13 research outputs found

    Óptima planeación de redes celulares para la infraestructura de medición inteligente en zonas rurales y remotas

    Get PDF
    Smart metering is used to control, monitor and know the system status in real time; to this effect, the incorporation of smart grids primarily benefits the electrical system; similarly, the reuse of infrastructure and cellular spectrum help mitigate the time and cost of its implementation.  In order to reduce traffic and saturation of cellular networks, this paper aims at determining the optimal route for information transmission analyzing the optimal routing through distances and optimal routing through traffic flow. This analysis helps determine what the optimal route is, when there is no traffic on the wireless network, or when there is prolonged traffic, and what the traffic tendencies are, that may occur by excessive information transmission of smart meters to electric distribution companies.La medición inteligente se emplea para controlar, monitorear y conocer el estado del sistema en tiempo real; por ese motivo, la incorporación de redes inteligentes beneficia primordialmente al sistema eléctrico. Así mismo, con la reutilización de la infraestructura y del espectro celular, ayuda a mitigar el tiempo y el costo de su implementación. Con la finalidad de reducir el tráfico y la saturación de las redes celulares, se propone determinar la ruta óptima para el envío de la información, para ello se analiza un ruteo óptimo por medio de distancias y un ruteo óptimo por medio de flujo de tráfico. Gracias a este análisis, se determina cuál es la ruta óptima cuando no existe tráfico en la red celular o cuando existe un tráfico prolongado, y cuáles son las tendencias de tráfico que se pueden producir por el envío excesivo de la información de los medidores inteligentes hacia las empresas eléctricas de distribución

    Optimal planning for cellular networks for smart metering infrastructure in rural and remote areas

    Get PDF
    Smart metering is used to control, mon-itor and know the system status in real time; to this effect, the incorporation of smart grids primarily benefits the electrical system; similarly, the reuse of infrastructure and cellular spectrum help mitigate the time and cost of its implementation. In order to reduce traffic and saturation of cellular networks, this paper aims at determining the optimal route for in-formation transmission analyzing the optimal routing through distances and optimal routing through traf-fic flow. This analysis helps determine what the opti-mal route is, when there is no traffic on the wireless network, or when there is prolonged traffic, and what the traffic tendencies are, that may occur by excessive information transmission of smart meters to electric distribution companiesLa medición inteligente se emplea para controlar, monitorear y conocer el estado del sistema en tiempo real; por ese motivo, la incorporación de redes inteligentes beneficia primordialmente al sistema eléctrico. Así mismo, con la reutilización de la infraestructura y del espectro celular, ayuda a mitigar el tiempo y el costo de su implementación. Con la finalidad de reducir el tráfico y la saturación de las redes celulares, se propone determinar la ruta óptima para el envío de la información, para ello se analiza un ruteo óptimo por medio de distancias y un ruteo óptimo por medio de flujo de tráfico. Gracias a este análisis, se determina cuál es la ruta óptima cuando no existe tráfico en la red celular o cuando existe un tráfico prolongado, y cuáles son las tendencias de tráfico que se pueden producir por el envío excesivo de la información de los medidores inteligentes hacia las empresas eléctricas de distribución

    Algorithme de courtoisie : ordonnancement dans la liaison montante des réseaux LTE-Advanced

    Get PDF
    L’évolution rapide du nombre d’utilisateurs et l’apparition des nouveaux services multimédia ont motivé Third-Generation Partnership Project (3GPP) à développer de nouvelles technologies d’accès radio. De ce fait, l’agrégation de porteuses a été introduite à partir de la version 10 de LTE (LTE-Advanced) pour faire face aux demandes croissantes en termes de débit et de bande passante. Ainsi, de garantir la QoS aux différents types de services. Cependant, cette solution demeure incomplète si elle n’est pas accompagnée d’une bonne gestion de ressources. Plusieurs approches d’ordonnancement ont été proposées dans la littérature. Or, la majorité privilégie le trafic de haute priorité. Dans cette étude, une nouvelle approche d’ordonnancement dans la liaison montante des réseaux LTE-A a été développée dans le but d’assurer l’équité de service aux différentes classes de trafics et d’augmenter le nombre d’utilisateurs satisfaits dans le réseau à travers une gestion dynamique de priorités, qui permet de privilégier les trafics de basses priorités dans des intervalles de temps bien déterminés basés sur le temps d’attente moyen de chaque classe. Les résultats de simulations obtenus montrent que les paramètres de la QoS ont été bien améliorés pour les classes de basses priorités et la QoS de la classe prioritaire n’a pas été dégradée

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Towards Seamless Mobility: An IEEE 802.21 Practical Approach

    Get PDF
    In the recent years, mobile devices such as cell phones, notebook or ultra mobile computers and videogame consoles are experiencing an impressive evolution in terms of hardware and software possibilities. Elements such a wideband Internet connection allows a broad range of possibilities for creative developers. Many of these possibilities can include applications requiring continuity of service when the user moves form a coverage area to another. Nowadays, mobile devices are equipped with one or more radio interfaces such as GSM, UMTS, WiMax or Wi‐ Fi. Many of these technologies are ready to allow transparent roaming within their own coverage areas, but they are not ready to handle a service transfer between different technologies. In order to find a solution to this issue, the IEEE has developed a standard known as Media Independent Handover (MIH) Services with the aim of easing seamless mobility between these technologies. The present work has been centered in developing a system capable to enable a service of mobility under the terms specified in the stated standard. The development of a platform aiming to provide service continuity is mandatory, being a cross‐layer solution based in elements from link and network layers supplying a transparent roaming mechanism from user’s point of view. Two applications have been implemented in C/C++ language under a Linux environment. One application is designed to work within a mobile device, and the other one in the network access point. The mobile device basically consists in a notebook equipped with two Wi‐Fi interfaces, which is not a common feature in commercial devices, allowing seamless communication transfers aided by the application. Network access points are computers equipped with a Wi‐Fi interface and configured to provide Internet wireless access and services of mobility. In order to test the operation, a test‐bed has been implemented. It consists on a pair of access points connected through a network and placed within partially overlapped coverage areas, and a mobile device, all of them properly set. The mobile detects the networks that are compatible and gets attached to the one that provides better conditions for the demanded service. When the service degrades up to certain level, the mobile transfers the communication to the other access point, which offers better service conditions. Finally, in order to check if the changes have been done properly, the duration of the required actions has been measured, as well as the data that can have been lost or buffered meanwhile. The result is a MIH‐alike system working in a proper way. The discovery and selection of a destination network is correct and is done before the old connection gets too degraded, providing seamless mobility. The measured latencies and packet losses are affordable in terms of MIH protocol, but require future work improvements in terms of network protocols that have not been considered under the scope of this work

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    Automatisoitujen konttiterminaalien etämonitorointi

    Get PDF
    This master’s thesis studies the possibilities of remote connections and remote monitoring for the cargo handling solution provider Kalmar. Kalmar’s equipment is used in critical container terminals, where downtimes or delays are not tolerated, which is why it is important to provide reliable machines. This thesis studies, whether monitoring data could help in creating more reliable machines, and how different stakeholders could benefit from remote monitoring. During this master’s thesis work, a demo version of a remote center was built at Kalmar’s Tampere Competence Center. New telecommunication technologies, such as URLLC and LoRa, which may prove to be helpful in establishing wireless remote connections in container terminals, are also discussed in the case study. The theoretical part of this study mainly consists of a literature review, focusing on remote connections and monitoring, Industrial IoT (Evans, Annunziata 2012, Kunttu, Kiiveri 2012, Jurvansuu, Ailisto et al. 2013), data visualization (Becker, Mottay 2001, Väänänen-Vainio-Mattila, Wäljas 2009) and maintenance (de Faria Jr., Costa et al. 2015, Peng, van Houtum 2016). The case study of the thesis is based on literature studies and empirical data. The empirical data was collected by participating in Kalmar’s development events and by building a demo version of the remote center. First-hand observation on Kalmar’s products and operations was done during a summer internship and in informal discussions with Kalmar’s engineers and managers. This thesis suggests that remote connections and remote monitoring would benefit Kalmar and other stakeholders involved. A physical remote center is not necessarily needed in order to monitor equipment globally, but it could have significant marketing value. Wireless communication technologies related to remote connections and monitoring could offer more flexible deployment of cranes and cost savings. It seems that remote connections and monitoring could provide a lot of new business possibilities for Kalmar
    corecore