72 research outputs found

    Artificial neural networks and their applications to intelligent fault diagnosis of power transmission lines

    Get PDF
    Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with various names exist for artificial neural networks, each of which has its own particular applications. Those used types in this study include feedforward neural networks, convolutional neural networks, and general regression neural networks. Increasing the number of layers in artificial neural networks as needed for large datasets, implies increased computational expenses. Therefore, besides these basic structures in deep learning, some advanced techniques are proposed to overcome the drawbacks of original structures in deep learning such as transfer learning, federated learning, and reinforcement learning. Furthermore, implementing artificial neural networks in hardware gives scientists and engineers the chance to perform high-dimensional and big data-related tasks because it removes the constraints of memory access time defined as the von Neuman bottleneck. Accordingly, analog and digital circuits are used for artificial neural network implementations without using general-purpose CPUs. In this study, the problem of fault detection, identification, and location estimation of transmission lines is studied and various deep learning approaches are implemented and designed as solutions. This research work focuses on the transmission lines’ datasets, their faults, and the importance of identification, detection, and location estimation of them. It also includes a comprehensive review of the previous studies to perform these three tasks. The application of various artificial neural networks such as feedforward neural networks, convolutional neural networks, and general regression neural networks for identification, detection, and location estimation of transmission line datasets are also discussed in this study. Some advanced methods based on artificial neural networks are taken into account in this thesis such as the transfer learning technique. These methodologies are designed and applied on transmission line datasets to enable the scientist and engineers with using fewer data points for the training purpose and wasting less time on the training step. This work also proposes a transfer learning-based technique for distinguishing faulty and non-faulty insulators in transmission line images. Besides, an effective design for an activation function of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent as an activation function in artificial neural networks has several benefits including inclusiveness and high accuracy

    Fault Prediction Based on Leakage Current in Contaminated Insulators Using Enhanced Time Series Forecasting Models

    Get PDF
    To improve the monitoring of the electrical power grid, it is necessary to evaluate the influence of contamination in relation to leakage current and its progression to a disruptive discharge. In this paper, insulators were tested in a saline chamber to simulate the increase of salt contamination on their surface. From the time series forecasting of the leakage current, it is possible to evaluate the development of the fault before a flashover occurs. In this paper, for a complete evaluation, the long short-term memory (LSTM), group method of data handling (GMDH), adaptive neuro-fuzzy inference system (ANFIS), bootstrap aggregation (bagging), sequential learning (boosting), random subspace, and stacked generalization (stacking) ensemble learning models are analyzed. From the results of the best structure of the models, the hyperparameters are evaluated and the wavelet transform is used to obtain an enhanced model. The contribution of this paper is related to the improvement of well-established models using the wavelet transform, thus obtaining hybrid models that can be used for several applications. The results showed that using the wavelet transform leads to an improvement in all the used models, especially the wavelet ANFIS model, which had a mean RMSE of 1.58 × 10−3, being the model that had the best result. Furthermore, the results for the standard deviation were 2.18 × 10−19, showing that the model is stable and robust for the application under study. Future work can be performed using other components of the distribution power grid susceptible to contamination because they are installed outdoors.N/

    Electrostatic Sensors – Their Principles and Applications

    Get PDF
    Over the past three decades electrostatic sensors have been proposed, developed and utilised for the continuous monitoring and measurement of a range of industrial processes, mechanical systems and clinical environments. Electrostatic sensors enjoy simplicity in structure, cost-effectiveness and suitability for a wide range of installation conditions. They either provide unique solutions to some measurement challenges or offer more cost-effective options to the more established sensors such as those based on acoustic, capacitive, optical and electromagnetic principles. The established or potential applications of electrostatic sensors appear wide ranging, but the underlining sensing principle and resultant system characteristics are very similar. This paper presents a comprehensive review of the electrostatic sensors and sensing systems that have been developed for the measurement and monitoring of a range of process variables and conditions. These include the flow measurement of pneumatically conveyed solids, measurement of particulate emissions, monitoring of fluidised beds, on-line particle sizing, burner flame monitoring, speed and radial vibration measurement of mechanical systems, and condition monitoring of power transmission belts, mechanical wear, and human activities. The fundamental sensing principles together with the advantages and limitations of electrostatic sensors for a given area of applications are also introduced. The technology readiness level for each area of applications is identified and commented. Trends and future development of electrostatic sensors, their signal conditioning electronics, signal processing methods as well as possible new applications are also discussed

    Enhancing fuel cell lifetime performance through effective health management

    Get PDF
    Hydrogen fuel cells, and notably the polymer electrolyte fuel cell (PEFC), present an important opportunity to reduce greenhouse gas emissions within a range of sectors of society, particularly for transportation and portable products. Despite several decades of research and development, there exist three main hurdles to full commercialisation; namely infrastructure, costs, and durability. This thesis considers the latter of these. The lifetime target for an automotive fuel cell power plant is to survive 5000 hours of usage before significant performance loss; current demonstration projects have only accomplished half of this target, often due to PEFC stack component degradation. Health management techniques have been identified as an opportunity to overcome the durability limitations. By monitoring the PEFC for faulty operation, it is hoped that control actions can be made to restore or maintain performance, and achieve the desired lifetime durability. This thesis presents fault detection and diagnosis approaches with the goal of isolating a range of component degradation modes from within the PEFC construction. Fault detection is achieved through residual analysis against an electrochemical model of healthy stack condition. An expert knowledge-based diagnostic approach is developed for fault isolation. This analysis is enabled through fuzzy logic calculations, which allows for computational reasoning against linguistic terminology and expert understanding of degradation phenomena. An experimental test bench has been utilised to test the health management processes, and demonstrate functionality. Through different steady-state and dynamic loading conditions, including a simulation of automotive application, diagnosis results can be observed for PEFC degradation cases. This research contributes to the areas of reliability analysis and health management of PEFC fuel cells. Established PEFC models have been updated to represent more accurately an application PEFC. The fuzzy logic knowledge-based diagnostic is the greatest novel contribution, with no examples of this application in the literature

    Real-Time Fault Diagnosis of Permanent Magnet Synchronous Motor and Drive System

    Get PDF
    Permanent Magnet Synchronous Motors (PMSMs) have gained massive popularity in industrial applications such as electric vehicles, robotic systems, and offshore industries due to their merits of efficiency, power density, and controllability. PMSMs working in such applications are constantly exposed to electrical, thermal, and mechanical stresses, resulting in different faults such as electrical, mechanical, and magnetic faults. These faults may lead to efficiency reduction, excessive heat, and even catastrophic system breakdown if not diagnosed in time. Therefore, developing methods for real-time condition monitoring and detection of faults at early stages can substantially lower maintenance costs, downtime of the system, and productivity loss. In this dissertation, condition monitoring and detection of the three most common faults in PMSMs and drive systems, namely inter-turn short circuit, demagnetization, and sensor faults are studied. First, modeling and detection of inter-turn short circuit fault is investigated by proposing one FEM-based model, and one analytical model. In these two models, efforts are made to extract either fault indicators or adjustments for being used in combination with more complex detection methods. Subsequently, a systematic fault diagnosis of PMSM and drive system containing multiple faults based on structural analysis is presented. After implementing structural analysis and obtaining the redundant part of the PMSM and drive system, several sequential residuals are designed and implemented based on the fault terms that appear in each of the redundant sets to detect and isolate the studied faults which are applied at different time intervals. Finally, real-time detection of faults in PMSMs and drive systems by using a powerful statistical signal-processing detector such as generalized likelihood ratio test is investigated. By using generalized likelihood ratio test, a threshold was obtained based on choosing the probability of a false alarm and the probability of detection for each detector based on which decision was made to indicate the presence of the studied faults. To improve the detection and recovery delay time, a recursive cumulative GLRT with an adaptive threshold algorithm is implemented. As a result, a more processed fault indicator is achieved by this recursive algorithm that is compared to an arbitrary threshold, and a decision is made in real-time performance. The experimental results show that the statistical detector is able to efficiently detect all the unexpected faults in the presence of unknown noise and without experiencing any false alarm, proving the effectiveness of this diagnostic approach.publishedVersio

    A fuzzy logic control system for a friction stir welding process

    Get PDF
    FSW is a welding technique invented and patented by The Welding Institute in 1991. This welding technique utilises the benefits of solid-state welding to materials regarded as difficult to weld by fusion processes. The productivity of the process was not optimised as the real-time dynamics of the material and tool changes were not considered. Furthermore, the process has a plastic weld region where no traditional modelling describing the interaction between the tool and work piece is available. Fuzzy logic technology is one of the artificial intelligent strategies used to improve the control of the dynamics of industrial processes. Fuzzy control was proposed as a viable solution to improve the productivity of the FSW process. The simulations indicated that FLC can use feed rate and welding speed to adaptively regulate the feed force and tool temperature respectively, irrespective of varying tool and material change. The simulations presented fuzzy logic technology to be robust enough to regulate FSW process in the absence of accurate mathematical models

    NASA Tech Briefs, June 2005

    Get PDF
    Topics covered include: Apparatus Characterizes Transient Voltages in Real Time; Measuring Humidity in Sealed Glass Encasements; Adaptable System for Vehicle Health and Usage Monitoring; Miniature Focusing Time-of-Flight Mass Spectrometer; Cryogenic High-Sensitivity Magnetometer; Wheel Electrometer System; Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells; Patch Antenna Fed via Unequal-Crossed-Arm Aperture; LC Circuits for Diagnosing Embedded Piezoelectric Devices; Nanowire Thermoelectric Devices; Code for Analyzing and Designing Spacecraft Power System Radiators; Decision Support for Emergency Operations Centers; NASA Records Database; Real-Time Principal- Component Analysis; Fuzzy/Neural Software Estimates Costs of Rocket- Engine Tests; Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings; Reactive Additives for Phenylethynyl-Containing Resins; Improved Gear Shapes for Face Worm Gear Drives; Alternative Way of Shifting Mass to Move a Spherical Robot; Parylene C as a Sacrificial Material for Microfabrication; In Situ Electrochemical Deposition of Microscopic Wires; Improved Method of Manufacturing SiC Devices; Microwave Treatment of Prostate Cancer and Hyperplasia; Ferroelectric Devices Emit Charged Particles and Radiation; Dusty-Plasma Particle Accelerator; Frozen-Plug Technique for Liquid-Oxygen Plumbing; Shock Waves in a Bose-Einstein Condensate; Progress on a Multichannel, Dual-Mixer Stability Analyzer; Development of Carbon- Nanotube/Polymer Composites; Thermal Imaging of Earth for Accurate Pointing of Deep-Space Antennas; Modifications of a Composite-Material Combustion Chamber; Modeling and Diagnostic Software for Liquefying- Fuel Rockets; and Spacecraft Antenna Clusters for High EIRP

    Pertanika Journal of Science & Technology

    Get PDF

    Performance of Induction Machines

    Get PDF
    Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications
    corecore