveyor, lift, etc. In the component-based virtual models, they are just 

generally labelled as “actuator”. However, in the VMCDM, in order to enhance the semantic, 

each of such actuator components should have its specific role. For this kind of attributes, a 

mapping table which maps the GUID of an actuator component to its corresponding role 

needs to be created. This mapping table will be scanned by the XSLT during the execution 

phase of ontology mapping. Apart from attribute “Rolerequirement”, the mapping between a 

component and its related PLCOpenInterfaces is also required. The mapping table for this 

purpose is created by the direct deployment engineering tools which will be elaborated in 

section 3.5.   

3.3.2.3. Functions for transformation 

The aim of creating functions for transformation is to associate the data mapping, in a way 

that specific properties of source instances to be translated into counterpart properties of 

target instances. For some attributes of source instances, their values, instead of being directly 

mapped into the target counterparts, need to be processed by specific algorithms to translate 

to the target values.   For this purpose, pre-defined functions, which implement the respective 

transformation algorithms, needs be defined. These functions will be called in XSLT during 

the execution phase, as shown in Figure  3-17.   

 

Figure  3-17 Data model mapping by calling function in XSLT 

In this research, functions for the following purposes are required: 
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• Transformation of the positions of 3D geometry:  The position of a geometry part 

relative to its parent component or the position of a component relative to its parent 

system can be described using various approaches. AutomationML adopts the 

concept “Frame” as the uniform description of position information. In the 

component-based engineering tool, the relative position of an object is represented 

by the concept “Link point”. A convert algorithm is required to transform a “Link 

point” into a “Frame”. Hence, a function “ToFrame” which implements this 

transformation is defined.  

• Mapping table scanning: mapping tables, which have been defined in the property 

mapping for dynamically mapping different attributes, are scanned by the XSLT in 

order to retrieve the corresponding target attribute of a source attribute. Functions 

for retrieving the following information are defined in this research:  attributes 

“RoleRequirement” of components and attributes “VCinterface” for actuator and 

sensor components.  The mapping between each component and its target attribute 

“RoleRequirement” is created in the property mapping phase. On the other hand, 

the mapping of “VCinterface” for each component instance of a system is 

automatically generated in the process of directly deploying the control software. 

The direct deployment approach is presented in section 3.5. 

The required functions for transformation are summarised in Table  3-3. 

Table  3-3 required functions for ontology mapping 

Name Description  Parameters Return value 

ToFrame Transforms position from 

“LinkPoint” to “Frame” 

Position data of a 

source instance 

Frame: STRUCT 

GetRole Get the  role of a component ComponentID: String Role: String 

GetVCInterface Get the VCinterface of a 

component 

ComponentID: String VCInterface: String 
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3.4. Deployable Control Software Architecture 

In order to facilitate the implementation of the proposed direct deployment approach, a 

new control software architecture, which is developed by the ASG, is adopted in this research. 

The overall architecture of control software including the HMI is depicted in Figure  3-18. 

The PLC software on the left side and the HMI on the right side are actually two independent 

systems and communicate with each other through Ethernet during runtime. 

The following two subsections will respectively describe the PLC control software and the 

HMI, regarding the functions of their components and how the pertinent components 

cooperate with each other.   

 

Figure  3-18 Overall control system architecture 

3.4.1. PLC control system 

The PLC control system architecture is depicted in Figure  3-19 with more details.  The 

system is composed of Control Data Models, Runtime Components, and Logic Engine, all of 

which are described respectively in the following subsections.  
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Figure  3-19 Component-based PLC control system architecture  

3.4.1.1. Runtime Component 

Runtime Component is a pre-validated and ready to use standard resource specific function 

block. Runtime Component represents an actuator component or a sensor component of a 

machine cell in a PLC runtime environment. It is embedded with the control behaviour of a 

family of actuators and sensors with integrated diagnostic, and thus it is developed once and 

stored in a Runtime Component Library for future reuse. 

All the events and faults of a Runtime Component are communicated to the calling 

instance, i.e. the Logic Engine. Runtime Component is directly deployable in a PLC program 

and is interfaced via direct parameterisation, as shown in Figure  3-19. The following 

parameters are provided for the interfacing of the Runtime Component: 

 State Command (cmd) is an input from the Logic Engine. It dictates component to move 

to a specific state. 

 Operation Mode (OpMode) controls the machine operating mode; such as automatic, 

manual or dry-run.  

 State Message (status) is to provide a feedback signal to the Logic Engine to update the 

working state of the corresponding Actuator Component. 
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 Fault is the output of the integrated fault diagnostic part of the Runtime Component. This 

output is communicated to the fault management block of the PLC program for a further 

necessary action as required. 

 Reset is an input from the fault management block to acknowledge and reset the current 

fault after the operator has taken maintenance action. 

 Process Digital Inputs/Outputs (Input/Output 1…n) are input/output signals directly 

connected to the hardware to interface sensors and actuators respectively. 

3.4.1.2. Runtime Control Models 

It is a generic data structure defined to effectively store and organise control information to 

run a system. It consists of different types of information, such as system structure, operating 

modes, process control behaviour, component control behaviour, interlocks, fault messages 

etc. The control data models are generated on the basis of the control information defined 

within the simulation model of a machine cell.  

As shown in Figure  3-19, the Runtime Control Models can be further classified into the 

following types: 

Auto-mode control models: contains all the logic information for the auto-mode control 

of the desired machine. These control models are generated by automatically translating the 

control logic of the component-based virtual models. During the runtime, auto-mode control 

models are used as the interfaces of the control software to communicate with the Runtime 

Components. 

Manual-mode control models:  contains the data for generating the HMI control screens 

for all the actuator components. These control models are also generated by analysing and 

transforming the state behaviours of the virtual components.  During the runtime, these 

models are accessed by the HMI screen generator to generate the HMI and to send commands 

to corresponding components to control the machine. 

Fault-message models: are used to store error messages which are read by the HMI to 

display on the screen. Error messages from runtime components are sent to the corresponding 

Control Models and then written into the Fault message models by the Logic Engine which is 

described below.  
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3.4.1.3. Logic Engine 

Logic Engine is a principal component and works as a system orchestrator to execute the 

manufacturing operations. It has a number of functional components to perform various 

system operations such as operating mode handling, device management, fault management, 

and communicating with HMI. 

During runtime, the Logic Engine interacts with all the runtime components and HMI 

through the control data models. On one hand, the Logic Engine keeps scanning state 

behaviour of each component saved in the control data model to decide the next working 

state of each component and updates the state command of the respective component. Under 

the automatic mode, the next working state of a component is decided when the respective 

transition conditions are satisfied, while under the manual mode, it is decided by the 

command received from the HMI.  On the other hand, after receiving the state command 

through its connected control data model, the corresponding actuator runtime component 

moves to the respective state and updates its current working state into the connected control 

data model. 

3.4.2. HMI 

The HMI system architecture is composed of three system components: Screen Generator, 

Alarm Handler & Visualiser, and Machine Monitoring. The HMI application dynamically 

generates screens for manual mode control and communicates with the PLC control models 

during runtime. The operator screens for manual mode control are system specific, and thus 

unique for each manufacturing cell. Typically, rows of two pushbuttons are provided on the 

manual screens for each actuator. Via these pushbuttons machine operator can control the 

machine by driving the actuators between their home and work positions. The screen 

generator communicates with the runtime Control Models of the PLC control software, 

analyses the system components and generates the manual rows for each actuator according 

to the number of positions of actuator. Also, the Alarm Handler is responsible to report error 

and warning messages to the operator. 

It can be observed that the bases on which the HMI application dynamically generates the 

operator screens, communicates with the machine and displays the error messages, are the 

runtime control models of the PLC control software. This research is mainly focused on 
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directly deploying the PLC control software of the depicted system. Hence, the development 

of the components of the HMI will not be elaborated in this dissertation. 

3.5. Direct Deployment of Control Software 

This section presents the approach proposed in this research to directly deploying the 

control software for a physical assembly system based on its validated component-based 

virtual model.  

First, an overview of the process of realising the proposed approach is provided. 

Consequently, the key steps of this process are then elaborated one by one.  

3.5.1. Overview  

As stated before, one of the main objectives of this research is to automatically generate the 

complete control software based on the component-based virtual models of the desired 

systems. In order to achieve this objective, the first important step is to clarify that which 

kind of data are reusable or static and which kind of data need to be dynamically generated.  

Based on the classifications, the process of automating the control software development 

process then can be specified.  

3.5.1.1. Decomposition of the deployable control software architecture  

Prior to designing the approach to directly deploying the desired control software, the 

proposed control software architecture is decomposed and all the constituent elements are 

classified as following: 

• Reusable elements:  refer to the runtime components, the logic engine and derived 

data types for describing relevant virtual control models.  These elements are 

developed during component build phase and are directly reused during the control 

system development phase. When the control software for a specific system is 

developed, the related runtime components are selected from the runtime component 

library and used in a black-box manner.  

• Platform-specific common information: refers to PLC platform-specific 

information which is required to combine with the above mentioned data together to 

compose the source code of completely executable control software. These typically 

include header information of the overall control software and other different blocks. 
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The most significant characteristic of this kind of information is that, for a specific 

PLC platform, they are identical for control software of any automation systems. 

Hence, this information is refined and stored as templates.  

• Dynamic elements:  refers to the logic depository and programs for resource 

components. The logic depository is dynamically populated with runtime control 

models which are created by translating the control behaviour of component-based 

models. Additionally, for certain PLC platforms, some platform specific elements 

might need to be generated dynamically. For Siemens Step 7, for instance, an instance 

data block for each runtime component called by programs are required to be created 

dynamically.  

3.5.1.2. Overall process of direct deployment 

Based on the classification of the elements of the deployable control software, the process 

of the direct deployment approach is designed and outlined in Figure  3-20.  

 

Figure  3-20 Component-based PLC control software engineering 

Corresponding to the component-based approach, the process of control software 

development can be divided into component building phase and system building phase.  As 

shown in Figure  3-20, all the reusable components and PLC-specific common information 

are developed during the component build phase. The main task of system engineering phase 
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is to automatically generate the dynamic data and combine them with reusable and common 

data to generate the complete control software.  

In the following subsections, the process of developing reusable static elements during 

component building phase and the process of automatically generating dynamic elements and 

the final complete control software during system engineering phase are presented in details. 

3.5.2. Development of Reusable Static Data  

As stated in the previous section, static elements contained in the deployable control 

software include runtime components, derived data types and PLC-specific common 

information. This section describes these elements in details and presents the process of their 

respective development.  By reusing these pre-developed static data, the control software can 

be deployed in a more flexible and reconfigurable manner. 

3.5.2.1. Reusable Runtime Components 

Runtime components are pre-developed and pre-validated by control engineers separately 

during component building phase. The development of Runtime Components relies on the 

expertise of control engineers and is not the focus of this research. Instead of development, 

how to reuse the reusable runtime components to generate complete control software during 

system engineering phase is one of the key aspects of the proposed direct deployment 

approach. Therefore, the process of developing Runtime component is not elaborated in this 

dissertation.   

3.5.2.2.  Data Types for Component-Based Control 

In the component-based virtual models, the state behaviour of an actuator component is 

represented in STD which is not a PLC understandable language.  The STDs can be easily 

transformed into SFC PLC function blocks in reference to existing approaches. However, 

programs generated in this way only contain basic control functionalities while other 

functionalities required for industrial application, such as diagnostics, are missing. In this 

research, reusable runtime components with all required functionalities have been developed 

during the component building phase. The actual control logic of each component will be 

translated into Runtime Control Models which communicate with corresponding Runtime 

Components and the Logic Engine.   
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The control logic of component-based virtual models cannot be described using the 

standard elementary data types of IEC61131-3; therefore, derived data types are required to 

be defined to describe component-based control data models in a PLC interpretable manner. 

Four derived data types for describing the Runtime Control Models are defined:  component, 

state, transition and condition. In order to facilitate the automatic generation of control 

program for manual control mode, two more derived data types for describing fault messages 

and HMI rows are also defined. 

All the derived data types defined are outlined in Table  3-4. 

Table  3-4 Derived data types for component-based control logic 

Type Name  Description Constituent Elements 

Component STRUCT for describing control-related info of a 
component. 

Name, Type, ID, Working State ID, 
index, etc. 

State STRUCT for the state of STD Name, Type, ID, index, etc. 

Transition  STRUCT for the transition of a state ID, destination state ID, index, etc. 

Condition STRUCT for the condition of a transition ID, operator, related state ID, etc. 

Error STRUCT for describing error messages ID, error description 

ActComponent STRUCT for data models used to generate a row 
on HMI panel for controlling an actuator 
component 

ComponentID, component name, 
position1, position2 

3.5.2.3. PLC Platform-Specific Common Information  

The development of the common information of a specific platform is based on a reverse 

engineering process, as illustrated in Figure  3-21. Firstly, the source code of existing control 

software project is exported from a specific PLC programming tool. Secondly, through 

analysing the source code file(s), data of the source code can be classified into platform-

specific common information and project-specific information. The platform-specific 

common information will then be decomposed into different element and saved in the 

database as structured information. These common information will be reused during control 

software deployment phase to generate the control software for new systems.  
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Figure  3-21 Reverse engineering process of direct deployment 

The current PLC programming engineering tools all support programming in graphic 

languages. However, for importing and exporting of programs, the source codes are all 

described in textual languages.  By analysing the source code of program for a specific 

platform, the common information can be extracted. The most significant characteristic of 

this platform-specific common information is that it is included by the source code of any 

project and is identical for any project. To be more specific, these types of information 

mainly include: 

Header information of projects: header information of a control software project. It is 

also worth noticing that for some particular platform, in S7 for instance, there is no uniform 

project header information as a S7 project is exported into multiple independent text files 

instead of one single project file.  

Header information of blocks:  The blocks here refer to different objects which compose 

a control software project. According to the structure of IEC61131-3, this kind of blocks can 

be data types, program organisation units (POU), variable table, instances, configurations, etc. 

PLCOpenXML describes these blocks as structured XML elements, which makes the 

common information easy to manage and reuse. Some PLC programming tools may use 

platform-specific constituent blocks. Some platforms might export the source code as 

unstructured data. In these cases, the common information of each block need to be managed 

separately using specific ways according to the data structures of the blocks.  
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The header data of a shared data block which contains the Runtime Control Models in S7 

platform is taken as an example and illustrated in Figure  3-22. The source code of S7 data 

blocks are saved as unstructured plain-text files and the header also contains some variables 

the value of which are changeable for different automation systems. In this case, these 

changeable variables are represented using reserved key words during the template 

development phase and they will be replaced with their actual values during the system 

engineering phase.  

In this data block, the changeable upper bounds of the arrays are represented using 

reserved words. As shown in Figure  3-22, the words in red are common information while 

the words in blue are changeable and will be replaced by specific values during the direct 

deployment process. 

 

Figure  3-22 Template of the shared DB header in SIMATIC Step7 

In addition to the PLC-specific common information, some end-users also provide, vendor 

specific templates which define the templates for both hardware configuration and software 

development. In our case, only the software-related templates are involved.  Unlike the 

domain-specific templates and the platform-specific templates which mainly provide reusable 

static information, the software templates actually define regulations for software architecture, 

memory mapping, naming conventions, etc. For example, some templates define architecture 

of the main program, memory address scopes of specific function blocks, and prefixes and 

suffixes of the symbolic names of variables involved.  

The development of the vendor-specific templates is not the focus of this research.  

However, achieving direct deployment of control software according to vendor specific 

templates is a key requirement for industrial application, and therefore it is also one objective 

of this research. Hence, functions for implementing the coding conventions defined by related 
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vendor specific templates are developed and contained in the proposed direct deployment 

engineering tool.  

3.5.3. Dynamic Generation of Runtime Control Models  

Differing from the Runtime Components and the static common information, which are 

pre-developed in the component engineering phase, the Runtime Control Modes are 

generated dynamically during the system engineering phase by translating control logic of 

component-based virtual models into PLC interpretable data models. In order to generate the 

control software with functions which meet the requirements of industrial application, 

Runtime Control Models for both automatic-mode control and manual-mode control are 

automatically generated.  

3.5.3.1. Automatic-Mode Control Model Generation 

Control models for automatic-mode are generated by translating the control behaviours of 

components and then describing them as instances of the predefined derived data types.  The 

process of auto-mode control model generation is outlined in Figure  3-23.  

 

Figure  3-23  Workflow of automatic-mode control model generation 

During the translation, the components of a system are scanned and translated to populate 

the corresponding control model described using the predefined derived data type – 

“Component”. For each component, its states are then translated to populate the 
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corresponding control models described in the derived data type “State”. Further, all the 

transitions and the constituent condition groups are then translated into the corresponding 

control models. Additionally, for a dynamic state which has interlock conditions, the 

conditions are also translated into control models in the same way of translating transition 

conditions.  

According to the deployable control software architecture illustrated in Figure  3-18, the 

control model components are used as the interface for the communication between 

corresponding Runtime Components and the Logic Engine. Therefore, this section mainly 

takes “component” as an example to explain how the virtual models are described as PLC-

interpretable data models. The translation of “state”, “transition” and “conditions” will not be 

elaborated.  A control model component is represented as: 

RCCOMP = {ID, name, type, sindex, stcount, swid, scid, fault} 

Of the attributes of the component, the following are static attributes: 

• ID: the unique ID of the component. 

• Name: the name of the component. 

• Type: the type of the component which can be “actuator”, “sensor” or “process”. 

• Sindex: the index number of its first state. The states of all the components of a 

system will be stored in a structured collection of data models. Each state model 

has an index number for data access and all the states of the same component are 

saved in order continuously. Therefore, the index number of the first state can be 

used as the entrance point for data accessing.   

• Stcount: the number of the states a component has. 

• Fault: the index ID of the fault message. 

 The attributes “swid” and “scid” have changeable values. The attribute “swid” refers to the 

ID of the current working state. It is used to collect the current working state of the 

corresponding runtime actuator component. The “scid” refers to the ID of the state command 

and is used to send the command to the runtime component. The runtime control models of 

states, transitions and conditions are monitored by the Logic Engine during the run time. 

According to the current working state of each component, the relevant runtime control 

models will be updated by the Logic Engine. Real-time state commands will be sent to 

corresponding Runtime Components to drive the physical components.   
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As mentioned above, the attributes “swid” and “scid” will be updated with real-time data at 

the run time. Therefore, they are set to respective initial values, during the control model 

generation process. During the control model generation process, the main task is to set the 

values of the static attributes of all the control models by encoding the corresponding items of 

the virtual control models.  

3.5.3.2. Manual-Mode Control Model Generation 

Manual-mode control models are used to generate the corresponding rows of the HMI 

control panel for manually controlling actuator components.  Manual mode control model(s) 

of a component can be generated by translating its state behaviour. Unlike auto-mode control 

models which cover states, transitions and conditions, the manual mode control models are 

generated only according to the dynamic states of the related component. The workflow of 

generating manual mode control models of an actuator component is illustrated in 

Figure  3-24.  

 

Figure  3-24 Workflow of manual mode control model generation 

A manual mode control model will be represented as a row of the HMI, which controls the 

movement between two positions. For an actuator component, the relation between the 

number of its manual mode control models (represented as Nmm) and the number of its 

dynamic states (represented as Nds) is:  
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Nmm = Nds – 1 (if Nds >1) 

Nmm = Nds  (if Nds =1) 

An example of two actuator components – a pusher and a gantry, is shown in Figure  3-25. 

The control behaviour of the actuator “Pusher” with four states, two of which are dynamic 

states, are translated into one manual mode control model and will further be represented as 

one row on the HMI. The component “Gantry” with three dynamic states corresponds to two 

HMI rows.  

 

Figure  3-25 State behaviours and the corresponding HMI control panel 

3.5.4. Dynamic Generation of Logic Depository  

The Logic Depository is generated by automatically organising all the runtime control 

models and describing them as structured data sets. In this research, according to the 

IEC61131-3 architecture based on which the control software are generated, the Logic 

Depository is represented as different arrays of the runtime control models. The size of each 

array is determined by the number of the respective runtime control models contained in a 

system. For example, the array of runtime control model “Component” for a system which 

composed of ten actuator/sensor components can be declared as:   

lsaComponent: ARRAY[0..9] of  “Component” 

Where “lsaComponent ” is the name of the array and “Component” is the name of the 

derived data type for describing actuator components. 
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In this research, in order to support the functionalities for automatic mode control and 

manual mode control, the logic depository consists of six arrays of control models described 

in the derived data types defined in section 3.5.2.2. The declared arrays are then populated 

with the respective runtime control data models which are generated according to the process 

described in the section 3.5.3.  

3.5.5. I/O Mapping for Actuator/Sensor Components 

I/O mapping in this research refers to mapping each actuator or sensor component of a 

system to its corresponding runtime component and pertinent I/O variables. This is the only 

step which has to be performed manually during the system engineering phase. It is essential 

for generating the real PLC code based on the virtual models as I/O connections are not 

involved in the CCE simulation. 

A user interface is required to facilitate the I/O mapping. The reusable Runtime 

Components and the related I/O variables are imported into the engineering tool for I/O 

mapping and listed out on the user interface. On the other hand, all the actuator components 

and sensor components which need to be connected with I/Os are automatically selected and 

listed out on the user interface.  The task of consequent I/O mapping is to select every 

actuator/sensor component one by one and its corresponding runtime component and then 

add pertinent I/Os to the runtime component. The mapping information between a component, 

the related runtime component and I/O variables will used to generate the program for 

controlling this component. The user interface implemented for I/O mapping is described in 

section 4.2.2.4.  

3.5.6. Dynamic Generation of Programs for Actuators and Sensors 

Program generation refers to (1) parsing the I/O mapping data from the I/O mapping step 

to generate program organisation units, and (2) generating other required platform-specific 

source code. The number of the program POUs to be generated depends on the requirements 

of the adopted vendor-specific template.  

Each program POU is created by calling one of the pre-defined runtime components which 

can be further classified as runtime actuator components, runtime sensor components and the 

Logic Engine. Of these runtime components, the Logic Engine is only called once within a 
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project and the times of calling runtime actuator or sensor components are corresponding to 

the number of actuator and sensor components contained in the virtual models.  

As mentioned before, the logic engine is actually a function without any I/O parameters. 

For a runtime actuator/sensor component, I/O mapping for its parameters which are required 

to connect to I/O variables has been done during the I/O mapping phase. However, the 

communication parameters that should be connected to the corresponding runtime control 

models need to be mapped automatically.  

The workflow of program generation is outlined in Figure  3-26. Firstly, the I/O mapping 

data for all the actuator components and sensor components are processed. According the 

identification (ID) of each component included in the I/O mapping data, its corresponding 

runtime control model is identified and then the I/O parameters which should be connected to 

corresponding related attributes of its control runtime model are mapped automatically. If it is 

an actuator component, the respective I/O parameters for reporting working state (swid), 

sending state command (scid), resetting (reset) and reporting error (alarm) are mapped. For a 

sensor component, only one parameter for reporting status needs to be mapped. Lastly, the 

Logic Engine function is called automatically. The program generated in this way is well-

structured since every runtime component, except the logic engine, contained in the control 

software corresponds to either an actuator component or a sensor component of the to-be 

system. 

 

Figure  3-26 Process of generating program(s) 

In traditional manual programming approaches, the declaration of a FB/FC instance is done 

automatically by the used programming tool. Correspondingly, in the direct deployment 

approach, the code for declaring program instances is generated automatically.  
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Apart from the declaration code, for some platform, some additional blocks might need to 

be created for calling a runtime component. For example, in Step 7, an instance data block 

needs to be created when a function block is called and this instance data block is created 

automatically by parsing all the parameters of the called function block. Correspondingly, the 

direct deployment solution also provides the functions of automatically generating platform-

specific blocks. 

3.5.7. Generation and Output of Complete Control Code 

As the last step of the direct deployment solution, source code generation and output refers 

to the process of combining all the dynamic-generated items together with the reusable and 

common information to generate the desired source code and finally exporting the code into 

file(s) of platform-specific data format(s).  

 

Figure  3-27 Source code integration and export 

The process of generating and exporting relevant code are performed in a set of sub-steps. 

Firstly, the variable table is created by fitting the I/O variables imported from external files 

into the platform-specific template. Secondly, the source code of logic depository, program 

POUs, the main task and other potentially required platform-specific blocks are then 

combined with its respective template. Thirdly, source codes of all the reusable models are 

combined with the related PLC-specific common information. The involved static 

information includes the derived data types, and the reusable runtime components which are 
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used in the I/O mapping. Consequently, all the source code will be fitted into the template of 

the project which contains the project-specific common information. Finally, source code of 

the desired project is exported into either one single file or multiple files of the required data 

formats.  

3.6. Software for Data Mapping and Direct Deployment 

This section presents the process of designing an engineering tool which implements the 

VC model mapping approach and the direct deployment approach proposed in this research. 

After an overview of the overall software architecture, the work flow and data flow for 

implementing the process of data model mapping and direct deployment are then presented.  

3.6.1. Software Architecture Design 

The main objective of developing the engineering tool, named VCMapper in this 

dissertation, is to facilitate the application of the proposed methodologies by automating 

required virtual model transformation process and control software deployment process. To 

achieve the goal, the engineering tool contains a user interface for performing the required 

mapping activities and processes all the data automatically by the background modules.   

 

Figure  3-28  Architecture of the VCMapper  

As outlined in Figure  3-28, the architecture of the engineering tool can be decomposed into 

four layers which are respectively responsible for different required functions.  The modules 

of different layers exchange data with each other to enable the overall function of the tool. 
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User interface layer: the main function of the user interface layer is to enable I/O 

mapping. Additionally, it has the functions of importing required data from external files and 

displaying reusable data which are saved in the database. 

Data modelling layer: includes three modules which are respectively used for (1) 

modelling the information of reusable runtime components saved in the database and passing 

the modelled data to the user interface layer, (2) parsing the component-based virtual models 

and (3) modelling the I/O mapping data.    

Transformation layer: includes the core modules of the tool. One is to implement the data 

model mapping approach while the other module is to implement the direct deployment 

solution. 

Data management layer: the function of the database management module is to provide 

generic functions for accessing the reusable data in the database. On the other hand, the 

output data export module aims at exporting the output data of code generation layer into 

files of required data formats. 

3.6.2. System Design 

Based on the architecture described above, the software is designed following the waterfall 

model of software engineering[124]. The software is implemented based on object-oriented 

programming paradigm. According to software design process, the data flow diagram should 

be first designed. Other key steps which include workflow design and interface design then 

take place.   

3.6.2.1. Data Flow 

The Data Flow Diagram (DFD) of this engineering tool is shown in Figure  3-29. The data 

flows can be further classified into reusable data flow and system-specific data flow.  

As shown in Figure  3-29, the data flow related to the reusable data is illustrated in the right 

side of the DFD. The function of this data flow is to transfer the reusable and static data from 

storage files into the database and read the data from the database during runtime. Three 

modules are needed for realising the functions. The “UI-based Importing” module mainly 

provides a user interface for specifying the path of data storage files. The “Reusable Data 

Modelling” module reads data from storage file(s) and transfers the data into structured data. 
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The structured data is then passed to the “DBMS” module which writes the structured data 

into the database. The “DBMS” module also provides the function of retrieving data from the 

database. 

Another six modules are involved in processing the system-specific data, as shown on the 

left side of the figure.  The “CCE Modelling” module reads the data from storage files and 

creates the data models. The “I/O Mapping” module gets related data from the “CCE 

Modelling” module and provides a user interface for performing I/O mapping. The I/O 

mapping data is then processed by the “Mapping Modelling” module and passed to the 

“Control Deployment” module. Also, the I/O mapping data can be saved to an external file if 

the I/O mapping process of a project is suspended when it has not been finished.  The 

“Control Deployment” module combines the reusable data from the database and generates 

the source codes. Also, the connections between each component and its PLCOpenInterface 

are generated by the “Control Deployment” module and are used by the “Virtual Model 

Mapping” which uses the predefined XSLT file to perform the mapping. Finally, both the 

“Virtual Model Mapping” module and the “Control Deploy” module pass its respective 

output data to the “Data Export” module to export the data into files of required data formats.  

 

Figure  3-29 Data flow diagram of VCMapper 

3.6.2.2. Workflow 

Based on the dataflow designed above, the work flow of the system is designed and 

outlined in Figure  3-30. 
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The work flow starts from either creating a new project or opening an existing project. If a 

new project is created, in the next step, the PLC platform for which the control codes are 

generated must be specified. Obviously, only the platform which is supported by the software 

can be selected. Then files storing the component-based virtual models of the desired system 

need to be specified by the user and then loaded by the software. After the manual I/O 

mapping finishes, the mapping data will be automatically translated into PLC-interpretable 

control code which is then combined with reusable data to generate the complete source code. 

Also, mapping from component-based virtual model to the VMCDM is performed 

automatically to generate the desired VMCDM. It is worth noticing that the virtual model 

mapping must take place after the control deployment since the information of 

PLCOpenInterfaces required by the ontology mapping phase is generated during the control 

deployment.  

 

Figure  3-30 Workflow of VCMapper 

3.6.2.3. Interface Design 

Due to the diversities of PLCs available on the market, the code generation module should 

contain different sub-modules for deploying PLC code for different PLC platforms. Different 

platform-specific sub-modules can be potentially developed by different software engineers 
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and are finally integrated with other related modules. However, there is only one user 

interface to communicate with all the control deployment sub-modules. In order to enable the 

extensibility and integrability of the software, uniformed interfaces need to be defined.   

An “Interface” is an abstract type specifying a set of methods, fields and properties [125]. 

Interfaces can only be declared and cannot be instantiated. A class that implements an 

interface must implement all of the methods described in the interface.  

 

Figure  3-31 Unified interface for different code generation modules  

By using ‘Interface’, the way of calling the methods, in the UI module, of classes defined 

in different control deployment modules for different PLC platforms, can be unified. In the 

case of this research, an interface named “CodeGenerator” is defined. As shown in 

Figure  3-31, the attributes and methods it must have are as following: 

• Str_CCEModels: attribute for specifying the directory where files of the CCE 

models are saved in. 

• Str_OutputPath: attribute for specifying the directory where the source code should 

be exported to. 

• Platform: attribute which specifies the PLC platform for which the code will be 

generated. 

• Open(): method used to pen the CCE models the storage path has been specified by 

attribute Str_CCEModels. 

• Export(): method used to export the generated source code to the directory specified 

by the attribute Str_OutputPath. 
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All the platform-specific sub-modules must inherit this interface and implement the 

required functionalities. According to the software structure of specific platform, different 

sub-modules might have other different attributes and methods. However, the user interface 

module would always call the method “Open” of any module to trigger the direct deployment 

process and call the method “Export” to end the process. On the other hand, the path of the 

CCE models will always be passed to the parameter “Str_CCEModels” and the path for 

saving the exported source code will be passed through “Str_OutputPath”. 

3.7. Chapter Overview 

Of the five key elements of the desired open virtual commissioning framework illustrated 

in Figure  3-1, the simulation engineering tool CCE and the new control software architecture 

have been designed and implemented by other ASG researchers. Therefore the focus of this 

chapter has been placed on the author’s work in proposing and designing the approaches and 

methodologies for achieving tool interoperability and the direct deployment of PLC control 

software. 

The common data models for enabling virtual engineering tools to efficiently exchange 

data were first developed based on the domain-specific open standard- AutomationML. The 

common data models should be built based on object-oriented architecture, vocabulary of 

shared terminologies and XML-based data format. AutomationML is an XML-based data 

format which employs object-oriented architecture and provides shared vocabulary of 

domain-specific terms. In order to build the common data models, vocabulary of terms 

required to describe virtual models was first defined by inheriting the terms in standard 

vocabulary. Consequently, classes for describing different types of components and elements 

in the component-based virtual models were created and described using the standard 

terminologies of AutomationML. Then the approach to mapping the component-based virtual 

models to the common data models created in this research was designed.  It should be noted 

that the common data models only cover the hierarchical information of the virtual models as 

many standard common data models for describing 3D geometric data and PLC control logic 

data have been available.  

The approach to the direct deployment of control software was also designed based on the 

component-based approach. The approach development begins with developing reusable data 

at the component building phase. The reusable data includes runtime components, derived 
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data types and PLC-specific common information. Of these reusable data, the runtime 

components, which are used to communicate with the physical I/O of the related physical 

component, need to be programmed by control engineers. This aspect is beyond the scope of 

this research. The derived data types used to describe the control logic of virtual models in a 

PLC-interpretable manner were first developed. The PLC-specific common information was 

developed via a reverse engineering approach, namely through extracting common 

information from the source code of existing control software. In addition to the development 

of reusable static data, the approach to generating dynamic data through translating the 

control logic of virtual models in the system engineering phase was also designed. The 

dynamic data includes runtime control models for automatic mode control and manual mode 

control. The direct deployment process ends with combining related reusable data with 

dynamic data to create the source code of the complete control software.  

The direct deployment process also involves a manual I/O mapping step to map each 

actuator/sensor component with its corresponding runtime component and I/O variables. In 

order to provide a user interface for the I/O mapping, the engineering tool VCMapper was 

designed in this research. This engineering tool was also designed to implement the virtual 

model mapping approach and the direct deployment approach. The data flow, work flow and 

required interface of the engineering tools were presented.  
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Chapter 4. Implementation and Experimental Study 

This chapter reports the work carried out to implement and test the proposed approach.  

The implementation of the proposed common data model and the engineering tool for 

mapping virtual models and deploying PLC control software are presented. The chapter 

provides an overall introduction to the test bed used to carry out the experiments. The 

experiment of applying the implemented common data model and virtual model mapping tool 

to realise inter-tool data exchange is described. Experiments for testing and evaluating the 

proposed direct deployment approach are presented. The chapter ends with a discussion on 

the results of the experiments.  

4.1. Prototype Implementation 

According to the design presented in chapter 3, in order to achieve the open VC framework, 

the enablers to be developed in this research are the VMCDM for describing component-

based virtual models, and the engineering tool – VCMapper for implementing virtual model 

mapping and control software deployment.  

This section describes the creation of the VMCDM model and the implementation of the 

VCMapper.  

4.1.1. VMCDM Prototype 

The VMCDM, which is described in AutomationML, is composed of a RoleClass library, 

an InterfaceClass library, a SystemUnitClass library and the InstanceHierarchy. They were 

respectively created, as illustrated in Figure  4-1, in the following ways: 

RoleClass library and InterfaceClass library: were created through defining the classes 

required for describing virtual models and adding these classes into the standard libraries of 

AutomationML. The required role classes and interface classes and the approaches to 

defining them have been described in section 3.2. Considering Role Classes and Interface 

Classes are non-system-specific and AutomationML supports distributed data storage, these 

two libraries are stored as one separate AutomationML file and system-specific files can use 

them via external referencing.  
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SystemUnitClass library for Components: As stated in chapter 3, the ‘SystemUnitClass’ 

of AutomationML correspond to the ‘Component’ of component-based automation systems. 

Therefore, SystemUnitClass library were created through mapping virtual models of 

components into corresponding SystemUnitClasses. The mapping is performed by the 

VCMapper which will be presented in section 4.2.2. The SystemUnitClass library is also 

stored as a separate AutomationML file. As each SystemUnitClass needs to be assigned a 

role and it might contain interface classes, the SysteUnitClass library includes the RoleClass 

library and InterfaceClass library via an external reference. The InstanceHierarchy for 

describing system-specific data also includes SystemUnitClass library via an external 

reference. 

InstanceHierarchy for System: describes virtual models of a specific system and can only 

be created through transforming the virtual models of a specific component-based system. It 

is also stored as a separate AutomationML file and connected with the SystemUnitClass 

library via an external reference.  

 

Figure  4-1 Development of VMCDM 

Based on the VMCDM proposed in section3.2, the XML Schema file was also created. 

XML Schema is used to define the legal building blocks of an XML documents. To be more 

specific, it defines constraints on structure and content of XML documents.  These 

constraints include data types and default values of elements and attributes, attributes and 

elements that can appear in a document, the order and number of child elements, and so on. 
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The generated VMCDM needs to be validated against the constraints defined in the XML 

Schema.  

An XML Schema is an XML-based file represented in XML Schema language which is 

also referred to as XML Schema Definition (XSD). AutomationML provides a standard XML 

Schema file based on its data structure. Therefore, the required schema file for the VMCDM 

model was developed by modifying the generated schema.    

4.1.2. VCMapper Prototype 

Based on the design presented in section 3.6, the VCMapper was developed using the 

Visual Basic.net programming language in the Microsoft Visual Studio 2010 development 

environment. 

The objective of developing the VCMapper is to automate virtual model mapping and 

control software deployment. Apart from a simple user interface provided for performing I/O 

mapping, other modules underlying the interface were built as Dynamic Link Libraries 

(DLLs). Apart from DLLs, virtual model mapping was implemented using XSLT as it is 

more flexible.  A database was created using Microsoft Access for storing the reusable data. 

The VCMapper comprises the following modules: 

1. User Interface 

2. CCE Model Management Module 

3. Virtual Model Mapping Module 

4. I/O Mapping Management Module 

5. PLCOpenXML Deployment Module 

6. Siemens S7 Deployment Module 

7. Database Module 

The relationship between the functionality of the user interface and the other modules are 

illustrated in Figure  4-2. The data exchange and relationship between these modules can refer 

to the data flow diagram illustrated in Figure  3-29. The following sections describe the 

implementation of the above modules. 
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Figure  4-2 Relationship between the user interface and underlying modules 

4.1.2.1. User Interface  

The user interface was implemented mainly to provide the required functions for 

performing I/O mapping.  A snapshot of the developed UI is illustrated in Figure  4-3. It can 

be seen that the functions implemented in this module include those for:  

• Reading the runtime components from the database and listing them out on the UI 

were implemented.  

• Extracting the actuator and sensor components from the CCE data module and 

listing them out. 

• Adding I/O variables to a selected runtime component. The I/O mapping data will 

be processed to the underlying I/O mapping management module. 

Additionally, other functions which can assist the I/O mapping activities were also 

implemented. These functions were developed for importing the following required data: 

• CCE virtual models in XML files 

• I/O variables provided by control engineers in the form of Microsoft Excel sheet 
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• Reusable data including derived data types, runtime components and PLC-specific 

common information in text files. 

 

Figure  4-3 User interface for I/O Mapping 

4.1.2.2. CCE Model Management Module 

This module was implemented for accessing the CCE virtual models imported via the User 

Interface. Information about sensor and actuator components was extracted out and passed to 

the User Interface. The control logic of the systems was modelled in order to be used by the 

control deployment modules.  

 According to the structures of component-based automation systems, classes for 

describing system, component, state, transition and condition were respectively implemented. 

These five classes have inclusion relations in the order listed.  

The class “clsSystem” was implemented as the access point of the whole library. A 

function called “CreateCCEModel()” was implemented as the interface to create and access 

the XML DOM object of a CCE model. 
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4.1.2.3. Virtual Model Mapping Module 

According to the design in section 3.3.2, items required for virtual model mapping include: 

• XSLT Style sheets: for implementing the transformation from source XML files of 

component-based virtual models to target XML files of VMCDM. 

• XML Document Object Model (DOM): a standard interface for accessing and 

manipulating XML documents. The DOM presents an XML document as an in-

memory tree-structure.  

• XSLT Processor: an application executing the functions of XSLT style sheet to 

perform the transformation. 

This section is focused on presenting how to develop the required XSLT style sheet and 

use the developed XSLT sheet in VCMapper to implement virtual model mapping. The 

required XML DOM and XSLT Processor can be implemented in the VCMapper by adopting 

the DOM parser and XSLT processor provided by the Microsoft Visual Studio.  

The objects and attributes of CCE models which can be directly mapped to its VMDCM 

equivalences were selected using XPath, which is a query language for selecting nodes from 

an XML document, and the transformation rules were implemented in the XSLT. In order to 

implement the transformation of components and systems, three types of XSLT templates 

were developed respectively for transforming static components, sensor components and 

actuator components.   

Given the fact that XSLT is only a simple language for the transformation of XML-based 

file style, attribute transformation functions were implemented using VB.net programming 

language in a XSLT file named “VBFunction.xslt”. For the target attributes the values of 

which can be gained through searching the mapping tables, a function was implemented and 

is called by all the related templates. For the source attributes the values of which need to 

undergo a computation to get the values of the equivalent target attributes, a function was 

defined for each of these attributes. The transformation from the position information of CCE 

to “Frame” was implemented as a VB function. Other similar functions are those for 

transforming interfaces to geometry files and interfaces to control software.  
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4.1.2.4. I/O Mapping Management Module 

The objective of implementing this module is to model the I/O mapping data received from 

the user interface. This module can also save the data as an XML file or read I/O mapping 

data from an existing XML file.  

Apart from the library, the structure of the XML file for saving I/O mapping data was also 

created. The I/O mapping data of a project is stored as an XML file so that it can be reused to 

create another project by reconfiguration.  XML-based data storage is also required for the 

cases in which the information of the whole project needs to be stored if users exit the tool 

before completing the I/O mapping for all the components.  As outlined in Figure  4-4, apart 

from the mapping information, the XML file also contains the following information: 

• Project information: mainly includes the information of the selected PLC platform.  

• CCE model information: includes the name and the file name of the involved CCE 

model. 

• Information of I/O variables: information of all the I/O variables involved in a 

project. 

 

Figure  4-4 XML file for I/O Mapping 

4.1.2.5. PLCOpenXML Deployment Module 

Considering the diversity of available PLCs as well as the data formats of their related 

programming software, the control deployment module was divided into different sub 

modules each of which implements the deployment for a specific PLC platform. In order to 

be compliant with the AutomationML open standard, a library for deploying control software 

in the standard format of PLCOpenXML was developed. Due to the fact that Siemens PLCs 
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are widely used by the automotive industry, another library for deploying control software for 

the Siemens Step 7 platform was also implemented and is presented in Section 4.1.2.6. 

In this library, a class “clsPLCOpenXML” was implemented as the access point and for 

generating the finalised source code. The functions included in this class were implemented 

for the following different purposes: 

(1) Exchanging data with other modules and this type of functions were developed for: 

• Receiving CCE model: the function receives a CCE model DOM object and 

then calls functions of the CCE model library to create and populate a CCE 

model object with the DOM object.    

• Outputting generated source code: the function outputs the generated source 

code as stream data which will be exported by the UI module. 

(2) Populating the pertinent instance objects. All the constituent items of the 

PLCOpenXML are populated respectively by the corresponding functions. According 

to the data used to populate an item, these items can be further classified as follows: 

• Populated using reusable data: the DataTypes and POUs are populated 

respectively by reading the derived data types and the runtime components from 

the database.  

• Populated using imported static data: refers to the elementary variables of the 

global variable table. The function gets the variable data from the UI either by 

importing from an external Excel file or input direct through the UI and then 

translates them to the format of the PLCOpenXML.  

• Populated using dynamically generated data: first of all, arrays of the 

corresponding derived data types of the Global variable table GlobalVar for 

storing the information of control models were created by analysing the CCE 

models. Secondly, a function for initialising the arrays was then implemented 

through analysing the CCE models to populate the arrays. Thirdly, the 

POUInstance list was populated by analysing the I/O mapping data from the UI. 

Lastly, a function was implemented to generate the final source code by 

combining the body strings of all the populated items.  
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4.1.2.6. Siemens Step 7 Deployment Module 

Siemens Step 7 platform partially supports the IEC61131-3 standard. There are still S7-

specific languages and objects. Through the analysis of existing control software programs of 

Step 7, it was identified that Step 7 differs from the IEC61131-3 standard in the following 

respects:  

• S7-specific languages: the textual languages used in Step 7 are similar to the 

Instruction List and Structured Text of IEC61131-3. However, differences still exist in 

the data format.  

• S7-specific data format: all the data formats of exported source code files of S7 are 

plain-text-based; however, the suffixes of the files indicate that they are specific to the 

S7.  

• S7-specific naming conventions: the control software structure of S7 generally 

follows that of IEC61131-3 standard; however, the names of some objects are different. 

For example, the ‘Task’ of PLCOpen is named as Organisation Block (OB) in Step 7. 

• S7-specific objects: an instance Data Block (DB) is required for each Function Block 

(FB) instance to provide a static memory area for its related variables. All the variables 

of derived data types, which are part of the global variable list in PLCOpenXML, must 

be stored in one or more share Data Blocks (DB) in Step 7. In addition, the element 

unit of the OB is “Network”. A “Network” comprises the names of (1) the FB or 

Function called back by the OB, (2) the required instance DB if a FB is called back, 

and (3) the I/O variables.  

It can be observed that of the above outlined items, the first three ones actually have their 

corresponding counterparts in the IEC61131 standard. The differences lie in the function for 

generating the final source code according to the S7-specific requirements. Also, for the 

function “Export()” which was implemented to export the generated source code, the file 

names are assigned with the suffixes which are required by the Step 7 (S7). 

Classes for representing the S7-specific Data Blocks (DBs) were implemented specifically 

for the Step 7. The class for shared DB was implemented in the same way as that used in the 

PLCOpenXML library. The difference lies in its function which formats the final source code 

according to the data structure of the S7 shared DB. The class for instance DB was 

implemented specifically for the S7 platform. A function of the instance DB class was 
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implemented to generate the source code by 1) parsing the source code of the related FB and 

getting the information of all the variables of this FB, and 2) parsing the information of every 

variable and generating the source code of the desired DB.  

Functions for automatic generation of the HMI for the manual mode control were also 

implemented in the S7 library. Based on the software architecture presented in Section 3.6.1, 

the class “clsDB4HMI” was implemented to generate the required shared DB for HMI 

generation.  The approach to generating the data for HMI, which has been described in the 

Section 3.5.3.2, was also implemented to generate the source code of a shared DB which 

includes the data to be used to create the runtime HMI. 

The class “clsS7Program” was implemented as the access point to generate the complete 

source code for S7. This class plays the same role as the class “clsPLCOpenXML” does in 

the PLCOpenXML library. Due to the S7-specific features outlined above, the process of its 

function “PopBodyString” is different from the counterpart function of PLCOpenXML. The 

functionalities implemented in this function to generate the final source code, by calling the 

related functions of the pertinent instances, were outlined as follows: 

1) Populate the variable table according to the data format of S7 variable table. 

2) Load the derived data types from the data base to generate the source code. 

3) Generate the shared DBs for auto-mode control and HMI generation. 

4) Parse the I/O mapping data to: a) generate the list of “Network” instances, and b) 

generate the mapping table from component to the VCInterface to be used by the 

ontology mapping module. 

5) Parse the list of “Network” to : a) get the source code of all the FB/FCs involved from 

the database and generate the source code of the FB/FCs, b) generate the source code of 

all the required DBs, c) generate the source code of the OB1 by combining the source 

code of all the “Network” instances. 

6) Combine all the related objects to generate the final source code of the desired project 

and export them according the data formats of different source codes. 

4.1.2.7. Database Module 

This module is implemented for manipulating the reusable data which is saved in the 

database. In this module, the database and the library for accessing data in the database were 

respectively devised.  
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The reusable data are accessed during the code generation process. In order to gain 

efficient data accessibility, the static/reusable data are stored in a relational database.   The 

Microsoft Access database was adopted for the storage of the static/reusable data.  

Various tables need to be created in order to store various types of reusable data and other 

required data. As outlined in Figure  4-5, the following tables were created: 

• PLCDataType: for storing the derived data types defined for describing the 

components and its control behaviours. 

• PLCFunctionBlock: for storing the data of runtime components.  

• PLCFunctionBlockIO: for storing the input and output parameters of Runtime 

Components (function blocks). 

• PLCTemplates: for storing the static templates data of all the platforms that the 

mapper can generate code for.  

• PLCPlatform: information of the PLC platforms for which the VCMapper can 

generate the control code. 

The structures of the above mentioned database tables and their relationships were shown 

in Figure  4-5. Due to the data format differences between the platforms, a reusable object 

might have different versions for different platforms. Therefore, it can be observed that the 

table PLCDataType and table PLCFunctionBlock respectively contain a field named PFID 

for specifying the platform. 

According to the data flow of the mapper which was depicted in Figure  3-29 of section 

3.6.2.1, the reusable data is first read from external files and then written to the database. 

During the deployment process, the reusable data is then read by both the user interface 

module and the control deployment module. In this context, functions for reading and writing 

database were implemented.  

For the database management library, VB.net classes were implemented to describe the 

corresponding reusable data. Each class defined here only has properties for describing the 

attributes of the corresponding data. A class “clsPLCDatabase” was implemented as the 

access point to all the other classes. This class contains the methods of interacting with 

database and populating respective instance objects. 
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Figure  4-5  Database tables for storing reusable data 

4.2. Overview of Experiments 

The overall purpose of the experimental study reported in this chapter is to illustrate the 

feasibility and features of the proposed VCOM virtual commissioning framework. To be 

more specific, the purpose can be detailed as: 

• To illustrate the features of data exchange and data representation of virtual models 

using the proposed VMCDM domain-specific models.  

• To demonstrate the feasibility and performance of the approach to directly 

deploying the control software of an automation system based on its component-

based virtual models. 

The rest of this section provides an introduction to the physical test bed as well as its 

virtual model and related runtime components, which were used for performing the case 

studies. An overview of the particular case studies to be performed on the adopted test bed is 

also presented. 

4.2.1. Introduction to experiment resources 

In order to demonstrate the features of the VCOM open virtual commissioning framework 

which adopts the proposed VMCDM models and direct deployment approach, required 

resources include: 1) a physical automation system, 2) the virtual model of the physical 

system which has been virtually commissioned, and 3) the relevant reusable runtime 

components which have been validated.   
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4.2.1.1. Physical test bed  

 

Figure  4-6 the experimental test bed 

The test bed adopted for the experimental purpose is depicted in Figure  4-6. This test rig 

provides movements similar to a Ford powertrain assembly line and the functionality of this 

automation test rig is deemed to be applicable to real industrial machinery and control 

applications experienced by the Ford Motor Company. The test rig comprises various sensors 

and actuators, which are electrically or pneumatically controlled and accessible through the 

distributed I/O interface modules of the rig.  

The test bed is controlled by a PLC-based control system with distributed I/Os. In order to 

demonstrate the features of the proposed direct deployment approach, two PLCs from 

different vendors were selected as the control systems for two independent experiments:  

• CodeSys SoftPLC and Modicon I/Os: the CodeSys PLC programming software 

supports the PLCOpenXML standard data format and the Modicon I/Os support the 

standard Modbus TCP protocol. 

• Siemens S300 and Siemens ET200S Remote I/Os: the Siemens PLC programming 

software partially supports the IEC61131-3 standard programming languages and it 

also utilises its own proprietary programming languages and data formats. The ET200S 

Remote I/Os support ProfiNet. 

4.2.1.2. Virtual commissioning of the test bed 

According to the workflow of the proposed VC framework, the test rig was first virtually 

prototyped and commissioned using the component-based engineering tool – CCE. 
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Corresponding to the architecture (Subsystem – Component - Element) of the Component-

based approach, the test rig was considered as a system and decomposed into four subsystems 

which are also called stations in this dissertation. Each of the stations was further 

decomposed into multiple components. The decomposition of the test rig is illustrated in 

Figure  4-7 and the details of each station are outlined in Table  4-1. 

 

Figure  4-7  Decomposition of the Test Rig 

Table  4-1 Decomposition of the test bed 

Subsystem Components 

 Actuator Sensor 

Station 1 
• Eject_cyclinder 
• Swivel_Drive 
• Vacuum 

• Magazine 
• Magixfer_Ready 
• Gripper 

Station 2 
• Conveyor 
• Separator 

• WP_at_Start 
• WP_at_Separator 
• WP_at_End 

Station 3 
• Indexting_Rotary_Table 
• Checking_Actuator 
• Drill 
• Drill_Spindle 
• WP_Clamp 
• Eject_Actuator 

• WP_Available 
• WP_at_Checker 
• WP_at_Drilling 
• WP_at_Eject 

Station 4 
• Arm 
• Gripper 
• Gripper_Extend_Cyclinder 

• WP_IsNot_Black 
• WP_Receptable 
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According to the component-based approach, the components of the test rig were built and 

saved in reusable component library. The control behaviours of sensor components are 

described using a two-state State Transition Diagram and non-control components obviously 

have no control behaviours. However, control behaviours of actuator components are diverse 

and depend on the mechanical behaviours of specific components. For example, as shown in 

Figure  4-8, the control behaviour of the actuator “Swivel Arm” is represented as a STD with 

five states, two of which are dynamic states.  

Swivel Arm

Virtual 
Swivel Arm

State Behaviour of 
Swivel Arm

 

Figure  4-8 Example of actuator components – Swivel Arm (Physical, virtual and state 
behaviour) 

The virtual model of the whole test rig was built by combining the pertinent components. 

The complete virtual prototype is illustrated in Figure  4-9. The control logic of the virtual rig 

was developed by interlocking the state behaviours of related components. As an example, 

the control logic of the Station 1 is shown in Figure  4-10. 
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Figure  4-9  Virtual prototype of the test rig 

 

 

Figure  4-10 Control logic of Station 1 (Pusher, Swivel, Vacuum) 

4.2.1.3. Runtime components for the test bed 

The relationship between runtime components and resource components is a 1-to-N 

relationship. Different actuator components might be represented as the same runtime 

component in the control software and all the sensor components correspond to the same 

runtime component. The factors for judging whether two different actuator components 

correspond to the same runtime component are the number of states and kinematic positions, 

and the type of driving power [12]. 

For the thirteen actuator components of the virtual model of the test bed, eight runtime 

components are required for implementing the PLC control system. Some actuator 

components correspond to the same runtime component. For instance, the component pusher 
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and the component swivel arm, which are both actuated by pneumatic power and have five 

states and two positions, use the same function block named ‘LFB_HP_2P5S_2I2O’. All 

sensor components use the same Runtime Component, i.e. LFB_SEN.  The relations between 

the runtime components and resource components are given in Table  4-2.  

Table  4-2 Runtime components for the Festo Rig 

Function/FB Related Components Comments 

LFB_SEN All the 15 sensor components Function for all the sensor components 

LFB_HP_2P5S_2I2O  Pusher, Swivel Arm, Ejector, 

GantryZ, Gantry Clamp, Gantry 

Gripper, Separator 

FB for pneumatic actuator components 
with 2 positions and 5 states 

LFB_SwiGripper_2P5S_1I2O  Swivel arm suction FB for pneumatic actuator components 
with 2 positions and 5 states 

LFB_ED_2P5S_2I2O  Drill FB for electronic actuator components 
with 2 positions and 5 states 

LFB_PartChecker_2P3S_1I1O  Part Checker FB for pneumatic actuator components 
with 2 positions and 3 states 

LFB_RotTable_3S_1I1O  Rotate Table FB for rotate table with 3 states 

LFB_ED_2P2S_0I1O Drill Spin FB for electronic actuator components 
with 2 positions and 2 states 

LFB_HP_3P7S_3I2O GantryY FB for pneumatic actuator components 
with 3 positions and 7 states 

4.2.2. Case Studies 

The test bed, its virtual model and the runtime components offer a number of cases of 

interest for illustrating the use of the proposed concepts and approaches. With the offered 

cases, the feasibility and features of the proposed framework can be proven.  

4.2.2.1. Data reuse of virtual models 

The virtual models of the test bed created using the CCE editor were viewed using another 

engineering tool. The virtual models were first transformed from tool-specific data models 

into the tool-independent VMCDM data models and then imported into an independent 

engineering tool – the AutomationML Editor, which supports the AutomationML data format. 
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This is mainly to illustrate the features of the VMCDM developed in this research. In 

additional, this is also to demonstrate: 

• The compatibility of the VMCDM for describing the virtual models of component-

based automation systems. 

• The feasibility of the data model mapping from component-based models to HIL 

models.  

• The semantics the VMCDM provides. The virtual models can be viewed in the 

AutomationML Editor which provides a classified view on the attributes and 

objects of the VMCDM models.  

4.2.2.2. Direct deployment of control software for PLCOpenXML 

The control software for CodeSys softPLC was directly deployed by the CCEMapper 

which translates the control behaviours of the virtual models and reuses the runtime 

components. The generated control software was exported as a PLCOpenXML file and the 

PLCOpeninterfaces for connection the VMCDM models with corresponding variables in the 

PLCOpenXML file were also automatically created. This is to show: 

• The feasibility of the proposed direct deployment approach. The control software 

for PLC-based control system can be automatically generated based on the 

component-based modular virtual counterpart of the desired assembly system.   

• The process of automatically building the connection between VMCDM models 

with its control software via PLCOpeninterface. This is actually required to 

complete the virtual model mapping.  

4.2.2.3. Direct deployment of S7 control software 

The Siemens S300 PLCs are widely used by the automotive industry and provide the 

functions required for industrial application. Apart from aiming at illustrating the feasibility 

of the direct deployment approach, the direct deployment of control software for the Siemens 

S300 PLC is also to illustrate:  

• The feasibility of the direct deployment of the control models for HMI. The HMI 

for manual mode control and diagnostic is required for industrial application. For a 

solution which aims at achieving industrial applicability, the direct deployment of 

HMI has to be achieved.  
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• The features of the direct deployment approach. In addition to the feasibility, the 

efficiency of the proposed approach and the performance of the PLC control 

software, which is directly deployed, are also import factors in evaluating the 

applicability of the approach.  

4.3. Virtual Model Mapping Experiment 

This section illustrates the application of the proposed common data models and virtual 

model mapping function to enable data exchange between engineering tools. The component-

based virtual model of the test rig was transformed into VMCDM which were then reused by 

another engineering tool – AutomationML Editor.  

4.3.1. Overview 

In this experiment, the engineering tool – CCE tool was selected as the source engineering 

tool while the AutomationML Editor was adopted as the target engineering tool. 

Comparison between the respective data formats of the CCE and the AutomationML Editor 

is outlined in Table  4-3. The CCE Tool exports the component-based virtual models into 

XML-based files. However, except from geometry information described in VRML, the 

hierarchy information and control logic of CCE virtual models are represented in tool-

specific XML files. The AutomationML Editor supports AutomationML standard as it is a 

toolset provided by the AutomationML organisation.  

Table  4-3 Data formats of the source tool and the target tool 

 Source tool –CCE  Target Tool- AutomationML Editor 

Hierarchy Data XML AutomationML 

3D Geometry VRML COLLADA 

Control Logic STD in XML PLCOpenXML 

According to the procedure of common model-based data exchange described in Section 

3.3.1, the experiment was performed via the following steps: 

• Component-based data model export: to export the virtual models of the test bed 

from the CCE tool to XML files. 
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• Data model mapping: to transform the CCE-specific virtual models of the test bed 

into tool-independent VMCDM common data models. 

• Common data reuse: to open and view the transformed VMCDM common data 

models using the neutral engineering tool – AutomationML Editor. 

4.3.2. CCE Virtual Model Export 

In the first step of data exchange experiment, virtual models were exported from the CCE 

engineering tool to XML files. Information from different disciplines which composes a 

component or a system was exported into different XML files. The hierarchical structure 

information was exported to an XML file while the control behaviours were exported to 

another separate XML file. For the same component of a system, it has identical global 

unified identity (GUID) in the two XML files. The constituent geometrical elements were 

exported to VRML files.   

Examples of the exported XML files were shown in Figure  4-11and Figure  4-12. It can be 

observed that the reasons why the CCE models are difficult to be reused include: 

• Tool-specific vocabulary: All the tags used in the XML files exported from CCE 

are tool-specific. Although some of them provide semantic information which 

makes it readable and understandable, direct reuse of these XML files by other 

engineering tools is still difficult.  

• Non object-oriented architecture: although the component-based approach, on 

which the CCE tool were based, adopts the object-oriented architecture. However, 

the exported XML files only contained the information of the specific system and 

did not represent an object-oriented architecture. 

• Simulated control logic: the control logic which is represented as STD and cannot 

be reused by most of the virtual commissioning engineering tools which validate 

virtual models against real control code. 

• Lack of definition and classification: terms for integrating different disciplinary 

information in the CCE models are not predefined and classified. This makes the 

virtual models difficult to be understood by either human beings or engineering 

tools.   
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Figure  4-11 Control logic information of exported CCE models in XML files 

Geometry data

Position data

 

Figure  4-12  Hierarchy information of exported CCE models in XML files 

4.3.3. Mapping CCE to VMCDM   

The virtual model mapping in this thesis is focused on the hierarchical data transformation 

and the control logic transformation is implemented by the direct deployment solution. As 

illustrated in Figure  4-13, the logic mapping module generates the interfaces to the control 

software for the virtual model mapping module. In order to demonstrate a visible result of the 

ontology mapping, the geometry data of the test bed, which were exported as VRML files, 

were manually transformed into COLLADA files using a commercially available engineering 

tool – Blender [126].     
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Figure  4-13 Transform CCE virtual model of the test bed to VMCDM 

Hierarchical Data transformation 

The hierarchical data was transformed by the VCMapper. As stated in section 4.2.2.3, 

mapping of terminologies which are identical to any component or system had been 

implemented in the XSLT. For other terms which are system-specific, a mapping table was 

created and saved as a XML file to be used by the XSLT during mapping. The mapping table, 

which specifies the role of each component, for the test bed is shown in Table  4-4. 

Table  4-4 Role of each component of the test bed 

Components Role 

Pusher, Swivel, Gantry AutomationMLMIRoleClassLib/ManufacturingEquipment/Transport  

Vacuum, Clamp AutomationMLMIRoleClassLib/ManufacturingEquipment/Fixture 

Conveyor AutomationMLExtendedRoleClassLib/Conveyor/BeltConveyor 

Separator, Ejector  AutomationMLMIRoleClassLib/ManufacturingEquipment/Movable Tool 

Rotary Table AutomationMLExtendedRoleClassLib/TurnTable 

Drill, PartChecker AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Resource/Meas
urement Equipment 

Floor1, Floor2, Floor3, 
Floor4,  

AutomationMLMIRoleClassLib/StaticObject 

Part receiver, Bin1, 
Bin2 

AutomationMLMIRoleClassLib/ManufacturingEquipment/Storage  



 Chapter 4 Implementation and Experimental Study 

134 

 

It can be observed that all the roles used for the test bed are normative roles of 

AutomationML. Actually, to provide more specific semantics, more informative roles can be 

defined according to the need of users. For instance, an informative role “Rotate device” can 

be defined by inheriting the normative role “Transport” for the component “Rotate table”. 

This can obviously enhance the human-readability of the XML files. However, user-specific 

classes can also reduce the semantic interoperability between engineering tools.   

Interfaces to geometry data 

Since each VRML file which represents geometry data were transformed to a COLLADA 

file, its corresponding URL contained in the hierarchical data needs to be changed as well. 

Therefore, another table which specified the mappings between the URL of each VRML file 

and its target COLLADA file was also created and stored as a XML file.   

4.3.4. Data Reuse of VMCDM  

Although AutomationML has been accepted as an IEC standard and promises to be an 

industrial open standard, so far no commercial engineering tool is available on the market 

which supports AutomationML. This is mainly because that AutomationML has only been 

released for around three years. According to the documentations released by the 

AutomationML organisation, a few academic researches which used AutomationML as data 

exchange format were conducted. However, no further information has been available by 

September 2013 when this thesis was completed. In this context, an engineering tool named 

AutomationML Editor provided by the AutomationML organisation for viewing and editing 

AutomationML files was adopted to view the VMCDM model of the test bed in a tool-

independent way. 

The VMCDM model of the test bed can be directly imported into the AutomationML 

Editor, as illustrated in Figure  4-14. The role classes, interface classes, components and 

systems were displayed in different sections. The 3D model of Station 1 was also displayed. 

Information about the attributes of each component or internal element can be viewed and 

edited in the right side of the tool window.  

However, no further functions based on the virtual models can be tested or demonstrated in 

the AutomationML Editor because this is only a tool for viewing and editing AutomationML 

files.  
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Figure  4-14  the VMCDM of the test bed opened in the AutomationML Editor 

4.3.5. Evaluation  

The experiment of exchanging virtual models from the CCE tool to the AutomationML 

Editor via the VMCDM shows the feasibility of describing the component-based virtual 

models in AutomationML. However, features of the VMCDM cannot be sufficiently tested 

and demonstrated due to the limited functions of the AutomationML Editor. In this context, 

the evaluation of the VMCDM was performed through analysis on some key features of the 

VMCDM.  

Some advantages of the VMCDM can be observed from the experiment. Obviously, the 

VMCDM enables the virtual components to be efficiently reused. This is consistent with the 

philosophy of the component-based approach.  Two factors contribute to the achievement of 

this advantage. Firstly, the semantic, provided by AutomationML through defining the 

vocabulary and domain specific terms, is the basis of the efficient data reuse. Compared with 

pure XML-based description, AutomationML defines standard terminologies and provides 

classifications of the defined terms. This is important to the description of virtual 

commissioning models as it is an integration of multi-disciplinary information. Secondly, 

embedding the component-based automation into the framework of AutomationML leads to 

the achievement of efficient data reuse. The VMCDM keeps object-oriented architecture of 

the component-based automation. Moreover, the control logic of a virtual component, which 

is specific to the component-based automation, was translated to the widely used PLC-based 

control logic and the connection between virtual models and PLC control were also built in 
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VMCDM. This is of significant importance for the virtual models of component-based 

automation to be reused.  

On the other hand, a few limitations lying in the VMCDM can also be observed.  While 

VMCDM provides standard representation of virtual models, some advantageous features of 

the CCE model cannot be kept in the VMCDM. In the CCE virtual models, the assembly of 

3D geometry elements is realised using “Link Points” which is an innovative approach in 3D 

modelling proposed by Vera [127]. However, in the VMCDM, the relative position can only 

be represented using “Frames”, which cannot represent all the features of “Link Points”.  

It is can also be observed that the conducted experiment did not show that the seamless 

data exchange via VMCDM has been achieved as all the functionalities of the CCE virtual 

models had not been replicated in AutomationML Editor. This is mainly because that 

AutomationML Editor is not a engineering tool with all the functionalities required for virtual 

engineering. However, once AutomationML-compliant VC engineering tools are available, 

VC can be repeated in these tools through reusing the VMCDM model as it contains all the 

data required for performing VC.  

4.4. Direct deployment experiment 

This section tested and evaluated the direct deployment function of the VC mapper through 

examples of directly deploying the control software for the test bed.  

4.4.1. Overview 

The required PLCs and the related programming software were selected first. To test the 

deployment of PLCOpenXML and Siemens PLCs, which the VCmapper supports at the time 

of writing, the respective hardware and engineering tools employed are outlined in Table  4-5. 

Table  4-5 Hardware and software used for the experiments 

Platform PLC hardware I/Os Programming tool Software for 
HMI 

PLCOpenXML CodeSys V3 
SoftPLC 

Modicon I/O 
using Modbus 
TCP/IP protocol 

CodeSys V3.5 _ 

Siemens Siemens S300 
series 

Siemens  Step 7 V5.4 WinCC 
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The process of conducting the experiments was then designed and shown in Figure  4-15. 

Some features, which have been mentioned in chapter 3, were depicted in this feature. First, 

the platform-specific common information was created using the reverse engineering process 

described in section 3.5.2. Another significant feature is that only I/O mapping needs to be 

performed manually during the deployment process and all other aspects are automated. For 

any platform, the I/O mapping process is completed using the same user interfaces and in the 

same way. During the phase of real commissioning, the hardware configuration needs to be 

performed manually. 
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Figure  4-15 Process of testing by the direct deployment solution 

After the real commissioning, the direct deployment approach was evaluated. Considering 

that the qualitative features of the approach can be observed during the commissioning, the 

evaluation was mainly focused on some quantitative aspects of both the direct deployment 

approach and the control software it deployed. 

4.4.2. Platform-specific common information development 

This section describes the platform-specific common information developed respectively 

for the two PLC platforms which were adopted for the experimental study. The templates for 

PLCOpenXML and Step 7 V5.4 were created according to the reverse engineering approach.  

The created templates were then finally imported into the database of VCMapper to be reused 

for direct deployment.  

4.4.2.1. Templates for PLCOpenXML 

For PLCOpenXML, an open standard, its structures are available on the official website of 

the PLCOpen organisation. To facilitate the accessibility of the templates data, a 
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PLCOpenXML file was divided into different constituent elements which are outlined in 

Table  4-6.    

Table  4-6 Constituents of the PLCOpenXML common information (also called templates) 

Name Dynamic data  Description 

GVL Information of all the variables Global variable list 

Elementary Vars The name, type and initial value of a 
variable 

Elementary variable 

MainProgram None Template for PRG_MAIN 

Function InitArrays The main body of the function Function for initial control models 

POU Name, Type, Input variables, Output 
variables and Main Body of a POU. 

Information of a program 
organization unit 

POUInstance Name, Type and Type name  Instance of a POU. 

Task  Name, Interval and Priority The main task of the control 
software 

Configuration, Resources  Name Standard items of IEC61131-3 

Content header Name and modification time Header information of file content. 

File header Name, Version and Create Time Header info of the file 

All the elements of the PLCOpenXML templates are actually XML nodes as 

PLCOpenXML is completely XML-based. Therefore, they can be manipulated using the 

XML DOM when the dynamic data is populated. However, in this research, they were 

regarded as text string in the VC mapper and the dynamic data was populated by replacing 

the particular reserved symbols with project-specific data. This is mainly to unify the way of 

manipulating the different platform-specific templates considering that for some platforms, 

the common information is unstructured plain-text-based and can only be manipulated 

through the replacement of text.   

Some example elements of the PLCOpenXML templates are given in Figure  4-16. As 

depicted in the figure, the project-specific dynamic data were represented using predefined 

keywords and will be populated during the deployment process. 



 Chapter 4 Implementation and Experimental Study 

139 

 

Overall structure of PLCOpenXML

Decompose, 
Extract & Modify

Templates for constituents of PLCOpenXML

Content Header Array Task POU

Variable

 

Figure  4-16  Examples of the PLCOpenXML templates 

4.4.2.2. Step7-specific templates  

Given the fact that the data format of Step 7 is completely platform-specific, the common 

information templates were created in the strict reverse way. Through analysing the source 

codes of existing projects, the constituents of the S7-specific templates were created and 

outlined in Table  4-7.  

Table  4-7 Components of S7 templates 

Name Dynamic data  Description 

UDT None User-derived Data Types for describing 
control models 

Instance Data Block Definition of variables A Data block for an  instance Function Block 

Shared Data Block  Size of arrays, Main Body of 
arrays 

A shared data block for storing runtime 
control models 

Organisation Block Name, Main Body The organization block of the project 
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It is worth mentioning that the source codes of the Step 7 are exported as completely 

unstructured plain-text based files. Therefore, each template can be only manipulated as a 

text string in the VCMapper. Taking the shared Data Block (DB) which contains the runtime 

control models for example, the header information of the shared DB for the test rig was 

generated by replacing the reserved words in the template illustrated in Figure  3-22.  

DATA_BLOCK DB200 

TITLE = RuntimeControlModels 

VERSION : 0.0 

STRUCT   

lsaComponents : ARRAY  [0 .. 32 ] OF "Component";  

lsaStates : ARRAY  [0 .. 149 ] OF "State";  

lsaTransitions : ARRAY  [0 .. 133 ] OF "Stransition";  

lsaAutoConditions : ARRAY  [0 .. 162 ] OF "Acondition";  

lsaActComponents : ARRAY  [0 .. 12 ] OF "ActCompPos"; 

END_STRUCT;  

BEGIN 

Common information for the S7-specific objects including the instance data block (DB) for 

a FB instance, Organisation Block and symbol table were also created. For different objects, 

different key words were used to represent the dynamic data in the corresponding templates. 

Some of the objects are shown in Figure  4-17 and Figure  4-18 as examples. 

 

Figure  4-17 Example of S7 specific objects – header of OB1 
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Figure  4-18 Example of S7-specific Object – Instance Data Block 

4.4.3. Control software deployment 

One of the intentions of proposing and implementing the direct deployment approach is to 

simplify the control software development process during the system engineering phase. With 

the VCMapper implemented in the Section 4.1, control codes for the two platforms were 

respectively developed following the same steps described below:   

(1) Create a new project: the platform, for which the control codes are generated, was 

selected from the drop down list of the logic mapper.  

(2) Import the CCE model: the storage path of the XML file containing the control logic of 

the virtual model of the test bed was specified. 

(3) Import I/O variables: variables were imported from external Excel files. For the 

PLCOpen and the Step 7, different variable tables were used due to the differences 

between the naming conventions of their I/O addresses.  

(4) I/O mapping for sensor and actuator components: as shown in Figure  4-19 - the 

snapshot of the I/O mapping, all the sensor components and actuator components were 

extracted from the XML file and listed out. Also, all the reusable runtime components 

in the database were listed out. For deployment of any PLC platform involved, the I/O 

mapping was done by selecting a component and its corresponding runtime component 

from the list and adding the I/O variables to the selected runtime components.  For 
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sensor components, only an output variable was added. For actuator components, the 

number of input variables and output variables of a component varies.  

(5) Generate the code by clicking a button and then automatically export the code into files 

of data formats of the selected PLC platform.   

 

Figure  4-19 I/O Mapping for actuators and sensors 

For the CodeSys platform, all the source codes were exported into a single XML file 

according to the data structure of PLCOpenXML.   

For the Siemens platform, on the other hand, the source codes of different items were 

exported into multiple plain-text files. The information of exported files was outlined in 

Table  4-8. As shown in Table  4-8, different items were represented in different programming 

languages and saved in different data formats.  This is one of the reasons why the source 

codes for Step 7 must be exported into multiple files. Another important reason is that these 

items be compiled in a specific order as listed in the table due to the dependency between 

these items.  For example, the instance DBs must be compiled after the compilation of FBs as 

all the variables in an instance DB are dependent on the variables of a specific FB. 
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Table  4-8 Source codes export for Step 7 

File Name Contained items Languages File Format Order 

Symbol.asc I/O Variables N/A ASC 1 

UDT&SharedDB.awl UDTs, Shared DBs Statement List AWL 2 

FBs.scl All the FBs and FCs Structured Control Language SCL 3 

InstanceDB.awl All the instance DBs Statement List AWL 4 

OB1.awl Organisation Block Statement List AWL 5 

 

4.4.4. Commissioning  

The generated control software was directly used to commission the physical test bed. In 

this step, the PLC programming engineering tools were mainly used to configure the 

hardware, compile the generated source code to build executable program and download it 

onto the PLCs. 

4.4.4.1. Commissioning with CodeSys SoftPLC  

The environment set up for commissioning the test bed using the PLCOpenXML control 

code is depicted in Figure  4-20.  The CodeSys V3, which is developed by 3S-Smart Software 

Solutions GmbH and supports PLCOpenXML, was adopted as the programming software for 

compiling and downloading the generated control code. In terms of the control devices, the 

CodeSys Control RTE V3, which is a SoftPLC provided by the 3S-Smart Software Solutions 

GmbH, was adopted as the controller and the Advantys OTB (Optimised Terminal Block) I/O 

modules were used.   The SoftPLC device can run on a PC and communicates with the OTB 

I/Os via Ethernet network based on the ModBus TCP protocol [128]. 

Configuration of the SoftPLC was performed following the importing the generated source 

code. The connections to connect the master device (the SoftPLC controller) and slave 

devices (the OTB I/Os) were built manually according to the requirements of the ModBus 

TCP. The IP addresses of the slave devices were configured first. Additionally, the virtual 

addresses of all the I/O variables were allocated and mapped to corresponding ModBus TCP 

Slaves. Two ModBus Slave channels were created first by setting their respective modes of 

accessing and offset addresses. Then the I/O variables were allocated to the corresponding 

channels.   
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Figure  4-20 Commissioning environment for PLCOpenXML 

The CodeSys V3 does not support importing of control code programmed in graphical 

languages. Hence, all the objects were generated based on textual languages – Structured 

Text.  As shown in the above figure, all the POUs and the Device Objects were automatically 

created after the generated code was imported into the CodeSys engineering tool.  

Some key POUs which were automatically generated can be seen in the programming tool. 

Of all the POUs, the function POU “InitialControlModels” and the program POU 

“PRG_MAIN” were generated dynamically based on the virtual control models while all the 

other POUs were generated by combining reusable data. The function “InitialControlModels” 

was created for initialising the Arrays of control models. The program “PRG_MAIN” was 

generated as the main program which contains runtime control codes for each resource 

components. As an example, the runtime control program for the actuator Swivel Arm is 

illustrated in Figure  4-21. Also, part of the source code of the function “InitialControlModels” 

was shown in this figure. 

Of all the Device Objects, the GVL which refers to the Global Variable List was generated 

by transforming the I/O variable forms. The object “Main Task” was generated dynamically 

by calling the PRG_MAIN. 
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Figure  4-21 Component Swivel Arm and its related control code in CodeSys V3 

With the CodeSys platform, the test bed was commissioned under the automatic-mode. The 

result of the experiment indicated that the test bed was running correctly under the control of 

the control software generated by the VCMapper.  

4.4.4.2. Commissioning with Siemens S300 

The test bed was commissioned using Siemens control devices under both automatic mode 

and manual mode. The Siemens S300 PLC with distributed I/O modules was chosen as the 

hardware controller. The programming tool used is the Siemens SIMATIC STEP7 V5.4. For 

commissioning of the manual control, we adopted the Siemens HMI devices and the WinCC 

as the HMI engineering software. The adopted Siemens devices communicate through 

Profinet.  

As aforementioned, Siemens PLC programming tools normally adopt proprietary data 

formats and include some S7-specific objects. After the generated source codes with the 

specific data formats were imported into the S7, these files were compiled in the specific 

order as pointed out in section 4.4.3. By compiling in this order, the UDTs (User Data Types) 

were generated first, followed by the shared DB which contains instances of UDTs.  Since 

the Logic Engine uses the data of the Shared DB, the FBs and FCs were then generated after 

the shared DB was available.  The Organisation Block was generated at last as it contains the 

instances of the function blocks and the data of the shared DB.  The overall process of 

deploying control software for Siemens Step 7 is illustrated in Figure  4-22. 
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Figure  4-22 Process of S7 control software deployment 

In Step 7 the main program created from compiling the generated source code can be 

viewed in different languages. As an example, the source code for the runtime control of the 

actuator component “Pusher” can be viewed as a FBD instance in the Step 7.  A runtime 

control program, which is called Network in Step 7, was generated for each actuator or sensor 

component and finally the Logic Engine was also called by the OB. Twenty-nine FB/FC 

instances in total were generated in the OB for the test bed. An example was shown in 

Figure  4-23.  



 Chapter 4 Implementation and Experimental Study 

147 

 

 

Figure  4-23 Component Pusher and its related control code in Step 7 

Commissioning under Manual mode  

The test bed was also commissioned under manual mode. The generated control software 

contains the functions for both automatic mode control and manual mode control. For manual 

mode control, a HMI generator application was developed by other ASG researchers [9, 10].   

The main functions of the HMI generator are to 1) generate the HMI screens during 

runtime based on the control models contained in the PLC control software, 2) generating 

commands according to the operations on HMI and sending the commands to PLC via the 

control models, and 3) report and record fault messages.  

A script program was first developed to be run on the WinCC as an HMI generator.  The 

HMI control models for describing HMI rows and the fault message descriptors were 

automatically generated by the VCMapper and included in the shared DB of S7 PLC. During 

the runtime, when the HMI is opened, the HMI generator gets the HMI control models from 

the share DB and displays them as HMI rows. As illustrated in Figure  4-24, the HMI rows 

which were generated by transforming the control behaviours of corresponding components 

were displayed on the HMI. Other snapshots of the HMI are also shown in Figure  4-24. 
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Figure  4-24 Screens of generated HMI 

During the commissioning under the manual control mode, the PLC exchanges data with 

the HMI using the share DB. Here we took the component Pusher as an example to 

demonstrate the working process of manual control. When the button “Working Position” on 

the HMI for controlling the Pusher to move to its working position was pressed, the 

command ID was sent to the corresponding manual-mode control model in the share DB. The 

Logic Engine detected the data update and updated the corresponding control model which 

connects with the instance Runtime Component of “Pusher”. The instance Runtime 

Component of “Pusher” then received the command “1” from the Shared DB and output the 

command to the I/O variable “Pusehr_ToWork” to drive the “Pusher” to move to its working 

position.  

The data for saving fault messages were also generated and saved in the share DB. The 

fault messages generated by the Runtime Components will be displayed by the HMI. When a 

fault happens in a component, the corresponding runtime component generates an error 

message and output the ID of corresponding fault message to the shared DB. The HMI engine 
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then gets the fault message from the DB and displays it on the HMI. Also, the historical fault 

messages stored in the shared DB can be retrieved to display when needed. 
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Figure  4-25 Work flow of manual control via HMI 

4.4.5. Evaluation 

The experiments of commissioning the test bed with the directly deployed control software 

have offered several cases of interest to illustrate the functions of the proposed direct 

deployment approach. However, it does not sufficiently reveal the qualitative and quantitative 

advantages and limitations of the approach. Likewise, the features of the control software 

generated by the proposed approach have not been sufficiently illustrated.  In view of these 

limitations, a set of complimentary experiments was carried out to evaluate the proposed 

approach through comparing it with a traditional PLC programming approach from several 

key perspectives.  

For the emerging approaches to control system engineering, to compress the required time 

and effort needed during the machine engineering phase has been regarded as a key objective. 

It is also essential, for any control engineering approaches, to guarantee that the developed 

control software meets the requirements of machine operation.  Hence, experiments were 
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conducted to evaluate the direct deployment approach as well as the control programs 

deployed by this approach. 

The evaluation experiments were also carried out on the same test rig. In order to make a 

comparison, another set of control software of the test rig was programmed manually. The 

comparisons were carried out both during the control software development process and 

during the machine operation phase.  

4.4.5.1. Evaluation on control software development  

This section reports a series of additional experiments as well as analyses on the 

experimental results, both of which were conducted to make a comparison between the direct 

deployment approach and one of traditional methods in terms of the following aspects: 

• Time required to develop the control software. 

• Time required to reconfigure existing control software. 

In order to make a comparison, a control engineer, who is able to perform both VC with 

CCE tool and manual PLC programming, was involved in the experiments. This is mainly to 

minimise the effects of human factors lying in the differences of personal skills.  In each 

selected scenario, the control engineer developed the required control software respectively 

using direct deployment approach and the manual programming approach. To be more 

specific, on one hand, the control engineer carried out component-based simulation of the test 

rig with the CCE tool and then directly deployed the control software based on the virtual 

models and the Runtime Components which have been described in section 4.4. On the other 

hand, the engineer manually programmed the sequence control Function Blocks of the 

control software using a programming language similar to SFC.   

A. Time to Develop 

Time to develop the control software using the proposed direct deployment approach was 

first measured. The Siemens S7-300 PLC and STEP 7 programming software were adopted 

for this experiment. The process of the direct deployment approach was decomposed into 

more detailed sub-processes in order to record and analyse the time of each sub-process. The 

process began with virtually prototyping the test rig. However, given the fact that the virtual 

prototype is also usable for other virtual engineering activities, virtual prototyping is not 
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counted as part of the control software development. In this experiment, time required to 

perform the following sub-processes were counted: 

• Runtime component development 

• Control logic editing in the CCE tool 

• Virtual commissioning of the test rig 

• I/O mapping for control software deployment 

• Real commissioning 

The process of develop the control software using the selected traditional approach can be 

decomposed into: 

• Developing function blocks for resource components 

• Developing SFC function blocks for process control 

• Developing Organisation Blocks 

• Real commissioning.  

The function blocks for resource components are the same as the runtime components used 

in the direct deployment approach. The differences of development time are mainly decided 

by the time required to manually develop other part of the control software and correct the 

errors through commissioning. The time to program the mentioned items and carry out the 

following real commissioning were recorded in Table  4-9. 

Table  4-9 Time to develop control software of test rig using two select approaches 

 Direct deployment Manual programming 

VC logic editing 1 day - 

Virtual commissioning 1 day - 

Sequential FBs programming - 1 day 

Program development 2 hours 2 days 

Real commissioning 2 hours 2 days 

Overall time 2.5 days 5 days 

Time saving can be observed from the comparison. The direct deployment approach 

compressed the time to develop the control software as the development of system-specific 

program was automated. Commissioning time was also significantly reduced by the virtual 



 Chapter 4 Implementation and Experimental Study 

152 

 

commissioning. In the direct deployment process, time to real commissioning was 

significantly reduced as control logic had been validated by virtual commissioning.  It took 

much less time, compared to that of real commissioning, to develop simulated control logic 

and perform virtual commissioning as it was carried out in a fully computer-based 

environment, which makes commissioning simple to perform. It worth mentioning that for 

large scale machine, the advantages of virtual commissioning will be more significant as the 

manual programming and real commissioning need much more time, efforts and investment. 

B. Re-configurability 

Based on the control software developed in the above section, the respective re-

configurability of the direct deployment approach and the traditional approach was also 

compared. Two scenarios, in which it needs to reconfigure the existing control software to 

develop the desired control software, were considered. The two scenarios are illustrated in 

Figure  4-26. 

 

Figure  4-26 Scenarios of reconfiguring the test rig 

Scenario 1- Remove components 

The scenario of reducing the number of components of the test rig was first considered. 

The station 2, which consists of two actuators and two sensors, was removed from the test rig. 

As shown in Figure  4-26, after removing the station 2, the work piece is transported from the 

Swivel Arm directly to the Rotary Table.  

For the manual programming approach, the reconfiguration was performed in the Step 7 

through modifying related program. The following activities were performed to complete the 

reconfiguration: 
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• Modifying the SFC FBs related to the Swivel Arm, the Vacuum Sucker, and the 

Rotary Table. 

• Deleting both SFC FBs and Runtime Components related to the components of 

Station 2. 

The whole process, as well the additional consequent commissioning, took around 3 hours.  

For the direct deployment approach, on the other hand, the reconfiguration was carried out 

in the CCE toolset. The new system was built through removing the related components and 

modifying the transitional conditions of state behaviours of relevant components which 

include the Swivel Arm, Vacuum Sucker and Rotary Table.  

After virtual commissioning, the consequent reconfiguration to the PLC program was then 

completely automated by the VCMapper within the following step:  

• Load the existing project files of the original test rig. 

• Compare it with the control models of Test Rig (II). 

• Delete the I/O mapping information of the removed components  

• Generate new runtime control models according the new virtual models. 

• Output the new control code. 

It can be seen in this scenario the modification of the PLC control software was completely 

automated by direct deployment approach. The time taken (around 1 hour) lies in 

reconfiguring the virtual models and virtual commissioning. 

Scenario 2- Add components 

In the other scenario, the Station 2 was added into the Test Rig (II). The relevant 

components which need to be modified in this case are mainly the same as in the first 

scenarios. However, there are still some differences from the first scenario.  

In manual programming approach, the reconfiguration was to add new programs for the 

components of Station 2 and modify the SFC FBs that relate to these components. It took 

around 4 hours to complete this. 

For the direct deployment approach, the process of reconfiguring virtual models and virtual 

commissioning took around 1.5 hours. During the control deployment process, although the 
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process of updating the information of control models was automated, the I/O mapping for 

the new components of station 2 were required to be performed manually and took 0.5 hour.  

Table  4-10 Time to reconfigure the test rig 

Scenario  Manual Programming Direct Deployment 

Remove components  3 hours 1 hour 

Add components 4 hours 2 hours 

It can be observed, from the results of the above experiments, that the direct deployment 

approach reduced the time required for reconfiguration.  This was partly achieved through the 

automation of the program generation. Especially in the scenario in which no new 

components were added, the reconfiguration of the PLC program can be completely 

automated thereby required time can be compressed. Additionally, the simplification of the 

logic editing and commissioning by the virtual commissioning tool also contributed to the 

time savings. Obviously, re-configurability can also be evaluated in some other scenarios 

which need the reconfiguration, such as changing the position of certain components. The 

direct deployment approach can also be evaluated in more complicated scenarios. 

4.4.5.2. Evaluation on control software developed 

This section reports the evaluations on the control software which was generated by the 

direct deployment approach in order to reveal the advantages and limitations of the auto-

generated control software. Considering that the control software developed by traditional 

approaches have been proven through usage to be mature and acceptable by industry, this 

evaluation was performed through making comparisons between the auto-generated control 

software and the traditional control software.  

Existing relevant literature has proposed different approaches to evaluating PLC control 

software from various perspectives. These approaches are proposed for the evaluation of 

certain specific languages. The software quality model of ISO 9126, which is mainly used for 

computer software evaluation, was adopted to evaluate the complexity of PLC software [129]. 

Some methodologies of measuring the complexities and accessibility of PLC programs 

written in specific languages were also proposed by Lucas et al. in [130]. However, the 

methodologies are proposed to measure the programs written in ladder diagrams, Petri nets 
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and modular finite state machines. Comparisons of specific programming languages were 

also conducted. A comparison of SFC and Object-Modelling PLC programming was reported 

by Hajarnavis and Young [131]. Apart from the time and efforts required for the two selected 

programming methods, the performances of the executing programs, including processor scan 

time and occupied memory, were also compared. Unfortunately, no concrete methods of 

measuring the programs quantitatively were given in this literature.  Hajarnavis and Young 

also reported the main benefits of interest for the industries concluded from a survey of 

control engineers. 

Based on the evaluation approaches from existing relevant literature as well as the 

information which other ASG researchers have drawn from interviews with industry, the 

control programs were evaluated from several selected perspectives described in detail in the 

following sub-sections. The evaluation was carried out based on the programs developed in 

section 4.4.5.1 and via additional experiments when necessary.  The auto-generated control 

software is represented in the languages of ST and FBD, while the manually programmed 

software is programmed in ST and SFC. In the following sub-sections, the memory 

performance and time performance were first measured with additional experiments, through 

which quantitative results were given. Then other performance related to the purpose of 

operations and maintenances was evaluated qualitatively. The evaluation was also performed 

based on the Siemens Step 7 and S-300 PLC. 

A. Memory required 

The respective structure and required memory for loading and running the control software 

were compared, as outlined in Table  4-11.  

The memory occupied by the control software can be classified into load memory and 

work memory. The load memory is for storing all the information of the control software 

when the project is downloaded to the PLC. The work memory is permanently located on the 

CPU. It is optimised for high-speed access, and at start-up the PLC copies the parts of the 

load memory necessary for program execution from load memory to work memory. It is 

common that the amount of work memory occupied will be less than the amount of load 

memory. 

The differences in the code structure can be seen from Table  4-11. Obviously, the load 

memory that the auto-generated program takes is only half of that taken by the software 
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manually developed. This is mainly because that the former was programmed in the textual 

language ST while some FBs of the latter were in graphical language SFC.  The differences 

lying in the adopted language were also reflected by the work memory which the code 

occupies. The data memory of the auto-generated program is bigger than that of the manual-

developed program as the former contains a data block for saving all the runtime control 

models. The manual-developed program uses SFC function blocks for the sequential control. 

Hence, it has more FBs and instance DBs than the auto-generated program. 

Table  4-11 Comparison of PLC programs 

 Direct deployment  
(ST+FBD) 

Manual Programming 
(SFC+FBD) 

Load memory 24378 bytes 48462 bytes 

Work memory/Code 8460 bytes 20094 bytes 

Work memory/Data 13150 bytes 6964 bytes 

Work memory/Total 21610 bytes 27058 bytes 

System data memory 12170 bytes 12170 bytes 

OB 1 1 

DB 17 24 

FB 8 15 

FC 2 1 

SFC 0 5 

UDT 4 0 

In summary,  from this example, it can be seen that the component-based control software 

requires less memory, either load memory or work memory, than the traditional program due 

to the differences lying in the code structure and programming languages adopted.  It is still 

hard to say that the former is definitely better than the latter in terms of the memory required. 

However, at least it indicates that the memory that the component-based control software 

requires is in a reasonable range which is around 50% smaller in load memory and 20% 

smaller in work memory than the manual equivalent for this test case. 

B. Time Performance 

The performance of the control software was evaluated by measuring the process scan time. 

For each program, a function block for recording and calculating the scan cycles was added 
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into OB1. During the runtime of the test rig, the maximum scan cycle and the minimum scan 

cycle were respectively recorded and the average scan cycle was also calculated. 

The results of the experiment were shown in Table  4-12. It can be seen that the component-

based control software has obviously better performance than the traditional software. It can 

be analysed that two potential factors contribute to the better performance of the component-

based control software.  

Table  4-12 Comparison of scan time 

 Directly Deployed  Manual Programmed 

Max scan time 8ms 19ms 

Min scan time <0.5ms <0.5ms 

Average scan time 3ms 14ms 

First of all, the way of generating control commands in the component-based control 

software is faster than that in the traditional program. In the component-based control 

software, all of the control logic information is modelled as runtime control models and saved 

in the same data block. In each scan cycle, the Logic Engine scans these runtime control 

models in order and then generates commands to corresponding runtime components. In the 

traditional program, on the other hand, the command for controlling a specific component is 

generated by the corresponding SFC function block which might still need to communicate 

with other sequential control function blocks to finally generate the command. This can 

potentially increase the scan time.  

Another possible reason potentially lies in the differences of the programming languages 

used.  As aforementioned, the program for sequential control in component-based control 

software was automatically in textual language ST while the FBs for sequential control in the 

traditional program were programmed in SFC. Although no research work has been done to 

test the performance differences between existing PLC programming languages, the language 

difference can still be seen as a potential factor to the performance difference. 

C. Diagnostics and Debug 

Diagnostics refers to finding the source of a failure in a system, while debug is aimed at 

correcting the program errors. This section is mainly to evaluate the effort required to 
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diagnose and debug the directly deployed control software during the machine operation 

phase.  

The process of diagnostics can vary depending on the cause of the fault. Diagnosis is 

needed after a failure is detected when an expected event in the controlled process is missing, 

e.g. an actuator should do something, but is not doing it. Manual diagnosis normally starts by 

checking the hardware actuator responsible for the missing action. If the actuator is found to 

be working correctly, the reason is then tracked back to the PLC program. Normally, the 

dependency of the output signal corresponding to the failing actuator is tracked back, 

possibly over several internal variables of PLC, to the corresponding input signals, is first 

tracked. If the reason still has not been found out finally, the algorithm of related control 

program, which can be a function or a function block, needs to be checked. 

Several scenarios, in which the causes of faults are different, were considered in this 

section.  

Scenario 1 - Fault in I/O Modules 

For the first step of PLC program diagnosis, the relevant I/O variables connected to the 

failure actuator were checked.  

 

Figure  4-27 Runtime Component (an actuator and a sensor) 

In the component-based control system, there is a one-to-one correspondence between 

physical components and runtime components in the PLC program. As shown in Figure  4-27, 

all the variables connected to an actuator or sensor component correspond to the variables 
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connected to the runtime component. It is intuitive and simple to check whether there is fault 

in the related I/O module. 

For the control program which was manually programmed using SFC and FBD, the 

process of tracking the I/O variables is the same.  

Scenario 2 - Error in Runtime Component 

If the related input variables of the runtime components are found correct while its output 

variables are not set to the correct value, the diagnosis needs to track into the Runtime 

Component.  

In this case, the process of diagnosing and debugging the component-based control 

software is the same as that of traditional control software. The runtime component can be 

directly diagnosed in the PLC programming tool. Once the bug is found, it can be directly 

fixed by modifying the code of the runtime component. 

For the direct deployment approach, extra work is required after debug. As the component-

based control software is deployed automatically through reusing of runtime components, 

modifications to the runtime component must be updated to the runtime component library as 

well. Therefore, the new runtime component still needs to be re-downloaded into the database 

of the VCMapper. However, this greatly aids the reuse and the maintainability of the PLC 

code.  

Scenario 3 - Error in sequential control  

If it is found that the failure is caused by the wrong command to the runtime component, it 

is likely that the cause of the fault lies in the runtime control models. For example, if the 

“Magazine Sensor” is ON and the “Magxifer Sensor” is OFF, the state command to the 

actuator “Pusher”, which should be “1”, is till “0”. This means the control logic of the 

actuator “Pusher” is not correct. In this case, the control logic for the sequential control needs 

to be diagnosed and debugged. 

For the traditional PLC program in this experiment, the FBs for sequential control, which is 

programmed in SFC, can be directly checked, and modified if necessary, in Step 7. This 

process is also applicable to other manually developed PLC programs as well.  
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On the other hand, diagnosis and debug of the component-based control program, in this 

case, is totally different as it has to be performed in the VC tool rather than in the PLC 

programming tool. This is mainly due to two reasons which are analysed as follows. 

First of all, the principle of the proposed open VC framework is to achieve the advanced 

development and validation of control logic in a virtual environment. In other words, it 

enables control engineers to start developing and validating control logic earlier using a 3D 

simulation toolset rather than PLC programming tools. Hence, control logic information 

should be modified in the VC toolset.  This also ensures complete data consistence between 

the virtual models and the control program.  

Secondly, the runtime control models are described in a machine-understandable manner, 

but not readable for control engineers. Pieces of the runtime control data models are 

illustrated in Figure  4-28 as an example. The control logic information, in the direct 

deployment approach, is contained in the runtime control models which are represented as 

arrays of user-derived data types (UDTs). This improves the real-time performance of the 

program and reduces the memory required. However, it also reduces the readability of the 

code and makes the code impossible to be directly debugged by control engineers. 

 

Figure  4-28 Control models represented as arrays of UDTs (difficult to read) 

A summary of the respective efforts to diagnose and debug the component-based control 

software and the traditional control software was given in Table  4-13. Generally speaking, 

when failures are caused by hardware faults, the component-based control software provides 

a good diagnosability; on the other hand, if failures are caused by errors lying in control logic, 

the diagnosis and debug of the component-based control software can only be performed in 
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the relevant VC engineering tool while the traditional control software can be directly 

diagnosed and debugged in the PLC programming tool. However, directly debugging in the 

PLC programming tool may cause problems due to ad-hoc and uncontrolled editing of the 

logic. If errors exist in the runtime component, the debug work in either approach requires 

almost the same amount of efforts.  

Table  4-13 : Comparison of efforts to diagnostic and debug  

 Directly Deployed   Traditional Program 

Error in I/Os Check one RC only Check one FB or multi FBs 

Error in Function 
Blocks 

1.Debug in PLC programming tool 

2.Update RC library 

Debug in PLC programming tool 

Error in sequential 
controls 

1.Debug only in VC tool  

2.Update the control software in VC 

Debug in PLC programming tool 

The control software can be further evaluated from various other perspectives depending 

on the requirements of given industries. The aspects evaluated and discussed in this section 

can also be further evaluated in a quantified way in terms of the exact time and effort 

required. To achieve a comprehensive and in-depth evaluation, reasonable and applicable 

evaluation methods must be available. However, to propose and design such evaluation 

methods is beyond the scope of this research.  

4.5. Summary of Chapter 

This section first presented the development of the VCMapper, an engineering tool which 

implements the proposed approach to virtual model mapping and direct deployment of PLC 

control software. At the time of writing, the following functions have been implemented in 

the VCMapper: 

• Mapping component-based virtual models of component-based automation to the 

virtual modular common data models (VMCDM) described in AutomationML. 

• Directly deploying control software for PLC platforms which support 

PLCOpenXML. 

• Directly deploying the control software for Siemens Step 7. 
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Experimental studies to test and evaluate the above functions were then presented. A test 

rig was used to conduct the experiments. Through the experiments, the feasibilities of the 

proposed approaches were proven and demonstrated. The approaches were also evaluated 

from some selected aspects. Several advantages and limitations can be observed through the 

evaluation.  Some features of the proposed approaches have not been demonstrated and more 

experiments for further evaluation are needed in the future. 

4.5.1. About the VMCDM and virtual model mapping 

The experiments have partially explored the capabilities of the proposed common data 

model and the efficiencies of the data exchange approach based on the common data models.   

The experiment of transforming the virtual models of the test bed from the CCE tool to the 

VMCDM, and viewing the transformed virtual models in the AutomationML Editor 

highlighted and demonstrated: 

• The semantics that the VMCDM presents. The object-oriented architecture and the 

vocabulary of concepts provided by AutomationML are the basis of achieving 

semantics and efficient data reuse. 

• The feasibility of describing virtual models of component-based automation using 

AutomationML. Building the VMCDM by embedding the component-based 

automation into the framework of AutomationML leads to the achievement of 

efficient data reuse. 

However, the experiment did not shown the capability of the common data models in 

supporting lossless data exchange of data models used in virtual commissioning.  This is 

mainly because that the AutomationML, as a newly released open standard, has not been 

supported by other commercially available engineering tools. Further experiments are needed 

to show that other engineering tools can directly reuse the data and efficiently rebuild 

relevant functionalities based on the common data models.   

4.5.2. About the direct deployment solution 

Through experiments conducted on the selected test rig, the following features of the 

proposed direct deployment solution were demonstrated: 
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• Directly deployment of 100% executable PLC control software. This means that, 

for the generated source code, no error-prone manual programming is required. The 

generated code contains functions for both automatic mode control and manual 

mode control.  

• Reducing the required time, effort and expertise to control software development 

and reconfiguration.  The direct deployment approach automates most of the work 

in control software engineering. It also unifies and simplifies the method of I/O 

mapping for different PLC platforms.  

• Generating well-structured control software with better memory performance and 

time performance. The generated control software occupies less PLC memory and 

executes with a shorter scan time. It  also has reasonable diagnosability.  

• VCOM engineering tools are required for diagnosis under some circumstances. The 

control models in the generated control software are difficult to understand directly 

by control engineers and thus the diagnosis of the control logic can only be 

performed via the VCMapper if errors exist in the runtime control models.  

In summary, the conducted experiments have proven the feasibility of the direct 

deployment approach and also shown some of the advantages and underlying limitations of 

the approach. Further experimental studies need to be performed to test and evaluate the 

approach from more perspectives and with more realistic machines. 
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Chapter 5. Conclusions 

This chapter concludes the research work documented in this dissertation through 

summarising the achievements to date, identifying the contributions and pointing out 

potential future research work.  

5.1. Conclusions 

The overall objective of this research is to develop the approaches and related engineering 

tool functionality required to enable the new component-based VC framework - VCOM. The 

research objectives identified in Section 1.3.3 were listed as: 

• To design a new approach to directly deploying PLC control software based 

component-based virtual models and reusable components. 

• To develop related engineering tool features to implement the new direct deployment 

approach to generate PLC control software for PLCs from different vendors. 

• To create open standard-based common data models for describing component-based 

virtual models in a tool-independent method.  

• To develop engineering tool features for mapping the tool-specific component-based 

virtual models into the created common data models. 

Section 3.5 presents the design of the direct deployment approach. The proposed approach 

generates complete PLC control software in an automated manner through combining 

reusable data with dynamically generated runtime control models. The PLC control software 

generated by this approach contains the functions required for automatic-mode control, 

manual-mode control and diagnostics. 

Section 3.2 outlines the design approach taken to create the needed common data models - 

VMCDM. The VMCDM was built based on AutomationML - an open standard specific to 

the domain of automation.  

The design of the needed engineering tool - VCMapper which implements both the direct 

deployment approach and the approach to mapping virtual model into the common data 

models is presented in Section 3.6. According to the design, Section 4.1 presents the 

implementation of the VCMapper. In the current VCMapper, the direct deployment of control 

software for two PLC platforms – PLCOpenXML and Siemens Step 7, has been implemented. 
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The conducted experiments validate the hypotheses of this research outlined in Section 

1.3.1. The experiments presented in Section 4.4 proves that the hypothesis “if an automation 

system has been virtually prototyped and commissioned using the component-based approach, 

its PLC control software can be directly deployed based on the virtual model and reuse 

components” is correct. The PLC control software generated by the VCMapper was directly 

used, without any manual changes, to run the physical test rig under both automatic mode and 

manual mode. The experiment described in Section 4.3 proves the other research hypothesis 

“component-based based virtual models validated by VC can be directly reused by other 

engineering tools if these models are described using an open standard”. The virtual models 

of the test rig described using the VMCDM created in this research were directly used by the 

AutomationML Editor – a standard engineering tool provided by the AutomationML 

Organisation for viewing and editing AutomationML models.  

The strength and potential weakness of the methods developed in this research were also 

revealed via the conducted evaluation experiments. The experiment presented in Section 

4.3.5 shows that the component-based virtual models described in VMCDM can be directly 

and correctly reused by a standard engineering tool. However, the characteristic method of 

describing “position” information in the CCE Toolset cannot be utilised in the VMCDM as 

AutomationML adopts a different method of describing “position”. The experiments 

presented in Section 4.4.5 shows that the direct deployment approach significantly 

compresses the time required to develop, validate and reconfigure PLC control software. Also, 

the generated control software provides better execution speed and occupies less memory. 

However, the control software generated by the direct deployment approach is potentially 

difficult to diagnose and debug under a few specific circumstances. Additional engineering 

tools are potentially needed to aid the diagnosis and debug in these circumstances. The 

development of such engineering tools is considered as future work and presented in Section 

5.3.  

5.2. Research Contributions 

As also described in more details in section 1.3.4, this dissertation makes the following 

original contributions to the field of the virtual engineering of automation systems: 

1. A tool-independent data model in AutomationML for describing the virtual models of 

component-based automation system, which potentially enables these models to be 
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reused efficiently thereby expanding the impact of VC to the whole lifecycles of 

automation systems.  

2. A consolidated set of methodologies and engineering tool functionality that  enables a 

component-based open virtual commissioning framework, including the following 

original technologies: 

a. An approach and engineering tool functionality for mapping the virtual models of 

component-based automation systems to the HIL common data models described in 

an open standard. 

b. An approach and engineering tool functionality for directly deploying well-

structured PLC control software based on the simulated control logic of the 

component-based virtual models and the pre-developed reusable runtime 

components.  

c. An approach and engineering tool functionality for directly deploying the HMI 

manual control models based on the state behaviour of the component-based virtual 

models. 

5.3. Future Work  

5.3.1. Potential enhancements 

The proposed data models and deployment solutions provide the fundamental groundwork 

for achieving the set objectives. However, it is envisioned that further or more ambitious 

objectives could be reached by introducing additional functionalities. 

5.3.1.1. VCMapper and CCE tool integration 

The current Logic Mapper for directly deploying control software is independent of the 

CCE tool. They exchange data by exporting and importing XML files. This can lead to 

inefficiency of information synchronisation or even data inconsistency when changes are 

made to the control logic of virtual data models in the CCE tool. This issue can be resolved 

by integrating the logic mapper with the CCE tool to automate the data update of control 

logic.  

5.3.1.2. HIL prior to the physical commissioning 

In the current VC framework, control software generated by the direct deployment 

engineering tool is applied to perform real commissioning directly. However, potential errors 
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might be brought in during the manual I/O mapping step despite its simplicity.  If HIL can be 

performed through connecting the automatically generated control software with the virtual 

models, potential errors in I/O mapping can be eliminated prior to the real commissioning.  

5.3.1.3. Direct deployment of OPCUA configuration 

The current common data models contain the information for connecting the control 

software with the virtual models. However, the connections between control systems and 

virtual prototypes, still need to be created, normally based on OPC, in a manual manner. The 

OPC client objects still need to be manually created and configured. This work can be largely 

automated by automatically generating the OPC Unified Architecture (OPC UA) [132] client 

objects based on the virtual common data models.  

The OPC foundation and the PLCOpen foundation have combined OPC UA with the 

IEC61131-3 languages in order to achieve efficient communication. OPC UA object types 

can be created from the declaration of IEC61131-3 function blocks in the PLC and 

corresponding OPC UA objects from instances of the function blocks. This results in the 

advantage that a control program, regardless of the controller on which it is executed and the 

OPC UA server via which the data is accessed, is always implemented in the same structure 

of objects in the address area. For UA clients, this results in identical UA access at the 

semantic level. 

Therefore, a new function, which can be added into the current direct deployment solution, 

is to automatically generate OPC UA client objects when the corresponding control software 

is automatically generated. This can significantly facilitate the further reuse of the virtual data 

models for HIL virtual commissioning or monitor-related applications during machine 

operational phase. 

5.3.1.4. Direct deployment of control software in graphical languages 

The current direct deployment solution is mainly focused on the automatic generation of 

the control software in textual languages. This is mainly due to the complexity of the source 

code of the graphical-based programs. However, control programs are preferred even 

required, to be represented in graphical languages in specific industrial applications. 

Therefore, in order to enhance the applicability in industry, the function of automatically 

generating source code of graphical-based programs can be potentially implemented. To 
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achieve this, a key success factor is to find an innovative approach to analysing the complex 

source code of graphical programs. 

It is worth mentioning that another constraint is that many PLC programming tools do not 

support import and export of graphical-based programs. However, addressing this need is 

beyond the scope of this research.  

5.3.2. Future research directions 

As a result of the work presented in this dissertation, a set of new research directions have 

arisen. The most immediate directions that directly complement this research work are 

described in the following sub sections. 

5.3.2.1. Web-based 3D remote monitoring system 

The proposed data model mapping solution has transformed the virtual models into 

domain-specific common data models described in a XML-based open standard. These 

common data models can be regarded as the basis of 3D-based remote monitoring systems. In 

order to make the best use of the virtual data models to build desirable remote monitoring 

systems, new applications are needed and a few key issues still need to be researched. Web-

based applications for running the 3D models according to the real-time states of the real 

machine are required. In order to be reused by web-based applications, virtual models should 

be described in formal ontology languages. Additionally, the performance of data transfer via 

TCP/IP Ethernet need to be investigated and researched. 

5.3.2.2. Reverse engineering of direct deployment 

The proposed direct deployment approach enables the control software development to be 

performed in a graphical virtual environment.  The approach also introduces risks when 

changes to the generated control software are made on the shop floor, in which case there will 

be inconsistency between the control software and the corresponding virtual models. A 

potential solution would be to introduce reverse engineering functions into the current direct 

deployment solution by transforming the control software back to the original state behaviour. 

In this case, the control engineers in the shop floor are able to modify the control logic 

through modifying the virtual models in the logic mapper and afterwards the logic mapper 

can automatically update the control software as well as the virtual models, thereby data 

consistency between virtual models and the real control software can be achieved. 
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5.3.2.3. Direct deployment of other control software 

The proposed direct deployment solution has been developed in the context of the specific 

domain of PLC control software deployment and HMI deployment with the automation 

sector. However, it is believed that the principle of simulation-based direct deployment 

approach could be applicable to other sectors of PLC usage and the other control domains 

such as robotics control software deployment. Further research into the wider applicability of 

the approach and possible required features is necessary. 
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