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ABSTRACT

ARTIFICIAL NEURAL NETWORKS AND THEIR APPLICATIONS
TO INTELLIGENT FAULT DIAGNOSIS OF POWER

TRANSMISSION LINES

by
Fatemeh Mohammadi Shakiba

Over the past thirty years, the idea of computing based on models inspired by human

brains and biological neural networks emerged. Artificial neural networks play an

important role in the field of machine learning and hold the key to the success of

performing many intelligent tasks by machines. They are used in various applications

such as pattern recognition, data classification, stock market prediction, aerospace,

weather forecasting, control systems, intelligent automation, robotics, and healthcare.

Their architectures generally consist of an input layer, multiple hidden layers, and one

output layer. They can be implemented on software or hardware. Nowadays, various

structures with various names exist for artificial neural networks, each of which has its

own particular applications. Those used types in this study include feedforward neural

networks, convolutional neural networks, and general regression neural networks.

Increasing the number of layers in artificial neural networks as needed for large

datasets, implies increased computational expenses. Therefore, besides these basic

structures in deep learning, some advanced techniques are proposed to overcome

the drawbacks of original structures in deep learning such as transfer learning,

federated learning, and reinforcement learning. Furthermore, implementing artificial

neural networks in hardware gives scientists and engineers the chance to perform

high-dimensional and big data-related tasks because it removes the constraints of

memory access time defined as the von Neuman bottleneck. Accordingly, analog and

digital circuits are used for artificial neural network implementations without using

general-purpose CPUs. In this study, the problem of fault detection, identification,



and location estimation of transmission lines is studied and various deep learning

approaches are implemented and designed as solutions.

This research work focuses on the transmission lines’ datasets, their faults,

and the importance of identification, detection, and location estimation of them.

It also includes a comprehensive review of the previous studies to perform these three

tasks. The application of various artificial neural networks such as feedforward neural

networks, convolutional neural networks, and general regression neural networks for

identification, detection, and location estimation of transmission line datasets are

also discussed in this study. Some advanced methods based on artificial neural

networks are taken into account in this thesis such as the transfer learning technique.

These methodologies are designed and applied on transmission line datasets to

enable the scientist and engineers with using fewer data points for the training

purpose and wasting less time on the training step. This work also proposes a

transfer learning-based technique for distinguishing faulty and non-faulty insulators

in transmission line images. Besides, an effective design for an activation function

of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent

as an activation function in artificial neural networks has several benefits including

inclusiveness and high accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

Nowadays, traveling wave (TW)-based approaches are used in industry to address the

problem of detection, classification, and location estimation of the faults [3, 4, 5, 6,

7, 8, 9]. Although such techniques have advantages such as their independence from

the network configuration, remaining unaffected by load variations, high grounding

resistance, and series capacitor, they suffer from being expensive, requiring high

sampling frequency for capturing the high frequency fault transients, the limited

capability to distinguish between waves reflected from a fault and the remote end of

a TL, and the fundamental limitation of not detecting the faults at zero crossing of

the voltage waveform [10, 11, 12]. Moreover, the performance of TW-based methods

depends on high impedance faults and source inductance variations. Such variations

affect the shape of transient waves such that TW-based methods struggle in capturing

the arrival time of the transient waves. For instance, when a double line-to-ground

fault occurs at 75 (km), by changing the source inductance from 16.58 (mH) to

50 (mH), the performance of the TW-based method deteriorates dramatically, as

shown in Figure 1.1.

The location of faults is calculated based on the TW frequency obtained from

the frequency spectrum of a transient voltage signal as [13]:

x =
v

2f1
(1.1)

where v is the propagation speed of TWs and f1 is the first transient frequency in

the frequency spectrum (fast Fourier transform (FFT)) of the voltage signal.
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Figure 1.1: Frequency spectrum (FFT) of transient voltage signals for source
inductances of 16.58 (mH) and 50 (mH) when a double line-to-ground fault occurs
at 75 (km).

As indicated in Figure 1.1, when the source inductance value is 16.58 (mH) and

50 (mH), the first transient frequencies are equal to 1965.4 (Hz) and 1340.8 (Hz),

respectively. These two frequencies are equivalent to the estimated distances of

74.64 (km) and 109.42 (km), respectively. Therefore, with the increase of the source

inductance, the performance of the fault location estimation deteriorates drastically.

Another deficiency of TW-based techniques in the literature is that they have

not reported the accuracy of their fault diagnosis system or any statistical results to

show the performance of their approach in terms of mistakenly detected or undetected

faults. There are many disturbances, uncertainties, and noise in the TLs that could

make transient waves similar to the faulty waves and hence, cause false alarms and

power outages. According to the U.S. Department of Energy, it is estimated that

power outages cost American businesses around $150 Billion annually [14]. Therefore,

it is required to have a high level of accuracy in fault detection in order to reduce the

rate of false alarm power outages. The machine learning (ML) techniques discussed

in this study make use of the amplitudes of the fundamental frequency component of
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the voltage and current signals to avoid dealing with the transient waves generated

from faults. Thus, the performance of such methods is not adversely affected by the

changes in current and voltage transients and this feature makes them more effective

and economical.

Due to the above-mentioned drawbacks of TW-based approaches, several studies

are conducted on fault detection, identification, and location estimation using ML

methods such as NNs, SVMs, and Neuro-fuzzy networks., combining with signal

processing schemes such as S-transform (ST), FFT, DWT, etc.

In this study, we try to take advantage of the newly emerged deep learning

techniques to overcome the drawbacks of the existing old solutions for transmission

line problems. We cover identification, detection, and location estimation of overhead

transmission line faults. We also consider the problem of broken insulator detection

using the aerial images insulators.

A significant amount of work has been done in developing simulation environments

for ANNs on sequential machines. However, even the fastest sequential processor

cannot provide real-time response and learning for networks with large number of

neurons and synapses. Parallel processing with multiple simple processing elements

(PEs), on the other hand, can provide tremendous speedups. When implemented

in hardware, neural networks can take full advantage of their inherent parallelism

and run orders of magnitude faster than software simulations. The accuracy of

ANNs is also impacted by the approach used to convolve weights. Conventional

ANN architectures rely on GPUs to speed up computationally expensive operations.

However, such implementations suffer from imprecise calculations, because each

analog input is approximated by a digital value and complex activation functions

like Sigmoid and Tanh are approximated using look up tables which is inefficient

in power dissipation and silicon area. Therefore, recent architectures are shifting to
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analog domain where the circuit that computes the convolution and the circuit that

implements the activation function is analog in nature.

ANNs are usually processed on multicore processors such as GPUs. In GPU

architectures, a larger portion of energy is consumed by floating point units (FPUs)

in streaming cores. In order to reduce the energy consumption of the FPUs, content

addressable memory blocks are used beside each FPU. Once a FPU operation is issued

with input operands, the proposed architecture approximately checks whether similar

input operands are stored in the associative memory block, while the pipeline stages

of the FPU are processed in parallel.

Recently, enormous datasets have made power dissipation and area usage

lie at the heart of designs for Artificial Neural Networks (ANNs). Considering

the significant role of activation functions in the neurons and the growth of

hardware-based neural networks like memristive neural networks, this work proposes

a novel design for a hyperbolic tangent activation function (Tanh) to be used

in memristive-based neuromorphic architectures. The purpose of implementing a

CMOS-based design for Tanh is to decrease power dissipation and area usage. This

design also increases the overall speed of computation in ANNs, while keeping the

accuracy in an acceptable range. The proposed design is one of the first analog designs

for the hyperbolic tangent and its performance is analyzed by using two well-known

datasets including the Modified National Institute of Standards and Technology

(MNIST) and Fashion-MNIST. The direct implementation of the proposed design

for Tanh is proposed and investigated via software and hardware modeling.

1.2 Dissertation Goals and Objectives

Nowadays, more complex settings are required to protect classic transmission lines

with high degree of sophistication. The goal of this study is to protect transmission

lines in real-time and proposing novel ideas to make this protection as robust and
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reliable as possible. In this dissertation, we tried to show the great promise of

artificial intelligence methods in detection, identification, and location estimation

of transmission lines. Different procedures are used to cover and improve all aspects

of power delivery network in power network.

Some of the intelligent fault diagnosis approaches that we took advantage

of them for overhead transmission lines are deep learning methods including

Convolutional Neural Network (CNN) and Generalized Regression Neural Network

(GRNN), computer vision techniques such as image augmentation for insulator

images, and transfer learning technique for generalizing the proposed solution and

making them applicable to larger groups of transmission line. Besides, a novel

architecture for hyperbolic tangent activation function is proposed to improve the

normal speed and power efficiency of neural networks.

The existing methodologies in literature review, which are in chapter two, are

divided into three main categories called generic ML, ANNs, and hybrid methods. The

basic idea, fundamental equations, and relevant publications since 2015 are included

and summarized for each method. The significance of this survey is highlighted as

compared to the existing review studies in this study. Moreover, the advantages and

disadvantages of the ML approaches are discussed in details and summarized.

The main goal of chapter three is to analyze the robustness of the proposed

detection, identification, and location estimation techniques against the parameter

changes in a transmission line, namely fault resistance, fault inception angle, source

inductance, phase difference between the two buses, bus voltage amplitude variation,

and measurement noise. In addition, a time delay analysis is performed to guarantee

that these modules can successfully complete their tasks within the desired time

window based on the IEEE standard before the tripping relays disconnect the

transmission line.
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Chapter four aims to show that a technique based of transfer learning idea

can generalize the detection, identification, and location estimation of transmission

line method. In this chapter, a specific length is taken into account and the faults

of other variants of transmission line lengths are predicted based on the original

length. One goal in chapter five is to expand the original CPLID dataset which has

only 248 broken insulator images among 3,808 images to generate reliable accuracy,

precision, recall and F1 Score. Using the data augmentation approach with different

portions, a tremendous balanced dataset with 16,720 images is produced which is a

more reliable dataset comparing to the dataset with only 3,808 images. Afterwards,

a proposed transfer learning methodology based on VGG-19 CNN is implemented as

the base model for transfer learning which is trained using the ImageNet dataset. In

the second step, the weights of VGG-19 layers, except the two fully connected final

layers, are kept frozen to perform the feature extraction task.

In chapter six, we focus on implementing ANNs in a hardware and a new

generation MNN which provides us with high parallelism to run a large application

faster than software methods that face von Neuman bottleneck limits. A novel design

for Tanh activation function is proposed in this study to help the neuromorphic

architectures overcome the heavily demanded computations through the layers in

the training step. These computations make them the most time-consuming section

among all.

Although we tried our best to cover a good depth of the existing research results

in this dissertation, there are always some limitations and further studies which can

be done in every branch of science. In Chapter seven, the purpose is to clarify some

of these ideas and concepts and conclude the works in this dissertation.

6



1.3 Background

1.3.1 Artificial Neural Network

Computers are impeccable at finding solutions for algorithms and mathematical

problems, but world’s functions cannot always be defined in mathematical form.

Image recognition and language processing are a couple of illustrations for problems

that cannot effortlessly be quantified into mathematical concepts. However, recently

these tasks are become so important to engineers [15].

In 1982, interest in Artificial Neural Networks (ANNs) was renewed. Their

design enables us to analyze data in a comparative way as to our own biological brains,

by drawing inspiration from how human nervous system functions. This makes them

valuable apparatuses for solving such issues as image or voice recognition, and big

data management, which our biological brain can perform efficiently [15, 16, 17].

ANNs consist of an input layer, multiple hidden layers, and one output layer

[18]. Each layer has several neurons which have multiple inputs and one output,

typically in real range. Each input signal is multiplied by a predetermined weight

value known as the synaptic weight. The neuron sums up the convolved signals and

maps them to output using an activation function. [19, 20]

Overtime, different algorithms in software and hardware domains are generated

for ANNs. Each time, neuroscientists try to make their designs more efficient,

especially according to heavy computations in a neuromorphic concept, they are

faced with problems like large area of designs, lack of accuracy, and high power

consumption. Despite the fact that these designs are costly, they may not be able to

provide users with acceptable results.

Therefore, one objective of this dissertation work is to design a power efficient

activation function which is compatible with new methods like memristors or crossbar

array memories [21, 22, 23].
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1.3.2 Biological Neural Network

“Neurons” or nerve cells are the basic functional units of human nervous system,

which are located in the brain and other parts of human bodies. The term “Neural”

derived from this basic unit, and the human brain can be described as a biological

neural network, which is an interconnected web of neurons transmitting complex

patterns of electrical signals [24, 25, 26].

Neural network, generally, is an extremely interconnected network of billions of

neurons with their interconnections.

Figure 1.2: A sample drawing of biological neural network [1].
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The natural nerve cell of human brain, which is shown in Figure 6.3, consists
of four main parts [25].

• Dendrite: This part is like the input port that receives signals from other
neurons in the network.

• Soma or cell body: It sums all the incoming signals to generate input for the
next neuron.

• Axon: Each neuron has a threshold value to compare it with the input signal
summation. If the summation value reaches this threshold, the neuron is fired
and the signal passes through the axon to deliver it to the other neurons.

• Synapses: These are like the output port of a neuron. In other words, synapses
are the interconnection points among two neurons. This connections can have
different levels of strength that determine the amount of signal transmission.
Also, they can be increasing or decreasing in nature [27, 26].

Human brain structure has attracted computer scientist since a long time ago.

In 1943, a neuroscientist (Warren S. Mcculloch) and a logician (Walter Pitts), formed

the first model of an artificial neural network. But, there are always some sort of

problems that are incredibly “easy for a human, difficult for a machine” to solve like

pattern recognition. In order to use computers for solving this kind of problems,

Artificial Neural Networks are invented, which are inspired by biological brain, to

make computers capable of performing specific tasks like pattern recognition, data

classification, clustering, and etc [25]. Figure 1.3 shows the structure of artificial

neuron.

X1

X2

Xn-1

Xn

Summation Threshold

Output

b

w1

w2

wn-1

wn

Figure 1.3: A schematic of an artificial neuron (perceptron).
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Each artificial neural network receives inputs from the outside world in the

form of pattern and image in vector (matrix) form. These inputs are shown as

[X1, X2, ..., Xn] for n number of inputs. Each of them is multiplied by a synaptic

weight. These weights are the information produced by the neural network through

learning step, to solve the problem. Literally, these weights present the strength

of interconnections between neurons connected from two consecutive layers. These

weighted inputs are all summed up in artificial neurons. If the result of this summation

becomes zero, a bias will be added to change the output to a value which is not zero, or

increase the scale of the system response. The weight and input of the bias is always

equal to one. Although the value of summation in a neuron can be any real value, we

have limits for the inputs of next layer. Especially, if we are not able to provide each

layer with acceptable range of inputs, the network cannot work properly. To solve

this problem, scientists set up a threshold value and introduced different activation

functions for different kinds of neural networks [1].
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1.3.3 Activation Functions in ANNs

Activation functions are used between layers to moderate the output values of previous

layer to the acceptable range of inputs for next layer. In order to achieve this goal,

people have used various functions.

Every activation function takes a single number and performs a certain fixed

mathematical operation on it [1]. There are some useful characteristics in activation

functions that should be considered while we want to choose the appropriate one for

our model. We mentioned these features below [28]:

1. Non-Linearity

The activation function goal is to provide the network with non-linearity that
allows us to model a response variable such as target variable, class label, and
etc. using the non-linearly with its explanatory variables. In general, non-linear
means that one output cannot be reproduced from a linear combination of the
inputs. Another way to express non-linearity is to say that without a non-linear
activation function in a neural network, despite having multiple layers, it would
behave like a single-layer perceptron, because adding these layers would result
in another linear function.

2. Continuously differentiable

For enabling gradient-based optimization methods, we need to choose the
activation functions that have this property. For example, the binary step
activation function that is not differentiable at 0, and its differentiation is 0 for
the other values, should not be opted for gradient-based methods.
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3. Range
Gradient-based training methods are more stable when there is a finite range
for the used activation function. The reason is that pattern presentations
significantly affect only limited weights.

4. Monotonic
In error calculation, when the used activation function is monotonic, there would
be a guarantee that error surface associated with a single-layer model will finally
converge.

5. Approximates identity near the origin

For activation functions with this property, the neural network will be capable

of learning efficiently when its weights are initialized randomly. But, when the

activation function does not approximate identity near the origin, we cannot

initialize weights randomly and we need special attention while initializing the

weights.

Artificial neural networks (ANNs) are utilized in a wide scope of applications. These

architectures consist of an input layer, multiple hidden layers, and one output layer.

ANNs can be implemented in a software or hardware domain [29, 30, 31, 2]. In

ANNs, layers include several neurons, and each neuron can have multiple inputs and

one output, which are real numbers most of the time. The output of each neuron

is connected to neurons of the next layer through links called the synapses. Each

synapse has a weight value to represent the strength of the connection between two

neurons. Neurons compute the sum of all weighted inputs and transfer it into an

output signal by an activation function. Based on recent studies, scientists are moving

toward hardware replacements for ANN to reduce the existing calculation complexity

of software implementations [2, 32, 33].

Implementing ANNs in hardware provides us with a boost for large networks

because it removes the constraints of memory access time defined as von Neuman

bottleneck. Accordingly, analog and digital circuits are used for ANN implemen-

tations without using general-purpose CPUs [34, 35, 36, 37, 38, 39]. Emerging ANN

paradigms use memristors to implement a synapse and they benefit the crossbar array
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structures of memristors to perform analog multiplication in parallel by exploiting the

Ohm’s law [2, 40, 41, 42, 43, 44, 45, 46, 47]. These architectures use reconfigurable

Memristive Crossbar Array (MCA) to perform power-efficient and high-performance

multiplication and addition operations [47, 48, 49]. Memristive Neural Networks

(MNNs) include a pair of memristors to store synaptic weights (positive or negative).

There are different types of MNN architectures like Inverter-based MNN [50],

MCA-based MNN [41], fully MNN [51], etc. This study considers a multilayer

feedforward MNN [41] which is taking advantage of a novel analog design for

hyperbolic tangent as an activation function of the layers. Feedforward MNN in

[43] includes a dual column structure in which two adjacent memristors are placed in

a row to store synaptic weights.

The mentioned approaches store a weight value in one of the two adjacent

memristors while the other one is in a very high resistive state so no current can

pass through it. The sign of the weight value determines which memristor is active

and stores the weight value. Although several non-ideal characteristics of memristor

synaptic devices are detected up to now [52, 53], MNN is one of the most efficient

architectures in terms of speed and power consumption that can defeat its digital

counterparts [2, 39, 54, 55].

1.3.4 Transmission Lines

Due to the accelerated expansion of power systems and microgrids in recent years,

power system operators (PSOs) face various challenges to provide end-users with

uninterrupted electrical power. Failures and interruptions are inevitable in all

systems, and hence engineers try to protect power systems by providing accurate

fault detection and identification modules. Four main steps should be performed for

fault detection, classification, and location estimation of transmission line (TL) faults

as indicated in Figure 1.4.
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Figure 1.4: The overview of identification and localization of TL faults.
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Figure 1.5: Schematic of a TL system.

The initial step is data collection from current and voltage signals of TLs

generated by the real power networks or power system simulators such as Matlab/Simulink.

Next, data sampling approaches are conducted. The third step is data preprocessing

and feature extraction methods such as Discrete Fourier Transform (DFT) and

Discrete Wavelet Transform (DWT) which are performed to extract the significant

features. Last, an approach is chosen for fault identification (detection and

classification of TL faults) and/or fault location estimation. Figure 1.4 shows

these steps in sequence and Figure 1.5 shows a TL system including two generators

connected through a three-phase TL with the length of L.

A TL fault diagnosis problem consists of three sub-problems, i.e., detection,

classification, and location estimation of faults. Fault detection methods take 2-10

(mS) while classification methods normally take 30 (mS). The maximum time limit

for these three steps of fault diagnosis should be less than 100 (mS) in total [56].

TLs are vulnerable to circumstances such as overloading, breakage, short

circuits, icing, lightning strikes, tree interference, bird nesting, aging, human activity,

hurricanes, and in general lack of protection and conservation [57, 58, 59]. TL faults

caused by these phenomenons can be categorized into series (open conductor) and

short-circuit (shunt) faults.
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1.4 Dissertation Outline

The first chapter of this dissertation discusses the preliminaries which are utilized in

the following chapters. Also, a transmission line as a system with imbalanced datasets

is well discussed. In the second chapter, a comprehensive review of ML methods for

TL fault detection, classification, and location estimation is presented. In the third

chapter, the problem of fault detection, identification, and location estimation of

transmission lines using two NNs, namely, GRNN and CNN is studied. In the fourth

chapter, a deep learning methodology is proposed based on the transfer learning

technique to improve the response time of the insulator image classification problem.

The fifth chapter proposes a novel architecture for hyperbolic tangent activation

function in neural networks. In chapter six, the contributions of this dissertation

are summarized and the limitation of every work is discussed. Also, the potential

extension for each chapter is presented to provide a clear pathway to future research

directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Classification

The expansion of power systems and smart grids calls for advanced fault diagnosis

techniques to prevent undesired interruptions and expenses. One of the most

important part of such systems is transmission lines. This study presents a survey

on recent machine learning-based techniques for fault detection, classification, and

location estimation in transmission lines. In order to provide reliable and resilient

electrical power energy, faster and more accurate fault identification tools are required.

Costly consequences of probable faults motivate the need for immediate actions

to detect them using intelligent methods, especially emerging machine learning

approaches that are powerful in solving diagnosis problems.

This chapter presents a comprehensive review of various machine learning

methodologies including naive Bayesian classifier, decision tree, random forest,

k-nearest neighbor, and support vector machine as well as artificial neural networks

such as feedforward neural network, convolutional neural network, and adaptive

neuro-fuzzy inference system that are used to detect, classify, and locate faults in

transmission lines.

Classification is a procedure of categorizing a data set into 2 or more classes.

This process can be performed on structured or unstructured data. It initiates

with considering a labeled data set to train the system. After training level

execution, the system will be able to predict the class of given unlabeled data

points [60]. Categorization, effortless and instantaneous for people, stays a primary

challenge for artificial intelligence [61]. It goes without saying that even a four

year old baby can distinguish between a dog and a cat after teaching him/her

16



once or twice, but interpreting such a task for machines requires a lot of work

and knowledge. Consequently, although classification seems an easy process at the

first glance, explaining a scene from image data, detecting and describing objects

and their relationship demands much effort and research. Classification problems

might be so simple and binary with two classes or multi-classes. There are some

classification problem examples like: speech recognition, handwritten recognition,

image classification, illness diagnosis and etc. [60]. For the time being, there are

countless types of data sets that can be generated regarding any little thing around

us. The ones that we deal with under classification subject can be classified for

purposes like efficiency in time or power consumption, extracting useful knowledge

from a bunch of useless data, categorizing based on different necessitates, and more

instances like this.

Nowadays, imbalanced data sets attract data scientists’ attention because of

the major differences that exist between these data sets and the normal (balanced)

ones. One noticeable point about different existing classes in every data set is their

proportion, or the ratio of each class in the whole data set. Sometimes, we have

normal cases such as one tenth to one, but in some rare cases (which can include

important data sets) classes are represented absolutely unevenly which are called

imbalanced data sets.

In fact, imbalanced data classification is a name that alludes to problems with

categorization where the number of instances in different categories have a huge

proportional difference, such as 1000 to 1. In such a case, if we assume all given data

points are from the major class, the accuracy value will be 99.9% which is excellent

in the first sight, but such a model cannot detect the faulty data points at all. In

these cases, we have to consider other parameters such as recall, ROC, F1 score, and

etc. This problem is predominant in scenarios that faulty point detection is vital

such as electricity pilferage, fraudulent transactions in banks, identification of rare
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diseases, etc. In this obstacles, the predictive classification model using conventional

machine learning procedures or neural networks could be problematic and inaccurate

[61]. Furthermore, skewed distribution of imbalanced data set causes conventional

machine learning and neural networks algorithm facing a lot of challenges such as

less efficiency, inaccuracy in results and misrepresentation of common ML, or data

classification of existing functions or methods. Therefore, classification and regression

algorithms are not able to predict minor classes precisely. These problems become

more noticeable when we consider multi-class classification problems [62].

Classification is a procedure of categorizing a data set into 2 or more classes.

This process can be performed on structured or unstructured data. It initiates

with considering a labeled data set to train the system. After the training level

execution, the system will be able to predict the class of given unlabeled data points.

The classification predictive modeling is a concept to express approximation of the

mapping function from input data to clustered output data points. These models aim

to figure out which new given data belongs to which category or class. For instance,

a received email needs to go to the inbox or the spam folder (Binary classification)

[61].

Figure 2.1: Binary classification of emails.

Below we name few types of classification algorithms in machine learning [62]:

• Linear Classifiers: Logistic Regression, Naive Bayes Classifier

• Nearest Neighbor

• Support Vector Machines
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• Decision Trees

• Boosted Trees

• Random Forest

• Neural Networks

Naive Bayes Classifier (Generative Learning Model) This is a classifi-

cation algorithm based on Bayes’ Theorem with hypothesis of independency among

predictors. A Naive Bayes classifier considers no relation among data set feature.

This technique is easy to build and works good enough with big data because of its

scalability [62].

2.1.1 Nearest Neighbor

K-nearest-neighbors algorithm is a supervised classification method which uses

nearness as a parameter of similarity. This algorithm takes some labeled data points

and uses them to label the new given points based on their closeness to existing points

in each class. After checking with the “K” nearest neighbors, the new data point will

be categorized with the label which most of the neighbors have. For this algorithm,

choosing a distance metric is the critical point based on the application, because in

some cases such as text-based data sets geometric distance is not applicable [62].

2.1.2 Logistic Regression (Predictive Learning Model)

This method is a statistical model to analyze data sets with one or more independent

features that result in the outcome. Results are measured by dichotomous variables

(each includes only two possible outcomes). Logistic regression aims to find the best

fitting model to explain the relationship between the dichotomous characteristic of

interest (dependent variable = response or outcome variable) and a set of independent

(predictor) variables. This algorithm works better than some others such as k-nearest-
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neighbors for binary classification because of considering factors that lead to proper

quantitative classification [62].

2.1.3 Decision Trees

This method works based on a tree structure. In this algorithm, data sets are broken

down into smaller and smaller subsets while the tree is developed and its depth

increases. Therefore, final outcome is a tree with decision and leaf nodes. Each leaf

node stands for a classification or decision and each decision node has at least two

branches to decide. The root node (topmost decision node) is the best predictor.

Decision trees are able to handle categorical and numerical data [62].

2.1.4 Random Forest

Random forests or random decision forests are a learning algorithm for classification,

regression, and similar applications which work by building up a multitude of

decision trees at training step and resulting the class which is the status of classes

(classification) or mean prediction of each tree. The advantage of random decision

forests over decision trees is decreasing the chance of over fitting [62].

2.1.5 Neural Networks

A neural network is built with multiple units called neuron which are arranged in

layers. This structure transform the input data (vector) into output data points.

Each neuron in each layer is supposed to take an input, apply a function (activation

function) to it and then pass the output to the next layer. Usually, neural networks in

this concept are feed-forwarded and so there is no feedback to prior layers. Weights,

which are tuned in training step base on the application usage, apply to passing

signals forward in these neural networks [62].
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2.2 Imbalanced Data Set

Every person that has done some studies in machine learning and classification

concepts, definitely has come across imbalance data distribution. In such data sets,

number of data points in one or more classes are significantly less than the instances

in the other classes. Generally, if the events existing in a minority class are less than

20% of the total data set, that data set is identified as an imbalanced data set. For

calculating the exact threshold line between balanced and imbalanced data sets, we

can use the Shannon entropy as a measure of balance. On a data set of n instances,

if you have k classes of size ci, one can compute entropy as follows:

H = −
k∑

i=1

ci
n
log

ci
n

(2.1)

This is equal to:

• 0 when there is one single class. In other words, it tends to 0 when your data
set is very unbalanced

• log(k) when all your classes are balanced of the same size n/k

Therefore, one could use the following measure of Balance for a data set:

Balance =
H

log k
=

−
∑k

i=1
ci
n
log ci

n

log k
(2.2)

Which is equal to:

• 0 for a unbalanced data set

• 1 for a balanced data set

Considering the fact that machine learning algorithms aim to decrease the errors

and develop better accuracy, they cannot distinguish this faulty points as a class
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and work based on its prediction. In other words, they are prone to wipe them

out. What a mess? Instead of detecting the faulty points in a system data set,

or sick people among all tested patients, we just ignore them and this is of course

going to be a tragedy. So what is the solution then? Seeing regular classification

algorithms cannot perform accurately when faced with imbalanced data sets, some

regularization, modification and adjustment are useful to solve these problems. Foe

instance, Decision Tree or Logistic Regression tend to predict majority class data and

treat the below 5% minority classes as noises. Classification methods’ efficiency is

measured by a Confusion Matrix which consists of information regarding actual and

predicted data points. Table 2.1 show a confusion matrix and the driven metrics from

it come after as Equations 2.3 - 2.6 [63]:

Table 2.1: The Confusion Matrix

True Label
Actual Data Prediction Data

Class 1 Class 2
Class 1 TP FN
Class 2 FP TN

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

Precision =
TP

TP + FP
(2.4)

Recall =
TP

TP + FN
(2.5)

F1 Score = 2× Recall × Precision

Recall + Precision
(2.6)
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To deal with imbalanced data sets, some strategies such as data preprocessing

or classification algorithm modification emerged. Various methods are proposed to

solve the imbalanced data classification problem [64, 65], and they can be categorized

into three kinds [60]: (i) Sampling based methods: They use under sampling or

oversampling techniques to transform the class-imbalanced data set into a balanced

one [66]. In summary, the main solution to handle these data sets is to increase

the density of minority classes, or on the other hand, decreasing the number of data

points in the major classes in order to achieve almost same proportion of data in all

classes; (ii) Cost-sensitive learning-based algorithms [67, 62]: This kind of methods

work with the costs associated with miss-classifying data points; And (iii)Ensemble

learning based approaches [68, 61]: This type of methods aim to increase the efficiency

of each classifier by taking advantage of multiple classifiers and combining them to

create a new and more efficient classifier [64].

TLs are vulnerable to circumstances such as overloading, breakage, short

circuits, icing, lightning strikes, tree interference, bird nesting, aging, human activity,

hurricanes, and in general lack of protection and conservation [57, 58, 59]. TL faults

caused by these phenomenons can be categorized into series (open conductor) and

short-circuit (shunt) faults.

Series faults can be recognized easily by observing every phase voltage. If an

open conductor fault happens, the voltage values would change, which is a sign of a

series fault. These faults are classified into two types including one open conductor,

and two open conductor faults. These faults can rarely occur in TLs and therefore

usually are not considered in the studies [75].

In this study, short-circuit faults, as more common faults than open-circuit ones

in TLs, are discussed. These faults can be classified into four types: single line-to-

ground, double line-to-ground, line-to-line, and all-lines-connected (-to-ground), as

shown in Figure 2.2.
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Table 2.2: Comparison Between Existing Survey Papers and This work

Ref. Focusing Aspects Before Year

Haque et al. [69]
An overview on neural network (NN) techniques used in
power systems

2007

Hare et al. [57]
A survey on various failure modes in microgrid components
consisting both clean and conventional energy generation
systems, and on the existing fault diagnosis approaches

2016

Prasad et al. [70]
A review on the proposed technologiesfor fault classification
in power TLs

2016

Prasad et al. [71]
A review on the fault classification methods of TLs and a brief
introduction to TL faults

2017

Mishra et al. [72]

A review on all methods including signal processing techniques,
impedance-based measurement and traveling wave
phenomenon-based methods, artificial intelligence-based method
and some special technique for the detection, classification, and location
estimation of faults in TLs

2017

Prasad et al. [73]
A survey on the location estimation of faults in overhead TLs and
different fault location estimation techniques based on ANN.

2017

Parihar et al. [74]
An overview of cable fault detection methods in 3 main categories namely,
Impedance base, traveling waves, and magnetic field

2018

Raza et al. [56]
A review on fault diagnosis methods in power TLs including fault detection,
classification, and location estimation, and a comparison between different
artificial intelligence and ML algorithms.

2020

This survey
A survey on ML methods and their usage and implementations in TLs
fault detection, classification, and location estimation.

2022

Series Faults

One Open Conductor

Single line-to-ground
 (AG, BG, and CG)

Double line-to-ground
(ABG, BCG, and ACG)

Line-to-line 
(AB, BC, and AC)

All lines connected
 together (ABC)

All lines connected
to ground (ABCG)

Faults in Overhead Transmission Line

Short Circuit Faults

SymmetricalAsymmetricalTwo Open Conductor

Figure 2.2: Types of faults in a three-phase transmission line (A, B, and C represent
the three phases, and G stands for ground connection).

This survey covers the majority of Artificial Intelligence (AI) approaches used

in the studies published since 2015 and discusses their advantages and disadvantages

in TLs fault diagnosis problems. We divided this study into two main sections based

on Figure 2.3 due to numerous ML methods used in this area. Based on Figure

2.3, we defined the ML methods, which are not known as deep learning (artificial

neural networks (ANNs)), as generic machine learning methods, and deep learning

techniques are presented as ANNs.
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Artificial Intelligence

Machine Learning

Complex models
Deep Learning (ANNs)

Learning from experience

Imitating intelligent life

Figure 2.3: Deep learning is a subcategory of machine learning, which is a subcategory
of artificial intelligence.

Table 2.2 reviews some of the previous surveys and compares them with this

survey study.

This chapter is organized as follows. Section 2.3 explains different generic ML

methods. Section 2.5 describes various ANN techniques used for the TL protection.

Section 2.6, reviews a few studies using hybrid approaches. Section 2.7 compares all

methods and discusses their characteristics. Section 2.8 summarizes the over all ideas

in this chapter.
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2.3 Generic Machine Learning Methods

2.3.1 Naive Bayesian Classifier (NBC)

NBCs and Bayesian Classifiers (BCs) are well-known for their power in describing

the extracted features of signals and generating solid results about these features

in uncertain situations. They are directed acyclic graphs that assume a conditional

probabilistic distribution for each node. Each node represents one variable’s domain

and can connect with the others by using its probabilistic dependency [76, 77].

To solve a classification problem using a Bayesian network, nodes are used as the

fundamental features. BCs optimize the correlation between core features and other

casual dependencies among non-fundamental ones. Consequently, this algorithm is

capable of detecting the most probable output generated by a specific input.

The advantages of BCs in comparison with binary classifiers such as decision

trees, neural networks, etc. are their compatibility with Bayesian network systems

for data modeling, capturing the informal dependencies in the learning process,

readaptation based on modifications of a variable, combining the existing information

and newly added data, and taking advantage of statistical models besides Bayesian

networks to overcome over-fitting issues. In BCs, the probability shows the level

of correctness, and NBC operates based on the class conditional independence

assumption that is shown as [77, 78, 79, 80] (2.7) below.

P (y | x) = P (x | y)P (y)

P (x)
(2.7)

In equation (2.7), P (x) and P (y) stand for the independent probabilities (predictor

prior probability) of x and y, respectively. P (x | y) shows the conditional probability

(likelihood) of x when y is considered as a true value, and vice versa for P (y | x).
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Swetapadma et al. [81] use an NBC to protect parallel TLs from inter-circuit

faults by detecting and classifying the faults. The fundamental components of given

three-phase currents from two circuits are obtained by discrete Fourier transform

(DFT) and fed into NBC for fault detection. After the fault detection step, the

classification module becomes active. Zero sequences are added to the previous data,

and then for each phase a separate classifier is applied. Finally, based on each classifier

output, the type of fault is determined.

Adly et al. [82] use a similar fault detection and classification method. This

study presents sensitive and automated fault identification scheme to solve the

existing difficulties such as high-impedance faults (HIFs), non-linear modelling of

arcing, etc. An Adaptive Wavelet Algorithm [83, 84, 85] is used for classifying

transitory events caused by TL faults based on combining DWT and Bayesian Linear

Discrimination (BLD) analysis. This algorithm uses DWT to decompose signals into

coefficients with the sampling frequency of 500(kHz) and then uses BLD analysis

for classification. Aker et al. in [86] decompose three-phase fault current waveforms

into several levels by using Daubechies mother wavelet of Wavelet Daubechies (db4)

to extract the features, such as standard deviation and energy values. Then, the

extracted features are used to train classifiers such as Multillayer Perceptron (MLP)

Neural Network, BC, and NBC to classify the types of faults.

In [87], voltage and current signals are given to a DWT for feature extraction,

and NBC is used to classify TL faults. Another study [77] presents a technique for

TL multiples faults diagnosis using both of the experimental and calculated leakage

current signals’ harmonics as residuals. This approach integrates the qualitative trend

analysis (QTA) for the features extraction with an NBC for the fault diagnosis. In

this procedure an NBC is designed to identify the most critical fault in a multiple

faults scenario using the leakage current data.
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Although all of the NBC-based studies have achieved 95-100% accuracy in TL

fault classification, none of them predicts the location of faults. DFT and DWT

are two essential signal processing approaches to complete NBC-based classification,

and the sampling frequencies for the above-mentioned studies vary from 1(kHz) to

20(kHz).

2.3.2 Decision Tree Classifier (DTC)

DTC provides classification and regression models by imitating a tree and generating

branches equal to the number of classes. The algorithm starts from the root of a tree,

and in each step moving downward, it splits the given dataset into smaller subsets

based on the feature. Therefore, a decision tree is developed gradually with decisions

and leaf nodes [88, 89, 90].

In general, decision trees are divided into two categories, namely, classification

trees with ’fit’ or ’unfit’ outcomes, and regression trees when the target value is

continuous. Their core algorithm is ID3 [88], which is a recursive algorithm that

selects the best attribute to split the data and develops the leaf nodes of the tree

until the classes become complete. ID3 uses entropy and information gain for decision

tree construction. Entropy is a methodology to calculate the homogeneity of data

points. It gets any real value between zero and one for the maximum and minimum

homogeneity level. Entropy (E) is represented as (2.8) below [91, 92].

E(S) = −
∑
x∈X

P (x)log2P (x) (2.8)

In (2.8), Entropy(S) is the entropy of dataset S, X shows the set of all existing

classes in S, and p(x) is the probability of existing elements in class x. The definition
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of information gain (IG) is shown in (2.9) [91, 92].

IG(A, S) = E(S)−
∑
t∈T

P (t)E(t) (2.9)

where T stands for the created subsets from dividing set S based on attribute A such

that S =
⋃

t∈T t and P (t) is the probability of existing elements in class t belonging

to dataset S. Higher information gain in branches of DT means a better model and

therefore a more accurate classification is achieved.

Many studies take advantage of DTC to classify the existing faults. A recent

one [93] considers current signals and extracts DC offset parameters and fundamental

components to feed them to a bagging DTC. This process considers one decision tree

for each training subset of the dataset. Chaitanya et al. [94] propose a decision tree

aided traveling wave-based methodology for multi-terminal TLs. They consider each

fault at its inception time that is the origin of traveling waves to propagate along the

line in both directions getting away from the fault point.

The work [95] applies a singular value decomposition principle besides the Fast

Discrete Orthonormal S-transform (FDOST) and bagged DTC to detect and classify

TL faults.

Another approach is presented in [96] where magnitude of differential power

(MODP) is used. Differential power is defined as the multiplication of the difference

between the magnitude of the real and estimated voltage and current phasors. In this

study, MODP is given to DTC as input data.

By using DTCs based on the above studies, one could classify the TL faults

with 99.29-100% accuracy possessing sampling frequencies in the range of 200(Hz)-

200(kHz). Various signal processing methods are used in DTCs including Stockwell

transform, Adaline algorithm, FDOST, and DWT.
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2.3.3 Random Forest Classifier (RFC)

RFC is a supervised learning algorithm that consists of multiple trees as classifiers.

In other words, random forest (RF) merges decision trees to obtain more accurate

and reliable predictions. In RFCs, each classifier uses a random vector sampled

independently from the input vector, and then each tree generates a unit vote for the

associated class to classify an input vector. This classifier is used for classification

problems considering randomly selected attributes or a combination of attributes at

each node to grow a tree based on that origin. RFC takes advantage of the Gini

Index as an attribute selection measure that quantifies the amount of impurity of an

attribute corresponding to a class. Gini Index is calculated based on the subtraction

of the sum of squared probabilities of classes from one, which is expressed as follows

[97]:

Gini Index = 1−
∑
x∈X

P (x)2 (2.10)

In (2.10), P (x) is the probability of class x belonging to a set of classes X in dataset

S.

In the process of building an RFC, every time a tree with maximum depth is

grown based on a combination of attributes. These trees are not pruned. Because

the generalization error converges even without pruning the trees, over-fitting is not

an issue according to the strong law of large numbers [98, 99, 100] in this classifier.

In RFCs, the number of attributes to be used at every node and the number of trees

to be grown are two parameters that users determine based on the applications [101].

Yin et al. [102] presents a methodology to solve the problem of uncertainty and

diversity of faults, and to enhance the fault detection accuracy. This detection method

is designed based on integrated RFC, improved multi-scale permutation entropy
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(IMPE), and wavelet packet transform (WPT). In the first step, a singular value

decomposition is applied to filter the current signal, and then the high-dimensional

fault features are constructed using the wavelet packet energy and the wavelet packet

energy-entropy. Finally, the high-dimensional fault features are used to train the RFC

to detect the type of faults.

Wu et al. [103] propose an intelligent fault detection and classification technique

for high voltage DC TLs. They use RFC to categorize the faulty current signals.

Koochi et al. [104] present an approach to predict the types of faults in real-time.

They use pre-disturbance and post-disturbance current and voltage phasors as

measured by Phasor Measurement Units (PMUs) to generate the useful attributes

and feed them to DTC to determine the coherent groups of generators precisely.

In this study, mathematical morphology (MM) is applied to voltage signals in the

presence of disturbance to extract important features.

Fonesca et al. [105] show the use of RF method with a simple preprocessing step

using the notch filter to distinguish the type of faults in TLs. The performance of this

scheme is compared with a NN to show its efficiency. Using k-fold cross-validation

to train, test, and compare the models, this study achieved the mean accuracy of

89.59% for the NN and 91.96% for the RF for testing data.

The accuracy range obtained by the above-mentioned studies is 93.54-100% and

the range of sampling frequencies is 200(Hz)-200(kHz) in RFC-based approaches.

Hilbert transform, DWT, and S transform are the signal processing methods used for

TL fault identification and location estimation alongside RFCs.

2.3.4 Support Vector Machine (SVM) Classifier

One of the commonly-used classification algorithms is SVM that is a supervised ML

method and is able to solve regression and classification problems [106]. Its advantages

over other ML algorithms include being fast and simple to be implemented, having a
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low computation load, and producing high accuracy level even with a limited amount

of data. SVM finds a hyperplane in an N -dimensional space (N is the number of

attributes) to classify the data.

Finding the maximum margin for all classes is the optimization objective in

SVM. Maximum distances generate higher classification accuracies for future data

points. In this algorithm, the closer data points to a specific hyperplane will have

more impact on the hyperplane position and the margins of the classifier. These

crucial data points are called support vectors. Although SVMs are initially introduced

for binary classification, nowadays they can solve multi-class classification problems

such as TL fault classification problem. This is a one-versus-all problem where each

fault is compared to the rest of fault types every time. SVMs are able to classify the

faults in TLs and take advantage of an alternative loss function to estimate the fault

locations. SVM uses linear or non-linear kernels such as polynomial, Gaussian, and

radial basis function (RBF) for various kinds of problems depending on the dataset.

It aims to minimize the following cost function (2.11) [103, 107, 108, 106].

[
1

n

n∑
i=1

max(0, 1− yi(w
Txi − b))] + λ ||w ||2 (2.11)

In (2.11), yi is the i
th target, w is the weights matrix, and wTxi − b is the ith output.

λ stands for the trade-off between enhancing the margin size and keeping the data

point xi on the correct class. There are numerous studies that use SVM to perform

location estimation and classification of TL faults.

Figure 2.4 shows a naive idea of SVM-based approaches. In this figure, the

black dotted lines are the hyperplanes that separate fault types that are shown as

different shapes such as triangle, circle, square, and etc. The thick gray lines show
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the margins between classes and the solid black lines stand for the maximum margin

decision hyperplane.
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Figure 2.4: Schematic of 11 transmission line faults (AG, BG, CG, AB, BC, AC,
ABG, BCG, ACG, ABC, and ABCG) classification using SVM.

Patel [109] proposes a methodology for fault detection, classification, and

location estimation of overhead and underground cables in TL networks. The entropy

principle and fast discrete orthogonal S-transform (FDOST) are used for feature

extraction, and SVM with a regression model is applied for pattern generation to

determine the fault types and locations. Reddy et al. [110] present an approach that

extracts the energy coefficients from the transient current signals when different types

of faults occur. Then, discrete orthogonal stockwell transform (DOST) is applied for

real-time fault detection and classification. Finally, SVM determines the location of

faults based on extracted coefficients. In another study [111], current signals from

TLs are preprocessed by using wavelet packet transform (WPT) and the selected

attributes are classified by using SVM. A pattern recognition method is presented by

Moravej et al. in [112] based on extracted features from one cycle of post fault data by
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FDOST. Then the most important features are fed to 11 SVMs for the classification

of faults. In [113], different fault impedance values and fault types are considered in

training and testing data. The Gaussian RBF kernel is used to train SVMs for precise

classification of faults precisely. Singh et al. [114] propose a method that uses SVMs

for the detection and classification of a single line-to-ground fault. They also utilize

SVM for the estimation of fault locations in TLs.

The study [115] focuses on an SVM-based fault detection and localization to

improve the efficiency of power grids using phasor measurement units (PMUs) that

are generated only from a single generator bus. Huang et al. [116] classify ten types

of TL faults by using an empirical wavelet transform (EWT) and local energy feature

vectors and taking advantage of SVMs. The work [117] combines method of DWT and

SVM for fault classification of inter-circuit, cross-country, and high resistance faults.

Johnson et al. [118] monitor the rectifier-side AC RMS voltage, the DC voltage, and

the current of TLs continuously, and feed them to SVM as inputs for fault detection.

Their SVM multi-class classification module distinguishes the types of faults, and

SVM regression algorithm detects fault locations.

The accuracy range for SVM-based studies varies from 70% to 100% because

of different training approaches and various signal processing methods, and their

sampling frequency range is 100 (Hz) to 200 (kHz). SVM is a user-friendly method

and can be implemented easily. Therefore, almost one-tenth of all considered papers

in this survey belong to this category.

2.3.5 k-Nearest Neighbor (k-NN)

k-NN algorithm was first introduced in the early 1950s. Since then, it is widely

used in the field of pattern recognition and data classification. This algorithm works

based on the similarity of a given test sample with training samples [119, 120]. There

are two important parameters in this algorithm: distance matrix and the number
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of nearest neighbors which is shown with k. In k-NN algorithm, a suitable nearest

neighbor is chosen based on the calculated distance using several matrices such as

Euclidean, Cityblock, Minkowski, Chebychev, and Manhattan distance. Having two

data matrices with mn size, one with row vectors x1, x2, ........, xm and another with

row vectors y1, y2, ........ym, different distance matrices between the vectors xi and

yj can be described as below. For example, Minkowski distance, DMinkowski can be

defined as Eq. (2.12).

DMinkowski = p

√√√√ n∑
j=1

| xsj − ytj |p (2.12)

In the above equation, DMinkowski is the distance between vectors s and t, x and y

are twopints, p is a positive integer describing the exponent of Minkowski distance.

Euclidean, Cityblock, Chebychev, Manhattan distances are defined in Equations 2.13,

2.14, 2.15, and 2.16, respectively.

DEuclidean =
√

(xs − yt)(xs − yt)T (2.13)

DCityblock =
n∑

j=1

| xsj − ytj |p (2.14)

DChebychev = maxj | {xsj − ytj |} (2.15)

DManhattan =
n∑

j=1

| xsj − ytj | (2.16)
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The process of training is based on different distance matrices in order to find an

appropriate one. Next, k should be chosen to train the network. In a regression

process, k-NN calculates the average value of its outputs. It should be noted that its

performance depends on the resubstitution and the errors of test samples, for which

mean square error is calculated [121, 122].

k-NN is a classifier that usually performs detection and classification of faults

in TLs, and only a few papers have presented location estimation of faults [121, 123].

In Figure 2.5, the general idea of TL fault classification by using k-NN is shown.

In this figure, there are 4 classes for labeled faults in training step (line-to-ground,

line-to-line, double line-to-ground, and all-lines-connected (-to-ground)). To detect

the class of a new fault, we measure its distances from these classes. di stands for the

distance and k is the number of considered neighbors to classify the new fault based

on their average (5 or 21).

LLL/ LLLG

LG
LLG

d1

d2

d3

d4

New Fault

k=5

LL

k=21

Figure 2.5: Schematic of transmission line fault classification using k-NN (di is the
distance of the new fault from existing classes and k is the number of considered
samples for classification).
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Swetapadma et al. [121] take advantage of DFT to preprocess voltage and

current signals to feed them as input data to k-NN with k = 2. Majd et al. [124]

present an approach based on measuring the distance between each data point and

its fifth nearest neighbor in a predefined window. These windows help them to detect

the occurrence time of faults and the faulty phases. The maximum value of distances

is compared with predefined threshold values to detect and classify faults. The study

[125] proposes a scheme for fault classification based on fuzzy k-NN and continuous

wavelet features. Two wavelet features are considered as the fundamental attributes:

Wavelet Mean (µ) and Wavelet Standard Deviation (σ).

An approach for TL fault detection and classification is presented by Dasgupta

et al. [126] using cross-correlation and k-NN. The proposed method takes advantage

of synthetic fault data within half cycle of pre-fault and half cycle of post-fault to

diagnose the types of faults in TLs in various situations and considering different

parameter variations.

Singh et al. [127] propose an ML-based intelligent approach for classification of

faults in a series compensated power network based on k-NN with various k values

including 1, 3, and 5. DWT is applied to three-phase post-fault current signals for

extracting the crucial features of the shunt fault. Moreover, k-NN is used for fault

classification in a TL network. A semi-supervised ML methodology is proposed in

[128] that co-trains DTC and k-NN to generate the classification model for labeled

and unlabeled data to automate the fault classification process.

The study [129] presents a robust protection scheme for series capacitor

compensated TLs using DWT and k-NN algorithm. All the protective relaying

functions such as detection, classification, phase identification, and location estimation

of faults are considered in this study. The signal processing and feature extraction

are done using DWT which is able to distinguish between high and low frequency

transient components. For fault detection and classification, only the approximation
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of wavelet coefficient for the current signals up to level 1 is used; while for k-NN

location estimation, voltage and current signals of the circuits are decomposed up to

level 3. Finally, the standard deviation of one cycle pre-fault and one cycle post-fault

samples of the wavelet coefficient approximations are computed to form the feature

vector for the k-NN-based algorithm.

Gashghaei et al. [130] present an integrated ML-based system architecture for

the fault diagnosis of TLs in which various ML models of SVM and K-NN are used

for fault. The K-NN fault type classifier is modeled as a dual-purpose module, which

detects the fault type and acts as a redundant module for uncertainties from the

startup unit. Gradients and standard deviations of DC current, voltage, harmonic

current, and a correlation coefficient among the aerial and zero modes of DC current

are the extracted features from single-end signal measurement.

Although k-NN is a common approach to solve TL fault identification and

location estimation problems, it is mostly used in locating the faults in power systems.

The mentioned studies based on this algorithm have an accuracy range of 97.61% to

100% for detecting TL fault types while most of them can achieve 100% accuracy.

Signal processing methods used in the above-mentioned studies are DFT, DWT,

and continuous wavelet transform (CWT). The sampling frequencies for k-NN-based

methods are in the range of 1.2 (kHz) to 50 (kHz) which is smaller than those of

DTC, RFC, and SVM. The main advantage of k-NN is that a large number of training

samples do not affect its performance, unlike most ML methods.

2.3.6 ML Methods Comparisons and Discussions

This section summarizes the differences between the above-mentioned ML method-

ologies. Table 2.3 shows each study with its used techniques, input signals, immunity

to noise, robustness analysis, the performed tasks with their average accuracy for

classification task, and average relative error for their location estimation task.
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Table 2.3: Comparison of Different Machine Learning Methods (C) Classification,
(L) Location, (I) Current, (V) Voltage

ML
Method

Ref.
Used

Techniques
Input
Signal

Performance
with Noise

Robustness
Analysis

for Generators

Task
(C&L)

Avg.
ACC

Avg.
Relative
Error

NBC
[81] DFT + NBC I Not mentioned Not Mentioned C 100% NA
[82]
[86]
[87]

DWT + NBC
I
I

I&V
Immune Not Mentioned C 100% NA

[77] QTA + NBC I&V Not mentioned Not mentioned C 95% NA

DTC

[93]
Least Square
+Adaline Alg.

+DTC
I Immune Not mentioned C & L 99.29% ±5%

[94]
ST + TW
+ DTC

V Not mentioned Not mentioned L NA 0.31%

[95] FDOST + DTC I Immune Not mentioned C 100% NA
[96] MODP + DTC I&V Not mentioned Not mentioned C 99.5% NA

RFC

[103] RFC I Immune Not mentioned C 100% NA
[104] MM+RFC I&V Not mentioned Not mentioned C 93.54% NA

[102]
IMPE+WPT

+RFC
I&V Not mentioned Not mentioned C 96.42% NA

[105] MLP+RFC I&V Immune Not mentioned C 96.49% NA

SVM

[109]
[110]
[112]

FDOST+SVM
I
I

I&V

Immune
Not mentioned

Immune

Not mentioned
Not mentioned

Provided
C & L

99.53%
100%
100%

0.47%
0.81%
0%

[111] WPT+SVM I Not mentioned Not mentioned C & L 99.21% 0.21%
[113]
[114]
[118]

SVM
I&V
V

I&V
Not mentioned Not mentioned

C
C

C & L

93.25%
70%
100%

NA
NA

0.03%
[115] FFT+SVM I&V Not mentioned Not mentioned L NA 0%
[116] EWT+SVM V Immune Not mentioned C 100% NA
[117] DWT+SVM I Not mentioned Provided C 99% NA

k-NN

[121] DFT+k-NN I&V Not mentioned Provided L NA 1%
[124]
[125]

k-NN
I

I&V
Not mentioned

Immune
Not mentioned C

98%
100%

NA

[127]
[129]

DWT+k-NN
I

I&V
Not mentioned Not mentioned

C
L

99.4%
NA

NA
1%

[128] CWT+k-NN I Immune Not mentioned C 97.61% NA

The first method is NBC that has a simple structure to be implemented and

to solve TL fault classification problems, where a signal processing method such as

DFT, DWT, QTA is needed to do data preprocessing and feature extraction task.

Although NBC is a good approach for classification of the types of faults, none of the

considered studies have done location estimation for TL faults which questions NBC

ability to solve this problem.

The second approach in Table 2.3 is DT algorithm which can be combined

with other approaches in fault diagnosis of TLs such as TW. The main drawback of

DT-based methodologies is over-fitting, while DTCs are able to do both classification

and location estimation tasks for faults. None of the studies using DTC have done
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Table 2.4: Parameters of Under Study Transmission Lines

Parameter Description
d (km) Fault Distance
ϕ (◦) Fault Inception angle
Rf (Ω) Fault Resistance
δ (◦) Phase Difference

Ls (mH) Source Inductance
∆Vi (kV ), i = 1, 2 Voltage Fluctuations

robustness analysis with respect to the parameters mentioned in Table 2.4 because

DTC’s ability to handle datasets with high number of features is limited.

The third approach in Table 2.3 is RFC. The studies using this scheme only

solved the classification problem of TLs, and the robustness analysis with respect to

the parameters mentioned in Table 2.4 are not considered in them. These studies

used MM, IMPE, WPT, and MLP to do the feature extraction function before RFCs

are applied.

SVM-based studies come after RFC-based approaches in Table 2.3. Various

signal processing approaches can be applied besides SVM to do the feature extraction

task such as FDOST, WPT, FFT, DWT, and EWT. The results show that SVM-

based approaches have satisfactory results and are compatible with any type of input

signals such as voltage, current, and both voltage and current signals. Some of the

studies in this category show their reliability by providing robustness analysis or

proven immunity to noise.

The last technique in Table 2.3 is k-NN which is used mostly for classification

problems. Even the studies such as [129] and [121] used segmentation scheme to solve

the location estimation problem of TLs. DFT, DWT, and CWT are used with k-NN

to extract the significant features of input signals.

2.4 Robustness

A system is said to be robust if it has an acceptable performance under different

parameter variations. In other words, not only should the system work under a

specific set of parameters, but it also should work under a different set of parameters.
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The larger the range of the parameter variations, the more robust performance

the system will have. Robustness is a crucial property of any system because the

parameters of the system do not always have their nominal values. For example,

voltage in a transmission line can have ±10% variations and it can negatively affect

the performance of the identification and estimation procedure.

2.5 Artificial Neural Networks (ANNs)

ANN is an Artificial Intelligence (AI) concept that emulates the structure of the

human brain to analyze data and perform pattern recognition to make decisions

and classifications. ANNs with more layers are categorized as deep learning methods.

Deep learning is a branch of ML and is capable of solving unsupervised and supervised

learning problems.

ANNs work based on parallel computing phenomenon and are powerful systems

consisting of a large number of processors with numerous interconnections [131, 132].

Deep learning takes advantage of a hierarchical level of ANNs to accomplish the ML

methodologies. ANNs have three primary applications in the real world: classification

of data such as image matching, feature extraction, and pattern recognition; noise

reduction such as recognizing the discordant patterns in data and generating noise-free

outputs; and extrapolation which means predictions based on previous data history

[23].

In this study, the main focus is the indigenous capability of ANNs for the

multi-label classification of TL faults. There are various types of ANNs that follow

common fundamentals such as including 3 or more layers with neurons and activation

functions for rectifying the values. Beside their similar structures, every type of ANN

has its own characteristics such as computational methods for updating the value of

weights, the connection of neurons among layers, storing significant values, removing

the unwanted data, etc. Among various types of ANNs, some of them are used in
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TL fault detection, classification and localization such as feedforward neural network

(FNN), convolutional neural network (CNN), adaptive neuro-fuzzy inference system

(ANFIS), extreme learning machine (ELM), and probabilistic neural network (PNN).

2.5.1 Feedforward Neural Network (FNN)

FNN is one of the initial structures presented for ANNs. FNNs are multilayer and

fully connected ANNs that consist of one input layer, one or more hidden layers, and

one output layer. Figure 3.3 shows a 4-layer FNN with two hidden layers.

From the second layer of an FNN, each node takes the weighted sum of the

neurons from the previous layer and feeds it to a nonlinear activation function in

order to generate the input of the next layer. The equation for each node of the

hidden or output layer is given as follows [133, 134]:

z = f(b+ x.w) = f(b+
N∑
i=1

(xiwi))

x ∈ R1×n, w ∈ Rn×1, z ∈ R1×1

(2.17)

In (3.1), z is the output of current node, f represents the activation function, xi

stands for the input from the previous layer node i with the weight wi, and b is the

bias to correct the range of sum value. FNN is a model to mostly solve supervised

Input Layer Hidden Layers Output Layer

Figure 2.6: Structure of an example feedforward neural network with one input layer,
two hidden layers, and one output layer.
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learning problems. Having a portion of the dataset as labeled data points for the

training step helps the system to learn how to classify the rest of the unlabeled data

points. There are studies for TL fault detection, classification, and localization that

take advantage of FNNs to achieve higher accuracy and performance.

Koley et al. [12] present a methodology using voltage and current waveforms

of TLs that are fed to DFT and DWT for feature extraction. In this study, the fault

detection and classification phase is done with a microcontroller classifier, and for

the fault distance estimation a 4-layer FNN is implemented. A combined DWT and

FNN approach [135] is presented for double circuit TLs based on the single-end data

for classification and location estimation of TL faults. Zin et al. in [136] propose a

scheme to detect and classify TL faults using discrete wavelet transform and an FNN

based on Clarke’s transformation. In this study, Clarke’s transformation generates

alpha and beta (mode) currents for conversion of the DWT signal to calculate the

Wavelet Transform Coefficients and the Wavelet Energy Coefficient. Thwe et al. [137]

use FNNs to do fault detection and classification for high voltage TLs to provide

high-speed protection for digital power systems. Gowrishankar et al. [138] propose a

technique utilizing DWT for decomposition of TL fault transients, and for applying

an FNN to detect and classify them.

Yu et al. [139] propose an intelligent fault detection methodology for microgrids

using wavelet transform and a specific FNN that works based on the gated recurrent

unit. In this methodology, fast fault type recognition, phase detection, and location

estimation for microgrids protection and service recovery are presented.

Koley et al. [140] present an algorithm including two steps. In the first step,

an FNN-based algorithm is used to detect and classify possible types of shunt faults

within one cycle, and in the second step, the locations of shunt faults are predicted.

In this algorithm, they consider the voltage and current signals filtered by a low-pass

filter to extract the fundamental components from them using DFT and feed them
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into an FNN. The work [141] presents a scheme based on an FNN for protecting TLs

by detection and classification of one-conductor-open faults in parallel TLs.

Koley et al. [142] present a methodology using a hybrid wavelet transform and

FNN model to detect, classify, and locate six-phase TL faults using single-end data.

In this scheme, they gather the standard deviation of the approximate coefficients

of voltage and current signals using DWT, and feed them as inputs to the modular

FNN for fault identification and location estimation. Another study [143] presents a

robust fault classification method by utilizing Wavelet Transform (WT) for feature

extraction, and a 2-Tier (MLP) network. Jamil et al. [144] perform a study to detect

and classify the TL faults using FNN. For this purpose, three-phase current and

voltage signals of one end of a TL are taken as the inputs to FNN with a number of

hidden layers for efficiency enhancement.

According to the aforementioned studies, FNN is the most common solution

for TL faults classification and location estimation in recent years. More than one-

fifth of all of the reviewed papers belong to this category, and some approaches are

focusing on location estimation only. The accuracy range for these studies on TL fault

classification is 90.60-100% while most of them have reached 100% with sampling

frequencies in the range of 1 (kHz) to 1 (MHz). In some cases, signal processing

methods such as DFT, DWT, continuous wavelet transform (CWT), and DOST are

used with FNNs.

2.5.2 Convolutional Neural Network (CNN)

CNN is a subset of ANNs and is mainly used for analyzing imagery datasets and

image classification problems. CNNs can handle high dimensional datasets faster,

and with more details and minimum need for data preprocessing [145].

A CNN architecture consists of different layers including input layer to obtain

data from the datasets; convolutional layers to create a feature map for feature class
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probability prediction (this step is done by applying a filter that slides over the

whole data block); pooling layers for downsampling the data; fully connected layers

to flatten the outputs from prior layers to generate a single vector (fully connected

layers involves weights, biases, and neurons and by using feature analysis perform

label predictions precisely); Softmax/Logistic layer which resides at the end of fully

connected layers (Logistic is used for binary classification and Softmax is for multi-

classification); and the connected output layer to produce the final probabilities for

class determination. The architecture of a CNN is a vital factor to determine its

performance and efficiency. The way that the layers are organized, the number of

layers, the utilized elements in every layer, and their design affect the speed and

accuracy of CNNs. Some of the well-known CNN architectures are LeNet-5 [146],

AlexNet (2012) [147, 148], GoogleNet (2014) [149], and VGGNet (2014) [150]. Figure

3.5 shows the typical architecture of a CNN.

Input Layer Convolutional Layer Pooling Layer Fully Connected Layer

Predicted 
Class

CNN

Figure 2.7: Typical architecture of a CNN.

There are numerous studies in TL fault detection, classification, and localization

problems that use CNNs to achieve higher accuracies. These studies can be divided

into two main categories: The first category includes those with focus on the

image-based datasets taken from outdoor TLs [151, 152, 153], and the second category

includes those that consider the generated time-series voltage and current signal

waveforms from generators to be fed to the CNNs. In this survey, we focus on the

second category.
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In one study [154], a self attention CNN framework and a time series image-

based feature extraction model is presented for fault detection and classification of

TLs using a DWT for denoising the faulty voltage and current signals. Rai et al. [155]

propose a customized CNN for fault detection and classification of TLs integrated

with distributed generators. The work [156] presents an ML-based CNN for TL fault

detection and classification that takes advantage of DWT for feature extraction.

Shukla et al. [157] present a CNN-based methodology which is able to

distinguish between power swing (both symmetrical and asymmetrical) and faults

besides their detection, classification, and location estimation. This ability removes

the possibility of maloperation during the non-faulty stressed conditions to overcome

the limitation of the protection model. Another study [158] proposes a scheme

to detect and categorize the faults in power TLs using convolutional sparse auto-

encoders. This approach has the ability to learn features extracted from the dataset

of voltage and current signals, automatically, for fault detection and classification. To

generate feature vectors, convolutional feature mapping and mean pooling methods

are applied on multi-channel signal segments.

CNN-based approaches are usually better in the classification of TL faults, and

they generate 99.58-100% accurate results within the range of 3.84(kHz) to 60(kHz)

sampling frequencies. One of the advantages of CNN-based schemes is that they either

need a simple and fast data preprocessing or do not need it at all, which increases

their speed and performance. In CNN-based approaches, all studies focus on TL fault

identification and classification problems and none of them considered the location

estimation issue.

2.5.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a type of ANN that utilizes a fuzzy inference system model to generate

output from the input dataset. In this transformation of input to output data,
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membership functions, fuzzy logic operators, and if − then rules are included

[159, 160].

ANFIS is based on a special Sugeno model developed from the Fuzzy Inference

System. There are five principal processing steps in ANFIS namely input fuzzification,

fuzzy operators, application method, output aggregation, and defuzzification. ANFIS

is a combination of both NN and fuzzy systems and so it benefits from their advantages

such as simple implementation and high learning capability. The architecture

of ANFIS includes five layers: fuzzy layer that consists of adaptive nodes with

membership functions; product layer including node outputs to show the firing

strength of a rule; a normalized layer consisting of nodes that represent the normalized

firing strength of each rule; de-fuzzy layer that consists of adaptive nodes with node

functions determining the contribution of the rules toward the general output; and

the output layer that is one node to compute the sum of all rules [161, 162, 163].

Figure 2.8 shows a basic structure of ANFIS.

A1

A2

x

B1

B2

y

N

N

x y

x y

1. Fuzzy Layer 2. Product Layer 3. Normalized Layer 4. De-fuzzy Layer 5. Total Output Layer

w1

w2 w2

fInputs

f1

f2

w1

Figure 2.8: Typical ANFIS structure diagram.

Figure 2.8 represents the ANFIS architecture for two inputs x and y, and a single

output f in a first order Sugeno fuzzy model. The common rule set with two if − then

fuzzy rules is explained below [164, 161].
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Rule I: if x is A1 and y is B1, then:

f1 = p1x+ q1y + r1 (2.18)

Rule II: if x is A2 and y is B2, then:

f2 = p2x+ q2y + r2 (2.19)

In (2.18), x and y are the inputs, Ai and Bi are the fuzzy sets, fis are the outputs

of the fuzzy region determined by the fuzzy rule, and pi, qi, and ri are the design

parameters that are calculated in the training step [165].

To analyze and improve the performance of the built model, different values for

significant models’ parameters usually are tested experimentally. For every model,

the best-result output with the minimum estimation error is detected based on the

coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Bias

Error (MBE) as follows [166]:

R2 = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳi)

(0 ≤ R2 ≤ 1) (2.20)

RMSE =

√∑n
i=1(yi − ŷi

n
(0 ≤ RMSE ≤ ∞) (2.21)

MBE =
1

n

n∑
i=1

(yi − ŷi)(0 ≤ MBE ≤ ∞) (2.22)
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where n is the number of data points, yi is the predicted value, and ŷi is the average

value of observed data points. The best fit can be chosen in the case that RMSE

values are closer to 0 and R2 values are closer to 1. The MBE value shows the

negative and positive calculation error, determining the similarity of the predicted

values with actual observed values [166].

Some studies are performed in recent years on the TL fault detection,

classification, and location estimation based on ANFIS. The most interesting ideas

are discussed in this subsection briefly.

Jarrahi et al. [162] propose another methodology to classify the faults generated

by a double-circuit TL using ANFIS considering three-phase current samples of only

one terminal. This method does not have any dependency on the impacts of fault

inception and load angle, location, and resistance.

The study [167] proposes an application of ANFIS for fault classification

and location estimation of TLs based on measured data from one terminal. The

fundamental values of the voltage and current measurements are given to DFT to

produce the dataset.

Another study [168] presents a robust fault detection, classification, and location

estimation approach for 132 (kV ), 100 (km) TLs. This approach integrates the

feature extraction capability of the DWT with the intelligent classification capability

of ANFIS. The RMS values generated by five detail levels of the DWT decomposition

for the current signals are utilized to train the designed ANFIS models.

Khaleghi et al. [169] propose an approach to estimate the location of a

single line-to-ground fault in four-circuit TLs. They use wavelet analysis for feature

extraction and record the dynamic attributes of a fault signal by taking sampled

current data from one side of the line. Also, ANFIS is used to find the relationship

between the collected attributes from wavelet signal analysis and the variation of fault

conditions, without knowing the type of faults.

49



The study [170] presents a three-phase distance relay model based on ANFIS

to protect TLs, where they are exposed to the faults caused by the destruction of

electrical equipment due to high amplitude electrical currents. In this study, ANFIS

is designed in two parts. The first part is to detect the faults in a TL by measuring the

voltage and current signals for every phase and compute the value of line impedance

for fault detection and location estimation. The second part is to determine fault

type and location by measuring the peak value of currents.

Veerasamy et al. [171] propose a scheme for detection and identification of

high impedance fault (HIF) in medium-voltage 13.8 (kV ) distribution networks by

taking advantage of DWT and intelligence classifiers such as ANFIS and SVM. In this

study, the obtained fault current signals for various types of three-phase faults such

as line-to-line, line-to-ground, double line-to-ground, and HIF are sampled in 1st,

2nd, 3rd, 4th and 5th levels of coefficients. Then, they are approximated by DWT

analysis for feature extraction which is called Standard Deviation (SD) values. These

SD metrics that are generated by the DWT technique are used to train different ML

classifiers such as Bayes, FNN, ANFIS, and SVM.

Although the ANFIS-based methods for solving TL fault classification, and

location estimation problems have very high accuracies in the range of 99.4-100%,

their implementations are complex and costly. Their sampling frequency range is 1

(kHz)-20 (kHz), and various signal processing approaches such as FFT, DFT, DOST,

WT, and DWT are used besides ANFIS models. These methodologies can solve both

identification and location estimation problems for TL faults.

2.5.4 Other Types of ANNs

There are two other types of ANNs that are used for TL fault detection, classification

and localization. These two types are described below.
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The first type is Extreme Learning Machine (ELM) which is FNN including

one or more layers of hidden nodes whose parameters do not need to be tuned.

These hidden nodes are assigned randomly and never get updated. They also can be

inherited from their ancestors without adjustment. In ELM, the output weights of

hidden nodes are updated in a single step to train a linear model [172]. Akmaz et

al. [173] present a scheme to estimate the location of faults in TLs. In this study,

they use traveling wave frequencies and an ELM to predict fault locations. Also

an FFT is applied to transient signals in the time domain to transform them to

the frequency domain and detect the traveling wave frequencies from their transient

frequency spectrum. The work [174] proposes an integrated framework that combines

fault classification and location estimation of TLs. In this study, the authors apply

a summation-wavelet extreme (SWE) learning machine to add feature extraction to

the learning process, and propose a Summation-Gaussian Extreme Learning Machine

for the problem of TL fault diagnosis [174].

The second type is Probabilistic Neural Network (PNN) [175] which is a

feed-forward NN. This category of ANNs is mostly known for its application in

classification and pattern recognition problems. PNN is based on the parent

probability distribution function of every class that is approximated by a Parzen

window and a non-parametric function. By taking advantage of the mentioned

function for each class, the class probability of a new input data is predicted and the

Bayes’ rule will be applied to assign the most probable class to the new input data.

This architecture minimizes the probability of misclassification. The idea of PNN was

initially acquired from the Bayesian network and a statistical algorithm (Kernel Fisher

discriminant analysis) [176]. The structure of PNN includes four layers, namely, input

layer, pattern layer, summation layer, and output layer [177, 178, 179, 180].

The study in [181] proposes the application of autonomous NNs for mapping

the correlation between electrical signals at one terminal and TL fault information.
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The presented approach provides NN models that can perform fault detection,

classification, and location estimation with the ability to adapt automatically by

taking advantage of probabilistic NNs. Roy et al. [182] present a scheme that utilizes

PNN to diagnose the fault types and faulty phase of overhead TLs. Also, an approach

for the computation of the fault locations is represented in this study and the authors

use multi-resolution S-transform to generate complex S-matrices of the current signals

measured at both ends of a TL. Mukherjee et al. [183] demonstrate an approach to

detect and classify the type of a fault in three-phase overhead single-end-fed TLs. In

this study, multivariate statistical methods are applied, such as Principal Component

Analysis alone, and as an integrated method with PNN, to classify faults.

2.5.5 Comparisons and Discussions of ANN Methods

In this section, the differences between the above-mentioned ANNs are presented.

Table 2.5 presents the details of all studies classified based on their types of NNs.

The first presented type of NN in Table 2.5 is FNN which is the most common

type of NNs and is able to solve all sorts of TL-related problems. The signal processing

schemes used besides FNN include WT, DWT, DFT, and CWT. The results of

considered studies show that FNNs can perform very well in both classification and

location estimation problems while the input signals can be only current signals or

current and voltage signals together.

The second approach in Table 2.5 is CNN. The input signals in all studies based

on CNN are both voltage and current. DWT can be used as a feature extraction

technique before feeding the data to CNN. The accuracy for fault classification in

the considered studies is almost 100% which shows the power of CNN in solving TL

faults classification problem.

The third technique is ANFIS which is an efficient trade-offs between NNs and

fuzzy systems working based on hybrid learning rules. Among the studies belonging
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to this category, none of them considered the effect of noise or robustness analysis

of generators, while they show good performances in average relative error of fault

location estimation or classification accuracy.

The fourth NN in Table 2.5 is ELM which uses current signals for classification

or location estimation of TL faults. ELM-based studies have not considered the effect

of noise or robustness analysis of TLs with respect to the parameters mentioned in

Table 2.4.

The fifth method in Table 2.5 represents PNNs which is able to solve both

classification and location estimation of TL faults. Most of the presented studies

based on the PNN approach mentioned their robustness to noise and resulted in

almost 100% average accuracy for classification of TL faults.

Table 2.5: Comparison of ANN Methodologies.(C) Classification, (L) Location, (I)
Current, (V) Voltage

ANN
Method Ref.

Used
Techniques

Input
Signal

Performance
with Noise

Robustness
Analysis

for Generators

Task
(C&L)

Avg.
ACC

Avg.
Relative
Error

FNN

[12]
WT+FNN

I&V
I&V
I

Not mentioned
Provided

Not mentioned
Not mentioned

C &L
C& L
C

100%
99%
100%

0.07%
0.08%
NA

[135]
[137]
[136]

DWT+FNN
I&V
I
I

I&V

Not mentioned
Not mentioned

Immune
Immune

Not mentioned
Not mentioned
Not mentioned

Provided

C
C

C & L
C & L

99%
90.60%
99.31%
99.9%

NA
NA
5.9%
0.68%

[138]
[139]
[142]
[140]

DFT+FNN I&V
I

Not mentioned
Not mentioned

Provided
Not mentioned

C & L
C

100%
99.8%

0.73%
NA[141]

[143] CWT+FNN I&V Immune Not mentioned C 99.52% NA
[144] FNN I&V, Not mentioned Not mentioned C 100% NA

CNN

[156]
[158]
[154]

DWT+CNN I&V
Not mentioned

Immune
Immune

Not mentioned C
100%
100%
99.58%

NA

[155],
[157] CNN I&V Not mentioned Not mentioned C

99.97%
99.72 NA

ANFIS

[162] FFT+ANFIS I&V Not mentioned Not mentioned C 99.4% NA
[167] DFT+ANFIS I&V Not mentioned Not mentioned C & L 100% 2.16%
[168] DWT+ANFIS I&V Not mentioned Not mentioned C & L 99.78% 0.22%
[169] WT+ANFIS I Not mentioned Not mentioned L NA 0.61%
[170] ANFIS I&V Not mentioned Not mentioned C & L 100% 2.06%
[171] DWT+ANFIS I Not mentioned Not mentioned C 100% NA

ELM
[173] FFT+ELM I Not mentioned Not mentioned L NA 5.31%
[174] SW+ELM I Not mentioned Not mentioned C & L 98 % 3.2%

PNN
[181],[183] PNN

I&V
I

Not mentioned
Immune Not mentioned

C & L
C

100%
100%

6.5%
NA

[182] ST+PNN I Immune Not mentioned C & L 99.6% 4.35%
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2.6 Hybrid Methods

This section addresses the hybrid schemes that take advantage of more than one

ANNs or a combination of one of them with at least one generic ML method to

achieve efficient and precise fault diagnosis results. The methodologies in this category

usually have high performance because they take advantage of multiple approaches

to overcome the weaknesses of the individual solutions. Table 2.6 presents these

approaches.

The study [184] proposes a hybrid methodology for detection, classification and

location estimation of short-circuit faults in power TLs. In this study, the authors

take advantage of a hybrid framework including a two-stage finite impulse response

filter, four SVMs, and eleven support vector regressions (SVRs) that are implemented

in Proteus 6 and Matlab environments. In this approach, a two-stage finite impulse

response filter integrated with SVMs is used for detection and classification of the

faults, and the SVRs are implemented to estimate the location of them. Another

study [185] presents an identification and categorization methodology for TL fault

types and location estimation of the faults. In this study, to increase the sensitivity to

faults, the frequency response curves related to the implemented faults in the TLs are

calculated and used. Then, a deep learning technique is developed to design a hybrid

model of the CNN and LSTM called C-LSTM for interpretation of the frequency

response curves related to faults and determine the type of faults, and estimate their

locations.

Table 2.6: Comparison of Hybrid Methods(C) Classification, (L) Location

Ref.
Used

Techniques
Input
Signal

Performance
with Noise

Robustness
Analysis for
Generators

Task
(C&L)

Avg.
ACC

Avg.
Relative
Error

[184] FIR + SVM + SVR I&V Not mentioned Not mentioned C& L 100% 4%
[185] CNN + LSTM I&V Not mentioned Not mentioned C & L 98% 0.27%
[186] LDA + RFC +FNN I&V Not mentioned Not mentioned C 98% NA
[187] DWT + ANFIS + FNN I&V Not mentioned Not mentioned C & L 100% 0.11%
[188] SVM + GNN I&V Not mentioned Not mentioned L NA 0.17%
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Balakrishnan et al. [186] present a hybrid methodology for detection and

classification of TL faults based on RF algorithm. They use linear discriminant

analysis to extract the data from voltage and current signals and detect the fault

types using an RF algorithm that is based on the cuttlefish optimizer. Gayathri

and Kumarappan [188] present a hybrid approach for double circuit TLs subject to

obstacles such as the mutual coupling between the two circuits under fault conditions.

The study [187] proposes a numerical relaying method that is based on DWT, ANN,

and ANFIS. The authors design a NN for fault detection and classification that is

trained by samples of voltage and current signals generated by a simulated test system.

They take advantage of ANFIS trained by the extracted summation values of discrete

wavelet coefficients of a three-phases TL to estimate the location of TL faults.

In this methodology, the fault location of extra high voltage TLs is estimated

by using a radial basis function-based SVM applied to the reconstructed input data

points, and a gradient based NN (GNN) using scaled conjugate gradient.
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2.7 Comparisons and Discussions

In this section, the differences between the above-mentioned methodologies are

presented. is a key concept in ML and deep learning approaches, and is divided

into two steps: feature extraction and feature selection. In feature extraction, all

the features of the dataset understudy will be extracted, and in feature selection,

the significant ones will be selected. Although deep learning methods perform these

two steps as a combined step, ML approaches have an order for them, first feature

extraction, and then classification.

The detailed description of each methodology is already explained in the

previous sections, and Table 2.7 and Table 2.8 compare the advantages and

disadvantages of them. The second column of these Tables show the number of papers

that are reviewed for each method in this study. “C” stands for the number of papers

that considered the identification of faults including detection and classification, ”L”

stands for the papers solving the location estimation problem, and “C&L” shows

the number of papers that considered both problems. The third column shows the

complexity of the training step for each method based on its requirements such as

the number of training samples, number of features, number of trees (for RF), and

number of layers for deep learning approaches. Usually, the testing step complexity

is considerably lower than the training step, and so the reported complexity belongs

to the training step only [56].

The first method is NBC that has a simple structure to be implemented and

is able to classify independent high dimensional data accurately. To solve TL

fault classification and location estimation problems, DWT is needed to do data

preprocessing for the Bayesian classifiers. The second line of this table belongs to the

DT algorithm with its easy interpretation and understandable structure while not

being in need of data normalization. The main drawback of DT-based methodologies
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is over-fitting. Besides, if the number of faults in TLs is too small and the dataset is

considered imbalanced, DT cannot be an effective classifier.

By using RF, scientists have tried to compensate the drawbacks of DT. The RF-

based studies in this review provide several advantages such as handling imbalanced

datasets and supporting datasets with missing cases. Although RF is proposed to

overcome the over-fitting problem of DT by using extra computational power and

resources, it fails to guarantee a solution to those problems.

k-NN does not need any training step and is mostly used for fault type

classification and range-based estimation of fault location. This algorithm is slow,

unable to deal with missing data, and very sensitive to outliers.

SVMs are complex, accurate, and widely used algorithms for TL fault detection,

classification, and location estimation. Due to SVM’s high computational load, a large

memory is required that makes this methodology costly. Also, this approach cannot

work effectively with noisy datasets, which undermines the reported accuracy for TL

fault classification using SVM.

FNN is the most common type of NNs that is able to solve all sorts of TL-related

problems. This method is easy to implement and can precisely detect the exact type

of faults even in the presence of noise. The only concern about FNNs in the TL

fault identification process is its time-consuming training step, and the need for data

preprocessing methods such as DFT and DWT that makes the whole process complex.

The outstanding feature of CNN is that it does not need any data preprocessing

approach, and so raw data can be given to the system directly. CNN is a powerful

technique that supports noisy data and learns the functionality of filters automatically

without mentioning explicitly. Depending on the number of layers, this approach can

be computationally expensive and costly.

ANFIS is one of the most efficient trade-offs between NNs and fuzzy systems

that works based on hybrid learning rules and provides a solution with smoothness
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and adaptability. On the other hand, ANFIS is not a robust method and is unreliable

for noisy datasets. It is also computationally complex, expensive and very sensitive

to outliers.

ELMs are used in some recent studies because of their fast training, high

accuracy against noisy datasets, and easy implementation. However, ELMs suffer

from the over/under-fitting problems due to their structure and do not apply to all

sorts of applications.

Another common type of NNs is PNN which does not need the learning process

and is much faster and more accurate than MLP networks. Although the PNN

structure is insensitive to outliers, it is really hard to be implemented and needs a lot

of memory space. This structure cannot classify new cases as fast as MLP networks.

The last line of Table 2.8 belongs to some hybrid ML methods that perform

feature extraction via an unsupervised procedure. These methods have better

performances and are immune to noisy datasets. They usually have complicated

architectures that are not efficient in cost, memory, and time.

Considering the advantages and disadvantages of all the above-mentioned

classifiers, it can be concluded that the deep learning-based methods are superior

solutions to TL fault detection, classification, and location estimation problems.

Moreover, the efficiency of the proposed techniques in terms of cost and memory

requirement has not yet been studied [117].

In this review chapter, more than 150 papers are included among which only

a few studied the robustness of their proposed approaches. There is only one paper

[112] from 2015 that proposes an SVM-based method for detection, classification,

and location estimation of TL faults considering the robustness analysis of TLs

with respect to the parameters mentioned in Table 2.4. This technique suffers from

sensitivity to noise due to the nature of SVM.
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2.8 Summary

In this chapter, a comprehensive review of ML methods for TL fault detection,

classification, and location estimation is discussed. The used methodologies are

divided into three main categories, namely, generic ML, ANNs, and hybrid methods.

Generic ML approaches are classified into five subsections, namely, Naive Bayes

Classifier, Decision Tree, Random Forest, Support Vector Machine, and k-Nearest

Neighbour. Artificial Neural Networks are divided into four main categories based on

their various structures, namely, Feed forward Neural Network, Convolutional Neural

Network, Adaptive Neuro Fuzzy Inference System, and other small groups such as

Extreme Learning Machine and Probabilistic Neural Network, and the third category

is assigned to hybrid methods. The original idea, fundamental equations, and relevant

publications since 2015 are included and summarized for each method. Last but not

least, the advantages and disadvantages of the ML approaches is presented in details

and summarized.
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CHAPTER 3

ROBUSTNESS ANALYSIS OF NEURAL NETWORK-BASED FAULT

DIAGNOSIS TECHNIQUES FOR TRANSMISSION LINES

3.1 Introduction

Protection of high voltage transmission lines is one of the most crucial problems in the

power system industry. Accurate and timely detection, identification, and location

estimation of line-to-ground, line-to-line, line-to-line-to-ground, and line-to-line-to-

line faults can considerably improve and simplify the recovery process of transmission

lines and hence save the costs associated with the downtime of a power system.

Therefore, it is essential that a robust, affordable, and accurate fault diagnosis system

completes its operation within an acceptable time window after a fault occurs in the

presence of system uncertainties and disturbances.

The significant cost of mistakenly detected or undetected faults in the conven-

tional techniques motivated us to present a robust detection, identification, and

location estimation system by using two different neural networks, namely generalized

regression and convolutional neural networks. The robustness of these techniques are

analyzed with respect to the variations of fault resistance, phase difference between

three connected buses, fault inception angle, local bus voltage fluctuations, source

inductance fluctuations, and measurement noise. The time delay analysis is also

conducted to show that the proposed techniques can detect, identify, and estimate

the location of faults before tripping relays and circuit breakers disconnect a faulty

region.

Due to the drawbacks of TW techniques, several studies are conducted on fault

detection, identification, and location estimation using artificial intelligence methods

such as NNs, SVMs, Neuro-fuzzy networks, etc., and signal processing methods such
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as FFT, discrete wavelet transform (DWT), etc. In the study [189], authors use

DWT for extracting the features and SVM for identifying faulty sections which is

a computationally expensive approach. In [190], authors employ a decision tree

regression-based method together with FFT and DWT for fault distance estimation

which is a noise sensitive methodology.

There are several crucial situations that may cause a protection system to have

a poor performance, namely, high resistance faults, power fluctuations, heavy load

switching, measurement noises, fault inception time, fault location, phase difference

between sources, etc. They may affect the voltage and current signals after the

occurrence of faults, leading to malfunctioning of the fault detection, identification,

and location estimation system. Therefore, a reliable, accurate, and fast fault

detection and location estimation technique should be given a high precedence

[191]. Although the reviewed techniques from literature have acceptable performances

in fault identification and distance estimation under different conditions such as

fault inception time, fault resistance, load variations, etc., only a few of them has

investigated the robustness of the detection and location estimation performance to

the variations of amplitude voltages of the generators and the phase difference between

neighboring generators [12, 121, 112, 192, 140, 142, 117].

In this study, we focus on this robustness importance and the effects of each

above-mentioned parameter on the final accuracy of detection and localization method

to generate realistic results and a comprehensive examination on TL faults.

To the best of our knowledge, the GRNN method has not been applied to

the fault detection of TLs. The main goal of this study is to design a fault

detection, identification, and location estimation system based on GRNN, and assess

its performance in terms of fault identification accuracy and location estimation error

in high voltage TLs. This system utilizes the voltage and current waveforms recorded

from one end of a two-bus TL. Moreover, FFT is applied to both current and voltage
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waveforms to extract the amplitudes of their fundamental frequency components and

then feed them to the fault identification and location estimation systems. The

changes to the operating points of a TL can cause considerable effects on the accuracy

of the fault detection and location estimation GRNNs. As a result, the proposed

technique is assessed in terms of robustness to changes of operating points that

include voltage amplitude and phase difference fluctuations in generators. To this

end, not only the network is trained for different types of faults, fault locations, and

fault inception times, but also it is trained for different operating points to maintain

an acceptable robust performance in terms of identification accuracy and distance

estimation error. Moreover, time delay analysis is carried out in this study to show

that the cumulative detection, identification, and location estimation times are within

the timing standard of the IEEE report [193].

There are several crucial situations that may cause a protection system to have

a poor performance, namely, high resistance faults, power fluctuations, measurement

noises, fault inception time, fault location, phase difference between sources, etc.

They may affect the voltage and current signals after the occurrence of faults, leading

to dysfunction of the detection and location estimation system. Therefore, a reliable,

accurate, and fast fault detection and location estimation technique should be given

a high precedence [191].

The main goal of this work is to present a fault detection, identification, and

location estimation procedure based on the two NNs, namely GRNN and CNN,

and assess their performances in terms of fault identification accuracy and distance

estimation error in high voltage transmission lines. The fault diagnosis system utilizes

the voltage and current waveforms recorded from one end of a two-bus transmission

line. Moreover, FFT is applied to both current and voltage waveforms to extract

the amplitudes of their fundamental frequency components and then feed them to

the fault identification and location estimation system. FFT is chosen in this study
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because it does not need high sampling frequency which is an advantage as compared

to the methods using other TW techniques such as DWT [173].

The proposed GRNN and CNN techniques are assessed in terms of robustness

against the possible variations of different factors such as fault types, fault distances,

fault resistances, fault inception angles, source inductance, as well as system

operating points including voltage amplitude and phase difference between generators.

Moreover, time delay analysis is carried out in this study to show that the

detection, identification, and location estimation times are within the IEEE timing

standard[193]. It should be noted that the effect of noise on fault identification

and location estimation is also investigated. The performances of the two NNs are

compared.

The contribution of this work are as follows:

1. Designing GRNN and CNN for the fault detection, identification, and location
estimation problems in a transmission line based on the time series signals after
applying FFT which results in a highly robust performance;

2. Conducting robustness analysis against variations of fault resistance, fault
inception angles, source inductance, phase difference between two connected
buses, bus voltage fluctuations, and measurement noise for the two NNs;

3. Performing time delay analysis (cumulative detection, identification, and
location estimation delays) based on the IEEE timing standard[193] for the
two NNs.

The chapter is organized as follows. Section 3.2 presents a TL model and

its waveform measurements. Section 3.3 presents the two NNs used in this study,

generation of features, and fault detection/identification and location estimation

procedures. In Section 3.4, the simulation results are presented, and the performances

of both NNs are assessed in terms of cumulative detection/identification and location

estimation time delays, fault identification accuracy, fault location estimation error,

and robustness to variations of the system parameters and measurement noise.

Finally, the conclusion of our work is made in Section 3.5.
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3.2 Transmission Line Model

The system used for this study is modelled as two three-phase generators connected

by a 120 (km) TL with a voltage rating of 240 (kV ) and frequency of 60 (Hz) as

depicted in Figure 3.1. The model is simulated in MATLAB Simulink’s Simscape

Power System, and all the eleven fault scenarios are considered including no-fault,

Line to Ground (LG), Line to Line (LL), Line to Line to Ground (LLG), and Line to

Line to Line (LLL). The TL model parameters are shown in Table 3.1, and the values

of the two generators and loads are given in Table 3.2. It should be noted that the

transmission line model considered in this study is based on the IEEE 39 -Bus system

which has 10 generators and 46 lines. In this work, only two of the generators with

a three phase transmission line in between are considered.

Table 3.1: TL Nominal Parameters

Parameter Zero Sequence Positive Sequence
R (Ω/km) 0.3864 0.01273

L (mH/km) 4.1264 0.9337

C (µF/km) 7.751× 10−3 12.74× 10−3

Figs. 3.2 indicates faulty voltage and current waveforms of one-end of the TL

for an LL (phase A to phase B) fault. As observed, with the occurrence of the fault,

the voltage amplitude of phases A and B decrease while the voltage amplitude of

phase C remains unchanged. The current waveforms behave differently. Based on

Figure 3.2(b), with the occurrence of the fault, the current amplitudes of phases A

and B increase significantly, while it remains unchanged for phase C.

Table 3.2: Source and Load Nominal Parameters

Nominal Parameter Source 1 Source 2 Load
Phase to Phase Voltage (kV ) 240 240 240

Frequency (Hz) 60 60 60

Resistance (Ω) 0.08929 0.08929 —

Inductance (mH) 16.58 16.58 —

Active Power (kW ) — — 100

Inductive Reactive Power (kVAR) — — < 100

Capacitive Reactive Power (kVAR) — — < 100
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3.3 Proposed NN Techniques and Comparison

In this section, a brief introduction to the two NNs used in this study is given, and

their main characteristics are compared with each other.

3.3.1 Feedforward Neural Network (FNN)

FNNs are multilayer and fully connected NNs that consist of several layers, i.e., input

layer, one or more hidden layers, and output layer as shown in Figure 3.3. Each node

in the second layer of FNN receives the weighted sum of the nodes from the previous

layer which are then fed into a nonlinear activation function. Each node in the hidden

or output layer follows [133, 134]:

z = f(b+ x.w) = f(b+
N∑
i=1

(xiwi))

x ∈ R1×n, w ∈ Rn×1, z ∈ R1×1

(3.1)

where z is the current node output, f is the activation function (which is the Sigmoid

function in this study), xi is the input i from the previous layer which has the weight

wi, and b is the bias used to correct the range of the sum of the values.

Several studies in TL fault detection, identification, and localization make use of

FNNs to achieve better performance in terms of identification accuracy and location

estimation error. In this study, two types of structures are considered in designing

the FNNs for identification and location estimation. These structures are obtained

based on several examinations in train and test errors. A five-layer 7-30-20-20-4

configuration is used for the identification stage in which the numbers represent the

number of nodes in input layer, three hidden layers, and output layer, respectively.

The FNN configuration for the location estimation stage is 7-10-10-10-1. It should

be noted that the optimization method to update the weights in both structures is
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considered to be Bayesian regularization backpropagation. This function updates the

weight and bias values using Levenberg-Marquardt optimization. The learning rate

for both FNNs is 0.6. The architectures for the identification and location estimation

phases give the Mean Squared Error (MSE) of 0.0012 and 0.086, respectively, for the

test data.

3.3.2 Generalized Regression Neural Network (GRNN)

The GRNN belongs to the family of radial basis function (RBF) NNs. It works on

the basis of sampled data, makes use of the Parzen non-parametric estimation, and

gives output based on the maximum probability principle. GRNN training process

is more convenient as compared to the RBF NNs and has more advantages in the

approximation ability and learning speed. This network converges to the optimal

regression surface where most of the samples are accumulated. The regression nature

of GRNN is used to eliminate the adverse effect of the source inductance value because

it provides faster and better performance than a one hidden-layer feed-forward neural

networks. Therefore, it can solve the problems in many different areas such as TL

fault diagnosis [194].

A GRNN consists of four layers which are the input layer, the pattern layer,

the summation layer and the output layer as shown in Figure 3.4. Contrary to the

backpropagation based NN, the GRNN does not need an iterative learning process.

The main goal of the learning process in GRNN is to find the best smoothing

parameter which is also called the spread of the exponential functions used in the

pattern layer.

A brief explanation on this NN is given as follows. Let f(X, Y ) be the joint

density of the random variables X and Y . Given the observed values x of a vector

random variable X and the regression of a scalar random variable Y , the condition

mean of Y on a given x is calculated by
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Ŷ (x) = E[Y |x] =
∫∞
−∞ yf(x, y)dy∫∞
−∞ f(x, y)dy

(3.2)

where Ŷ (x) is the predictive output of Y . The function f(x, y) is unknown in general

and should be estimated based on a set of observations of X and Y using the non-

parametric consistent estimator suggested by Parzen [195] and is calculated as follows:

f̂(X, Y ) =
1

n(2π)
(p+1)

2 σ(p+1)

n∑
i=1

e−
(X−Xi)

T (X−Xi)

2σ2 e−
(Y −Yi)

2

2σ2 (3.3)

where n is the number of sample observations, p is the dimension of the vector variable

X, and σ is the smoothing parameter, which is actually the standard deviation of

the Gaussian function. The PDF estimate f̂(X, Y ) in (3.3) is substituted into the

conditional mean in (3.2), which results in the desired conditional mean of Y given x.

Interchanging the order of integration and summation yields the desired conditional

mean, Ŷ (x), as follows:

Ŷ (x) =

∑n
i=1 e

− (x−xi)
T (x−xi)

2σ2
∫∞
−∞ ye−

(y−yi)
2

2σ2 dy∑n
i=1 e

− (x−xi)
T (x−xi)

2σ2
∫∞
−∞ e−

(y−yi)
2

2σ2 dy
(3.4)

The two integrals in the numerator and denominator of the above equation are

calculated analytically as
√
2πyiσ and

√
2πσ, respectively.

For simplicity, the scalar function D2
i is defined as follows:

D2
i = (x− xi)

T (x− xi) (3.5)
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Based on the integral values calculated above, and the definition of D2
i given in (3.5),

Equation (3.4) becomes:

Ŷ (x) =

∑n
i=1 yie

− D2
i

2σ2∑n
i=1 e

−
D2
i

2σ2

(3.6)

The estimate Ŷ (x) in (3.6) can be interpreted as a weighted average of all of the

observations yi (i = 1, ..., n), where each observed value yi is weighted exponentially

based on the Euclidean distance from xi to x. The smoothing parameter σ plays an

important role in the estimation process so that when it is made larger, the estimated

PDF f̂(X, Y ) becomes smoother. In the limit, f̂(X, Y ) becomes a multivariate

Gaussian with covariance σ2 I, where I is an identity matrix, so that Ŷ (x) is estimated

to be the sample mean of the observed values yi(i = 1, ..., n). On the other hand,

when σ takes smaller values, f̂(X, Y ) becomes closer to a non-Gaussian PDF, so that

Ŷ (x) is estimated to be the value of yi corresponding to the observation xi closest to x.

When σ takes an intermediate value (between the two extremes), Ŷ (x) is estimated to

be a weighted average of all values of yi, while heavier weights are given to those values

of yi with xi closer to x. It should be noted that after examining several values of σ

based on the MSE measure, the optimal values for detection and location estimation

were chosen to be 0.2 and 0.8, respectively. It should also be noted that the MSEs

for the identification and location estimation are 0.00038 and 0.019, respectively.

3.3.3 Convolutional Neural Network (CNN)

CNN as a subset of deep learning methods is mainly used for analyzing imagery

datasets and image classification problems. The advantage of CNNs is that they

can handle high dimensional datasets with higher speed, and are more efficient with

minimum requirement for data preprocessing [145].
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A CNN architecture consists of different layers including input layer to obtain

data from the datasets; convolutional layers to create a feature map for feature class

probability prediction (this step is done by applying a filter that slides over the

whole data block); pooling layers for downsampling the data; fully connected layers

to flatten the outputs from prior layers to generate a single vector; fully connected

layers which involve weights, biases, and neurons to perform label predictions precisely

by using feature analysis; Softmax/Logistic layer which resides at the end of fully

connected layers (Logistic is used for binary classification and Softmax is for multi-

classification); and the connected output layer to produce the final probabilities for

class determination. The architecture of a CNN is a vital factor to determine its

performance and efficiency. The way that the layers are organized, the number of

layers, the utilized elements in every layer, and their design affect the speed and

accuracy of CNNs.

Studies on TL fault detection, identification, and location estimation problems

that use CNNs are classified into two main categories. The first category includes

those with a focus on the image-based datasets taken from TLs above the ground

[151, 152, 153]. The second category includes those that consider the generated

time-series voltage and current signal waveforms as blocks from generators to be fed

to the CNN.

In this study, a CNN architecture is designed based on LeNet5 [196] and the

existing time series dataset is considered as images generated from numerous blocks.

This is done because of the important features of TL datasets and the ability of

generating precise outcomes. The utilized CNN consists of two convolution layers

including 64 and 128 neurons and kernel sizes of 3 × 7 and 5 × 7, respectively, and

uses “relu” activation function followed by a max pooling layer. Then a dropout layer

with 0.25 value is added and its output is flattened by a flat layer. Moving towards

the output layer, two dense layers with 512 and 256 neurons, respectively, and another

71



dropout with the value of 0.1 exist. The output layer is a dense layer with 16 neurons.

This architecture generates 100% accuracy for TL fault identification and the average

of MSE for all types of faults is 0.006. Figure 3.5 shows the general architecture for

CNNs.

In this study, two different NNs are implemented and their robust performance

in terms of fault detection, identification, and location estimation are analyzed.

The first architecture is GRNN which is based on non-parametric regression and

single-pass learning. GRNNs can generate higher accuracy in location estimation and

identification problems than a single-layer feedforward NN because of their Gaussian

functions. The main drawbacks of GRNNs are being computationally expensive and

having no optimal method to improve their efficiency. In this study, it is shown that

CNN can outperform GRNN in both identification and location estimation problems

because of its power in feature extraction and resilience to noise. Among these two

NNs, CNN is the only one which is sensitive to spatial features which makes it the

best solution to TL fault diagnosis problem in this study.

Table 3.3: Parameter Values for The Generation of Training Data set

Parameter FNN, GRNN, CNN
Fault Distance (km) 0.01, 30, 60,90, 110

Fault Inception angle (◦) 1, 20,50, 100, 150
Fault Resistance Rf (Ω) 0.1, 1, 5, 10, 20, 50, 100, 150, 200, 300, 500

Source Inductance Ls (mH) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Phase Difference ∆ϕ (◦) −30, 0, 30
Voltage Fluctuations
∆Vi (kV ), i = 1, 2

−40, 0, 40

3.3.4 Generation of Features

The data used for this study include the amplitudes of the main harmonics of the

voltage and current waveforms calculated using FFT, which can compute frequency

components with reduced computational complexity as compared to traditional

Fourier transform. To this end, 1.5 cycles of the post-fault voltage and current signals

are selected, their main harmonics are calculated, and the normalized amplitudes of

the main harmonics are fed to the detection/identification and location estimation
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modules. In order to generate training data, several variations in the fault model

were considered that included fault type, location, inception time, and resistance.

In addition, different values for voltage amplitudes of the two generators as well as

their phase difference were used to generate the training data. Table 3.3 shows the

parameters that were changed for the generation of training dataset. In this table

Vi (i = 1, 2) represents the voltage amplitude of generator #i and ∆ϕ is the phase

difference between the two generators.

Distinguishing between LL and LLG faults cannot be accurately done by a

fault diagnosis system only based on phase voltage and current signal measurements.

Therefore, the zero-sequence current is calculated to provide a better indication of

a ground fault since there is a considerable amount of zero-sequence current for an

LLG fault. Such current is calculated from the mean of the phase currents.

Figs. 3.6 and 3.7 show the zero-sequence current without and with ground

fault happening at 0.5 (s), respectively. As observed in Figure 3.6, when the

ground is not involved in a fault, the zero-sequence current is almost zero. As

shown in Figure 3.7, when the ground is involved, the oscillation amplitude increases

significantly. Consequently, this significant difference is used in the NN training

process for detection of ground involvement in faults.

3.3.5 Fault Detection, Identification and Location Estimation

The first step in fault detection/identification and location estimation is to acquire

data from one end of the TL. As seen in Figure 3.1, the measurement device is placed

at bus #2. The current and voltage signals of the three-phase TL are recorded via a

30-sample time window with the sampling frequency of 1.2 (kHz). For each window

at every step, the FFT is applied to all three phases to calculate the amplitudes of

the fundamental frequency components of current and voltage signals. In addition,

the zero-sequence component is calculated for ground fault detection. The normalized
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extracted features are fed to the fault detection/identification and location estimation

systems which are based on GRNN and CNN. The flowchart of the detection and

location estimation procedure is shown in Figure 3.8. The solid lines represent the

causal relationship among the modules which means that a module starts running

after another module finishes. The dash lines indicate the data dependency which

means that the extracted features are continuously and concurrently fed to the

detection, identification and location estimation modules. However, the output of

the location estimation module is ignored and masked before the faults are identified.

The fault detection/identification module generates four outputs. The first three

outputs correspond to A, B, and C phases. The last output is associated with ground

fault. In a non-faulty scenario, the values of all these outputs are zero. However, in

a faulty situation, their values change. The time when at least one of these outputs

(flags) switches to 1 is called “detection time”. At this point, the type of a fault

has not been determined yet. In other words, other outputs may switch to 1 after

waiting for more samples. Based on extensive number of simulations for different fault

scenarios for the GRNN (as an example), it is found out that the longest identification

is achieved within 30 samples or 0.025 (s) from the fault occurrence time. Thus, we let

the system wait for 30 samples so that the type of a fault can be identified accurately.

This 0.025 (s) (30 samples) wait time is called “identification delay”.

At the same time, all of the NNs in the fault location estimation module try

to estimate the fault location, but the results are ignored and masked before the

identification of a fault as demonstrated in Figure 3.9, because it is not clear yet as

which location estimation NN to switch to and use the results from. When the type of

a fault is identified, the corresponding location estimation NN is selected to estimate

the fault location. As indicated in Figure 3.9, there is one location estimation NN

specifically designed for each of the 4 category of fault cases (LG, LL, LLG, and

LLL). It should be mentioned that each location estimation NN waits for 90 samples

74



or 0.075 (s) after the fault occurrence time to reach a steady state value. This

0.075 (s) (90 samples) wait time is called “location estimation delay”. After a fault

is identified, the associated location estimation NN is selected, for which the average

value of the most recent 30 samples Di(i = 1, 2, ..., 30) is calculated for the estimate

of the fault location.

3.4 Simulation Results

In this section, the simulation results for the performance analysis of fault detection,

identification, and location estimation system in terms of time delays and robustness

are presented. The following results are based on the model demonstrated in

Figure 3.1 with the parameters specified in Tables 3.1 and 3.2. It should be noted

that all the simulations were run on Matlab/Simulink using the real-time simulator

OPAL-RT (OP5700). OP5700 contains a powerful computer which has a linux-based

real-time operating system and its CPU specifications are Intel Xeon E5, 8 Cores,

3.2 (GHz), and 20 (MB) Cache. The TL model shown in Figure 3.1 is simulated

in the Simulink environment which is connected to RT-Lab software in OP5700.

Then, the generated real-time faulty data are fed to the NN which is simulated in

Matlab environment connected to RT-Lab. The fault detection, identification, and

estimation results are transmitted to a regular PC using a LAN cable and shown in

Matlab environment in Windows operating system as demonstrated in Figure 3.10.

3.4.1 Time Delay Analysis

The faults should be detected and estimated before the tripping relays and circuit

breakers start to disconnect a faulty section of the TL. According to [193], this

time interval is between 0.3 to 0.5 (s) from occurrence of a fault. Therefore, the

location estimation step which is the last stage of the fault diagnosis process should

be completed within this time interval. As explained in the previous section, the
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longest identification and location estimation delays are calculated based on Monte

Carlo simulations for different sets of fault parameters.

Figure 3.11 demonstrates the times/delays of detection, identification and

location estimation stages for CNN, and for the BCG fault. It also indicates the

time evolution of the detection/identification and location estimation processes after

the occurrence of a fault. The corresponding delays for the CNN are 0.0008 (s),

0.020 (s), and 0.068 (s), and for the GRNN are 0.0017 (s), 0.025 (s), and 0.075 (s),

respectively. These results confirm that both of the NN-based fault diagnosis systems

studied in this work are able to estimate the location of faults well before the circuit

breakers disconnect the faulty region. Moreover, it is observed that the CNN-based

fault diagnosis system can detect, identify, and localize the faults faster than GRNN.

3.4.2 Robustness Analysis

The main parameters (uncertainties) that may change and hence impact the

performance of a TL fault detection, identification, and location estimation are fault

resistance (Rf ), phase difference between two sources (∆ϕ), voltage fluctuations of

the two sources (∆Vi), source inductance (Ls), and fault inception angle. The fault

identifier and location estimator NNs are trained to be robust against these parameter

variations. For analyzing the detection/identification performance, the “accuracy”

criterion is defined as the total number of correctly identified faulty or non-faulty

scenarios divided by the total number of simulation experiments.

The fault identification and location estimation schemes should perform accurately

for different fault resistances. Table 3.4 indicates the average accuracy of fault

identification stage with respect to the variations of the fault resistance and for

different fault types. The variations are considered to range from 0.5 (Ω) to 470 (Ω)

[112]. It can be seen that CNN with average accuracy of 99.78% outperforms GRNN

(average accuracy of 99.24%) in terms of the identification accuracy with various fault

resistance values.
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Table 3.4: Average Accuracy of Fault Identification With Respect to Fault Resistance
(Rf ) Variations for Two NNs

Fault Rf ((Ω)) GRNN % CNN %
LL 99.12 99.65
LG 0.5, 22, 43, 95, 120, 470 99.25 99.66
LLG 99.11 99.84
LLL 99.51 100

Table 3.5: Average Accuracy of Fault Identification With Respect to Phase Difference
(∆ϕ) Between Two Buses For Two NNs

Fault ∆ϕ (%) GRNN (%) CNN (%)
LL 99.87 99.96
LG -50 to +50 99.76 99.79
LLG 99.96 99.81
LLL 99.94 99.82

Phase difference between the two generators varies from time to time due to

the various operating conditions. In Table 3.5, the average accuracies of the three

techniques are compared with respect to the variations of phase difference (∆ϕ)

between two generators from −50% to +50%. It is observed that with the increase of

the phase difference between the two generators in both directions, the performance

of the three networks deteriorates. However, the CNN (average accuracy = 99.84%)

shows to have better accuracy as compared to GRNN (average accuracy = 99.88%).

The fault diagnosis scheme should identify and localize the fault occurring at

any fault inception time or angles. This parameter is varied from 27◦ to 180◦ [121].

Table 3.6 demonstrates the average accuracies of the three NNs with respect to the

variations of the fault inception angle. The average accuracies for CNN and GRNN

are 99.98% and 99.85%, respectively.

The voltages of generators can change due to the different operating conditions

of the generators. Based on the IEEE standard 1250 [197], the voltage fluctuations of a

bus cannot exceed 10% of its nominal voltage level. In this study, the voltage changes

Table 3.6: Average Accuracy of Fault Identification With Respect to the Variations
of Fault Inception Angle

Fault Inception angle (◦) GRNN (%) CNN (%)
LL 99.95 100
LG 27 to 180 99.85 99.97
LLG 99.83 99.99
LLL 99.80 99.96
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Table 3.7: Average Accuracy of Fault Identification With Respect to Bus Voltage
Variations (∆Vi, i = 1, 2) For Two NNs

Fault
[∆V1,∆V2]

(kV )
GRNN(%) CNN(%)

LL 99.51 99.91
LG -55 to 55 99.69 100
LLG 99.52 99.93
LLL 99.63 100

increase beyond this limit in order to show the robustness of the fault diagnosis system

with respect to this variation as shown in Table 3.7. The average accuracies for GRNN

and CNN are 99.58% and 99.96%, respectively.

Table 3.8: Average Accuracy of Fault Identification With Respect to Source
Inductance (Ls) for Two NNs

Fault Ls(mH) GRNN CNN
LG 99.63 99.97
LL 7, 17, 27, 37, 47 99.79 99.99
LLG 98.86 100
LLL 99.52 99.94

As mentioned in the introduction, the source inductance plays an important

role in the shape of faulty waveforms which negatively affects the estimated location

of faults in TW approaches. The fault diagnosis system should be able to detect

and identify the faults with the variations of source inductances. Table 3.8 shows

the average accuracies of the two NN techniques for source inductances from 7 (mH)

to 47 (mH). The average accuracy for GRNN and CNN techniques is 99.70% and

99.95%, respectively.

Similar to the accuracy analysis, the location estimation error analysis is

performed with respect to the parameter variations of the transmission line. For

this purpose, the absolute “Relative Error” is defined as follows:

RE =
|Fault Distance− Estimated Fault Distance|

Total TL Length
× 100 (3.7)
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Table 3.9 shows the average relative error of fault localization with respect to

the variations in fault resistance for fault different types and locations. The average

of relative errors for GRNN and CNN is 0.25% and 0.052%, respectively, which shows

the superior performance of CNN over GRNN.

The average relative error analysis with respect to the changes in the phase

difference between the two generators is shown in Table 3.10 for different types of

faults and for different fault locations. The average of relative error for GRNN and

CNN are 0.27% and 0.017%, respectively. Their performance in location estimation

with respect to the inception angle variations is shown in Table 3.11. Their average of

relative errors are 0.07% and 0.02%, respectively. Their average relative errors with

respect to bus voltage variations are demonstrated in Table 3.12. Their average of

relative errors is 0.26% and 0.03%, respectively.

The performance of both NN techniques with respect to source inductance

variations is shown in Table 3.13. It can be seen that the average of relative errors

for GRNN and CNN techniques is 0.15% and 0.02%, respectively.

3.4.3 Effect of Noise

In real scenarios, the measurement noise in power systems may affect the accuracy

of the fault diagnosis system. In order to assess the robustness of the fault

detection/identification and location estimation system against the noise, a Gaussian

noise is added to the measurement data (voltages and currents) so that the signal

to noise ratio is 15 (dB). The results of the identification accuracy and location

estimation errors for the two NNs subject to the above noise are shown in Table 3.14.

Based on Table 3.14, it is clearly seen that adding the Gaussian noise weakens the

performance of all the three NNs. However, the CNN still has a better performance

than GRNN.
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Figure 3.1: A two-bus power system.

Table 3.9: Average Relative Error of Fault Location Estimation with Respect to Fault
Resistance (Rf ) Variations for Two NNs

Fault Rf (Ω) GRNN (%) CNN (%)
LG 0.23 0.06
LL 0.5, 22, 43, 95, 120, 470 0.17 0.05
LLG 0.36 0.06
LLL 0.25 0.04

Table 3.10: Average Relative Error of Fault Location with Respect to Phase Difference
(∆ϕ) Between Two Buses for Two NNs

Fault ∆ϕ (%) GRNN CNN
LG 0.22 0.02
LL -25 to +25 0.17 0.01
LLG 0.30 0.02
LLL 0.42 0.02

Table 3.11: Average Relative Error of Fault Location Estimation with Respect to the
Fault Inception Angle for Two NNs

Fault Inception angle (◦) GRNN CNN
LL 0.08 0.01
LG 27 to 180 0.05 0.01
LLG 0.09 0.03
LLL 0.06 0.03

Table 3.12: Average Relative Error of Fault Location Estimation with Respect to Bus
Voltage Variations (∆Vi) for Two NNs

Fault V1 − V2(kV ) GRNN CNN
LG 0.41 0.04
LL -55 to 55 0.08 0.04
LLG 0.36 0.03
LLL 0.19 0.04

Table 3.13: Average Relative Error of Fault Location Estimation with Respect to
Source Inductance (Ls) for Two NNs.

Fault Ls(mH) GRNN CNN
LG 0.07 0.03
LL 7, 17, 27, 37, 47 0.18 0.02
LLG 0.11 0.01
LLL 0.25 0.02

Table 3.14: Performance of Two NNs Subject to the Gaussian Noise.

NN
Identification accuracy(%) Location estimation relative error(%)
Without noise With Noise Without noise With Noise

GRNN 99.69 99.08 0.50 0.23
CNN 99.87 99.26 0.04 0.06
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Figure 3.2: The measured (a) voltages (b) currents of one end of the TL for an LL
(phase A to phase B) fault at t = 0.5 (sec).

Input Layer Hidden Layers Output Layer

Figure 3.3: Structure of an FNN.

Table 3.15: Comparison Between the Proposed Classifiers in this study and the Other
Schemes in the Literature (I Current and V Voltage)

Reference
Used

Techniques
Input
Signal

Performance
With Noise

Robustness
Analysis

Average
Accuracy

Average
Relative Error

[111] WPT+SVM I Not Mentioned Not Mentioned 99.2% 0.21%
[198] WT+ELM I Not Mentioned Not Mentioned 96.5% 0.5%
[182] ST+PNN V Immune Not Mentioned 99.6% 4.46%
[110] RTU+ANFIS V+I Not Mentioned Not Mentioned 100% 0.81%
[154] WT+SAT-CNN V+I Immune Not Mentioned 99.5% Not Mentioned
[12] WT+ANN V+I Not Mentioned Incomplete 100% 0.27%
[142] WT+ANN V+I Immune Incomplete 100% 0.68%

Proposed
Methods I

GRNN V+I Immune Complete 99.5% 0.20%

Proposed
Methods II

CNN V+I Immune Complete 99.9% 0.03%

Table 3.15 shows the comparison results among the existing methods and

the proposed techniques. Among all the mentioned approaches only [142] presents

immunity to noise and robustness analysis with respect to the parameter changes in

Table 3.1. However, it does not consider the voltage fluctuations. Therefore, both of

our proposed methods, considering all parameters mentioned in Table 3.1, generate

the best results for the classification and location estimation of the TL faults.
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Figure 3.4: The structure of a GRNN.

Input Layer
Convolutional Layer Pooling Layer Fully Connected Layer

Predicted 
Class

CNN

Figure 3.5: General architecture of a CNN.

3.5 Summary

In this chapter, the problem of fault detection, identification, and location estimation

of transmission lines using two NNs, namely, GRNN and CNN is presented. The

data used in this study are the phase current and voltage measured from one

end of the transmission line. An FFT is used to extract the amplitude of the

fundamental frequency components from the current and voltage waveforms, and feed

them to both of the NNs for the detection, identification, and location estimation

of faults. The main focus of this chapter is that the robustness of the proposed

detection, identification, and location estimation techniques against the parameter

changes in a transmission line, namely fault resistance, fault inception angle, source

inductance, phase difference between the two buses, bus voltage amplitude variation,
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Figure 3.6: I0 waveform when ground is not involved in an LL fault.
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Figure 3.7: I0 waveform when ground is involved in an LL fault.
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Figure 3.8: Flowchart of the detection, identification, and location estimation
procedure.
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Figure 3.9: The fault location estimation module including multiple location
estimation NNs.
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Figure 3.10: Real-time simulation using OP5700.

and measurement noise are analyzed. Besides, a time delay analysis is performed to

guarantee that these modules can successfully complete their tasks within the desired

time window based on the IEEE standard before the tripping relays disconnect the

transmission line. In overall, CNN has better performance in both identification and

localization of the faults in comparison with GRNN. It should also be noted that

both GRNN and CNN have better robust performance compared to other techniques

in the literature.

85



0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

P
ha

se
 A

0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

P
ha

se
 B

0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

P
ha

se
 C

0.1 0.15 0.2 0.25 0.3 0.35

Time (s)

0

0.5

1

1.5

G
ro

un
d

0.1 0.15 0.2 0.25 0.3 0.35

Time (sec)

100

200

300

D
is

ta
nc

e 
(k

m
)

Estimated Distance
Real Distance

Det. time = 0.1708 sFault time = 0.17 s Iden. time = 0.19 s Est. time = 0.238 s
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respectively.
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CHAPTER 4

GENERALIZED FAULT DIAGNOSIS METHOD OF TRANSMISSION

LINES USING TRANSFER LEARNING TECHNIQUE

4.1 Introduction

Recent artificial intelligence-based methods have shown great promise in the use of

neural networks for real-time detection of transmission line faults and estimation of

their locations. The expansion of power systems including transmission lines with

various lengths have made the fault detection, classification, and location estimation

process more challenging. Transmission line datasets are stream data which are

continuously collected by various sensors and hence, require generalized and fast fault

diagnosis approaches. Newly collected datasets including voltages and currents for

faulty and non-faulty situations might not have adequate and accurate labels that

are useful to train neural networks.

In this chapter, a novel transfer learning framework based on a pre-trained

LeNet-5 convolutional neural network is proposed. This method is able to diagnose

faults for different transmission line lengths and impedances by transferring the

knowledge from a source convolutional neural network to predict a dissimilar

target dataset. By transferring this knowledge, faults from various transmission

lines, even without sufficient data samples with labels, can be diagnosed faster

and more efficiently than the existing methods. To prove the feasibility and

effectiveness of this methodology, seven different datasets that include various lengths

of transmission lines are used. The robustness of the proposed methodology against

the generator voltage fluctuations, variations in fault locations, fault inception angle,

fault resistance, and phase difference between the two generators are well studied to

prove the reliability of this technique for fault diagnosis of transmission lines..
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A powerful technique to handle the predictive modeling for different but

somehow related problems is transfer learning in which partial or complete knowledge

of one model, e.g., a convolutional neural network (CNN) [199], is transferred and

reused to increase the speed of the training process and improve the performance of

another model (e.g., CNN) [200]. The transfer learning technique is generally used

to save resources such as time, data, and computing power which are used to train

multiple machine learning models from scratch to complete new tasks related to the

existing ones. This technique also resolves a lack of labelled training data by using

pre-trained models. In this study, a transfer learning-based CNN is used for the

first time to detect, identify, and locate the faults for various lengths of TLs. It is

demonstrated in this work that our methodology is reusable, fast, and accurate.

There are several studies in the literature that use CNNs for fault diagnosis

of TLs. In [154], a self-attention CNN framework and a time series image-based

feature extraction model are presented for fault detection and classification of TLs

with length of 100 (km) using a discrete wavelet transform (DWT) for denoising the

faulty voltage and current signals. In the study [155], authors present a customized

CNN for fault detection and classification of 50 (km) TLs integrated with distributed

generators. The work done in [156] proposes a machine learning-based CNN for TLs

with length of 280 (km) to perform fault detection and classification using DWT for

feature extraction.

Shiddieqy et al. [201] present another methodology that considers all features

of the TL faults to generate various models for robust fault detection. They take

advantage of various AI methods including CNN to achieve a 100% detection accuracy.

The length of the TLs in this study is 300 (km). The study in [158] presents

a scheme to detect and categorize faults in power TLs with length of 200 (km)

using convolutional sparse auto-encoders. This approach has the capability to learn

extracted features from the dataset of voltage and current signals, automatically, for
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fault detection and classification. To generate feature vectors, convolutional feature

mapping and mean pooling methods are applied to multi-channel signal segments.

There are also several studies that apply transfer learning methods to time series

datasets in different applications [202, 203, 204, 205, 206, 207]. Fawaz et al. [208] show

how to transfer deep CNN knowledge for time series dataset classification. In [209],

an intelligent method is proposed as a deep convolutional transfer learning network

which diagnoses the dynamic system faults using an unlabeled dataset. Shao et al.

[210] propose an intelligent fault diagnosis method for a rotor-bearing system which

is based on a modified CNN with transfer learning. Li et al. [211] also presented a

deep adversarial transfer learning network to diagnose new and unlabeled emerging

faults in rotary machines.
In this chapter, we take advantage of transfer learning method to propose a

generalized solution for TL fault diagnosis. The contributions of this work are as
follows:

1. Proposing a generalized approach to detect, identify, and locate faults in TLs
with various lengths using transfer learning technique for the first time.

2. Comparing the proposed methodology with three benchmarks and showing its
effectiveness in prediction performance.

3. Performing robustness analysis against variations of fault resistance, fault

inception angle, source inductance, phase difference between two connected

buses, bus voltage fluctuations, and measurement noise during the process of

generalization.

The rest of the study is organized as follows. Section 5.2 presents preliminary

concepts used in this study including time series classification, CNNs, and transfer

learning technique. In Section 4.3, the TL model used in this study as well as

the feature generation approach are discussed. Section 4.4 describes the dataset

generation procedure and the proposed transfer learning-based method. Section 5.4

discusses the results and compares our proposed method with three benchmarks

including K-means clustering, CNN without transfer learning, CNN with transfer
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learning technique but without fine tuning process. Finally, conclusions are made in

Section 5.5.

4.2 Preliminaries

In this section, an overview of time series data classification, CNNs, and transfer

learning procedure is provided.

4.2.1 Time Series Classification
In general, time series data can be defined in two different ways as described below
[208].

• Definition 1. A time series data is an ordered (time dependant) set of real values
such as X = [x1, x2, ..., xn] where n is the number of real values and the length
of X [208].

• Definition 2. A time series dataset D is defined as D = {(x1, y1), ..., (xn, yn)}
with length of n which consists of a collection of pairs (xi, yi) where xi is a time

series data point with its corresponding label (class) as yi [208].

Time series classification is defined as classifying the dataset D by considering

every input xi to train a classifier which maps the given inputs to the given labels

based on every class variable yi [208]. It is clear that sometimes D consists of a set

of pairs in which the inputs and labels are vectors. In this study, the system utilizes

voltage and current waveforms recorded from one end of a two-bus TL as inputs,

and considers 10 types of faults as well as the non-faulty case as the labels (classes).

FFT is applied to both current and voltage waveforms to generate the amplitude

of the main frequency component of the signals. These amplitude data are used as

the inputs to the CNN. Therefore, the dataset used to train the CNN includes seven

different features from which the first three features are associated with voltages, the

second three features are associated with currents, and the last one is related to the

zero sequence signal which is the average of the phase currents. The reason for having

the last feature will be discussed later in Section 4.3.
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4.2.2 Convolutional Neural Network

Having the capability of learning hierarchical features independently from inputs,

CNNs are widely used for image datasets. CNNs have a minimum need for

pre-processed data and can handle high dimensional datasets faster and with more

details in comparison with most of artificial CNNs [212, 145]. In general, CNNs

include three types of layer: convolution layer, pooling layer, and fully connected

layer. Convolutional and pooling layers incorporate convolution blocks which are

stacked for feature extraction purpose. Fully connected layers are used as classifiers

and the output layer, which is a fully connected one, performs the classification or

regression task.

The main advantages of CNN architecture are local receptive fields, shared

weights, and the pooling operation. CNNs take advantage of the concept of a local

receptive field which means that only a small focused area of the input data is

connected to each node in a convolution layer. Because of this trait, the number

of parameters is reduced considerably in CNN which in turn decreases the training

computational expenses of the NN [213].

Kernel convolution is used in many Computer Vision algorithms. In this process

we take a small matrix of numbers (called kernel or filter), we pass it over our

image and transform it based on the values from filters. The feature map values

are computed based on Equation 4.1, where the input image is denoted by f and our

kernel by h. The indexes of rows and columns of the result matrix are marked with

m and n respectively.

G[m,n] = (f × h)[m,n] =
∑
j

∑
k

h[j, k]f [m− j, n = k] (4.1)
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Numerous studies are performed in TL fault detection, classification, and localization

problems using CNNs to achieve higher accuracies. These studies are divided into

two different categories: The methodologies with a focus on image-based datasets

recorded from outdoor TLs [151, 152, 153], and the ones that consider time-series

voltage and current waveforms recorded from generators and are fed to CNNs as

blocks of data points. The methodology proposed in this study belongs to the second

category.

4.2.3 Transfer Learning

Transfer learning is proposed to solve the learning problems between two or multiple

domains. The combination of deep learning and transfer learning shows notable

improvements in the accuracy and time of fault diagnosis approaches. Transfer

learning consists of two steps: First, the process of training a source neural network on

a source dataset and task, and second, transferring the learned features and knowledge

to a new network to help the training process of the new related (target) dataset.

Two main concepts are used in transfer learning, namely, domain and task which are

defined below.

• Definition 3 (Domain [214, 215]). A domain D = {X ,P(X)} consists of two
elements, namely, a feature space X and a marginal probability distribution
P(X) where X = {xi}ni=1 ∈ X is a dataset in which every xi ∈ RD is sampled
from this domain.

• Definition 4 (Task [214, 215]). A task T = {Y ,P(Y |X)} consists of two elements

given a domain

D = {X ,P(X)}, where Y stands for the label space and P(Y |X) is the

conditional probability distribution in which Y = {yi}ni=1 shows the label vector

of X with yi ∈ Y as the label of xi.

There are two domains in transfer learning, namely, a source domain Ds =

{Xs,Ps(Xs)} and a target domain Dt = {Xt,Pt(Xt)} where Xs and Xt show the

feature spaces of the source and target domains, respectively, and Ps(Xs) and Pt(Xt)
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stand for the marginal probability distribution of them. Based on definitions 3 and

4, the definition of transfer learning is presented below.

• Definition 5 (Transfer Learning [215]). Considering the source domain Ds,

learning task Ts, target domain Ts, and learning task Tt, the goal of transfer

learning is to promote the performance of target predictive function ft(.) in Dt

by inducing the knowledge to Ds and Ts while Ds ̸= Dt or Ts ̸= Tt.

In the case of Ts = Tt, a common subproblem of transfer learning takes place which is

called domain adaptation. In this study, the relationship between the source and

target data is the domain adaptation because the seven aforementioned features

(currents, voltages, and zero sequence current) repeat in both the source and target

TLs which only differ in length [216].

Transfer learning provides the ability to distribute learned features across

different learning applications. The focus of transfer learning is on the deep learning

training step to enhance its capability in common feature extraction and adoption

among multiple datasets of a similar problem. Transfer learning is based on using the

pretrained layers on a source task to solve a target task. For this purpose, a pretrained

model in which its fully connected layers are cut off is used and its convolutional and

pooling layers become frozen (their weights are not updated) to perform the role of

feature extractors. To adjust the given pretrained network with the target dataset

and efficient target classification, the fully connected layers (classifier section) need to

update their weights. There are two different approaches in transfer learning including

feature extraction and fine tuning. In the first approach, the fully connected layers

are completely removed and based on the target dataset, the new fully connected

layers are integrated with the frozen pretrained layers. In the fine tuning process,

the structure of fully connected layers from the pretrained model is saved and only

their weights are updated. Figure 5.2 shows the basic concept of transfer learning

representing two different datasets which have similarities. These datasets are fed
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Figure 4.1: A typical model of transfer learning.

into source and target models. The knowledge is transferred to the target model to

perform the training of target task faster. In this study, the fine tuning approach is

used to achieve satisfactory results. Transfer learning method is used in this study

for TL fault diagnosis problems to detect the rare occurrence of failures which are

difficult or impossible to be labeled. It should be noted that a transfer learning-based

CNN has not been used before for TL fault diagnosis problems.

4.3 Transmission Line Model and Feature Generation

In this study, a power system with two generators which are connected through a

100 (km) three-phase TL is used. Based on some recent studies [168, 141, 143,

154], a common length is chosen which lies in the medium range of transmission

line lengths and its multiplications can reside in short or long TLs. The voltage of

both generators is 240 (kV ) and their frequency is 60 (Hz) as shown in Figure 4.2.

This model is simulated in MATLAB Simulink’s Simscape Power System, and all the

ten short-circuit faults i.e., single Line-to-Ground (LG), Line-to-Line (LL), double
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Line-to-Ground (LLG), and all-Lines-connected (-to-Ground) (LLL/LLLG) as well

as no-fault state are taken into account.

L  (TL Length)

Load Load

Bus1 Bus2
Fault

Measurement Device

G1 G2

Phase A
Phase B

Phase C

Figure 4.2: A three-phase and two-generator power system.

The parameters of the TL model and the features of generators are shown in

Table 4.1 and Table 4.2, respectively. The model studied in this work is based on

IEEE 39 -Bus System which includes 10 generators and 46 lines.

Table 4.1: TL Nominal Parameters

Parameter Zero Sequence Positive Sequence
R (Ω/(km)) 0.3864 0.01273

L (mH/(km)) 4.1264 0.9337
C (µF/(km)) 7.751× 10−3 12.74× 10−3

Table 4.2: Source and Load Nominal Parameters

Nominal Parameter Source 1 & 2 Load
Phase to Phase Voltage (kV ) 240 240

Frequency (Hz) 60 60
Resistance (Ω) 0.08929 —

Inductance (mH) 16.58 —
Active Power (kW ) — 100

Inductive Reactive Power (kVAR) — < 100
Capacitive Reactive Power (kVAR) — < 100

The general datasets used in this study consist of the amplitudes of the

fundamental frequency component of the voltage and current waveforms calculated

by FFT which computes the frequency components faster and more efficiently than

the conventional Fourier transform. For this purpose, 1.5 cycles of the most recent

time-series data of voltage and current waveforms are selected. The 1.5 cycle

window is shown to be effective since the overall time delay for the fault detection,
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identification, and location estimation procedures is within 0.3 to 0.5 (sec) as required

by the IEEE standard [193]. Then, their fundamental frequency components are

computed, normalized and fed into the fault diagnosis module.

To assess the robustness of the proposed methodology, some variations in the

TL model are considered such as fault type, location, inception angle, resistance,

voltage amplitudes of the generators, source inductance, and the phase difference

between them. Such variations help the system to generate datasets that are large

enough to generate reliable results. In general, the dataset used in this work includes

7 features that are 3 phase voltages, 3 phase currents, and a zero-sequence current

which is a detector for ground faults. In other words, a fault diagnosis model cannot

distinguish between LL and LLG faults only by considering phase voltage and current

signal values. In such cases, a zero-sequence current, which is the average value of

the phase currents, is considered to detect ground faults.

Table 4.3: Parameter Values for the Generation of Training Dataset

Parameter Variations

Fault Distance (km) 1.2, 10, 24, 40, 60, 95
Fault Inception angle (◦) 1, 20, 50, 100, 150
Fault Resistance Rf (Ω) 0.1, 1, 10, 20, 30, 40, 50, 60
Phase Difference∆ϕ (◦) -30, 0, 30
Voltage Fluctuations
∆ Vi (kV ) = V1 − V2

-40, 0, 40

Table 4.3 shows the parameters with their variations to generate robust results.

It should be noted that because the length of a TL is the critical parameter in this

study, the variation of fault location is defined as a dependent parameter to the TL

length (L = 100km), and for different lengths, the initial fault distances for the

reference dataset would be different, as well.

Table 4.4: The Average Accuracy Results of K-means Clustering for 11 Types of
Faults Based on Statistical Testing

Length (km) 12.5 25 50 100
Accuracy (%) 82.42 ± 0.10 82.47 ± 0.08 83.47 ± 0.13 85.09 ± 0.15
Length (km) 200 400 800 Average
Accuracy (%) 87.12 ± 0.12 87.67 ± 0.04 83.87 ± 0.17 84.58 ± 0.12
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4.4 Proposed Fault Diagnosis Approach

In this section, the proposed method based on transferred CNN is described.

Acquiring data from one end of a TL is the initial step in fault detection/ classification

and location estimation. As shown in Figure 4.2, the sensing/measurement device is

placed at the second bus to record the current and voltage of the three-phase TLs.

This process is performed via a 30-sample time window with the sampling frequency

of 1.2 (kHz), and FFT is applied to each window at every step to extract the features.

Estimation
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Figure 4.3: The structure of LeNet-5.

After normalizing the extracted features, the data points are fed to the fault

diagnosis and location estimation networks. In the fault diagnosis process, 4 outputs

are generated for each data point which are associated with phases A, B, C, and the

ground G. When there is no fault, the value of all these 4 outputs are zero and by

switching each output to one, the faulty state of that phase is detected. If not all

outputs are zero, then at least two of them are one that shows the connection of those

two outputs together (or to the ground). Therefore, in the output layer of the CNN,

eleven states can occur including 0000 (or 1111), 0011, 0110, 1100, 1001, 0101, 1010,

0111, 1011, 1101, 1110. A parallel process using another CNN is performed for the

location estimation of the faults. In this system, the input dataset is the same as that

of the classification procedure; however, the outputs are the locations of the faults

which are real numbers, not binary.
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The detection, classification, and location estimation of TL faults are done

by considering the 7-dimension input dataset divided into 7 × 7 small blocks. The

features are extracted by striding over these blocks and performing the convolution

computation for each window. For this purpose, one of the earliest pretrained CNNs

called LeNet-5 [217] is designed by using Keras library [218, 219] in Python. LeNet-5 is

chosen for this study because of its simple and straightforward architecture including

2 sets of convolutional and average pooling layers followed by a flatten layer, 2 fully

connected layers, and ultimately a Softmax classifier. Other advanced CNNs such as

ResNet [200] are not chosen in this study, because they have higher computational

expenses than LeNet-5, and need more time and memory to make only slight changes

in the accuracy level which are not worth it. In LeNet-5 structure, there is only

one channel, the kernel size is 3 × 3, and the filter sizes for the first and second

convolutional layers are 32 and 48, respectively. These parameters are determined

experimentally with the purpose of achieving highest possible accuracy. To obtain

high accuracy, ReLu activation function is used for all the layers except the output

which takes advantage of Softmax function for classification and the linear regression

function for location estimation. This architecture is depicted in Figure 4.3. As shown

in this figure, the input data points are given by 7×7 matrices to the network in order

to emulate the image behaviors, and the output layer consists of 11 neurons (equal

to the number of classes) for classification or one neuron for the location estimation

tasks using CNN.

To apply the transfer learning method to the TL fault diagnosis problem, the

LeNet-5 network is trained with the dataset of a TL with length L which is initially

equal to 100 (km). Then, the weights of convolutional and pooling layers of this

network are saved as ”.npy” files and a new LeNet-5 with the same architecture uses

these files to apply the generated weights to the corresponding layers. Therefore, the

weights of convolutional and pooling layers in the new LeNet-5 are frozen and equal to
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the first four trained layers of the initial LeNet-5. These 4 layers perform the feature

extraction, and the rest of the layers, which are free to be updated based on the new

datasets (for TLs with different length of L
8
= 12.5, L

4
= 25, L

2
= 50, 2 × L = 200,

4 × L = 400, and 8 × L = 800), perform the classification and adaptation tasks. As

it is shown in the next section, this process reduces the training time considerably

as compared to the case that a new CNN is trained individually for each specific TL

length.

4.5 Results and Discussions

This section presents the results of the proposed transfer learning-based CNN method.

Simulations are run on a PC with Microsoft Windows 10. This PC uses an Intel

Corei7-4710 MQ @ 2.50 (GHz) processor with 8 (GB) of RAM. Keras 2.3 library [218]

with TensorFlow 2.0 backend [220] is used to design LeNet-5, and Scikit-learn library

[221] is used for classification modules. An LeNet-5 is used with the architecture

depicted in Figure 4.3 to classify the faults and estimate their locations.

To achieve reliable results, a statistical testing method is implemented and each

experiment is performed 30 times. The values in the tables and figures in this section

are all based on 30 iterations of running each analysis [222]. The accuracy fluctuations

of these analyses are shown in the corresponding tables. This section is divided into

two main subsections including classification and location estimation of TL faults.

4.5.1 Fault Classification

In this subsection, four different simulations are performed to prove the reliability and

accuracy of the proposed approach. Different classification and clustering approaches

are performed including (a) K-means algorithm for clustering without knowing the

labels, (b) a dedicated CNN (a NN that is independently and specifically trained

for one TL) for each specific TL length, (c) transfer learning method without fine
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tuning, and (d) transfer learning method with fine tuning which is the main focus in

this study.

First, a K-means clustering algorithm is implemented to categorize the faults

without knowing their true labels. Then, the results are compared with the true labels

to calculate the accuracy which is reported in Table 4.4. The number of iterations

needed for the convergence of TL length variants are between 15 to 23 in this algorithm

[223].

In the second step, a dedicated CNN method is used for each TL length variant.

The chosen CNN is LeNet-5 which produces acceptable results and is used for the

comparison with the proposed transfer learning-based method. For this purpose, 70%

and 30% of the data are used for training and testing, respectively.

Table 4.5: Classification Results of Various Lengths for TLs Using a Dedicated LeNet-
5 NN.

Length
(km)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Training
Time (sec)

12.5 99.7 97.61 97.54 97.57 3169.12
25 99.69 97.57 97.45 97.50 3493.55
50 99.46 95.84 95.58 95.70 3441.43
100 99.42 95.5 95.23 95.36 3167.27
200 99.15 93.38 93.08 93.22 2783.07
400 99.1 93.08 92.56 92.81 3217.381
800 98.62 89.85 87.83 88.82 3168.63

Table 4.5 demonstrates the accuracy, precision, recall, F1 Score, and training

time for seven different lengths of TLs without using the transfer learning technique.

The parameters of performance evaluations are defined as Equations (4.2)-(4.5).

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)
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Recall =
TP

TP + FN
(4.4)

F1 = 2× Recall × Precision

Recall + Precision
(4.5)

The provided results are obtained after 64 epochs and with 3× 10−4 learning rate for

the “adam” optimizer.

In the third step, a transfer learning-based method without fine tuning process

with 64 epochs is used. In other words, all layers of LeNet-5 hold on to the weights

of pretrained layers and become frozen. The purpose of this step is to show the effect

of fine tuning process on the result of TL fault classification. Table 4.6 shows the

results of this step.

Table 4.6: Classification Results for Various Lengths of TLs Using LeNet-5-based
Transfer Learning Method without Fine Tuning Process

Length
(km)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Training
Time (sec)

12.5 90.80 74.06 50.59 60.11 1101.04
25 90.96 75.3 52.62 61.94 1111.66
50 90.89 72.49 55.37 62.78 1103.21
200 91.19 74.25 59.7 66.18 1123.83
400 90.90 71.99 56.18 63.10 1195.01
800 90.11 65.07 42.35 51.30 1193.73

In the fourth step, the proposed method is implemented using transfer learning

method and LeNet-5 with fine tuning approach. Table 4.7 demonstrates the fault

classification results of the transfer learning method for various lengths of TLs. In

order to perform a fair comparison among the transfer learning-based and non-transfer

learning-based methods, the number of epochs (64) and learning rate (3 × 10−4) for

“adam” optimizer) remain the same in all of them.

According to the results given in Tables 4.5 and 4.7, the training time of the

transfer learning-based method is almost half of the training time of the dedicated

CNN methodology (which is a LeNet-5 NN without transfer learning and fine tuning),
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while the accuracy values are almost similar. This result is achieved with negligible

loss in accuracy level. As it is shown in Figure 4.4, the difference between the proposed

transfer learning-based method accuracy and the dedicated CNN method is less than

0.5 % for all various lengths of TLs. Figure 4.5 shows the comparison of the training

time between the transfer learning-based and non-transfer learning-based approaches.

Table 4.7: Classification Results for Various Lengths of TLs Using LeNet-5-based
Transfer Learning Method with Fine Tuning Process

Length
(km)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Training
Time(sec)

12.5 99.48±0.04 95.9±0.3 96.0±0.3 96.0±0.3 1307±46
25 99.36±0.04 95.5±0.3 95.1±0.3 95.3±0.3 1414±46
50 99.26±0.03 94.3±0.2 93.8±0.3 94.0±0.2 1328±49
200 99.01±0.03 92.2±0.2 91.6±0.2 91.9±0.2 1406±43
400 98.82±0.04 91.2±0.2 89.8±0.3 90.5±0.2 1371±39
800 98.29±0.05 87.4±0.3 80.9±0.4 84.1±0.3 1483±47

Figure 4.4: Accuracy comparison between three methods including using the transfer
learning method with and without fine tuning process, and dedicated CNN for
classification of TL faults.

As it is clear, transfer learning decreases the training time of the classification

to less than half of the training time of the dedicated CNN approach. The k-means

clustering technique generates much lower accuracy results (in average 85%) which

is another proof for the significance and reliability of using transfer learning method

when labels are missing or inadequate.
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Figure 4.5: Training time comparison between three methods of using the transfer
learning with and without fine tuning process, and the dedicated CNN for classifi-
cation of TL faults.

4.5.2 Fault Location Estimation

To evaluate the accuracy of location estimation methodologies, the mean square error

(MSE) which is defined as (4.6), is calculated for each length of TL individually in

the three considered approaches: A dedicated CNN for each length variant of TLs,

and with and without the fine tuning process in transfer learning-based technique.

The number of epochs is 32 for all of these approaches.

MSE =
n∑

i=1

(xi − yi)
2 (4.6)

Tables 4.8 - 4.10 indicate the MSE values and the training times of these three

approaches in locating the TL faults. Based on these tables, it can be concluded that

the proposed transfer learning method decreases the training time of faults location

estimation to one-fourth of the training time of the dedicated CNN approach (without

transfer learning).
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Table 4.8: Location Estimation Results for TL Length Variants Using Dedicated
LeNet-5 NN

Length (km) # Epochs MSE (m2) Training Time (sec)

12.5 1.55×10−1 2687.36
25 1.03×10−1 2645.50
50 1.13×10−1 2948.40
100 32 8.73 ×10−2 2842.66
200 8.03×10−2 2835.40
400 5.15×10−2 2668.42
800 5.52×10−2 2558.84

Table 4.9: Location Estimation Results for TL Length Variants Using LeNet-5-based
Transfer Learning without Fine Tuning

Length (km) # Epochs MSE (m2) Training Time (sec)
12.5

32

3.21×10−1 550.86
25 3.01×10−1 562.62
50 2.98×10−1 561.61
200 2.48×10−1 555.35
400 2.59×10−1 550.65
800 2.80×10−1 537.17

Furthermore, although the fine tuning process takes negligible amount of time,

it reduces the overall error considerably. Based on Figure 4.6, the MSE differences

between these two methodologies (dedicated CNN and transfer learning technique

with fine tuning) for each length variant is less than 0.1 (m2) which proves the

reliability of the proposed method. One general conclusion that can be made from

Figures 4.4 and 4.6 is that as the difference between the TL lengths of the source

and target datasets increases, the transfer learning-based accuracy decreases and the

validation loss for location estimation increases which is expected considering the

feature differences. Figure 4.7 shows that transfer learning with fine tuning method

decreases the training time of the TL fault location estimation to less than one-fourth

of the state where a dedicated CNN is applied.

Considering the test time of detection, classification, and location estimation

of TL faults, it is concluded that the cumulative test time does not exceed 0.3 (sec)

which satisfies the IEEE standard specifications [56, 193].

Figs. 4.8 shows the variations of accuracy for 6 different TLs using the transfer

learning methodology, and compares the training and validation accuracy values for

the detection and classification steps. In Figure 4.9, the loss variations of TLs for
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Figure 4.6: MSE comparison between two states of using the transfer learning method
and without its usage.

Figure 4.7: Training time comparison between two states of using the transfer learning
method and without its usage for location estimation of TL faults.
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Table 4.10: Location Estimation Results for TL Length Variants Using LeNet-5-based
Transfer Learning Method with Fine Tuning

Length (km) # Epochs MSE (m2) Training Time (sec)

12.5

32

2.26×10−1 654.99
25 2.00×10−1 654.45
50 1.69×10−1 643.90
200 1.10×10−1 649.84
400 6.79×10−2 632.82
800 9.88×10−2 658.35

Figure 4.8: Training and validation accuracy of TLs with the lengths of a. L/8=12.5
(km) b. L/4=25 (km) c. L/2=50 (km) d. 2L=200 (km) e. 4L=400 (km) f.
8L=800 (km) based on LeNet-5 using transfer learning method with fine tuning for
classification of TL faults.
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Figure 4.9: Training and Validation loss of TLs with the lengths of (a.) L/8=12.5
(km) (b.) L/4=25 (km) (c.) L/2=50 (km) (d.) 2L=200 (km) (e.) 4L=400 (km) (f.)
8L=800 (km) based on LeNet-5 using transfer learning method with fine tuning for
location estimation of TL faults.
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Table 4.11: Noise Tolerance (Validation Accuracy) of the Proposed Method

Noise Noise Free White
Salt&Pepper

(20%)
Salt&Pepper

(50%)
Accuracy (%) 98.2 98.9 97.9 94.9

Training Time (sec) 1384 1371 1368 1389

training and validation steps are shown for all 6 variants of the TLs. These figures

prove the reliability and efficiency of the proposed approach in location estimation of

TL faults.

To show the robustness of the presented approach, its accuracy is tested by

adding white (Gaussian) noise with 0.05 standard deviation, and Salt & pepper noise

with two different percentage to the TL datasets. Table 4.11 shows the accuracy

results after 10 epochs with the batch size of 128.

4.6 Summary

The need for a general solution that is low cost, fast, reliable, and compatible with

more than one type of TLs has become viral more than before. In this chapter,

a generalized, high-speed, and accurate approach based on the transfer learning

methodology is presented for the first time to diagnose TL faults and estimate their

locations. This approach makes use of a pre-trained CNN called LeNet-5 which is

trained based on the dataset of a TL with the length of L = 100(km), and then the

weights of feature extractor layers are frozen and transferred to a new similar CNN.

In the second CNN, the fully connected layers update their weights based on the

new datasets specific to each length variant of TLs to produce more accurate results.

The simulation results show that the training time of the transfer learning-based

approach is half of the required training time of the dedicated CNN (without using

transfer learning) approach for the classification of TL faults, and for the location

estimation of TL faults the training time of the proposed method is one-fourth of

the required training time of the dedicated CNN (without using transfer learning).

Such remarkable reduction in training time proves the reduction in computational
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load and therefore, memory usage, which are considered to be significant issues for

the associated online datasets. Moreover, the accuracy of the fault classification

and the MSE of the fault location estimation are almost similar to those given by a

specifically trained (dedicated) CNN for each length of TLs. These results prove the

generality and reliability of the proposed transfer learning methodology for the TL

fault diagnosis problems.
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CHAPTER 5

INSULATOR FAULTS DETECTION IN AERIAL IMAGES FROM

HIGH-VOLTAGE TRANSMISSION LINES USING TRANSFER

LEARNING TECHNIQUE AND IMAGE AUGMENTATION

5.1 Introduction

Deep learning methods have shown great promises in the intelligent inspection

of high-voltage transmission lines. The expansion of power systems including

transmission lines has brought the problem of insulator fault detection into account

more than before. In this chapter, a novel transfer learning framework based on a

pre-trained VGG-19 deep convolutional neural network (CNN) is proposed to detect

broken insulators in aerial images. In this procedure, first a well-known large imagery

dataset called ImageNet is used to train VGG-19 and then the knowledge of this deep

CNN is transferred, and by using a few layers for fine tuning purpose, the newly

built deep CNN is capable of distinguishing the corrupted and intact insulators. This

method is able to diagnose these faults using the aerial images taken from transmission

lines in different environments. The original dataset used in this study is the Chinese

power line insulator dataset which is an imbalanced dataset and includes only 3,808

insulator images. Therefore, a random image augmentation procedure is applied to

generate a more reliable dataset with 16,720 images. This new dataset not only

performs better than the original dataset in providing the accuracy results, but also

is a balanced dataset which is more reliable than imbalanced ones. Training the

deep CNN using the new generated large dataset gives more power to the system for

detecting the corrupted insulators in different situations such as rotated, dark, and

blurry images with complex background. The results of this study are compared with
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Figure 5.1: Missing faults in glass insulators of transmission lines.

various existing benchmarks in the literature and some other implemented ones to

prove the reliability and efficiency of the proposed method.

Increasing demand for electrical energy results in expansion of power systems

including transmission lines (TL). Considering the vital role of insulators in TLs

for mechanical support and electrical insulation during the power grid operations,

and their proneness to faults and breakage, intelligent methodologies are proposed to

enhance their safety and reliability [224, 225, 226]. Due to insulators’ exposure to

outdoor environments for long period of time, they face missing faults as shown in

Figure 5.1.

Insulator faults are variant and random and their occurrences interrupt the

safety and stability of the entire TL operations, and therefore impose tremendous

economic losses. To guarantee the safety and stability of TLs and intact operation

of power grids, insulator fault detection and intelligent inspection are considered as

salient tasks [227, 224].

Maintaining insulator faults using traditional manual patrol is inefficient and

time consuming, and waste a lot of human resources. Hence, it is gradually replaced

by unmanned aerial vehicle (UAV) patrol which is discussed in [228, 229]. In

this new process, the workers do not require to investigate TL insulator faults

by using telescopes. However, the complexity and variability of UAV application
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scenarios cause several challenges in the autonomous detection of insulator faults

[224]. Therefore, artificial intelligence-based methodologies became viral for such

problems.

There are many studies on insulator fault identification using aerial images and

traditional or new image processing methodologies. In the first step, traditional image

processing algorithms classify insulator images into classes with specific features such

as texture, color, shape, etc. Then they take advantage of matching algorithms

to implement fault detection procedures. The drawback of these methodologies is

the fact that the features are designed manually, and therefore, they are inefficient

in complicated power grids with a variety of image features. Besides, correlation

features of insulators in aerial images are not clear and the accuracy of traditional

image processing algorithms is highly dependent on these feature [230, 231, 232, 233].

Recently, the tremendous progress in artificial intelligence theory has led to

a noticeable progress in image processing methods which are based on deep neural

networks. CNNs are the most common deep neural networks which perform pattern

recognition and object detection tasks, and are able to extract image features

automatically and learn under various environmental conditions. These CNN-based

techniques overcome the limitations of the traditional image processing approaches

and conclude higher performance and better accuracy in object detection tasks

[234, 151, 152]. Although CNNs have completely dominated the image processing

area in recent years, and their results are a lot better than traditional methodologies,

they still have some drawbacks such as requiring big datasets for training, being time

consuming, having high computational load, and being computationally expensive in

general. Therefore, some advanced technique such as transfer learning approaches

are proposed, which make the deep CNNs capable of generating results faster and

transferring the knowledge from an already trained CNN to a new CNN which has

common features with the base dataset for the purpose of saving time and resources.
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Transfer Learning is a machine learning approach whereby a model gets trained

and developed for one dataset and is then re-used for a second related one. It

describes the situation whereby a learnt matter in one setting is exploited to improve

optimisation in another one. Transfer learning is generally used when a new dataset

is smaller than the primary dataset, which is used to train the base model.

There are several studies in the literature that use CNNs for fault diagnosis of

TLs. The study [154] proposes a self-attention CNN framework and a time series

image-based feature extraction model for fault identification and classification of TLs

with length of 100 (km) using a discrete wavelet transform (DWT) for denoising

the faulty voltage and current signals. The work [155] proposes a customized CNN

for fault detection and classification of 50 (km) TLs integrated with distributed

generators. In [156], a machine learning-based CNN for TLs with length of 280

(km) is proposed to perform fault detection and classification using DWT for feature

extraction.

Shiddieqy et al. [201] propose another methodology that investigates all features

of the TL faults to generate various models for robust fault detection. They use

various AI methods including CNN to obtain a 100% detection accuracy. In [158],

a scheme to detect and categorize faults in power TLs with length of 200 (km)

using convolutional sparse auto-encoders is proposed. This approach can learn the

extracted features from the dataset of voltage and current signals, automatically, for

fault detection and classification.

There are multiple studies that apply transfer learning methods to various

datasets and applications [202, 203, 204, 205, 206, 207]. In [208], the authors show

how to transfer deep CNN knowledge for real-time dataset classification. The study in

[209] proposes an intelligent method based on a deep convolutional transfer learning

network which detects the dynamic system faults using an unlabeled dataset. Shao et

al. [210] present an intelligent fault diagnosis approach for a rotor-bearing system that
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works based on a modified CNN with transfer learning. Li et al. [211] also propose a

deep adversarial transfer learning network to investigate new and unlabeled emerging

faults in rotary machines.

In this study, the model VGGNet is used as a basic model to get trained on a

base dataset (ImageNet), and then re-used to learn/transfer features to be trained

on an insulator imagery dataset. Taking advantage of the initial training, transfer

learning allows us to start with the learnt features on the ImageNet dataset, and

then tune the weights and possibly the structure of the base model to match the new

dataset/task instead of starting the learning process on the new data from scratch

using random weights initialization [235]. There are also similar studies which perform

transfer learning on various datasets using VGGNet CNNs. Huang et al. [236] used

ImageNet to pre-train VGG19 network for DenseBox initialization, which is defined

as a unified end-to-end fully CNN framework for object detection. Li et al. [237]

adjust the VGG-19 pre-trained on ImageNet for hierarchical convolutional feature

extraction of visual object tracking images. Gatys et al. [238] take advantage of

VGG-19 network for object recognition of texture synthesis.

In this work, we utilize transfer learning method to develop a fault detection

system for distinguishing intact and broken insulator images. The contributions of

this work are as follows:

1. Implementing an image augmentation procedure to generate a large labeled
dataset for insulator images classification based on the Chinese Power Line
Insulator Dataset (CPLID).

2. Balancing the CPLID to generate reliable results by performing image augmen-
tation with different portions on broken and intact classes of insulator images.

3. Proposing a transfer learning technique for the generated reliable dataset using

VGG-19 CNN and ImageNet dataset whose performance outperforms than the

existing benchmarks.
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The rest of this chapter is organized as follows. Section 5.2 reports preliminary

concepts used in this study including CNNs, transfer learning technique, ImageNet

dataset, and image augmentation procedure for the CPLID. Section 5.3 describes

the proposed methodology and describes the architecture of the used CNNs. Section

5.4 presents the simulation results and analysis. Finally, Section 5.5 presents the

conclusion of this chapter.

5.2 Preliminaries

5.2.1 Convolutional Neural Network (CNN)

CNNs are capable of learning hierarchical features independently from inputs, and

therefore, they are widely used for imagery dataset problems. The structure of CNNs

empowers them to have the minimum need for data pre-processing, and handle

high dimensional datasets faster with more details in comparison to most of the

artificial neural networks [212, 145]. In general, CNNs consist of three types of layers:

convolution layer, pooling layer, and fully connected layer. Convolutional and pooling

layers incorporate convolution blocks which are stacked for the purpose of feature

extraction. Fully connected layers are built as classifiers and the role of the output

layer (a fully connected one) is to perform the classification or regression tasks.

The CNN architectures are made of local receptive fields, shared weights, and

the pooling operation. Taking advantage of local receptive fields, meaning that only

a small focused area of the input data is connected to each node in a convolutional

layer, is one of the main advantages of CNNs. Because of this feature, the number

of parameters is reduced considerably in CNN which in turn reduces its training

computational load [213].

Numerous studies are performed in image classification problems using CNNs

to achieve better performances. CNNs are also used for protecting the TLs in various

aspects such as their fault identification and distinguishing the intact waveforms from

115



corrupted ones in waveform images. These studies are divided into two different

categories: The methodologies with a focus on image-based datasets recorded from

outdoor TLs [151, 152, 153, 224], and those that consider time-series voltage and

current waveforms recorded from generators and fed to CNNs as blocks of data points.

The methodology proposed in this study belongs to the first category.

In this work, a deep CNN introduced by Visual Geometry Group (VGG) is

used which is called VGG-19. Two successful architechture of VGG are VGG-16 and

VGG-19 which perform well on ImageNet dataset. VGGNets are an improved version

of AlexNet [239], which takes advantage of large kernel-sized filters besides various

small kernel-sized filters, and results in 13 and 16 convolutional layers for VGG-16

and VGG-19, respectively [150, 240].

5.2.2 Transfer Learning

Transfer learning is a methodology which provides the capability of transferring the

learnt knowledge from one trained neural network to another one. The emerging

concept of transfer learning besides deep learning structures shows remarkable

improvements in the performance of image classification and pattern recognition.

Transfer learning consists of two general steps: First, the process of training a base

neural network on a source dataset, and second, transferring the learnt features and

knowledge to a new neural network to help the training process of the new related

(target) dataset. The second step also can be achieved by only adding some extra

layers for the purpose of adjustment and tuning to the base neural network. Two

main definitions are used in transfer learning, namely, domain and task which are

described below.

• Definition 3 (Domain [214, 215]). A domain D = {X ,P(X)} includes two
elements, namely, a feature space X and a marginal probability distribution
P(X) where X = {xi}ni=1 ∈ X is a dataset in which every xi ∈ RD comes from
this domain.
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• Definition 4 (Task [214, 215]). A task T = {Y ,P(Y |X)} includes two elements

given a domainD = {X ,P(X)}, where Y stands for the label space and P(Y |X)

is the conditional probability distribution in which Y = {yi}ni=1 stands for the

label vector of X with yi ∈ Y as the label of xi.

Transfer learning includes two domains, namely, a source domain Ds =

{Xs,Ps(Xs)} and a target domain Dt = {Xt,Pt(Xt)} where Xs and Xt present the

feature spaces of the source and target domains, respectively, and Ps(Xs) and Pt(Xt)

show the marginal probability distribution of them. Based on definitions 3 and 4, the

concept of transfer learning is presented below.

• Definition 5 (Transfer Learning [215]). Considering the source domain Ds,

learning task Ts, target domain Ts, and learning task Tt, the purpose of transfer

learning is to boost the performance of target predictive function ft(.) in Dt by

inducing the knowledge from Ds and Ts while Ds ̸= Dt or Ts ̸= Tt.

In the case of Ts = Tt, a general sub-problem of transfer learning emerges, which

is called domain adaptation. In this study, the relationship between the source and

target data is not the domain adaptation because the understudy datasets are both

images but different ones [216].

The transfer learning technique helps deep learning methods by distributing the

learned features across different learning applications. Transfer learning focuses on

the deep learning training step to promote its ability in common feature extraction

and adaptation among multiple datasets of a comparable problem. Transfer learning

uses the pre-trained layers on a source task to perform a target task. For this purpose,

a pre-trained neural network, whose fully connected layers are cut off, is used and

its convolutional and pooling layers become frozen (their weights are not updated) to

perform the feature extraction. To adapt the given pre-trained neural network to the

target dataset and efficient target classification, the fully connected layers (classifier

section) require to update their weights and build the desired model.
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Figure 5.2: A schematic of typical transfer learning model.

There are two distinct concepts in transfer learning including feature extraction

and fine tuning. In the first one, the fully connected layers are eliminated and based on

the target dataset, the adjusted fully connected layers are integrated with the frozen

pre-trained layers. In the fine tuning process, the structure of the fully connected

layers from the pre-trained model is stored and only their weights are updated. Fine

tuning is the process that is used in this study for the purpose of adapting the

ImageNet extracted features to the under study insulator dataset. Figure 5.2 depicts

the basic idea of transfer learning representing two different datasets which have

resemblance. These datasets are fed into source and target deep neural networks.

The knowledge is transferred to the target model to perform the training of target

task at a higher pace.

The transfer learning method is used in this study for TL insulator fault

diagnosis problems to detect the rare occurrence of failures which are difficult or

impossible to be labeled. It should be noted that a transfer learning-based CNN has

not been used before for TL insulator fault detection, and is proposed and studied in

this study for the first time.
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5.2.3 ImageNet

ImageNet is a large-scale ontology of images built upon the hierarchical structure

provided by WordNet [241]. ImageNet aimed to collect the majority of the 80,000

synsets of WordNet with an average of 500-1000 clear and high resolution images,

and this resulted in tens of millions of annotated images categorized by the semantic

hierarchy of WordNet [242, 241]. ImageNet provides the most comprehensive and

diverse coverage of the image world. The current 12 sub trees consist of a total of

3.2 million cleanly annotated images spread over 5247 classes. Over 600 images are

collected for each synset of ImageNet. Nowadays, ImageNet consists of over 15 million

annotated images. Some CNNs have shown great promises in classifying images in

the ImageNet dataset into its corresponding categories, namely, AlexNet, VGGNet

(used in this study), CaffeNet, ResNet, and etc. [243]. Based on a review reported

by Cheplygina et al. [244], ImageNet is the most commonly used dataset for transfer

learning based image analysis and classification methods [244, 242, 240]. In this study,

ImageNet is used as a source dataset for the proposed transfer learning technique to

perform the feature extraction for insulator images fault classification.

5.2.4 Insulator Dataset Generation Using Data Augmentation

In classical discriminative examples such as the study of broken insulators vs intact

ones in this work, the image recognition software has to overcome the issues of

viewpoint, lighting, occlusion, background, scale, and more. The task of data

augmentation is to prepare these translational invariances for consideration of the

dataset such that the resulting models can perform better despite the existing

challenges. The concept of having a larger dataset results in better deep learning

models and performances is a generally accepted nation [245, 246]. However,

collecting large datasets can be a complicated task because of the need for manual

efforts to collect and label data especially in the field of image processing. The existing
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images from TL insulators are not an exception to this fact, and by searching in google

images it can be observed that there are not enough broken or defective insulator aerial

images [245].

To the best of our knowledge, there is no standard dataset for TL insulator

faults that consists of broken and intact insulators. Therefore, because the aerial

images of insulator faults are rare and almost impossible to collect, to obtain adequate

insulator faults images, the simulated insulator faults samples are created on the basis

of the Chinese Power Line Insulator Dataset (‘CPLID’) [247]. In these images which

are created by using the software Photoshop in [224], the normal insulator strings

are erased and replaced by their nearby pixels. The process of using Photoshop

to generate the desired dataset is so time consuming and requires a lot of efforts.

Therefor, only 248 faulty images are produced with this procedure while the number

of images including intact insulators are 3,560 [224].

Having this dataset from [224], image augmentation is the approach which helps

to generate a large sufficient dataset with 248×9+248 = 2, 480 faulty insulator images

and 3, 560× 3+ 3, 560 = 14, 240 intact insulator images in variant backgrounds. The

image augmentation process is done randomly such that from each broken insulator

image, nine augmented images, and from each intact insulator image, three augmented

ones are generated with arbitrarily various features including brightness, angles,

zooming level, quality, and etc. Therefore, this augmented insulator image dataset

includes 16,720 images. Figures 5.3 and 5.4 show some examples of these images.

5.3 Proposed Method

This study takes advantage of transfer learning technique to improve the fault

classification results for TL insulators dataset. To perform this approach, a common

deep CNN called VGG-19 is used for the purpose of feature extraction. This CNN is

consisted of 19 layers out of which 13 layers are convolutional.
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(a) (b)
Figure 5.3: Images of an intact insulator. (a) The original image from CPLID, and
(b) three augmented images generated from the original image.

Although the benchmark CNNs for ImageNet dataset include numerous layers,

CNN models used in fault diagnosis methods are relatively shallow. The depth of

a CNN model for fault diagnosis is almost up to 5 hidden layers only because of

the simple structure of the existing faults. This can underestimate the effectiveness

of CNN models in fault diagnosis. Regardless of this difference among the required

CNN models’ architectures, the volume of labeled samples is always limited in fault

diagnosis applications, and it is complicated to train a deep CNN model without

having a tremendous amount of well-organized datasets such as ImageNet. Feature

transferring by taking advantage of trained deep CNN models as a feature extractor

has attracted a lot of attention these days and has become an alternative solution to

these sort of limitations. By reusing the knowledge (finalized weights) of pre-trained

networks as the feature extractor, the deep CNNs can perform well on the small

datasets in other domains [248]. VGG-19 is one of the most common architectures

which is used in transfer learning-based methodologies for fault diagnosis in the

literature [236, 237, 238].

In this study, the transfer learning technique is proposed for TL insulator fault

diagnosis by reusing the pre-trained VGG-19 on ImageNet dataset as the feature

extractor. The structure of VGG-19 is shown in Figure 5.5. The notion of ”Conv3-64”

implies that the filter (kernel) of the layer is 3× 3, and its depth is 64. The pooling
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(a)

(b)
Figure 5.4: Images of a faulty (broken) insulator. (a) The original image from CPLID,
and (b) nine augmented images generated from the original image.
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Figure 5.5: The architecture of VGG-19 CNN.

layers in this architecture are maxpooling which store the maximum values to be fed

into sebsequent layers.

To take advantage of transfer learning technique, the VGG-19 is implemented

and transferred, and its layers remain frozen during the training process of insulator

fault diagnosis system. All the convolutional and maxpooling layers and the first fully

connected layer perform as feature extraction layers. Then, the weights of the two

fully connected layers, which are located at the end of the above-mentioned feature

extraction layers, are free to become updated for the purpose of fine tuning and

adaptation to the new dataset. The last fully connected layer is a Softmax classifier

to adjust the pre-trained VGG-19 to the insulator dataset for fault identification.

Two datasets are used in this experiment including ImageNet for the purpose of

VGG-19 pre-training and feature extraction, and the augmented insulator dataset

including 13,160 aerial images of insulators in two classes of defective (broken) and

intact. Because the size of images in ImageNet dataset are 224×224, we resize all the

images in the augmented insulator dataset to this size using Python Numpy and PIL

libraries. Accordingly, we are able to feed the new images to the same pre-trained

VGG-19.

The VGG-19 CNN is implemented using Keras, and the weights of convolu-

tional, maxpooling, and first fully connected layers are restored. Then, the two newly

added fully connected layers including the Softmax classifier are randomly initialized.
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The weights of other layers of VGG-19 remain frozen and untrained during the new

training process, which is called fine tuning.

Using the above mentioned datasets, we could distinguish aerial images of

broken and intact insulators with the accuracy of 99.93% which is a reliable result. In

the next section, we compare the proposed methodology with the existing benchmarks

on these datasets. To have a descent comparison between the outcome of existing

CPLID dataset and the generated large dataset, we trained the transferred CNN with

these two datasets and test them with a common variant dataset. We also generated

imbalanced large dataset to prove the effect of making this dataset balanced in the

next section.

5.4 Simulation Results and Comparisons

This section describes the results of the proposed transfer learning-based method for

classification of insulator images into two categories of broken and intact insulators.

Simulations are run on a PC with Microsoft Windows 10. This PC uses an Intel

Corei7-4710 MQ @ 2.50 GHz processor with 8 GB of RAM. The programming

language used in this study is Python version 3.8. Keras 2.4 library [218] with

TensorFlow 2.3 backend [220] is used to design VGG-19, and Scikit-learn library

[221] is used for classification modules. In this study, we compared our proposed

methodology using transfer learning and image augmentation techniques with five

benchmarks from the literature and implemented fo this study which are proposed in

[224].

In [224], a modified model based on You Only Look Once (YOLO) is presented

for insulator fault detection in aerial images with compound backgrounds. Initially,

aerial images with few faults are collected in various scenes, and then a new dataset is

established using Photoshop. In order to enhance feature reusing and propagation in

the low-resolution feature layers, a Cross Stage Partial Dense YOLO (CSPD-YOLO)
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model is presented based on YOLO-v3 and the Cross Stage Partial Network. Finally,

the feature pyramid network and improved loss function are applied to the CSPD-

YOLO model to improve the accuracy of insulator fault detection. The CSPD-YOLO

model and compared models in [224] are trained and tested on the generated dataset

for comparison. We used these three networks to perform the first step of comparison

in this study. Table 5.1 shows these comparison results.

Table 5.1: Comparison Among the Existing CNNs Used for the CPLID and the
Proposed Method Using the Original CPLID Data set

Neural
Network

# of
Images

Accuracy
(%)

Precision
(%)

Recall
(%)

F1
Score (%)

Time
(s)

YOLO-v3 [249] 3,808 93.31 94.00 94.00 94.00 0.01
YOLO-v4 [249] 3,808 96.38 98.00 95.00 97.00 0.01

CSPD-YOLO [224] 3,808 98.18 99.00 98.00 99.00 0.011
Transfer Learning

and VGG-19
3,808 99.28 99.62 99.00 99.30 0.006

As it is indicated in Table 5.1, not only the accuracy, precision, and F1 Score

are improved using our proposed transfer learning method, but also this methodology

reduced the fault detection time of insulator datasets. In this table, the running time

shows the required time for one image classification between two classes of intact or

broken insulator.

To be able to compare the proposed transfer learning based methodology with

the existing CNN benchmarks, namely, YOLO-v3, YOLO-v4 [249], and CSPD-YOLO

[224], the proposed method is examined on the original CPLID dataset as well.

In the next step, to prove the reliability of the proposed methodology for

generating a larger dataset with image augmentation, we trained the proposed

transferred CNN two times, once with the original CPLID dataset and another time

with 80% of the large generated dataset. For testing, the remaining 20% of the

generated dataset is given to the transferred CNN trained with the two different

datasets separately. Table 5.2 shows the results for this step.

Table 5.3 shows that with the same testing datasets, the larger inclusive dataset

generates better results as it was expected.

125



Table 5.2: Comparison Among the Original CPLID and Augmented Dataset Using
Transferred CNN While Keeping the Test Data Same

Neural Network Train Dataset Test Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) Time (s)

Transferred VGG-19
3,808

(Original)
3,344

(Augmented)
96.04 95.10 95.19 95.14 0.007

Transferred VGG-19
13,376

(Augmented)
99.93 99.20 99.41 99.20 0.007

In the third step, the effect of balancing the under study dataset is tested.

For this purpose, we do the image augmentation with the equal portion for broken

insulator images and the intact ones. Therefore, although the dataset becomes larger

and more robust to the feature variation of the images, it would be still an imbalanced

dataset. To implement this step, 4 augmented images are generated from each image

in CPLID dataset. Hence, the overall number of images including the original images

and the augmented ones become 17,800, which is close enough to the number of

unequally augmented large dataset with 16,720 insulator images. Table 5.3 shows the

results of this step. For both generated datasets (equally and unequally augmented),

80% of the images are used for training and the remaining 20% of the images are

used for testing. As it is understandable from Table 5.3, the results for the balanced

dataset are a lot better than the case that the dataset is imbalanced.

Table 5.3: Comparison Among the Balanced and Imbalanced Augmented Datasets
Based on CPLID Using the Proposed Transferred CNN Method

Neural
Network

# of
Images

Accuracy
(%)

Precision
(%)

Recall
(%)

F1
Score (%)

Time (s)

Transferred
VGG-19

17,800
(Imbalanced)

93.22 92.90 92.11 92.50 0.007

Transferred
VGG-19

16,720
(Balanced)

99.93 99.20 99.41 99.20 0.007

The results of these three steps show that the proposed method can detect

each insulator image category within almost half of the time consumed by the other

methods in the literature because of the used transfer learning technique. The fact

that the specification of the utilized computer in this study are lower than those

used computers in the benchmarks, makes the result improvements in our proposed
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method more noticeable. The comparison parameters show that the generated dataset

outperforms the other benchmarks and it is the most reliable approach up to now.

5.5 Summary

In this chapter, a deep learning methodology is proposed based on the transfer

learning technique to improve the results of insulator image classification problem.

One contribution of this chapter is that the original CPLID dataset has only 248

broken insulator images among 3,808 images, which puts this dataset in an imbalanced

dataset category. Using the data augmentation approach with different portions, a

tremendous balanced dataset with 16,720 images is produced, which is a more reliable

dataset comparing to the dataset with only 3,808 images.

In this presented transfer learning methodology, first a VGG-19 CNN is

implemented as the base model for transfer learning, which is trained using the

ImageNet dataset. In the second step, the weights of VGG-19 layers, except the

two fully connected final layers, are kept frozen to perform the feature extraction

task. The weights of the fully connected final layers are updated using the insulator

image dataset for the fine tuning. This transferred VGG-19 CNN generates better

accuracy results as compared to benchmarks.

The results show that the proposed transfer learning technique is able to

distinguish the intact and broken insulator images with more than 99.9% accuracy,

and the required time for insulator image classification training in the proposed

technique is about half of the reported time in existing studies.
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CHAPTER 6

CMOS-BASED TANH, AN ACTIVATION FUNCTION FOR ANNS

6.1 Introduction

Activation functions in neurons play a significant role in ANN efficient realization,

especially because of immense computation in modern applications such as pattern

matching, image and speech recognition, natural language processing, and anomaly

detection in data. There are various methods to improve ANN accuracy.

Depending on the applications and ANN architectures, both analog and digital

activation functions can be used. These functions are used between layers to moderate

the output values from the previous layer to the endurable range of input values

for the next layer. To achieve this goal, scientists have used various activation

functions. Every activation function takes a single value and performs a certain

fixed mathematical operation on it [250, 251].

As a part of any hardware implementation of ANNs, non-linear activation

functions are the most crucial, expensive, and hard to implement [252]. Many studies

consider hardware implementations of activation functions. They focus on various

aspects like accuracy, applied approximation methods, cost of implementation, and

analog or digital bases [253]. Studies in [254] and [255] show that accurate nonlinear

activation function implementations can improve the learning and generalization

abilities of ANN. Architectures with higher accuracy cause more silicon area usage and

computational speed reduction. Accordingly, having nonlinear activation function

hardware designs with a small area, high speed and an acceptable range of accuracy

has become a critical issue. To address these challenges, approximation methods are

proposed. These methods are mainly categorized into piecewise linear approximation

(PWL), piecewise nonlinear approximation, lookup tables (LUT), bit-level mapping,
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and hybrid techniques. PWL divides function into multiple segments and uses a

linear approximation in each segment. Authors in [256, 257, 258] use this method

for hyperbolic tangent and sigmoid function implementation. In [259] and [260], a

different PWL is introduced. It exploits the centered recursive interpolation based on

the lattice algebra-based algorithm instead of similar studies that use input domain

segmentation methods. Piecewise nonlinear approximation method works similarly

to the discussed PWL. The only difference is that a nonlinear approximation is used

in each segment instead of a linear one to result in higher accuracy. This method

is used in [261] and to approximate both Sigmoid and hyperbolic tangent functions

in [258]. Lookup Table (LUT)-based methods divide the input range into equal

sub-ranges and each sub-range is approximated and assigned by a value stored in

a LUT [262]. In a bit-level mapping method, the output is approximated based

on a direct bit-level mapping of input using purely combinational circuits [263].

A combination of the aforementioned methods is used in hybrid procedures. For

example, the methods in [264, 265] have used a combination of PWL and LUT

methods for Tanh implementation. In a nutshell, there are three important metrics

in all hardware implementation of ANNs: accuracy, gate complexity, and processing

speed. Each proposed design should be governed by balancing these criteria [256].

Finding a fast activation function that can provide engineers with acceptable accuracy

is one of the main challenges in ANN architectures [37, 266, 267, 268].

Among all different types of activation functions, Tanh is chosen because of

its ideal steep derivative which allows a wider range of values for fast learning

and grading methods. This activation function has become famous because of its

particular features as explained in [36]. First of all, it covers an entire negative to

a positive range of inputs and generates the output values from -1 to 1. Another

feature is its symmetric graph, which makes it easier to be implemented in hardware.
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Mathematically, Tanh is defined as follows [35, 269]:

Tanh =
ex − e−x

ex + e−x
(6.1)

where x is an input variable and its graphical representation is given in Figure 1.

Because CMOS aging affects the total synaptic current of neuromorphic architectures

and this can reduce the activation function’s efficiency in each neuron [270, 271, 272,

273, 274, 275], a novel design for hyperbolic tangent (6.1) with high speed and a small

area is proposed in this study.
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Figure 6.1: The hyperbolic tangent activation function.

In the next section, an analog CMOS-based activation function is proposed

which is purely hardware-based, and instead of using any of the above-mentioned

approximation techniques, it generates the output from the input data point directly.

6.1.1 Implementation of the Proposed Tanh in Two Sides

This chapter is organized as follows. Section 6.2 introduces the hardware design for

(6.1) and specifies its elements. The design compatibility with a recently emerged

MNN [2] is discussed in Section 6.3. This Section also explains the steps of
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reaching an optimal design concerning accuracy and power consumption. Section 6.4

describes the operation regions of this design. Section 6.5 shows simulation results,

examinations, the accuracy analysis for two datasets based on the proposed design,

power consumption behaviors, Monte Carlo, and all other hardware and software

tests. Section 5.5 concludes this work.

The hyperbolic tangent is one of the well-established activation functions in

ANNs. Therefore, this study presents a CMOS-based design in 45 (nm) technology

using the Cadence virtuoso simulator. Applying this design to ANNs causes low power

consumption, fast computation ability, and an acceptable range of accuracy in image

classification. The proposed design is capable of producing a reliable approximation

of the mathematical Tanh activation function (1). In this study, Tanh is divided into

two sub-circuits including its positive half which is shown in Figure 6.2(a) and the

negative half that is presented in Figure 6.2(b). These are two straightforward circuits

including a few critical elements. The components of each are chosen as follows. The

positive half of this activation function includes a P-type metal-oxide-semiconductor

(PMOS) transistor with a width size of 435 (nm) in a 45 (nm) technology, a resistor

with the resistivity value of 9.2 (kΩ), and a direct current source that provides the

circuit with various currents in the range of 0 (A) to 450 (µA). The purpose of this

circuit is to resemble the positive half of Tanh. On the other side, the negative half of

Tanh consists of an N-type metal-oxide-semiconductor (NMOS) transistor with the

width size of 320 (nm) in the same technology and a resistor with the same resistivity

of 9.2 (kΩ), and a direct current source that provides the circuit with various currents

in the range of -450 (µA) to 0 (A). This current is resembling the input current when

the input to the circuit is in the opposite direction. Figure 6.2 shows the schematic

of two sides of Tanh.

By taking advantage of the symmetry behavior of Tanh, a design with similar

schematics for negative and positive sides is presented. Consequently, this simply-
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Figure 6.2: The design of (a) positive half and (b) negative half of Tanh.

designed Tanh outperforms the similar circuits with its low power dissipation and

small area usage of its circuitry. Whenever an input current goes through the proposed

Tanh circuit, based on the sign unit (to be explained in Section 6.3) only one side

with a limited power consumption gets activated [276, 277, 278].

6.2 Proposed Architecture

As we mentioned above, in the proposed design for Tanh, we need to detect the

direction of the current before the activation function operation with a sign unit

and propagate the input current through its corresponding section of the neuron to

generate the appropriate value for the next layer [29, 279].

Figure 6.3(a) shows the circuit diagram of the proposed neuron. It consists of an

Interface Module (IM) and a complete hyperbolic tangent activation circuit. IM uses

a domain wall (DW) spintronic device that takes I+j and I−j to map their difference

into a resistive state. IM is a three-terminal device that consists of a thin domain

wall strip connecting to two anti-parallel fixed magnetic domains. The transition

area between these two fixed domains (called DW) can be moved by injecting current

along the nano-strip. Hence, the resistive state of the device can be changed. A fixed
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magnet and domain wall strip forms the Magnetic Tunnel Junction (MTJ) for reading

the resistive state of the device [280].

The sign unit in IM (Figure 6.3(a)) generates a control signal based on the

polarity of the total synaptic current I+j − I−j . This control signal activates only

one of the activation circuits in the hyperbolic tangent neuron, i.e., the positive or

negative half of Tanh circuit [281]. The positive half is enabled when the control

signal is on; otherwise, the negative half is active.

IM operation is described by using three clock cycles: Clk1 − Clk3. The duty cycles

of each clock are different because the reset, write, and read times of a DW device

are different. When Clk1 is low, the sign unit generates the sign of total synaptic

current. When I+j > I−j logic value of the sign is high, and it is low otherwise. When

Clk2 and Clk1 are both low, the position of DW is reset so that the resistive state of

the device becomes low when the sign is high; and high when the sign is low. When

Clk1 is high, I
+
j and I−j flow into DW. Thus, the difference between the positive and

negative convolutional currents programs the DW spintronic device and causes DM

to move. Clk2 and Clk3 are both high during this period. When Clk1 and Clk3 are

low, while Clk2 being high, the resistive state of a spintronic device is read and the

absolute difference between total positive and negative synaptic currents flows into

a Tanh-based neuron. Figure 6.3(b) shows the timing diagram of the IM operation.

On the right side of Figure 6.3(a), we have the proposed Tanh design divided into

two-half circuitry. As we see in Figure 6.2, we have two elements for each half: one

MOSFET and a 9.2 (kΩ) resistor. This resistor is a shared component to lower the

area usage and therefore we use only one resistor in our Tanh circuit to minimize the

area.
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6.2.1 Proposed Design in Memristive Neural Network (MNN)

In this section, we show the position of the proposed hyperbolic tangent design in

MNN. Only two layers of a neural network are shown in Figure 6.4 as an example,

which is connected to the rest of the MNN. In Figure 6.4, each x
[i]
n stands for the

input of neuron n belonging to layer i + 1 and output of layer i. This architecture

uses two MCAs for each layer of the ANN.

One of them is used to store the updated weights and the other one is used to

store the output of gradient calculator circuitry (GCC). This circuit is described in

detail in [2] and f(x) in this architecture can be replaced by any activation function

like the proposed Tanh. Gnawali et al. in [2] implement an on-chip design for a

gradient descent backpropagation algorithm by taking advantage of MCAs.

6.3 Circuit Resolution Process

In this section, the circuit resolution of the proposed design forTanh activation

function is described. By increasing the resistivity value starting from 0 (Ω), and

changing the width size of the MOSFETs, the behavior of the circuit is examined to

reach the appropriate value for drain (output) voltage at the right time.

6.3.1 Positive Half of Tanh Design

In the first step, pure resistivity effects are analyzed by keeping the transistor width

size fixed at its minimum value (120 (nm)). The output voltage reaches 1 (V ) when

the resistor value is around 28 (kΩ). Table 6.1 shows the ranges of the generated

voltage based on various resistor values. Not only 28 (kΩ) resistivity is irrational

and highly power consuming, but also observing the beginning step derivatives of the

output graph shows that there is a significant difference between the obtained output

voltage and the original Tanh function. Accordingly, the idea of changing the PMOS
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Figure 6.3: (a) The proposed Tanh neuron and (b) The timing diagram.
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Figure 6.4: Position of the proposed design ofTanh in MNN [2].

transistor width and considering its fluctuation efficacy to achieve premium results is

generated.

In the next step, the resistor value is set up to 10 (kΩ) initially and the

correlation of the transistor width size with output voltage is analyzed. By enlarging

the width of this transistor, the length of the linear part for the output voltage

increases, which means a higher output voltage is achieved with less input current

value than the previous case that resistivity was the only parameter affecting the

voltage. As mentioned before, the negative half of Tanh from its positive half is

separated in this design. Therefore, the desired design for the positive half is a circuit

with an increasing output value from 0 to 1 (V ) and maximum similarity (minimum

root mean square error (RMSE)) to Tanh function concerning the additive input

current.
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Figure 6.5: Voltage value according to the drain resistor (PMOS width = 435 (nm)).

Figure 6.5 represents how the output voltage varies according to a resistivity

enhancement process while the width of PMOS remains constant at 435 (nm). The

optimal value of the resistor for this circuit considering RMSE is 9.2 kΩ which is

determined with a dotted black line in Figure 6.5.

Looking at the previous behavior of the circuit while modifying PMOS transistor

width, and comparing it to the original hyperbolic tangent function determines that

the simulation accuracy with previous values for PMOS transistor width is not

enough. For example, in the original function of hyperbolic tangent, Tanh(3) =

0.9950; so, 1 (V ) should be reached at around 350 (µA), or for input currents with

less than 350 (µA) lower values of voltage are expected. Put differently, a line at the

beginning is needed with a smaller slope. To achieve this goal, the process is started

from the minimum width size in the 45 (nm) technology for the PMOS and increased

until the lowest RMSE comparing with the mathematical function is achieved. Besides

this, the resistivity value is changed between 9 to 10 (kΩ).
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Table 6.2 and Figure 6.6 show the results for the proposed circuit based on

various width of the PMOS transistor with a rigid value for the resistor (9.2 (kΩ)).

In Figure 6.6 the optimal based on the minimum RMSE and power consumption

for PMOS width is shown with a dotted black line. Real-hardware experiments and

comparing the accuracy of this circuit with the ideal Tanh proves that the best result

emerges when the circuit has a PMOS transistor with a width 435 (nm) and a resistor

value of 9.2 (kΩ).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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Figure 6.6: Voltage value according to PMOS width (Resistor = 9.2 (kΩ)).

6.3.2 Negative Half of Tanh Design

Implementation of the negative side of the hyperbolic tangent activation function

circuit is easier because of its symmetrical attitude. To do so with the least number

of elements and area usage, this side is designed by using a 5 (kΩ) resistor, an NMOS

with 120 (nm) width, and bias gate voltage (Vdc) equal to -1 (V ) initially. Then a

similar procedure is performed to find the optimal values for the NMOS transistor

width to result in the highest similarity to the mathematical Tanh, lowest power
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consumption and RMSE based on the input current range from – 450 (µA) to 0 (A).

Our experiments on this half of the design ended up with 320 (nm) value for

NMOS width and 9.2 (kΩ) for the resistivity. Tables 6.3 and 6.4 in addition to Figs.

6.7 and 6.8 show the process of finding the best values for the resistor and the width

of the NMOS.

After achieving the optimal values based on RMSE, power consumption, and

area usage for the elements for the proposed design, we go through the circuit

operation details next.

6.4 Operating Regions

In this design, for the positive half of Tanh, a PMOS transistor with the width of

435 (nm) and the length of 45 (nm) is used, which results in threshold voltage at

-472.256 mV .

For the negative side, an NMOS transistor with the width 320 (nm) and the

same length as PMOS based on our 45 (nm) technology is considered, which leads to

a threshold voltage at 721.895 mV . The operating region of a transistor depends on

the difference between its gate and source voltages. As shown in Figure 6.2 (a), the

PMOS transistor gate is connected to Vdc = 1 (V ) and its source voltage increases

with respect to the input current value enhancement. Hence, the output voltage which

is the drain voltage of the PMOS transistor varies like a hyperbolic tangent function

in its positive region. Figure 6.2 (b) shows that the gate voltage of NMOS (Vdc) is set

to -1 (V ) to make this circuit able to simulate Tanh activation function accurately for

the negative inputs. The output voltage is the drain of the NMOS transistor with an

increasing voltage value considering the sign (direction) of the input current. Next

paragraphs explain how this neuron works and discuss the features that make it the

desired design.
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Table 6.1: Voltage Value According to the Drain Resistor for the Positive Side (PMOS
Width = 435 (nm))

Resistor Value (kΩ)
The range of output voltage (mV )

(For the input current 0 (A) to 450 (µA))

0 0 - 0
10 0 - 401.8
20 0 - 765.6
28 0 - 1002
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DC ( A) 10-4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

V
 (

v)

R = 0 k
R = 5 k
R = 7 k
R = 8 k
R = 8.5 k
R = 9.2 k
R = 10 k

Figure 6.7: Voltage value according to the drain resistor (NMOS width = 320 (nm))
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Table 6.2: Voltage Value According to PMOS Width for the Positive Side (Resistor
=9.2 (kΩ))

PMOS width ((nm))
The range of output voltage (mV )

(For the input current 0 (A) to 450 (µA))

120 0 - 370
400 0 - 939
435 0 - 995
440 0 - 1002

Table 6.3: Voltage Value According to Drain Resistor for the Negative Side ((nm)OS
Width = 320 (nm))

Resistor value (kΩ)
The range of output voltage (mV )

(For the input current -450 (µA) to 0 (A))

0 0 - 0
5 - 637 - 0
8 - 943.94 - 0
10 -1.11 - 0

As shown in Figure 6.9, gate voltages for PMOS and NMOS are fixed at 1 (V )

and -1 (V ) respectively. By increasing the input current, the source voltage goes up

from 0.715 (V ) to 1.86 (V ) on the positive half, and from -2.09 (V ) to -0.69 (V ) on

the negative half.

In our design, the gate voltage of the PMOS transistor is constant 1 (V ) and

surprisingly not 0 (V ) as the expected value for the gate of a normal PMOS. The

reason for this phenomenon is to boost up the maximum voltage to reach 1 (V ) similar

to the maximum value of mathematical Tanh.

If 0 (V ) voltage value would be assigned to this PMOS, the final value of the

output voltage cannot go higher than 650 (mV ) and copy the hyperbolic tangent

behavior. On the other hand, Figure 6.9(b) depicts the NMOS gate voltage is set

to -1 (V ) to bring the output voltage down to -1 (V ) on the negative half when the

input current amount is negative and high. Based on gate and source voltages, the

drain voltage of the PMOS transistor (output voltage) varies from 0 (V ) to 1.01 (V ),

and for the NMOS varies from -1.07 (V ) to 0 (V ). Therefore, we have the following

ranges for each voltage as shown in Table 6.5.
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Figure 6.8: Voltage value according to NMOS width (Resistor =9.2 (kΩ))

Table 6.6 details gain, drain, and source voltage values. At the initial level, the

PMOS transistor is in its cutoff region. The gate voltage is 1 (V ) and the source

voltage, which is increasing with respect to the input current, has not reached |Vg|+

|Vth| to turn the PMOS on yet. Hence, it works in the cutoff region and there would

be no current between the source and drain, and the drain voltage becomes 0 (V ).

Cutoff status is negligible throughout the whole process.

In the next stage, this transistor enters the saturation region. During this state,

the circuit operates in two different modes. First, the drain voltage varies linearly

based on the current transition, which is inspired by the original hyperbolic tangent

that behaves almost linearly in the beginning. Second, the ramp of this voltage is

decreasing more and more, until it becomes almost constant 0 at voltage 1.01 (V ).

Again, we have the same behavior in the hyperbolic tangent when it reaches the

ultimate value of 1 (V ). These two modes of characteristics are explained next.
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For the negative half of Tanh, voltage ranges are shown in Table 6.7. Starting

from input current at -450 (µA), NMOS works in its saturation region up to the

point the input current becomes around -9 (µA). Then NMOS is in its cutoff region

without any current flowing through it. Figure 6.9(b) shows the operation regions of

NMOS.

6.4.1 Changing Linearly

There is a current flowing from the source to drain of PMOS and from the drain to

source of NMOS, which causes the absolute value of drain voltage to increase.

ID = −1

2
Kp

W

L
(|Vgs|–|Vth|)2(1 + λ|Vds|) (6.2)

VD = RID (6.3)

Equations (6.2) and (6.3) show the current and voltage dependencies and parameters,

where ID is drain current, W and L are the width and length of the transistor

respectively, Kp is the transconductance of MOSFET, Vgs is the gate-to-source voltage

of MOSFET, Vth is the threshold voltage, and λ is the channel length modulation

coefficient. According to (6.2) and (6.3), this change is linear because the absolute

value of the input current that produces source voltage increases linearly. Therefore,

the drain current value is calculated through (6.2). Note that we write the above

equations based on the absolute value of the voltage to become compatible with both

PMOS and NMOS.
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6.4.2 Reaching desired value and getting saturated

We know that in MOSFET structures, there is a diode between the source and body of

the transistor. For PMOS, until the source voltage reaches the value around 1.7 (V ),

the only existing current is from the source to the drain of this transistor which we

call this linear behavior. The same phenomenon happens for NMOS in the negative

half when the source voltage reaches -1.75 (V ). But after that, despite that the

absolute value of input current rises for both sides, the absolute value of the drain

voltage increases at a slower rate, until it becomes almost fixed at 1.01 (V ) in the

positive half or -1.04 (V ) in the negative half. These voltages are the ultimate values

for the output of the circuit. The reason for this occurrence is that more than 1.7

(V ) voltage at the source of PMOS transistor or less than -1.75 (V ) at the source of

the NMOS transistor turns on their inner diodes. Accordingly, we have currents in

two directions. The first path is the source to the drain voltage current that we had

before in the linear part, and the latter one is the source to the body current through

the interior diode which does not let the drain-source voltage continue to increase

linearly. Figure 6.9 demonstrates the characteristics of source voltage that varies like

diode characteristics graph for PMOS after 1.7 (V ) or for NMOS after -1.75 (V ). An

almost constant voltage at the source of each MOSFETS is observed which holds the

output voltage (the drain) in a constant value equal to around 1 (V ) for the positive

half or -1 (V ) for the negative half of the proposed Tanh design. Tables 6.6 and 6.7

summarize the above explanations for these two MOSFETs.

6.5 Experiments and Comparisons

In this Section, the proposed design is compared with its mathematical ideal version,

to prove its efficiency, accuracy, and reliability. To implement the circuit and calculate

the average power consumption, the Cadence virtuoso is used as a simulator.
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To examine the accuracy of the proposed implementation for Tanh, we use two

well-known datasets from the image recognition category for ANNs: MNIST and

Fashion-MNIST. Each of these datasets has 70K images among which 60K of them

are labeled and used for the training phase and the rest for the test. They both

are categorized into 10 groups. MNIST images are handwritten digits from 0 to 9

and Fashion-MNIST consists of 10 fashion classes including T-shirt/Top, Trouser,

Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle boot.

The above-mentioned datasets are used to prove that not only the proposed

design works for an easy and common dataset like MNIST, but also results in very

similar accuracy for Fashion-MNIST which is known as a complex one [281, 282, 283].

To evaluate the precision of the proposed design for the chosen datasets, we take

advantage of the software methods explained below. The idea of using software

methods is supported by activation function roles in ANNs. Activation functions

determine the output behavior of each neuron to meet the constraints of input

neurons in the next layer. Therefore, no matter if we work in a software or hardware

environment, the process of assigning an f(x) value to a given input x is the same.

The ANN architecture for this study is implemented in Python language, using

Keras frameworks and then the existing activation function is replaced with our

custom activation function which is built based on the proposed design for Tanh

using a look-up table; meaning once this activation function is the mathematical

equation of Tanh which is shown previously in Figure 6.1 and (6.1), and the other

time the proposed design results are used from Cadence virtuoso simulator in the

form of a lookup table which assigns a voltage value to each given current amount.

The steps of producing these lookup tables are explained below. After implementing

the circuit on the Cadence tool and plotting the output graphs, the ”.csv” files are

generated from plots. These files save the output of the circuit in the form of a

two-dimensional array or a table with two columns and n rows. In this experiment,
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one column would be the input current steps, and the other one is their respective

voltage values. Therefore, a lookup table is built to play the role of an activation

function in the Python program.

Figure 6.12 shows the plot generated by Matlab. The red dotted line shows

the graph of ideal hyperbolic tangent generated by its mathematical equation, and

the thick black line represents the proposed activation function design. As is shown

in Figure 6.1, the value of Tanh reach f(x) = 1 around x = 3 while this happens

at the input current of almost 300 (µA) for the proposed design. To comparing the

mathematical graph of the hyperbolic tangent with the proposed design, the values

are scaled in Figure 6.12. Considering the fact that our input current varies between

0 (A) to 750 (µA) and for this range of value for x, the mathematical function value

is almost zero, we have to scale our values in the applied lookup table and multiply

them by 104 to show an appropriate range of this estimation. The calculated RMSE

for this design is 0.0294 based on Figure 6.12.

6.5.1 A Fully-connected NN for MNIST & Fashion-MNIST

For the learning process, in the first phase, synaptic weight values are produced by

training the network with 60,000 classified sample images in MNIST and Fashion-

MNIST each. After the training (learning) process, we test the accuracy of this

neural network with the other unclassified test images for these two datasets. Each of

these images is a 28× 28 matrix with the entries value from 0 (the brightest possible

pixel, white) to 255 (the darkest possible pixel, black) [284]. To work in an analog

domain, the value of each pixel is divided by 255 to generate value in the range from

0 to 1. In the output layer of ANNs, there are 10 neurons each of which is determined

to be one digit from 0 to 9. Each neuron in this layer generates a voltage between 0

and 1 which is considered as the probability of being one specific digit in the MNIST

dataset or belonging to that specific category in Fashion-MNIST.
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For example, if the fifth neuron has the maximum value, it means the questioned

digit is 4 in the MNIST or that picture belongs to the coat category in the Fashion-

MNIST. To test the proposed design from multiple aspects, different ANNs with

different characteristics are taken into account. By training parameters like epoch (the

number of times that the model cycle through the data) and epsilon (the minimum

error rate) [282, 283] modification, the maximal precision is achieved.

In this ANN, we have three fully connected layers including an input layer with

784 neurons, one hidden layer with 128 neurons, and an output layer with 10 neurons

for providing us with ten categories. We train this ANN by using MNIST with batches

of size 128 for 10 epochs and the Adam optimizer with the learning rate of e−3.

Additionally, according to the existing studies [285, 286, 287, 288] on MNIST

and Fashion-MNIST, we know that pure Tanh cannot give us more than 89%

accuracy for MNIST and 77% for Fashion-MNIST when it is applied to all layers.

To solve this issue, the Softmax activation function is applied to the output layer and

the hyperbolic tangent is used for the other two layers. So, the ANN is upgraded to

have such functionality, and consequently, the use of the proposed Tanh design has an

accuracy of 95.58% , which is very close to 95.51% achieved by using mathematical

Tanh. Such an accuracy makes our design a competitive one [282].

For evaluating the accuracy using Fashion-MNIST dataset, considering the fact

of having the same binary files and the same size of pictures, a similar procedure

to MNIST is performed. The only difference is the higher complexity of images.

Consequently, an output layer with 10 neurons for 10 fashion classes, as coded in

Table 6.8 is built to generate a voltage between 0 and 1 for each input image, which

means the probability of being classified in one specific class. The Softmax activation

function is used for the output and Tanh for the other two layers. The use of the

proposed Tanh design results in an accuracy of 85.76% , which exhibits a 0.07%

lower value than 85.83% achieved by using mathematical Tanh [283]. The reason is
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the complexity of this dataset that makes the proposed design a slightly better match

to it. Table 6.8 and Figure 6.13 summarize the accuracy results for these datasets.

6.5.2 Adding Noise to ANN Inputs

To prove the robustness of the presented design, its accuracy is tested by adding white

(Gaussian) noise and Salt & pepper noise to MNIST and Fashion-MNIST datasets.

Table 6.9 shows the accuracy results after 10 epochs with the batch size of 128.

As we mentioned in Section 6.2, the proposed design is a part of recent MNN

architectures and the mentioned validation methods [2, 41] are applicable for this

activation function neuron design. For emerged MNNs, there are various methods to

regulate the weight values to be stored in the memristors of synaptic cells (no matter

which technology is applied). Optimization algorithms, such as stochastic gradient

descent and batch gradient descent, calculate the synaptic weight value based on the

cost function minimization. This cost function is usually defined by the existing error

between the expected and generated values.

Recent conventional methods train the network using the Central Processing

Unit (CPU) and Graphics Processing Unit (GPU) at the first step and then weights

are stored into MCAs. These training strategies are called ex-situ training [2, 289,

290, 291]. One of these efficient methods is proposed in [2] recently. This method

is called in-situ training or on-chip learning that improves an MNN based on the

hardware basis to decrease the impact of Process Variation (PV) on architecture

precision. This approach uses extra elements in the circuit to reserve the neuron

outputs and compute the gradient of the cost function. Any flaw in the chip due to

PVs may result in imprecise computation by neurons. Gnawali et al. in [2] consider

the effect of Process Variation (PV) (intrinsic and extrinsic) at the output layer. In

other words, the cost function carries the impact of PV toward output neurons, and
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the optimization algorithms in training level slander the effect of PV by adjusting the

values of weights properly.

Base on the aforementioned techniques, by using the in-situ training method [2]

any PV effect in the proposed design is being considered in the output layer of the

ANNs which works based on the Softmax activation function. The accuracy analysis

of the proposed design is done in a software program with usage of a lookup table

based on the on-chip learning methodology [2]. The actual hardware architecture can

be implemented as an MNN with the proposed hyperbolic tangent design that brings

the imprecision of the whole layers to the output layer to be taken care of.

Figure 6.14 displays the noise analysis for both sides of the proposed design

between 1 (Hz) to 1 (GHz). As expected, in low frequency, a higher noise rate is

observed, and as frequency increases, noise values decrease. The input noise graphs

are depicted based on the input current source that varies from -450 (µA) to 450 (µA)

and the output noise plots show the negligible value for noises from drain voltage of

the sub circuits.

6.5.3 Monte Carlo Analysis

To simulate the fabrication process variations besides the above-mentioned global

on-chip learning method, the Monte Carlo simulation method is applied to vary the

parameters of each element in the circuit for examination of transistor mismatches,

integration issues, and process variations. Because in each case only one side of Tanh

is activated, Monte Carlo is run only for one half of the design each time and the

results are placed together as shown in Figure 6.15. The Cadence Virtuoso divides

the variation into two different processes.

The first simulation process adds the same variation for the whole circuit at

once and is called the process variation and the second simulation option is mismatch

variation to vary every device individually. Both of these variations allow precise and
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realistic simulations for the proposed design of Tanh by defining the deviation of the

parameters for each simulation process separately. In Figure 6.15 both mentioned

procedures are considered by analyzing the value of the resistor (9.2 (kΩ)), width

and length of MOSFETs as the global variables besides the inner manufacturing

parameters.

We run Monte Carlo with 1000 samples for each half of the design. The behavior

of the circuits show the RMSE ranges for the positive and negative half are [0.017,

0.061] and [0.019, 0.058] which results in the average RMSE of 0.0309 and 0.0304 for

them respectively [292].

6.5.4 Power Consumption of Proposed Design

To prove that this is a current-based low power design, the mean of power

consumption for this design is calculated from the start point of -450 (µA) to the

endpoint of 450 (µA) current by taking step size equal to 10 (µA) current. This

power consumption calculation is based on the whole neuron circuitry in Figure 6.3.

In this implementation, it is important to know the input current absolute value does

not exceed 75 (µA) in most applications (more than 95%) [29, 278, 281] which is in

the power-efficient range of current for the proposed design.

Finally, power consumption for all steps is summed up to result in total power.

Experimental results show that the mean power consumption of the proposed design,

in the complete range from -300 (µA) to 300 (µA) is 118.79 µW , while for the

applicable range between -75 (µA) to 75 (µA) (based on experimental results in

[29, 278]), it is 65.2 (µW ). Hence the power consumption of the proposed design for

Tanh is low and lets this design to be categorized as a low-power implementation for

Tanh. Figure 6.16 shows the total ranges of the power consumption for this study

with the focus on the applicable part which is determined by a red two-sided arrow.
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6.5.5 Comparison With Others

Table 6.10 shows the comparison results among some existing hardware implemen-

tations of Tanh and our proposed design. Note that most of the existing designs are

digital and only one analog implementation for Tanh is found beside the proposed

design in this study. The two last rows of Table 6.10 are compatible with recent

CMOS-based MNNs while the others are in the digital domain. Since the previous

hardware implementations [262, 264, 257] were based on a CMOS 0.18 (µm) process,

the area of the proposed Tanh design is scaled from 45 (nm) to 180 (nm). This

process is performed by determining a factor using the geometric mean of three

aspects (minimum feature size, metal I half pitch size, and 4 transistor logic size)

to provide us with the ability to compare our novel design with existing ones [267].

In Table 6.10 the first line shows scheme-1 proposed by Lin and Wang who

estimate the initial order derivative of Tanh with an isosceles triangular function [257].

The second row presents the approximation of a lookup table for Tanh activation

function, and the third row shows the Range Addressable LUT (RALUT) estimation

[262]. In the fourth row, the area and delay of a lookup table combined with a

subtractor (LUT-Sub) [264] are shown. The fifth row shows the specification of CR

Spline design in [293] that uses PWL method and LUTs. A 3-in-1 architecture for

Tanh, ReLu, and Sigmoid is proposed by Chang et al. in [294] that although it takes

a very small area for implementation, it has a very high delay for the critical path

according to the used MUX and bit-level mapping process. The specification of this

design is shown in the seventh row of Table 6.10. All the above-mentioned designs

use the approximation methods that are explained in Section 6.1. In the eighth line

of Table 6.10, an analog implementation of NN proposed by Yildiz et al. in [40] is

proposed which is based on MCAs. In their Tanh design, the mentioned architecture

includes 2 MOSFETs, 2 resistors, and an operational amplifier that needs a big area

151



to be implemented. The final row shows the area and the delay estimation of the

proposed design after scaling [296].

Minimizing circuit delay and area usage of any hardware implementation are

two influential inseparable parameters and therefore, the fourth column is generated

considering these two factors together as a combined parameter [264]. Based on Table

6.10, the area of the proposed design is not the minimum which is expected because of

the high value of the used resistor; but the critical path delay of the proposed design

is the lowest which makes the product of these two parameters the second minimum

in the last column of Table 6.10. Also, only the two last designs of this table are

compatible with recent MNNs and low power designs without taking advantage of

any approximation method. N/P stands for Not Provided in Table 6.10 and is used

for the studies that did not report the area or delay for their implementations.

6.6 Summary

Implementing ANNs in hardware and new generation MNN provides us with high

parallelism to run a large application faster than software methods that face von

Neuman bottleneck limits [34, 273, 281]. Memristive architectures as in [48, 275,

297, 40] are attracting a lot of attention because of the vital and time-consuming

arithmetic operations like multiplications and additions that can be performed by

simple components in hardware that by taking advantage of the recent designed

resistive devices. In these methods, power dissipation and execution time are much

lower in comparison with multiprocessor-based systems that utilize neuromorphic

calculations [270, 298], or GPGPU-based architectures [299].

Considering the above-mentioned methods, a novel design for Tanh activation

function is proposed to help the neuromorphic architectures overcome the heavily

demanded computations through the layers in the training step. These computations

make them the most time-consuming section among all.
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The proposed architecture provides scientists with a pure hardware realization

opportunity. It is a low-power analog design for the hyperbolic tangent activation

function which has the simplest architecture up to now including only two MOSFETs

and one resistor after a sign unit. Accuracy results on MNIST and Fashion-MNIST

datasets, power consumption computation, reliable noise frequency analysis, and

easy implementation of this design outperforms most of the similar architectures in

literature. The other important advantage of the proposed design is its compatibility

with CMOS-based architectures especially the recent MNNs [29, 300]. It is

experimentally proved that the power dissipation of the proposed analog design for

Tanh, and its small area usage is competitive against the existing digital designs for

this important activation function while it does not affect accuracy.
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Table 6.4: Voltage Value According to NMOS Width for the Negative Side (Resistor
= 9.2 (kΩ))

NMOS width ((nm))
The range of output voltage (mV )

(For the input current -450 (µA) to 0 (A))

120 -566.96 - 0
200 -787.52 - 0
250 -906.14 - 0
350 -1.10 - 0
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Figure 6.9: Source, gate and drain voltage variation of (a) the positive half and (b)
the negative half of the proposed design.

Table 6.5: Voltage Values Range for Positive and Negative Sides of MOSFETs
According to the Circuit Resolutions

Voltage (mV ) Vth Vgs Vds Vgd

Positive side (PMOS) -471.896 [-761, 285] [-1398.2, -715] [-10, 1000]
Negative side (NMOS) 721.895 [430, 870] [570, 1416] [-1000, 49]

Table 6.6: Operation Regions of PMOS in Positive Side Tanh

Voltage
(mV )

Input Current
(µA) 0 – 8

(Cutoff)
8 – 100

(Linear Section)
100 – 450

(Saturated V)

Vg 1000 1000 1000
Vs [715, 1471) [1471, 1761) [1761, 1845)
Vd [0, 73) [73.6, 813) [813,1010)
Vgs (-471, 285] (-761, -472] [-845, 761)
Vgd (926, 1000] (187, 926] (-10, 187]
Vds (-1398, -715] (-948, -1398] [-948, -835)

Operation region
Vsg <|Vth|
⇒ Cutoff

Vsd <Vsg − |Vth|
⇒ Saturation

Vsd <Vsg − |Vth|
⇒ Saturation
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Figure 6.10: Source, gate and drain voltage variation of the positive half.
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Figure 6.11: Source, gate and drain voltage variation of the negative half.
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Table 6.7: Operation Regions of NMOS in Negative Side Tanh

Voltage
(mV )

Input Current
(µA) -450 – -84

(Saturated V)
-84 – -9

(Linear Section)
-9 – 0

(Cutoff)

Vg -1000 -1000 -1000
Vs [-1870, -1500) [-1810, -1500) [-1500, -570)
Vd [-1049, -84) [-908, -84] [-84, 0 )
Vgs [810, 870) (500, 810] (430, 500 ]
Vgd [-92, 49) [-916, -92) (-1000, -916)
Vds [821, 902) [902, 1416] (570, 1416]

Operation region
Vds > Vgs − Vth

⇒ Saturation
Vds > Vgs − Vth

⇒ Saturation
Vgs < Vth

⇒ Cutoff
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Figure 6.12: Comparison of our proposed Tanh with the mathematical form of Tanh.

Table 6.8: Accuracy Results of the Proposed Design for MNIST and Fashion-MNIST

Training Loss Training Accuracy (%) Validation Loss Validation Accuracy (%)

Tanh
Proposed
Tanh

Tanh
Proposed
Tanh

Tanh
Proposed
Tanh

Tanh
Proposed
Tanh

MNIST 0.10 0.10 96.92 96.95 0.14 0.14 95.51 95.58
Fashion-MNIST 0.38 0.38 86.19 86.13 0.39 0.39 85.83 85.76

Table 6.9: Noise Tolerance (Validation accuracy) of the Proposed Design for MNIST and
Fashion-MNIST

White Noise Salt&pepper (20%) Salt&pepper (50%)
Ideal Tanh Proposed Tanh Ideal Tanh Proposed Tanh Ideal Tanh Proposed Tanh

MNIST 92.17 92.01 94.53 94.98 90.07 89.14
Fashion-MNIST 75.29 74.96 82.88 82.53 75.61 75.21
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Figure 6.13: Training and test accuracy for MNIST and Fashion-MNIST.
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Figure 6.14: Noise analysis of the proposed design for Tanh.
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Figure 6.15: Monte Carlo results for mismatch and process variation effects.
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Figure 6.16: Power consumption of the proposed design.
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Table 6.10: Comparison of Different Designs for Tanh

Architecture Pros Cons
Area
(µm2)

Delay
(ns)

Area×Delay
(µm2×ns)

Scheme-1 [257]
High speed

Low error rate

Very high area usage
Digtal-based domain
Not compatible with

recent MNNs

32069.83 903 2.895× 10−11

LUT [262] Low error rate

Very low speed
High area usage
Digtal domain

Not compatible with
recent MNNs

9045.94 2.15 1.944× 10−17

RALUT [262] Low error rate

Low speed
High area usage

Digtal-based domain
Not compatible with

recent MNNs

7090.40 1.85 1.311× 10−17

LUT-Sub [264] Small area usage

Low speed
Digital-based domain
Not compatible with

recent MNNs

3646.83 2.31 0.842 ×10−17

CR Spline [293] Low error rate

Low speed
Very high area usage
Digital-based domain
Not compatible with

recent MNNs

5840 Gates
No Memory

N/P N/P

3in1 Activation
Function [294]

Very low area usage

Low speed
High error rate

Digital-based domain
Not compatible with

recent MNNs

1947.69 N/P N/P

DCTIF [295]
Low error rate

Small area usage

Very Low speed
High area usage

Digita-based domain
Not compatible with

recent MNNs

2451.0 7.632 18706.032

MCA-based
Analog NN [40]

High speed
Analog-based domain

Compatible with
recent MNNs

High area usage
High power consumption

N/P N/P N/P

Proposed Tanh

High speed
Analog-based domain

Low error rate
Low power consumption

Compatible with
recent MNNs

Moderate area usage
Moderate speed

7058.94 1.85 1.305× 10−17
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

7.1 Contributions

In this study, various ANN methods are discussed and their applications in power

systems are investigated. The first chapter of this thesis discusses the preliminaries

which are utilized in the subsequent chapters. Also, transmission lines as a system

with imbalanced datasets are described.

In the second chapter, a comprehensive review of ML methods for TL

fault detection, classification, and location estimation is presented. The existing

methodologies are divided into three main categories called generic ML, ANNs, and

hybrid methods. Generic ML approaches are categorized into five subsections, namely,

Naive Bayes Classifier, Decision Tree, Random Forest, Support Vector Machine,

and k-Nearest Neighbour. ANNs are divided into four main categories based on

their various structures, namely, Feed forward Neural Network, Convolutional Neural

Network, Adaptive Neuro Fuzzy Inference System, and other small groups such as

Extreme Learning Machine and Probabilistic Neural Network. Finally, the third

category is assigned to hybrid methods. The basic idea, fundamental equations, and

relevant publications since 2015 are included and summarized for each method. The

significance of this survey is highlighted as compared to the existing review studies

in this paper. Moreover, the advantages and disadvantages of the ML approaches are

discussed in details and summarized to provide a clear pathway to future research

directions.

In the third chapter, the problem of fault detection, identification, and location

estimation of transmission lines using two NNs, namely, GRNN and CNN is studied.

The data used in this study are the phase current and voltage measured from one end
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of the transmission line. An FFT is used to extract the amplitude of the fundamental

frequency components from the current and voltage waveforms, and feed them to both

of the NNs for the detection, identification, and location estimation of faults. The

main contribution of this chapter is that it analyzes the robustness of the proposed

detection, identification, and location estimation techniques against the parameter

changes in a transmission line, namely fault resistance, fault inception angle, source

inductance, phase difference between the two buses, bus voltage amplitude variation,

and measurement noise. In addition, a time delay analysis is performed to guarantee

that these modules can successfully complete their tasks within the desired time

window based on the IEEE39 standard model before the tripping relays disconnect

the transmission line. In overall, CNN has a better performance in both identification

and localization of the faults in comparison with GRNN. It should also be noted that

both GRNN and CNN have better robust performance compared to other techniques

in the literature.

In the fourth chapter, a deep learning methodology is proposed based on the

transfer learning technique to improve the results of insulator image classification

problem. One contribution of this chapter is that the original CPLID dataset has

only 248 broken insulator images among 3,808 images which puts this dataset in an

imbalanced dataset category. Using the data augmentation approach with different

portions, a tremendous balanced dataset with 16,720 images is produced, which is a

more reliable dataset comparing to the dataset with only 3,808 images. This chapter

presents a transfer learning methodology. First a VGG-19 CNN is implemented as

the base model for transfer learning, which is trained using the ImageNet dataset.

Next, the weights of VGG-19 layers, except the two fully connected final layers, are

kept frozen to perform the feature extraction task. The weights of the fully connected

final layers are updated by using the insulator image dataset for the fine tuning. This

transferred VGG-19 CNN generates better accuracy results than its benchmarks. The
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results show that the proposed transfer learning technique is able to distinguish the

intact and broken insulator images with more than 99.9% accuracy, and the required

time for insulator image classification in the proposed technique is about half of the

reported time in existing studies.

The fifth chapter proposes a novel architecture for hyperbolic tangent activation

function in neural networks. Implementing ANNs in hardware and new generation

MNN provides us with high parallelism to run a large application faster than

software methods that face von Neuman bottleneck limits [34, 273, 281]. Memristive

architectures as in [48, 275, 297, 40] are attracting a lot of attention because of the

vital and time-consuming arithmetic operations like multiplications and additions

that can be performed by simple components in hardware that by taking advantage

of the recent designed resistive devices. In these methods, power dissipation and

execution time are much lower in comparison with multiprocessor-based systems that

utilize neuromorphic calculations [270, 298], or GPGPU-based architectures [299].

Considering the above-mentioned methods, a novel design for the Tanh

activation function is proposed to help the neuromorphic architectures overcome

the heavily demanded computations through the layers in the training step. These

computations make them the most time-consuming section among all. The proposed

architecture provides scientists with a pure hardware realization opportunity. It is

a low-power analog design for the hyperbolic tangent activation function which has

the simplest architecture up to now including only two MOSFETs and one resistor

after a sign unit. Accuracy results on MNIST and Fashion-MNIST datasets, power

consumption computation, reliable noise frequency analysis, and easy implementation

of this design outperforms most of the similar architectures in literature. The other

important advantage of the proposed design is its compatibility with CMOS-based

architectures especially the recent MNNs [29, 300]. It is experimentally proven that

the power dissipation of the proposed analog design for Tanh, and its small area usage
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are the two significant improvements as compared to the existing digital designs for

this important activation function, while the accuracy is not affected.
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7.2 Limitations

After conducting all the research and investigation in the deep learning methodologies

and their applications in industries, numerous problems are raised for which there

is still no solution, such as the high computational load of deep neural networks,

training the neural networks while having no or limited amount of labels, the usage

area of deep neural networks, finding the compatible neural network while facing a

new dataset, and etc. There are also some novel ideas to build neural networks using

LEDs which makes them more efficient with less area and power usage [301]. The

above mentioned problems and novel ideas should be further studied and analyzed in

deep learning area.
In this section, some of the existing limitations in deep learning and power

system fields are discussed.

1. Although the proposed intelligent techniques in this work result in a great
promise in the areas of power system and smart grid, applying these AI-based
method to industry and taking advantage of them in reality remain an open
research and development field.

2. Deep learning methodologies are usually computationally expensive, and
complex architectures such as VGG-19 should be used with extra attention
in reality. There are always some solutions for reduction of the computational
load in deep learning method, such as different optimization ideas, which can
be applied to the existing studies.

3. Using transfer learning technique to generalize fault diagnosis of transmission
lines is dependent on the firstly given length and might not be applicable to
more complex scenarios. To generate more robust techniques we always need
to consider possible variations.

4. Considering the two generator model of a transmission line is a special case
and there are much more complex networks in power systems. Having more
than two generator models in these systems can affect the performance and the
robustness of the proposed fault diagnosis method.

5. There are always outliers, or mis-recorded or missing data in real datasets,
which are not encountered in the data only based on simulations. Hence, being
cautious about data related issues in real world is vital.
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7.3 Future Work Directions

Considering the above-mentioned limitations, we can take advantage of some studies

which help us to handle the outliers or newly emerged data points such as those in

[302, 303]. Despite the fact that the approaches in this dissertation are inclusive and

accurate for fault diagnosis in TLs, majority of the reviewed papers fail to propose

solutions for some remarkable problems such as:

• Variations of voltage amplitude and phase changes of generators

• Additive noise

• False detection of high-impedance TL faults [304]

• Shortage of fault data in the real world for the training step

Besides the above-mentioned issues, the innovations and advancements, which are

continuously happening in power system monitoring and control, increase the need

for higher level ML methods such as hybrid methods [305, 306], transfer learning

[307, 175], federated learning [308], edge computing [309], and edge ML [309].

Not only the datasets for TL fault detection and location estimation are

time series and unbalanced, but also there exist numerous different types of power

distribution networks. Therefore, new hybrid approaches can help with the reduction

of training and testing times, and the probability of the over/underfitting [310, 311].

Besides, enormous TL networks in large cities cause huge datasets that are high-cost

and unsafe to be transferred. Consequently, the emerging approaches based on

“federated learning” can develop methodologies that provide the advanced learning

ability without transferring the actual datasets [312, 313].

Edge ML is a revolutionary technique, which resolves security concerns

pertaining to storing high-risk information from power systems in the cloud, and

reduces strain on cloud networks by processing data locally. This methodology enables

the processing of data in real-time, which is a required feature in solutions for TL fault
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detection problems [148]. It is also used to solve the issues with the low capability

of finding fault features for line-to-ground or line-to-line faults, because these faults

have complex models according to their numerous modes [314]. Consequently, edge

ML assists the complex implementation of recently emerging power TL technologies

to become efficient by using cloud computing [315].

Some recent studies such as [314] have used edge computing methods to

overcome the TL fault detection issues, such as the low capability of finding fault

features for line-to-ground or line-to-line faults. These faults require multiple mode

components for detection of their types which complicate the model. Therefore,

implementation of computationally intensive power TL technologies can be done

efficiently by using edge computing techniques [315]. Moreover, the emerging

“transfer learning” methods can reduce the training and testing times of NNs by

using different parts of other already trained NNs based on existing labeled datasets

[316, 205, 317, 318, 319, 203, 202, 320, 206, 321].

Although in the field of TL protection, finding the locations of faults is as

important as detecting and identifying the types of faults, the papers that focus on

all 3 tasks (detection, classification, and location estimation) are fewer than those

that only solve the fault type classification problem. As well as finding solutions for

these three problems of TL faults, an all-embracing analysis of the robustness for risky

parameters of generators such as variations of power flow angle, voltage amplitudes,

and phase changes is a matter of serious concern and a future research direction.

Advanced techniques in meta-learning, continual learning, and incremental

learning can be considered in intelligent fault diagnosis of power systems. Applying

deep transfer learning imagery datasets to TLs for various purposes is another

interesting path to follow. How to perform fault detection for extended power

systems with more than 2 generators remains an open problem. Multiple optimization

methods, e.g., should be adopted [322, 323, 324, 325, 326, 327]. Taking advantage of
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edge ML method to achieve higher speed in TL fault diagnosis might be helpful. Some

recent methods, e.g., those in [325, 326, 323, 327, 322, 324], can be adapted for this

purpose. Hybrid methods such as Convolutional Neural Network (CNN)-k-Nearest

Neighbour (k-NN) to solve the problem of TL fault location estimation problem that

is a challenge nowadays, can be a new direction to study. Light-weight CNN-based

methods, e.g., [328, 329], can provide a reliable solution to this problem.
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