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Abstract

The concept of group signatures allows a group member to sign messages
anonymously on behalf of the group. However, in the case of a dispute, the
identity of a signature’s originator can be revealed by a designated entity. In
this paper we propose a new group signature scheme that is well suited for
large groups, i.e., the length of the group’s public key and of signatures do not
depend on the size of the group. Our scheme is based on a variation of the RSA
problem called strong RSA assumption. It is also more efficient than previous
ones satisfying these requirements.

Keywords. Group signature scheme for large groups, digital signature scheme,
revocable anonymity.

1 Introduction

In 1991 Chaum and van Heyst put forth the concept of a group signature scheme
[16]. Participants are group members, a membership manager, and a revocation
manager1. A group signature scheme allows a group member to sign messages
anonymously on behalf of the group. More precisely, signatures can be verified with
respect to a single public key of the group and do not reveal the identity of the signer.
The membership manager is responsible for the system setup and for adding group

∗A preliminary version of this paper appeared in [8].
†Part of this work was done while this author was with ETH Zurich.
‡Part of this work was done while this author was with Ubilab, UBS, Switzerland.
1In the original proposal, the membership manager and the revocation manager were a single entity

called group manager.



members while the revocation manager has the ability to revoke the anonymity of
signatures.

A group signature scheme could for instance be used by an employee of a large
company to sign documents on behalf of the company. In this scenario, it is sufficient
for a verifier to know that some representative of the company has signed. Moreover,
in contrast to when an ordinary signature scheme would be used, the verifier does
not need to check whether a particular employee is allowed to sign contracts on
behalf of the company, i.e., he needs only to know a single company’s public key.
A further application of group signature schemes is electronic cash as was pointed
out in [29]. In this scenario, several banks issue coins, but it is impossible for shops
to find out which bank issued a coin that is obtained from a customer. Hence, the
central bank plays the role of the membership and the revocation manager and all
other banks issuing coins are group members. The identification as a group member
is another application, e.g., in order to get access to a restricted area [25].

Various group signature schemes have been proposed so far. However, in the
schemes presented in [5, 16, 17, 33] the length of signatures and/or the size of the
group’s public key depend on the size of the group and thus these schemes are not
suitable for large groups. Only in the two schemes presented in [9, 10] (and the blind
versions thereof [29]) are the length of signatures and the size of the group’s public
key independent of the number of group members2. The schemes presented in [25]
satisfy the length requirement as well, but these are inefficient.

In this paper we propose a new group signature scheme for which the length
of signatures and the size of the group’s public key do not depend on the size of
the group. The security of our scheme relies on a variant of the RSA assumption,
called strong RSA-assumption and proposed in [1, 22], the discrete logarithm assump-
tion the Diffie-Hellman decision assumption. Compared to the solutions in [9, 10],
our scheme is based on a different number-theoretic assumption and is also more
efficient.

2 The Model and an Approach for a Realization

2.1 The Model

A group signature scheme consists of the following algorithms:

setup : An interactive setup protocol between the membership manager, the group
members, and the revocation manager. The public output is the group’s public
key Y. The private outputs are the individual secret keys xG for each group
member, the secret key xM for the membership manager, and the secret key xR
for the revocation manager.

sign : A signature generation algorithm that on input a message m, an individual
group member’s secret key xG, and the group’s public key Y outputs a signa-
ture σ.

verify : A verification algorithm that on input a message m, a signature σ, and the
group’s public key Y returns 1 if and only if σ was generated by any group
member using sign on input xG, m, and Y.

2The other schemes [26, 32] with the same properties were shown to be flawed [28, 30].
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tracing : A tracing algorithm that on input a signature σ, a message m, the revoca-
tion manager’s secret key xR, and the group’s public key Y returns the identity
ID of the group member who issued the signature σ together with an argument
arg of this fact.

vertracing : A tracing-verification algorithm that on input a signature σ, a mes-
sage m, the group’s public key Y, the identity ID of a group member, and an
argument arg outputs 1 if and only if arg was generated by tracing with re-
spect to m, σ, Y, xR.

The following informally stated security requirements must hold:

Unforgeability of signatures: Only group members are able to sign messages. Further-
more, they must only be able to sign in such a way that, when the signature is
(later) presented to the revocation manager, he will be able to reveal the iden-
tity of the signer.

Anonymity of signatures: It is not feasible to find out the group member who signed a
message without knowing the revocation manager’s secret key.

Unlinkability of signatures: It is infeasible to decide whether two signatures have been
issued by the same group member or not.

No framing: Even if the membership manager, the revocation manager, and some of
the group members collude, they cannot sign on behalf of non-involved group
members.

Unforgeability of tracing verification: The revocation manager cannot accuse a signer
falsely of having originated a given signature, e.g., by issuing an argument arg
such that vertracing outputs 1 if input another ID than the one of the signer.

The efficiency of a group signature scheme can be measured by the size of the public
key Y, the length of signatures, and by the efficiency of the algorithms sign , verify ,
setup , tracing , and vertracing .

2.2 The Approach of Camenisch and Stadler

The core idea of the schemes proposed in [9, 10] is the following. A group’s public
key consists of the membership manager’s public key of an ordinary digital signa-
ture scheme and the revocation manager’s public key of a probabilistic encryption
scheme. A user, say Alice, who wants to join the group chooses a random secret
key xG and computes her membership key z := f(xG), where f is a suitable one-
way function. Alice commits to z (for instance by signing it) and sends z and her
commitment to the membership manager M who returns her a membership certificate
u := sig M(z).

To sign a message m on behalf of the group, Alice encrypts z using the public
key of the revocation manager (let c denote this ciphertext) and issues a signature of
knowledge3 [9] that she knows some values x̃ and ũ such that ũ = sig M(f(x̃)) holds

3These are message dependent non-interactive arguments derived from 3-move honest-verifier zero-
knowledge proofs of knowledge using the Fiat-Shamir heuristic [20, 21].
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and that f(x̃) is encrypted in c. The verification of such a group-signature is done by
checking this signature of knowledge. The revocation manager can easily revoke the
anonymity of a group-signature by decrypting c and forwarding this value to the
membership manager.

To realize a concrete scheme along these lines, one has to find a suitable one-way
function f and a suitable signature scheme that yield an efficient signature of knowl-
edge for the values x̃ and ũ. In [9, 10], two proposals based on different number
theoretic assumption were put forth. The first assumption is that given e, g, and an
RSA-modulus n, it is hard to find integers u and x such that ue ≡ gx + 1 (mod n)

holds, where g is an element of large order. The second one is that it is hard to find
integers u and x with |x| < |n|/2 such that u3 ≡ x5+v (mod n)when given a suitably
chosen integer v and an RSA-modulus n.

3 Number Theoretic Assumptions

In this section we describe the assumptions the security of our group signature
schemes is based upon. In particular, we will introduce an alternative to the assump-
tions discussed in the previous section that allows the construction of a new group
signature scheme and will show that this assumption can be reduced a variant of the
RSA assumption.

Recently, Fujisaki and Okamoto [22] proposed a variation of the well-known RSA
assumption [36]: the so-called strong RSA assumption. Let `g be a security parameter
and let G(`g) denote the set of groups whose order has length `g and consists of two
prime factors of length (`g − 2)/2.

Problem 1 (Strong RSA Problem). Given G and z ∈ G/{±1}, find a pair (u, e) ∈ G×Z
such that ue = z and e > 1.

Let K denote a key-generator that on input 1`g outputs a G ∈ G(`g) and a z ∈ G/{±1}.

Assumption 1 (Strong RSA Assumption). There exists a probabilistic algorithm K such
that for all probabilistic polynomial-time algorithms A, all polynomials p(·), all sufficiently
large `g

Pr[z = ue ∧ e > 1 : (G, z) := K(1`g), (u, e) := A(G, z)] <
1

p(`g)
.

In an implementation of the key-generator K, where G is chosen to be Z∗n and n is an
RSA modulus, the parameter z should not be chosen as a power in Z.

Let us focus on a slight modification of this assumption. Let k, `1, `2 < `g, and
ε > 1 be further security parameters. For simplicity let denote ˜̀ := ε(`2 + k) + 1. Let
beM(G, z) = {(u, e) | z = ue, u ∈ G, e ∈ {2`1 −2`2 , . . . , 2`1 +2`2 }, e ∈ primes}, where
G ∈ G(`g) and z ∈ G.

Problem 2 (Modified Strong RSA Problem). Given G, z ∈ G, and M ⊂M(G, z)with
|M| = O(`g) find a pair (u, e) ∈ G×Z such that ue = z, e ∈ {2`1− 2

˜̀
, . . . , 2`1+ 2

˜̀
}, and

(u, e) /∈M.
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Assumption 2 (Modified Strong RSA Assumption). There exists a probabilistic algo-
rithm K such that for all probabilistic polynomial-time algorithms A, all polynomials p(·),
all sufficiently large `g, all M ⊂M(G, z) with |M| = O(`g), and suitably chosen `1, `2, k,
and ε

Pr[z = ue ∧ e ∈ {2`1− 2
˜̀
, . . . , 2`1+ 2

˜̀
} ∧ (u, e) /∈M : (G, z) := K1(1

`g),

(u, e) := A(G, z, M)] <
1

p(`g)
.

A similar assumption was proposed by Barić and Pfitzmann [1], i.e., they require e

to be a prime but do not have any restriction an the sizes of the exponents. Possible
choices for G are discussed in Section 5. Let us remark that, given u, e, ũ, and ẽ with
z = ue = ũẽ and gcd(e, ẽ) = 1, it is easy to find an element ū satisfying z = ūeẽ

using the extended Euclidean algorithm. However, as eẽ 6∈ {2`1 − 2
˜̀
, . . . , 2`1 + 2

˜̀
}

for suitable chosen parameter `g, `1, `2, ε, and k the integer eẽ does not satisfy the
range constraint, i.e., ε(`2 + k) + 1 < `1 must hold.

Adapting methods from [38], it can be shown that Assumption 1 implies As-
sumption 2. That is, given a probabilistic polynomial-time algorithm A2 that solves
Problem 2 we construct a probabilistic polynomial-time algorithm that solves Prob-
lem 1. Let G and z ∈ G be the given instance of Problem 1. Then choose arbitrary
primes e1, . . . , et for t = O(`g) satisfying the range conditions and set z̃ := ze1···et ,
ũi = z̃1/ei := ze1···ei−1ei+1···et for i = 1, . . . , t, and M := {(ui, ei) | i ∈ {1, . . . , t} }.
Run A2 on input G, z̃, M and get (ũ, ẽ) such that ũẽ = z̃ and ẽ ∈ {2`1 − 2`2 , . . . , 2`1 +

2`2 }. Now we have ũẽ = z̃ = ze1···et . Because of the range condition and since
all ei’s are prime, gcd(ẽ, e1 · · · et) = 1 holds. Thus two integers a and b such
that aẽ + b(e1 · · · et) = 1 can be found efficiently and we can compute the pair
(u := zaũb, ẽ) which is a solution of the given instance of Problem 1. Hence Prob-
lem 2 is at least as hard as Problem 1.

Besides the strong RSA assumption, our group signature scheme relies further
on the discrete logarithm (DL) assumption and so-called Diffie-Hellman decision
(DHD) assumption. Since the latter is not so well known, we state it explicitly. Let
G ∈ G(`g), n′ be the divisor of G’s order of length `g − 2. Define the two sets

DH(G) := {(g1, y1, g2, y2) ∈ G4 | ord(g1) = ord(g2) = n′, log
g1

y1 = log
g2

y2}

Q(G) := {(g1, y1, g2, y2) ∈ G4 | ord(g1) = ord(g2) = ord(y1) = ord(y2) = n′}

of Diffie-Hellman and arbitrary 4-tuples, respectively.

Assumption 3 (Diffie-Hellman Decision Assumption). There exists a probabilistic al-
gorithm K such that for all probabilistic polynomial-time algorithms A and all sufficiently
large `g, the two probability distributions

Pr
[
a = 1 : G := K(1`g), T ∈R DH(G), a := A(T)

]
and

Pr
[
a = 1 : G := K(1`g), T ∈R Q(G), a := A(T)

]
are computationally indistinguishable.
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Note that in the case G = Z∗n, where n is an RSA-modulus, the DHD assumption
does not hold. The Jacobi-symbol, which can be computed efficiently without know-
ing the factorisation of n, leaks information about log

g1
y1 and log

g2
y2. For in-

stance, if (g1|n) = (g2|n) = (y2|n) = −1 and (y1 |n) = 1, then log
g1

y1 6= log
g2

y2.
This problem is overcome if G = 〈g〉 is defined to be a subgroup of Z∗n with (g|n) = 1.

4 Building Blocks

In this section we introduce the building blocks for our scheme borrowing notation
from [9, 10]. These building blocks are signature schemes derived from statistical
(honest-verifier) zero-knowledge proofs of knowledge using the Fiat-Shamir heuris-
tic [20, 21] and are therefore called “signatures based on a proof of knowledge”, SPK
for short. Usually, the security of such building blocks is argued by showing that
the underlying interactive protocols is secure and then by assuming that “nothing
bad happens” when the verifier is replaced with a collision resistant hash-function.
This approach has been formalised as the random oracle model (e.g., see [2, 34])4.
For the signer/prover security means that the protocol should be zero-knowledge
and for the verifier it means that the protocol should be a proof of knowledge. An
example of this method is the Schnorr signature scheme [37] that is derived from an
honest-verifier zero-knowledge proof of knowledge of the discrete logarithm of the
signer’s public key.

In the following we describe four building blocks. The first one shows the knowl-
edge of a discrete logarithm, the second the equality of two discrete logarithms, the
third the knowledge of one out of two discrete logarithms, and the fourth the knowl-
edge of a discrete logarithm that lies in a certain interval. Of course, these building
blocks can be combined in a natural way (e.g., see [10]). The building blocks have
in common that the prover does not know the order of G, i.e., the verifier chooses a
group G = 〈g〉 of large order such that only he can know the order. However, the
order of magnitude 2`g of the group’s order shall be known to both. Furthermore,
the verifier chooses a second generator h and proves that g and h have order p ′q ′,
where p ′ and q ′ are two primes of length (`g − 2)/2 and that he does not know
log

g
h. How this can be done is discussed in the next section. Since the group order

is not publicly known, we define the discrete logarithm of an y ∈ G to the base g to
be any integer x such that y = gx holds. Finally, we assume a collision resistant hash
functionH : {0, 1}∗ → {0, 1}k (e.g., k ≈ 160).

Before we define the building blocks let us explain the notation with the follow-
ing example [9]: a signature based on a proof of knowledge, denoted

SPK
{
(α, β) : y = gα ∧ z = gβhα

}
(m),

is used for ‘proving’ the knowledge of the discrete logarithm of y to the base g and
of a representation of z to the bases g and h, and in addition, that the h-part of this
representation equals the discrete logarithm of y to the base g. This is equivalent
to the knowledge of a pair (α, β) satisfying the equations on the right side of the

4Recently, it has be shown that this approach does not work for general protocols [11], i.e., there exist
protocols (although specially designed ones) which are secure in the random oracle model but yield an
insecure signature scheme. However, it is believed that the approach is still valid for the kind of protocols
considered here.
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colon. In the sequel, we use the convention that Greek letters denote the elements
whose knowledge is proven and all other letters denote elements that are known to
the verifier.

4.1 Showing the Knowledge of a Discrete Logarithm

The building block presented in this subsection is an adaption of the protocols for
proving the knowledge of a discrete logarithm [14, 37] to the setting with a group of
unknown order due to Girault [23, 24]. A consequence of this setting is that the usual
knowledge extractor for showing that a protocol is a proof of knowledge does not
work: the knowledge extractor does not know the group’s order either and hence
cannot compute inverses modulo this group order and therefore not extract the wit-
ness. Poupard and Stern [35] give a security proof for this adaption in a weaker
security model, i.e., they show that if an attacker was able to carry out the proto-
col for almost all public keys, then he could also compute the discrete logarithm of
the prover’s public key. Since the latter is assumed to be impossible the protocol is
concluded to be secure.

An alternative way of proving the security was proposed by Fujisaki and
Okamoto [22]. They show that under Assumption 1 the knowledge extractor is able
to extract witnesses without knowing the group’s order. We will stick to this method
in this paper.

Definition 1. Let ε > 1 be a security parameter. A pair (c, s) ∈ {0, 1}k ×
{−2`g+k, . . . , 2ε(`g+k)} satisfying c = H(g‖y‖gsyc‖m) is a signature of a message
m ∈ {0, 1}∗ with respect to y and is denoted SPK{(α) : y = gα}(m).

An entity knowing the secret key x ∈ {0, 1}`g such that x = log
g

y can compute such
a signature (c, s) = SPK{(α) : y = gα}(m) of a message m ∈ {0, 1}∗ by

• choosing r ∈R {0, 1}ε(`g+k) and computing t := gr,

• c := H(g‖y‖t‖m), and

• s := r− cx (in Z).

In [10] it is analysed how much information (t, c, s) gives about x depending on the
choice of ε.

Lemma 1. If Assumption 1 holds, then the interactive protocol corresponding to SPK{(α) :
y = gα}(m) is a honest-verifier statistical zero-knowledge proof of knowledge of the discrete
logarithm of y.

Proof. To prove that the protocol is statistical honest-verifier zero-knowledge for any
ε > 1, we have to show that an honest verifier, i.e., one who chooses the challenge c

uniformly random from {0, 1}k, can simulate a protocol-conversation that is statisti-
cally indistinguishable from a protocol-conversation with the prover. The following
constitutes a simulator the verifier could use to do so.

The simulator randomly chooses c′ from {0, 1}k and s ′ from {0, 1}ε(`g+k) ac-
cording to the uniform distribution. Using these values, the simulator computes
t ′ = gs

′
yc
′
. To prove that these values are statistical indistinguishable from a view

of a protocol run with the prover, it suffices to consider the probability distribution
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PS(s) of the response s of the prover and the probability distribution PS ′(s
′) accord-

ing to which the simulator chooses s′. The latter is the uniform distribution over
{0, 1}ε(`g+k).

If the prover chooses r uniformly at random from {0, 1}ε(`g+k) and the secret key
randomly from {0, 1}`g according to any distribution, we have

PS(s)


= 0 for s < −(2k − 1)(2`g − 1)

≤ 2−ε(`g+k) for − (2k − 1)(2`g − 1) ≤ s < 0

= 2−ε(`g+k) for 0 ≤ s ≤ 2ε(`g+k) − (2k − 1)(2`g − 1)

≤ 2−ε(`g+k) for 2ε(`g+k) − (2k − 1)(2`g − 1) < s ≤ (2ε(`g+k) − 1)

= 0 for (2ε(`g+k) − 1) < s.

This holds for any distribution of c over {0, 1}k. Thus we have∑
α∈Z
|PS(α) − PS ′(α)| ≤

2(2k − 1)(2`g − 1)

2ε(`g+k)
≤ 2k+`g+1

2ε(`g+k)
≤ 2

(2(`g+k))(ε−1)

For `g and k as stated in the theorem, the last term can be expressed as one over
a polynomial in the input length, and therefore the two distributions are statistical
indistinguishable.

Let us show that it is a proof of knowledge. Given the fact that the equivalent
protocol (e.g., [37]) for groups of known order is a proof of knowledge it is sufficient
two show that the knowledge extractor can compute the witness once he has found
two accepting triples. Let (t, c, s) and (t, c̃, s̃) be these two accepting triples. Since
t = gsyc = gs̃yc̃ holds we have yc−c̃ = gs̃−s. Let d := gcd(c − c̃, s̃ − s). Using the
extended Euclidean algorithm we obtain values u and v such that uc−c̃

d
+ v s̃−s

d
= 1

and hence we have

g = gu
c−c̃
d
+v s̃−s

d = (guyv)
c−c̃
d .

If d < c − c̃ then guyv is a c−c̃
d

-root of g. Since this contradicts Assumption 1 we
must have d = c− c̃, hence c− c̃ divides s̃− s, and we can compute the integer

x :=
s̃− s

c− c̃

such that gx = y.

4.2 Showing the Equality of Two Discrete Logarithms

The next SPK is an adoption of a protocol for showing the equality of two discrete
logarithms given in [15] to the setting in which the group’s order is unknown.

Definition 2. Let ε > 1 be a security parameter. A pair (c, s) ∈ {0, 1}k ×
{−2`g+k, . . . , 2ε(`g+k)} satisfying c = H(g‖h‖y1‖y2‖yc1gs‖yc2hs‖m) is a signature of
a message m ∈ {0, 1}∗ with respect to y1 and y2 and is denoted

SPK{(α) : y1 = gα ∧ y2 = hα}(m).

Let x ∈ {0, 1}`g be the secret key of the signer such that y1 = gx and y2 = hx holds.
Then a signature (c, s) = SPK{(α) : y1 = gα ∧ y2 = hα}(m) of a message m ∈ {0, 1}∗
can be computed as follows.

8



• Choose r ∈R {0, 1}ε(`g+k) and compute t1 := gr, t2 := hr,

• c := H(g‖h‖y1‖y2‖t1‖t2‖m), and

• s := r− cx (in Z).

The security properties and proofs of this building block follow from the ones of the
previous building block and from [15].

4.3 Showing the Knowledge of One Out of Two Discrete Loga-
rithms

The realization of the following SPK of one out of two discrete logarithms is an adop-
tion of a protocol given in [19].

Definition 3. Let ε > 1 be a security parameter. A tuple (c1, c2, s1, s2) ∈ {0, 1}k ×
{0, 1}k × {−2`g+k, . . . , 2ε(`g+k)} × {−2`g+k, . . . , 2ε(`g+k)} satisfying c1 ⊕ c2 =

H(g‖h‖y1‖y2‖yc11 gs1‖yc22 hs2‖m) is a signature of a message m ∈ {0, 1}∗ with respect
to y1 and y2 and is denoted

SPK{(α, β) : y1 = gα ∨ y2 = hβ}(m).

Without loss of generality, we assume that the signer knows x ∈R {0, 1}`g such that
y1 = gx holds. Then a signature SPK{(α, β) : y1 = gα ∨ y2 = hβ}(m) of a message
m ∈ {0, 1}∗ can be computed as follows.

• Choose r1 ∈R {0, 1}ε(`g+k), r2 ∈R {0, 1}ε(`g+k), and c2 ∈R {0, 1}k and compute
t1 := gr1 , t2 := hr2yc22 ,

• c1 := c2 ⊕H(g‖h‖y1‖y2‖t1‖t2‖m),

• s1 := r1 − c1x (in Z), and s2 := r2.

The security properties and proofs of this building block follow from the ones of the
previous building blocks and from [19].

4.4 Showing That a Discrete Logarithm Lies in an Interval

The last building block is based on a proof that the secret the prover knows lies in a
given interval. It is related to protocols presented in [13, 22].

Definition 4. Let ε > 1 be a security parameter and let `1 < `g and `2 denote lengths. A
pair (c, s) ∈ {0, 1}k × {−2`2+k, . . . , 2ε(`2+k)} satisfying c = H(g‖y‖gs−c2`1yc‖m) is a
signature of a message m ∈ {0, 1}∗ with respect to y and is denoted

SPK
{
(α) : y = gα ∧ (2`1 − 2ε(`2+k)+1 < α < 2`1 + 2ε(`2+k)+1)

}
(m).

Such a signature of a message m ∈ {0, 1}∗ with respect to a public key y ∈ G can be
computed as follows if an integer x ∈ {2`1 , . . . , 2`1 + 2`2 } is known such that y = gx

holds:

• choose r ∈R {0, 1}ε(`2+k), and compute t := gr,

9



• c := H(g‖y‖t‖m), and

• s := r− c(x− 2`1) (in Z).

Lemma 2. If Assumption 1 holds and ε > 1 then the interactive protocol corresponding to
SPK
{
(α) : y = gα ∧ (2`1 − 2ε(`2+k)+1 < α < 2`1 + 2ε(`2+k)+1)

}
(m) is a statistical

honest-verifier zero-knowledge proof of knowledge of an integer x such that x ∈ {2`1 −
2ε(`2+k)+1, . . . , 2`1 + 2ε(`2+k)+1} and y = gx.

Sketch. The proof that the protocol is statistical honest-verifier zero-knowledge is
similar as for Lemma 1.

Let us consider the proof-of-knowledge part. As in the proof of Lemma 1 the
knowledge-extractor gets two accepting triples (t, c, s) and (t, c̃, s̃) from which he
can similarly compute the integer

x := 2`1 +
s̃ − s

c− c̃

such that gx = y since c − c̃ must divide s̃ − s if Assumption 1 holds. It remains to
show that this integer lies in the claimed bounds. Due to Definition 4 the integers s

and s̃ must lie in {−2ε(`2+k), . . . , 2ε(`2+k)} and since the smallest value that c− c̃ can
have is 1 the computed x must lie in {2`1 − 2ε(`2+k)+1, . . . , 2`1 + 2ε(`2+k)+1}.

Note that ε(`2 + k) + 2 < log (ord(g)) ≈ `g should hold in order to indeed restrict
the size of log

g
y.

5 The Proposed Scheme

In this section we propose a realization of a group signature scheme the security
of which is based on Assumptions 2 and 3. The basic idea of the scheme is the
following. The membership manager chooses a group G = 〈g〉 and a group element
z such that Assumptions 2 and 3 hold. Furthermore, he chooses a second generator
h such that log

g
h is unknown. Computing discrete logs in G to the bases g, h,

or z must be infeasible. Finally, computing roots in G must be feasible only to the
membership manager, i.e., he should the only one who knows the order of G. The
revocation manager chooses his secret key x and publishes y = gx.

Each group member chooses a prime e randomly in a determined range together
with the membership manager. Only the group member learns e and stores it as
a secret key. A membership certificate issued by the membership manager is an
element u ∈ G such that ue = z holds. Here we slightly deviate from the approach
of Camenisch and Stadler, i.e., the membership certificate and the membership key
are the same number. As a consequence, the issuing of certificates must be realized in
a way that the membership manager is not able to learn the group member’s secret
key e.

A signature of a message m by a group member consists of a triple (a, b, d) ∈ G3

and an SPK of integers u and e such that

• the pair (a, b) is an encryption of u under the revocation manager’s public key
(which is part of the group public key)
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• d commits to e,

• e lies in the necessary range, and

• ue = z holds.

The membership manager can reveal the identity of a signer by asking the revocation
manager to decrypt (a, b).

The following paragraphs describe the new scheme in detail and provide security
and efficiency analyses.

5.1 The Setup of the Scheme

The setup procedure of our scheme consists of two phases. In the first phase the
membership manager and the revocation manager construct the group’s public key
and choose their secret keys. This is described in this subsection. In the second phase
of the setup, the group members choose their membership secret keys and get their
membership certificates. This phase is described in the next subsection.

The membership manager chooses a group G = 〈g〉 and two random elements
z, h ∈ G with the same (large) order (≈ 2`g ) such that Assumptions 2 and 3 hold. He
publishes z, g, h, G, and `g and proves that g, h, and z have the same order which
is non-prime, of the order of magnitude 2`g , and non-smooth (how this can be done
will be discussed later). The membership manager must further prove that z and h

where chosen at random. The revocation manager chooses his secret key x randomly
in {0, . . . , 2`g − 1} and publishes y = gx as his public key. Finally, a hash function
H : {0, 1}∗ −→ {0, 1}k and security parameters ˆ̀, `1, `2, and ε are set. An example for
choosing the parameters ε, ˆ̀, `g, `1, and `2 is given in Section 5.6.

A possible choice of G = 〈g〉 is a subgroup of Z∗n such that (g|n) = 1. In this
case the membership manager chooses two large random primes p and q (≈ 2`g/2)
of form p = 2p ′ + 1 and q = 2q ′ + 1, where p ′ and q ′ are primes as well, such that
p, q 6≡ 1 (mod 8) and p 6≡ q (mod 8) holds. He keeps p and q secret and publishes
n := pq. For proving that n if indeed the product of two safe primes the method
described in [7] could be used. Verifying that an element a has (large) order at least
p ′q ′ in Z∗n and Jacobi symbol 1 can done by anyone: one needs only to test whether
a 6≡ ±1 (mod n) and gcd(a−1, n) = 1 holds. An alternative choice of G is a suitable
elliptic curve (e.g., see [27]).

5.2 The Registration of a Group Member

To become a group member Alice chooses a random prime ê ∈R {2 ˆ̀−1, . . . , 2
ˆ̀
− 1}

and e ∈R {2`1 , . . . , 2`1 + 2`2 − 1} such that ê, e 6≡ 1 (mod 8) and ê 6≡ e (mod 8),
Alice computes ẽ := eê and z̃ := zê, commits to ẽ and z̃ (for instance by signing
them), sends ẽ, z̃, and their commitments to the membership manager, and carries
out the interactive protocols corresponding to

W := SPK
{
(α, β) : zẽ = z̃α ∧ z̃ = zβ ∧

(2`1 − 2ε(`2+k)+1) < α < (2`1 + 2ε(`2+k)+1)
}
(z̃) ,
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with the membership manager (cf. previous section). Furthermore, Alice proves the
the membership manager that ẽ is the product of two primes (e.g., using the methods
described in [4, 39]). Using the same arguments as for the building blocks in the
previous section, it can be seen that the protocol corresponding to W convinces the
membership manager that Alice has chosen ẽ and z̃ correctly.

The membership manager computes u := z̃1/ẽ and sends u to Alice, who checks
that z̃ = uẽ holds (which is equivalent to z = ue). The membership manager stores
(u, ẽ, z̃) together with Alice’s identity and her commitments to ẽ and z̃ in a group-
member list. Finally, Alice stores the pair (u, e) as her membership key.

Of course, ˆ̀, `1, and `2 must be chosen such that ẽ cannot be factored (cf. Sec-
tion 5.6) and that Assumption 2 holds. In particular `2 � `1 − (ˆ̀ + `1)/4 must hold
(cf. [18]).

5.3 The Generation of a Group-Signature

Let us first define a group-signature and then consider how a group member can
compute such a signature.

Definition 5. Let ε, `1, and `2 be security parameters such that ε > 1, `2 < `1 <

`g, and `2 <
`g−2

ε
− k holds. A group-signature sign (xG, (g, h, y, z), m) of a mes-

sage m ∈ {0, 1}∗ is a tuple (c, s1, s2, s3, a, b, d) ∈ {0, 1}k × {−2`2+k, . . . , 2ε(`2+k)} ×
{−2`g+`1+k, . . . , 2ε(`g+`1+k)}× {−2`g+k, . . . , 2ε(`g+k)}×G3 satisfying

c = H(g‖h‖y‖z‖a‖b‖d‖zcbs1−c2
`1

/ys2‖as1−c2
`1

/gs2‖acgs3‖dcgs1−c2
`1

hs3‖m).

Remark 1. Such a group-signature would be denoted

SPK
{
(η, ϑ, ξ) : z = bη/yϑ ∧ 1 = aη/gϑ ∧ a = gξ ∧ d = gηhξ ∧(

2`1 − 2ε(`2+k)+1 < η < 2`1 + 2ε(`2+k)+1
)}
(m).

To sign a message m ∈ {0, 1}∗ on the group’s behalf, a group member Alice

• chooses an integer w ∈R {0, 1}`g , computes a := gw , b := uyw, and d := gehw,

• chooses r1 ∈R {0, 1}ε(`2+k), r2 ∈R {0, 1}ε(`g+`1+k), and r3 ∈R {0, 1}ε(`g+k), and
computes

• t1 := br1(1/y)r2 , t2 := ar1(1/g)r2 , t3 := gr3 , t4 := gr1hr3 ,

• c := H(g‖h‖y‖z‖a‖b‖d‖t1‖t2‖t3‖t4‖m),

• s1 := r1 − c(e− 2`1) (in Z), s2 := r2 − cew (in Z), and s3 := r3 − cw (in Z).

The resulting signature of m is (c, s1, s2, s3, a, b, d). It can easily be verified that it
satisfies the verification condition given in Definition 5.
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5.4 Verifying Signatures, Tracing, and Verifying Tracing

A signature (c, s1, s2, s3, a, b, d) of a message m can be verified by checking the equa-
tion stated in Definition 5.

To reveal the originator of a given signature σ := (c, s1, s2, s3, a, b, d) of a message
m, the revocation manager first checks its correctness. He aborts if the signature is
not correct. Otherwise he computes u ′ := b/ax, issues a signature

P := SPK
{
(α) : y = gα ∧ b/u ′ = aα

}
(u ′‖σ‖m)

(see Section 4.2), and reveals arg := u ′‖P. He then looks up u ′ in the group-member
list and will find the corresponding u, the group member’s identity and his/her
commitment to ẽ and z̃.

Checking whether the revocation manager correctly revealed the originator of a
signature σ = (c, s1, s2, s3, a, b, d) of a message m can simply be done by verifying
σ and arg.

5.5 Security Analysis

Before discussing the security requirements described in Section 2.1 let us have a
closer look at the interactive protocol corresponding to the generation of a group-
signature.

Theorem 3. The interactive protocol corresponding to the generation of a group signature
is a honest-verifier statistical zero-knowledge proof of knowledge of a membership key and
certificate provided that Assumption 1 holds. Furthermore, the pair (a, b) encrypts the cer-
tificate under the revocation manager’s public key y.

Sketch. Let (t1, t2, t3, t4, c, s1, s2, s3) and (t1, t2, t3, t4, c̃, s̃1, s̃2, s̃3) be two accepting
tuples that the knowledge extractor obtained. Thus we get the four equations

zc̃−c = bs1−s̃1+(c̃−c)2
`1
(1/y)s2−s̃2 (1)

1 = as1−s̃1+(c̃−c)2
`1
(1/g)s2−s̃2 (2)

ac̃−c = gs3−s̃3 (3)

dc̃−c = gs1−s̃1+(c̃−c)2
`1

hs3−s̃3 (4)

Under Assumption 1 we can compute x3 := (s3− s̃3)/(c̃−c) (in Z) such that a = gx3

holds (cf. Lemma 1). Using that we can rewrite Equation 4 as

(dh−x3)c̃−c = gs1−s̃1+(c̃−c)2
`1

and compute (since under Assumption 1 c̃− c divides s1 − s̃1 ) the integer

x1 =
s1 − s̃1

c̃− c
+ 2`1

such that d = gx1hx3 and x1 ∈ {2`1 − 2ε(`2+k)+1, . . . , 2`1 + 2ε(`2+k)+1} holds (cf.
Lemma 2). Similarly, from Equation 1 we can compute (under Assumption 1) the
integer

x2 =
s2 − s̃2

c̃− c
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such that z = bx1

yx2
and ax1 = gx2 holds. Since a = gx3 we must have gx1x3 = gx2

and hence yx1x3 = yx2 and

z =
bx1

yx2
=

bx1

(yx3)x1
=

( b

yx3

)x1
.

Thus we can conclude that (x1, b
yx3
) is a valid membership key-pair. Furthermore,

(a, d) is an unconditional binding commitment to x1 whereas (a, b) is an uncondi-
tional binding commitment to b

yx3
. Since the log

g
h is supposed to be unknown, the

value x1 is computationally hidden. However, the revocation manager knows the
integer log

g
y and is therefore able to compute the second element of that pair as

b

alog
g
y
=

b

yx3
.

Let us now informally discuss the security properties of the proposed group signa-
ture scheme.

Unforgeability of signatures: Due to Theorem 3 the tuple (a, b, d) is an unconditionally
binding commitment to a valid membership key-pair (e, u). Under Assump-
tion 2 it is infeasible to compute such a pair without knowing the group’s order
(even if other pairs are already known; cf. Section 3). Therefore the member-
ship key-pair must stem from an execution of the registration protocol with the
membership manager and only group members can sign. Furthermore, Theo-
rem 3 shows that the revocation manager will be able to reveal the membership
key of the signer by decrypting (a, b) which is sufficient for the membership
manager to identify the originator of a signature.

Anonymity of signatures: Assuming that the functionH is a random function, the val-
ues c, s1, s2, and s3 do statistically not reveal any knowledge. Hence, deciding
whether a signature (c, s1, s2, s3, a, b, d) originates from a group member with
public key u′ requires to decide whether log

g
a = logy

b
u′ . If one was able to

decide this efficiently, this would violate Assumption 3.

Unlinkability of signatures: Linking two signatures, i.e., deciding whether two signa-
tures (c, s1, s2, s3, a, b, d) and (c′, s′1, s

′
2, s
′
3, a
′, b′, d′) originate from the same

group member requires to decide whether log
g
a
a′ = logy

b
b′ = logh

d
d′ , as

c, s1, s2, s3 and c′, s′1, s
′
2, s
′
3 do not reveal useful knowledge. Under Assump-

tion 3 this is infeasible and hence signatures are unlinkable.

No framing: Given Theorem 3, signing in the name of a group member with certificate
u and requires the knowledge of log

u
z. This can only be obtained by either fac-

tor the value ẽ that the membership manager received from the group member
during registration or by computing the discrete logarithm of z to the base u.
Both is assumed to be infeasible.

Unforgeability of tracing verification: The revocation manager has to issue an SPK de-
noted P as evidence that he decrypted the pair (a, b) correctly. Since (a, b) is
a unconditionally binding commitment, the revocation manager has no means
to prove that a membership key different from the one of the originator is en-
crypted in (a, b).
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5.6 Efficiency Analysis

With ε = 9/8, `g = ˆ̀ = 1200, `1 = 860, `2 = 600, and k = 160, the signature gener-
ation and verification need little less than 13 ′000 modular multiplications modulo a
1200-bit modulus in average, and the signature is about 1 KBytes long. Compared to
the most efficient scheme given in [9], our scheme is about three times more efficient
and signatures are about three times shorter when choosing the same modulus for
both schemes. However, the registration protocol is less efficient in our scheme. Sig-
natures could made shorter without compromising the security of the scheme if the
parameter w in the signing procedure is chosen from a smaller domain, e.g., {0, 1}`2
instead of {0, 1}`g .

6 Conclusion

It is worthwhile noting that it is possible to realize blind group signatures using the
techniques given in [6, 31], which are much more efficient than the blind versions of
[9, 10] given in [29]. Splitting the membership and/or the revocation manager can
be done by applying the techniques of [3, 12], respectively (see also [10]). As the
signature generation algorithm was derived from an interactive protocol, a group
identification scheme (also called identity escrow [25]) is obtained by using this pro-
tocol for identification.
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