1,599 research outputs found

    Spatial and temporal phylogeny of border disease virus in pyrenean chamois (Rupicapra p. Pyrenaica)

    Get PDF
    Border disease virus (BDV) affects a wide range of ruminants worldwide, mainly domestic sheep and goat. Since 2001 several outbreaks of disease associated to BDV infection have been described in Pyrenean chamois (Rupicapra pyrenaica pyrenaica) in Spain, France and Andorra. In order to reconstruct the most probable places of origin and pathways of dispersion of BDV among Pyrenean chamois, a phylogenetic analysis of 95 BDV 5'untranslated sequences has been performed on chamois and domestic ungulates, including novel sequences and retrieved from public databases, using a Bayesian Markov Chain Monte Carlo method. Discrete and continuous space phylogeography have been applied on chamois sequences dataset, using centroid positions and latitude and longitude coordinates of the animals, respectively. The estimated mean evolutionary rate of BDV sequences was 2.9x10(-3) subs/site/year (95% HPD: 1.5-4.6x10(-3)). All the Pyrenean chamois isolates clustered in a unique highly significant clade, that originated from BDV-4a ovine clade. The introduction from sheep (dated back to the early 90s) generated a founder effect on the chamois population and the most probable place of origin of Pyrenean chamois BDV was estimated at coordinates 42.42 N and 1.9 E. The pathways of virus dispersion showed two main routes: the first started on the early 90s of the past century with a westward direction and the second arise in Central Pyrenees. The virus spread westward for more than 125 km and southward for about 50km and the estimated epidemic diffusion rate was about 13.1 km/year (95% HPD 5.2-21.4 km/year). The strong spatial structure, with strains from a single locality segregating together in homogeneous groups, and the significant pathways of viral dispersion among the areas, allowed to reconstruct both events of infection in a single area and of migrations, occurring between neighboring areas

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Investigating gene methylation signatures for fetal intolerance prediction

    Get PDF
    Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care

    A multimedia educational module for the restoration of single-tooth implants

    Get PDF

    Inferring pandemic growth rates from sequence data

    Get PDF
    Using sequence data to infer population dynamics is playing an increasing role in the analysis of outbreaks. The most common methods in use, based on coalescent inference, have been widely used but not extensively tested against simulated epidemics. Here, we use simulated data to test the ability of both parametric and non-parametric methods for inference of effective population size (coded in the popular BEAST package) to reconstruct epidemic dynamics. We consider a range of simulations centred on scenarios considered plausible for pandemic influenza, but our conclusions are generic for any exponentially growing epidemic. We highlight systematic biases in non-parametric effective population size estimation. The most prominent such bias leads to the false inference of slowing of epidemic spread in the recent past even when the real epidemic is growing exponentially. We suggest some sampling strategies that could reduce (but not eliminate) some of the biases. Parametric methods can correct for these biases if the infected population size is large. We also explore how some poor sampling strategies (e.g. that over-represent epidemiologically linked clusters of cases) could dramatically exacerbate bias in an uncontrolled manner. Finally, we present a simple diagnostic indicator, based on coalescent density and which can easily be applied to reconstructed phylogenies, that identifies time-periods for which effective population size estimates are less likely to be biased. We illustrate this with an application to the 2009 H1N1 pandemic

    Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer

    Get PDF
    The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock

    ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΆΠ΅Π»Π΅Π·Π° β€” ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ патогСнСтичСский Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π² ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ систСм ΠΏΡ€ΠΈ COVID-19

    Get PDF
    Relevance. The pathogenesis of COVID-19 remains one of the most pressing. The literature discusses the role of iron as a factor supporting inflammatory processes, hypercoagulability and microcirculation crisis in severe COVID-19.The aim of study. was to identify changes in iron metabolism in patients with severe COVID-19 and hyperferritinemia.Material and methods. In this study, we used a content analysis of available scientific publications and our own observations of the peculiarities of the clinical picture and laboratory parameters in patients with a severe course of COVID-19 who had hyperferretinemia at the height of the disease. The main group consisted of 30 patients hospitalized in the Department of Anesthesiology, Resuscitation and Intensive Care of N.A. Semashko City clinical Hospital No. 38 with the diagnosis COVID-19, bilateral polysegmental pneumonia, severe course and hyperferritinemia. The diagnosis of a new coronavirus infection was confirmed by visualization of bilateral viral lung lesions with chest CT-scan, positive PCR test for SARS-CoV-2 and the presence of immunoglobulins to SARS-CoV-2. The control group consisted of 20 healthy volunteers. The study evaluated the biochemical parameters of iron metabolism, fibrinolysis and markers of inflammation. Changes associated with impaired iron metabolism were assessed by the level of serum iron, transferrin, daily and induced iron excretion in the urine. Statistical processing was carried out using nonparametric methods.Results. All patients with severe COVID-19 and hyperferritinemia showed signs of impaired iron metabolism, inflammation and fibrinolysis β€” a decrease in the level of transferrin (p<0.001), serum iron (p><0.005), albumin (p><0.001), lymphocytes (p><0.001) and an increase in leukocytes (p><0.001), neutrophils (p><0.001), CRP (p><0.005), IL-6 (p><0.001), D-dimer (p><0.005), daily urinary iron excretion (p><0.005) and induced urinary iron excretion (p><0.001). Conclusions The study showed that in the pathogenesis of the severe course of COVID-19, there is a violation of iron metabolism and the presence of a free iron fraction. The appearance of free iron can be caused by damage to cells with the β€œrelease” of iron from cytochromes, myoglobin, hemoglobin, or violation of the binding of iron to transferrin, which may be the result of a change in the protein structure or violation of the oxidation of iron to the trivalent state. When assessing the degree of viral effect on the body, one should take into account the effect of various regulators of iron metabolism, as well as an assessment of the level of free iron not associated with transferrin. Keywords: new coronavirus infection, COVID-19, SARS-CoV-2, iron metabolism, free iron, ferritin, transferrin, NTBI, nontransferrin bound iron>Λ‚0.001), serum iron (pΛ‚0.005), albumin (pΛ‚0.001), lymphocytes (pΛ‚0.001) and an increase in leukocytes (pΛ‚0.001), neutrophils (pΛ‚0.001), CRP (pΛ‚0.005), IL-6 (pΛ‚0.001), D-dimer (pΛ‚0.005), daily urinary iron excretion (pΛ‚0.005) and induced urinary iron excretion (pΛ‚0.001).Conclusions. The study showed that in the pathogenesis of the severe course of COVID-19, there is a violation of iron metabolism and the presence of a free iron fraction. The appearance of free iron can be caused by damage to cells with the β€œrelease” of iron from cytochromes, myoglobin, hemoglobin, or violation of the binding of iron to transferrin, which may be the result of a change in the protein structure or violation of the oxidation of iron to the trivalent state. When assessing the degree of viral effect on the body, one should take into account the effect of various regulators of iron metabolism, as well as an assessment of the level of free iron not associated with transferrin.Β ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Вопрос ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π° COVID-19 остаСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· самых Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ…. Π’ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ обсуТдаСтся Ρ€ΠΎΠ»ΡŒ ΠΆΠ΅Π»Π΅Π·Π° Π² качСствС Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ процСссы, Π³ΠΈΠΏΠ΅Ρ€ΠΊΠΎΠ°Π³ΡƒΠ»ΡΡ†ΠΈΡŽ ΠΈ кризис микроциркуляции ΠΏΡ€ΠΈ тяТСлом Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΈ COVID-19.ЦСль исслСдования. ВыявлСниС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΆΠ΅Π»Π΅Π·Π° Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с тяТСлым Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ COVID-19 ΠΈ Π³ΠΈΠΏΠ΅Ρ€Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½Π΅ΠΌΠΈΠ΅ΠΉ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ настоящСм исслСдовании ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΊΠΎΠ½Ρ‚Π΅Π½Ρ‚-Π°Π½Π°Π»ΠΈΠ· ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΈ собствСнныС наблюдСния Π·Π° особСнностями клиничСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с тяТСлым Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ COVID-19, ΠΈΠΌΠ΅Π²ΡˆΠΈΡ… Π³ΠΈΠΏΠ΅Ρ€Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½Π΅ΠΌΠΈΡŽ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… проявлСний заболСвания. Основная Π³Ρ€ΡƒΠΏΠΏΠ° состояла ΠΈΠ· 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², госпитализированных Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ анСстСзиологии, Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΈ ΠΈ интСнсивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ БПб Π“Π‘Π£Π— «Городская Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Π° β„– 38 ΠΈΠΌ. Н.А. БСмашко» с Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Β«COVID-19, двусторонняя полисСгмСнтарная пнСвмония, тяТСлоС Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅Β» ΠΈ Π³ΠΈΠΏΠ΅Ρ€Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½Π΅ΠΌΠΈΠ΅ΠΉ. Π”ΠΈΠ°Π³Π½ΠΎΠ· Π½ΠΎΠ²ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ подтвСрТдался Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ двустороннСго вирусного пораТСния Π»Π΅Π³ΠΊΠΈΡ… ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ПЦР-тСстом Π½Π° SARS-CoV-2 ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ² ΠΊ SARS-CoV-2. Π“Ρ€ΡƒΠΏΠΏΡƒ сравнСния составили 20 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π². Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ Π΄Π°Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° биохимичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΆΠ΅Π»Π΅Π·Π°, Ρ„ΠΈΠ±Ρ€ΠΈΠ½ΠΎΠ»ΠΈΠ·Π° ΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² воспалСния. ИзмСнСния, связанныС с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΠΌΠ΅Π½Π° ΠΆΠ΅Π»Π΅Π·Π°, ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ сывороточного ΠΆΠ΅Π»Π΅Π·Π°, трансфСррина, суточной ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ экскрСции ΠΆΠ΅Π»Π΅Π·Π° с ΠΌΠΎΡ‡ΠΎΠΉ. Π‘Ρ‚Π°Ρ‚ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ осущСствляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ нСпарамСтричСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ².Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π£ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с тяТСлым Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ COVID-19 ΠΈ Π³ΠΈΠΏΠ΅Ρ€Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½Π΅ΠΌΠΈΠ΅ΠΉ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈΡΡŒ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, воспалСния ΠΈ Ρ„ΠΈΠ±Ρ€ΠΈΠ½ΠΎΠ»ΠΈΠ·Π° β€” сниТСниС уровня сывороточного трансфСррина (p<0,001), ΠΆΠ΅Π»Π΅Π·Π° (p><0,005) ΠΈ Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½Π° (p><0,001), Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² (p><0,001) Π² ΠΊΡ€ΠΎΠ²ΠΈ, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ содСрТания Π² Π½Π΅ΠΉ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² (p><0,001), Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² (p><0,001), Π‘Π Π‘ (p><0,005), Π˜Π›-6 (p><0,001), D-Π΄ΠΈΠΌΠ΅Ρ€Π° (p><0,005), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ суточной (p><0,005) ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ экскрСции ΠΆΠ΅Π»Π΅Π·Π° с ΠΌΠΎΡ‡ΠΎΠΉ (p><0,001). Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ исслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ тяТСлого тСчСния COVID-19 ΠΈΠΌΠ΅Π΅Ρ‚ мСсто Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ свободной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΆΠ΅Π»Π΅Π·Π°. ПоявлСниС свободного ΠΆΠ΅Π»Π΅Π·Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π·Π²Π°Π½ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с высвобоТдСниСм ΠΆΠ΅Π»Π΅Π·Π° ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ², ΠΌΠΈΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°, Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π»ΠΈΠ±ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ процСссов связывания ΠΆΠ΅Π»Π΅Π·Π° с трансфСррином, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ измСнСния структуры Π±Π΅Π»ΠΊΠ° ΠΈΠ»ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ процСсса окислСния ΠΆΠ΅Π»Π΅Π·Π° Π² Ρ‚Ρ€Π΅Ρ…Π²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ΅ состояниС. ΠŸΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ стСпСни вирусного влияния Π½Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΈ влияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рСгуляторов ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΡƒ уровня свободного, Π½Π΅ связанного с трансфСррином ΠΆΠ΅Π»Π΅Π·Π°. ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: новая коронавирусная инфСкция, COVID-19, SARS-CoV-2, ΠΎΠ±ΠΌΠ΅Π½ ΠΆΠ΅Π»Π΅Π·Π°, свободноС ΠΆΠ΅Π»Π΅Π·ΠΎ, Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½, трансфСррин, NTBI, nontransferrin bound iron>Λ‚0,001), ΠΆΠ΅Π»Π΅Π·Π° (pΛ‚0,005) ΠΈ Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½Π° (pΛ‚0,001), Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² (pΛ‚0,001) Π² ΠΊΡ€ΠΎΠ²ΠΈ, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ содСрТания Π² Π½Π΅ΠΉ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² (pΛ‚0,001), Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² (pΛ‚0,001), Π‘Π Π‘ (pΛ‚0,005), Π˜Π›-6 (pΛ‚0,001), D-Π΄ΠΈΠΌΠ΅Ρ€Π° (pΛ‚0,005), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ суточной (p0,005) ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ экскрСции ΠΆΠ΅Π»Π΅Π·Π° с ΠΌΠΎΡ‡ΠΎΠΉ (pΛ‚0,001).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ исслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ тяТСлого тСчСния COVID-19 ΠΈΠΌΠ΅Π΅Ρ‚ мСсто Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ свободной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΆΠ΅Π»Π΅Π·Π°. ПоявлСниС свободного ΠΆΠ΅Π»Π΅Π·Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π·Π²Π°Π½ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с высвобоТдСниСм ΠΆΠ΅Π»Π΅Π·Π° ΠΈΠ· Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ², ΠΌΠΈΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°, Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π»ΠΈΠ±ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ процСссов связывания ΠΆΠ΅Π»Π΅Π·Π° с трансфСррином, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ измСнСния структуры Π±Π΅Π»ΠΊΠ° ΠΈΠ»ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ процСсса окислСния ΠΆΠ΅Π»Π΅Π·Π° Π² Ρ‚Ρ€Π΅Ρ…Π²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ΅ состояниС. ΠŸΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ стСпСни вирусного влияния Π½Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΈ влияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рСгуляторов ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΡƒ уровня свободного, Π½Π΅ связанного с трансфСррином ΠΆΠ΅Π»Π΅Π·Π°.
    • …
    corecore