
Simulation Modelling Practice and Theory 57 (2015) 142–160

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico do Porto
Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/locate /s impat
PIASA: A power and interference aware resource management
strategy for heterogeneous workloads in cloud data centers
http://dx.doi.org/10.1016/j.simpat.2015.07.002
1569-190X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ams@estgf.ipp.pt (A.M. Sampaio), jbarbosa@fe.up.pt (J.G. Barbosa), radu@dps.uibk.ac.at (R. Prodan).
Altino M. Sampaio a, Jorge G. Barbosa b,⇑, Radu Prodan c

a Instituto Politécnico do Porto, Escola Superior de Tecnologia e Gestão de Felgueiras, CIICESI, Felgueiras, Portugal
b LIACC, Departamento de Engenharia Informática, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
c University of Innsbruck, Institute of Computer Science, Innsbruck, Austria

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 February 2015
Received in revised form 30 June 2015
Accepted 1 July 2015
Available online 17 July 2015

Keywords:
Performance interference
Energy efficiency
CPU-intensive load
I/O intensive load
SLA
QoS
Cloud data centers have been progressively adopted in different scenarios, as reflected in
the execution of heterogeneous applications with diverse workloads and diverse quality
of service (QoS) requirements. Virtual machine (VM) technology eases resource manage-
ment in physical servers and helps cloud providers achieve goals such as optimization of
energy consumption. However, the performance of an application running inside a VM is
not guaranteed due to the interference among co-hosted workloads sharing the same
physical resources. Moreover, the different types of co-hosted applications with diverse
QoS requirements as well as the dynamic behavior of the cloud makes efficient provision-
ing of resources even more difficult and a challenging problem in cloud data centers. In this
paper, we address the problem of resource allocation within a data center that runs differ-
ent types of application workloads, particularly CPU- and network-intensive applications.
To address these challenges, we propose an interference- and power-aware management
mechanism that combines a performance deviation estimator and a scheduling algorithm
to guide the resource allocation in virtualized environments. We conduct simulations by
injecting synthetic workloads whose characteristics follow the last version of the Google
Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to
fulfill contracted SLAs of real-world environments while reducing energy costs by as much
as 21%.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

There is growing interest in the use of cloud computing, which has been progressively adopted in different scenarios, such
as business applications, social networking, scientific computation and data analysis experiments [18,38]. However, clouds
now host a wider range of applications with diverse resources and QoS requirements. From the consumers viewpoint, it is
essential that the cloud provider offer guarantees about service delivery. Typically, consumers detail the required service
level through QoS parameters, which are described in service level agreements (SLAs) established with providers [25].
More concretely, SLAs specify all the expectations and obligations of the service to be provided in terms of metrics as well
the penalties for violating those expectations agreed upon by all parties. Thus, SLAs are a key element for supporting and
empowering QoS in cloud environments.

https://core.ac.uk/display/47142199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2015.07.002&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2015.07.002
mailto:ams@estgf.ipp.pt
mailto:jbarbosa@fe.up.pt
mailto:radu@dps.uibk.ac.at
http://dx.doi.org/10.1016/j.simpat.2015.07.002
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 143
Providing QoS guarantees in current cloud data centers is a very difficult and complex task due to the dynamic nature of
the environment and the applications workload characteristics. The problem becomes even more complicated when consid-
ering efficient resource usage and technological limitations. Cloud computing environments are very dynamic by nature in
that end customers share a large, centrally managed pool of storage and computing resources. At any one time, a substantial
number of end users can be inactive (e.g., submitted jobs just finished, low utilization due to specific day of the week), which
allows a service provider to opportunistically consolidate, multiplex and even transfer resources among virtual machines
rented to different users. Moreover, as operational costs become more relevant, the implementation of policies for maximiz-
ing the efficiency, cost-effectiveness, and utilization of resources becomes paramount. However, balancing QoS guarantees
with efficiency and utilization becomes extremely challenging because virtualization does not guarantee performance iso-
lation between VMs. For example, an applications performance can change due to the existence of other co-resident VMs
that share the last-level cache (LLC). This phenomenon is known as performance interference [13,15,19,24]. Furthermore,
different applications demand different QoS requirements. For example, non-interactive batches require completion time,
while transactional web applications are concerned with throughput guarantees. Different application workloads demand
a diverse type and amount of resources. In particular, batch jobs tend to be relatively stable, while web applications tend
to be highly unpredictable and bursty [10].

In this paper, we present a dynamic resource management strategy that optimizes power efficiency and considers the
SLAs of two different types of workloads: CPU-bound (i.e., batch jobs) and network I/O-bound (i.e., transactional web) appli-
cations. We propose a mechanism that estimates the slowdown in co-hosted deadline-driven CPU-bound applications due to
contention in on-chip resources and a second mechanism that responds to changes in demand for network I/O-bound appli-
cations. A scheduler algorithm is also proposed to compensate for deviations from the required performance in both types of
applications. The algorithm applies readjustments in the VM to PM mapping to correct such performance deviations. The
assignment of resources to VMs is also refined to optimize the energy efficiency of the underlying infrastructure.

The rest of the paper is organized as follows. Section 2 discusses related work in the area of resource provisioning in cloud
data centers. Section 3 introduces the architecture of the power- and interference-aware mechanism to address the QoS of
heterogeneous workloads. Section 4 considers the metrics used to assess the performance of the proposed mechanism and
describes the workloads and performance deviation characteristics. Section 5 presents and discusses the results. Finally,
Section 6 concludes the paper and discusses future research directions.
2. Related work

Energy efficiency optimization and assurance of application performance have two opposite objectives. While energy
wastages can be mitigated through consolidation, performance deviations are caused by interference among co-hosted
applications due to technological limitations (i.e., inefficient virtualization isolation) or by abrupt demand variation in the
workloads. The occurrence of either makes the previous provisioning of resources inappropriate, and corrective actions must
be performed to fulfill the application QoS requirements. This section presents notable efforts to understand the causes of
performance deviation in co-hosted applications and to define strategies to guarantee QoS requirements for diverse appli-
cations while maximizing energy efficiency during runtime.
2.1. Performance interference estimation in virtualized environments

Determining the relationship between allocated resources and high-level metrics in a dynamic cloud environment is not
trivial and has led to intensive research in related topics. For example, Koh et al. [19] have studied this phenomenon by mea-
suring the effects of the consolidation of two VMs running diverse resource-bound applications (i.e., CPU, memory, and I/O).
Key findings include the following: (i) the performance of I/O-bound applications degrades much less when co-located with
CPU- or memory-bound applications; (ii) CPU- and memory-bound applications consume a large amount of CPU resources;
and (iii) the correlation between workload characteristics and performance is not linear. Huang and Lee [15] analyzed the
adverse impact of performance interference from a security perspective. For this purpose, the authors exhaust one type of
hardware resource by co-locating a misbehaved VM with the victim VM in different configurations. The results show the
following: (i) the TCP throughput can fall below 70% when the malicious VM uses memory intensively; (ii) the CPU execution
time increases by 60% when a malicious VM uses the disk I/O intensively; and (iii) the memory bandwidth for the victim VM
decreases from 20% to 80% when the malicious VM heavily uses disk I/O (the decrease is closer to 80% when the malicious
VM uses network I/O). Mars et al. [24] explored the impact of contention in cache, memory bandwidth, and prefetcher
resources in the performance of different types of applications. The authors showed that when the pressure in the cache
exceeds saturation, the impact on an application QoS no longer increases. The experiments used real Google workloads
and took place in a Google cluster. In addition, Hashimoto et al. [13] measured the performance degradation due to con-
tention in network I/O, disk I/O, and on-chip resources. The results indicated that an application that uses more resources
degrades more, and the impact on performance can change between 1% and nearly 190%. Additionally, the results indicate
that running two programs with high memory usage or network I/O causes high overhead in the hypervisor. Kousiouris et al.
[20] studied the effect of critical parameters on the performance of VMs. Their study concluded that there is a nearly linear
relationship between CPU share (i.e., quantum) and performance improvement. Additionally, application performance can

144 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
degrade by as much as 160%. The co-location of applications that are more CPU-intensive and less data-intensive results in
the best performance, and the greatest impact on the performance of applications is from contention in LLC and memory bus
resources. These studies have contributed important insights into the characteristics of applications and their relevance for
co-hosting. This paper is complementary to these studies in that it uses their conclusions to better allocate resources to
applications.

2.2. Interference-aware dynamic resources scheduling

With the objective of mitigating the performance degradation due to contention in hardware resources, several works
have proposed quantifying and predicting the effects of interference from different types of resources so that appropriate
actions can be taken by readjusting the map of VMs to physical resources. For example, Dwyer et al. [8] contributed a tool
that measures the slowdown in the execution of CPU-bound applications. The slowdown is caused by the performance inter-
ference among co-located workloads that share LLC resources. The authors report that the tool is able to determine the
degradation within 16% of the true value, on average. The approach does not consider workloads with different QoS require-
ments. Govindan et al. [11] proposed Cuanta, a practical technique for predicting performance degradation due to a shared
processor cache for any possible placement of applications. The authors claim that the technique can be used to select the
most efficient consolidation pattern according to required performance and resource constraints, achieving an average pre-
diction error of less than 4%. Unlike our work, the root cause of performance deviation is due to cache interference only.
Chiang and Huang [7] developed the Tracon framework to mitigate the interference effects from concurrent
data-intensive applications. Their aim was to reduce the runtime and improve the I/O throughput for data-intensive appli-
cations in a virtualized environment. Based on the application performance inferred from resource consumption observed
from different VMs, the framework readjusts the provision of resources by invoking the interference-aware scheduler.
Experiments considering data-intensive applications (e.g., bioinformatics, data mining, and video processing) showed that
the framework is able to improve the application runtime by 50% and the I/O throughput by as much as 80% for
data-intensive applications executing in VMs. The framework is interference-aware biased and, hence, does not implement
energy-efficient strategies. Lim et al. [22] proposed the D-factor model, which models the problem of performance interfer-
ence within a physical server based on a collection of multiple resource queues for which contention creates non-linear dila-
tion factors in jobs. The authors test CPU- and disk I/O-bound applications. Their key findings are that (i) multiple-resource
contention creates non-linear dilation factors in jobs; (ii) there is a linear relationship between total completion time and
individual completion times for the same type of job; and (iii) the co-location of workloads utilizing different system
resources leads to the best efficiency. The authors claim that the proposed D-factor model is able to predict the completion
time of coexisting workloads within a 16% error for realistic workloads. Our work is complementary in that it adds a mech-
anism to make decisions based on noisy performance deviation data samples to fulfill diverse contracted SLAs according to
mixed/heterogeneous application types and requirements, and it tries to optimize energy efficiency at the same time.
Nathuji et al. [29] proposed Q-Clouds, a QoS-aware control framework that transparently provides additional resources as
necessary to achieve a performance similar to that if the applications were running in isolation. The framework dynamically
provides underutilized resources to improve system efficiency (in terms of the runtime of CPU-bound applications). A com-
mon problem in these studies is that they either do not consider energy efficiency or their contribution to achieving it is
unclear. Verma et al. [40] performed an experimental study about application performance isolation, virtualization overhead
with multiple VMs, and scenarios in which applications are isolated from each other. From the insights obtained, the authors
propose a framework and methodology for power-aware application placement for high-performance computing (HPC)
applications that considers both CPU and cache size constraints. However, the work is based only on contention over CPU
and LLC resources. The approach does not consider auto-scaling requirements of applications, nor does it readjust the pro-
visioning of resources in the case of failure to meet the application QoS requirements. In [39], enterprise server web-based
workloads were studied for the purpose of finding key characteristics for semi-static and static consolidation. The observa-
tions indicated that the correlation between workloads should be considered so that SLA violation can be avoided when such
workloads are placed together. Based on these findings, the authors proposed two consolidation algorithms, namely,
Correlation-Based Placement (CBP) and Peak Clustering-Based Placement (PCP). While the former adds co-location con-
straints between correlated applications to ensure that an application can be sized based on an off-peak value, the latter
reserves additional capacity for each workload according to the size of the application to accommodate their maximum
peaks. The study target was specific enterprise applications for which load behavior could be predicted for long periods, such
as a day or a week, and statistical analysis was used to statically allocate applications to resources for long periods. In a
dynamic system, such as the one considered in this paper, the statistical approach to determine capacity constraints is no
longer valid [39], and therefore, we cannot directly compare our results to CBP and PCP algorithms. However, one of the main
conclusions of the Verma et al. [39] study is that uncorrelated loads should be allocated in the same server. This feature has
been followed in subsequent works, such as [10], and it is applied in our algorithm.

2.3. SLA-based resources scheduling

Other approaches for scheduling applications and provisioning resources in cloud computing environments consider the
diversity of applications in terms of workload characteristics and QoS requirements. To this end, Rao et al. [31] developed a

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 145
QoS provisioning framework that provides adaptive multi-objective resource allocation and the service differentiation of
multiple applications. It applies a hard limit over the CPU assigned to an application. However, the work does not consider
the effective utilization of shared virtualized resources, it is limited to the regulation of a single resource, and it only con-
siders the response time and deviation from the Service Level Objective (SLO) value. While their work focuses on responding
to abrupt workload or capacity changes, our study aims at increasing profit by diminishing energy consumption. It also
addresses the problem of resource allocation within a data center that runs different types of application workloads that
are subject to performance deviations due to interference among co-hosted applications. Moreover, we consider different
types of QoS requirements, and we extend the strategy of the hard limit by applying hard and soft limits to address the
two types of resources, CPU and I/O bandwidth, in the management of network-intensive workloads. Garg et al. [10] pro-
posed an admission control and scheduling mechanism to maximize the resource utilization and profit. At the same time,
it ensures that the QoS requirements of users are met as specified in the SLAs. The mechanism considers multiple types
of SLAs based on application requirements (i.e., two types of applications, namely, non-interactive and transactional). Our
work is closely related to [10] in that we address the resource allocation problem within a data center that runs different
types of application workloads. Therefore, we compare our algorithm to this work.
2.4. List of contributions

This paper proposes a mechanism to efficiently detect and mitigate occurrences of performance deviation during appli-
cation runtime, which cause non-observation of application QoS requirements, while optimizing the energy efficiency of the
system. The main contribution of this work is the design and implementation of a mechanism with the following features:

� A scheduling strategy for heterogeneous workloads in virtualized data centers, with different characteristics and specific
SLA requirements.
� A mechanism to detect deviations in application performance requirements, even when performance data samples con-

tain noise.
� Consideration of multiple types of SLAs, according to mixed/heterogeneous application types and requirements.
� Support for auto-scaling of resources to satisfy SLAs and cope with peak time demands.
� Support for mitigation of performance degradation caused by contention due to sharing of physical resources among

co-hosted applications.
� Optimization of energy efficiency by maximizing the utilization of cloud resources.
� In addition to the above mechanism features, this work contributes a study of the trade-off between the opposing objec-

tives of energy efficiency and performance improvement.

3. System model

This section provides a formal description of a power- and interference-aware cloud architecture that dynamically maps
VMs to PMs to improve both applications’ QoS requirements and energy efficiency.
3.1. Cloud data center overview

We consider a private data center environment consisting of identical physical servers. It is assumed that each server is
interconnected with a high-speed LAN network and high-bandwidth link to the Internet. The cloud provider manages its
resources (e.g., virtual machine migration, signaling and control data) using a high-speed LAN link N1, while the Internet link
N2 is utilized by cloud users to access cloud services. In this regard, overloading interface N1 manifests itself in the overhead
of VM migration, while interface N2 is one of the resources VMs directly utilize so cloud users can access the deployed ser-
vices. Each physical host in the cloud infrastructure has the same CPU capacity C, memory capacity R, LAN network band-
width N1, Internet network bandwidth N2, access to a shared storage space B for storing the disk images of the VMs, and
an LLC L, such that for each physical server, Si ¼ fC;M;N1;N2;B; Lg. In a typical usage scenario, users request services to
deploy applications, and the cloud manager is responsible for evaluating the capacity required and for deciding whether
to accept or reject the service requests according to the servers’ ability to guarantee QoS requirements. The cloud architec-
ture, information flow, and key components involved in performance estimation, power-efficiency, and the scheduling of
applications are illustrated in Fig. 1 [34]. For simplicity, a VM encapsulates one single application or task and is the unit
of migration in the system. Each application can be described by one of two possible types of workloads according to the
most consumed resources: CPU-bound or network I/O-bound. Each type has different behaviors, characteristics, and QoS
requirements. Each VM will run on top of one PM at a time, and multiple distinct VMs can be mapped to a single PM.
The set of VMs constitutes the user’s virtual cluster execution environment. The two modules, power efficiency and perfor-
mance deviation, continually monitor servers and running applications and dynamically update the maps of VMs to PMs to
maintain the energy efficiency of the system and to fulfill the application’s QoS requirements.

Fig. 1. Private cloud management architecture.

146 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
3.2. Application overview

In this study, we consider two types of workloads that can be deployed by users in the cloud infrastructure, namely,
CPU-bound and network-bound workloads.
3.2.1. CPU-bound workloads
Scientific computing involves the construction of mathematical models and numerical solution techniques to solve sci-

entific, social and engineering problems. Recently, scientific computing has started to explore clouds in alternatives to tra-
ditionally dedicated HPC infrastructures [38,18]. We model the execution of scientific applications as the problem of
dynamically scheduling non-interactive batch jobs with specific CPU needs. Each job j ¼ ðCj; djÞ is composed of a set of l inde-
pendent CPU-intensive tasks, sq 2 Cj; q 2 f1; . . . ; lg, and a deadline, dj. Here, the deadline is used as the QoS requirement for
batch jobs. The task workload is expressed in Mflops. Once tasks are independent, the job deadline becomes the deadline of
the longest task. Job deadlines become activated as soon as cloud users submit jobs.

The submitted jobs and respective sets of tasks have heterogeneous resource requirements and varying deadlines. As doc-
umented by Stillwell et al. [37], a task s can consume at most a maximum amount of resources max rðsÞ to execute at the
maximum speed. The value of this parameter is defined by the user. In turn, the deadline ds to conclude the task defines the
minimum execution speed and simultaneously constrains the minimum amount of resources min rðsÞ to assign, as defined
by Eq. (1). The amount of resources assigned to a task is expressed in Mflops/s.
min rðsÞP Wðs; tÞ
ds � t �mei

ð1Þ
where t is the current time, Wðs; tÞ is the remaining workload for task s at instant t, and mei represents the time overhead
required for a VM to migrate from node e to node i. Parameter mei equals 0 only when the task is scheduled for the first time.

The slack time of task s is stated by Eq. (2) and defines the amount of extra time needed to complete the task by the
ensemble deadline ds.
slack time ¼ ðds � t �meiÞ �
Wðs; tÞ

max rðsÞ ð2Þ
Those tasks for which Eq. (2) returns a negative value are cancelled, and the corresponding jobs are considered incom-
plete, incurring an SLA violation. Assigning each task a CPU power between min rðsÞ and max rðsÞ, we are fulfilling the dead-
line constraint given by Eq. (3) and, hence, satisfying the strict SLAs imposed on each job:
FTðsÞ 6 ds ð3Þ
where FTðsÞ is the finish time of task s. Due to interference caused by the sharing of on-chip resources (e.g., CPU, LLC, and
memory bandwidth), co-hosted tasks can suffer from performance degradation, which induces a slowdown of running appli-
cations, ultimately resulting in a deviation between expected and delivered QoS.

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 147
3.2.2. Network-bound workloads
Commonly commercial clouds have been built to support web and small database workloads [16]. Web systems are char-

acterized by their dynamic changing of incoming workloads and VM resource variation and do not have a requested time or
deadline. Mars et al. [24] propose that one way to measure the QoS of web servers is to measure the server throughput at
different workload rates, namely, the maximum number of successful queries per second, as is the case in Google’s web
search. According to Mei et al. [26], the performance of web servers is CPU bound under a mix of small files and is network
bound under a mix of large files. This work considers the second case by assuming that web workloads are mainly charac-
terized by network resource consumption (i.e., are network-intensive) and have residual CPU consumption. The CPU time
consumed to process network requests can be divided into two major categories: the time spent establishing TCP connec-
tions and the time spent transporting web file content [26]. Because the demand for resources changes abruptly with time,
the amount of transferred network I/O bðsÞ served by a task s at each instant is given by Eq. (4).
bðsÞ ¼
Xreq=tu

y¼1

hy ð4Þ
where hy is the file size to transfer in each request y. For each task, the number of requests per time unit req=tu varies with
time, and the size of the file to transfer hy in each request is assumed to be large and practically constant. Due to the fluc-
tuating nature of web-based transactional workloads, the cloud must adapt to application demands by scaling dynamically
and providing resources accordingly. For instance, a general web application presents a varying workload according to the
number of users accessing it. The SLA agreement defines the performance requirement of web applications in terms of
requests served within a certain period of time. The performance requirement can be translated to CPU capacity rðsÞ and
network I/O bandwidth bðsÞ [6]. We assume that a request is not served by the web application if the CPU rðsÞ or network
bandwidth bðsÞ capacity allocated to task s is less than the required capacity at instant t. The QoS requirements are violated
if a certain number of non-served requests, from the total req=tu submitted to the web application within a time interval,
exceeds the maximum specified by the SLA.

3.3. Cloud manager

The cloud manager is the main component in the cloud computing management infrastructure. Its function is to contin-
ually obtain the virtual and physical machine statuses, such as power consumption, and performance data to infer possible
deviations in the task QoS requirements. Then, based on the information collected, the cloud manager makes decisions con-
cerning opportunities to improve power efficiency or the need to readjust the allocation of resources to correct possible per-
formance deviations. Energy efficiency is achieved by means of consolidation, transferring VMs from lower loaded PMs to
other PMs so that the first PMs can transit to sleep mode. This method improves resource utilization by increasing the load
rate of the active PMs [34], but it can result in high levels of performance degradation. In turn, performance deviations can be
estimated based on techniques that differ according to the type of application under consideration.

3.3.1. Power-efficiency logic
An idle server represents 60–70% of the power consumed when it is fully utilized [12,43]. The power consumption in a

computer node is mainly dictated by the CPU resource [3,4]. Thus, we consider only the CPU power consumption in our
energy model to consolidate running VMs in servers. Then, a reduction in power consumption can be effectively achieved
by switching idle PMs to sleep mode, incurring near-zero overhead [27]. The linear power model in Eq. (5) estimates the
power consumption Pi for a PMi.
Pi ¼ p1þ p2� CPUi ð5Þ
where CPUi is the CPU utilization for a given time interval, measured for a PM i at runtime, and varies within [0,1]. The p1
and p2 factors are the power consumption when PM is idle and the additional power consumption due to CPU utilization,
respectively. Eq. (6) is the power efficiency of a PM i at a specific time interval and reflects how much useful work is
produced for a given power consumption [42].
EPi
¼ CPUi

p1þ p2� CPUi
� ðp1þ p2Þ ð6Þ
increases monotonically with CPU utilization, reaching 1 when CPU is 1. Servers running under low power efficiency are
detected using a sliding window detection mechanism. Basically, a PM i is considered power inefficient if 3 CPU utilization
samples fall below 0.55 of the maximum CPU utilization. Samples are taken at intervals of 1 min and analyzed within a
sliding window containing 5 CPU utilization samples. We have chosen these values based on our previous study [33], which
demonstrated that these values maximize the ratio of the amount of work performed to the consumed energy.

3.3.2. Performance deviation detection logic
Performance deviations can occur in the two types of workloads considered. In the case of CPU-intensive applications,

the contention in shared on-chip resources causes a slowdown in the execution of tasks. Several studies and experiments

148 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
(e.g., [8,11,22]) showed that it was possible to determine the slowdown in the execution of tasks due to performance inter-
ference, with an average slowdown error of approximately 10%. Eq. (7) is the slowdown Diðs; tÞ experienced by a
CPU-intensive task s in PM i.
Diðs; tÞ ¼

Wðs; tÞeriðsÞ
�Wðs; tÞ

riðsÞ
Wðs; tÞ

riðsÞ

þ e ð7Þ
where riðsÞ and eriðsÞ are the expected and effectively obtained CPU resources (in Mflop/s) assigned to the task s, respectively.
The parameter riðsÞ is obtained through state-of-the-art slowdown meters (e.g., [8]), while eriðsÞ is obtained by monitoring
local resources and corresponds to how much CPU is being used. The performance deviation Diðs; tÞ, that is, slowdown in the
case of CPU-intensive applications, can be negative (i.e., the task is executing faster) or positive, and the same applies to the
estimation error � (i.e., the average error in slowdown samples plus random fluctuations).

The same logic applies to network-intensive tasks, and the performance deviation is stated by Eq. (8).
Diðs; tÞ ¼
biðs; tÞ � ebiðs; tÞ

biðs; tÞ
ð8Þ
where biðs; tÞ and ebiðs; tÞ are the demanded and effectively assigned network I/O bandwidth (in Gbit/s) at instant t to task s
running in node i, respectively. Due to fluctuations, the performance deviation Diðs; tÞ can be negative (i.e., the task is
demanding for less I/O bandwidth) or positive when the demand exceeds the assigned I/O bandwidth.

3.3.3. Performance enforcing logic for CPU-bound workloads
Application QoS requirements are difficult to satisfy because of the variability of workloads and unexpected performance

deviations due to interference among VMs sharing on-chip resources. To address performance deviations in CPU-intensive
applications, we deploy a module combining two blocks [32]: (i) Kalman Filter (KF) noise removal and (ii) the Linear
Regression-based (LR) completion estimator. The simple Kalman filter [41] is a powerful estimator that has the ability to
smooth noisy data and to provide reliable estimates of signals affected by indirect, inaccurate and uncertain observations
(e.g., Gaussian noise). In turn, regression analysis [35] is a common statistical procedure to model relationships between
variables. Its purpose is to predict dependent variable Y based on explanatory variable X, such that Y ¼ aX þ b. The module
is shown in Fig. 2.

For each task, the performance deviation estimator module leverages the KF to eliminate Gaussian distributed unpre-
dictable disturbances in slowdown data samples provided by upstream state-of-the-art tools (e.g., [8]). At each sample time,
the KF produces the estimated remaining workload using the slowdown estimation. Then, an LR is used to estimate the
instant when the remaining workload is zero, i.e., the task finish time, based on the last three samples of the remaining work-
load along time. The intersection of the LR line with the time axis gives the estimated finish time. Henceforth, the combina-
tion of KF and LR will be referred to as the KFLR module.

3.3.4. Performance enforcing logic for network-bound workloads
To handle performance deviations in network-intensive workloads, the data samples containing CPU and network band-

width resources are injected in two separate Kalman filters, as shown in Fig. 3. Then, based on the output of the Kalman fil-
ters, we define a soft limit of resources to assign for each VM. Basically, the soft limit implements a lower bound of
bandwidth and CPU resource availability. The intention is to define what fraction of the bandwidth and CPU resources each
VM can have when the PM is fully utilized or overloaded. Thus, in the case of resource contention among co-located VMs, the
soft limit establishes the minimum resources guaranteed for each VM. In turn, a VM explores the concept of the hard limit,
which implements an upper bound of resource consumption, and it is specified by the total amount of free resources in the
PM. For example, if 500 Mbit/s of network bandwidth are assigned to a VM1 (i.e., the soft limit is 500 Mbit/s) and there is a
co-hosted VM2 that requires only 300 Mbit/s at a certain instant, VM1 can use the remaining 200 Mbit/s from the total of
1 Gbit/s deployed by the PM, being the hard limit for PM1 700 Mbit/s. The same applies for the CPU resource. For a VM, if
the Kalman filter estimates that the soft limit deviates 5% from the assigned amount of resources, the scheduling algorithm
presented below is invoked to proceed with a mapping adaptation.

In this paper, KFIO henceforth represents the mechanism by which performance deviations are handled in
network-intensive workloads.

3.4. Power- and Interference-Aware Scheduling Algorithm (PIASA)

In this section, we introduce our proposed scheduling algorithm to allocate applications in a power- and
interference-aware manner. It extends the POFARE algorithm introduced in [34] by taking into account the interference
among co-located tasks and the diversity of QoS requirements. The cloud manager considers power efficiency estimations
and performance deviations provided by the modules described in Sections 3.3.1 and 3.3.2. Because the problem of mapping
the VMs to the PMs is NP-complete, the proposed algorithm is heuristic. For the incoming applications fj1; . . . ; jkg, the cloud

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 149
manager creates and manages a set of virtual clusters, one for each user, to execute the workloads associated with the appli-
cations. When invoked by the cloud manager, the algorithm selects, at each step, a VM to schedule and determines a des-
tination PM.

3.4.1. VM selection
The algorithm creates a list of prioritized groups of tasks fs1; . . . ; sl�kg. The priorities are, from highest to lowest: (1) per-

formance deviation; (2) new tasks; and (3) running in a power-inefficient PM. In the first group (i.e., performance deviation),
network-intensive tasks have priority over CPU-intensive tasks, and the priority is reversed for other groups. The aim is to
exploit the deadline of CPU-bound workloads and provide network-intensive applications with more stability, avoiding
migration overheads, so they can serve more requests successfully. Network-intensive tasks are sorted in ascending order
according to the difference between resource demand and assigned resources (Eq. (8)). Diðs; tÞ will be negative when
demand for resources is less than the assigned resources, zero when it is a new task, and positive if demand for resources
is greater than the assigned resources. Thus, over-provisioned network-intensive workloads can release excessive resources
to those that suffer from scarcity. In turn, CPU-intensive tasks in each group are sorted in ascending order according to their
slack time (Eq. (2)). Tasks with negative slack time will be eliminated from the scheduling queue. These steps correspond to
lines 3–6 of the algorithm PIASA described in Algorithm 1.

Algorithm 1. Power- and Interference-Aware Scheduling Algorithm (PIASA)

1: function PIASA(pmList, taskList)
2: map NULL
3: taskList:removeTasksHavingNegativeSlackTimeðÞ
4: taskList:groupTasksByReasonðÞ
5: taskList:sortTasksInGroupsByDemandDifferenceðnet typeÞ
6: taskList:sortTasksInGroupsByIncreasingSlackTimeðcpu typeÞ
7: for all task 2 taskList do
8: if task:reasonIsPerformanceDeviationðÞ then
9: if getNewProvisionðtask;mapÞ ¼¼ FALSE then

10: if task:getTaskTypeðÞ ¼¼ cpu type then
11: getNewPMðpmList; task;mapÞ . try migration
12: end if
13: end if
14: while map:findTaskðtaskÞ ¼¼ FALSE do . no candidate PM
15: tempTask task:getNextCohostedTaskðcpu typeÞ
16: if tempTask ¼¼ NULL then
17: break
18: end if
19: getNewPMðpmList; tempTask;mapÞ . tries to migrate co-hosted VM
20: if getNewProvisionðtask;mapÞ ¼¼ TRUE then
21: break
22: end if
23: end while
24: if task:getTaskTypeðÞ ¼¼ net type and map:findTaskðtaskÞ ¼¼ FALSE then
25: getNewPMðpmList; task;mapÞ
26: end if
27: else
28: getNewPMðpmList; task;mapÞ
29: end if
30: if map:findTaskðtaskÞ ¼¼ TRUE then
31: applyMapðmapÞ
32: end if
33: taskList:removeTasksðmapÞ
34: end for
35: end function
3.4.2. VM deployment
After a VM is selected to be scheduled from the prioritized list in line 7 of Algorithm 1, the reason for scheduling is

checked at line 8, and all PMs are evaluated with respect to performance, task resource requirements, and PM power
efficiency. The scheduling of tasks due to performance deviation (line 8) is achieved based on the expansion or shrinkage

Fig. 2. Performance deviation estimator module for CPU-intensive workloads.

Fig. 3. Performance deviation estimator module for network-intensive workloads.

150 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
of resources (line 9). If the expansion of VMs proves to be impossible due to scarcity of resources, the algorithm proceeds in
different ways according to the type of workload. For CPU-intensive workloads, the algorithm starts by trying to migrate the
VM in line 11. If the migration overhead is greater than the slack time in line 14 (i.e., the task will not finish within the
deadline), the algorithm tries to migrate co-located tasks (lines 15–19), starting with the CPU-bound task having the largest
slack time until the released resources are sufficient to expand the degraded VM (line 20). For network-intensive workloads,
the strategy is to migrate CPU-bound workloads (lines 15–19) less sensible to migration overheads in an attempt to free
resources. If, however, freed resources are not sufficient for the network-bound application to expand in line 20, the
algorithm tries to migrate the application in line 25. The function getNewPM retrieves the PM that provides the highest value
for the interference-power metric (ip) given by Eq. (9):
ip ¼maxfValueðiÞ; i ¼ 1::hg ð9Þ

ValueðiÞ ¼ EPi
if
Pn�1

s¼1riðs; tÞ < a
Ii otherwise

(

where Ii ¼
1� �DiðtÞ

max �DhðtÞ
if workload is CPU-bound and �DiðtÞ > 0

UiðtÞ otherwise

(ð10Þ
where h is the number of servers. The ValueðiÞ is given by the power-efficiency EPi
, defined in Eq. (6), if the usage resources

are below a, or by Ii, the interference factor on machine i. As a increases and approaches 1, ip becomes more power-aware
biased, which means the algorithm tends to select the most power-efficient node to schedule the task. Instead, as a tends to
0, ip is interference-aware biased, and the algorithm attempts to find the node with the least interference among the qual-
ified candidates, thus providing better conditions to fulfill the task’s QoS requirements. The value of a can be dynamically
adjusted at runtime depending on the status of the applications QoS deviations and the nodes’ power consumption.

The interference factor Ii of machine i is computed by the ratio of the average slowdown �DiðtÞ experienced by i over the
maximum average slowdown among all machines for CPU-bound workloads with positive slowdown. Otherwise, the
parameter UiðtÞ, expressing the factor of consolidation and interference, defined by Eq. (11), is used.
UiðtÞ ¼ 1� ðn� 1Þ � jHiðtÞj þ#Loadssn

2� V
and HiðtÞ ¼ #LoadsIO �#LoadsCPU

ð11Þ
where t is the current time instant, ðn� 1Þ is the number of VMs running in server i;HiðtÞ is the heterogeneity degree and
#Loadssn is the number of loads of the same type as the task sn running in the PM i. The #LoadsCPU and #LoadsIO are the num-
ber of CPU-bound and network I/O loads running on machine i, respectively. V expresses the number of VMs hosted in the
PM running more VMs so that the values are normalized among all PMs evaluated. For example, if at instant t a server hosts 3
CPU-bound tasks and 1 network-bound task and the cloud manager is trying to schedule a CPU-bound task, then HiðtÞ ¼ �2
and #Loadssn ¼ 3.

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 151
In this regard, UiðtÞ will vary within [0,1]. As UiðtÞ tends to zero, for a given machine i, its Value decreases, and the chance
of being selected to run task sn also decreases. UiðtÞ tends to zero: (a) when the number of VMs in i increases, so that the
system will give preference to less-loaded machines; (b) as the heterogeneity degree decreases, meaning that the machine
is balanced because workloads running in the server tend to be of a different type; and (c) as the type of task sn is of the same
type of tasks running on PM i, i.e., the system will avoid hosting tasks of predominantly the same type. This last assumption
follows from the fact that the impact in the performance of co-hosted workloads is alleviated if they show dissimilar
resource needs [15,19]. The denominator 2� V forces the normalization of the equation, thus ranging within [0,1].

After the machine with the highest Value is selected, designated as PM i, the slowdown that task sn will be subjected to
depends on the load of the machine. For CPU-bound workloads, the slowdown bi is provided by Eq. (12).
biðtÞ ¼
�DiðtÞ if task sn is new
Diðsn; tÞ if shrinking=expanding task
maxðDiðsn; tÞ; �DiðtÞÞ if migrating task

8><>: ð12Þ
where Diðsn; tÞ is the slowdown for task sn and �DiðtÞ is the average slowdown experienced by the tasks hosted in PM i.
Knowing biðtÞ, the scheduling algorithm is now able to estimate the additional amount of CPU resources Driðsn; biðtÞÞ to
assign to task sn to mitigate the performance deviation, as expressed by Eq. (13):
Driðsn;biðtÞÞ ¼
Wðsn; tÞ � biðtÞ

dsn � t �mei
ð13Þ
where mei ¼ 0 for a new or a shrink/expanded task. In the case of network-intensive workloads, the additional amount of
bandwidth resources Driðsn; biðtÞÞ to assign to task sn is given by Eq. (14) and is determined by the difference between

the previously assigned resources biðsn; tÞ and the demand for resources estimated by the Kalman filter ebiðsn; tÞ at instant t:
Driðsn;biðtÞÞ ¼ ebiðsn; tÞ � biðsn; tÞ ð14Þ
Next, the algorithm determines the entire amount of resources needed to fulfill the QoS requirements of tasks during run-
time. In the case of CPU-intensive workloads, Eq. (15) specifies that a task s can be deployed, or migrated, to a PM i at time
t þmei if the following conditions are met: (i) the node provides the minimum resources riðsÞ þ Driðs; biðtÞÞ required by the
task during the ds � t �mei time interval to execute the remaining workload Wðs; tÞ at instant t; and (ii) the required
resources riðsÞ are not more than max rðsÞ to be executed by its deadline.
ðriðsÞ þ Driðs; biðtÞÞÞ � ðds � t �meiÞP Wðs; tÞ
riðsÞ þ Driðs;biðtÞÞ 6 max rðsÞ

�
ð15Þ
Finally, the scheduling algorithm checks whether candidate PM i can provide the minimum resources required by task s,
thus fulfilling Eq. (16) as follows:
riðsÞ þ Driðs;biðtÞÞ þ
Xn�1

s¼1

riðsÞ 6 Ci ð16Þ
where Ci represents the available capacity (i.e., CPU or network bandwidth) in node i. At the end, the algorithm applies a cap
resource usage to assign to tasks the strictly necessary amount of CPU to complete them by the deadline and the network
bandwidth to maintain the throughput. The use of resource limiting was already demonstrated to be effective in the manag-
ing of resources [34,36]. During execution, the cap parameter is dynamically updated to explore the available fraction of
resources in the physical server.

4. Evaluation and simulation scenario

This section presents the metrics used to evaluate the performance of the proposed mechanism to address performance
deviation and power inefficiencies. The workload characteristics and simulation scenario are described as well.

4.1. Performance metrics

We have defined the four main metrics to evaluate the performance of the algorithms in terms of energy efficiency and
the capacity to fulfill the application’s QoS requirements: (i) completion rate of users’ jobs; (ii) service rate of transaction
requests; (iii) ratio of useful Mflops processed to the energy consumed; and (iv) the working efficiency.

4.1.1. Completion rate of users’ jobs
The first metric applies to CPU-intensive workloads and measures the completion rate of users’ jobs. It is calculated as the

ratio of the number of jobs completed by their deadline, JC , to the number of submitted jobs, JS. The metric is expressed as
Eq. (17).

152 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
EJ ¼
JC

JS
ð17Þ
where the EJ value falls in the interval [0,1] and is the SLA metric for CPU-intensive applications. The percentage of SLA vio-
lations is given by ð1� EJÞ � 100.

4.1.2. Service rate of transaction requests
The second metric applies to network-intensive workloads and measures the percentage of SLA fulfillment by relating the

number of applications that successfully served at least 95% of requests within a time unit.
ER ¼
RC

RS
ð18Þ
where RC is the number of requests that were successfully served and RS is the number of submitted requests. In other words,
RC is a measure of the average throughput of VMs at different workload rates. The ER value falls within the interval [0,1].

4.1.3. Energy efficiency
The third metric calculates the amount of energy consumed in Joules to produce useful work. By useful work, we count

the number of Mflops associated with successfully completed jobs only, JC . The energy efficiency metric EM , shown in
Eq. (19), is calculated by dividing the sum of the workloads from all tasks of successfully completed jobs by the overall
energy consumption. The energy is then calculated by multiplying the average power consumption of the computing infras-
tructure (i.e., for all active physical nodes u at all sample times f) by the number of sample times f, multiplied by 60 (because
samples are taken per minute):
EM ¼
Pk

j¼1hj �
Pn

s¼1Wðs; 0ÞP f

s¼1

Pu

i¼1
Pi

u

f � f � 60

hj ¼
1; if job j completed
0; otherwise

� ð19Þ
We henceforth represent this metric as Mflops/Joule.

4.1.4. Working efficiency
The fourth metric determines the quantity of useful work performed (i.e., the completion rate of users’ jobs) by the con-

sumed power. This is determined by multiplying EJ by the average power efficiency based on Eq. (6) for all active physical
nodes i 2 ½1;u� at all sample times f. Eq. (20) shows the calculation of the working efficiency EW .
EW ¼
P f

s¼1

Pu

i¼1
EPi

u

f
� EJ ; 8u 6 h ð20Þ
Eqs. (19) and (20) express the amount of useful work performed from different perspectives. The first equation quantifies the
number of useful Mflops by the consumed energy, while the second equation measures the quantity of useful work (i.e.,
completion rate of users’ jobs) performed with the consumed power. A good algorithm must maximize both.

Maximizing the working efficiency implies diminishing the power consumption and increasing the number of completed
jobs. Such a goal entails a trade-off between power-efficiency and performance interference. Power-efficiency can be
achieved through a higher level of consolidation that, in turn, generally causes more performance degradation and thus neg-
atively affects the rate of completed jobs.

4.2. Workload and performance characteristics

In this section, we describe the characteristics of the two types of workloads considered and of the performance interfer-
ence incurred due to the consolidation of applications.

4.2.1. Workloads based on Google cloud tracelogs
Several recent comprehensive analyses (e.g., [28,23]) of the workload characteristics derived from Google cloud tracelogs,

featuring over 900 users submitting approximately 25 million tasks over a month, yielded significant data on the character-
istics of submitted workloads and the management of cluster machines. These studies enable further work on important
issues in the domain of resource optimization and energy efficiency improvement. The studies show that approximately
75% of jobs only run one task, and most of the jobs have less than 28 tasks that determine the overall system throughput.
The job inter-arrival time is 4 s, with each job lasting an average of 3 min. The jobs follow distributions such as lognormal,
gamma, Weibull, or even exponential. The majority of jobs run in less than 15 min, although there are a small number of jobs
that run longer than 300 min. Moreover, the task length, number of tasks per job, and CPU utilization (varying from near 0%
to nearly 25%) follow a lognormal distribution. Most of the tasks use less than 2.5% of the server’s RAM.

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 153
Based on these key findings, we created two sets of synthetic jobs. The first set contained 3614 CPU-intensive jobs to sim-
ulate users’ non-interactive batch jobs, totaling 10,357 tasks, each with a deadline rounded up to 10% more than its mini-
mum necessary execution time. The job deadline equals the deadline of the jobs longest task. The second set included
148 network-intensive groups of web applications and a total of 413 tasks. They are mostly network bandwidth consuming,
and the required bandwidth due to oscillation in the number of requests per time unit and the file size to download varies
randomly with time, following a lognormal distribution with an average value and a standard deviation of 52.5 and 265,
respectively. Ersoz et al. [9] indicate that lognormal distributions model web server workloads well. The CPU consumption
changes as well but in a residual way, following a lognormal distribution with an average value and a standard deviation of 4
and 3.5, respectively. In fact, it is common to observe CPU utilization for a web workload varying in the range 2–15% [1,2]. For
both types of workloads, the runtime is specified by the user, and the VMs running them require a RAM size of 256, 512, or
1024 MB, selected randomly.

4.2.2. Performance interference characteristics
The behavior of co-located jobs is often described as non-deterministic and, hence, difficult to estimate [22]. However,

recent research has shed some light on this subject. These studies have contributed several key findings that support the char-
acteristics of performance interference among co-located VMs in the simulated cloud infrastructure. For example, Pu et al.
[30] indicate that interference is greater when two applications of the same type are co-located, sharing the same physical
resources (i.e., contending for the same resources). Interference among CPU-intensive applications occurs mainly due to con-
tention in the LLC and memory bus [8] and can degrade performance by imposing a slowdown of as much as 120% [11] (some
authors report even larger values [13]). Lim et al. [22] observed a linear relationship between total completion time and indi-
vidual completion times, a relationship that is lost when different types of jobs co-execute in the system. Verma et al. [40]
observed that very large applications (in terms of working set size, i.e., the size of cache an application uses) are not affected
by other workloads running on the same physical machine, and small applications do not suffer performance degradation as
long as the sum of working set sizes remains less than the server’s cache. Moreover, the degradation in performance of appli-
cations starts to stabilize (i.e., does not increase) when the pressure over the servers’ cache is double the capacity.

Based on these key findings, we have simulated performance interference among co-located CPU-intensive workloads.
Basically, each CPU-intensive application utilizes a certain amount of cache to store data during runtime. Such an amount
is determined by a Poisson distribution with a mean of 13% (an acceptable value considering current processors [17]) of
the total physical cache. For example, Lei et al. [21] utilized a Poisson distribution to study LLC management strategies.

The degree of performance interference of an application depends on the applications working set size and the working
set size of co-hosted applications. Specifically, our simulation model implements the following key findings [11,13,24,40]: (i)
interference among co-hosted applications is residual (e.g., almost zero) as long as the sum of their working set sizes is less
than the cache size; (ii) the performance of an application degrades as soon it draws closer to the size of the cache, and it
tends to stabilize afterward as it moves away from that size; (iii) cache contention decreases CPU throughput (instructions
dispatched per second), hence imposing slowdown in the execution of applications. The performance degradation of the

applications hosted in the same PM is determined by e�ððx�1Þ=2xÞ3 in the case in which the sum of the working sets size, x,
is less than the PM cache size; and it is e�ððx�1Þ=2x0:95Þ otherwise. These expressions were inferred from the results presented
in [24,29,40], and x is given in percentage form, so that x will be greater than 100% when the application requirements
exceed the PM capacity. Because we assume that web applications are characterized mainly by network-intensive work-
loads, interference among co-hosted web applications is essentially caused by contention in the network I/O channel, being
immune to on-chip interference.

4.3. Comparison of strategies

To assess the quality of the mechanism proposed in this paper, alternative mechanisms are implemented to compare their
performance with that of our performance deviation estimator and scheduling algorithm.

4.3.1. Alternative performance deviation estimators
Three other common performance deviation detectors were implemented. For all strategies, data sample analysis is per-

formed over a sliding window containing 5 performance deviation samples per minute, taken at constant intervals [34]. The
threshold was set to 10% more than the task’s minimum necessary execution time. The first, Simple ThresholD (STD) VM
adaptation, is triggered if 3 slowdown data samples exceed the predefined threshold value. The second mechanism,
Average ThresholD (ATD), determines the average slowdown from samples within the window, and if the average value
exceeds the predefined threshold value, condition detection is triggered. The third approach, Extended ThresholD (ETD), cal-
culates the average slowdown from samples within 3 consecutive windows (each window differing from the prior one in one
sample) and invokes the scheduling algorithm if the average result exceeds the mentioned threshold.

4.3.2. Alternative scheduling algorithms
Garg et al. [10] proposed a dynamic resource management strategy to handle scheduling of two types of applications,

namely, compute-intensive non-interactive jobs and transactional applications such as web servers. The mechanism

154 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
responds to changes in transactional workloads and tries to maximize resource utilization while enforcing the SLA require-
ments and specifications. A web VM is scheduled based on best-fit, not taking into account the resources consumed by VMs
running dynamic jobs. To maximize the energy efficiency, the scheduler tries to explore free resources in nodes running web
applications to schedule dynamic jobs. However, if free resources are insufficient to execute the task within its deadline, the
job is allocated to another node in the form of a static job. Resources are transferred from dynamic jobs to web applications
as demand changes. Periodically, the algorithm verifies the SLA accomplishment and realizes consolidation. The priority of
scheduling is: (1) enforce SLAs; (2) schedule the jobs from the batch job queue; and (3) consolidation.

Our work is closely related to [10] in the sense that we address the resource allocation problem within a data center that
runs different types of application workloads (i.e., CPU- and network-bound applications), aiming at maximizing resource
utilization and profit and ensuring that the QoS requirements of users are met as specified in SLAs. To achieve these objec-
tives, dynamic resource allocation and consolidation are implemented. Unlike our work, Garg et al. [10] do not consider per-
formance deviation due to contention in on-chip resources (e.g., LLC and memory bus). Moreover, our mechanism is able to
(i) implement dynamic vertical elasticity of resources, (ii) make resource allocation decisions based on noisy performance
deviation data samples, and (iii) balance energy efficiency and performance in the execution of applications.

4.4. Simulation setup

Because the target system is a cloud computing infrastructure and the functionality of re-sizing a VM dynamically, as
required by the proposed resource management algorithm, is unavailable in production clouds, we resorted to simulation
to evaluate the algorithms discussed in this paper. Simulation allows us to perform a statistically significant number of
experiments for a wide range of application configurations in a reasonable amount of time. Due to the limitations of current
simulation software programs, such as CloudSim [5], that do not support dynamic VM re-sizing, we have implemented our
own discrete-event simulation software that was validated in our previous work [33,34]. Events are generated statistically
following distributions observed in previous work. The workload is based on the Google Cloud trace logs (details in
Section 4.2.1); the interference characteristics were derived from [24,29,40] (details in Section 4.2.2); and VM migrations
follow the characteristics presented in [14].

We simulated a cloud data center infrastructure aggregating 50 homogeneous physical servers. Each server contains a
CPU with a capacity assumed to be 800 Mflops/s with an electrical power consumption of 275 W when fully loaded.
Parameters p1 and p2 for Eq. (5) were defined as 0.7 and 0.3 [3,4], respectively. The bandwidth of the network interfaces
for a server was considered to be 1 Gbit/s. The scheduling algorithm has no knowledge of when applications are submitted
to the cloud or of the change in workload demands. Each VM requires a RAM size of 256, 512, or 1024 MB, randomly
selected; the migration overhead of the VM depends on the memory size and the available network bandwidth in the
LAN link [14], considered here as taking 8, 10 and 12 s, respectively. In simulations considering network-intensive applica-
tions, all the tested algorithms reserved 15% for free bandwidth in every PM to better accommodate abrupt oscillations with-
out migration.
5. Results and analysis

In this section, we present and discuss the results associated with the proposed mechanism to detect and mitigate per-
formance deviations and power inefficiencies. In our simulations, we first assess the effectiveness of the proposed perfor-
mance estimator and scheduling algorithm to handle CPU-bound workloads. Then, we investigate how well the
mechanism performs in fulfilling network-intensive application QoS requirements and in accommodating the variations
in workload demands. The last section analyses the effectiveness of the proposed mechanism in building energy-efficient
virtual clusters that fulfill the dissimilar types of QoS requirements of heterogeneous applications.

5.1. CPU-bound workloads

This set of simulations intends to analyze the performance of the slowdown estimator and scheduling algorithm in the
provision of resources to CPU-intensive jobs.

5.1.1. Performance of the scheduling algorithms
Table 1 shows the results for the performance of scheduling algorithms in the absence of interference among co-hosted

CPU-bound workloads (i.e., the applications do not experience slowdown during runtime). Provisioning of resources consid-
ers power-efficiency optimization. Because Garg et al. [10] works based on the best-fit approach and does not consider the
slowdown for scheduling of tasks, we defined the parameter a for Eq. (9) as 1.0 to make PIASA power-efficiency biased and to
provide a fairer comparison. The results show that PIASA achieves the same completion rate of jobs as Garg et al. [10] but
improves the energy efficiency and working efficiency by approximately 20.6% and 21.8%, respectively. This means the PIASA
strategy can produce the same work with CPU-bound workloads as Garg et al. [10] while consuming less energy, as shown in
column E ðMJÞ of the table. The reason is that PIASA achieves higher levels of consolidation due to the use of the cap param-
eter, thus using a lower average number of PMs during simulation, Avg # PMs, and, hence, consuming less energy.

Table 1
Performance of scheduling algorithms in the management of CPU-bound workloads, applying power optimization only (i.e., without slowdown). The a
parameter in Eq. (9) was set to 1.0.

Algorithm EJ ð%Þ EM EW ð%Þ E ðMJÞ Avg # PMs

Garg et al. [10] 100.00 0.0572 59.23 114.7 7.61
PIASA 100.00 0.0690 72.15 95.2 6.10

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 155
Table 2 registers the results for scheduling algorithms when co-hosted tasks experience performance interference. For the
reason indicated above, we set up a ¼ 1:0. The PIASA algorithm is combined with the KFLR slowdown estimator to address
possible slowdown situations in the execution of tasks. The upstream slowdown meter provides slowdown data samples
with an average slowdown error of 10% and a standard deviation of 20%. As observed, the performance of the Garg et al.
[10] algorithm degrades substantially because it ignores the slowdown in the execution of tasks due to performance inter-
ference. In turn, the PIASA strategy is able to complete more than 95% of the submitted jobs (i.e., EJ), largely outperforming
Garg et al. [10], which is able to complete only 12.2% of jobs. Comparing these results with those for absence of performance
interference (i.e., Table 1), it is obvious that PIASA now uses, on average, more physical nodes during simulation Avg # PMs.
The increase was nearly 24%. Due to the slowdown in the execution of tasks, more resources are allocated to VMs to
re-establish the required levels of QoS, resulting in a higher average number of active servers during simulation. If more
physical servers are active, more energy is consumed. Column E ðMJÞ confirms this fact, showing an increase of 34%.

5.1.2. Performance of the slowdown estimators
This section analyses the efficacy of the proposed slowdown estimator mechanism introduced in Section 3.3.3.

Simulations are carried out by combining different slowdown estimator alternatives with the PIASA algorithm, which per-
forms better as observed in Section 5.1.1. The upstream state-of-the-art slowdown meter provides slowdown data samples
with an average slowdown error of 10% and a standard deviation of 20%. The a parameter in Eq. (9) was set to 1.0 (which
represents the case in which more performance interference occurs due to a high level of consolidation to improve energy
efficiency). In Fig. 4(a), we see that KFLR completes nearly 96% of jobs, which is approximately 17.9% more than LR and
approximately 37.1% more than the common STD method. The STD and ATD methods are both very sensitive to slowdown
measurement fluctuations because they respond too quickly to threshold violations. As a result, nearly 38% more VM migra-
tions are triggered compared to PIASA, which leads to an inferior rate of completed jobs due to migration overhead. In turn,
ETD seems to react too late, triggering VM migrations when tasks are no longer able to be completed by their deadlines.

The KFLR achieves superior performance compared with all the other slowdown estimator techniques. Compared to LR,
the better results for KFLR are from the removal of noise from slowdown data samples before their use by LR. Moreover, with
KFLR, the slowdown of tasks during runtime is less than 8% on average than the slowdown evidenced by LR. Fig. 4(b) and (c)
quantify the useful work performed by the consumed energy and power, respectively. Again, we observe that KFLR is the
estimator that performs better, delivering more work with less energy consumption. Compared to other estimators, this
property suggests that KFLR provides higher confidence levels, resulting in better decisions despite the noisy slowdown data
samples and thus outputting a better jobs-completed-to-energy-consumption ratio. The STD and ATD methods present the
worst results for EW and EM .

5.1.3. Performance impact of the Average Slowdown Error (ASE)
The slowdown meter proposed by Dwyer et al. [8] has an Average Slowdown Error (ASE) of 10%, which is the value we

have used so far. Other researchers propose alternatives with different ASEs [11,22]. This section evaluates the efficacy of the
proposed performance and energy efficiency enforcing mechanism (i.e., PIASA combined with KFLR) while varying ASE in
data samples provided by upstream state-of-the-art slowdown meters. Table 3 shows the evolution for the EJ; EM ; EW perfor-
mance metrics and the average estimated system slowdown �b. The results show that the higher the uncertainty in slowdown
data samples provided by upstream slowdown meters, the more difficult it is to make the right decision (the produced �b
reaches higher values as uncertainty increases). This explains why the completion rate of user jobs EJ decreases as ASEs aug-
ment, with a consequent negative impact on energy efficiency EM and working efficiency EW . However, it is important to
observe, based on the results, that our mechanism can be applied effectively if we consider that upstream state-of-the-art
slowdown meters (e.g., [8,11,22]) can estimate the slowdown of applications with ASEs equal to or less than 10% and that
SLA contract terms in real-world environments allow a mean performance degradation of 1–5% [3].
Table 2
Performance of scheduling algorithms in the management of CPU-bound workloads, with interference among co-hosted tasks and applying power optimization
(noisy slowdown samples with an average error of 10% and a standard deviation of 20%). The a parameter in Eq. (9) was set to 1.0.

Algorithm EJ ð%Þ EM EW ð%Þ E ðMJÞ Avg # PMs

Garg et al. [10] 12.2 0.0023 8.29 114.7 7.61
PIASA 95.60 0.0452 69.21 127.7 7.53

(a) Completion rate of users jobs. (b) Energy efficiency.

(c) Working efficiency.

Fig. 4. Comparison among slowdown estimator mechanisms in the management of CPU-bound workloads combined with the PIASA scheduling algorithm
(noisy slowdown samples with an average error of 10% and a standard deviation of 20%). The a parameter in Eq. (9) was set to 1.0.

Table 3
Performance of PIASA + KFLR in the management of CPU-bound workloads while varying the average slowdown error in
data samples provided by state-of-the-art upstream slowdown meters. The a parameter in Eq. (9) was set to 1.0.

ASE (%) EJ ð%Þ EM EW ð%Þ �b

5 97.29 0.0475 75.41 20.37
10 95.60 0.0452 69.21 22.30
15 92.20 0.0413 67.51 25.36
20 85.50 0.0346 61.68 29.06
25 73.36 0.0247 51.47 32.32

156 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
5.2. Network-bound workloads

Table 4 shows the results for the performance achieved by the proposed mechanism to address network-intensive work-
loads. The QoS requirements are specified by users, but the characteristics of the workload demands are unknown, changing
according to what is described in Section 4.2.1. The goal is to assess the efficacy of the mechanism to enforce the QoS require-
ments of applications for which workload demands change abruptly. Unlike Garg et al. [10], our strategy (i.e., KFIO combined
with the PIASA scheduling algorithm) performs dynamic consolidation of workloads that, combined, may exceed the total
available resources in the host, such as bandwidth and CPU. The cloud manager module invokes the scheduling algorithm
to readjust the VM to PM mapping if the performance deviates at least 5% from the figure previously specified in the last
schedule.

The results show that the PIASA algorithm outperforms the Garg et al. [10] strategy, providing sufficient resources to
approximately 95.2% of applications so that they can successfully serve at least 95% of user requests. Because PIASA uses
Table 4
Performance of scheduling algorithms in the management of network-bound workloads that present oscillations in demand of resources (requested bandwidth
oscillations with an average value of 0% and a standard deviation of 15%). The a parameter in Eq. (9) was set to 0.50.

Algorithm 100% P95% P90% P85% <85% E ðMJÞ

Garg et al. [10] 0.0% 3.2% 36.1% 30.0% 30.7% 262.1
PIASA 37.8% 57.4% 2.8% 1.5% 0.5% 431.5

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 157
additional resources to supply the increase in user demands and thus fulfill the applications QoS requirements, achieving a
higher rate of successfully served requests, more energy is consumed. This fact is reported in the last column of Table 4.

In Fig. 5, the bandwidth characteristics during a fraction of the runtime of a VM hosting a web application are plotted. The
y-axis represents the percentage of bandwidth of the physical server the VM utilizes, and the simulation time, for which each
time unit corresponds to 11 real seconds, is plotted on the x-axis. The bandwidth varies with time, according to the number
of requests per time unit and the size of the file to download, as described in Section 4.2.1. The ‘‘Demanded’’ bandwidth
accounts for the bandwidth required at each time unit. The ‘‘Utilized’’ bandwidth represents the bandwidth the application
was able to use during runtime (a VM is able to use more than the initially assigned amount, as long as the physical server
contains free resources), while the soft limit expresses the minimum guaranteed bandwidth the algorithm decided to assign
to the application. ‘‘Scarcity’’ is the difference between the resources demanded and utilized, and ‘‘Wastage’’ is the difference
between the soft limit and the demanded resources.

Fig. 5 also shows that the proposed mechanism is able to detect performance deviations that can be caused by: (1) scar-
city of resources, when applications demand more resources than are initially assigned, or (2) wastage of resources, if ini-
tially assigned resources exceed application needs. For example, the line ‘‘Scarcity’’ was always kept at 0, which indicates
that the mechanism was able to expand the resources assigned to the VM. Even in the case of the abrupt increase in
‘‘Demand’’ that occurred between interval 1060 and 1070, the proposed mechanism proved to be effective in reacting on
time by assigning more resources, as demonstrated by the ‘‘Soft limit’’ line. In addition, the mechanism demonstrated aware-
ness of the excessive amount of resources assigned to the VM, as indicated by the ‘‘Soft limit’’ line, which falls during appli-
cation runtime. For this case, the ‘‘Wastage’’ line demonstrated that 95.6% of the time, the excess of resources was less than
or equal to 5%, and wasted resources of only 2% or lower were observed 74.6% of the time.

Fig. 6 draws the CPU resource characteristics for the same fraction of the runtime of the VM hosting the web application.
The y-axis represents the percentage of CPU of the physical server the VM utilizes, and the x-axis contains the simulation
time. The CPU resource consumption varies with time according to workload needs. The figure shows that the proposed
strategy successfully fulfilled the workload demand in terms of CPU. Moreover, in the specific case of this
network-intensive application, the mechanism did not miss or waste any CPU capacity, which in the last case means that
freed resources were available for other applications.

5.3. Mixture of CPU- and network-bound workloads

This section assesses the efficacy of the proposed mechanism to enforce the diverse QoS requirements of applications
with heterogeneous workloads while optimizing the energy efficiency of the system. The process of provisioning of resources
considers two types of workloads: CPU- and network-intensive workloads. The application QoS requirements are specified
by users, but the change in workload demands and performance deviations during runtime are unknown and follow the
characteristics described in Section 4.2.1. Because the level of consolidation is very low for a ¼ 0, the effects produced by
the mechanism to optimize the power-efficiency are irrelevant. In this sense, the consolidation mechanism was switched
off for a ¼ 0, thus stabilizing the whole system by restricting the number of migrations for power-efficiency reasons.

Table 5 shows the impact of the variation in parameter a of Eq. (9) in the performance of the proposed mechanism
(KFLR + KFIO + PIASA). The �H stands for the average load heterogeneity degree (a concept that was initially described in
Section 3.4.2), measured for all servers along the simulation. As mentioned previously, as a tends to 1, the mechanism tends
to be more power aware and hence concerned with power-efficiency. In turn, as a tends to 0, the mechanism is
interference-aware biased, hence prioritizing the fulfillment of application QoS requirements over power-efficiency objec-
tives. The results demonstrate the trade-off between the consolidation of VMs to improve power-efficiency versus higher
Fig. 5. Dynamic adjustment of bandwidth for a VM running a network-bound workload. The deviation threshold beyond which an adjustment was
triggered was set to d ¼ 5%. The a parameter in Eq. (9) was set to 0.50.

Fig. 6. Dynamic adjustment of CPU for a VM running a network-bound workload. The deviation threshold beyond which an adjustment was triggered was
set to d ¼ 5%. The a parameter in Eq. (9) was set to 0.50.

Table 5
Performance of proposed KFLR (CPU-intensive workloads) + KFIO (network-intensive workloads) + PIASA in the managing of applications. The deviation
threshold beyond which an adjustment was triggered for network-intensive workloads was set to 5%. The a parameter in Eq. (9) is varied from 1.00 to 0.00.
Because the level of consolidation is very low for a ¼ 0:0, the consolidation mechanism was switched off in this case.

a ER ð%Þ EJ ð%Þ VMs=PM Mig ð%Þ �H E ðMJÞ EM ðMflops=JÞ EW ð%Þ

1.00 86.9 95.3 9.14 28.7 �0.95 396.7 0.020 35.25
0.75 93.5 96.3 8.23 17.9 �0.93 433.2 0.019 34.53
0.50 95.6 98.0 7.26 12.2 �0.87 480.5 0.018 32.35
0.25 95.6 99.2 6.66 8.5 �0.80 512.5 0.017 29.42
0.00 96.4 100.0 4.64 1.0 �0.04 608.1 0.015 17.66

158 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
levels of fulfillment of application QoS needs. For example, in the case of a ¼ 1:00, which leads Eq. (9) to be power-efficiency
biased, the mechanism achieves the best results in terms of the relationship between Mflops per Joule EM and work produced
(i.e., completion rate of jobs) for average power consumption EW . However, the amount of CPU-intensive jobs completed EJ

and the number of network-intensive applications successfully serving more than 95% of requests ER are the lowest for all a,
representing 95.3% and 86.9%, respectively. Two factors explain these results for EJ and ER. The first regards the consolidation
level VMs=PM, which increases as a evolves from 0 to 1. Performance interference follows the same tendency, as more tasks
sharing the node’s resources represent more interference. The second factor relates to the higher average heterogeneity level
value �H observed during application runtime, which means that more workloads of the same type are consolidated per node,
thus increasing performance interference. The variable �H becomes negative in the three sets of experiments because, most of
the time, the PMs ran more CPU-intensive workloads than network-intensive workloads. In turn, when the parameter a is 0,
the mechanism indeed proves to be interference-aware biased, leading to a decrease in the �H, which means there is extra
care in hosting CPU- together with network-intensive workloads. Furthermore, the number of VMs successfully serving more
than 95% of the network requests ER increases to 96.4%. The completion rate of user jobs EJ increases to 100%. The consol-
idation of VMs (i.e., VMs=PM) diminishes, which leads in general to a minor degree of performance interference among
co-hosted workloads (less contention in resources) while producing an increase in energy consumption. Accordingly, the
number of migrations Mig decreases, and thus, there is greater stability in the whole system. The relationship between work
produced and average power EW and energy EM consumption decreases as well.

Based on these results, we can conclude that high values of a are cloud provider friendly in the sense that they increase
the relationship of work produced and energy consumption at the expense of a lower rate of completed network IO-intensive
applications and fewer VMs serving more than 95% of CPU-intensive requests. In turn, low values of a are cloud consumer
friendly because they ensure higher rates of SLA accomplishment by increasing the rate of completed CPU-intensive
applications and the number of VMs serving more than 95% of network requests, at the expense of higher rates of energy
consumption. In any case, if a is defined as 0.50, it will represent a savings of nearly 21% in energy consumption compared
to the case of a ¼ 0, while the QoS requirements for both types of workloads will be above 95%.
6. Conclusions

Cloud data centers apply virtualization because of the benefits it offers, which includes fault isolation and improved
manageability through dynamic resource provisioning and live migration of VMs. However, virtualization technology does

A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160 159
not provide performance isolation. Consequently, the phenomenon of performance interference occurs among co-hosted
VMs that share physical resources. In the specific case of CPU-intensive workloads, contention in on-chip resources (e.g.,
LLC and memory bus) initiates performance deviation in the form of slowdown in the execution of applications. This problem
is even more severe when cloud providers consolidate VMs to reduce energy consumption and operational costs and when
the application workload characteristics are diverse and have different QoS requirements.

In this paper, we proposed a performance and energy efficiency enforcing mechanism composed of a performance devi-
ation estimator and a scheduling algorithm. The objective is to guarantee diverse application QoS requirements while max-
imizing the energy efficiency during runtime. The tests were conducted by injecting two types of applications, CPU- and
network-intensive applications. The workload characteristics of both sets follow the latest version of the Google cloud tracel-
ogs. In the case of network-intensive applications, the number of requests per time unit and file size to download followed a
lognormal distribution. In the first set of simulations, we analyzed the efficacy of the performance and energy efficiency
enforcing mechanism in scheduling CPU-intensive workloads, with and without performance interference among VMs.
The results show that the proposed PIASA algorithm outperformed the alternative algorithm, completing 95.6% of the sub-
mitted jobs in the presence of performance interference. In the absence of performance deviation, PIASA proved able to pro-
duce at least the same amount of work as the alternative state-of-the-art algorithm while consuming less energy. In the
second set of simulations, the mechanism proved capable of ensuring that nearly 96% of network-intensive applications
could successfully serve more than 95% of requests. Finally, the proposed mechanism was tested with a mixture of CPU-
and network-bound workloads. Considering that in real-world environments the SLA contract terms allows a mean perfor-
mance degradation of 1–5%, our proposed performance enforcing mechanism can be applied effectively to fulfill the
expected QoS of applications and reduce energy costs by as much as 21%.

Future work will consider the adaptation of a cloud middleware, such as OpenStack or OpenNebula, to support dynamic
VM re-sizing in order to experimentally validate the algorithm proposed in this paper. We plan to consider other types of
workloads with different resource demands and other sources of performance interference and to include additional control
actuators so that we can address memory-bound applications as well. Cloud computing assists the deployment of modern
applications with variable workloads, which implies that VM placement should be optimized continuously in an online man-
ner. Sharing and contention of other resources, such as disks and scheduler parameters, also result in performance interfer-
ence. Another relevant problem is the consideration of heterogeneous resources and processing workflows, in which tasks
follow a sequence with mandatory precedence.
Acknowledgment

This work is partially supported by EU under the COST Program Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS) and by Austrian Science Fund (FWF) project TRP 237-N23: ‘‘Workflows on Manycore Processors’’.
References

[1] T.F. Abdelzaher, K.G. Shin, N. Bhatti, Performance guarantees for web server end-systems: a control-theoretical approach, IEEE Trans. Parallel Distrib.
Syst. 13 (1) (2002) 80–96.

[2] P. Barford, M. Crovella, Generating representative web workloads for network and server performance evaluation, ACM SIGMETRICS Perform. Eval. Rev.
26 (1) (1998).

[3] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing, Future
Gen. Comput. Syst. 28 (5) (2012) 755–768.

[4] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M.Q. Dang, K. Pentikousis, Energy-efficient cloud computing, Comput. J. 53 (7) (2009) 1045–
1051.

[5] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, R. Buyya, CloudSim: a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw.: Pract. Exper. 41 (1) (2011) 23–50.

[6] D. Carrera, M. Steinder, I. Whalley, J. Torres, Enabling resource sharing between transactional and batch workloads using dynamic application
placement, in: 9th ACM/IFIP/USENIX International Conference on Middleware, December 2008, pp. 203–222.

[7] R.C. Chiang, H.H. Huang, TRACON: interference-aware scheduling for data-intensive applications in virtualized environments, in: International
Conference for High Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[8] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, J. Pei, A practical method for estimating performance degradation on multicore processors, and
its application to HPC workloads, in: International Conference in High Performance Computing, Networking, Storage and Analysis, November 2012, pp.
1–11.

[9] D. Ersoz, M.S. Yousif, C.R. Das, Characterizing network traffic in a cluster-based, multi-tier data center, in: 27th International Conference on Distributed
Computing Systems, June 2007, pp. 59–59.

[10] S.K. Garg, A.N. Toosi, S.K. Gopalaiyengar, R. Buyya, SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter, J.
Network Comput. Appl. 45 (2014) 108–120.

[11] S. Govindan, J. Liu, A. Sivasubramaniam, A. Kansal, Cuanta: quantifying effects of shared on-chip resource interference for consolidated virtual
machines, in: 2nd ACM Symposium on Cloud Computing, 2011, pp. 1–14.

[12] A. Greenberg, J. Hamilton, D.A. Maltz, P. Patel, The cost of a cloud: research problems in data center networks, ACM SIGCOMM Comput. Commun. Rev.
39 (1) (2009) 68–73.

[13] Y. Hashimoto, K. Aida, Evaluation of performance degradation in HPC applications with VM consolidation, in: 3rd International Conference on
Networking and Computing (ICNC), December 2012, pp. 273–277.

[14] M.R. Hines, K. Gopalan, Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning, in: ACM International
Conference on Virtual Execution Environments, 2009, pp. 51–60.

[15] Q. Huang, P.P.C. Lee, An experimental study of cascading performance interference in a virtualized environment, ACM SIGMETRICS Perform. Eval. Rev.
40 (4) (2013) 43–52.

http://refhub.elsevier.com/S1569-190X(15)00106-9/h0005
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0005
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0010
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0010
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0015
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0015
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0020
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0020
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0025
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0025
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0050
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0050
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0060
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0060
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0075
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0075

160 A.M. Sampaio et al. / Simulation Modelling Practice and Theory 57 (2015) 142–160
[16] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema, Performance analysis of cloud computing services for many-tasks scientific
computing, IEEE Trans. Parallel Distrib. Syst. 22 (6) (2010) 931–945.

[17] A. Jaleel, M. Mattina, B. Jacob, Last level cache (LLC) performance of data mining workloads on a CMP-a case study of parallel bioinformatics workloads,
in: 12th IEEE International Symposium on High-Performance Computer Architecture, February 2006, pp. 88–98.

[18] M. Keller, D. Meister, A. Brinkmann, C. Terboven, C. Bischof, eScience cloud infrastructure, in: Proceedings of the 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, Finland, 2011, pp. 188–195.

[19] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, C. Pu, An analysis of performance interference effects in virtual environments, in: International
Symposium on Performance Analysis of Systems and Software, April 2007, pp. 200–209.

[20] G. Kousiouris, T. Cucinotta, T. Varvarigou, The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and
their prediction through optimized artificial neural networks, J. Syst. Softw. 84 (8) (2011) 1270–1291.

[21] L. Lei, A. Huiyao, Z. Peng, Study on last-level cache management strategy of the chip multi-processor, Appl. Math. Inform. Sci. 9 (2L) (2015) 661–670.
[22] S.H. Lim, J.S. Huh, Y. Kim, G.M. Shipman, C.R. Das, D-factor: a quantitative model of application slow-down in multi-resource shared systems, ACM

SIGMETRICS Perform. Eval. Rev. 40 (1) (2012) 271–282.
[23] Z. Liu, S. Cho, Characterizing machines and workloads on a Google cluster, in: International Conference on Parallel Processing Workshops, Pittsburgh,

2012, pp. 397–403.
[24] J. Mars, L. Tang, K. Skadron, M. Lou Soffa, Increasing utilization in modern warehouse-scale computers using bubble-up, Micro, IEEE 32 (3) (2012)

88–99.
[25] M. Maurer, I. Brandic, R. Sakellariou, Adaptive resource configuration for Cloud infrastructure management, Future Gen. Comput. Syst. 29 (2) (2013)

472–487.
[26] Y. Mei, L. Liu, X. Pu, S. Sivathanu, X. Dong, Performance analysis of network I/O workloads in virtualized data centers, IEEE Trans. Serv. Comput. 6 (1)

(2011) 48–63.
[27] D. Meisner, B.T. Gold, T.F. Wenisch, PowerNap: eliminating server idle power, in: 14th International Conference on Architectural Support for

Programming Languages and Operating Systems, Washington, 2009, pp. 205–216.
[28] I.S. Moreno, P. Garraghan, P. Townend, J. Xu, Analysis, modeling and simulation of workload patterns in a large-scale utility cloud, IEEE Trans. Cloud

Comput. 2 (2) (2014) 208–221.
[29] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-Clouds: managing performance interference effects for QoS-aware clouds, in: European Conference on

Computer Systems, April 2010, pp. 237–250.
[30] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, Understanding performance interference of I/O workload in virtualized cloud environments, in: IEEE 3rd

International Conference on Cloud Computing (CLOUD), 2010, pp. 51–58.
[31] J. Rao, Y. Wei, J. Gong, C.Z. Xu, QoS guarantees and service differentiation for dynamic cloud applications, IEEE Trans. Network Serv. Manage. 10 (1)

(2013) 43–55.
[32] A.M. Sampaio, J.G. Barbosa, Estimating effective slowdown of tasks in energy-aware clouds, in: 12th IEEE Parallel and Distributed Processing with

Applications (ISPA), 2014, pp. 101–108.
[33] A.M. Sampaio, J.G. Barbosa, Optimizing energy-efficiency in high-available scientific cloud environments, in: IEEE International Conference on Cloud

and Green Computing, Karlsruhe, 2013.
[34] A.M. Sampaio, J.G. Barbosa, Towards high-available and energy-efficient virtual computing environments in the cloud, Future Gen. Comput. Syst. 40

(2014) 30–43.
[35] G.A. Seber, A.J. Lee, Linear Regression Analysis, vol. 936, John Wiley & Sons, 2012.
[36] M. Silva, K.D. Ryu, D. Da Silva, VM performance isolation to support QoS in cloud, in: 26th Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), May 2012, pp. 1144–1151.
[37] M. Stillwell, F. Vivien, H. Casanova, Dynamic fractional resource scheduling versus batch scheduling, IEEE Trans. Parallel Distrib. Syst. 23 (3) (2012)

521–529.
[38] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud computing: a view of scientific applications, in: 10th International Symposium on Pervasive

Systems, Algorithms, and Networks, Taiwan, December 2009, pp. 4–16.
[39] A. Verma, G. Dasgupta, T.K. Nayak, P. De, R. Kothari, Server workload analysis for power minimization using consolidation, in: 2009 Conference on

USENIX Annual Technical Conference, 2009, pp. 1–14.
[40] A. Verma, P. Ahuja, A. Neogi, Power-aware dynamic placement of HPC applications, in: 22nd Annual International Conference on Supercomputing, June

2008, pp. 175–184.
[41] G. Welch, G. Bishop, An Introduction to the Kalman Filter, University of North Carolina, North Carolina, 1995.
[42] J. Xu, J. Fortes, A multi-objective approach to virtual machine management in datacenters, in: 8th ACM International Conference on Autonomic

Computing, Karlsruhe, 2011, pp. 225–234.
[43] X. Zhang, J.J. Lu, X. Qin, X.N. Zhao, A high-level energy consumption model for heterogeneous data centers, Simul. Model. Pract. Theory 39 (December)

(2013) 41–55.

http://refhub.elsevier.com/S1569-190X(15)00106-9/h0080
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0080
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0100
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0100
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0105
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0110
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0110
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0120
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0120
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0125
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0125
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0130
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0130
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0140
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0140
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0155
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0155
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0170
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0170
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0175
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0175
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0185
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0185
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0205
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0205
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0215
http://refhub.elsevier.com/S1569-190X(15)00106-9/h0215

	PIASA: A power and interference aware resource management strategy for heterogeneous workloads in cloud data centers
	1 Introduction
	2 Related work
	2.1 Performance interference estimation in virtualized environments
	2.2 Interference-aware dynamic resources scheduling
	2.3 SLA-based resources scheduling
	2.4 List of contributions

	3 System model
	3.1 Cloud data center overview
	3.2 Application overview
	3.2.1 CPU-bound workloads
	3.2.2 Network-bound workloads

	3.3 Cloud manager
	3.3.1 Power-efficiency logic
	3.3.2 Performance deviation detection logic
	3.3.3 Performance enforcing logic for CPU-bound workloads
	3.3.4 Performance enforcing logic for network-bound workloads

	3.4 Power- and Interference-Aware Scheduling Algorithm (PIASA)
	3.4.1 VM selection
	3.4.2 VM deployment

	4 Evaluation and simulation scenario
	4.1 Performance metrics
	4.1.1 Completion rate of users’ jobs
	4.1.2 Service rate of transaction requests
	4.1.3 Energy efficiency
	4.1.4 Working efficiency

	4.2 Workload and performance characteristics
	4.2.1 Workloads based on Google cloud tracelogs
	4.2.2 Performance interference characteristics

	4.3 Comparison of strategies
	4.3.1 Alternative performance deviation estimators
	4.3.2 Alternative scheduling algorithms

	4.4 Simulation setup

	5 Results and analysis
	5.1 CPU-bound workloads
	5.1.1 Performance of the scheduling algorithms
	5.1.2 Performance of the slowdown estimators
	5.1.3 Performance impact of the Average Slowdown Error (ASE)

	5.2 Network-bound workloads
	5.3 Mixture of CPU- and network-bound workloads

	6 Conclusions
	Acknowledgment
	References

