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Abstract
The Internet was designed to provide end-to-end connectivity between all the connected

hosts. Due to the depletion of IPv4 addresses and widespread deployment of NAT, a lot of

devices are  no longer  directly reachable  over the Internet. This paper describes a secure

peer-to-peer protocol that is capable of working around NAT by using unrestricted peers as

relays.  The  protocol  builds  on  common  cryptographic  tools  to  provide  seamless

authentication and encryption without requiring difficult key exchange procedures or in-

advance key signing by using the hash of the peer's  public  key as his  identity on the

network. Some of the main security issues are discussed and a proof-of-concept prototype

is implemented to demonstrate the functionality of the protocol. 
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Introduction
The Internet in it's current state is  fundamentally broken [1][2][3] due to the widespread

deployment of Network Address Translation (NAT), which makes end-to-end connections

between  many of the hosts impossible without extra configuration. In addition, a lot of

commonly  used  protocols  do  not  provide  any  authentication  or  encryption which  is

becoming increasingly relevant considering the sensitivity of information being sent over

the Internet. 

The purpose  of  this  paper  is  to  create  a  secure  peer-to-peer  protocol (and a  prototype

implementation) that  works  in  OSI  layer  5/6  and is  capable  of  working  around  the

connectivity  issues  created  by  NAT  by  using  peers  with  unrestricted  connectivity  as

transparent  relays.  The  protocol  will enable  the  secure  communication  between  all

participating nodes  even when some of them are restricted by NAT or firewalls  while

requiring no special configuration of the routers and no central servers that could become a

bottleneck. The protocol can be extensible to carry any user data, provide authentication of

the peers and  encryption of the user data. 

While  many  protocols for traversing NAT, creating peer-to-peer  networks and securing

user data already exist, none of them provide reasonable security without central servers

and without complicated key exchange processes. The protocol designed in this paper will

attempt to create a secure network that's easy to use and requires very little configuration

from the  end  user.  It  could  then  be  used  for  a  wide  range  of  purposes  from instant

messaging and file sharing to building SSH-like security tunnels. 

The work focuses  mainly  on the security issues related to sending information over the

public Internet and establishing connections to other peers on the network. The advanced

routing, path finding and data flow optimization is not the main focus of this paper and can

be researched further as a separate topic. 
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Chapter 1: Networking and security fundamentals

1.1 OSI model

The OSI model [4], formally known as Open Systems Interconnection Reference Model,

categorizes  the  different  functions  of  a  open  communications  network  into a  set  of

standardized abstraction layers. There are seven layers in total: 

1. Layer 1: physical layer

2. Layer 2: data link layer

3. Layer 3: network layer

4. Layer 4: transport layer

5. Layer 5: session layer

6. Layer 6: presentation layer

7. Layer 7: application layer

For the Internet, the network layer represents the IP addressing system that is used to route

packets globally around the Internet.  A single IP address should identify a single host on

the Internet and the host should be reachable by that address.  The transport layer can be

used to refer to protocols on top of IP such as TCP and UDP that deal with multiplexing

multiple connections in between a pair of IP addresses. Finally, the session management

and state tracking part of the TCP protocol is linked to the session layer in the OSI model. 

1.2 Network Address Translation

The length of an IPv4 address is 32bits. This means that there are exactly 232 possible IP

addresses and not all of them are usable.  232 is  less than the number of computers in the

world which means that not enough IP exist to connect every device in the world. 

Sending a packet over the Internet requires the recipient  to  have an IP address and the

sender knowing that IP address. If the sender is expecting a reply (which is usually the

case) then the sender must also have an IP address that is included in the sent packet.

Therefore if one of the parties does not have an IP address then they cannot communicate. 

To fix the problem of some of the hosts not having an IP, parts of the IP address space were

designated  as  private  IP ranges [5] (10.0.0.0/8,  172.16.0.0/12  and 192.168.0.0/16) that

were to be not unique and not globally routable. Most of the hosts could then be allocated

an IP address from one of the private ranges and all the hosts within the same private

network could easily communicate with each other. 
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As long as the hosts with a private IP only need to communicate within the same private

network, everything works. But usually the hosts also need to contact hosts outside their

private network (such as web servers and other public services). Since they don't have a

globally routable IP address they could not get an answer even if they would manage to

send a request. 

A solution called Network Address Translation (NAT) was invented to fix that problem. A

single public IP address is assigned to the router connecting the entire private network and

all traffic  is routed through that single "gateway router". The  gateway would  process all

packets going out through it, replacing the source IP of the packets with the public IP of the

gateway (Illustration  1).  It  would  then  process the  incoming  packets,  changing the

destination IP to the private IP of the real destination host. 

Illustration 1: NAT IP translation [6]

Different connections could be distinguished by their source and destination port numbers

and everything would work.. as long as the connection was initiated from inside the private

network.  Incoming  connections  to  the  hosts  behind  the  gateway  however,  would  be

impossible  since  the  gateway would  have  no  way of  knowing  which  host  is  the  real

destination. That way NAT fixes the Internet but also breaks a fundamental [7] part of it –

end to end connectivity between hosts. 

1.3 Peer-to-Peer networking & Distributed Hash Tables

Peer-to-peer (P2P) networking is a communication model where every peer is equal from

the protocol's point of view.  It  is used for many purposes such as sharing storage space,

messaging, decentralized load distribution etc. The Bittorrent protocol has proven that P2P

networks can be very scalable and resilient to network blocking and Skype has proven that
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Public address    Private address 
220.16.16.5         192.168.50.50
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P2P networks can be reliable enough for real time communications. The best part of P2P

networks is that they are very easy to set up – no dedicated server is needed [8], the peers

simply need to be able to connect to each other. 

Since P2P networks usually have a lot of peers, the peers need a way to find resources in

the network in a efficient way. Some of the networks (Kad, Bittorrent) use a system called

Distributed  Hash  Tables [9] (DHT)  for  looking  up  data  on  the  network.  The  DHT

principles can be easily explained by an example of a typical Bittorrent search. 

Every  peer  in  the network generates  a  pseudo random  fixed length identifier  for itself

(peer_id). When creating a new torrent, the contents of the torrent are hashed and the fixed

length hash (for example SHA1 has a length of 160bits) will become the identifier of the

torrent (info_hash). To start sharing a torrent on the network the sharing peer will first look

for peers with a peer_id closest to the info_hash of the torrent it wants to share. The search

is recursive with every level of the search containing peers with a closer peer_id [10]. Once

a set of peers with close enough peer_ids has been found, the sharing peer will save it's

contact information with the found peers. 

To  look  up  a  torrent  on  the  network,  all  the  searcher  needs  to  know  is  the  torrent's

info_hash. The searcher will do exactly the same search as described above and find the

same peers with a peer_id close to the info_hash being searched. It will then receive the

contact information of the sharing peers from the peers that were found in the search. 

Because of the randomness of the peer_ids and info_hashes, the searches are automatically

distributed  between different  parts  of  the  network  so that  no part  of  the  network  gets

overloaded. It is also very difficult to disrupt the network without disabling a large part of

the network at the same time which makes it resistant to outages. 

1.4 Symmetric and asymmetric cryptography

1.4.1 Public key cryptography

The most common and intuitive way of securing data is through using shared secrets such

as passwords. However using pre-shared secrets is not the only way of securing data. 

Public key cryptography is a system where each party has special key pair that consists of a

public key and a private key. As the names suggest, the private key is a key that must only

be known to the owner of the key while the public  key can and should be known by

everyone. The keys work so that if one key of the pair encrypts some data then only the
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other key of the pair can decrypt it and vice-versa. This has two useful options [11]: 

• If some data is encrypted using someone's public key then only the person who has

access to the corresponding private key will be able to decrypt the data. 

• If some data can be decrypted using someone's public key then it could only have

been encrypted by someone having access to the corresponding private key. 

1.4.2 Digital signatures

Digital signatures are a way for a owner of a private key to authenticate a certain piece of

data. Anyone with a copy of the data, the corresponding public key and the signature will

then be able to mathematically verify [12] that the data was authenticated by the owner of

the  private key. 

Creating a signature works by hashing the data using a commonly known hash function

(such  as  SHA1)  and  encrypting  the  hash  using  a  private  key.  The  hash  can  later  be

decrypted using the public key, which indicates that the signature was created by the owner

of the private key. To verify the hash, the verifier must hash the same data using the same

hash function and compare the result with the hash that was decrypted using the public key.

If the hashes match then the signature is valid and the data is authenticated. 

1.4.3 Hash-based message authentication codes (HMAC)

HMAC is  a  way to  verify  the  integrity  and  authenticity  of  a  piece  of  data.  It  is  the

symmetric analogue of a digital signature as it uses a shared secret instead of a key pair  for

authentication. 

To create a HMAC [13] the  data is hashed using a  common hash function, the resulting

hash is XORed with a pre-shared secret and the result is once again hashed. To verify a

HMAC the verifier will simply create a HMAC of the same data using the same secret and

if the HMACs match then the message is authenticated (real implementations are a little

more complicated but the idea is the same). 
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1.4.4 Encryption

Encryption  is  the  process  of  turning  some readable  data  (plaintext)  into  a  unreadable

ciphertext.  The  purpose  of  encryption  is  to  protect  the  data  from  being  read  by

unauthorized  parties [14].  Encryption  is  done  using  a  symmetric  secret  key  or  a

asymmetric key and can be later reversed (decryption) using the same symmetric key or

the counterpart of the asymmetric key. 

The encrypted data is protected as long as the key is protected (assuming the algorithm is

not broken). However if the key is leaked then all data encrypted using that key is exposed

as well. This is especially a problem if an attacker is able to collect the encrypted data for a

period of time and later discover the key. 

1.4.5 Diffie-Hellman key exchange

Diffie-Hellman [15] key exchange is a method for two or more parties to agree on a shared

secret using only plain text messages even in the presence of an eavesdropper. The method

uses the discrete logarithm problem as it's core but the details are outside the scope of this

paper. The Diffie-Hellman key exchange is only secure if the eavesdropper cannot modify

the communications. Otherwise additional authentication of the messages is required to

protect against man-in-the-middle attacks. 
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Chapter 2: Connection establishment
The main problem that must be solved in this thesis is connecting to a remote host that may

be behind NAT or firewall. Reaching such host directly is impossible unless there has been

prior  contact and ports are already open. It can't  be  assumed that  this is always the case

which means an alternative way of connecting to the remote host is needed. 

Having a central server for managing routes between hosts  can be unreliable, costly and

does not scale [16] well.  However the problem of sharing resources in a distributed and

scalable way has already been invented. DHT networks do not require a central server and

are very tolerant of network failures. By considering nodes themselves as resources a DHT

network can be built and used for searching routes to the remote host. 

2.1 Working around NAT

Fortunately the central part of DHT model is unaffected by NAT and firewalls. During the

initialization of every node the node runs a self search and stores his contact info in  his

neighboring nodes. To do this the node sends out packets to his neighbors using the UDP

protocol. The firewall/NAT must then create a port mapping for the outgoing connection to

allow responses to the packets sent out. Since UDP is stateless, it is a lot harder to block

[17] incoming  UDP  connections  because  the  firewall  can't  distinguish  between  new

connections and existing connections. 

The nodes can keep using these same UDP sessions for  communicating and the  same

connections can  also  be  used  to  relay  communications. Any  node  can  then  use  the

neighboring nodes as proxies to connect to the node behind firewall (Illustration 2). While

the firewalled node is able to connect to at least one neighboring node and establish a bi-

directional connection, the firewalled node can be reached through that neighbor. 

Illustration 2: reaching remote via neighbor

Simply tunneling data through unknown third parties  (or over  the public Internet)  is  a

potential  security issue and requires  additional protection from the possible attacks. All
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data can be freely [18] logged and modified which means that  the described connection

would be vulnerable to man-in-the-middle attacks. To avoid that, the connection would

need some kind of integrity checks and encryption. 

2.2 Routing

The only thing the initiator of the connection knows about the remote host is it's  id.  The

initiator doesn't know the remote node's IP address or port number neither does it know if

the remote node is behind a firewall. 

The initiator can use the only thing he knows about the remote – it's id. The id always has a

fixed length which is the same length as every other  id on the network.  This makes it  a

perfect node's identifier on the DHT network mentioned earlier. Using the id as the DHT

network  identifier  allows  the  use of the  DHT network  to  look  up the  remote  node's

information using only the node's id. 

There are three cases that can happen: 

1. the initiator finds the remote node and can connect to it, 

2. the remote node is behind a firewall but a neighbor is found who has a connection 
to the remote node, 

3. no neighbors can be found that have a connection to the remote. 

If  the initiator can connect directly then there's no problem. Otherwise we need to find a

neighbor that has a connection to the remote node and use him as a relay. This can be done

during the same search that we use to find the remote node with a simple modification to

the usual DHT search. The search results should simply include whether the replying node

has a direct connection to the searched node. The last case – not finding any neighbors in a

reasonable  search  depth  –  indicates  that  the  searched  node  can't  make  a  outbound

connection or is not in the DHT network. 

2.3 Security

Some of the security risks the data must be protected against when traversing proxies [19]

and insecure networks include: 

1. host id spoofing – sending data using someone else's id as the sender id, 

2. eavesdropping – intercepting data that is meant for someone else, 

3. man-in-the-middle attacks (MITM) – modifying data that is on route to someone 
else, 

4. packet data corruption – unexpected changes to data meant for someone else. 
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These problems are common in all connections going over the Internet and there is already

a solutions for fixing most of them in the form of TLS. Unfortunately TLS only works with

TCP which can be easily blocked by firewalls. There's also an UDP variant of TLS called

Datagram TLS  (DTLS) but  it's  a complicated RFC with  the latest version (1.2) having

almost no  implementations  (and  no  Java  implementations/bindings at  the  time  of  this

writing). DTLS also wouldn't work well through ad-hoc proxies since the IP addresses and

port numbers could randomly change but the DTLS identifies [20] the remote host by it's

IP and port combination. 

Since we only need a small subset of TLS features we can easily implement them in Java

using  Java's  built  in  JCA [21] (Java  Cryptography  API).  More  precisely  we  need

authenticated integrity checks to prevent MITM, id spoofing and corruption and encryption

to prevent eavesdropping. 

To be able to do any kind of authentication we must establish some kind of public key

infrastructure. For obvious reasons the usual CA approach [22] does not work. We need a

way to easily create new identities, be able to share them by a simple id and also protect

the ids against spoofing. There's a simple way of linking the ids to identities in a way that

makes spoofing the  id very difficult.  If an asymmetric key pair defines the identity, the

fixed length id can be easily and deterministically calculated from the public key using a

standard hash function such as SHA1. This approach is already used by widely known and

proven protocols  such as  SSH and PGP.  The public  keys  can be distributed  using  the

existing DHT network. 

Using the idea of calculating the peers' ids from concrete public keys makes it a lot easier

to  use common cryptographic tools. Once a route to the remote peer and his public key

have  been  found from the  DHT network  the  initiator can  create  a  reasonably  secure

encrypted tunnel to the peer. The first step is doing the standard Diffie-Hellman (DH) key

exchange to agree on a session key. Using a DH session key with symmetric encryption

instead of simply sending the data to the peer using public key encryption is required for

perfect forward secrecy [23] –  protecting the contents of previous sessions even in the

event of a private key being exposed. 

The only problem with  DH key exchange is  that  it's  susceptible to  man-in-the-middle

attacks.  If an attacker can modify the packets sent between the parties doing the DH key

exchange then he can also impersonate both parties. This allows the attacker to do a DH

key exchange with both of the them and become a transparent proxy. The attacker can then
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decrypt and modify all the data without neither parties noticing the proxy. 

This attack is only possible because the DH key exchange doesn't authenticate the parties

doing the key exchange. Since the peer initiating the session knows the id of the peer he's

trying to establish a session with, he can also  get the peer's public key from the DHT

network. Since a peer's id is calculated from his public key, the received public key can be

checked. Both peers can then require the DH key exchange packets to be signed using by

the same keys that the  id is calculated from. If the DH key exchange packets are signed

then the attacker cannot impersonate the peers and the attack will become impossible. 

Once the session key is agreed on, it can be used for encrypting further communications as

well as for creating the HMAC integrity checks. Any symmetric encryption algorithm will

do  as  long  as  both  peers  support  it.  This  solves  both  the  eavesdropping  and  packet

corruption issues. This is also the last step of the tunnel setup. 

2.4 Similar solutions

The idea of using UDP for passing firewalls and NAT is not new. There are many protocols

and applications already using a similar approach. This chapter will give a brief overview

of some of the other protocols and their weaknesses. 

2.4.1 Interactive Connectivity Establishment

A lot of existing UDP NAT traversal techniques are using or are similar to RFC 5245 –

Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator

(NAT)  Traversal  for  Offer/Answer  Protocols.  The  purpose  of  ICE is  the  same as  this

protocol's  –  to  enable  connections  between  hosts  behind  NAT (and  firewalls  blocking

incoming  connections).  It  combines [24] Session  Traversal  Utilities  for  NAT (STUN;

protocol for detecting NAT and obtaining one's public IP address) and  Traversal Using

Relay NAT (TURN; protocol for using relays to pass packets between hosts behind NAT)

and first tries to establish a direct connection between hosts by first detecting their public

IP addresses and if that fails it uses a relay as a fallback. 

While ICE is a open standard and STUN/TURN servers are not bound to any single service

provider,  it  still  has  the  problem of  requiring  the  use  of  special  servers  to  be able  to

function  at  all.  Protocols  that  require  such  non  commodity resources  for  it's  core

functionality  will  always  remain  dependent  on  these  resources  and  will  fail  once  the

resources become unavailable. 
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2.4.2 Skype

Skype is a well known peer-to-peer VOIP network that has proven to work well even with

a lot of it's peers behind NAT. Unlike ICE that uses special STUN/TURN servers Skype

designates some of it's peers as special "supernodes" [25]. Any node can be a supernode as

long as it's publicly reachable and has enough free resources.  Other peers can use these

supernodes a lot like STUN/TURN servers to coordinate and relay communications (see

Illustration 3). 

The communication is also encrypted, allegedly using a combination of AES and RSA.

Since it's a proprietary protocol and the details have never been published it's hard to tell

how secure the encryption of Skype really [26] is. Also Skype is not entirely P2P – all of

the  authentication  and login  management  is  coordinated  by a  small  number  of  Skype

servers whose addresses are hardcoded into the Skype executable. 

Illustration 3: Skype supernodes (source: [27])

2.4.3 Brunet

Brunet  is  a  structured  P2P  system  that  uses  DHT  and  recursive  routing  to  create

connections in the presence of NAT, firewalls and Internet outages. It is very similar to the

idea presented in this paper but there are some important differences. 

Brunet  has a strong focus [28] on routing and  it  maintains a lot  more detailed routing

tables. It uses that routing table to send messages mainly through existing connections and

only occasionally creates new shortcut connections (as seen in Illustration 4). This allows

for  faster  connection  establishment  but  unless  a  shortcut  is  created  the  latency of  the
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connection is equal to the sum of latencies along the chosen path.  In contrast this paper

recommends using the DHT network mostly for finding the peers  to create a new direct

connection and uses existing connections only when the peer is not directly reachable due

to connectivity constraints. 

Illustration 4: Brunet routing (source: [29])

In the security aspect, Brunet has optional SSL support and it can build a secure overlay.

However the   resource identifiers of Brunet are not directly connected to the SSL keys

which means additional key authority is required to coordinate security. 

15



Chapter 3: Proof of concept

3.1 Overview of the prototype

To prove that the idea of using a secure P2P network to bypass NAT is possible and fairly

easy to implement a prototype implementation was written. 

The prototype was supposed to implement the minimum set of functionality to be able to

handle  most  of  the  use  cases  of  the  proposed  network.  In  the  process  of  writing  the

prototype  a  binary protocol  for  transmitting data  between the nodes  was invented and

tested. It turned out that writing the prototype and the protocol in parallel is a great way of

finding errors and shortcomings in the protocol since everything can be tested quickly and

all the problems come up early in the design process. 

The implementation was written in Java programming language using plain UDP sockets,

Java Cryptography API (JCA) and utilities from Apache Commons. Luckily JCA was able

to provide all the cryptographic tools required for the implementation of the prototype and

the final solution doesn't require any external dependencies besides the mentioned Apache

Commons libraries. It can be easily built using maven and works with both Oracle's Java

SE 7 and OpenJDK7. 

The code for the prototype is available at  https://bitbucket.org/mbakhoff/whatever. This

paper describes the protocol as it is implemented in prototype version 1.1. 

3.2 Overview of the functionality

For the peers to be able to securely and reliably communicate (whether directly or through

relaying peers) the protocol would need to provide the following functionality:

1. detecting and retransmitting lost packets

2. exchanging public keys 

3. authenticating peers using digital signatures

4. using DHT queries to find routes to a peer by his network id

5. negotiating the session key using Diffie-Hellman key exchange

6. encrypting packets and verifying the integrity of encrypted packets

7. relaying packets through peers already having a direct connection to the destination

There were three cases that were considered when writing the prototype: 

1. both peers can be directly reached,

2. one of the peers can be directly reached, 
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3. both of the peers are behind NAT

3.3 Description of the prototype and program flow

Illustration 5: general program flow

3.3.1 Bootstrapping

The program flow of the prototype is  very simple.  The general overview is  shown on

Illustration  5.  The first  step is  always  bootstrapping the  network.  Bootstrapping is  the

process of connecting to a known node in the peer-to-peer network. The new node can find

routes to other peers and use it to advertise routes to itself through the bootstrap nodes. To

bootstrap the program must know a route to at least one peer that can be directly reached.

A route is the combination of the peer's IP address, port number and network id. Any other

peer  can  be  a  bootstrap  because  the  bootstrap  process  is  like  establishing any  other

connection inside the network. 

For  complete  functionality  the  joining  peer  should  push  it's  public  key  and  routes  to

himself  to  his (key-wise)  neighbors after  bootstrapping  the  network.  That  can  be

accomplished by  doing a self search on the DHT network and connecting to the closest

results. Similar  to  the Kademlia [30] protocol,  the network uses  XOR to calculate  the

distance between nodes. After leaving his contact info to the the nodes found through self

search any other  node on the network  could  find routes to the peer by simply  doing a

search for him on the network and contacting the same peers as the original did. 

The described self search and publish functionality is not implemented in the prototype.

The purpose of the prototype is to demonstrate NAT traversal and a common bootstrap
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node is all that's required for it. However the protocol implemented by the prototype would

easily allow the implementation of recursive DHT search and the described self search

could be added without changing the wire level protocol. 

3.3.2 Finding routes

After bootstrapping the network the peer can start the process of looking up routes to it's

destination. All that's required is the network  id of the destination peer.  Looking up the

routes can be done by sending DHT queries to already discovered peers. To keep the search

efficient the searching node must only send queries to peers whose network id is closest to

the network id of the destination. When doing a recursive DHT search, each level of search

would need to include peers whose  id is less than the  ids of the last search level.  Each

queried node would also return only the peers whose id is closest to the search target. In

the case of the prototype implementation the amount of results is limited to 30 peers. 

The responses to DHT queries contain a set of routes to the destination. There are two

kinds of routes  – direct  routes  and routes through proxies.  A direct  route includes  the

network  id and  socket  address  of  the  resulting  peer.  The  socket  addresses  is  the

combination  of  an  IP address  and  a  port  number.  Both  IPv4  and  IPv6  addresses  are

supported.  The types  of  addresses  can  be  easily distinguished in  the protocol  by their

length in bytes – IPv4 addresses are always 32bit  long while  IPv6 addresses are always

128bit long. 

3.3.3 Detecting broken routes

After routes to the destination have been found the most complicated process begins. The

search results should include one or more direct routes (IPv4, IPv6 etc) and one or more

proxy routes. At first there's no way of knowing which ones are usable or fastest. All found

routes must be tried until one that works is found. The only way to see if a route is up is to

try to use it and that requires  getting a confirmation from the destination. UDP does not

provide [31] that functionality. 

The protocol implements a simple system for tagging packets and acknowledging received

packets. To enable acknowledgments each data packet sent must contain a transmission id

(integer serial number). When the peer receives a data packet he must send a confirmation

to  the  sender.  If  there  no  other  data  to  be  sent  besides  the  confirmation,  an  "empty"

confirmation packet is  sent containing only authentication data and the transmission id

being confirmed. In this case the transmission id of the confirmation packet is left empty
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(value set  to zero).  Otherwise  the  confirmation  is  bundled  with  the  response  and  no

separate confirmation packet is sent (Illustration 6). The transmission ids don't have to be

globally unique – since every packet is also tagged with sender's id, transmission ids can be

distinguished by the related senders' ids. 

Illustration 6: confirmation packet structure (conceptual)

As long as all the packets are correctly tagged with transmission ids and all peers honor the

confirmation  system,  the  sending peer  should  get  confirmations  for  every  successfully

delivered packet.  That  makes  it  possible  to  track  the  state  of  every  packet,  to  create

timeouts for every packet and to detect dropped packets by confirmation timeouts. Being

able to detect dropped packets  can be used to check  if a peer is reachable by the route

being tested. 

3.3.4 Selecting the route

Once the program has a set of potential routes to a peer and a way of detecting broken

routes,  it need to find a route it can use. There are several ways to to that but let's just

consider a naive and easy to implement solution and a smarter, more difficult solution. 

The easy solution is to simply try each route sequentially. To be sure that random packet

loss doesn't affect the results several retries can be made before giving up on a route. If no

confirmations are received even after multiple tries it should be safe to assume that the

route is broken and try the next route. However it turns out that this approach has  some

downsides. 

Firstly if several broken routes are tried with multiple retries each having a long timeout,

there might be a significant delay until a good route is even tested. Secondly, there is the

problem  of  the  remote  peer  having  to  find  a  reverse  route  for  sending  back  the

confirmations. If the remote peer hasn't already found a working route, he would also have

to run the same route selection algorithm where each route is tried sequentially. This could

mean that once the remote peer finds a good route  the original packet has already timed

out. Fortunately the remote peer can use the same proxy that forwarded him the packet to

relay the responses  back to  the original  sender.  This  wouldn't  be  the  best  route  if  the
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original has ports open and could the reply could be sent directly (creating a hole in NAT

for further use). 

Currently the prototype implements the simple route selection described above but there's

room for  improvement.  Theoretically  the  routes  could  be  tested  in  parallel.  The  same

packet  could  be  sent  through  all  potential  routes  and  the  route  that  would  return  the

confirmation in the shortest amount of time would be selected for future communications.

If non of the routes get a response the routes could be retried the same was as with the

simpler solution and there would be no downsides.  The implementation of this would of

course  be  a  lot  more  difficult  as  the  sending  peer  would  need  to  track  multiple

transmissions,  create  events  for  the  transmissions  timing  out  or  succeeding  and

progressively rank different routes to every peer. 

3.3.5 Public key exchange

Even the simple route selection algorithm will eventually manage to find a working route if

there is one. When that happens the initiator can start a conversation with the new peer by

sending him a KeyPush packet containing our public key. The response to KeyPush should

be a packet containing the public key of the responding peer. Sending one's public key as

the first message is only necessary on first contact but it's a good idea to start every new

connection with a KeyPush because there's no way of knowing whether the peer still has

the sender's key cached from the previous contact. 

Ensuring that the receiving peer has the sender's public key is critical because the public

key is used to check the digital signatures in messages that are sent before a session key

has been set up. Not only does the signature protect the packet against corruption [32], it

also is the only valid way for a peer to authenticate itself to another peer besides using a

HMAC created with a valid session key.  If the receiving peer does not have the sender's

public key then it can't verify the sender any of the sender's messages which means it also

can't send any confirmations or responses to the sender. From the sender's perspective no

confirmations simply means that the route is broken and establishing the connection will

eventually fail. 

3.3.6 Session establishment

After the KeyPush is sent as the first packet and the response with the peer's public key has

been received, several things can happen. If the initiator plans to send a lot of data to the

peer or it wishes to use the peer as a proxy to itself, then they should establish a session
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key that it  can be used to encrypt the packets using symmetric encryption and also to

calculate the message HMACs. Otherwise, if the initiator could simply continue sending

the simple unencrypted but signed messages. For example this would happen if the initiator

simply wishes to do a DHT query for the routes to another peer or to request the public

keys of other peers. 

To establish the session key the initiator would simply send a Diffie-Hellman request to the

peer  and  receive  the  response  with  all  the  information  required  to  complete  the  key

exchange. The packets are protected by digital signatures [33] like the KeyPush packet was

thus eliminating the main weakness of Diffie-Hellman –  man-in-the-middle attacks.  The

Diffie-Hellman key exchange allows two or more parties to agree upon a mutual secret

using plain text messages even in the presence of a eavesdropper. This shared secret can

then be  used  as  the  session  key for  encrypting  and verifying  further  messages.  Using

symmetric cryptography enabled by a shared secret is also good for performance [34] since

asymmetric operations are usually much slower than their symmetric counterparts. Lastly,

great care must be taken to dispose the public key after the session has ended. If a session

key is reused, all previous sessions encrypted using that session key are a risk of being

exposed. 

Establishing  the  session  is  the  last  step  in  the  protocol's  connection  establishment

functionality. After that the route can be used in any way necessary to carry the user data in

a  secure  manner.  The  protocol  can  also  be  easily  extended  to  contain  other  types  of

messages.  Extending  the  protocol  is  explained  in  the  section  "3.4  Description  of  the

protocol". 

3.4 Description of the protocol

This chapter will explain the protocol on the byte level.  It will give an overview of the

principles of  building a packet, the details of encoding different data structures and the

detailed descriptions of different packet types. 

The protocol assumes that 1 byte equals 8 bits. Most of the data is encoded in big-endian

[35] (network byte order) unless specified otherwise.  All  simple data structures have a

predefined fixed length  and all  variable  length fields  are  length-prefixed.  The variable

length  data  structures  are  divided  into  three categories:  ShortData, which  is  an int16

prefixed variable length data field, Data, which is an int32 prefixed variable length data

field and  strings, which are  UTF-8 encoded and int16  length  prefixed.  The detailed byte
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level description of each packet of the protocol is included in Appendix A: Specification of

the packets types. 

The  final  UDP  payload  data  is  a  chunk  of  structured  data  that  consists  of  several

components  (called packets)  that  are  nested  inside  each other.  There  are  two kinds  of

packets that make up the final payload: terminal packets that contain the main data (such as

public keys, user data etc) and container packets that contain some metadata and wrap

another packet. For example, the Diffie-Hellman exchange request is a terminal packet that

should be wrapped inside a container packet which contains the transmission id which in

turn is wrapped inside a container packet that has a digital signature for all the wrapped

data. 

The outermost packet of a payload must always be either SessionData (encryption+hmac)

or SignedData (digital signature) packet. Both of these packets cryptographically guarantee

the identity of the sender. All packets without strong identification data must be dropped.

Another  requirement  is  that  at  least  one  of  the  inner  container  packets  must  be  a

TransmissionTag  packet  to  support  the  packet  confirmations  scheme.  Without  the

confirmations the peers would have no way of detecting broken routes and lost packets. 

Since each packet starts with an unique opcode (container id), new functionality can be

easily added by creating new packet types. The only requirement is that the opcode must

be unique and both the sender and receiver must implement the packet type. 

3.5 Summary of the proof of concept

The protocol  and it's  proof  of  concept  implementation fulfill  their  goals.  The protocol

protects  against  all  the  attacks  described  in  chapter  2.3  Security.  The  configuration

required to join the network and contact other peers is minimal and doesn't require any

complicated key setup.  The prototype can also demonstrate the ability to contact peers

behind NAT at least one peer with a open session can be found. 
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Conclusions
The original objective of this paper was to design a secure peer-to-peer network that is not

broken by NAT. The objective was successfully completed – a protocol that fulfills these

requirements was  designed  and  implemented  using  commonly  available  tools and

algorithms. The paper gives a byte level specification of the protocol and also demonstrates

how the cryptographic algorithms built into the Java programming language can be used to

implement the key components of the protocol. 

The protocol is easy to use and does not require any complex key exchanges or in advance

key signing. The authentication works  by using the hash of a  peer's  public key as his

identity on the network.  This will make it very difficult to impersonate  anyone and very

easy authenticate everyone.  Other security issues such as eavesdropping and man-in-the-

middle attacks were also discussed and the protocol contains means for mitigating these

basic attacks.  

The created prototype can successfully route data between peers as long as at least one of

the peers is directly reachable over the Internet and it can also successfully bridge IPv4 and

IPv6 connections. In addition both the protocol and the prototype are easy to extend to

carry  any  user  data.  The  prototype  may  be  further  developed  into  a  fully  functional

solution that has recursive route finding, flow controls and a easy to use API. 
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Summary (Estonian)
Bakalaureusetöö: Turvaline üldotstarbeline võrdõiguslikest sõlmedest koosnev kattevõrk

Kuigi  Internet  on  viimastel  aastatel  tohutu  kiirusega  arenenud,  on suur  osa  Interneti

potentsiaalist  veel  kasutamata,  sest  NAT ja  tulemüürid muudavad otspunktide vaheliste

otseühenduste  loomise  keeruliseks.  Lisaks  on  Interneti  üldine areng  privaatsuse ja

turvalisuse osas  olnud  pigem  tagasihoidlik.  Enamus  kasutatavast  tehnoloogiast  saadab

sõnumeid  üle  Interneti  puhtal  inimloetaval  kujul,  mis  muudab  nende  pealtkuulamise

triviaalseks. 

Selle töö eesmärk on vabalt kättesaadavaid vahendeid ja algoritme kasutades luua turvalist

andmesidet  võimaldav  protokoll,  mis  oleks  võimalikult  vähe  mõjutatud  erinevatest

segajatest nagu NAT ja võrkukatkestused. Kirjeldatakse sellega seonduvaid probleeme ja

olemasolevaid lahendusi. Protokolli kasutuskõlblikuse tõestamiseks implementeeritakse ka

lihtne prototüüp, mis suudab demonstreerida protokolli põhifunktsionaalsust. 

Fookuses on kaks suuremat probleemi: ühenduste loomine läbi NAT tulemüüride ja nende

ühenduste turvalisuse tagamine ilma keerulise tehnilise ettevalmistuseta. Kuigi nii NAT kui

ka turvalisuse probleemile on eraldiseisvaid lahendusi leitud, ei ole nende kombineerimine

võimalik, sest nad eeldavad kas keskseid servereid, otspunktide vahelisi otseühendusi või

olemas olevat CA põhist avaliku võtme infrastruktuuri  (PKI).  Omaette probleem on ka

ühenduste  turvalisuse  tagamine  ilma  tavakasutajalt  võtmete  genereerimise  ja

allkirjastamise lootmise. 

Lahenduseks disainitakse hajus protokoll, mis loob DHT võrgu, kus igal sõlmel on avalik

võti ja sellest tuletatud id. DHT võrk võimaldab sõlme id järgi otsida ja pakub NAT taga

olevate sõlmedeni jõudmiseks vahendajaid.  Palju tähelepanu on pööratud turvameetmete

integreerimisele  ja  automatiseerimisele.  Selle  tulemusena  on  ainus  võrguga  liitumiseks

vajalik seadistus mõne olemasoleva võrguliikme IP aadress, pordi number ja id. Protokoll

oskab andmeid krüpteerida, andmete terviklikkust kontrollida ja saatjat autentida.  Diffie-

Hellmani  võtmevahetusega  saadud  sessioonivõtmete  süsteemi  kasutamine  tagab

varasemate sessioonide konfidentsiaalsuse isegi id-võtmete ründaja kätte sattumisel. 
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Appendixes

Appendix A: Specification of the packets types

A.1 SignedData

Field Length Value Notes

#1 int16 0x01 container identifier (opcode)

#2 Data payload data

#3 ShortData NetworkId of sender

#4 string signature algorithm prototype uses SHA1withRSA

#5 ShortData signature
SignedData is a container packet that carries the signature of the wrapped payload. Field

#3 specifies the network id of the claimed signer, but it is only used to select the public key

for signature verification.  The concrete signature algorithm is  specified in field #4 and

contains one of the algorithms defined in the JCA algorithm listing. 

A.2 DHRequest (Diffie-Hellman Request)

Field Length Value Notes

#1 int16 0x02 container identifier (opcode)

#2 int32 session id

#3 string DH algorithm (DH)

#4 string DH format (X.509)

#5 ShortData encoded DH key ASN1 encoded p, g, y
The  DHRequest  is  a  terminal  packet  that  is  used  to  initiate  the  Diffie-Hellman  key

exchange. Field #2 contains a random number to be used as the session number and to link

the session key to a packet in future SessionData packets. Field #3 always contains the

string "DH". Field #4 specifies the encoding of the DH data. Field #5 contains the data

required for the DH key exchange and if formatted as specified in field #4. The prototype

uses ASN1 to encode the DH parameters p, g and y = (g^a) mod p where a is the secret of

the initiator. The shared secret found through DH must be hashed using sha1 before use. 

A.3 DHResponse (Diffie-Hellman Request)

Field Length Value Notes

#1 int16 0x03 container identifier (opcode)

#2 int32 session id

28



#3 string dh algorithm (DH)

#4 string dh format (X.509)

#5 ShortData encoded dh key ASN1 encoded p, g, y
The DHResponse is a terminal packet that is used to reply to the DHRequest packet. Field

#2 contains the session number specified by the original request. Field #3 always contains

the string "DH". Field #4 specifies the encoding of the DH data. Field #5 is identical to that

of DHRequest packet's but y=(g^b) mod p where b is the secret of the replier. The shared

secret found through DH must be hashed using sha1 before use. 

A.4 PublicKeyRequest

Field Length Value Notes

#1 int16 0x04 container identifier (opcode)

#2 int8 number of keys in request (n)

#3..#(3+n) ShortData NetworkId of requested key
A terminal packet used to request public keys from a peer. The packet contains a set of

network ids that the sender is interested in. 

A.5 PublicKeyResponse

Field Length Value Notes

#1 int16 0x05 container identifier (opcode)

#2 int8 number of keys in response (n)

#(3+i*3) string algorithm of public key for i in [0;n[

#(4+i*3) string encoding of  the  key
(X.509/PKCS#8)

#(5+i*3) ShortData encoded key
A terminal packet used to reply to a PublicKeyRequest. The packet contains a set of public

keys that matched the request.  Each key definition starts with the algorithm name of the

key (as specified in JCA algorithm listing), the encoding of the key and the encoded key. 

A.6 SessionData

Field Length Value Notes

#1 int16 0x06 container identifier (opcode)

#2 int32 session id session key is encryption key

#3 ShortData NetworkId of sender

#4 int8 key length (bytes) prototype uses 128bit keys

#5 string HMAC algorithm prototype uses HmacSHA1
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#6 ShortData HMAC

#7 string encryption algorithm prototype uses AES/CBC/PKCS5Padding

#8 ShortData encryption IV generated randomly each time

#9 Data encrypted payload
The SessionData packet is a container packet that encrypts it's payload using symmetric

encryption and uses HMAC to verify it's integrity. Fields #2 and #3 specify the claimed

sender id and a session id. The claimed sender id should only be used to find a suitable

session  key  for  decryption  and  HMAC verification.  It  must  not  be  assumed  that  the

claimed sender id is correct as it can be easily manipulated with a MITM attack. 

Fields #5 and #6 specify the HMAC algorithm used to verify the payload.  The first  #4

bytes of the hashed DH secret are used as the HMAC key. If the HMAC succeeds then the

peer related to the used session key must be considered as the sender. 

Fields #7 and #8 specify the encryption algorithm and IV. The first #4 bytes of the hashed

session key are used as the decryption key. The HMAC must be verified before attempting

decryption.  After  the  ciphertext  is  decrypted  the  decrypted  data  must  parsed for  inner

packets. 

A.7 Ping

Field Length Value Notes

#1 int16 0x07 container identifier (opcode)
A simple no-op terminal packet that expects a Pong packet as the response. Can be used as

UDP keep alive. 

A.8 Pong

Field Length Value Notes

#1 int16 0x08 container identifier (opcode)

#2 ShortData IP address  of  the  peer  (network
order)

4 bytes for IPv4, 16 bytes for
IPv6

#3 int32 port number of peer
A simple terminal packet for responding to the Ping requests. Field #2 should contain the

IP address of the peer as seen from the responder regardless of relays. 

A.9 DHTQuery

Field Length Value Notes

#1 int16 0x09 container identifier (opcode)
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#2 ShortData NetworkId of requested peer
A terminal packet for querying routes to a peer. 

A.10 DHTResponse

Field Length Value Notes

#1 int16 0x0a container identifier (opcode)

#2 int8 count of response routes (n) max 30

#3..3+i Route n  routes,  each  can  be  either  a
direct route or a proxy route

i  in [0; n[; routes  described in
A.10.1 Direct route and  A.10.2
Proxy route

A terminal packet for responding to DHT queries. Contains a set of routes that were closest

to the requested peer. May contain direct routes, proxy routes and routes to other peers

with similar network ids. 

A.10.1 Direct route

Field Length Value Notes

#1 int8 0x01 route type

#2 ShortData NetworkId of destination

#3 ShortData IP  address  of  the  peer  (network
order)

4 bytes  for  IPv4,  16 bytes  for
IPv6

#4 int32 port number of peer
A packet component describing a direct route to a host. 

A.10.2 Proxy route

Field Length Value Notes

#1 int8 0x02 route type

#2 ShortData NetworkId of destination

#3 ShortData NetworkId of the proxy
A packet  component  describing  a  proxy route  to  a  host.  Proxy routes  should  only be

advertised if the proxy has a established session to the peer being proxied. 

A.11 KeyPush

Field Length Value Notes

#1 int16 0x0b container identifier (opcode)

#2 string algorithm of public key

#3 string encoding of the key (X.509/PKCS#8)

#4 ShortData encoded key
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A terminal packet used to establish a connection to a peer. Includes the public key of the

sender. Expects a PKResponse packet containing the remote's public key as the response. 

A.12 RelayRequest

Field Length Value Notes

#1 int16 0x0c container identifier (opcode)

#2 ShortData NetworkId of destination

#3 Data payload to be relayed
A terminal  packet  requesting the payload to be relayed to the peer specified in field #2.

Expects a RelayResponse packet as the response. 

A.13 RelayResponse

Field Length Value Notes

#1 int16 0x0d container identifier (opcode)

#3 int8 0x00 if the request was denied; 
0x01 if the request was accepted

A terminal packet containing a response to a RelayRequest. Requests should be rejected if

no direct routes are available to the destination peer or if no active sessions are found. 

A.14 TransmissionTag

Field Length Value Notes

#1 int16 0x0e container identifier (opcode)

#2 int64 transmission id 0x00 if no payload (just a confirmation)

#3 int64 confirmation id 0x00 if first packet in the session

#4 Data payload of the message payload with 0 length if no payload
A container packet containing the transmission id and confirmation id. Used to guarantee

reliable packet delivery by tracking packets and detecting timeouts. Also used to detect

broken routes. Must be present in all transmissions. 

A.15 SessionKeyExpired

Field Length Value Notes

#1 int16 0x0f container identifier (opcode)

#2 int32 session id
A terminal  packet  used to signal a broken session key. This might happen if one of the

peers is restarted and it's session key cache is cleared in the process (as it should). Must be

wrapped in a SignedData packet. 
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A.16 RelayWrapper

Field Length Value Notes

#1 int16 0x10 container identifier (opcode)

#2 Data data that was sent by proxy
A container packet wrapping the payload of a relayed packet. The receiver should pass the

payload to the packet parsers and pass the sender of the RelayWrapper as the proxy id. The

proxy should also be marked as a reverse route to the original sender. 
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