4,182 research outputs found

    Managing server energy and reducing operational cost for online service providers

    Get PDF
    The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter

    Autonomic management of virtualized resources in cloud computing

    Get PDF
    The last five years have witnessed a rapid growth of cloud computing in business, governmental and educational IT deployment. The success of cloud services depends critically on the effective management of virtualized resources. A key requirement of cloud management is the ability to dynamically match resource allocations to actual demands, To this end, we aim to design and implement a cloud resource management mechanism that manages underlying complexity, automates resource provisioning and controls client-perceived quality of service (QoS) while still achieving resource efficiency. The design of an automatic resource management centers on two questions: when to adjust resource allocations and how much to adjust. In a cloud, applications have different definitions on capacity and cloud dynamics makes it difficult to determine a static resource to performance relationship. In this dissertation, we have proposed a generic metric that measures application capacity, designed model-independent and adaptive approaches to manage resources and built a cloud management system scalable to a cluster of machines. To understand web system capacity, we propose to use a metric of productivity index (PI), which is defined as the ratio of yield to cost, to measure the system processing capability online. PI is a generic concept that can be applied to different levels to monitor system progress in order to identify if more capacity is needed. We applied the concept of PI to the problem of overload prevention in multi-tier websites. The overload predictor built on the PI metric shows more accurate and responsive overload prevention compared to conventional approaches. To address the issue of the lack of accurate server model, we propose a model-independent fuzzy control based approach for CPU allocation. For adaptive and stable control performance, we embed the controller with self-tuning output amplification and flexible rule selection. Finally, we build a QoS provisioning framework that supports multi-objective QoS control and service differentiation. Experiments on a virtual cluster with two service classes show the effectiveness of our approach in both performance and power control. To address the problems of complex interplay between resources and process delays in fine-grained multi-resource allocation, we consider capacity management as a decision-making problem and employ reinforcement learning (RL) to optimize the process. The optimization depends on the trial-and-error interactions with the cloud system. In order to improve the initial management performance, we propose a model-based RL algorithm. The neural network based environment model, which is learned from previous management history, generates simulated resource allocations for the RL agent. Experiment results on heterogeneous applications show that our approach makes efficient use of limited interactions and find near optimal resource configurations within 7 steps. Finally, we present a distributed reinforcement learning approach to the cluster-wide cloud resource management. We decompose the cluster-wide resource allocation problem into sub-problems concerning individual VM resource configurations. The cluster-wide allocation is optimized if individual VMs meet their SLA with a high resource utilization. For scalability, we develop an efficient reinforcement learning approach with continuous state space. For adaptability, we use VM low-level runtime statistics to accommodate workload dynamics. Prototyped in a iBalloon system, the distributed learning approach successfully manages 128 VMs on a 16-node close correlated cluster

    The Management of Manufacturing-Oriented Informatics Systems Using Efficient and Flexible Architectures

    Get PDF
    Industry and in particular the manufacturing-oriented sector has always been researched and innovated as a result of technological progress, diversification and differentiation among consumers' demands. A company that provides to its customers products matching perfectly their demands at competitive prices has a great advantage over its competitors. Manufacturing-oriented information systems are becoming more flexible and configurable and they require integration with the entire organization. This can be done using efficient software architectures that will allow the coexistence between commercial solutions and open source components while sharing computing resources organized in grid infrastructures and under the governance of powerful management tools.Manufacturing-Oriented Informatics Systems, Open Source, Software Architectures, Grid Computing, Web-Based Management Systems

    Revenue maximization problems in commercial data centers

    Get PDF
    PhD ThesisAs IT systems are becoming more important everyday, one of the main concerns is that users may face major problems and eventually incur major costs if computing systems do not meet the expected performance requirements: customers expect reliability and performance guarantees, while underperforming systems loose revenues. Even with the adoption of data centers as the hub of IT organizations and provider of business efficiencies the problems are not over because it is extremely difficult for service providers to meet the promised performance guarantees in the face of unpredictable demand. One possible approach is the adoption of Service Level Agreements (SLAs), contracts that specify a level of performance that must be met and compensations in case of failure. In this thesis I will address some of the performance problems arising when IT companies sell the service of running ‘jobs’ subject to Quality of Service (QoS) constraints. In particular, the aim is to improve the efficiency of service provisioning systems by allowing them to adapt to changing demand conditions. First, I will define the problem in terms of an utility function to maximize. Two different models are analyzed, one for single jobs and the other useful to deal with session-based traffic. Then, I will introduce an autonomic model for service provision. The architecture consists of a set of hosted applications that share a certain number of servers. The system collects demand and performance statistics and estimates traffic parameters. These estimates are used by management policies which implement dynamic resource allocation and admission algorithms. Results from a number of experiments show that the performance of these heuristics is close to optimal.QoSP (Quality of Service Provisioning)British Teleco

    PIASA: A power and interference aware resource management strategy for heterogeneous workloads in cloud data centers

    Get PDF
    Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%

    Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing

    Get PDF
    The availability of many-core computing platforms enables a wide variety of technical solutions for systems across the embedded, high-performance and cloud computing domains. However, large scale manycore systems are notoriously hard to optimise. Choices regarding resource allocation alone can account for wide variability in timeliness and energy dissipation (up to several orders of magnitude). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing covers dynamic resource allocation heuristics for manycore systems, aiming to provide appropriate guarantees on performance and energy efficiency. It addresses different types of systems, aiming to harmonise the approaches to dynamic allocation across the complete spectrum between systems with little flexibility and strict real-time guarantees all the way to highly dynamic systems with soft performance requirements. Technical topics presented in the book include: Load and Resource Models Admission Control Feedback-based Allocation and Optimisation Search-based Allocation Heuristics Distributed Allocation based on Swarm Intelligence Value-Based Allocation Each of the topics is illustrated with examples based on realistic computational platforms such as Network-on-Chip manycore processors, grids and private cloud environments.Note.-- EUR 6,000 BPC fee funded by the EC FP7 Post-Grant Open Access Pilo

    A Middleware framework for self-adaptive large scale distributed services

    Get PDF
    Modern service-oriented applications demand the ability to adapt to changing conditions and unexpected situations while maintaining a required QoS. Existing self-adaptation approaches seem inadequate to address this challenge because many of their assumptions are not met on the large-scale, highly dynamic infrastructures where these applications are generally deployed on. The main motivation of our research is to devise principles that guide the construction of large scale self-adaptive distributed services. We aim to provide sound modeling abstractions based on a clear conceptual background, and their realization as a middleware framework that supports the development of such services. Taking the inspiration from the concepts of decentralized markets in economics, we propose a solution based on three principles: emergent self-organization, utility driven behavior and model-less adaptation. Based on these principles, we designed Collectives, a middleware framework which provides a comprehensive solution for the diverse adaptation concerns that rise in the development of distributed systems. We tested the soundness and comprehensiveness of the Collectives framework by implementing eUDON, a middleware for self-adaptive web services, which we then evaluated extensively by means of a simulation model to analyze its adaptation capabilities in diverse settings. We found that eUDON exhibits the intended properties: it adapts to diverse conditions like peaks in the workload and massive failures, maintaining its QoS and using efficiently the available resources; it is highly scalable and robust; can be implemented on existing services in a non-intrusive way; and do not require any performance model of the services, their workload or the resources they use. We can conclude that our work proposes a solution for the requirements of self-adaptation in demanding usage scenarios without introducing additional complexity. In that sense, we believe we make a significant contribution towards the development of future generation service-oriented applications.Las Aplicaciones Orientadas a Servicios modernas demandan la capacidad de adaptarse a condiciones variables y situaciones inesperadas mientras mantienen un cierto nivel de servio esperado (QoS). Los enfoques de auto-adaptación existentes parecen no ser adacuados debido a sus supuestos no se cumplen en infrastructuras compartidas de gran escala. La principal motivación de nuestra investigación es inerir un conjunto de principios para guiar el desarrollo de servicios auto-adaptativos de gran escala. Nuesto objetivo es proveer abstraciones de modelaje apropiadas, basadas en un marco conceptual claro, y su implemetnacion en un middleware que soporte el desarrollo de estos servicios. Tomando como inspiración conceptos económicos de mercados decentralizados, hemos propuesto una solución basada en tres principios: auto-organización emergente, comportamiento guiado por la utilidad y adaptación sin modelos. Basados en estos principios diseñamos Collectives, un middleware que proveer una solución exhaustiva para los diversos aspectos de adaptación que surgen en el desarrollo de sistemas distribuidos. La adecuación y completitud de Collectives ha sido provada por medio de la implementación de eUDON, un middleware para servicios auto-adaptativos, el ha sido evaluado de manera exhaustiva por medio de un modelo de simulación, analizando sus propiedades de adaptación en diversos escenarios de uso. Hemos encontrado que eUDON exhibe las propiedades esperadas: se adapta a diversas condiciones como picos en la carga de trabajo o fallos masivos, mateniendo su calidad de servicio y haciendo un uso eficiente de los recusos disponibles. Es altamente escalable y robusto; puedeoo ser implementado en servicios existentes de manera no intrusiva; y no requiere la obtención de un modelo de desempeño para los servicios. Podemos concluir que nuestro trabajo nos ha permitido desarrollar una solucion que aborda los requerimientos de auto-adaptacion en escenarios de uso exigentes sin introducir complejidad adicional. En este sentido, consideramos que nuestra propuesta hace una contribución significativa hacia el desarrollo de la futura generación de aplicaciones orientadas a servicios.Postprint (published version
    corecore