463 research outputs found

    Development of Time-Stamped Signcryption Scheme and its Application in E-Cash System

    Get PDF
    A signcryption scheme combining public key encryptions and digital signatures in one logical step can simultaneously satisfy the security requirements of confidentiality, integrity, authenticity and non-repudiation and with a cost significantly lower than that required by the traditional "signature followed by encryption" approach. This thesis presents a new generic concept of time-stamped signcryption scheme with designated verifiability. Here an authenticated time-stamp is associated with the signcrypted text which can only be verifiable by a specific person, known as the designated verifier. The time-stamp is provided by a trusted third party, namely, Time Stamping System (TSS). The scheme is proved to be secure, as, no one, not even the signcrypter or TSS can produce a valid signcrypted text on behalf of them. We analyzed the security of the proposed scheme and found that it can withstand some active attacks. This scheme is resistant against both inside and outside attacks. The security of our scheme is based upon the hardness of solving Computational Diffie Hellman Problem (CDH), Discrete Logarithm Problem (DLP) and Integer Factorization Problem (IFP). The proposed scheme is suitable in scenarios such as, on-line patent submission, on-line lottery, e-cash, e-bidding and other e-commerce applications. Also we propose an e-cash system based on our proposed time-stamped signcryption scheme which confirms the notion of e-cash securities like anonymity of the spender, unforgeablity of the digital coin, prevention of double spending

    The Cryptographic Security of the German Electronic Identity Card

    Get PDF
    In November 2010, the German government started to issue the new electronic identity card (eID) to its citizens. Besides its original utilization as a ’visual’ identification document, the eID card can be used by the cardholder to prove one’s identity at border control and to enhance security of authentication processes over the Internet, with the eID card serving as a token to reliably transmit personal data to service providers or terminals, respectively. To this end, the German Federal Office for Information Security (BSI) proposed several cryptographic protocols now deployed on the eID card. The Password Authenticated Connection Establishment (PACE) protocol secures the wireless communication between the eID card and the user’s local card reader, based on a cryptographically weak password like the PIN chosen by the card owner. Subsequently, the Extended Access Control (EAC) protocol is executed by the chip and the service provider to mutually authenticate and agree on a shared secret session key. This key is then used in the secure channel protocol, called Secure Messaging (SM). Finally, an optional protocol, called Restricted Identification (RI), provides a method to use pseudonyms such that they can be linked by individual service providers, but not across different service providers (even not by malicious ones). This thesis consists of two parts. First, we present the above protocols and provide a rigorous analysis on their security from a cryptographic point of view. We show that the Germen eID card provides reasonable security for authentication and exchange of sensitive information allaying concerns regarding its usage. In the second part of this thesis, we introduce two possible modifications to enhance the security of these protocols even further. Namely, we show how to (a) add to PACE an additional efficient chip authentication step, and (b) augment RI to allow also for signatures under pseudonyms

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ kryptografickĂœmi protokoly poskytujĂ­cĂ­ ochranu soukromĂ­, kterĂ© jsou určeny pro zabezpečenĂ­ komunikačnĂ­ch a informačnĂ­ch systĂ©mĆŻ tvoƙícĂ­ch heterogennĂ­ sĂ­tě. PrĂĄce se zaměƙuje pƙedevĆĄĂ­m na moĆŸnosti vyuĆŸitĂ­ nekonvenčnĂ­ch kryptografickĂœch prostƙedkĆŻ, kterĂ© poskytujĂ­ rozơíƙenĂ© bezpečnostnĂ­ poĆŸadavky, jako je napƙíklad ochrana soukromĂ­ uĆŸivatelĆŻ komunikačnĂ­ho systĂ©mu. V prĂĄci je stanovena vĂœpočetnĂ­ nĂĄročnost kryptografickĂœch a matematickĂœch primitiv na rĆŻznĂœch zaƙízenĂ­ch, kterĂ© se podĂ­lĂ­ na zabezpečenĂ­ heterogennĂ­ sĂ­tě. HlavnĂ­ cĂ­le prĂĄce se zaměƙujĂ­ na nĂĄvrh pokročilĂœch kryptografickĂœch protokolĆŻ poskytujĂ­cĂ­ch ochranu soukromĂ­. V prĂĄci jsou navrĆŸeny celkově tƙi protokoly, kterĂ© vyuĆŸĂ­vajĂ­ skupinovĂœch podpisĆŻ zaloĆŸenĂœch na bilineĂĄrnĂ­m pĂĄrovĂĄnĂ­ pro zajiĆĄtěnĂ­ ochrany soukromĂ­ uĆŸivatelĆŻ. Tyto navrĆŸenĂ© protokoly zajiĆĄĆ„ujĂ­ ochranu soukromĂ­ a nepopiratelnost po celou dobu datovĂ© komunikace spolu s autentizacĂ­ a integritou pƙenĂĄĆĄenĂœch zprĂĄv. Pro navĂœĆĄenĂ­ vĂœkonnosti navrĆŸenĂœch protokolĆŻ je vyuĆŸito optimalizačnĂ­ch technik, napƙ. dĂĄvkovĂ©ho ověƙovĂĄnĂ­, tak aby protokoly byly praktickĂ© i pro heterogennĂ­ sĂ­tě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    Practical backward unlinkable revocation in FIDO, German e-ID, Idemix and U-Prove

    Get PDF
    FIDO, German e-ID, Idemix and U-Prove constitute privacy-enhanced public-key infrastructures allowing users to authenticate in an anonymous way. This however hampers timely revocation in a privacy friendly way. From a legal perspective, revocation typically should be effective within 24 hours after user reporting. It should also be backward unlinkable, i.e. user anonymity cannot be removed after revocation. We describe a new, generic revocation mechanism based on pairing based encryption and apply it to supplement the systems mentioned. This allows for both flexible and privacy friendly revocation. Protocol execution takes less than a quarter of a second on modern smartcards. An additional property is that usage after revocation is linkable, allowing users to identify fraudulent usage after revocation. Our technique is the first Verifier Local Revocation scheme with backwards unlinkable revocation for the systems mentioned. This also allows for a setup resembling the well-known Online Certificate Status Protocol (OCSP). Here the service provider sends a pseudonym to a revocation provider that returns its status. As the information required for this is not secret the status service can be distributed over many cloud services. In addition to the status service our technique also supports the publication of a central revocation list

    Secure General Purpose P2P Overlay Network

    Get PDF
    Internet disaniti algselt pĂ”himĂ”ttega, et kĂ”ik otspunktid loovad teineteisega otseĂŒhendusi. TĂ€napĂ€eval on aga laiatarbelises kasutuses NAT tehnoloogia, mis aitab kĂŒll lahendada IPv4 aadresside puuduse probleemi, aga seda otseĂŒhenduste loomise vĂ”imaluse hinnaga. SeetĂ”ttu ei ole suur osa seadmeid Interneti kaudu otse kĂ€ttesaadavad. See lĂ”putöö kirjeldab turvalist p2p protokolli, mis teisi vĂ”rgusĂ”lmi releedena kasutades NATi probleemist mööda hiilida. Protokoll kasutab ĂŒldlevinud krĂŒptograafilisi vahendeid, et tagada osapoolte integreeritud autentimine ja andmeside krĂŒpteerimine ilma keerulist seadistust nĂ”udmata. Arutatakse sellega seonduvaid peamisi turvaprobleeme ja implementeeritakse protokolli funktsionaalsuse demonstreerimiseks vajalik programm.The Internet was designed to provide end-to-end connectivity between all the connected hosts. Due to the depletion of IPv4 addresses and widespread deployment of NAT, a lot of devices are no longer directly reachable over the Internet. This paper describes a secure peer-to-peer protocol that is capable of working around NAT by using unrestricted peers as relays. The protocol builds on common cryptographic tools to provide seamless authentication and encryption without requiring difficult key exchange procedures or in- advance key signing by using the hash of the peer's public key as his identity on the network. Some of the main security issues are discussed and a proof-of-concept prototype is implemented to demonstrate the functionality of the protocol

    A Group Signature Scheme Based on an RSA-Variant

    Get PDF
    The concept of group signatures allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed by a designated entity. In this paper we propose a new group signature scheme that is well suited for large groups, i.e., the length of the group’s public key and of signatures do notdepend on the size of the group. Our scheme is based on a variation of the RSA problem called strong RSA assumption. It is also more efficient than previous ones satisfying these requirements

    Location Privacy in VANETs: Improved Chaff-Based CMIX and Privacy-Preserving End-to-End Communication

    Get PDF
    VANETs communication systems are technologies and defined policies that can be formed to enable ITS applications to provide road traffic efficacy, warning about such issues as environmental dangers, journey circumstances, and in the provision of infotainment that considerably enhance transportation safety and quality. The entities in VANETs, generally vehicles, form part of a massive network known as the Internet of Vehicles (IoV). The deployment of large-scale VANETs systems is impossible without ensuring that such systems are themselves are safe and secure, protecting the privacy of their users. There is a risk that cars might be hacked, or their sensors become defective, causing inaccurate information to be sent across the network. Consequently, the activities and credentials of participating vehicles should be held responsible and quickly broadcast throughout a vast VANETs, considering the accountability in the system. The openness of wireless communication means that an observer can eavesdrop on vehicular communication and gain access or otherwise deduce users' sensitive information, and perhaps profile vehicles based on numerous factors such as tracing their travels and the identification of their home/work locations. In order to protect the system from malicious or compromised entities, as well as to preserve user privacy, the goal is to achieve communication security, i.e., keep users' identities hidden from both the outside world and the security infrastructure and service providers. Being held accountable while still maintaining one's privacy is a difficult balancing act. This thesis explores novel solution paths to the above challenges by investigating the impact of low-density messaging to improve the security of vehicle communications and accomplish unlinkability in VANETs. This is achieved by proposing an improved chaff-based CMIX protocol that uses fake messages to increase density to mitigate tracking in this scenario. Recently, Christian \etall \cite{vaas2018nowhere} proposed a Chaff-based CMIX scheme that sends fake messages under the presumption low-density conditions to enhance vehicle privacy and confuse attackers. To accomplish full unlinkability, we first show the following security and privacy vulnerabilities in the Christian \etall scheme: linkability attacks outside the CMIX may occur due to deterministic data-sharing during the authentication phase (e.g., duplicate certificates for each communication). Adversaries may inject fake certificates, which breaks Cuckoo Filters' (CFs) updates authenticity, and the injection may be deniable. CMIX symmetric key leakage outside the coverage may occur. We propose a VPKI-based protocol to mitigate these issues. First, we use a modified version of Wang \etall's \cite{wang2019practical} scheme to provide mutual authentication without revealing the real identity. To this end, a vehicle's messages are signed with a different pseudo-identity “certificate”. Furthermore, the density is increased via the sending of fake messages during low traffic periods to provide unlinkability outside the mix-zone. Second, unlike Christian \etall's scheme, we use the Adaptive Cuckoo Filter (ACF) instead of CF to overcome the effects of false positives on the whole filter. Moreover, to prevent any alteration of the ACFs, only RUSs distribute the updates, and they sign the new fingerprints. Third, mutual authentication prevents any leakage from the mix zones' symmetric keys by generating a fresh one for each communication through a Diffie–Hellman key exchange. As a second main contribution of this thesis, we focus on the V2V communication without the interference of a Trusted Third Party (TTP)s in case this has been corrupted, destroyed, or is out of range. This thesis presents a new and efficient end-to-end anonymous key exchange protocol based on Yang \etall's \cite{yang2015self} self-blindable signatures. In our protocol, vehicles first privately blind their own private certificates for each communication outside the mix-zone and then compute an anonymous shared key based on zero-knowledge proof of knowledge (PoK). The efficiency comes from the fact that once the signatures are verified, the ephemeral values in the PoK are also used to compute a shared key through an authenticated Diffie-Hellman key exchange protocol. Therefore, the protocol does not require any further external information to generate a shared key. Our protocol also does not require interfacing with the Roadside Units or Certificate Authorities, and hence can be securely run outside the mixed-zones. We demonstrate the security of our protocol in ideal/real simulation paradigms. Hence, our protocol achieves secure authentication, forward unlinkability, and accountability. Furthermore, the performance analysis shows that our protocol is more efficient in terms of computational and communications overheads compared to existing schemes.Kuwait Cultural Offic
    • 

    corecore