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Preface to “Performance of Induction Machines”

Induction machines are one of the most important technical applications for both the industrial

world and private use. Since their invention (along with the achievements of Galileo Ferraris, Nikola

Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and

as generators, thanks to their features such as reliability, durability, low price, high efficiency, and

resistance to failure. The main objective of this book is to contribute to the development of induction

machines in all areas of their applications.

The methods for designing and using induction machines and drives are, in many aspects,

very similar to the methods used in other electric machines but have their own specificity. Many

issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea,

Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction

machines, which are still relevant today. The control algorithms presented here are based on the

achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque

control), who created standards for the control of induction machines.

Today’s induction machines must meet very stringent requirements of reliability, availability,

high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms,

it is possible to design induction machines and entire very complex drive (or generator) systems faster

and at a lower cost. At the same time, progress in the field of materials science and technology enables

the development of ever more complex machine topologies.

The Guest Editor hopes that the publication of this collection of scientific papers, dedicated to

the topic of induction machines, will contribute to the dissemination of modern knowledge about

these machines among specialists in this subject.

Ryszard Palka

Editor
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The Performance of Induction Machines

Ryszard Palka

Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37,
70-313 Szczecin, Poland; ryszard.palka@zut.edu.pl

1. Introduction

Induction machines are one of the most important technical applications for both the
industrial world and private use. Since they were invented (the achievements of Galileo
Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used
thanks to such features as reliability, durability, low price, high efficiency, and resistance to
failure. Induction machines are used in different electrical drives and as generators.

The main objective of this Special Issue on “The Performance of Induction Machines”
is to contribute to the development of induction machines in all areas of their applications.

2. A Short Review of the Contributions in This Special Issue

Eleven scientific papers were collected in this Special Issue [1–11]. These papers
concern many aspects of the theory, design, control, optimization, supervision, and use of
induction machines (IMs).

In [1], the authors present a review of IMs over the last 75 years. This paper cites many
important articles describing the recent development of IM technology (e.g., [12]) and gives
many valuable tips on the proper use and operation of IMs. The paper also contains many
tips on the selection of appropriate materials for IM structures, windings, and insulation.

In [2], the thermal conductivity of soft magnetic materials in electric traction machines
was studied and presented. Within this study, eight different soft magnetic materials were
analyzed. An analytical approach was introduced to calculate the thermal conductivity
of these materials. Temperature-dependent measurements of the electric resistivity were
performed to obtain sufficient data for the analytical algorithm. Finally, an experimental
approach was performed, and the thermal diffusivity, density, and specific heat capacity
were determined. The accuracy study of all measurements shows good agreement for all
materials. This is of great importance in all types of electrical machines; the selection of
the appropriate soft magnetic material is a significant influencing factor on the overall
efficiency of all drives.

In [3], a procedure for the accurate modeling of ring induction motors (RIMs) is
proposed. This modeling was carried out based on the measured data for the torque-slip
characteristic and using the equivalent circuit of the RIM. The use of the Monte Carlo
method allowed for significant improvement in the modeling results in terms of both the
torque-slip characteristic and extended Kloss equation of RIMs.

Different methods of IMs’ optimization were summarized in [4]. The main purpose
of this paper was to develop methods to reduce the computational effort in the design
and optimization of IMs using the finite element method or analytical methods. For this,
indirect machine models, such as the Response Surface Model, Kriging Model, or Artificial
Neural Networks, have been proposed. With the help of the above algorithms, it is possible
to optimally select the geometrical sizes of machines with a given structure. By means
of appropriate analysis, the Response Surface Model seeks to relate a response of input
variables that influence the output of the system. Kriging is able to exploit the spatial
correlation of data in order to predict the shape of the objective function based only on
limited information. These surrogate models replace the machine model and estimate

Energies 2022, 15, 3291. https://doi.org/10.3390/en15093291 https://www.mdpi.com/journal/energies1
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the output parameters of the machine based on the input parameters. The optimization
environment using the model and parameter selection procedures was applied to the
design of a traction IM.

In [5], a procedure for the methodical selection of the most suitable model for design
optimization is presented. The model selection based on the electromagnetic field calcula-
tion is presented. For this purpose, models of different value ranges and levels of detail
were considered. The model selection approach was explained in detail and applied based
on a coupled electromagnetic–thermal simulation of an exemplary IM. The results show
that this model selection can be used to methodically determine the most suitable model in
terms of its value range, level of detail, and computational effort for a given multiphysical
problem.

The work in [6] deals with fault detection in IMs. This is a fundamental element of the
electric power industry, manufacturing enterprise, and services; hence, considerable efforts
have been carried out on developing reliable, low-cost procedures for fault diagnosis in IMs
since the early detection of any failure may prevent the machine from suffering catastrophic
damage. In this paper, a straightforward procedure was introduced for identifying and
classifying faults in IMs working as motors. The proposed approach is based on the analysis
of the startup transient current signal through the current signal homogeneity and fourth
central moment (kurtosis) analysis. It was applied for training a feed-forward, backpropa-
gation artificial neural network used as a classifier. From experimentally obtained results,
it was demonstrated that the brought-in scheme attained high certainty in recognizing and
discriminating among different IM conditions, i.e., a machine in good physical condition, a
machine with one broken rotor bar, a machine with two broken rotor bars, a machine with
damage on the bearing outer race, and a machine with an unbalanced mechanical load.

The next contribution [7] presents a predictive rotor field-oriented angle compensation
approach for IM drives. The algorithm proposed here makes it possible to improve the
traditionally used algorithms for controlling IMs, which are very sensitive to changes
in the resistance and impedance of the machine circuit. Therefore, the d-axis and q-axis
currents in the rotation reference frame are predicted based on the model and compared
with the feedback current to correct the rotor field-oriented angle. A very similar predictive
algorithm was used to control linear induction motors (LIMs) in urban transit applications,
where the motors are usually required to operate at peak thrust and the main parameters
responsible for the precise peak tracking (the rotor resistance and the mutual inductance)
vary in a very wide range [13].

The field vector-oriented control is one of the most advanced and widely accepted
methods used for the rotary machine torque control. It was first conceptualized by
Blaschke [14]. Direct Torque Control is yet another vector control technique. It was
introduced by Depenbrock [15] and Takahashi [16]. The control algorithms presented
here, as well as other algorithms used to control IMs, are based on the above fundamental
achievements, which belong to the canon of literature on IM control.

Garbiec and Jagiela [8] have presented a validated computational algorithm that
enables the inclusion of the nonsinusoidal or asymmetrical voltage supply in the multi-
harmonic field-circuit model of IM. The development of the strongly coupled multi-
harmonic field model concept effectively accounted for the nonlinearity and asymmetry of
the voltage supply in the calculation of the operating characteristics of a high-speed IM
with a solid rotor in a steady-state complex-valued finite element modeling framework.
The multi-harmonic field-circuit model may become an effective tool in the process of
designing IMs, in particular for reducing losses due to higher harmonics of the magnetic
field of various origins.

The next paper [9] presents an adaptable simulation of an IM with a downstream
protection scheme. For this purpose, a special algorithm was proposed to implement
both static and dynamic modeling of a three-phase IM due to possible faults and high-
performance requirements. This algorithm has been tested against several conventional
methods. It was observed that during the stable condition of the machinery, it prevented the
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occurrence of many serious faults. To simulate and examine the behavior of a three-phase
IM, the Matlab-Simulink software was used. Many simulations were carried out to obtain
realistic characteristics of the analyzed IM, such as torque-speed, efficiency-torque, etc.

Park, S.-U. et al. [10] have investigated the efficiency improvement of the slip frequency
in LIMs. In their study, mathematical analysis was conducted for each factor that mutually
affects the control of the train. On this basis, the magnitude of the normal force related to
the safety of the train is limited. Operating efficiency was improved by varying the slip
frequency according to the operating conditions of the train. This algorithm takes advantage
of the fact that the generated normal force is a factor that destabilizes the levitation system
of the train and is a potential safety problem due to train levitation failure. It also induces
additional energy consumption in both the propulsion system and the levitation system,
thereby reducing efficiency. The verification of the proposed method was proved through a
comparative experiment for the Maglev Train running at Incheon International Airport.

The following paper [11] presents the theory and classification of LIMs. Fundamental
achievements on LIMs and rotating IMs were studied here, and specific LIM problems are
discussed. Many methods of LIMs’ calculation, optimization, and control are identical (or
very similar) to the methods applicable to rotating IMs. However, because of the differences
between the LIM and the rotary machine, some unconventional analysis techniques and
modeling methods have been developed. The electromagnetic calculations of the rotary
motor are reasonably simple because of the motor’s “infinite” character and the possibil-
ity of applying many simplifications, thus limiting the solution region and speeding up
the calculations even further. This paper provides an overview of linear transportation
systems—levitated, non-levitated, with synchronous motors, with induction motors, and
with superconducting induction motors—and focuses on the application of a LIM as a
major constituent of such systems. Thus, solutions to the following problems are presented
there: the development of new analytical solutions and finite element methods for LIM
evaluation [17]; self-developed LIM adaptive control methods [13]; LIM performance under
voltage supply (non-symmetrical phase current values); method for the power loss evalua-
tion in the LIM reaction rail [13,18]; the temperature rise prediction method of a traction
LIM; and the discussion of the performance of the superconducting LIM (superconducting
propulsion and levitation [19]). The addressed research topics have been chosen for their
practical impact on the advancement of a LIM as the preferred urban transport propulsion
motor [20].

The problems presented in the last two papers are based on the foundational achieve-
ments of authors such as Nasar and Boldea [21], Yamamura [22], and Tegopoulos and
Kriezis [23], who laid the foundations for the development of LIMs, which are still rele-
vant today.

3. Conclusions

The Special Issue, “The Performance of Induction Machines”, highlights the variety of
problems faced by designers and users of induction machines.

Some of the presented approaches, e.g., design, control, optimization, and fault detec-
tion in induction machines, may also be adapted and applied to other related applications
of electrical machines. Therefore, the Guest Editor hopes that the collected papers may be
inspiring for the readers, leading to the further development of new methods of designing
and using modern, high-efficient electrical machines.

Funding: This research received no external funding.

Acknowledgments: The Guest Editor is thankful for the invaluable contributions from the authors,
reviewers.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In the late 19th century, the three-phase induction motor was the central element of
productivity increase in the second industrial revolution in Europe and the United States. Currently,
it is the main load on electrical systems in global terms, reaching approximately 70% of electrical
energy consumption in the industrial sector worldwide. During the 20th century, electric motors
underwent intense technological innovations that enabled significant performance gains. Thus, this
work analyses the performance changes in squirrel-cage rotor three-phase induction electric motors
(SCIMs) with mechanical powers of 3.7 kW, 37 kW, and 150 kW and speed ranges corresponding to
two poles and eight poles, connected to a low voltage at a frequency of 60 Hz and tested between
1945 and 2020. The study confirms accumulated performance gains of above 10% in some cases.
Insulating materials for electrical conductors have gone through several generations (cotton, silk,
and currently, varnish). Improvements to the housing for cooling, the bearings, the quality of active
materials, and the design were the elements that enabled the high gains in performance. The first
commercial two-pole SCIM with a shaft power of 4.4 kW was marketed in 1891, with a weight/power
ratio of 86 kg/kW, and until the 2000s, this value gradually decreased, eventually reaching 4.8 kg/kW.
Between 2000 and 2020, this ratio showed a reversed trend based on improvements in the performance
of SCIMs. More active materials were used, causing the weight/power ratio to reach 8.6 kg/kW. The
MEPS (minimum energy performance standards) of SCIMs had an essential role in the performance
gain over the last three decades. Data collection was via tests at the Electrical Machines Laboratory of
the Institute of Energy and Environment of the University of São Paulo. The laboratory has a history
of tests on electrical equipment dating from 1911.

Keywords: three-phase induction motor; squirrel-cage rotor; energy efficiency; motor performance

1. Introduction

The production of mechanical force was one of the fundamental human demands in
the transformation process that took homo sapiens from an animal in nature like the others
to the construction of megacities and technological mastery [1].

The process of producing mechanical force went through several phases. The do-
mestication of animals represented an essential step in automation and the increase in
labour productivity, necessary for changing the way of life from hunter and gatherer to
farmer/shepherd [2]. With the use of other domesticated animals, homo sapiens could
perform an activity without the need to use muscular strength directly [3].

The production of mechanical force was primarily responsible for the first two great
industrial revolutions. The first industrial revolution began in England around 1750–1760,
lasting until somewhere between 1820 and 1840, and was marked by the development

Energies 2022, 15, 2002. https://doi.org/10.3390/en15062002 https://www.mdpi.com/journal/energies5
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and application of the steam engine in industrial manufacturing processes [4]. The second
industrial revolution replaced steam engines or gas engines with electric motors [5].

In the late 19th century, new electric motors were more economical. They required less
maintenance, took up less space, ran at a more uniform speed, and allowed a cleaner envi-
ronment [6]. Within just one generation after its introduction in the 1880s, the electric motor
drive had replaced steam as the preferred means of providing motive power (Figure 1) [7].

Figure 1. Percentage of mechanical drive manufacturing from hydraulic power, steam engines, and
electric motors per year. Source: adapted from [7,8].

With large-scale electric motors electrifying industrial plants, the industrial plants
gained flexibility. It was no longer necessary to be close to a stream in order to use
mechanical energy from water or a coal mine for direct use of coal in a steam engine [9].

The mechanical force arising from water (Figure 2a) or steam engines (Figure 2b)
was generally available from a single central axis and later, when subdivided, ran the
entire length of the factory, with high losses in the gears and the emission of noise and
vibrations throughout the industrial plant. In some cases, the engines served different
industrial buildings. The connections made by belts and gears could drive hammers,
presses, looms, and other machines, transferring mechanical energy horizontally between
walls and vertically through industrial floors [10]. Due to the large distances and inevitable
friction in these units, 60% to 80% of the transmitted energy was lost [11]. Everything
required continuous lubrication by thousands of drip lubricators, with workers having
direct access to the rotating parts, thus remaining exposed to high possibilities of work
accidents [12].

Electric motors proved to be more efficient and more economical, and they reduced
reliance on the complex mechanical shaft, pulley, and belt systems to distribute the me-
chanical drive from the central plant throughout the plant. The drive was located close to
the load, and the energy was transferred by small electrical conductors [17] (Figure 2c).
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Figure 2. An industrial organization based on: (a) mechanical drive from hydraulic energy; (b) steam
engines; and (c) electric motors. Source: [13–16].

The motors could reliably be fractionally coupled to the mechanical load with the
electric drive, making it possible to establish an industrial flow in the manufacturing
process. By splitting the mechanical drives, flexibility in maintenance was also gained,
and islands with independent operation were possible. During a breakdown, it was not
necessary to stop the entire plant. This freedom revolutionized industrial design and
layout and provided the possibility of optimization in process control and better working
conditions, leading to significant advances in productivity [8,18,19].

Currently (21st century), electric motors are the driving force of modern industrial
society. Electric motors drive domestic refrigerators, pump water for heating, and drive
ventilation, enabling the distribution of compressed air and the movement of loads on
conveyor belts, in addition to keeping cities’ water supplies flowing [20].

Several electric motor technologies have been developed. However, only three have
become mainstream in industrial stationary electric drives. They are:

1. Direct-current motors, which were the first to be developed. Their applications are
limited to situations in which speed control is essential, because by controlling the
voltages applied to the rotor windings (armature) and the stator windings (field), it
is possible to fine-tune the speed over a wide range. However, they are expensive,
have high sparking caused by switching currents, and cannot be connected directly to
the electrical grid, requiring a converter. They also have a high need for maintenance
compared to other technologies.

2. Alternating-current synchronous motors, which are mainly reserved for high-load
drives that require a constant speed. They are also expensive and require additional
starting devices and electronic converters to feed the rotor winding (field) separately
from the stator winding (armature). Synchronous motors are high-efficiency motors,
as they have low rotor losses.

3. Cage rotor induction electric motors, which since their development have been the
predominant choice in residential (single-phase), commercial, and industrial (three-
phase SCIMs) environments. SCIMs correspond to about 87% of the total alternating-
current electric motors used in the industry [21]. Several factors make SCIMs suitable
for the broadest range of applications. Some of these are highlighted in Table 1.
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Table 1. Characteristics of SCIMs.

Advantages References

Low acquisition and maintenance cost compared to competing technologies; [22–24]
The simple constructive characteristics make its manufacture simple compared

to competing technologies; [25,26]

Simple replacement due to a high degree of standardization of housings
and connections; [27,28]

Long service life; [29,30]
A high degree of speed control using the variable speed drive (VSD), also

enabling the saving of electrical energy; [31,32]

Small dimensions can be used in compact places; [33]
Does not produce sparking, making it easier to apply in classified areas

(Ex areas); [34–36]

High starting torque compared to other competing technologies; [25,26]
Quiet compared to competing technologies; [37–39]

There is no electrical contact between the rotor and the stator; the connection is
made only by the bearings, thus giving high operating safety; [25,26]

They can be powered directly by alternating current without the need for
electronic converters; [25,26]

Easy detection of faults of various natures (electrical, mechanical, thermal,
and environmental) [40–43]

Known production chain and easy access to the mineral resources necessary
for the construction of SCIMs. They do not depend on high-volatility materials

in the supply chain, such as, for example, the rare earth magnets present in
permanent magnet synchronous electric motors (PMSMs).

[44–46]

SCIMs are seen as having undergone little change from their development to the
present day, especially when compared to the obvious advances in electronics, communi-
cation, and information technologies. Hence, this research sought answers to the follow-
ing questions:

I. What are the most significant changes that SCIMs have undergone throughout
their history?

II. Has the performance of SCIMs changed since their development?
III. Has the volume of SCIMs changed over time?

2. Materials and Methods

Section 3.1 is a review of the literature that shows the historical development of SCIMs,
focusing on the main technological innovations, material improvements, and various
projects. The sources of information are technical documents from SCIM manufacturers or
scientific articles that described the processes and the main events that caused the changes
in the mass/power ratio between 1890 and 1990, contributing to answering question I.

In Section 3.2, a literature review is presented discussing the variations in performance
between 1935 and 2012, contributing to answering questions I and II.

In Section 3.3, the primary data collected in the Technical Test Reports of the Laboratory
of Electrical Machines of the Institute of Energy and Environment (IEE) of the University of
São Paulo (USP) are presented and discussed.

Between 1945 and 1996, the Technical Test Reports were only available in printed form.
Thus, it was necessary to digitize the data and collect them into a spreadsheet. Between 1997
and 2020, the Technical Test Reports were already available in digital format for processing
and analysis.

The Laboratory of Electrical Machines of the IEE-USP has a technical collection of
approximately 21,000 technical reports. For this analysis, reports with the following charac-
teristics were considered:

(a) Three-phase induction electric motors with squirrel-cage rotor—SCIMs;
(b) Technical reports of new SCIMs;
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(c) SCIMs tested according to current regulations, with the availability of test data at
full load;

(d) SCIMs in which the nameplate data were made available by the manufacturer;
(e) SCIMs powered at low voltage (up to 600 volts);
(f) SCIMs for power supply at the industrial frequencies of 60 Hz or 50 Hz, tested at

60 Hz;
(g) SCIMs produced for continuous operation.

Using the conditions expressed in a–g, 359 technical reports of tested SCIMs with
speeds corresponding to 2, 4, 6, or 8 poles, with a motor rated output power of 3.7, 37, or
150 kW, were collected for the evaluation of the change in performance between 1945 and
2020. The assessment seeks to answer the questions (I and II) that motivated this research,
based on the data collected.

The results are organized into three different output power (kW) categories. The cho-
sen groups include low power (3.7 kW), medium power (37 kW), and high power (150 kW).
As the groups chosen to represent SCIMs are of significantly different dimensions, the pro-
duction processes used in the manufacturing process and the standards of precision/quality
of the materials are also different, even when dealing with the same equipment.

The number of poles of the electric motor determines the rotation speed, due to the
arrangement and distribution of the electrical conductors of the windings located in the
stator slots. In the SCIM market, historically, four speeds have been the most used. Between
80% and 90% of all the SCIMs sold have between 2 and 8 poles; therefore, this research
evaluates them in this speed range. In fact, 4-pole SCIMs are dominant, representing
between 45 and 70% of SCIMs [21,47].

Using the conditions expressed in a–g, 28 SCIMs with speeds corresponding to 2 poles
and motor rated output powers of 3.7, and 4.4 kW were used to evaluate the change in the
mass/power ratio between 2000 and 2020, seeking to answer the questions (I and III) that
motivated this research, based on the data collected.

The National Institute of Metrology, Quality and Technology (INMETRO) accred-
its the Laboratory of Electrical Machines at IEE-USP, following ABNT NBR ISO/IEC
17025:2017 [48] under No. CRL 0011. INMETRO periodically carries out audits in accred-
ited laboratories, aiming to guarantee the quality of the measurement results. INMETRO is
a signatory to the mutual recognition agreements of the International Laboratory Accredi-
tation Cooperation (ILAC) and the Inter-American Accreditation Cooperation (IAAC), thus
following a world standard of quality and reliability.

This research, therefore, used data from standardized performance tests. This is
because there may be differences between values measured in neutral laboratories and
values reported by manufacturers [49], and when using the measured data, errors and
uncertainties are reduced.

3. Results and Discussion

3.1. The Improvements in SCIMs

All the technological and theoretical bases for electric motor development were already
advanced by the end of the 19th century. Direct-current motors were on the market, and
alternating-current motors were in the full developmental stage, with research ongoing in
Europe and the United States. The first patent for the electric motor with asynchronous
technology was filed by the engineer Nikola Tesla [50] in 1888 and accepted in 1889 [51]
in New York. The asynchronous motor became known as an induction motor, based on
its working principle. However, Tesla’s proposal was similar to the current single-phase
auxiliary winding motors, operating with a wound rotor. The text that explained the
working principle of the new electric induction motor was published by Nikola Tesla in
1988 with the title “A new system of alternate current motors and transformers” [52].

Parallel to Nikola Tesla’s experiments in the USA were those of Galileo Ferraris in
Italy. In 1885, Ferraris developed the idea that two out-of-phase currents could be used to
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produce two magnetic fields that could be combined to produce a rotating field, without
the need for switching or moving parts, opening the door to AC electric motors [53–55].

The three-phase squirrel-cage rotor induction motor (SCIM) closest to the type we have
today was developed by a German company AEG (Allgemeine Elektricitäts-Gesellschaft),
headed by the Russian engineer Mikhail Dolivo-Dobrovolsky between 1888 and 1890 [56].
The electric motor developed by the Dobrovolsky team had very favourable characteristics
such as high starting torque, more straightforward construction features, robustness in
construction, and low maintenance needs. However, it also had the inconvenience of
needing to be powered by a three-phase alternating-current system, which was not yet
commercial. Until then, the available electrical systems were single-phase and two-phase
systems. This type of supply does not provide efficient starting of the Tesla-mounted
motor (starting torque practically non-existent), in addition to imposing some degree of
vibration during operation. The SCIM has a high starting torque and does not need auxiliary
windings and accessories such as a capacitor and a centrifugal starter, in addition to having
a lower operating current compared to a single-phase motor. However, three-phase electric
power generation, transmission, and distribution systems were quickly implemented with
the objective of feeding the attractive SCIMs [57–59].

Dobrovolsky and the AEG company gained fame for the great invention. The artist
Irene Ahrens created the illustration in Figure 3, which was exhibited in Berlin. The
engineer appears in the sky, entering the Hall of Fame with his SCIM shown near his feet.

Figure 3. Mikhail Dolivo-Dobrovolsky entering the Hall of Fame with his SCIM. Source: [57,60].

In 1891, at AEG, Dobrovolsky coordinated the first serial production of SCIMs with
shaft powers between 0.4 and 7.5 kW. The first SCIMs assembled had a performance of
approximately 80% for the power range produced and very high mass by today’s standards.
The first commercial two-pole SCIM with a shaft power of 4.4 kW was marketed in 1891.
These SCIMs had a mass/power ratio of 86 kg/kW, as shown in Figure 4.
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Figure 4. Improvements in SCIM mass/power ratio between 1891 and 1984. Source: [61–63].

The company AEG published the famous image represented in Figure 4, which shows
the mass/power ratio from the first SCIMs manufactured by the company in 1891 to the
SCIMs manufactured in 1984. The optimization of materials for electrical, magnetic, and
mechanical purposes, combined with solid technological innovations, made it possible to
reach a ratio of 6.8 kg/kW in 1984, representing only 8% of the total mass of the two-pole
SCIMs with an axle power of 4.4 kW produced in 1891, as AEG’s first commercial units.

The concept of the SCIM has not changed since the beginning of its commercialization;
however, the volume has changed considerably (Figure 4).

The technological progress of SCIMs has been remarkable, stimulated by strong
competition and by processes, technological innovations, and improvements in materials.
According to Browning (1997) [64], the changes in the mass/power ratio resulted in better
operational characteristics, even more excellent reliability, versatility, and longer life.

Browning (1997) [64] identified the following improvements in SCIMs:

• The change from open housing to closed housing;
• The change from plain bearings to anti-friction bearings. (In 1945, 35–40% of SCIMs

used plain bearings);
• The change from cotton-insulated wires to varnished wires in the stator windings;
• Construction of the squirrel-cage rotor using copper or cast aluminium bars.

The adoption of industry standards has played a significant role in the progress of
SCIMs [28,64]. An example is the thermal classification of insulating materials, which first
appeared in 1898. In 1911, standardization by the AIEE Standards (now IEEE—Institute of
Electrical and Electronics Engineers) established temperature limits for SCIMs. The 1915
edition of the AIEE Standards included definitions of insulation classes A, B, and C and the
materials assigned to those classes. In 1929, the first SCIMs built to NEMA standards were
made available on the market, setting standard dimensions and operating characteristics
for specific ratings for the first time. Users were given the ability to directly replace SCIMs
via the concept of stock electric motors for quick replacement in case of failure [64].

It is possible to observe in Figure 5 the tremendous technological innovations that
were decisive in reducing the mass and volume of SCIMs.
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Figure 5. Chronology of 0.75 kW SCIM mass reduction between 1900 and 1990. Source: [65–68].

At the beginning of the 20th century, the first major technological innovation was
the development of ball bearings, replacing the traditional plain bearings that were bulky,
heavy, and required lubrication with oil. With the new bearings and the reduction in
friction losses, the mass and volume of the SCIMs decreased considerably.

Between 1913 and 1940, there were gains in the quality of materials, improving
compaction and making it possible to reduce the volume of copper and iron used in SCIMs
and to reduce losses. In the 1940s, rotors previously built using iron sheets began to be
developed using cast aluminium, adding more mass reduction, as shown in Figure 5. In
addition, in the 1940s, with successive advances in metallurgy, SCIM housings could be
built in an increasingly closed way and could maintain the cooling of the windings located
in the stator.

In the early 1960s, a series of advances in insulation systems were instrumental
in reducing the volume of SCIMs. Between 1960 and 1970, SCIMs went through five
generations of materials used to construct insulation for electrical conductors. In the first
SCIMs, the insulation was composed of paper, and later cotton. Then, insulation with
varnish predominated until the present day. Figure 6 shows in white the area necessary to
accommodate electrical conductors of the same metallic volume inside the stator magnetic
package slot for different insulation technologies [63].

The first significant innovation in SCIM insulation systems was the replacement of
the double layers of cotton between the conductors and the sheets with two layers of
silk, allowing a reduction of approximately 59% of the groove area in the metal sheets
(ferromagnetic material) of the stator. The second major innovation was the introduction
of varnish used in conjunction with silk, giving an area reduction of over 2%, as shown in
Figure 6. Subsequently, improvements in the quality of silk and varnish allowed an area
equivalent to be reached of only 22% of the space required for the same electrical conductor
using cotton as an insulator.
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Figure 6. Space used by different insulation technologies for the same SCIM output power. Source:
adapted from [63].

Successive technological innovations and improvements in electrical, magnetic, and
mechanical materials achieved significant volume compaction in SCIMs between 1903 and
1974 [28], as illustrated in Figure 7a. Figure 7b shows the changes in appearance and frame
dimensions of SCIMs of different powers from the open construction of 1904 to those used
in the 1970s, similar to today’s drip-proof and fully fan-cooled SCIMs.

Figure 7. Dimension trends and housing changes of 11 kW 4-pole SCIMs between 1903 and 1974.
(a,b): the changes in appearance and frame dimensions of SCIMs of different powers from the open
construction of 1904 to those used in the 1970s. Source adapted from: [28,53].

Figure 7a presents SCIMs designed for operation at 220 volts and 11 kW, built by
General Electric (GE). In Figure 7a, it is possible to observe the changes in the NEMA
404 housing over the years, and two significant innovations are evident in the images
of SCIMs between the years 1920 and 1954: axial extension of the rotor at the rear and
the closed housing, seen from 1954 and made possible by the improvement in insulation
systems, enabling the transfer of heat from the windings to the outside.

Figure 7b shows a small SCIM (1904) built without a fan and considered to be “self-
ventilated” by the semi-open housing. As early as 1918, SCIMs used a fan attached to the
shaft for cooling. In 1930, the 15 kW SCIM already had a more efficient fan and could
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adopt a more closed design. In 1972, the engines were already drip-proof. Figure 7b shows
18.5 kW and 45 kW SCIMs. They could be fully enclosed (45 kW), allowing a reduction
in SCIM dimensions. As a result of the improved insulation between the conductors and
between the conductors and the ferromagnetic material of the sheets, the temperature of
the winding wires and the groove walls became more homogeneous, as they were closer
together with a thinner insulating layer. The temperature of the set decreased, and for this
reason it was possible to increase the power considerably for the same housing. The stator
slot was significantly reduced for the same power, and the magnetic section between the
slots could be increased. There was also an improvement in the ferromagnetic material, an
increase in the magnetic flux, and a consequent decrease in the number of turns per stator
coil for the same electrical voltage.

According to Alger and Arnold (1979) [28], to avoid hot spots in the centres of long
cores, radial ducts were introduced in the stator and impellers in the rotor operating as
fans, creating the airflow through the stator channels. Therefore, the rating given to the
NEMA 404 frame with an axle height and length of 25.4 cm and 31.1 cm, respectively, was
increased with respect to mechanical power from 5.5 kW in 1897 to 75 kW in 1974, as shown
in Table 2.

Table 2. Mechanical power increments in the same frame from 1898 to 1974. Source: [28].

Years Motor Rated Output Power (kW) Operating Temperature

1898–1903 5.5 40 ◦C Thermometer
1903–1905 7.5 40 ◦C Thermometer
1905–1914 11 40 ◦C Thermometer
1914–1924 15 40 ◦C Thermometer
1924–1929 18.5 40 ◦C Thermometer
1929–1940 22 40 ◦C Thermometer
1940–1956 30 50 ◦C Resistance
1956–1961 37 50 ◦C Resistance
1961–1966 45 50 ◦C Resistance
1966–1974 75 80 ◦C Resistance

The reduction in the volume of SCIMs also made it possible to reduce their costs,
intensifying the electrification of industrial plants. For example, in 1890, a 3.7 kW SCIM
weighed approximately 450 kg and cost about USD 900, and in 1957, a SCIM of the same
power weighed around 50 kg and cost USD 110 [64]. Thus, the relationship between value
and mass remained practically the same. However, as mass reduced significantly, the price
of the SCIM reduced considerably, since the cost of an SCIM is fundamentally a function of
the quantity and quality of materials used.

The company Hitachi produced three SCIMs of 3.7 kW in 1910, and in 2010 the total
production was already 40 million SCIMs. The company recorded the significant advances
that SCIMs have made over more than 100 years in this period. Hitachi divides advances
in electric motors into three distinct periods. Between 1830 and 1890 is the period of
inventions, from 1930 to approximately 1950 is the period of scientific initiatives, and
between the 1950s and the present day is the period of industrial initiatives [69].

Various technical and technological developments have made Hitachi SCIMs smaller
and lighter over the 100 years from 1910 to 2010. Figure 8 presents the leading technologies
used by Hitachi that made it possible to reduce the mass of the first SCIM, with a power
of 3.7 kW (four poles) manufactured by the company in 1910 with a mass of 150 kg, to
approximately 20% of the mass in 2010 (30 kg).
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Figure 8. Hitachi SCIM mass changes for 3.7 kW (4 poles) SCIMs. Adapted from [69].

The main changes recorded were the use of aluminium in the rotor in the late 1940s.
Later, in the 1950s, bearings improved, moving from sliding technology to ball bearings.
In the late 1960s, improvements were made with the application of new insulation classes
of varnishes on the wires. In the mid-1970s, cast iron frames gave way to lighter sheet
steel frames. In the 1990s, aluminium structures closed the cycle of major technological
innovations in Hitachi’s first 100 years (1910–2010).

Reduction of Volume and Losses of Ferromagnetic Materials in SCIMs

The first electrical devices to use ferromagnetic materials were developed in the second
half of the 19th century. Knowledge about these materials, such as their structure, was
absent; as a result, the development of the projects was based on trial and error [70].

For SCIMs to thrive, they needed to advance in generating, transmitting, and dis-
tributing electrical energy via alternating current (AC) [71]. Charles Proteus Steinmetz was
hired by General Electric (GE) (by Thomas Alva Edison) to improve the AC distribution
system. He developed the complex representation of variables sinusoidally in time, which
is still in use today [72]. Steinmetz deepened his studies of ferromagnetic materials to better
compete with Westinghouse, which manufactured the induction motors invented by Tesla.

The first concepts regarding losses in ferromagnetic materials, traditionally known as
iron losses, were developed by Steinmetz [73]. Via understanding how the losses behaved
with changes in the intensity of the magnetic field, the General Electric induction motors
became competitive, due to the reduction in the volume of material used [74].

Steinmetz’s secret was to use increasingly thin sheets. The eddy current losses depend
on the square of the sheet thickness, the hysteresis losses, and the square of the magnetic
field strength [75]. Steinmetz’s discoveries led to more efficient rolling mills that produced
thinner and thinner sheets.

Understanding the ferromagnetic losses (hysteresis and eddy current) was decisive
for selecting increasingly thin sheets to assemble the stator and rotor magnetic package.
Thus, it was possible to impose a greater magnetic flux density in the package of sheets,
approaching the limit of the magnetic saturation of the plate. This knowledge contributed
to reducing the volume of SCIMs to approximately one third of the initial volume between
1891 and 1901 (Figure 4).
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Subsequently, the development of ferromagnetic materials focused on reducing iron
losses through heat treatment of the materials and the “doping” of silicon to increase the
resistivity of the composite [76], thus enabling the intensification of the magnetic field and
consequently reducing the volume of the SCIMs for a defined power.

To better understand the reason for the volume reduction of SCIMs over time, as
shown in Figure 4, regarding the reduction provided by the improvement in ferromagnetic
materials, it is possible to model the volume of SCIMs from the increase in the intensity
of the magnetic field in their structures. This imposition of increasingly intense magnetic
fields was one of the main reasons for the reduction in the volume of electric motors since
their development.

A mathematical expression that translates the volume/power ratio as a function of the
imposed magnetic flux density can be deduced from the electromechanical energy conver-
sion equation, where the phase-induced electromotive force is given by Cardoso et al. [70]:

E = 4.44fNeff∅ (1)

where f is the frequency (Hz), Neff is the number of adequate turns in series per phase, and
∅ is the magnetic flux per pole (Wb).

Furthermore:

∅ = 2
BLR

p
(2)

where B is the density of the magnetic flux in the air gap (T), L is the packet length (m), R is
the radius of the air gap (m), and p is the number of pole pairs.

The electric current expressed as a function of the magnetic field in the motor air gap
was expanded from the classical magnetomotive force equation FMM = NI = �φ, and can
be expressed as [70]:

I =
πplgB

3
√

2μ0Neff
(3)

where μ0 is the magnetic air permeability (H/m), p is the number of pole pairs, and lg is
the thickness of the air gap (m).

Ignoring any type of losses, the motor power will be given by P = mEI, where m is
the number of motor phases.

Substituting E and I by their values expressed in Equations (1) and (3) results in:

P =
πmp2lgn

3μ0
B2Vol (4)

where n = f
p represents the synchronous motor rotation in rps and Vol = πR2L represents

the motor volume.
Reorganizing Equation (4), it is possible to mathematically verify the volume/power

ratio of SCIMs and other equipment that uses ferromagnetic materials, in proportion to the
intensity of the internal magnetic field in Equation (5).

Vol
P

=
1

KmB2 (5)

with:

Km =
πmp2lgn

3μ0
(6)

Equation (5) is inversely proportional to the magnetic flux density characteristic
square, expressing a curve similar to that of Figure 4. It suggests that one of the primary
explanations for the reduction in the volume (or mass) of SCIMs over the years was the
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more significant imposition of the magnetic field on its magnetic structure, as shown in
Figure 9.

Figure 9. Density of the magnetic flux in the air gap and the volume of SCIMs.

Figure 9 represents the relationship between the improvement in the quality of the
ferromagnetic material and the reduction in SCIM volume, considering the same output
power. As a result of Equation (5), the curve is theoretical since it is impossible to design an
electric machine with unlimited magnetic flux density (B) or a value of B very close to zero.
Hence, the curve represents one of the essential reasons for the reduction in the volume of
SCIMs from the first units to the present day.

It is estimated that for 110 kW electric motors, the losses in ferromagnetic materials
represent, on average, 59% of the total losses [77]. The losses increase with increasing
frequency of the electric voltage. These materials have also undergone improvements from
the first electric motors to the current ones.

Since Michael Faraday demonstrated electromagnetic induction in 1831 [78], soft
magnetic (ferromagnetic) materials have continued to evolve. When iron was the only
soft magnetic material available, metallurgists and materials scientists experimented by
introducing other elements to improve the efficiency of iron.

The main known losses in ferromagnetic materials are hysteresis and eddy current
losses. Hysteresis losses occur through the coercivity of a magnetic material. Each time a
material with magnetic characteristics completes an entire cycle of its magnetization curve,
the area within this curve measures the energy lost in the magnetization process.

The second primary loss mechanism in soft magnetic materials is eddy currents. Eddy
currents are closed electric current paths generated in a conductor whose source is a time-
varying magnetic field. These current loops create a magnetic field in opposition to the
change in magnetic flux (according to Faraday’s law of induction). The energy losses
caused by eddy currents scale approximately with the square of the operating frequency
and are thus a significant cause of losses in alternating-current machines.

The development of silicon (electrical) steel in about 1900 was a notable event in
the advances of soft magnetic materials [79]. Silicon steel still dominates the global soft
magnet market and is the material of choice for large-scale transformers and electrical
machines such as SCIMs. In 1900, Robert Hadfield, a metallurgist from England, and his
team developed unoriented silicon steel by adding up to 3% of silicon to iron and increasing
its electrical resistivity (ρ) [80].
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The team led by the American metallurgist Norman Goss developed grain-oriented
silicon steel in 1933, promoting grain growth along a crystalline direction. The most
common applications for silicon steel are large-scale transformers (grain-oriented silicon
steel) and electrical machines (unoriented isotropic silicon steel is preferred for rotating
machines), for which the economical price is a great benefit [80].

Improvements in magnetic properties were also achieved, from the treatment of iron
to minimize chemical impurities to the techniques of slicing the iron into thin sheets. Sub-
sequently, silicon was used to increase the electrical resistance of iron and control the
crystal orientation. Figure 10 presents the reduction in losses in the core of electrical ma-
chines in watts for each kilogram of ferromagnetic material, highlighting the predominant
technological advances of each period.

Figure 10. Changes in losses in the core of electrical machines (ferromagnetic material). Source:
adapted from [7,76,81].

It is possible to observe in Figure 10 that between 1884 and 1970, the losses in the core
of alternating-current electrical equipment reduced from 8.16 W/kg to 0.44 W/kg, which
represents an approximately 95% reduction.

Figure 10 shows low frequencies (50 or 60 Hz) and a constant B (T) value, as both
directly influence losses in ferromagnetic materials.

Today’s primary soft ferromagnetic materials in electric motors are iron and ferrosili-
con alloys (2022). However, materials with lower eddy current and hysteresis losses have
been developed since the 1970s.

After the energy crisis of the 1970s, the first attempts to use amorphous materials for
electric motors were recorded (1981). Mischler et al., demonstrated the low-loss potential
of the amorphous stator in a laboratory environment [82].

In 1967, a new class of materials, amorphous alloys, was introduced [83]. In the
mid-1970s, interest in amorphous alloys based on iron and cobalt increased, and these
materials began to find applications [84]. However, only in 1988 did Hitachi researchers
investigate Nb and Cu additives. They added an annealing step to amorphous alloys to
produce small-spaced crystallites of iron or cobalt within an amorphous matrix material.
The formation of isolated crystallites of transition metals reduced the eddy current losses
of these materials compared to traditional amorphous alloys. Despite a higher initial cost
than silicon steel, these advanced alloys can reduce the total lifetime costs of electric motors
due to reduced losses.
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Currently (2022), unique treatments involving thermal manipulation, laser bombard-
ment, and other technologies continue to produce high-performance magnetic materials.

3.2. Changes in the Performance of SCIMS

It was not just the masses and volumes that changed. Successive changes in the
performance of SCIMs occurred from the first commercially available versions to the mass
manufacturing versions of today (2022).

Several technological advances explained the changes in the performance of SCIMs,
from the technological innovations already mentioned to improvements in production
processes and the purification of active materials. Sven Sjöberg [66] presented the reasons
for the performance gains of SCIMs manufactured by the company ABB Motors after the
great cycle of innovations that closed in the 1970s:

(a) Cutting tooling: improving mechanical precision and enabling the elimination
of burrs;

(b) Laminated package: lamination mixing, lamination control before pressing, welding,
or stator clasping. Quality assessment of raw material sampling before casting (rotor);

(c) Machining the outer surface of the stator core (generally not necessary): reduces
surface roughness and improves tolerances;

(d) Stator winding: length of coils, type of winding, filling factor, insulation system, loops,
and connections;

(e) Impregnation: good filling results and improvements in thermal exchanges;
(f) The casting of the rotor cage: filling of the slots and the closing rings of the cage,

purity of the casting material, and balancing of the rotor;
(g) Alignment of the rotor shaft and machining of the outer surface of the rotor.

Sven Sjöberg (1997) presented the performance changes to SCIMs manufactured by
ABB Motors between 1935 and 1996, as shown in Figure 11. According to Sven Sjöberg,
performance changes did not result from any performance regulation but occurred due
to materials improvements, technological innovations, and improvements in production
processes [66].

 

Figure 11. Changes to performance of 4-pole SCIMs between 1935 and 1996. Source: adapted
from [65,66].
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It is observable in Figure 10 that in the 1960s and 1970s there was a reduction in
the average performance of SCIMs, considering a wide range of power. In some periods,
the performances were inferior to those obtained by the industry in 1935. The researcher
Sven Sjöberg, in his text, does not identify the elements that led to this temporary drop in
performance between the 1970s and 1980s.

For the United States Department of Energy (DOE), the 1960s and 1970s were periods
of global economic crisis, where SCIM manufacturers built lower-cost equipment compared
to previous years. These SCIMs were less efficient, as shown in Figure 12, as they minimized
the use of materials such as copper, aluminium, and steel. According to the DOE, these
SCIMs had lower initial costs than previous projects. However, they consumed more
electrical energy due to their inefficiency, so their use throughout the life cycle was more
expensive [85].

Figure 12. Changes to performance of 4-pole SCIMs between 1944 and 2012. Source: adapted
from [85].

Figure 12 shows that the four-pole SCIMs manufactured and marketed in North
America in the 1980s had even lower performance than SCIMs manufactured in 1944,
which were the first officially registered by the DOE.

According to the DOE, less-efficient and more-compact SCIMs became possible with
insulating materials that could withstand high temperatures. These SCIMs were designed
to admit higher losses due to the increase in temperature in the coils located in the stator,
making it possible to accommodate the winding wires in smaller frames without damaging
the insulation [85].

Figure 13 shows the performance changes to four-pole SCIMs with motor rated output
powers of 37 and 45 kW, operating at 50 or 60 Hz, at low voltage.

Figure 13 shows the average performance presented by Sjöberg and the DOE. The
SCIMs showed a performance reduction between the 1960s and 1980s, and only the data
provided by WEG (2015) showed a continuous increase in performance. Figure 13 illustrates
the performance data available in the company’s publications, beginning in 1960, which
was the year the company was established. The data show performances below those
obtained in the international market, with high performances recorded for 2010.
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Figure 13. Changes to performance of 4-pole SCIM performance between 1935 and 2012. Source:
adapted from [65,66,85].

3.3. Changes in the Performance of SCIMs between 1945 and 2020

SCIMs and most of the electromechanical equipment developed in the 20th century
underwent a series of improvements and refinements, from conception through the techno-
logical advances in construction processes, mainly in the improvement in the quality of the
materials used.

Test results based on data from 1945 and 2020 were used to analyse the change in the
performance of 359 SCIMs, with speeds corresponding to two, four, six, or eight poles, at a
motor rated output power of 3.7, 37, 150 kW, in order to aid in answering the questions
(I and II) that motivated this research.

Figure 14 shows the trends in performance of two-pole SCIMs over time, tested from
1945 to 2020.

Figure 14. The average performance of 2-pole SCIMs between 1945 and 2020.
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Figure 14 shows test results from 68 SCIMs organized into three output power cat-
egories and arranged over time. In the years in which results were obtained from more
than one SCIM of the same speed and mechanical power, the average performance was
calculated for the construction of the figure. In addition, in the years in which there were
no SCIMs tested at the output power used in the analysis, the linear regression method
was used between the adjacent years in which data were available, in order to construct the
figure. The same considerations were applied to Figure 15 (four-pole SCIMs), Figure 16
(six-pole SCIMs), and Figure 17 (eight-pole SCIMs).

Figure 15. The average performance of 4-pole SCIMs between 1945 and 2020.

Figure 16. The average performance of 6-pole SCIMs between 1945 and 2020.
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Figure 17. The average performance of 8-pole SCIMs between 1945 and 2020.

Table 3 presents the cumulative performance gain between 1945 and 2020 for the three
analysed power values.

Table 3. The average performance of 2-pole SCIMs between 1945 and 2020.

Motor Rated Output Power (kW) 3.7 37 150

Performance (%) 1945 79.1 81.5 89.1
Performance (%) 2020 90.2 94.5 96.2
Accumulated gain (%) 11.1 13 7.1

Loss reduction (%) 53.1 70.3 65.1

Generally, high-power SCIMs are always associated with high performances. They
are often subjected to more rigorous quality control routines by the manufacturers and
users, who are concerned about the losses in this equipment because they are primarily
the predominant industrial electrical loads. This fact results in SCIMs of higher power
such as 150 kW having smaller performance gains over that time interval. Medium-power
(37 kW) and low-power (3.7 kW) SCIMs are associated with high performance gains, with
accumulated values of 13% and 11.1%, respectively, based on the analysed period. In other
words, the reduction in losses in two-pole SCIMs between 1945 and 2020 was 53.1% for
3.7 kW, 70.3% for 37 kW, and 65.1% for 150 kW. The trends shown in Figure 14 and Table 3
for two-pole SCIMs are similar to those in Figure 15 and Table 4 for four-pole SCIMs, in
Figure 16 and Table 5 for six-pole SCIMs, and in Figure 17 and Table 6 for eight-pole SCIMs.

Table 4. The average performance of 4-pole SCIMs between 1945 and 2020.

Motor Rated Output Power (kW) 3.7 37 150

Performance (%) 1945 80.1 85.1 88.2
Performance (%) 2020 91 95.4 96.8
Accumulated gain (%) 10.9 10.3 8.6

Loss reduction (%) 54.8 69.1 72.9
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Table 5. The average performance of 6-pole SCIMs between 1945 and 2020.

Motor Rated Output Power (kW) 3.7 37 150

Performance (%) 1945 80.1 83.8 88.1
Performance (%) 2020 91 95 96.2
Accumulated gain (%) 10.9 11.2 8.1

Loss reduction (%) 54.8 69.1 68.1

Table 6. The average performance of 8-pole SCIMs between 1945 and 2020.

Motor Rated Output Power (kW) 3.7 37 150

Performance (%) 1945 78.5 82.8 87.8
Performance (%) 2020 88.2 94 96
Accumulated gain (%) 9.7 11.2 8.2

Loss reduction (%) 45.1 65.1 67.2

According to Table 4, the loss reduction for four-pole SCIMs was 54.8% for 3.7 kW
power, 69.1% for 37 kW, and 72.9% for 150 kW between 1945 and 2020.

According to Table 5, the loss reduction for six-pole SCIMs was 54.8% for 3.7 kW
power, 69.1% for 37 kW, and 68.1% for 150 kW between 1945 and 2020.

According to Table 6, the loss reduction for eight-pole SCIMs was 45.1% for 3.7 kW
power, 65.1% for 37 kW, and 67.2% for 150 kW between 1945 and 2020.

The three curves (3.7 kW, 37 kW, and 150 kW) showed similar trends in the four figures
presented (Figures 14–17), making it possible to separate three periods:

1. Between 1945 and the mid-1960s, SCIMs presented a curve indicating continuous
increasing performance gains;

2. Between the 1960s and 1980s, SCIMs showed significant performance drops, in some
cases reaching lower levels than the SCIMs marketed in 1945;

3. Between the 1980s and 2020, performance improvement dominated the scenario. It
resulted in high levels of performance in the last years of the analysis, presenting a net
result, from 1945 to 2020, of gains above 10% in average performance, corresponding
to a worst-case reduction of losses of approximately 45%.

Several elements influenced these trends for each of the three periods described above.
At first, between 1945 and the mid-1960s, an intensive process of technological innovation
was identified, highlighting the following elements that directly influenced the performance
gains of SCIMs:

a. Many SCIMs tested in the 1940s still had plain bearings. Sleeve bearings, compared
to ball bearings, produce more noise, are larger and heavier, and generally provide
greater friction, requiring oil lubrication;

b. In the 1940s, there was a transition from rotors made of iron bars to rotors made of
cast aluminium bars. Aluminium has lower electrical resistivity and lower density,
and is therefore lighter for the same power;

c. Advances in metallurgy allowed SCIM housings to be built more compactly, im-
proving the safety of operation and maintenance workers, maintaining winding
ventilation, and reducing masses and volumes;

d. The insulation system in that period underwent substantial advances, moving from
the use of cotton as an insulator to silk, where a significant reduction in the size of
the grooves was possible, reducing the size and volume of the SCIMs;

e. Due to the use of silk, it was also possible to insert more copper into the same slot, re-
ducing the most significant losses in SCIMs (Joule losses in the stator winding wires);

f. Improvements in the manufacturing processes of SCIMs were remarkable in that
period, whether due to advances in cutting tools or better machining of the active
ferromagnetic materials of SCIMs;

g. Between 1884 and 1970, the core losses of AC SCIMS dropped from 8.16 watts/kg to
0.44 watts/kg, which represents an approximately 95% reduction.
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In the second period, between the 1960s and 1980s, SCIMs showed significant drops in
performance, making it possible to identify the influence of the following elements. In this
period, insulation from varnish was developed. The varnish made it possible to withstand
high temperatures without compromising the insulation. For this reason, SCIM designs
emerged that admitted more significant losses in the stator winding wires due to increased
temperature in the coils. Temperatures up to 180 ◦C, already standardized in the 1970s
(Table 7), were observable in some SCIMs.

Table 7. Thermal class of insulation of electrical conductors. Source: [86].

Thermal Class (◦C) Designation Letter

90 Y
105 A
120 E
130 B
155 F
180 H
200 N
220 R
250 -

Cotton and silk operated only as electrical insulators. In contrast, the varnish used, in
addition to being an electrical insulator, is a thermal conductor. This factor made it possible
to accommodate the winding wires in even more miniature housings without damaging
the insulation and to improve cooling with an increased transfer of heat produced mainly
in the stator winding wires to the external surface, via the design of the fins on the housing.

When varnish is used to insulate the winding wire, it conducts the temperature rise
resulting from the losses in the stator winding wires to the housing (Figure 18). In the
process, the fins are designed to increase the contact area with air, thus improving the heat
dissipation process and changing the geometry of the SCIM housing.

Figure 18. Stator temperature measurement points (A, B, C, D and E). Adapted from [87].
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The temperature reduction in SCIMs between points A and E, expressed in Figure 18,
can be described as follows:

A—the hottest point of the SCIM, inside the slot that generates the heat from the Joule
losses of the stator winding wires;

AB—the temperature reduction resulting from heat transfer from the hottest point
to the outer wires of the coil. As air is not a good conductor of heat, there must be no
“voids” inside the groove. Therefore, the windings must be compacted and impregnated
with varnish, filling the voids as much as possible;

B—the temperature reduction caused by the insulator inserted between the winding
wires and the metal plates. It is common to use special paper or synthetic insulating foil to
line the groove;

BC—the temperature reduction by thermal conduction in the SCIM core plates;
C—the temperature reduction in the contact between the core and the housing. Preci-

sion machining of the housing to reduce surface irregularities is essential in heat conduction;
CD—the temperature reduction by thermal conduction through the shell thickness;
DE—the temperature reduction due to the increase in the SCIM surface exposure

caused by the fins.
The reduction in copper mass meant that SCIM manufacturers were able to reduce

the final cost of the equipment, since copper is the highest cost input in the construction of
SCIMs. This trend was verified in the test reports of the analysed period. An increase in
Joule losses (I2R) in the stator winding wires was mainly observed in relation to previous
decades. When the section of the copper conductors reduces, the total mass of the SCIM
also reduces. The reduction in copper increased the Joule losses and consequently increased
the operating temperature of the SCIMs. The heat generated internally could be more easily
dissipated in the housing with varnish.

In the third period, between the 1980s and 2020, improvements in the average perfor-
mance of SCIMs were evidenced mainly by the following observations.

Minimum performance level policies were applied in the world’s largest economies
between the 1990s and 2020. The policies that indicate the minimum energy performance of
equipment are entitled “minimum energy performance standards (MEPS),” which specify
minimum levels of energy performance for commercial purposes. The main objective of
MEPS is to guide the performance of the equipment for the consumer and establish a
minimum legal requirement for commercialization.

Government bodies usually institute MEPS policies. In the case of SCIMs, MEPS are
divided into performance classes, allowing different levels that increase the requirement of
a specific minimum performance value according to technological advances and market
acceptance. Performance classes for SCIMs internationally are harmonized with the IE
code in IEC 60034-30-1 [88], which is widely accepted as the global standard, making
performance classes comparable across the various regional energy policy documents for
SCIMs. The standard defines efficiency classes from IE1 to IE4 (Figure 19), where IE1 is the
lowest, and IE4 is the highest. Similarly, in the United States, performance classes IE1 to
IE4 are called Standard, High efficiency, Premium efficiency and Super-Premium efficiency,
according to NEMA [89]. The new IE5 class has not been defined in detail; however, it is
foreseeable in a future edition of the standard. For IE5 SCIMs, the goal is to reduce losses
by about 20% compared to the IE4 class [88,90].
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Figure 19. Efficiency levels in the IEC 60034-30-1 (2014) classification standard curves for 50 Hz,
4-pole SCIMs. Source: [88,90].

The SCIMs tested in 2020 were already IE3. Therefore, in the next few years, it should
be possible to make another short jump in the performance gain of SCIMs.

The implementation of MEPS for SCIMs took place in the USA and Canada in 1997
and was later gradually applied in other countries, with modifications implemented by
each energy agency of the various countries, but maintaining the harmonization as shown
in Figure 20.

Figure 20. Timeline of global minimum performance standards for SCIMs. Source: [91–97].

To comply with the new legislation, which imposes higher performance indices, the
central intervention of the manufacturers, verified in the test reports of the analysed period,
was the reduction of Joule losses in the stator, because stator windings started to be built
with more copper mass compared to previous decades. This movement also meant that the
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mass of SCIMs, which until then had decreased with time, began to increase, returning to
the levels verified in the 1960s.

During this period, other secondary elements were observed that also influenced the
improvement of the performance of SCIMs:

1. Advances in the design of SCIMs through the use of modelling software, enabling
structural improvements in the coupling and a reduction in vibrations and noise;

2. Three-dimensional computational modelling of electromagnetic fields, enabling
project optimization;

3. Advances in the processes of the casting of steel-silicon sheets;
4. Use of more efficient cooling systems (ventilation).
The three periods described led to profound changes in the mass/power ratio of

SCIMs. The analysis presented in Figure 4 demonstrates the falling mass/power ratio and
points to the lower levels in the following years needing to be updated. For this reason,
Figure 21 was created to answer question III, which was one of the questions motivating
this research.

Figure 21. Changes to SCIMs in the mass/power ratio between 1891 and 2020.

The research relied on SCIM test data from 1945 to 2020. However, SCIM mass data
was only available in technical reports from 1997 onwards. Before this date, few reports
presented a record of the mass of the SCIM under test. Between 1945 and 2020, records of
seven SCIMs with power and speeds compatible with Figure 4 and with mass records were
discovered. The mass/power ratio found in these seven SCIMs was compatible with the
data published by AEG. Thus, Figure 4, containing results between 1891 and 1984, was
updated with data obtained in this research (Figure 21).

To create Figure 21, in 2000, 12 two-pole SCIMs with power between 3.7 kW and
4.4 kW were used, and in 2020, 16 SCIMs were used in the same power range and for the
same speed. After calculating the mass/power ratio for each SCIM, the arithmetic mean
was calculated for each of the two years under analysis.

A significant result verified in Figure 21 was the increase in the mass of SCIMs from the
2000s onwards, reaching the level of 10.2 kg/kW for the same power and speed, returning
to levels verified in the 1950s.
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The increase in mass was produced mainly by using conductors of a larger section, to
reduce the block where the most significant losses in SCIMs are found, that is, the losses
from the Joule effect in the wires of the stator windings.

The reduction in volume of an electrical machine can also result in challenges in
keeping components cool. In the case of high heating, deterioration of the properties of
most materials (such as insulators, coils, and sheets of ferromagnetic material) can occur,
causing a reduction in the useful life of the equipment. This is one of the reasons that justify
the average increase in the carcass of SCIMs in the last two decades.

There was also an increase in the lengthening of the rotor package, and consequently of
the stator windings, significantly increasing the amount of material used in the construction
of the high-efficiency motor, as seen in Figure 22.

Figure 22. The difference in the material quantity between Standard SCIM and High-Efficiency SCIM.
Source: [98].

In Figure 22, the most significant change made to increase the performance of a 5 HP
(3.7 kW) electric motor from 84% to 90.2% was an increase in mass of 27 kg or approximately
33%, while maintaining the same carcass.

For performance gains superior to those shown in Figure 22, increasing the carcass to
accommodate the new stator and rotor dimensions was necessary. Figure 21 shows that
SCIMs went from a 100L housing in 2000 to a 112L housing twenty years later (2020).

The mass/power ratio depends on the power range and speed, so Figure 21 cannot
be directly generalized to other power values without proper adjustments. However, the
shape of the curve presents a similar trend for the other power ranges and speeds.

There is no forecast of a continuous increase in the mass/power ratio of SCIMs, as
this has been optimized in recent years through technological innovations. Other viable
technologies have been presented to reach the IE5 standard. Synchronous operation motors
include permanent magnet synchronous motors (PMSMs) and synchronous reluctance
motors (SynRMs). Synchronous motors employ a drive that can also control the speed, and
they have introduced a series of improvements in motor drives, such as ease of automation,
the possibility of pre-diagnosis, ease of application of intelligent sensors, the possibility of
collection and analysis of electrical quantities, etc.

PMSMs, for the same power range (4 kW) and speed (two poles) as those shown in
Figure 21 can present a mass/power ratio of approximately 4 kg/kW, with a performance
above 93%, even for low power and a power factor above 0.95.

SynRMs, for the same power range (4 kW) and speed (two poles) as those shown in
Figure 21 can present a mass/power ratio of approximately 7.5 kg/kW, with a performance
above 92.8%, even for low power and a power factor above 0.95.
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Synchronous operation electric motors do not have rotor losses, and this is one of the
main reasons this equipment can raise the level of performance. Synchronous motors also
have a smaller physical volume than traditional SCIMs and are touted as the immediate
future of variable-speed motor drives. If the economic factor also becomes an attraction,
synchronous motors may also be viable in fixed-speed systems.

For SCIMs to reach IE5, two possibilities are currently considered. One is the use of
amorphous materials with high magnetic permeability to reduce core losses. Another is
the use of copper to minimize losses in rotors traditionally constructed of aluminium.

The magnetic package of SCIMs can be particularly suited to amorphous laminations,
as demonstrated by Hitachi with an 11 kW motor prototype that achieved IE5 efficiency [99].
The Hitachi prototype had a reduced size compared with a traditional SCIM and perfor-
mance above 93% over a wide load range.

Traditional medium- and low-power SCIMs have a rotor constructed primarily of cast
aluminium. However, since 2002, it has been possible to find, for some applications, SCIMs
with rotors made with copper [100].

The copper squirrel-cage rotor enables a 15% to 18% reduction in total motor losses
(this can represent an efficiency gain of 2 to 4%, depending on the power and number of
poles) [101]. A copper rotor is made of electrical steel laminations in which the rotor bars
and end rings are made of cast copper instead of cast aluminium. Copper is an excellent
material for rotors because it has higher electrical conductivity than aluminium [102].

The use of the copper rotor can also support the resumption of size reduction and
overall weight reduction of the motor, since the reduction in losses in the rotor allows the
reduction of the total length of the rotor and consequently the stator.

3.4. Research Limitations

In this section, dealing with the limitations of this research, we make suggestions for
future research activities on the theme of changes in the performance of electric motors,
which will contribute to research in the area:

• Evaluate the changes that have taken place in the forms of SCIM projects, from manual
calculations to the use of high-level computer simulation;

• Evaluate the improvements in the copper drawing process and the improvement in
the purity of copper (stator) and aluminium (rotor);

• Evaluate the improvements in the design and machining of the ventilation of elec-
tric motors;

• Evaluate improvements in the electric drive process and coupling between electric
motors and mechanical loads;

• Evaluate advances in metallurgy to produce increasingly accurate cuts, improving the
quality of electrical machines.

4. Conclusions

It is common to read in the technical literature that “SCIMs have hardly changed in
the last 100 years”. However, current SCIMs are significantly different from the SCIM
developed by Mikhail Dolivo-Dobrovolsky’s team between 1888 and 1890. Therefore, this
statement is only valid when referring to the SCIM’s working principle. This research
showed significant changes in the design, materials, and components that make up the
parts of SCIMs.

The present research analysed the performance levels of SCIMs based on the results
of tests carried out at the Laboratory of Electrical Machines of IEE/USP in the period
between 1945 and 2020. SCIMs with powers of 3.7 kW, 37 kW, and 150 kW were used in a
total of 359 electric motors. Regarding the performance levels, the results showed that the
SCIMs presented a similar trend, and it was possible to identify three distinct periods in
the historical timeline.

Between 1945 and the mid-1960s, SCIMs showed practically constantly increasing
gains in performance. This was due to the various technological innovations in the period,
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mainly the use of oriented grains in the ferromagnetic material, the use of aluminium in
the rotor, essential improvements in the projects, and the ventilation of the SCIMs.

Between the 1960s and 1980s, which was a period of cheap energy, manufacturers
built cheap and relatively inefficient SCIMs, minimizing the use of materials such as cop-
per, aluminium, and steel. The production of lower-performance, lower-volume SCIMs
was made possible by developing insulating materials (particularly varnishes) that could
withstand high temperatures. This allowed SCIMs to be designed with higher losses (partic-
ularly Joule losses in the stator winding), since the temperature rise due to losses could be
transferred to the housing (the varnish is electrically insulating and thermally conductive)
without damaging the insulation or reducing the expected motor life (Figure 18). In this
period, the reduction in the performance of SCIMs was so high that, in some cases, the
performance reached lower levels than for the SCIMs marketed in 1945.

Although these motors had lower start-up costs than previous designs, they used
more energy due to their inefficiency.

From the 1980s to 2020, performance improvement dominated the scene again. The
central aspect of this performance variation was the technology and materials used to
construct the machines. It was possible to observe that the gains were significantly higher
for minor power values, due to the large margin for improvements in materials and projects
due to the low technical construction rigour.

The reduction of losses in the SCIMs analysed in the period 1945–2020 was in all cases
more than 40% for the three analysed output power values (3.7, 37, and 150 kW) and the
four possible speeds (two, four, six, and eight poles). In the case of 150 kW SCIMs with a
speed corresponding to four poles, the loss reduction in the period reached 72.9%, showing
a significant advance.

The 37 kW SCIMs with a speed corresponding to 2 poles had the highest accumulated
efficiency gain in the analysed period. They went from 81.5% average yield in 1945 to 94.5%
75 years later (2020), resulting in an absolute 13% performance gain.

The relationship between the mass and power of SCIMs presented two periods in
the analysis performed. The first period was the 94% reduction between 1891 and 1984,
from 86 kg/kW to 4.8 kg/kW, due to the various technological innovations discussed in
this paper. The second period showed a decrease by 112.5% between 2000 and 2020, from
4.8 kg/kW to 10.2 kg/kW on average, due to the need to resume the performance increase.

In conclusion, continuous performance gains occurred during intense technological
innovation, showing the importance of performance legislation for SCIMs. In the 1970s
and 1980s, the search for lower-cost SCIM manufacturing reduced the equipment’s per-
formance. Thus, the self-regulation of the SCIM market, in terms of performance, did
not show positive results in periods of low technological innovation. A return of the
performance improvement was observed, mainly by the imposition of performance legis-
lation, motivated by a global need to rationalize the final energy use and by sustainable
energy considerations.
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Abstract: The power density of traction drives can be increased with advanced cooling systems or
reduced losses. In induction machines with housing and shaft cooling, the produced heat in the
stator and rotor winding system needs to be extracted over the rotor and stator lamination. The
influence of soft magnetic material parameters, such as texture, thickness or alloy components on the
magnetization and loss behavior, are well studied. Studies about influencing factors on the thermal
conductivity are hard to find. Within this study, eight different soft magnetic materials are analyzed.
An analytical approach is introduced to calculate the thermal conductivity. Temperature-dependent
measurements of the electric resistivity are performed to obtain sufficient data for the analytical
approach. An experimental approach is performed. The thermal diffusivity, density, and specific
heat capacity are determined. An accuracy study of all measurements is performed. The analytical
and the experimental approach show good agreement for all materials, except very thin specimens.
The estimated measurement error of those specimens has high values. The simplified case study
illustrates the significant influence of the different soft magnetic materials on the capability to extract
the heat in the given application.

Keywords: induction machines; electrical machines; thermal modeling; soft magnetic material;
thermal conductivity

1. Introduction

Increasing the power density of highly utilized traction drives is a frequently dis-
cussed research topic. The reduction of losses or the improvement of the heat dissipation
capabilities are both potential measures to address this target. A significant influencing
factor on the overall efficiency of a traction drive is the selection of the soft magnetic
material. The influence of structural material parameters on the efficiency of the electric
drive is well studied [1,2]. Eddy losses play a significant role in traction applications, due
to their high frequency dependency. In order to reduce this loss share, silicon (Si) and
aluminum (Al) can be added as alloy components to the iron matrix. The specific electric
resistance ρel is increased, leading to a reduced loss contribution of the eddy losses [1,2].
A direct dependency between the electron contribution of the thermal conductivity ke and
the specific electric resistance ρel can be found in the Wiedemann–Franz law:

ke =
L0ϑ

ρel
, (1)

with the Lorenz number L0 and the temperature ϑ. As shown within this study, the rule
is not fully applicable for alloys, but already indicates a negative impact of increased
Si and Al alloy components on the thermal conductivity k. Several influencing thermal
parameters, such as the heat transition in the air gap, the interfaces between lamination and
housing, the impregnation goodness or the end winding correlation are well studied within
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the literature [3,4]. A fundamental understanding of the influencing factors of structural
soft magnetic parameters on the thermal behavior of electric machines is rare to find.
Correlations or validated data for the thermal conductivity of soft magnetic material are
not frequently studied. Exact knowledge about the thermal conductivity of soft magnetic
materials is crucial for its selection. The selection is especially challenging in the case that
the soft magnetic material is placed within the main heat dissipating path. A well suited
example for such an application is an Induction Motor (IM) with housing and direct shaft
cooling, such as that introduced in [5].

Within this study, an analytical as well as an experimental approach is introduced
to obtain data for the thermal conductivity of soft magnetic materials. Eight different
soft magnetic materials with different Al and Si content are selected, according to Table 1.
The name of the material, an Acronym (Acr.) with the material number from one to eight,
the silicon weight content, the aluminum weight content and the nominal thickness are
added to the overview. Measurements of the electric resistivity ρel in dependency of
the temperature ϑ are performed to have sufficient data input for the analytical approach.
For the experimental approach, the thermal conductivity km is determined using an indirect
measurement technique.

km(ϑ) = a(ϑ) · ρ(ϑ) · cp(ϑ) (2)

The thermal diffusivity a(ϑ) is measured using a Laser Flash Analysis (LFA). The den-
sity of the material ρ is measured at room temperature, using the Archimedes principle.
A simple model is used to adapt the gained data in dependency of the temperature. A mod-
ified model of the Kopp–Neumann law is utilized to determine the specific thermal heat
capacity cp(ϑ) of the materials. All measurements and models are developed for a temper-
ature range between room temperature and 225 °C. The results of the thermal conductivity
in dependency of the temperature k(ϑ) are compared between the indirect measurement
and the analytical approach. The results are used to investigate the influence of the material
choice on the thermal heat dissipating capabilities of a traction drive. An IM with direct
shaft cooling and housing cooling, as introduced in [5], is selected as a reference for this
simplified case study.

Table 1. Alloy weight content and nominal thickness of studied materials.

Name Acr.
Si Al d

in % in % in mm

NO1000 M1 0.47 0.03 1

M270-50A M2 3.38 1.49 0.5

M330-35A M3 2.6 0.44 0.35

280-30AP M4 3.64 0.59 0.30

NO30 M5 3 1.067 0.30

NO23 M6 3.64 0.87 0.23

NO20 M7 2.91 1.57 0.20

NO10 M8 6 0 0.10

A study is performed to evaluate the accuracy of the measurement according to [6].
The accuracy is defined as the closeness of agreement between a measured quantity value
and a true quantity value of the measurand. The accuracy is not a quantity and cannot
be given as a numerical quantity value according to [6]. In order to analyze the accuracy,
an estimation of a possible measurement error is performed. This error estimation is aimed
to represent the worst possible measurement error. It includes systematic and random
measurement errors. The absolute value of the estimated error of a variable x is labeled
with Δx. The estimated relative measurement error δx can be expressed with the following:
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δx =
Δx
x

. (3)

Please note the difference between accuracy and precision. Precision is the closeness
of agreement between indications or measured quantity values obtained by replicate
measurements on the same or similar objects under specified conditions [6]. In order to gain
good measurement results, both precise and accurate measurement results are necessary.
The precision throughout the study shows very good values. The coefficient of variation cv
is used for investigating the measurement precision. The cv is calculated by a division of
the standard deviation of a measurement sequence and the gained average value.

2. Analytical Formula for the Thermal Conductivity

The two main mechanisms of heat transfer in metallic alloys, such as soft magnetic
material, are the phonon kp and the electron thermal conductivity ke. The total value for
the analytical approach kcalc can be calculated as follows:

kcalc(ϑ) = kp(ϑ) + ke(ϑ) (4)

The mechanism can be subdivided into different scatter processes between phonons,
electrons and imperfections. A good overview of the resulting interactions is given in [7,8].
This study mainly uses the correlations as introduced in [8]. The most important assump-
tions and derivations of the correlations are discussed in the following.

2.1. Phonon Thermal Conductivity

An important quantity for the description of phonon scatter processes is the material-
dependent Debye temperature θD. Several publications address the identification of this
variable. Different values are identified in dependency of the used methodology as dis-
cussed in [9]. The average value of θD = 418 K has developed as the state of the art [8,10,11]
and is used in this study. The thermal resistance of the phonon-phonon scatter Wp−p is
defined by the following:

Wp−p(ϑ) =
A · ϑ

θD
. (5)

The constant A is calculated by Julian’s modification of the Liebfried–Schlömann
equation [8,10,12]. The authors in [10] conclude that the alloy components have a mi-
nor influence on the thermal resistance of the phonon–phonon scatter. The values of
A = 0.412 m K/W and θD = 418 K for pure α-iron can be used for the calculation. The au-
thors in [11] suggest a correction term for ϑ > θD to consider the thermal expansion.
The temperature range in this study is limited to values of 498 K. The correction term is
neglected because the maximum influence is 0.2% in the considered temperature range.
The phonon–phonon scatter Wp−p can be simplified using the introduced simplifications
as follows:

Wp−p(ϑ) = 9.86 × 10−5 m/W · ϑ (6)

The formulation of the thermal resistance of the phonon–electron scatter Wp−e shows
a temperature dependency. A formulation of Wp−e at a temperature that is equal to the
Debye temperature θD is given with the following:

Wp−e = 2.69 × 10−2 m K/W (7)

Additional therms need to be considered for temperatures below the Debye temper-
ature θD [10,11]. In this study, only small differences from the Debye temperature are
considered, and the additional therms are neglected. A similar simplification is used
in [8] for alloys. The thermal resistance of the phonon–impurity scatter Wp−i describes the
interaction between impurities such as the alloys and the Fe-lattice. The process can be
modeled as follows [8]:
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Wp−i = B · ∑
i

ca,i · Γi, (8)

with an experimental constant B, the impurity parameter Γi and the atomic content ca,i of
each alloy i. The value of B is given in [8] with B = 1.36 × 10−2 m K/W. The impurity
factor Γ can be calculated based on weighted ratios of the molar masses and the molar
volumes between the alloy contents i and the Fe-lattice. The values for nine different alloys
are given in [8]. The value for silicon, aluminum, and manganese is equal to 0.59, 0.05,
and zero, respectively. This means that the influence of aluminum is almost negligible, and
the influence of manganese is not present. The phonon thermal conductivity kp can be
calculated as the inverse of a sum of the three influences Wp−p(ϑ), Wp−e, and Wp−i:

kp(ϑ) =
(
9.86 × 10−5/K · ϑ + 2.69 × 10−2 + 1.36 × 10−6 · ∑

i
ca,i · Γi

)−1W/(m K). (9)

2.2. Electron Thermal Conductivity

The first process that influences the electron thermal conductivity is the electron-
phonon scatter. The process is described by the thermal resistance We−p [10]:

We−p(ϑ) =
ρelFe(ϑ)

L(ϑ) · ϑ
. (10)

The ideal electric resistivity is the electric resistivity of pure iron ρelFe(ϑ) in this
application. The value can be calculated utilizing the following [8,13]:

ρelFe(ϑ) =
(−2.4 + 3.65 × 10−2/K · ϑ + 64 × 10−9/K3 · ϑ3)μΩ cm. (11)

Please note that there seems to be a typo in the original source in [13] because the
values do not match the measurement data presented in the publication. This typo is
corrected in [8]. The values of [8] are used in this study and presented in Equation (11).
The Lorenz number L0 = 2.443 × 10−8 WΩ/K2 is modified by a temperature-dependent
therm [10] in Equation (10):

L(ϑ) = L0 ·
(

1 − e−ϑ/159.3 K
)

. (12)

The second considered electron scattering process is the electron–impurity scatter that
is represented by We−i:

We−i(ϑ) =
ρel0(ϑ)

L0 · ϑ
, (13)

with the residual electrical resistivity ρel0(ϑ) = ρel(ϑ)− ρelFe(ϑ) as a difference between
the electric resistivity of the alloy ρel(ϑ) and the electric resistivity of pure iron ρelFe(ϑ).
The electric resistivity of an alloy can be calculated utilizing Matthiessen’s rule as follows:

ρel(ϑ) = ρelFe(ϑ) + ∑
i

ρelica,i, (14)

The calculated values utilizing this formula deviate from measurement results as dis-
cussed in [10], due to the independency of the electric resistivity ρeli from the temperature.
The authors [10] propose an improved formulation:

ρel(ϑ) = ρelFe(ϑ) + ∑
i

ρeli(ϑ)ca,i, (15)

The estimation of the necessity of utilizing the improved equation in comparison to the
Matthiessen’s rule is not possible for this application. The error estimation in [10] is based
on values of the electric resistivity of the alloy at 4 K and based on Cr and Ni alloys. While
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Equation (14) is preferred, due to the simple availability of the electric resistivity of the
alloy components ρeli, Equation (15) seems to give more accurate results. Within this study,
the electric resistivity of the alloys is measured over the temperature range and compared
to the simplified equation. The final value of the electron thermal conductivity ke(ϑ) can
be calculated with:

ke(ϑ) =
(ρelFe(ϑ)

L(ϑ) · ϑ
+

ρel0(ϑ)

L0 · ϑ

)−1
. (16)

2.3. Measurements of the Temperature Dependent Electric Resistivity

Measurements of the electric resistivity are performed using the measurement setup as
depicted in Figure 1. The setup is designed following the recommendations of the standard
DIN EN IEC 60404-13 [14] on a smaller scale because the specimens are not available in
the recommended size. Probes of 120 mm × 20 mm are used. In order to gain sufficient
accuracy, an analysis of the measurement uncertainties is performed. The specimen is
inserted into a measurement fixture and placed inside an oven. The electric resistivity ρel(ϑ)
is calculated with the following equation:

ρel(ϑ) =
U(ϑ) · d · w

I · l
. (17)
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Figure 1. Measurement setup for the electric resistivity.

A DC-current I between 0.2 A and 2 A is introduced into the sample using a FLUKE
5500A Multi-Product Calibrator [15]. The maximum measurement error of this current is
given by ΔI = 0.64 mA in the manufacturer data sheet [15]. The voltage is measured with
a separate device to improve the accuracy of the measurement. A HP 3458A Multimeter is
used for this purpose. The maximum measured voltage during the procedure is around
20 mV. With an maximum measurement error of 16.4 ppm of the reading and 22 ppm of
the measurement range, a maximum measurement error for the voltage of ΔU = 2.5 μV
is specified in the data sheet of the device [16]. Two measurement tips are placed on the
probe for the voltage measurement. The distance between the measurement tips is equal
to the measuring length l. The measuring length l as well as the width of the specimen w
are measured using a digital caliper from Mitutoyo. The maximum measurement error of
the measurement device is given with 0.02 mm. In order to include measurement errors
that result from geometrical deviations, a total error estimation of Δl = Δw = 0.05 mm is
included in the accuracy calculation. The measurement of the two values is repeated at least
three times and the average value is calculated. The thickness of the sheet d is measured
after removing the insulation, using an outside micrometer from Mitutoyo. The measure-
ment is repeated six times and the average value is used. The coefficient of variation cv of
the iterative geometrical measurement procedure is given in Table 2. cv is well below 1%
with one outlier of material M8 for the thickness measurement. The measurements show
good precision.
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Table 2. Coefficient of variation cv for measurements of geometrical values in %.

Material cv(l) cv(w) cv(d)

M1-NO1000 0.29 0.04 0.08

M2-M270-50A 0.09 0.04 1.00

M3-M330-35A 0.41 0.02 0.91

M4-280-30AP 0.09 0.03 0.63

M5-NO30 0.19 0.03 0.85

M6-NO23 0.06 0.08 0.54

M7-NO20 0.30 0.04 0.72

M8-NO10 0.30 0.06 1.28

The maximum measurement error of the micrometer is given with 0.001 mm. In order
to account for geometric errors, a total measurement error estimation of Δd = 0.01 mm for
the thickness d is used for the accuracy evaluation. The measurement error estimation Δρel
is calculated at room temperature ϑ = 293 K using the following formula:

Δρel(ϑ) =
(U(ϑ) + ΔU) · (d + Δd) · (w + Δw)

(I − ΔI) · (l − Δl)
− ρel(ϑ). (18)

The results of the accuracy study (x = ρel) are depicted in table Table 3. A trend
of increasing measurement errors with decreasing specimen thickness can be observed.
One exception of this trend is the decreased accuracy of M1 in comparison to M2. This
exception is caused by an increased influence of ΔU for this material. Due to the high
thickness of this material, the resulting measured voltage U is relatively low at a comparable
current I. For decreasing thickness, the error caused by the thickness d dominates the
overall influence. For material M8 for instance, the measurement error of the thickness
measurement Δd causes about 10.6%, while other influences only contribute by 1.1%. Please
note that this influence also could not have been changed utilizing the recommended setup
in DIN EN IEC 60404-13 [14], as the thickness of the specimen would have a similar
influence. The results of the measurement of the electric resistivity in dependency on the
temperature ρel(ϑ) are plotted in Figure 2. The results show a significant difference for the
electric resistivity ρel between the different materials. At first glance, the material d seems
to influence the ρel. This impression is not correct because the alloy components Si and Al
are the primary influencing factors. As an example, M1 is the thickest selected material and
has a very low silicon and aluminum content. Material M8 is the thinnest material with the
highest silicon content. A plausibility check can be performed utilizing the ternary plot of
the electric resistivity ρel as a function of the silicon cw,Si and aluminum cw,Si and weight
content published in [17]. The eight different materials are added to the plot in Figure 3
based on their silicon and aluminum content. The gained experimental results show very
good agreement with this plot gained from the literature at room temperature.

Table 3. Estimated measurement error δρel(ϑ = 293 K) in %.

Material δρel Material δρel Material δρel

M1-NO1000 4.3 M2-M270-50A 2.9 M3-M330-35A 3.9

M4-280-30AP 3.8 M5-NO30 4.3 M6-NO23 4.5

M7-NO20 5.3 M8-NO10 11.7
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Figure 2. Results of the electric resistivity measurements ρel(ϑ).
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Figure 3. Theoretical values for the electric resistivity ρel(ϑ = 298 K) in Ωmm2/m based on the
silicon and aluminum content (Source: Data from [17]).

3. Experimental Evaluation of the Thermal Conductivity

An indirect measurement technique is used for the evaluation of the thermal conduc-
tivity km(ϑ), i.e., the thermal diffusivity a(ϑ) is measured. The thermal conductivity of the
measurement km is calculated using the following formula:

km(ϑ) = a(ϑ) · ρ(ϑ) · cp(ϑ) (19)

The procedure of evaluating the thermal diffusivity a(ϑ), the mass density ρ(ϑ),
and the specific heat capacity cp(ϑ) is introduced in the following.

3.1. Measurements of the Thermal Diffusivity

The measurements of the thermal diffusivity are performed with a Netzsch LFA
427 measurement device. The samples are cut into specimens with a side length of
10 mm ± 0.1 mm. The insulation of the steel sheets is removed with sandpaper with a
500 grit. A thin graphite layer is added on the samples for improved absorption of the
laser impulse. A schematic overview as well as some images of the measurement device
are depicted in Figure 4. The specimen is inserted into the sample holder. The device is
closed, and the sample is purged with argon as a protective gas. A laser pulse is shot at
the specimen, and the temperature rise is measured on the back side using an indium
antimonide (InSb) infrared detector. An exemplary measurement signal of material M1
at 348 K is depicted in Figure 5. Different models are available for the evaluation of the
thermal diffusivity. The first approach is introduced by Parker [18]. The relative maximum
signal smax = 1 is evaluated. The half time t1/2 represents the time, when half s1/2 of the
maximum signal smax is reached. The half time is used to calculate the thermal diffusivity a
according to [18]:

a = 0.1388
d2

t1/2
. (20)
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Figure 4. Measurement setup for the thermal diffusivity.
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Figure 5. Exemplary measurement signal of material M1 at 348 K.

Parker assumes ideal conditions, such as an instantaneous energy pulse, adiabatic
boundary conditions or constant material properties during the temperature rise. Several
improvements of this model are performed. The losses on the front and rear end are
added by Cowan [19]. Radial losses are added by Cape–Lehman [20]. Within this study,
the standard model with a horizontal baseline correction of the NETZSCH Proteus Software
Version 7.1.0. is used, i.e., an improved version of the Cape–Lehman formulation. A total
of five temperatures are measured for each material, ranging from room temperature up
to 498 K. At each temperature, at least six measurements are used for the calculation of
the average value and the variation. The coefficient of variation of the thermal diffusivity
measurements cv is given in Table 4.

Table 4. Coefficient of variation cv for measurements of thermal diffusivity a in %.

Material ϑ = 293 K ϑ = 348 K ϑ = 398 K ϑ = 448 K ϑ = 498 K

M1-NO1000 1.13 0.80 0.62 1.22 0.52

M2-M270-50A 0.90 0.33 0.21 0.19 0.21

M3-M330-35A 0.66 0.45 0.40 0.51 0.40

M4-280-30AP 0.41 0.61 0.44 0.52 0.72

M5-NO30 0.61 0.46 0.60 0.50 0.36

M6-NO23 0.63 0.72 0.59 0.70 0.70

M7-NO20 0.98 0.74 0.56 0.81 0.94

M8-NO10 1.61 1.24 2.65 1.53 0.76

The coefficient of variation is below 1.22% for all materials, except material M8.
Material M8 shows a maximum coefficient of variation of 2.7%. These values indicate
a good precision of the measurement. Please note that these values only consider the
influence of the thermal diffusivity measurement procedure, i.e., the thickness is a constant
value and not considered in Table 4. The measurement is repeated five times, and the
average value is used for the measurements. For the measurement error estimation,
the simplified Parker formula is used [18]. The general accuracy of the NETZSCH LFA is
assumed to be ±3% for a 1 mm sample as given in the device data sheet [21]. This value is
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not included in the accuracy of different thickness measurements, as one constant value is
being used during LFA measurements. The thickness is measured with a similar outside
micrometer as utilized in the measurement of the electric resistivity with a maximum
measurement error of 0.001 mm. A value of Δd = 0.01 mm is used for the error estimation
to include geometrical errors. The estimated error of the resulting thermal diffusivity Δa is
calculated as follows:

Δa = 0.1388
(d + Δd)2

t1/2
· xm (21)

The value for xm is selected to be 1%, as for this value, the measurement error of
the 1 mm sample of M1 fits to the given data sheet value for the maximum measurement
error of 3%. The resulting estimated measurement errors according to Equation (3) for
x = a are depicted in Table 5. A strong dependency on the thickness of the specimen is
evaluated. The results of the thermal diffusivity measurement a are shown in Figure 6.

The thermal diffusivity a varies in a range from 3.1 mm2/s to 13.6 mm2/s. A signifi-
cant difference between the values of the eight materials is visible. In particular, material
M1 with a very low alloy content (see Table 1) and M8 with a very high alloy content stand
out in the comparison. The thermal diffusivity of M1 is about 434% larger than the thermal
diffusivity of M8 at 298 K. The thermal diffusivity is expected to play a significant role
in the calculation of the thermal conductivity (Equation (19)) and the maximum possible
dissipated heat in the application.

Table 5. Estimated measurement error of the thermal diffusivity measurement x = a in %.

Material δρel Material δρel Material δρel

M1-NO1000 3.0 M2-M270-50A 5.2 M3-M330-35A 6.8

M4-280-30AP 8.1 M5-NO30 8.0 M6-NO23 9.3

M7-NO20 11.0 M8-NO10 23.4
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Figure 6. Results of the thermal diffusivity measurements a(ϑ).

3.2. Measurements of the Density

Two different possibilities to measure the density of the sheets are studied and com-
pared. The first methodology is a geometric-based method, utilizing the dimensions
and the mass of the specimens. The LFA specimens are used for this purpose with the
length l ≈ 10 mm, the width w ≈ 10 mm, and the thickness from d ≈ 0.1 mm up to
d ≈ 1 mm. The measurement of the three values is repeated five times and an average
value is calculated. Similar measurement equipment, as described in the measurements of
the electric resistivity, is used for all three quantities. The estimation of the measurement
error is Δd = 0.01 mm and Δl = Δw = 0.05 mm. The weight m of the probe is measured
using a Sartorius high precision balance with a maximum error of 0.1 mg. In order to
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account for possible dust or additional influences, a value of Δm = 1 mg is used for the
accuracy study.

ρ =
m

d · l · w
(22)

The error of the procedure can be estimated with the following:

Δρ =
m + Δm

(d − Δd) · (l − Δl) · (w − Δw)
(23)

The second methodology utilizes the principle of Archimedes. In this measurement
technique, no exact cubic probe is necessary. A higher amount of pieces can be utilized
to obtain a higher overall measured weight. The insulation of the material is removed
by sandblasting. The density measurements are performed with an analytical balance
Kern ABT 220-4M. The measurement error of the weight measurement is 0.1 mg. Multiple
probes are cut into specimens that fit into the universal immersion basket of the balance.
An overview of the measurement equipment is given in Figure 7. The distilled water, used
as the reference fluid, is filled into a beaker. The temperature of the reference fluid ϑ0 is
measured, utilizing the thermometer included in the balance equipment. The density of the
reference fluid is evaluated from a lookup table ρ0 = f (ϑ0). The error of the mass density
of the reference fluid is estimated by a 5 K-deviation in the temperature measurement
as follows:

Δρ0(ϑ) = ρ0(ϑ)− ρ0(ϑ + 5 K) (24)
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Figure 7. Analytical balance Kern ABT 220-4M with universal immersion basket.

The first measurement is performed with the specimens placed onto an upper sample
dish of the immersion basket. The amount of samples is adapted to obtain a total weight
of approximately mA ≈ 40 g. The measured value of mA is the result of the difference
between the buoyancy force of the air and the weight force of the specimen:

mA = (ρ − ρair) · V, (25)

with the volume of the specimen V, and the density of air ρair. The influence of the air
buoyancy force is neglected in the calculation. An additional factor is considered in the
error estimation of ΔmA:

ΔmA =
(ρair

ρ

)
· mA + 1 mg (26)

The measurement is repeated with the samples placed on the lower dish of the
immersion basket. The measured weight mB is equal to the following:

mB = (ρ − ρ0) · V. (27)

The estimated error of the measurement of mB is assumed to be equal to ΔmB = 1 mg.
The combination of Equations (25) and (27) under neglection of the air buoyancy force
gives the equation to calculate the mass density ρ of the specimen.
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ρ =
mA

mA − mB
ρ0 (28)

A worst-case estimation for the measurement error of the density ρ is performed with
the following:

Δρ =
mA + ΔmA

(mA − ΔmA − mB − ΔmB)
· (ρ0 + Δρ0)− ρ (29)

The entire measurement procedure is repeated three times. After each measurement
in the water reference, the samples are dried. A thin rust film develops within seconds and
is removed by sandblasting. All values are reevaluated, including the masses mA and mB,
as the repeated sandblasting also removes some of the material. An average value of the
three measurements is calculated.

The results of the measurements as well as the error estimation according to the
calculation of Equation (3) for x = ρ are depicted in Table 6. The coefficient of variation
cv for the measured values is added. cv of the geometrical values l, d and w shows values
below 1.1% for most of the values. Only the thickness measurements show larger values
with 2.5% for M8 and 1.86% for M6. The coefficient of variation for the Archimedes
principle shows small values below 0.13% for all measured materials. The precision
of the Archimedes principle is significantly improved in comparison to the geometrical
principle. The accuracy of the geometrical principle is mainly driven by the estimated error
of the thickness measurement Δd, which leads to high error estimations for the thin sheets.
The error estimation model gives a minimal value of 2.2% for the thickness material M1 and
14.7% for the thinnest material. The estimated error of the Archimedes principle with values
around 0.2% is very low and almost equal for all probes. The accuracy is independent
from the thickness of the probe. The variation for the three measurement repetitions
of the Archimedes principle varies between 0.01% and 0.13%. This value is lower than
the predicted values for the measurement error δρ in Table 6. This observation confirms
the good precision of the measurement and confirms the estimation of the measurement
accuracy being the critical value. The measured density utilizing the geometrical principle
is lower than the density evaluated by the Archimedes principle between 3.2% and 4.7%. It
is interesting to note that the values are all lower and not spread around the exact values
of the Archimedes principle. The difference between the results shows the lowest value
for Material M1, which confirms the trend indicated by the accuracy study. Additionally,
the value of 3.2% is larger than the predicted error of 2.2% as a sum of the two error
estimations. There are obviously some additional systematic errors present. Issues with
air bubbles in the Archimedes measurement do not seem to be present, as the variation
coefficient of the measurement is low. Air bubbles in the second measurement step would
decrease mB, which leads to an underestimation of the density ρ. This is not the case,
because the results of the Archimedes principle are all larger than those of the geometrical
probes. A possible explanation for the effect is the cuboid model that is used for the
estimation of the volume in the geometric approach. The measured values are the outer
dimensions. Irregularities and roughness could lead to a real volume that is lower. This
would cause lower values of the density ρ. The temperature dependency is estimated,
using a thermal expansion coefficient of αth = 11.8 × 10−6/K.

ρ(ϑ) = ρ · 1
1 + 3 · αth · (ϑ − ϑ0)

, (30)

with the measurement temperature as the reference temperature ϑ0.
The density ρ varies in a range from 7479 kg/m to 7834 kg/m. The value for material

M1 is only 5% larger than the value of M8 at 298 K. The mass density is expected to play
a minor role for the differences in the thermal conductivities of the materials, according
to Equation (19) and the maximum possible dissipated heat in the application. In the case
of a study with fewer accuracy requirements, an average value of the expected density
could be used with a maximum error of the indicated 5%.
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Table 6. Measurement results and error estimation of the density measurement at ϑ ≈ 293 K.

Geometrical Principle Archimedes Principle

Material
cv(l) cv(w) cv(d) ρ δρ cv(ρ) ρ δρ
in % in % in % in kg/m3 in % in % in kg/m3 in %

M1-NO1000 0.15 0.05 0.25 7581 2.2 0.13 7834 0.21

M2-M270-50A 0.02 0.06 1.05 7288 3.4 0.02 7553 0.21

M3-M330-35A 0.06 0.07 0.57 7398 4.4 0.13 7678 0.20

M4-280-30AP 0.03 1.10 0.38 7222 5.2 0.06 7579 0.21

M5-NO30 0.08 0.07 0.45 7302 5.1 0.04 7565 0.21

M6-NO23 0.16 0.02 1.86 7271 5.9 0.01 7576 0.20

M7-NO20 0.10 0.02 0.56 7162 6.9 0.02 7503 0.24

M8-NO10 0.07 0.20 2.50 6964 14.7 0.12 7479 0.22

3.3. Evaluation of the Thermal Heat Capacity

The influence of alloy components on the specific thermal heat capacity cp can be
evaluated utilizing the Kopp–Neumann law. The weight content of each alloy cwi as well
as the specific heat capacity of each alloy component cpi needs to be known for this law:

cp = ∑
i

cwi · cpi, (31)

Both requirements are fulfilled for this study. Temperature-dependent measure-
ment data of the specific heat capacities are available in the literature for silicon [22],
aluminum [23], and pure iron [24]. Within this input data, the temperature dependency is
considered as used in [25]:

cp(ϑ) = ∑
i

cwi · cpi(ϑ) (32)

The resulting heat capacities in dependency of the temperature are depicted in Figure 8.
The Kopp–Neumann law is, strictly speaking, only valid for composites but the comparison
of measured heat capacities of Fe-based alloys with the Kopp–Neumann law can be found in
the literature, such as [26]. Further, the difference of the calculated heat capacity of the eight
materials shows minor influence on the later thermal conductivity. This can be illustrated
with the maximum deviation of the values at room temperature. The cp of M1 deviates
from the M8 value at room temperature by 3.6%. The thermal diffusivity a of M1 is 334%
larger than the value of M8 at room temperature. For further validation and estimation of
the errors, the calculated values of the heat capacity based on Equation (31) are compared to
the results evaluated from the commercial software JMatPro Version 8. The comparison is
performed for pure iron and Materials M7 and M8, which are the materials with the highest
Al and Si content, respectively. The maximum deviation between the two approaches is
around 1%. For the error estimation study, a value of δcprel = 2% is used for all materials.

Due to the small differences between cp of the different materials, only a minor
influence on the difference of the thermal conductivities of the materials, according to
Equation (19), is expected. A minor influence on the maximum dissipated heat is expected.
The value varies between 451 J/(kg K) for M1 and 465 J/(kg K) for M8. In the case of a
study with fewer accuracy requirements, an average value of the expected heat capacity
could be used with a maximum error of the indicated 3.6%.
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Figure 8. Results of the calculation of the thermal heat capacity cp(ϑ).

4. Simplified Case Study

The influence of the thermal conductivity k of the different materials should be studied
in a simplified case study. This investigation is performed from a thermal perspective.
The used reference design is an induction machine for a commercial truck traction applica-
tion [5]. The following question is in the focus of the study:

How much loss power can be extracted from the electric machine in dependency of the
used soft magnetic material?

Please note that this study does not aim to use a highly accurate thermal model of
the machine. The model is kept as simple as possible to understand the fundamental
correlations of the material choice. The following assumptions and boundary conditions
are made: the rotor and stator of the machine are separated by an ideal thermal insulator,
i.e., no heat is transferred through the air gap. The stator is equipped with a housing
cooling. The rotor is equipped with a rotor shaft cooling. The stator notch cooling, as found
in [5], is not considered. The geometry is simplified by a cylindrical shell model as depicted
in Figure 9. The height of the stator yoke and the height of the rotor yoke are kept constant,
i.e., the heat transfer path through this part of the lamination is kept constant, and the
influence of the teeth is neglected. The model is two-dimensional, i.e., the influence of heat
extraction in end windings, bearings and bearing shields is neglected. All stator losses are
introduced in the shell of the stator winding, and all rotor losses are introduced in the shell
of the rotor bar. The heat conduction of the stator winding shell and the rotor bar shell is
infinite. All thermal interface resistances are neglected. The housing and the shaft have the
same temperature as the cooling fluid ϑfluid = 50 °C, i.e., the thermal resistance between
the lamination and the housing/shaft, the convectional resistance between wall and fluid,
and the heating up of the fluid are neglected. The bending of the shells is neglected, i.e., the
shells are modeled as flat plates, utilizing the average diameter of the shell (dout + di)/2.
The thermal resistance of the stator R1 and rotor R2 iron are calculated as follows:

R1/2 =
dout,1/2 − di,1/2

km · π · (dout,1/2 + di,1/2) · li
, (33)

with the outer and inner diameters dout1 = 282 mm; dout2 = 168 mm; di1 = 214 mm and
di2 = 100 mm, the active length of the lamination li = 285 mm, and the evaluated thermal
conductivity of the measurements km. The studied operational point is under steady-state
behavior. The two thermal Lumped Parameter Thermal Network (LPTN) circuits are
depicted in Figure 10. The maximum allowed temperature of stator winding and rotor bar
is ϑmax = 180 °C. The maximum power loss Ploss in the steady-state operation that can be
extracted from the rotor or the stator is calculated as follows:

Ploss =
ϑmax − ϑfluid
R1/2(ϑavg)

, (34)
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with the average temperature of the stator or rotor iron ϑavg = (ϑmax + ϑfluid)/2.

winding cooling

water based

water based

shaft cooling

housing cooling
water based

stator iron

rotor iron

stator winding

rotor bar

housing

shaft

air gap

Figure 9. Real geometry (left) and simplified thermal shell model of the studied machine (right).

ϑfluid = 50 °Cϑmax = 180 °C

R1/2

Ploss,2/1

Figure 10. LPTN model of the simplified case study for the stator and the rotor.

5. Results

The thermal conductivity of the measurement approach km(ϑ) is calculated utiliz-
ing Equation (19). The results of the more accurate Archimedes principle are used for the
density values. The results of the measurement procedure are depicted in Figure 11. The re-
sults of the analytical calculation based on Equations (9) and (16) are given in Figure 12.
Material M1 has the highest thermal conductivity, while M8 has the lowest thermal con-
ductivity in both approaches. In the measurement approach, the difference in the thermal
conductivity km mainly results from the different values of the thermal diffusivity mea-
surements a as shown in Figure 6. The differences in the density ρ and the thermal heat
capacity cp seem to have a minor impact on the difference of the thermal conductivity km.
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Figure 11. Results of the measurements of the thermal conductivity km.

A comparison between the measurement and the analytical approach is performed.
The relative difference between kcalc(ϑ) and km(ϑ) is calculated as follows:

δkm−calc(ϑ) =
kcalc(ϑ)− km(ϑ)

kcalc(ϑ)
(35)

The value of this difference is plotted in Figure 13. The results of the analytical
and the experimental approach show very good agreement for most of the materials.
Materials M1 up to M6 show differences smaller than 10% for the entire temperature range.
The differences for ϑ = θD are significantly smaller. Materials M7 and M8 show higher
differences, below 18% for material M7 and below 30% for material M8.
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Figure 12. Results of the calculation of the thermal conductivity kcalc.
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Figure 13. Relative difference between thermal conductivites gained from measurement and analyti-
cal formula δkm−calc(ϑ).

A possible reason for the deviation can be evaluated by the analysis of the overall
estimated error of the two different procedures. The previously examined errors are
multiplied to gain the overall error estimation of the measurement.

δkm = δρ · δa · δcp (36)

For the analytical approach, solely the influence of the measurement of the electric
resistivity δρel is considered.

δkcalc(ϑ) =
kcalc(ϑ, ρel · (1 − δρel))

kcalc(ϑ, ρel)
− 1 (37)

The value is evaluated at ϑ = 398 K. The results of the accuracy studies δkm and δkcalc
are depicted in Figure 14. The accuracy study shows a clear dependency of the mea-
surement results on the material thickness d. In particular, the estimated measurement
errors of the thermal diffusivity δa has a squared dependency on the material thickness d.
The influence of the thickness is also visible for the estimated errors of the electric resis-
tivity measurement δρel, where the estimated thickness error has a linear influence. This
linear influence shows some impact on the accuracy of the calculated thermal conductivity
value kcalc. The deviation between the measurement and calculation results δkm−calc(ϑ)
shows a similar trend as the estimated errors δkm and δkcalc. An allocation of the two effects
is very likely, but not absolute clearly justifiable in the eyes of the authors. Material M8 is
by far the thinnest material d ≈ 0.1 mm but also has by far the highest silicon content. It is
also possible that the used formula has some inaccuracies in predicting such high silicon
contents. Due to the estimated measurement errors for M8, a clear separation is not possi-
ble. The second material with higher deviations between measurement and calculation is
M7. It is the second thinnest material, i.e., the nominal thickness is d ≈ 0.2 mm. M7 has a
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significantly lower silicon content than M8, but the highest aluminum content. The alloying
contents are close to those of M2 that show the lowest deviation of all materials between
the measurement and the analytical approach. This indicates that the formula is accurate
for the given alloys, and the differences of M7 occur due to the measurement errors of the
material or some other structural influences that are not considered in the given formula.
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Figure 14. Relative predicted error of the measured values of the thermal conductivity δk.

The influence of the alloys on the phonon and electron thermal conductivity can be
analyzed based on the introduced formula. The evaluation is performed at ϑ = 398 K.
The phonon thermal conductivity kp deviates from 6.8 W/(m K) for M8 up to 15.7 W/(m K)
for M1. The electron thermal conductivity ke deviates from 8.5 W/(m K) for M8 up to
34.0 W/(m K) for M1. Both values show significant deviations, whereas the electron
thermal conductivity has the higher impact on the overall value. The influence is limited to
the electron–impurity scatter We−i according to Equation (13) and the phonon–impurity
scatter Wp−i according to Equation (8). Other scattering processes are not influenced
according to the used formula.

The results of the simplified case study are depicted in Figure 15. Material M1 shows
the most preferable thermal properties. With this material, a maximum of 41 kW stator
losses and 22 kW rotor losses could be extracted from the motor in the steady-state opera-
tion. With material M8, only 10 kW stator losses and 6 kW rotor losses would be allowed to
ensure steady-state operation. It is well visible that all materials with high aluminum and
silicon content show significant disadvantages regarding their capability for heat extraction.
Please note that this estimation is based on some significant simplifications.
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Figure 15. LPTN model of the simplified case study for the stator and the rotor.

6. Discussion

An analytical as well as an experimental approach are performed to study the influence
of the silicon and aluminum content of soft magnetic materials on their thermal conductivity.
The two approaches show very good agreement for a majority of the studied materials
and analyzed temperatures. The thickness of the probes is identified as a crucial factor
for the accuracy of the measurements. The validity of the experimental values of the
thin samples M8 is restricted. The results indicate a significant influence of the alloying
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contents on the thermal conductivity of the materials. A simplified case study is performed.
The maximum possible heat that can be extracted from the rotor and stator of a reference
induction machine varies by a factor of up to four for the different materials. It is obvious
that this factor should be considered in the design process of high power density traction
drives in the case that a main heat dissipation path is realized over the lamination of
the machine.

A measurement of a thicker material with a very high silicon content would be helpful
to further identify whether the introduced formula needs to be adjusted for such alloys. In a
real application, additional thermal resistances would be present that reduce the calculated
impact on the thermal dissipation. The different materials, of course, also influence the
magnetization behavior and the produced losses in the material. The selection of the
material should consider all these aspects. Detailed measurements of the loss behavior of
the studied materials, a thermal model of the studied motor, a test bench evaluation of the
entire motor and a simulation study including thermal, loss and magnetization aspects is
on the way.
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Abstract: This paper proposes a procedure for the accurate modelling of the ring induction motors
(RIMs), based on the Monte Carlo (MC) method and the relations presented in the relevant metrology
guidelines. Modelling was carried out based on the measured data for the torque-slip characteristic
(TSC) and using the equivalent circuit for the RIM. The parameters included an extended Kloss
equation (EKE) and the associated uncertainties were determined using the MC method. The
polynomial procedure was applied as a numerical tool to complement the MC method to determine
the power losses in the stator iron and the relevant uncertainty. This is in line with international
standards for the theory of uncertainty application in the field of engineering. The novelty of this
paper refers to the accurate modelling of the RIMs obtained by determining the corresponding
uncertainties. The procedure presented in this paper was developed based on the assumption
that the parameters of the equivalent circuit are independent of the temperature, influence of core
saturation, and the phenomenon of current displacement. Our procedure can be successfully used
for both the theoretical calculations related to the modelling of the RIMs, and in practical applications
involving detailed measurements and the corresponding uncertainties. The use of the MC method
allowed for significant improvement in the modelling results, in terms of both the TSC and EKE.

Keywords: modelling of ring induction motors; Monte Carlo method; accurate modelling

1. Introduction

The ring induction motors are a group of electrical machines mainly used in electric
drives with heavy starting. The electrical power of these machines varies over a wide
range, from a fraction of a kilowatt to several megawatts, which allows for an extensive
range of applications [1]. They are characterised by a simple structure, which implies
low construction costs, easy operation and maintenance, and high levels of operational
reliability [2].

One of the most important curves used to describe the RIMs is the torque-slip char-
acteristic, which represents the relationship between the electromagnetic moment and
the slip [3,4]. This is determined by the constant value of the stator supply voltage and
the variable rotational speed of the motor, which is related to the slip by a simple and
well-known formula. It is most often described using a simplified Kloss equation [3],
which approximates the corresponding measured points with a high uncertainty value,
however, most often in the case of very low-power machines [5]. An extended version of
this equation [6–8], denoted here as EKE, was therefore developed based on the theory
and practice of electric machines, for which much lower values of the approximation
uncertainty of the mechanical characteristic of the motor can be obtained. This equation is
necessary for the analytical determination of machine acceleration times [9], an analysis of
the transient regimes [10], frequency control of inductive electric drives under conditions
of overload [11], and for the testing of electric motors, for example in Tesla vehicles [12].
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Using a simplified and extended version of the Kloss equation, the value of maximum
(critical) motor torque and the corresponding value of maximum (critical) slip can be deter-
mined [13]. For when the slip is equal to one, the value of the starting torque of the motor
can be determined. Knowledge of the critical and starting torques is extremely important
from the point of view of evaluating the mechanical properties of the RIM [14]. The first
type of torque allows us to determine the possibility of short-term motor overload [15],
while the second one represents the possibility of starting a drive system including both a
motor and a generator [16].

All of the procedures for determining the TSC involve the accurate measurements
of the corresponding points [17], and then their approximation with a minimum value
of uncertainty [18–20]. The accurate determination of the maximum torque and slip is
only possible by applying this approach to modelling. When the mathematical formula
representing the measured points of the TSC is known, the satisfactory approximation re-
sults and the associated uncertainties can be obtained by applying the MC method [21–23].
This method should involve a pseudorandom number generator with a uniform distribu-
tion [24,25]. However, it is only possible to determine the maximum values of the torque
and slip by applying the MC method. A third parameter related to the EKE also needs
to be determined. This can be obtained by performing indirect calculations based on the
equivalent circuit of the RIM [26–28] and by using the additional numerical method to
obtain values of the power losses in the stator iron. Additionally, it should be emphasized
that the MC method has so far been applied to the modelling of the RIMs, by analysis
of their thermal behaviour and the detection of corresponding faults, based on the stator
current measurements [29,30].

In Section 2 of this paper, we present a detailed discussion of the issues related to the
determination of the equivalent circuit parameters corresponding to the RIM, based on
measurements of the motor idle and short-circuit states. The use of polynomial approxima-
tion [31–33] to determine the power losses are also proposed as the additional numerical
method. Section 3 describes the use of the MC method to model the RIM by using the TSC,
while Section 4 presents an example of the use of MC-based modelling and the verification
of the corresponding results.

The solution presented in this paper represents a new approach to modelling the
RIM based on the measurement points of the TSC and the EKE. This is obtained by an
application of the MC method and the polynomial approximation which allows us to
determine the values of the maximum moment and slip with the associated uncertainties.
Therefore, it is an example of accurate modelling of the RIM which is worked out according
to the guidelines in [18,21] and can be applied in the field of the precise elaboration of
measurement results. The lack of uncertainty analysis in the modelling of the RIMs can be
considered a weakness of the research so far in the field of electrical motors.

The proposed method can be used for accurate modelling and appropriate control
over the mechanical properties of the RIMs in order to ensure the correct operation of both
single motors and complex electrical drive systems.

2. Theoretical Basis for the Accurate Modelling of the RIM

The EKE is defined by the following formula:

T =
Tmax(2 + β·smax)
s

smax
+ smax

s + β·smax
, (1)

where T, Tmax, s, and smax are the motor torque, maximum torque, slip, and maximum slip,
respectively. The coefficient β is expressed as follows:

β = 2
RsCs

RrKV2 , (2)
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where Rs, Rr , and KV denote the stator resistance, rotor resistance, and voltage ratio,
respectively [6–8]. The voltage ratio is calculated by the formula:

KV =
1
2

(
Vs1

Vrm
+

Vsm

Vrm

)
, (3)

where Vs1 is the stator supply volge, which is lower than the rated voltage Vsn, while Vrm is
the maximum voltage produced between any two rotor phases, and Vsm is the maximum
voltage produced between any two stator phases when the rotor is supplied by the voltage
Vrm [27]. The coefficient Cs is defined by:

Cs =
Xmg

Xσs + Xmg
, (4)

where Xmg and Xσs denote the magnetisation reactance and the stator phase leakage
reactance, respectively, and are calculated using the following formulae:

Xmg =
VSn

Img
(5)

and
Xσs = (VSn − KV ·Vrm)/Is0, (6)

where Img is the magnetisation current, Is0 is the stator current under idle conditions, and
Vrm is the voltage induced in the rotor [6–8]. Figure 1 shows a circuit model of the RIM,
which is valid when the measurements are made in the idle state.

Figure 1. Circuit model of the RIM in the idle state.

The magnetisation current is

Img =
√

Is02 − IFe
2, (7)

where IFe denotes the current corresponding to the power losses in the stator iron, and is
calculated using the simple formula:

IFe =
Vsn

RFe
. (8)

Here, RFe denotes the resistance of the iron, and is defined by the following equation:

RFe =
3Vsn

2

ΔPFe
, (9)

while ΔPFe denotes the power losses in the stator iron.
The complete equivalent circuit of the RIM is shown in Figure 2, where R′

r and X′
σr

denote the rotor phase resistance and the reactance transformed to the stator side.
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Figure 2. Complete equivalent circuit of the RIM.

The quantities RFe, IFe, Xmg, and Img, given in Equations (5), (7)–(9) are calculated
based on the complete phase equivalent diagram (the left side of Figure 2), omitting the
voltages related to the stator resistance and the stator winding leakage reactance.

The values of the parameters R′
r and X′

σr can be determined based on the circuit
model of the RIM in the short-circuit state, as shown in Figure 3, where Vsk denotes the
current in this state.

Figure 3. Circuit model of the RIM in the short-circuit state.

The transverse branch of the circuit model shown in Figure 2 is omitted in Figure 3,
due to the significant value of its impedance compared to the impedance of the longitudinal
branch. The short-circuit current Isk is also assumed to be equal to the rated stator current
Isn [6–8].

Based on the circuit model shown in Figure 3, we have:

Rk = Rs + R′
r = Rs + RrKV

2 (10)

and

Xk = X′
σr + CsXσs = X′

σr +
XmgXσs

Xmg + Xσs
(11)

while
X′

σr = XσsKV
2. (12)

Based on Ohm’s law, we obtain:

Zk =
Vsk
Isn

, (13)

and applying the impedance triangle gives

Rk =
√

Zk
2 − Xk

2. (14)

By transforming Equation (10), we obtain the rotor resistance

Rr = (Rk − Rs)/KV
2 (15)
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We can express the coefficient β in terms of the measured values of the parameters of
the RIM. We can obtain this relation by substituting Equations (3)–(13) into Equation (2) to
give [1,6–8]:

β =
2Rs(

γ2γ3
γ4

+ 1
)[√(

Vsk
Isn

)2 −
(

γ1
2γ3

8·Is0
+ Vsn·γ3

γ4+γ2γ3

)2 − Rs

] (16)

where the auxiliary parameters are

γ1 = VS1
Vrm

+ Vsm
Vrm

, γ2 =

√
Is02 −

(
ΔPFe
3Vsn

)2
,

γ3 = 2Vsn − γ1Vrm, γ4 = 2Vsn Is0.
(17)

The uncertainties associated with the quantities given in Equations (3)–(16) can be
calculated using the formula:

u(x) =

√√√√∑J
j=1

[
∂x
xj

u
(
xj
)]2

, (18)

where x denotes the quantity under consideration, and J is the number of indirect quantities
necessary to determine the value of x. The relative uncertainty associated with the quantity
x is defined by the equation:

δ(x) = u(x)/x. (19)

For both analogue and digital measuring instruments, the uncertainty u(x) is deter-
mined by the formula:

u(x) = Δ(x)/
√

3 , (20)

where Δ(x) is the absolute error, while the value of the denominator results from the
probability density function of a uniform distribution, which is valid for both analogue
and digital instruments.

For analogue instruments, the error is determined on the basis of the static accuracy
class κ, according to the equation:

Δa(x) =
κYm

100%
(21)

where Ym denotes the measurement range for the quantity to be measured. For digital
instruments, the following formula is usually applied:

Δd(x) = aY + cYm , (22)

where Y denotes the value of the quantity to be measured, and a and c are constant param-
eters that are typical for the particular instrument and are included in the corresponding
datasheet.

The power losses in the stator iron ΔPFe are determined using a graphical method for
the rated stator voltage Vsn, as shown in Figure 4.

The quantity P0 is the active power consumed by the motor during idling, and is equal
to the sum of the losses in the stator iron ΔPFe, and the mechanical power losses ΔPm.

Based on the measured points for the active power P0, it is easy to determine the linear
characteristic P0 = f

(
Vs

2) and the associated uncertainty. This can be done by applying
the polynomial method, using the formula:

P0

(
Vs

2
)
= a0 + a1·Vs

2 + ε, (23)

where a0 and a1 are the polynomial coefficients, and ε denotes the error of approximation.
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Figure 4. Graphical method for determining the power losses ΔPFe.

Estimates ã of the polynomial coefficients are obtained using the following matrix
equation:

~
A =

(
ΦTΦ

)−1
ΦTΛ, (24)

where

Φ =

⎡⎢⎣ 1
(
Vs

2)
0

...
...

1
(
Vs

2)
N

⎤⎥⎦,

Λ =
[

ε0 ε1 . . . εN
]T ,

(25)

and N denotes the number of measured points for the characteristic P0 = f
(
Vs

2).
The uncertainty of approximation is denoted as the error ε, and is given by the

following formula:

u
(

P0

(
Vs

2
))

=

√√√√√(
Φ

~
A − Λ

)T(
Φ

~
A − Λ

)
N − 3

(26)

The standard uncertainty associated with the coefficients a0 and a1 is

u(ai) = u
(

P0

(
Vs

2
))√

Θi,i, (27)

where
Θ =

(
ΦTΦ

)−1
, (28)

and i = 0, 1, 2 [29–31].
The relative uncertainties associated with the coefficients a0 and a1 are calculated as

follows:

δ(ai) =
u(ai)

ai
100%. (29)

The values of the power losses in the stator iron ΔPFe and the associated uncertainty
u(ΔPFe) are calculated using the expressions:

ΔPFe = P0

(
Vsn

2
)
− P0(0) (30)

and
u(ΔPFe) = u(a0) + u(a1)P0

(
Vsn

2
)

. (31)

The corresponding relative uncertainty is:

δ(PFe) =
u(ΔPFe)

ΔPFe
100%. (32)
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The procedure for determining the values of the parameters included in Equation (1)
and the corresponding uncertainties is discussed in detail in the section below.

3. Monte-Carlo-Based Modelling of the RIM

We now present the example of the application of the MC method in the accurate
modelling of the RIM, which involves determining the corresponding parameters of the
EKE and the associated uncertainties. This procedure is based on an intuitive method of
determining the parameters Tmaxi and smaxi for the possible ranges of variability of the
parameters Tmax and smax, which are included in the EKE [21–24]. Figure 5 shows the
typical TSC which describes the RIM for its motor work and covers the stable range of this
characteristic. Figure 5 also shows examples of the variability ranges of the parameters
Tmax and smax.

Figure 5. The typical TSC for the motor work of the RIM.

The index ‘i’ denotes the intuitive values of both parameters, while the indexes ‘h’
and ‘l’ represent the high and low assumed values of these parameters. The high and low
values are assumed in advance to ensure that the estimated values of the parameters Tmax
and smax are within these selected ranges. A suitable selection of these ranges constitutes
the first step in this method.

The parameter β and the associated uncertainty u(β) are determined based on the
procedure discussed in Section 2. The low and high values, βl and βh, are determined
as follows:

βl = β − u(β), βh = β + u(β). (33)

The second step in our MC-based procedure involves the choice of the type of pseudo-
random number generator. Taking into account the analogous probability of the occurrence
of the optimal value of the estimates T̃max, s̃max, and β̃ for any value from the above in-
tervals, we are justified in choosing the pseudorandom number generator with a uniform
distribution. The above estimates should accurately map the parameters Tmax, smax, and β,
which requires an approximation of the TSC with minimal uncertainty.

In the third step, we determine the number of MC trials. According to the recom-
mendations given in the guide [20], the optimal number of trials should be greater than
104/(1 − v), where v denotes the coverage probability.

In the fourth step, the following matrix is determined

Ψ =

⎡⎢⎣ T(s0)0 . . . T(s0)M−1
...

. . .
...

T(sN−1)0 . . . T(sN−1)M−1

⎤⎥⎦, (34)

based on Equation (1), where N and M denote the number of measured points for the
TSC and the number of MC trials, respectively [22–25]. The matrix Ψ is determined
by substituting the values of the parameters Tmax

m, smax
m, and βm into Equation (1), as
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obtained for a sequence of MC trials m = 0, 1, . . . , M − 1. The value of each slip sn is
substituted into Equation (1) for each MC trial m, where n = 0, 1, . . . , N − 1. In the fifth
step, the matrix of approximation errors for the measured points of the TSC is determined
as follows:

Δe =

⎡⎢⎣ T̃(s0)0 . . . T̃(s0)M−1
...

. . .
...

T̃(sN−1)0 . . . T̃(sN−1)M−1

⎤⎥⎦, (35)

where T̃(sn)m = T(sn)m − T(sn). The next rows of the matrix Δe correspond to the
approximation uncertainties obtained for each value of the slip sn.

The sixth step in our MC-based modelling process involves the determination of
the vector

Δc = ∑n(Δe)
2, (36)

in which each element is the sum of the squared errors calculated for each column of the
matrix Δe [22–25].

In the next step, the minimum value
(
Δc

min) of the vector Δc and the corresponding
number of trials

(
mmin) are determined. The parameters Tmax

opt, smax
opt, and βopt corre-

sponding to the value Δc
min are assumed to represent the optimal solution to the MC-based

model. These parameters correspond to the estimates T̃max, s̃max, and β̃ as defined above.
We then determined the uncertainty associated with the MC method using the follow-

ing formula:

u(MC) =

√
1

M(M − 1) ∑M−1
m=0

[
Δcm − ¯

Δc

]2

, (37)

where
¯
Δc =

1
M

(
∑M−1

m=0 Δcm

)
. (38)

The last step in our MC-based procedure involves the determination of the uncertain-
ties associated with the parameters Tmax, smax, and β using the formula:

u(x) =

√
1

M(M − 1) ∑M−1
m=0 [xm − x]2 , (39)

where
x =

1
M ∑M−1

m=0 xm. (40)

The last two formulae are valid for all the parameters in the MC model.

4. Example Application and Verification of Results

Let us present below the experimental results referring to the modelling of the real RIM
with the following rated data: Pn = 3.3 kW (rated power), Vsn = 400 V (rated stator volt-
age), Isn = 9.5 A (rated stator current), fn = 50 Hz (rated frequency), nn = 940 rpm/min
(rated rotational speed), Δ/y (winging connections), cos ϕn = 0.89 (rated power factor),
and ηn = 0.87 (rated efficiency). Single-phase resistances for the stator and rotor are 2.9 Ω
and 0.1 Ω, respectively.

Table 1 shows the measured results for the magnetisation characteristic obtained in
the idle state. The value of the current Is0, obtained for the rated voltage Vsn, was measured
with a digital instrument, and is equal to 5.60 A. The uncertainty associated with this
current was calculated using Equations (20) and (22), and is equal to 0.22 A.

Figure 6 shows the results obtained for the power loss in the stator iron ΔPFe using the
method shown in Figure 4 and Equations (23)–(30). The value of this power loss is 155.8 W,
and the linear equation that approximates the measurement points is

P0

(
Vs

2
)
= a0 + a1·Vs

2 = 41.5 + 9.74·10−4·Vs
2. (41)
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The uncertainty associated with this approximation is u
[
P0
(
Vs

2)] = 3.52 W.

Table 1. Measured results for the magnetisation characteristic in the idle state.

No. 1 2 3 4 5 6 7
Vs [V] 160 180 200 220 240 260 280
P0 [W] 70 70 81 85 95 110 120

No. 8 9 10 11 12 13
Vs [V] 300 320 340 360 380 400
P0 [W] 130 147 150 165 180 200

Figure 6. Results for the power loss in the stator iron ΔPFe.

The uncertainties associated with the parameters in the linear equation are u(a0) = 2.17
and u(a1) = 2.31·10−5, while the corresponding relative uncertainties are δ(a0) = 5.24%
and δ(a1) = 2.38%.

The uncertainty and relative uncertainty associated with the power losses, obtained
using Equations (31) and (32), respectively, are u(ΔPFe) =2.18 W and δ(PFe) = 1.40%. The
measured results for the short-circuit state of the RIM are shown in Table 2. These results
enabled us to determine the parameters included in the circuit model shown in Figure 3,
using Equations (10)–(14).

Table 2. Measurement results for the short-circuit state.

Vsk [V] Isn [A]

168 9.5

The values of the voltages Vsn, Vs1, and Vsm were determined using analogue volt-
meters with an accuracy and measurement range of 0.5% and 400 V, respectively. The values
of the quantities KV, RFe, IFe, Img, Xmg, Xσs, and Cs, calculated using Equations (3)–(9),
are 4.167 V/V, 3.08 kΩ, 0.13 A, 5.59 A, 71.45 Ω, 2.23 Ω and 0.971, respectively. The cor-
responding uncertainties u(KV), u(RFe), u(IFe), u

(
Img

)
, u(Xmg), u(Xσs) and u(Cs) are

0.001 V/V, 55 Ω, 0.020 A, 0.22 A, 14.23 Ω, 0.22 Ω and 0.0070, respectively.
Table 2 shows the measured results obtained for the short-circuit state. Based on

these measurements, we can calculate the values of the parameters Rk, Xk, and Zk using
Equations (11), (13) and (14), respectively; we can then determine the corresponding
uncertainties using Equations (18)–(22). These measurements were made using a voltmeter
and ammeter with accuracy and measurement ranges of 0.50%, 200 V and 0.50%, 10 A,
respectively.

The values of the parameters Rk, Xk, and Zk and the associated uncertainties u(Rk),
u(Xk) and u(Zk) are 36.90 Ω, 40.92 Ω, 17.68 Ω, 1.62 Ω, 2.36 Ω and 1.08 Ω, respectively.

Based on the above parameters, the coefficient β and the associated uncertainty u(β)
were calculated using Equations (16) and (18) as 0.152 and 0.141, respectively. The value
of the relative uncertainty δ(β) is 92.8%. The high value of this uncertainty was due to
the significant complexity of Equation (16), which depends on eight indirectly measured
quantities.
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Table 3 shows the measured results for the torque-slip characteristic of the RIM.

Table 3. Measured points for the torque-slip characteristic of the RIM.

No. 1 2 3 4 5 6 7 8 9 10 11
s 0.004 0.018 0.036 0.054 0.074 0.095 0.128 0.154 0.181 0.213 0.253
T

[Nm] 0.00 2.55 3.63 4.41 5.00 5.59 6.18 6.47 6.75 6.83 6.67

No. 12 13 14 15 16 17 18 19 20 21
s 0.312 0.379 0.445 0.510 0.567 0.681 0.760 0.833 0.893 0.961
T

[Nm] 6.38 6.08 5.69 5.30 5.00 4.41 4.02 3.92 3.83 3.42

The values of the parameters Tmaxi and smaxi were determined intuitively, as shown
in Figure 5, as 7.00 Nm and 0.200, respectively. The values of the parameters Tmaxl, Tmaxh,
smaxl, and smaxh were assumed in advance around the above parameters. These values
define the draw ranges for the parameters Tmax and smax. The draw range for the coefficient
β is determined based on the associated uncertainty u(β) by Equation (33), as follows:

βl = 0.152 − 0.141 = 0.011 and βh = 0.152 + 0.141 = 0.293.

A total of 2 × 105 MC trials were carried out using the pseudo-random number gener-
ator with a uniform distribution. Equations (34)–(40) were applied to the execution of the
relevant numerical calculations using the MathCad 15 program, and the total computation
time was 3 h and 24 min. The calculations were performed on a PC with the following
parameters: Inter® Core™, Duo CPU E8400, processor ×64, 3.00 GHz, 4.00 GB RAM.

The minimum value Δc
min for the vector Δc and the corresponding number of trials

mmin were 3.581 and 95360, respectively. The values of the parameters Tmax
opt, smax

opt,
and βopt corresponding to quantity Δc

min are 7.3861 Nm, 0.19721, and 0.28927, respec-
tively. The uncertainty u(MC) associated with the MC method is 0.032. The uncertain-
ties u(Tmax), u(smax), and u(β), associated with the parameters Tmax, smax, and β are
7·10−4 Nm, 1.3·10−4 and 1.82·10−4, respectively.

The relative uncertainty δ(β) associated with the coefficient β is u(β)/β =0.07%.
Based on these results, it should be noted that the value of the uncertainty δ(β) was
reduced from 92.8% (obtained from analytical calculations) to 0.07% (obtained using our
MC-based procedure).

Figure 7 shows the results from our MC-based model of the RIM for the example of
the TSC characteristic and using the EKE.

Figure 7. Results from our MC-based model of the RIM.

Figure 8 shows the distribution of the approximation uncertainty u(T) for the particu-
lar values of the slip s.
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Figure 8. Distribution of the approximation uncertainty for the TSC characteristic.

The highest value of the approximation uncertainty was obtained for the slip s within
the maximum slip value smax, as well as for the slip s with a value of about 0.85.

We now verify the implementation of our MC-based procedure by examining the
influence of the number of MC trials on the value of the uncertainty u(MC). The results for
the values of the parameters included in the EKE are given in Table 4.

Table 4. Results from our Monte Carlo procedure.

No. MC Trials 103 2 × 103 104 2 × 104 105 2 × 105

u(MC) 0.4291 0.3214 0.1463 0.1038 0.0464 0.0327
T [Nm] 7.3313 7.3479 7.4250 7.3624 7.3800 7.3861

s 0.20024 0.19865 0.19741 0.19827 0.19748 0.19721
β 0.25231 0.27863 0.29152 0.28259 0.28993 0.28927

It can be seen from Table 4 that the values for the uncertainty u(MC) decrease as the
number of MC trials increases. The values of the EKE parameters obtained for 2 × 105 MC
trials (the lowest number of MC trials recommended by the corresponding guide), were
assumed to represent the optimal solution to the modelling task for this example.

The results obtained in the section above show that the application of the MC method
and the polynomial procedure in particular allows for a significant increase in the accuracy
of the RIM modelling compared to other methods, which do not include analysis of the
modelling uncertainty.

5. Conclusions

This paper presents a procedure that allows us to assess the accuracy of modelling
of the RIMs on the example of the RSC and EKE, by applying the MC method. Based
on the numerical simulations and calculations performed for an example of the RIM, it
has shown that the effect of the uncertainty on the results of measurements is significant.
The proposed method is based on the corresponding guidelines for the implementation
of accurate measurements, and can significantly reduce the values of the uncertainties
associated with the parameters in the ECE. For example, for the coefficient β, the application
of our MC-based numerical modelling procedure reduced the value of corresponding
uncertainty from 92.8% (analytical calculations) to 0.07% (MC-based procedure). It should
also be emphasised that a further increase in the modelling uncertainty of both the TSC
and the other parameters in the equivalent circuit of the RIM can be obtained by using
more accurate measuring instruments, and by applying modern measurement techniques
based on specialised computer software such as LabVIEW.

The solutions presented in this paper can be used in other applications in the field of
electric machines and electric drives, for example in the precise determination of the char-
acteristics of all types of motors, or for the development of accurate measurement reports.
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Abstract: Optimization methods are increasingly used for the design process of electrical machines.
The quality of the optimization result and the necessary simulation effort depend on the optimization
methods, machine models and optimization parameters used. This paper presents a multi-stage
optimization environment for the design optimization of induction machines. It uses the strategies of
simulated annealing, evolution strategy and pattern search. Artificial neural networks are used to
reduce the solution effort of the optimization. The selection of the electromagnetic machine model is
made in each optimization stage using a methodical model selection approach. The selection of the
optimization parameters is realized by a methodical parameter selection approach. The optimization
environment is applied on the basis of an optimization for the design of an electric traction machine
using the example of an induction machine and its suitability for the design of a machine is verified
by a comparison with a reference machine.

Keywords: induction machine; electromagnetic models; model selection; optimization; artificial
neural networks; pattern search; evolutionary strategy; simulated annealing

1. Introduction

Optimization methods are increasingly used in the electromagnetic design and re-
design process of electrical machines. The selection of the electromagnetic machine model
and the optimization methods has a great influence on the computational effort and the
convergence of the optimization.

Optimization methods can be divided into deterministic and stochastic methods. A
well-known deterministic method is Pattern Search (PS) [1,2]. Among the most commonly
used stochastic methods are evolutionary algorithms such as Genetic Algorithms (GA) [3,4]
or Evolution Strategy (ES) [5], Particle Swarm Optimizations [6], and Simulated Annealing
(SA) [4]. Both deterministic and stochastic optimization methods are applied in the field
of electric machine optimization. In addition, couplings of deterministic and stochastic
methods, such as GA coupled with PS [7], are applied.

In the field of electrical machines, multi-objective optimization is often considered,
which allows the machine to be optimized with respect to several objective functions. In
these optimizations, stochastic methods such as GA or ES and the Design of Experience
(DoE) are used. Other methods used are the sequential optimization method [8] and the
multi-level or multi-stage optimization [3,9–11]. In some of these referred multi-stage
optimizations, a successive two stage optimization using one optimization method is
conducted. The optimization parameters are divided into significant and less significant
parameters and the parameter groups thus defined are varied or kept constant depending
on the current stage. Examples of such methods can be found in [3,9] using a GA and [10,11]
using DoE as the optimization method. An overview and further literature on optimization
methods in the field of electrical machines can be found in [12,13].

The machine models can be divided into direct and indirect machine models. Direct
models include numerical ones such as the Finite Element Method (FEM) and analytical
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ones such as the Equivalent Circuit Diagram (ECD) model. They differ in their range of
values of the modeled effects, their level of detail and their computational effort. In the field
of optimizing synchronous machines [14,15] and synchronous reluctance machines [16],
machine modeling is often performed using the FEM. This is possible due to the negligible
transient effects and the resulting lower computational effort compared to the consideration
of the FEM in the optimization of an Induction Machine (IM) [17,18]. For the IM, transient
effects can no longer be neglected without accepting a significant reduction of the level of
detail, resulting in a high computational effort for the FEM. Therefore, lower order models
like analytical ECD models are applied [19–22].

In machine optimization environments, a very high number of machine simulations
can be required. In this case, the FEM and other analytical methods can lead to very high
computational effort. To reduce this high computational effort indirect machine models like
the Response Surface Model (RSM) [8], Kriging Model [8,10] or Artificial Neural Network
(ANN) are used. These surrogate models replace the machine model and estimate the
output parameters of the machine based on the input parameters.

This paper presents a multi-stage optimization environment for IM design optimiza-
tion that combines the advantages of several of the described optimization methods. The
methods used are SA by [23], ES by [24], and PS by [1]. While the stochastic SA method has
good global convergence with low local convergence speed, the ES method is known for
stable convergence in the local group [25]. PS, as a deterministic method, provides a tool
for fast local convergence [26]. Both the application of the successive ES-PS optimization
and the previously executed stage of SA improve the convergence behavior in this case. In
all these stages, direct machine models are used for electromagnetic modeling. The suc-
cessive ES-PS method also reduces the computational effort compared to the single-stage
ES-PS method. The increased computational effort due to the use of SA is compensated
for by the application of an indirect machine model in the form of an ANN. This leads to
a multi-stage optimization environment that combines the advantages of deterministic
and stochastic optimization methods and those of direct and indirect model building. The
selection of electromagnetic machine models and optimization parameters in each stage
is methodically performed using the model selection and parameter selection procedure
approach presented in [27]. Thus, in each stage, the model can be adjusted according to the
desired range of values and level of detail.

The presented optimization environment is exemplary used to design an IM as a
traction drive for a small vehicle. The aim of the optimization is to minimize the losses
occurring over a given driving cycle while at the same time minimizing the required
installation space. Starting with a rough design of the machine, it is optimized using
the optimization methods presented, considering geometric and thermal constraints. The
resulting machine is compared with a reference machine, which is used as a benchmark. The
simulation results of this example show a good robustness of the multi-stage optimization
environment including SA, a successive ES-PS method and the use of an ANN. Compared
to classical multi-stage optimizations using one optimization method and one type of
machine model, as in [3,9–11], it shows an improved convergence behavior. It can therefore
be used for the design process and the design optimization of IM.

2. Optimization Environment and Optimization Methods

The classical optimization methods can be categorized into stochastic and determinis-
tic methods. While deterministic methods realize a fast convergence to a local optimum,
stochastic methods enable the search for a global optimum. Furthermore, stochastic meth-
ods offer other advantages, including easy consideration of constraints and numerical
stability avoiding the use of derivatives [25]. A detailed review of optimization methods in
the context of electrical machines is presented in [12,28].

In this paper, with the SA, the ES and the PS, three different optimization methods
are combined in one optimization environment, thus exploiting synergies. While the
stochastic SA method exhibits good global convergence with low local convergence speed,
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the ES method is known for stable convergence in the local group [25]. PS, as a deterministic
method, provides a tool for fast local convergence [26]. In the following, the multi-stage
optimization environment used in this work is presented. First, the overall structure of the
optimization environment is explained and then the individual parts of it are described in
more detail.

2.1. Structure of the Optimization Environment

The optimization environment used in this work is shown in Figure 1 and consists of
several optimization steps and further functionalities to reduce the simulation effort.

The input of the optimization environment consists of the problem description, the
electromagnetic IM models used in the respective optimization stages and the optimization
parameters that are varied during the optimization. The problem description includes
the physical problem including its constraints and decision parameters used to define
the objective function and the fitness function respectively. The electromagnetic machine
models used in the respective optimization stages are defined using a methodical model
selection approach presented in [27]. Based on the problem description, this determines
the most suitable problem-specific IM model for the individual stage of the optimization
process. This results from the fact that, in a global search, if necessary, a lower level of
detail of the model is sufficient for a rough estimate of the fitness value, whereas in a local
search a high precision is required to converge to the actual minimum. The optimization
parameters are also defined methodically. Building on the model selection methodology,
the methodological parameter selection approach presented in [27] is used to determine
the variable optimization parameters based on their influence on the optimization problem.
For these parameters, possible lower and upper bounds are described.

The optimization itself consists of five optimization stages. The result of each stage
represents the initial solution of the further stages. The first stage is performed using the
SA method. This features good global convergence, but has a low local convergence speed.
The SA optimization is used to identify a local group of solutions. The following stages
involve a successive hybrid optimization method with a faster local convergence. A hybrid
optimization method is a combination of a stochastic and a deterministic search method.
In this paper, the combination of the ES method with the PS method forms such a hybrid
method. In the ES method, both the required population size and the required number of
generations increase for stable convergence of the method with an increasing number of
optimization parameters and thus the dimensions of the solution space. This relationship
can be explained as a function of the number of optimization variables n by O(n2) [24].
To reduce the solution effort, the hybrid optimization is performed successively in two
consecutive steps. In the first step, significant optimization parameters are varied and
less significant optimization parameters are set to constant values. In the second step, the
parameters optimized in the first step are assumed to be constant and the less significant
parameters are varied. The classification of the optimization parameters into significant
and less significant parameters is done by the user.

The hybrid successive optimization approach results in a reduction of the solution
space and thus also of the computational effort within the individual stages. Since there is
no holistic global search for the optimum, but the stages act independently of each other,
this is a heuristic approach to solve the optimization problem.

To further reduce the simulation effort, an ANN is introduced. This is used to deter-
mine the objective function without the need for electromagnetic simulation. The database
for the training, selection and testing instances of the ANN is set up during the first stage
of the optimization environment. Once the minimum size of the database has been reached,
the ANN is constructed and applied in the further course of the optimization.

In the following, the individual parts of this multi-stage optimization environment are
explained in more detail. First, the model and parameter selection approach are introduced.
Second, the used optimization methods and the fitness function used by all optimization
methods are explained. Finally, the ANN used is described.
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Figure 1. Flow chart of the multi-stage optimization environment.

2.2. Model Selection Approach in the Optimization

Whereas in the global search a lower level of detail of the model may be sufficient for
a rough estimation of the fitness value, in the local search, a high precision is required to
converge to the true minimum. For this reason, the model selection approach presented
in [27] is used to methodically assign different machine models of the IM to each step of
the optimization environment. In the context of the optimization environment, the output
variables and effects to be considered describe those variables, which influence the decision
parameters of the optimization problem. The use of the model selection approach will
allow different levels of detail to be considered and defined in the individual optimization
steps, allowing both precision and solution effort to be flexibly adjusted.

The model selection approach assigns a constant model to the SA optimization. Since
SA implements a global search to identify a suitable local group, a lower level of detail may
be sufficient in this step, which in turn reduces the solution cost of the resulting model.

For the ES method, a model vector of arbitrary length and increasing level of detail
is used. The desired level of detail is specified and the most suitable model which fulfils
this is determined by the model selection approach and added to the model vector. In
general, the model selection does not distinguish between the first and second stage in the
case of the successive optimization. The ES optimization starts in both stages with the first
model in the model vector. If the minimum fitness value f (�xmin,k) of the generation k has
not changed more than a tolerance ε over a given number of generations n, thus

| f (�xmin,k−n)− f (�xmin,k)| < ε (1)

72



Energies 2021, 14, 5537

is satisfied, the next most accurate machine model in the model vector is selected. This
detects convergence to a local minimum and supports it with a more precise model.
Provided that the criterion from (1) is met again, the next model in the model vector is
selected, and so on.

Since the PS method is a deterministic and thus local optimization method, a high
level of detail of the machine model of the IM is required. Otherwise, the geometry changes
required for convergence to the actual minimum may not be adequately represented. This
may even lead to a degradation of the solution. The model selection approach assigns a
constant model to the PS optimization, which is also independent of the stage of successive
optimization. This model is already used in the last iteration of the ES method in order to
support the local convergence there by a more precise model and thus to prepare the use of
the PS optimization.

2.3. Parameter Selection Approach in the Optimization

The optimization parameters of the machine geometry optimization represent those
geometry parameters which are varied during the optimization process in order to find a
better solution. These parameters are intended to cover a high degree of possible degrees
of freedom of the geometry. With a higher number of optimization parameters, the number
of dimensions of the search space increases and so does the required solution effort. It is
therefore desirable to choose those geometry parameters that have the greatest influence on
the searched output variables and the lowest degree of redundancy. Therefore, the choice
of optimization parameters in this work is done by using the parameter selection method
presented in [27]. The approach for the parameter selection is problem-specific and is also
influenced by the selected system model. This is a result of the approach for the model
selection, which must be applied accordingly in advance.

In the approach, the sensitivities and the elasticities with respect to the output variables
relevant for the optimization are examined for each geometry parameter. The optimization
parameters are sorted according to their elasticity and the parameters with the greatest
influence on the optimization problem are identified. The sensitivity and elasticity analysis
used is briefly described in the following.

2.3.1. Sensitivity Analysis

The sensitivity analysis is based on the approach of the local sensitivity analysis
in [9,10] and is carried out on the basis of the given initial design of the IM. For this
purpose, the individual geometric parameters of the machine are varied by user defined
factor rsens. A change that is too small leads to numerical instabilities and changes that are
too large possibly lead to inconsistent machine geometries. If the sensitivity to a geometry
parameter is to be examined, the influence of this parameter on other geometry variables
must also be taken into account. These influences are described using a correlation matrix,
which describes for each possible variable geometry parameter which other geometry
parameter still has to be changed. Both machines, the initial design and the slightly
changed machine geometry, are simulated and the influence on the objective function is
assessed by comparing the output variables.

2.3.2. Elasticity Analysis

The elasticity ε describes the ratio of the change of an output quantity, related to the
change of the input quantity, and therefore results in the case of the sensitivity analysis for
a physical quantity to

εphys =
rphys

rsens
, (2)

where rphys describes the relative change of the physical quantity between the two sim-
ulated machine models. This allows for capturing for each model how much a certain
quantity changes when the parameter under investigation is modified.
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2.4. Simulated Annealing

The basic principle of the methaheuristic optimization method of SA according
to [23] describes the quality of a possible solution or an individual x by means of a
fitness function f . The goal of the optimization is to minimize the fitness f (x). Start-
ing from an initial solution x0, a random selection of new individuals xk+1 within the
solution space is performed. A new individuum is accepted and not discarded if one of
the constraints

f (xk+1) ≤ f (xk) (3)

or P( f (xk+1)− f (xk)) = e−
f (xk+1)− f (xk)

Tk (4)

is satisfied. Thereby (4) describes, based on Boltzmann statistics, the probability P with
which an intermediate result of the optimization may deteriorate. This realizes the possi-
bility to leave a local optimum in the search for the global optimum. For this purpose, a
temperature Tk is introduced, which is successively reduced over the iterations. The lower
the temperature, the lower the probability of accepting a worse solution. Accordingly, the
algorithm converges with the “cooling” of the solution space.

Application of SA for the IM Optimization

The initial solution x0 of the SA process in the presented IM optimization process is a
roughly designed machine geometry. The rough design is based on problem-specific design
parameters, such as the rated power, and is computed according to [29]. An individual of
the SA optimization is defined by a chromosome. This contains all geometry parameters
described in the optimization variables. The optimization variables are determined by the
parameter selection approach in [27].

In the SA, as well as in the ES and PS method, the parameters of the chromosome
are changed, resulting in new designs of the IM. The new machine designs are calculated,
like the initial solution according to the chromosome and [29]. The evaluation of an
individual based on its chromosome is done by a fitness function, which will be discussed
in Section 2.6.

In this work, new individuals are determined using a normally distributed random
vector �X, whose normalization results in the random vector�y

�X ∼ N (0, 1) ∈ R
n (5a)

�y =
�X

||�X|| , (5b)

with an expected value of zero and a standard deviation of one. The number of dimensions
is equal to the number of optimization parameters n. From the chromosome�xk of the
current individual and the updated temperature Tk, the new individual is determined by

�xk+1 =�xk +
√

Tk
�xk
||�xk|| ∗�y, (6)

where operator (∗) describes an element-wise vector multiplication. The temperature
adaptation is performed according to the Boltzmann annealing by

Tk =
T0

ln k
, (7)

since this method guarantees global convergence for sufficiently large starting temperatures
T0 [30]. However, since only very high starting temperatures ensure global convergence,
but these result in low convergence rates, the technique of Very Fast Re-Annealing (VFR)
is used. This increases the temperature after a given number of iterations to avoid the
method converging to local minima [31].
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If one or more dimensions of the resulting chromosome lie outside the solution domain,
they are set to the upper or lower boundary conditions, depending on which boundary
was violated. This results in the chromosome�x∗k+1 which, in a convex combination with
the current chromosome, realizes a valid solution

�xk+1 = α�x∗k+1 + (1 − α)�xk (8)

via a random variable α evenly distributed between zero and one. The from (6) or (8)
resulting chromosome can subsequently be accepted or rejected analogous to the criteria
described in Section 2.4.

By considering the step-wise cooling temperature in the description of the new chro-
mosome, local convergence is realized. The termination criterion of the SA is a given
number of iterations at which the change in fitness of the best individual is less than a
defined tolerance.

2.5. Hybrid Optimization: Evolution Strategy and Pattern Search

The stochastic method used in the hybrid optimization is the ES according to [24].
The method is based on populations of individuals in the solution space, in which a
generation with μ parents creates λ children via crossover and mutation. A distinction is
made between the plus strategies (μ + λ), in which a new generation can be composed
of parents and children, and the comma strategies (μ, λ), which only consider the best
descendants for the next generation of parents [24]. The method used in this work is based
on the comma strategy, as this introduces a maximum “lifetime” of the individuals and
thus counteracts premature local convergence. The method is structured in an initialization,
a selection, a mutation, a crossover and an inheritance process. The method, especially in
the case of mutation and crossover, is problem-specific. Gaussian distributions can be used
as a statistical basis. Their variance is flexibly adapted as a function of various parameters
in order to achieve good local convergence while at the same time enabling a global search.
This achieves the already mentioned stable convergence in the local group. Due to the
generation principle, there is the inherent possibility of parallelization, which results in a
reduced computing time compared to other stochastic optimization methods [32].

The deterministic method of the hybrid optimization in this work is the PS method. In
contrast to other deterministic optimization methods, PS as a direct optimization method
does not require a gradient of the fitness function. In addition to the associated numerical
stability avoiding the use of derivatives, a local search for problems that are neither
continuous nor differentiable is enabled [1]. In this way, a fast local convergence can
be realized especially for complex optimization tasks with problem-specific boundary
conditions. In this work, the method according to [1] is used.

2.5.1. Application of the Hybrid Optimization Method for the IM Optimization

The implementation of the two optimization methods is as previously described. In
the following, the implemented crossover and mutation of individuals based on random
distributions in the ES optimization will be discussed. For this purpose, normal distribu-
tions are used in the presented optimization environment, whose standard deviations and
expected values are adjusted via various parameters depending on the situation.

Crossover

Crossover of individuals is performed using the (2,1)-strategy. From two parents
separated by their chromosomes�xp1 and�xp2, by means of the convex function

�xc =�xp1 +
(
�xp2 −�xp1

) ∗ �X (9)

with the normally distributed random vector

�X ∼ N (μ, σ) ∈ R
n, (10)
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a descendant with the chromosome�xc is generated. The expected value μ and the stan-
dard deviation σ are thereby influenced by different, parent- and population-specific
factors. The aim of the crossover is to project the properties of the parent with the lower
fitness value f (�xp), more onto the descendant. For this purpose, a fitness factor:

FF =

⎧⎨⎩
f (�xp1)

f (�xp2)
, f (�xp1) < f (�xp2)

f (�xp2)

f (�xp1)
, f (�xp2) < f (�xp1)

(11)

is introduced, which is derived from the fitness values of the parents and shifts the expected
value to the parent with the lower fitness value. Since a larger distance between the two
parents increases the uncertainty of how the fitness behaves in the solution space between
the parent chromosomes, a distance factor

DF = 1 − dp12

dmax
(12)

is introduced. This describes the normalized relative deviation dp12 of the two parents
relative to the maximum occurring value dmax of all parent pairs in the current generation.
This factor shifts the expected value toward the parent with the lower fitness when the
parents are far apart and reduces the standard deviation, counteracting the uncertainty in
the space between. The closer an individual’s fitness is to the minimum fitness f (�xmin) of a
parent in the current generation, the lower the variation of the descendant should be to
allow local convergence. This is achieved by an overall fitness factor:

OFF =

⎧⎨⎩ 1 − 1
2

f (�xmin)
f (�xp1)

, f (�xp1) < f (�xp2)

1 − 1
2

f (�xmin)
f (�xp2)

, f (�xp2) < f (�xp1)
(13)

which affects both the expected value and the standard deviation. The expected value of
the random vector �X is given by

μ =

{ 1
2 · FF · DF · OFF, f (�xp1) < f (�xp2)

1 − 1
2 · FF · DF · OFF, f (�xp2) < f (�xp1)

, (14)

which shifts the expected value of the descendant’s chromosome toward the parent with the
lower fitness value as a function of the factors introduced. The resulting standard deviation

σ = σcrossover · DF · OFF (15)

considers an adjustable maximum standard deviation σcrossover in addition to the factors
described. This should be set as a function of the elasticities of the optimization parameters
in order to respond to large elasticities with a lower variance, thereby counteracting larger
jumps through the solution space and thus improving the convergence behavior in the
local group.

Mutation

Mutation of a selected parent with the chromosome�xp is performed using a nor-
mally distributed random vector analogous to (10). The descendant’s chromosome�xc is
calculated by

�xc =�xp ∗
(

1 + �X
)

, (16)

where operator (∗) describes an element-wise vector multiplication. Here, the random
vector has an expected value of μ = 0, whereas the standard deviation, analogous to the
crossover of individuals, is adapted depending on various parameters. Through these

76



Energies 2021, 14, 5537

factors, local convergence is to be realized in particular. For this purpose, the overall
fitness factor

OFF = 1 − 1
2

f (�xmin)

f (�xp)
(17)

analogous to (13) is introduced. This reduces the variance as a function of the fitness value.
In addition to this, with

GF = 1 − gk
gmax

(18)

a generation factor is defined for the current generation gk, relative to the maximum num-
ber of generations gmax. This factor reduces the standard deviation across generations,
which also supports local convergence of mutant descendants.

The resulting standard deviation of the random vector describing the mutation follows
accordingly with

σ = σMutation · GF · OFF. (19)

The adjustable maximum standard deviation of the mutation σmutation should be adapted
as in the case of the crossover depending on the elasticity of the optimization parameters.

2.6. Fitness Function

The fitness function is identical for all stages of the optimization environment. It
assigns an individual x a fitness value f (x) based on its chromosome, considering geom-
etry and thermal constraints as well as a given driving cycle. This fitness value thereby
also categorizes unacceptable machine geometries, depending on the number of fulfilled
boundary conditions and the achievable points of the driving cycle. By this categorization,
inadmissible solutions can be of different fitness, which improves the convergence behav-
ior of the optimization methods and, in particular, realizes a faster search for admissible
solutions. The maximum fitness of an individual is given by

fmax = 2 · nBC · nDC, (20)

where nBC represents the number of constraints to be considered and nDC represents
the number of points in the driving cycle. This allows a clear differentiation and thus
categorization of the fitness values. The procedure to evaluate the fitness of an individual
is based on a sequential process:

1. Creation of the machine geometry based on the chromosome and the necessary
design parameters

2. Verification of geometric boundary conditions. In case of violations of the boundary
conditions, the resulting fitness value of the individual as a function of the number of
satisfied geometry boundary conditions nBC,Geo(x) is given by

f (x) =
fmax

nBC,Geo(x)
. (21)

3. Operating map calculation of the geometrically permissible individual using the
selected machine model.

4. Verification of the thermal boundary conditions using a thermal simulation. If the
given maximum temperatures are exceeded, the fitness results in

f (x) =
fmax

nBC,Geo
, (22)

with the number of all geometry boundary conditions nBC,Geo.
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5. Determination of the individual fitness of an admissible individual by means of

f (x) =
1

∑i wi
∑

j
wj

pj,indiv

pj,ref
. (23)

where pj,indiv are weighted problem-specific decision parameters, pj,ref are the deci-
sion parameters of a reference machine, and wi is the sum of the weighting factors.
In case of an invalid solution due to the non-achievement of several operating points
in the driving cycle, an additional penalty term

fpenalty(x) =
fmax

2nBC
vDC(x) + Δoffset (24)

is considered. Here, vDC(x) stands for the share of the not reachable operating points
in the total number of operating points of the driving cycle and Δoffset for an offset to
separate the invalid solutions from the allowed ones.

3. Reduction of the Solution Effort

In order to realize a stable convergence of the optimization environment with a
solution space with sufficiently many degrees of freedom for the variation of the machine
geometry, many iterations and large populations are required due to the used stochastic
optimization methods. This yields a long computation time, particularly for machine
models with a high number of degrees of freedom. Depending on the required level
of detail of the optimization problem, which influences the model resulting from the
model selection methodology, the problem may thus not be solvable within a few days.
A reduction of the solution effort is desirable. The solution effort can be reduced by a
preselection of the individuals to be simulated. In this work, the preselection is realized
by estimating the fitness values of the individuals using an ANN . This estimates for
each individual those decision parameters of the optimization environment that require a
time-intensive operating map simulation, such as the mean losses over a given drive cycle.
Geometry-dependent decision parameters, such as the volume or mass of the machine, on
the other hand, are computed in a regular manner, so that a fast estimate of an individual’s
fitness can be obtained from the estimate of the ANN as well as from the individual
geometry parameters. Based on these estimates, solutions are discarded and only those
individuals promising better fitness than the current minimum are simulated. In the
following, the ANN and its application will be discussed.

Artificial Neural Networks

ANN consist of several artificial McCulloch–Pitts neurons. The structure of such a
neuron is shown in Figure 2b. The input values xi of the neuron are thereby multiplied by
weighting factors wi. The result of the summation of the weighted input values is adjusted
with an offset b (also: bias) and projected to the output y via a transfer function f [33]. This
results according to

y = f (�w �Tx + b). (25)

Various transfer functions exist whose suitability depends on the problem. An
overview of numerous transfer functions and their respective characteristics is given
in [34].

Based on the representation of a single artificial neuron, an ANN can be realized, and
various constructions are possible. In this work, the feed-forward architecture, which is
shown in Figure 2a is considered. This is described by several layers, each of which is fully
connected to the following layer. These are the input and output layer, which describe the
input and output variables of the network, and one or more hidden layers. The latter are
composed of an arbitrary number of artificial neurons [35].
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The weighting factors wi and offsets b of the individual neurons are determined when
training the network using a training method. An overview of various training methods is
given in [36].

( )

(a) Representation of the used feed-
forward ANN structure.

 Transfer Function

(b) Illustration of an artificial neuron.

Figure 2. Representation of the used feed-forward ANN and artificial neuron structure.

Application of the ANN for the IM Optimization

The ANN implemented in this work is based on a fully connected feed-forward
architecture of McCulloch–Pitts neurons and shown in Figure 2a. As a transfer function, a
sigmoidal function

f (x) =
1

1 + e−x (26)

is chosen, which is characterized by a simple and fast calculation of the derivative [34].
Moreover, its range of values includes only positive values, which meaningfully describes
the estimation of physical quantities, such as the electromagnetic losses. The inputs of
the ANN are the optimization parameters that are the geometry parameters of the actual
IM design. Within the input selection, which will be described in the following, these
will be supplemented by further geometry parameters. Two common problems in the
construction of ANN are under-fitting and over-fitting, which, due to insufficiently complex
or over-complex architectures, can cause imprecise estimates of the network. This can
be counteracted by a multi-stage method in which different network architectures are
analyzed by varying the number of neurons and layers. From these possible architectures,
the most appropriate one is selected. For this purpose, the following sequential, five-step
flow is introduced.

1. Database: For the training and the use of the ANN, a database of individuals is created,
which covers the solution space representative. The database is built in parallel to
the optimization from the already simulated individuals, which result during the
SA and ES method. Here, the database is composed exclusively of geometrically and
thermally admissible solutions that reach all points of the driving cycle and stores the
chromosomes and the fitness values of the individuals.

2. Construction: As soon as the database reaches an adjustable minimum number of
individuals, the construction of the ANN starts. The database is first divided into
training, selection and testing instances. Based on the operating map-dependent
decision parameters of the training instances, which are derived from the respective
fitness values, increasingly complex neural networks are generated. Starting with a
hidden layer and an adjustable number of neurons, this number is successively in-
creased up to a maximum value. A predefined set of further layers with an increasing
number of neurons is added step by step. Here, the input variables of the networks
are composed of the optimization parameters. The choice of the input variables of
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the ANN is essential, since they determine the precision significantly. Therefore, two
phenomena must be considered in their selection:

• Input Correlation: The input variables should be minimally correlated with each
other, and accordingly have as little redundancy as possible.

• Input Target Correlation: The correlation between output and input variables
should be maximized, thereby having the greatest possible influence on the
output.

Both aspects can be ensured by the introduced sensitivity analyses. As a training
procedure the Levenberg–Marquart method is used in this paper.

3. Order Selection: In the context of the order selection algorithm, the architecture
with the lowest selection error is selected from all created network constructions
on the basis of the selection instances. For this purpose, the constructed neural
networks are used to estimate the operating map-dependent decision parameters of
the individual selection instances, and the estimates of the individual fitness values are
thus derived from the respective geometry parameters, which are used to determine
the selection error.

4. Input Selection: Based on the optimization parameters, successively additional ge-
ometry parameters, starting with the highest elasticity to realize the highest possible
input-target correlation, are added as input variables to the selected network architec-
ture. For each new geometry parameter to be added, the correlation with the already
existing input variables must be checked, since in terms of input correlation the input
variables should have as few redundancies as possible. Therefore, if a correlation
exists, the geometry parameter to be added is discarded in this work. To realize the
growing inputs algorithm, new geometry parameters are added as additional input
variables until the selection error starts to increase.

5. Characterization: The problem-specific constructed ANN follows from the order
selection and the subsequent input selection. Analogous to the selection instances,
this neural network is used to estimate the individual fitness values of the testing
instances. Based on this estimation, the error distribution of the testing error can be
determined, which is essential for the further application of the ANNin the optimiza-
tion environment.

The steps for network construction, order and input selection, and characterization
are repeated at predetermined intervals once the required number of individuals in the
database has been reached. Thus, new individuals added to the database are considered in
the ANN, further increasing the estimation accuracy.

The output or solution of the network are the mean loss PL over the driving cycle of
the considered individual. To ensure that the preselection of individuals by the ANN does
not discard solutions that would otherwise represent a new optimum, a threshold fth is
introduced. Here, individuals whose estimated fitness is above the threshold are discarded
and otherwise simulated. To determine the threshold, a delta Δ ≥ 0 is introduced. This
results from the given estimation reliability γ of the ANN as well as the error distribution
of the testing error to

∫ Δ

e=−∞
p(e)de = γ. (27)

The relationship is visualized in Figure 3a. The threshold, as shown in Figure 3b, is
obtained as a function of the current optimum f (�xmin) to

fth = f (�xmin) + Δ. (28)

Estimates above the resulting threshold consequently lie within the γ confidence
interval with respect to the null hypothesis that these individuals do not represent a new
optimum. In addition to the threshold, the relative deviation or distance of the chromosome
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of the solution to be estimated from the individuals in the database is also considered. If the
distance to the nearest individual exceeds a predefined value, the solution is simulated and
not discarded because in that case the estimation of the ANN is based on an extrapolation
whose validity is not guaranteed.

(a) Delta Δ based on the distribu-
tion of the testing error.

(b) Threshold fth for discarding
solutions.

Figure 3. Representation of the delta based on the distribution of the testing error (a) as well as the
resulting threshold (b) for the preselection of solutions by means of a ANN.

4. Exemplary Design Optimization of an IM

The presented optimization environment is used to design an IM as a traction drive
for a small vehicle. The aim of the optimization is to minimize the losses occurring
over a driving cycle while at the same time minimizing the required installation space.
Starting with a rough design of the machine, it is optimized using the presented multi-stage
optimization environment, considering geometric and thermal constraints. The resulting
machine is compared with a reference machine, which is used as a benchmark. To model
the IM, different electromagnetic machine models with different value ranges and level of
detail are used. The thermal behavior of the machine necessary for the evaluation of the
thermal constraints is modeled with an equivalent thermal network with four nodes, as
presented in [37].

4.1. Description of the Multiphysics Problem

Boundary conditions and design parameters of the IM are defined on the basis of a
reference geometry, whose cross sectional area is shown in Figure 4a. This is a four-pole
IM with a rated power of 41.5 kW. An unchorded three-phase copper winding is inserted
into the stator, which is connected in delta. The rotor of the machine is a squirrel cage
rotor with bars and rings made of a die-cast aluminum with an electrical conductivity
of 28 · 106 S/m. The stator and rotor laminations are made of electrical steel sheets of type
M400-50A, the designation of which is given by DIN EN 10027-1. The main rated and
geometrical parameters are summarized in Table 1. The geometry of the reference machine
was designed electromagnetically in an experience-based, iterative process. By solving the
problem using the presented optimization environment, a machine geometry with identical
boundary conditions and design parameters is to be realized starting from the roughly
designed IM in an automated process. The geometry properties and operating behavior of
the resulting optimized machine should be similar to those of the reference machine. The
cross sectional area of the roughly designed machine is shown in Figure 4b.

To evaluate the machine behavior, two differently weighted decision parameters
pj,indiv are introduced, which are used to determine the fitness value of a geometry relative
to the reference machine according to (23).

The first decision parameter is the average losses over a given driving cycle. For this
purpose, the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) class 3 driving cycle
is considered, which is a part of the Worldwide Harmonized Light Vehicles Test Procedure
(WLTP). Based on this driving cycle, the associated speed and torque combinations of the
WLTC 3 can be derived for an example small car defined by the vehicle parameters from
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Table 2 using the vehicle model according to [38]. To ensure that the driving cycle is fully
represented by the reference machine, the resulting speeds and torques are additionally
scaled by the factor 0.7. This is due to the fact that the vehicle data of the reference machine
are not known. However, this has no influence on the methodical optimization of the
machine. Using these speed and torque combinations, the average losses over the driving
cycle can be determined via the operating map of the machine.

The second decision parameter is the installation space of the machine. The installation
space is not only used as a decision parameter but is further restricted by boundary
conditions. The installation space is weighted by a factor of three less than the losses over
the driving cycle.

The reference machine is also be used to define the other design-relevant parameters of
the multiphysics problem, on the basis of which the rough design of the IM is carried out.

(a) Reference. (b) Roughly designed. (c) Optimized.

Figure 4. Representation of the cross sectional area of the reference (a), roughly designed (b) and optimized machine (c).

Table 1. Rated and geometrical parameters of the reference machine.

Parameter Value Unit Parameter Value Unit

Rated power 41.5 kW Stator outer diameter 175 mm
Rated current 400 A Active iron length 0.2 m
Rated voltage 90 V Air gap width 0.5 mm
Number of phases 3 − Volume (incl. housing) 0.0112 m3

Number of pole pairs 2 − Mass (excl. housing) 38.15 kg
Winding connection Delta −

Table 2. Parameters of the example vehicle.

Parameter Value Unit

Vehicle weight 1550 kg
Rolling resistance coefficient 0.01 −
Cross span area 2.2 m2

Drag coefficient 0.29 −
Mass moment of inertia wheel 1.2 kg m2

Gearbox efficiency 0.95 −
Wheel radius 0.3065 m

4.2. Methodological Optimization

Based on the problem description, the most suitable machine model is derived for the
individual optimization stages using the model selection methodology. The optimization
parameters are then derived in dependence of this model using the parameter selection
methodology. The used electromagnetic IM models, the procedure and the results of the
model and parameter selection for the given problem are briefly explained. Furthermore,
the adjustable convergence parameters of the optimization environment are discussed.
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4.2.1. Electromagnetic Machine Models

For the electromagnetic simulation of the IM, the machine models described in [27]
are used. These are the Fundamental Wave Model (FWM), the Harmonic Wave Model
(HWM) and the Extended Harmonic Wave Model (E-HWM), three analytical models, and
the Time Harmonic Finite Element Model (TH-FEM) and the Transient Finite Element
Model (T-FEM), two numerical models. The models differ in their range of values and level
of detail. The following is a brief description of the models.

The fundamental wave model is based on a single-phase ECD, also presented in [39].
For the calculation of the elements of the ECD, which can be derived exclusively from the
machine geometry and constant parameters, reference is made to the literature [40].

The HWM and the E-HWM are based on the harmonic wave theory of the IM pre-
sented in [41–43]. The HWM is the implementation under the assumption of an infinite
permeability of the stator and rotor iron. The E-HWM is an extension of the HWM,
where the influence of saturation is modeled by multiplying the flux densities by an air
gap conductance function. The circumferential location dependent air gap conductance
function [40] is a description of the effective air gap of the machine. The air gap is is
increased on average by a saturation factor kh > 1 as a result of the main field saturation.
In the region of large iron saturation, i.e., in the maximum of the air gap flux density B,
the air gap is further enlarged by an additional saturation factor kh1, and reduced at zero
crossings. The air gap conductance function defined in this way moves synchronously
with the fundamental wave field. The air gap flux density flattened by the saturation
follows from multiplying the air gap flux density calculated with the HWM by the air gap
conductance function.

The TH-FEM is based on the state of the art FEM for time-harmonic simulation of
electromagnetic components including a slip transformation [44–46]. To consider for the
nonlinear material behavior of the stator and rotor laminations, an iterative procedure is
used in the field solution. For this purpose, the successive substitution approach or the
Newton method can be used.

For the computation of the T-FEM, an in-house state-of-the-art Finite Element (FE)
solver called iMOOSE/pyMOOSE [47] is used. To reduce the computational effort of the
T-FEM, a hybrid simulation approach presented in [48] is applied.

The FWM, HWM, E-HWM, and TH-FEM are implemented in Matlab®, whereas the
T-FEM is implemented in pythonTM and C++. An operating map simulation needs 15 min
using the TH-FEM on an PC with an i7 3.6 GHz Processor and 16 GB RAM and 12 h using
the T-FEM on the compute cluster of the RWTH Aachen University.

4.2.2. Model Selection Approach

Based on the decision parameters presented, the output variables or effects to be
investigated are defined on the basis of those variables of the machine model which
influence the decision parameters. This is the case for the diverse loss types of the IM, since
they determine the average losses over the driving cycle. For this reason, all loss types are
included as output variables to be considered. However, other output variables and effects
are not defined in this use case, since none of the other variables has an influence on either
of the decision parameters.

In Table 3, the output variables to be investigated are shown with the required levels
of detail. Here, identical precision is required for all stages of the optimization environment,
since the resulting higher computation times are acceptable in the context of this work. The
illustrated levels of detail must be achieved for all operating points of the operating point
matrix, so that the precision of the map calculation is ensured. The required level of detail
of the ohmic losses is obtained assuming a measurement deviation of 5%, a deviation of
the electromagnetic reference model of 5%, and a scatter of the optimum identified by the
optimization environment of 5%. A deviation of 25% is allowed for the iron losses since
they are not dominant compared to the ohmic losses.
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From the model selection approach, the TH-FEM follows as the model that can repre-
sent the required levels of detail at all operating points while minimizing the computational
effort. Consequently, in the context of the optimization problem considered in this work,
the TH-FEM simulation is used in all stages of the optimization environment to describe
the behavior of the IM.

Table 3. Output variables of the machine model to be investigated.

Output Variables and Effects Level of Detail

Output variable
Ohmic losses 15%
Stator iron losses 25%
Rotor iron losses 25%

Effects − −

4.2.3. Parameter Selection Approach

Based on the defined problem-specific output variables and the machine model of
the IM resulting from the model selection methodology, the parameter selection approach
is carried out. With this methodology, seven optimization parameters, which have no
geometric correlation among each other, are determined. Possible optimization parameters
include all geometry parameters of the IM.

Using the approach described in [27], the optimization parameters presented in Table 4
with descending elasticity are derived. Consideration of the specified lower and upper
bounds on the variables reduces the size of the solution space and thus the computa-
tional effort required. A large part of the bounds results from experience. However, the
upper bounds on the rotor diameter and active length can be estimated by considering
the installation space limitations in combination with the diameter or length increase of
the housing and, in the case of the active length, the winding head length. The lower
limit of the outer diameter of the rotor follows from the shaft diameter. In the context
of successive optimization, the top four optimization parameters shown are chosen as
significant parameters due to their higher elasticity, and the remaining three variables are
chosen as less significant parameters.

Table 4. Optimization parameters with associated lower and upper bounds.

Optimization Parameter Lower Bounds Upper Bounds

Number of rotor slots 6 50
Number of pole pairs 1 6
Number of slots per pole and phase 1 10
Outer rotor diameter 38 mm 175 mm
Active iron length 1 mm 202 mm
Rotor tooth width 1 mm 20 mm
Stator yoke height 1 mm 40 mm

4.2.4. Convergence Parameters of the Optimization Environment

For the different stages of the optimization environment, numerous adjustable conver-
gence parameters result, such as variances, tolerances, population sizes, or the maximum
number of iterations. These parameters can be used to adapt the convergence behavior
of the individual stages to the problem-specific specifications of precision and solution
effort. In addition, the behavior of the ANN can be influenced by settings for the network
construction and the database. The definition of these convergence parameters is thereby
experience-based.
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4.3. Simulation Results

The simulation results of the presented exemplary IM design optimization are divided
in optimization methods results, describing the convergence, robustness, and stability
of the presented multi-stage optimization environment, and the IM optimization results,
analyzing the optimized machine design.

4.3.1. Optimization Methods Results

Verification of the Multi-Stage Optimization

The analysis of the convergence behavior of the multi-stage optimization environment
is performed in two steps. In the first step, the simulation results of the successively applied
hybrid ES-PS method are compared with the standard single-stage ES-PS method. In the
second step, the use of SA as a preliminary stage to the ES-PS method is compared with
the standard single-stage ES-PS method. This approach allows for evaluating separately
the advantages of the second hybrid optimization stage and those of the pre-connected
SA stage. For this comparison, the described exemplary design optimization is simulated
60 times with each of the different methods and the medians, means, dispersions, and
variances of the resulting fitness functions are analyzed.

In Figure 5a, the distribution of the fitness values of the single-stage ES-PS method
are plotted in comparison with the two-stage ES-PS method. In the single-stage method,
all optimization parameters from Table 4 are varied simultaneously, and the number of
generations is g = 50 and the population size is p = 200. In the two-stage method, the
number of optimization parameters in each stage is less than in the one-stage method.
Due to this resulting reduction of the solution space in the both stages, the number of
generations and populations in the ES method, and thus the computation effort, can be
reduced compared to the single-stage method. For the two-stage method, it is g = 20
and p = 50 in both stages. The reduction of the solution space also causes a reduction
of the dispersion and variance, as can be seen in Figure 5a, with a smaller mean value
and median. This shows that using the two-stage ES-PS method results in more stable
convergence behavior while increasing the speed of convergence.

In Figure 5b, the results of a second single-stage ES-PS method are plotted in com-
parison to the combination of SA and the single-stage ES-PS method. The single-stage
ES-PS method is performed with the same settings as in the previous comparison. This
allows an indication of the robustness of the convergence behavior of this method. As
shown in Figure 5a,b, the median, the mean value, the dispersion, and the variance are in a
very similar range in both cases, suggesting a robust convergence behavior of the method.
Combining this method with the SA results in a significant reduction of the median and
mean value as shown in Figure 5b. The dispersion and variance also decrease when SA is
used. This shows that the previously conducted global search using SA also improves
the convergence behavior of the optimization compared with the standard single-stage
ES-PS method. The computational effort increases with the use of SA. However, this can
be counteracted by ANN as explained in the following section. Since the multi-stage
optimization environment runs sequentially, an improvement in the convergence behavior
by the SA and the two-stage ES-PS method compared to the single-stage one also means
that the convergence behavior of the entire optimization environment is improved.

Verification of the ANN

The verification of the ANN is done by comparing the calculated and the estimated
fitness of individuals that arise in the context of the SA optimization following the construc-
tion of the network and are to be discarded due to a estimated value above the threshold.
An example comparison is shown in Figure 6a. The mean deviation of the estimated from
the calculated fitness of the discarded individuals in this case is 2.7%, but much of the
estimation is more precise. However, some estimated fitness values have a relatively high
deviation from the calculated fitness, which is a consequence of a large distance to the
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closest individual in the database. Accordingly, the average precision can be increased if
the allowed maximum distance is further reduced. It can also be seen that no individual
was discarded whose fitness is better than the current optimum f (�xmin).

(a) Single-stage vs. two-stage
ES-PS method.

(b) Single-stage ES-PS vs. single stage
SA and ES-PS method

Figure 5. Comparison of the distribution of results for different optimization methods.

Reduction of the Solution Effort

By using the ANN, the types of fitness determination can be divided into three
different variants:

• Invalid: Neither estimation nor simulation is required. Fitness can be described
directly using (21).

• Estimation: Individuals for which the ANN estimates a fitness value above the thresh-
old and are discarded accordingly.

• Simulation: Individuals that are neither invalid nor discarded by the ANN. These
require a simulation of the operating map.

In Figure 6b, the percentage breakdown of fitness determination of individuals in
these three types is shown for the SA method for the optimization of the example machine.
During the optimization, 150 simulations are performed using the TH-FEM to build the
database of the ANN. In the SA stage, additional 1130 evaluations of individuals are
performed. In each of the hybrid stages, 35 generations were evaluated using the ES method
and 20 evaluations were calculated using the PS method. While a large proportion of
individuals in the SA stage have invalid geometries, approximately 20.4% of the solutions
can be discarded by neural networks and only 1.4% require time-consuming simulation
in this use case. This results in a total of 166 simulations performed for the SA stage.
Without the use of the ANN, all solutions that would otherwise be discarded due to the
estimated fitness also require a simulation. The required simulations would thus increase
to 397. In contrast to the SA optimization, the ANN only has a small impact on the solution
effort of the ES-PS method. This is a consequence of the local convergence of this hybrid
method, since it searches in a vicinity of the optimum where the estimated fitness values
often do not exceed the required threshold. The simulation of each population in the 35
generations of the ES method is fully parallelized for all individuals. With the assumption
that all valid individuals are electromagnetically simulated in the hybrid stage, the number
of simulations performed by the ES method thus increases by 2 × 35 = 70 and by the
PS method by 2 × 20 = 40. The performed total electromagnetic simulations using the
ANN are 276 and without the ANN 507. This means a reduction of the simulation effort by
45.5%. This reduction is achieved assuming the same models in each stage. With the use of
different models in the individual stages, this reduction factor will vary.
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(a) Exemplary comparison of calcu-
lated and estimated fitness.

(b) Division of types of fitness deter-
mination for SA optimization.

Figure 6. Exemplary comparison of calculated and estimated fitness (a) and the breakdown of fitness
determination (b).

4.3.2. IM Optimization Results

Starting from the cross-section of the rough designed machine shown in Figure 4b, the
geometry optimization of the IM is performed. The cross section of the resulting machine
geometry of the optimization is shown in Figure 4c. The basic design is similar to that
of the reference machine. The optimized geometry differs primarily by two additional
rotor bars, a rotor diameter larger by approximately 10% and a shortened active length
of lFe = 154 mm.

The evaluation of the quality of a solution is done with the fitness described in
Section 2.6. It is calculated using the decision parameters defined problem-specifically
in Section 4.1 by means of the TH-FEM simulation and related to the reference machine.
The resulting fitness values of the roughly designed IM, the optimized machine, and the
reference machine are presented in Table 5 and divided into the fractions of the volume as
well as the mean losses over the WLTC 3. It can be seen that the optimization environment
improves the fitness of the roughly designed IM by approximately 20%. Both the mean
losses over the test cycle and the volume are lower in the optimized machine. Compared to
the reference machine, the optimized geometry has a lower volume due to the shortened
active length, but higher mean losses over the drive cycle. This results in a by 2.6% worse
fitness. This is a consequence of the insufficient coverage of all possible degrees of freedom
of the machine geometry by the seven optimization parameters, which leads to the fact
that the reference machine cannot be completely reproduced. In addition, it is possible
that the optimization method has not converged to the global minimum. As shown in
Figure 5a, the optimum identified by the optimization environment has a dispersion of
approximate 6%.

Table 5. Fitness values and decision parameters resulting from the TH-FEM.

Roughly Designed IM Optimized IM Reference IM

Fitness 1.221 1.026 1
Mean losses 361 W 299 W 276 W
Volume 0.0107 m3 0.0095 m3 0.0112 m3

For further verification of the optimized machine geometry, it is modeled by means
of T-FEM simulations and compared with the reference machine. The operating maps of
the total losses of the reference machine and the optimized machine resulting from the
T-FEM are shown in Figure 7a,b. Here, the optimized geometry exhibits higher total losses,
especially at the borders of the operating map, but the losses in the WLTC 3 driving cycle
are of a similar order of magnitude to those of the reference machine.
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The resulting fitness values related to the transiently simulated reference machine
as well as the resulting proportions of the decision parameters are shown in Table 6. The
increase in fitness of the optimized geometry from 1.026 for the TH-FEM to 1.059 in the
case of a a T-FEM is thereby within the level of detail required by the model selection
methodology. Since the deviation of the fitness values between the optimized geometry and
the reference machine with approximately 6% is near the range of the assumed accuracy
of the transient FEM of approximately 5%, the optimized geometry derived automatically
from the rough design and the reference machine can thus be assumed to be similarly
suitable solutions of the multiphysics problem.

(a) Loss operating map of the reference IM. (b) Loss operating map of the optimized IM.

Figure 7. Loss operating maps of the reference (a) and optimized machine (b).

Table 6. Fitness values and decision parameters resulting from the T-FEM.

Optimized IM Reference IM

Fitness 1.059 1
Mean losses 541 W 479 W
Volume 0.0095 m3 0.0112 m3

5. Discussion and Conclusions

The focus of this work is the development of a multi-stage optimization environment
for the design of a IM. In the individual stages, the advantages of two stochastic and one
deterministic optimization method are combined by successively applying SA, ES and PS.
The search for the optimum starts in the SA stage in a global solution space and continues
locally in the successive hybrid use of the ES and PS methods. In the first successive
stage, significant optimization parameters are varied and less significant parameters are
kept constant. In the second stage, significant parameters are then assumed to be constant
and less significant parameters are varied. This successive implementation of the hybrid
ES and PS method improves the convergence behavior in terms of a lower mean value,
dispersion and variance. In addition, the reduction of the optimization parameters in the
individual stages compared to a single-stage hybrid ES-PS method results in a reduction of
the computational effort. Using the SA method as a global search performed before the
successive hybrid optimization method also improves the convergence behavior in terms of
lower mean and median, and lower dispersion and variance of the optimization results. A
disadvantage, however, is an increased computational effort due to the additional introduc-
tion of another optimization stage. This disadvantage is compensated by the application of
an indirect machine model in the form of an ANN. By the ANN individual parts of the
objective function, which otherwise require a computationally expensive simulation, are
estimated. As a result, the computational cost of the multi-stage optimization environment
in the presented application can be reduced by 45% by using the ANN. This value is
achieved when the same electromagnetic machine model is used in each stage. The use of
different models leads to smaller reductions.
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If a precise estimate via the ANN is not possible, direct machine models are used for
electromagnetic computation of the IM in the optimization stages. Using a model selection
approach in each stage different levels of detail can be considered and defined in each
optimization step. Thus, a model of lower level of detail can be used in the global search
and models of increasing level of detail can be used in the local search. This procedure
results in a high degree of flexibility with respect to the accuracy and the solution effort of
the optimization environment.

A methodical approach to parameter selection is used to determine the optimization
parameters. For each geometry parameter, the sensitivities and elasticities are studied with
respect to the output variables relevant to the optimization. The optimization parameters
are sorted by their elasticities and the parameters with the greatest impact on the optimiza-
tion problem are identified. Sorting by elasticities also allows a systematic division of the
parameters into variable and constant values depending on the optimization level.

The optimization environment using the model and parameter selection procedure is
applied to the design of a traction machine. The objective of the optimization is to minimize
the design space while minimizing the mean electromagnetic losses over the WLTC. The
optimization is performed using the TH-FEM of the IM determined by the model selection
approach. The quality of the result is determined based on the fitness of the optimized
machine and a reference machine. For comparison, both machines are then simulated
again using the model with the highest level of detail, the T-FEM. The fitness value of
the optimized machine is about 6% higher than that of the reference machine. Since this
deviation is within the range of the assumed accuracy of the T-FEM of about 5%, it can be
assumed that the optimized geometry automatically derived from the rough design and
the reference machine are similarly suitable solutions for the multiphysics problem. Thus,
the use of the presented optimization environment as a tool for the design of the machine
is verified.

A further verification of the optimization environment with further machine designs
for different applications still has to be performed. In addition, the individual machine
models can be further improved with respect to their level of detail. Not integrated in
the optimization is the simulation of external components, such as inverter or battery. In
addition, active cooling of the machine is not considered in the current status. For further
improvement, a more detailed thermal model of the machine can be considered.

Regarding the uncertainty of the parameters, the proposed method may be extended
using neutrosophic statistics as future research, but this issue is not the content of the study
presented here.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BC Boundary Condition
DC Drive Cycle
DoE Design of Experience
E-HWM Extended Harmonic Wave Model
ES Evolution Strategy
FE Finite Element
FEM Finite Element Method
FWM Fundamental Wave Model
GA Genetic Algorithm
HWM Harmonic Wave Model
IM Induction Machine
MDPI Multidisciplinary Digital Publishing Institute
PS Pattern Search
SA Simulated Annealing
TFEM Transient Finite Element Model
THFEM Time Harmonic Finite Element Model
VFR Very Fast Re-Annealing
WLTC Worldwide harmonized Light vehicles Test Cycle
WLTP Worldwide harmonized Light vehicles Test Procedure
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Abstract: The solution of multiphysical problems in the field of electrical machines is a complex
task that involves the modeling of a wide variety of coupled physical domains. Different types
of models and solution methods can be used to model and solve the individual domains. In this
paper a procedure for the methodical selection of the most suitable model for a given multiphysics
task is presented. Furthermore, an approach for the selection of the most suitable variable machine
parameters for a design optimization is presented. The model selection is presented on the basis of
the electromagnetic calculation of an induction machine. For this purpose, models of different value
ranges and levels of detail, such as analytical and numerical ones, are considered. The approach
of the model selection is explained and applied on the basis of a coupled electromagnetic-thermal
simulation of an exemplary induction machine. The results show that the model selection presented
here can be used to methodically determine the most suitable model in terms of its value range, level
of detail and computational effort for a given multiphysical problem.

Keywords: induction machine; electromagnetic models; model selection

1. Introduction

Complex tasks in the field of electrical machines usually comprise several physical
domains and thus form a multiphysics problem. The aim of modeling and calculating
multiphysics problems is to represent all physical effects of the individual domains that
are relevant for the application. In a multiphysics problem, the individual domains can be
independent or coupled. In [1], coupled problems are defined as those involving multiple
domains and dependent variable sets that usually, but not necessarily, describe different
physical effects, and where either no domain can be solved correctly independently of
the other domains or none of the dependent variable sets can be eliminated explicitly. An
example of such a coupled multiphysics problem is the thermal simulation of an operating
point of an electrical machine. Here, among other things, the domains of electromagnetism
and thermal are bidirectionally dependent on each other.

If electrical machines are not considered as an independent system, but as part of a
system of several components from different fields of technology, the complexity of the
coupled multiphysics problem increases. An example of such a system is an electric drive
train. The individual components of the system, such as electric motor, gearbox or battery,
can in turn be assigned to individual domains or divided into several domains.

Different models are used for modeling and calculating the individual components
and their domains, depending on the required accuracy and the physical effects to be
modeled. The individual models therefore differ in their value range and level of detail
of the representation of the physical effects as well as in their computational or solution
effort. They can be classified into the categories of empirical, analytical, lumped parameter,
and numerical models. The exemplary classification in value range, level of detail and
computational effort for models for the electromagnetic simulation of an Induction Machine
(IM) used in this paper are shown in Figure 1. Analytical models such as the Fundamental
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Wave Model (FWM) or Harmonic Wave Model (HWM) have a smaller value range of
modeled physical effects and a lower level of detail of individual effects than numerical
models such as the Finite Element Method (FEM), but also a lower computational effort.

Examples of models, methods, and physical effects considered for solving multi-
physics problems in the field of electrical machines are explained in [2]. There, a modular
computational approach for the calculation, simulation, and design of electrical machines
is presented, which has been and is being applied in several scientific papers.

For the computation and simulation of the aforementioned multiphysics and coupled
problems, the question arises as to which models are most suitable for which domains.
Suitability refers to the fact that the particular model can represent the desired effects at an
appropriate level of detail and is computationally efficient. The respective suitability of a
model is strongly problem-dependent, since different problems require the modeling of
various effects with different degrees of accuracy. Due to its high computational effort, the
selection of the most complex model in the respective domain is not always the means of
choice, especially in the design process of the machine or the overall system. Furthermore,
the sensitivity with respect to the coupling variables is a necessary requirement of the
used models.

In view of the modular computational approach mentioned above, the question of
efficient model selection may arise in many of the calculation columns listed. For example,
which electromagnetic and thermal models can be used for the thermal calculation of the
electrical machine and which electromagnetic and structural dynamics models can be used
for the Noise Vibration Harshness (NVH) analysis?

Design and redesign processes of electrical machines are also performed with the
help of multilevel mathematical optimization algorithms. Here, the choice of the model
in the individual optimization stages is an important factor influencing the quality of the
result and the computational efficiency. These parameters also depend on the choice of
optimization variables.

In the publications mentioned, models are mostly used without evaluating their suit-
ability or advantages and disadvantages for solving the problem in comparison with other
models. A methodical selection of the used model is not considered in detail. There-
fore, such a methodological approach to model selection is addressed in this paper and
presented using the electromagnetic simulation of IM as an example.

Figure 1. Classification of IM models with respect to value range, level of detail, and
computational effort.
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By specifying a few parameters, such as the desired effects to be modeled and their
level of detail, the method offers the possibility to automatically select the model that
meets the requirements and has the lowest computational cost. The selection method is
based on the analysis of an exemplary IM for a given power, torque, and speed range in
certain operating points and the derived ranges of values, levels of detail, and degrees of
freedom of each machine model. The model selection can then be applied to problems
requiring simulations of machines in a similar power, torque and speed range, and similar
geometric dimensions. The proposed model selection approach can also be used in machine
optimization problems in which machines of similar power range but different designs are
simulated to determine the appropriate models in individual optimization stages. Such
an example is given in [3]. In such optimization environments, the choice of optimization
parameters is crucial and can also be done methodically. For this purpose, an approach
for parameter selection is presented in this paper, which ensures an efficient design and
redesign optimization.

The paper is organized as follows. First, the models of an IM considered in the
model selection are introduced. These include the FWM, the HWM according to [4–6],
and an Extended Harmonic Wave Model (E-HWM) developed in this work to consider
saturation, three analytical models, and the Time Harmonic Finite Element Model (TH-
FEM) and Transient Finite Element Model (T-FEM), two numerical models. Afterward, the
approach of the model selection is presented. The input parameters of the methodology
and the procedure for the analysis of the value ranges, levels of detail, and computational
efforts of the models are discussed. In the following, the parameter selection, which can
be applied in optimization environments, is presented. Subsequently, the approach for
the model selection is applied on the basis of an exemplary problem. As an example, a
weakly coupled electromagnetic-thermal simulation of an IM is used to analyze the thermal
operating behavior of the machine. The parameter selection in combination with the model
selection is applied in [3] in an optimization of the machine design of an IM.

2. Induction Machine Models

In order to apply the model selection approach presented later to the example of the
electromagnetic simulation of an IM, different models with different ranges of values and
levels of detail are necessary. In this paper, five different models of an IM are considered.
These include the FWM, the HWM, and an E-HWM, three analytical machine models,
and the TH-FEM and T-FEM, two numerical models. They are briefly described below.
The order corresponds to an increasing value range and level of detail. At the end of this
section, the iron loss model used by all models is described.

2.1. Fundamental Wave Model

Modeling of a squirrel cage IM in the FWM is performed using the single-phase
Equivalent Circuit Diagram (ECD) presented in Figure 2. In this paper, the T-ECD is
used, which allows the consideration of saturation in terms of a current-dependent main
inductance. The use of a stator flux or rotor flux based ECD is also possible but is not applied
here. The ECD is composed of the stator resistance RS, the rotor resistance R′

R divided by
the slip s, the leakage reactances Xσ,S and X′

σ,R, and the main reactance Xh. The rotor-side
quantities related to the stator by the transmission factor are thereby characterized by a′.
For the calculation of these elements of the ECD, which can be derived exclusively from
the machine geometry and constant parameters, reference is made to the literature [7].
Important physical quantities and effects which affect the range of values or the level of
detail of the machine modeling are briefly explained.
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Figure 2. Representation of the single-phase ECD of the IM with a squirrel cage rotor.

2.1.1. Rotor Resistance

To consider the short circuit ring of the squirrel cage, the bar resistance Rbar and the
ring resistance component ΔR∗

ring are used to calculate the two dimensional rotor resistance
RR. The latter results from the transformation of the resistance of a ring section ΔRring into
a series equivalent resistance. The rotor resistance is thus given by:

RR = Rbar + 2ΔR∗
ring. (1)

This procedure is also used for the calculation of the rotor resistance in the other
machine models. A more detailed derivation of the rotor resistance for 2D modeling is
given in [8].

2.1.2. Leakage Inductances

The magnetic coupling of a winding with itself is described by the leakage induc-
tance Lσ. This coupling manifests itself in a reduction of the main flux. The essential parts
of the leakage flux are the harmonic, the slot and end-face leakage flux, and the leakage
flux in the tooth tip space. These effects are considered in an analytically calculated leakage
flux factor λS/R when calculating the stator and rotor inductances.

2.1.3. Main Inductance and Saturation

By calculating the main inductance via the flux linkage, it is possible to consider the
material saturation of the stator and rotor laminations of the IM. With a magnetic ECD of
the machine geometry, the magnetic flux densities B and magnetic voltages V in the teeth
(T) and yokes (Y) of the stator (S) and rotor (R) and in the air gap (δ) are calculated. The
saturated main inductance Lh is obtained by dividing the operating point specific main
flux linkage Ψh by the magnetizing current I0:

Lh =
Ψh
I0

, (2)

with Θ0 = Vδ + VS,Y + VS,T + VR,Y + VR,T and I0 =
πp

6
√

2χtotwS
Θ0.

The factor χtot describes the total winding factor including the distribution and pitch
factors, wS the number of windings per phase, and p the number of pole pairs.

2.1.4. Iron Losses

The iron losses for all models in this paper are calculated using the IEM-Formula,
which will be presented later in the paper. For the calculation of the iron losses, the
magnetic flux density in the stator and rotor lamination is of interest. The calculation
of tooth and yoke flux densities in the FWM is done by the magnetic ECD. Since a local
resolution of the iron losses in the stator and rotor laminations is not possible in the FWM,
the flux density in tooth and yoke is assumed to be constant and its local mean value is
determined accordingly. In this model, only the fundamental component of the magnetic
flux density can be calculated, which results in the neglect of the iron losses due to higher
flux density harmonics.
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2.2. Harmonic Wave Model

The operating behavior, in particular the electromagnetic torque, the electromagnetic
forces, and the ohmic and iron losses of an IM is significantly influenced by the orders and
amplitudes of the harmonics that occur. These harmonics cannot be modeled in the FWM.
Therefore, the HWM considering the multiple armature reaction provides a possibility
for the analytical description of these effects [4–6]. Assuming a sinusoidal stator current,
the discrete distribution of the stator windings, neglecting the slot openings, results in
non-sinusoidal stator Magnetomotive Force (MMF) in the form of a staircase function.
The currents of different order and amplitude induced in the rotor by this stator field, in
turn, each generate staircase-shaped rotor MMF, which in turn induces new voltages in
the stator (primary armature reaction). The harmonic model according to [4–6] additionally
considers the secondary, tertiary, and quaternary armature reaction [9]. In addition to the
multiple armature reaction, further effects causing harmonics, such as stator and rotor
slotting or rotor eccentricity, can be considered. Due to the assumption of an infinitely high
iron permeability (μFe → ∞) saturation harmonics cannot be represented in this HWM.
Further important physical quantities and effects affecting the value range or the level of
detail of the machine modeled with the HWM are briefly explained.

2.2.1. Current Displacement

Due to the consideration of higher-order harmonics and the resulting high frequencies,
current displacement must also be considered. While this effect is negligible in the stator
with round wire windings due to the relatively high penetration depths at the frequencies
considered [10], the influence in the rotor must be considered by a frequency-dependent
reduction factor, since the bars represent solid conductors in the iron packet [11].

2.2.2. Slot Openings in the Stator and Rotor

The slot openings in the stator and rotor can be considered in the form of a permeance
function Λ for a better description of the field characteristics [11,12]. Among other things,
this increases the accuracy of the calculation of the iron losses and the distribution of forces
in the machine. The permeance function is described as the product of the permeance
functions of stator and rotor, which can be represented as infinite complex Fourier series
due to the periodicity [4,11,12].

Accounting for these effects in combination with multiple armature reaction leads to
a good approximation of the field behavior, which is illustrated in Figure 3 for the local
variation of the air gap flux density Bδ compared to a linear T-FEM simulation.

2.2.3. Iron Losses

For the calculation of the iron losses in the HWM, which includes losses due to higher
harmonics, the time-dependent magnetic flux density in the stator and rotor lamination
is of interest. The calculation of tooth and yoke flux densities in the HWM is done by
an integral approach. Since a local resolution of the iron losses in the stator and rotor
laminations is also not possible in the HWM, the flux density in tooth and yoke is assumed
to be constant, as in the magnetic ECD used in the FWM, and its local mean value is
determined accordingly. For this purpose, it is assumed for the determination of the tooth
flux density BT, that the entire magnetic flux in the area of a slot pitch τN flows through
the corresponding tooth.
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Figure 3. Simulated air gap flux density of an IM with linear stator and rotor magnetic material
properties using the T-FEM and HWM.

By integrating the air gap flux density Bδ over a stator or rotor slot pitch, the magnetic
flux ΦT in the respective tooth can be determined. Since no location dependence in the
tooth is considered, the area integral for calculating the tooth flux from the tooth flux
density can be replaced by a multiplication with the toot width bT and active axial length
lFe so that the tooth flux density ΦT(t) follows from

τN =
2π

N
, (3)

ΦT(t) = lFe

∫
τN

Bδ(Θ, t)r dΘ,

= lFebTBT(t), (4)

with N being the number of slots and r being the middle radius of the air gap.
The assumption underlying the calculation of the yoke flux densities BY describes that

the magnetic flux is equally distributed over both paths in the yoke via a pole pitch, which
is why half the air gap flux is present in each case. By converting the area integral for the
determination of the yoke flux from the yoke flux density into a multiplication with the
yoke height hY and lFe the yoke flux density results in

τp =
π

p
(5)

ΦY(t) =
lFe

2
lFe

∫
τp

Bδ(Θ, t)r dΘ

= lFehYBY(t). (6)

2.3. Extended Harmonic Wave Model

The neglect of the iron saturation in the HWM according to [4–6] represents an
essential limitation in the operating point calculation of the IM. Therefore, an E-HWM is
introduced in this paper, which provides an approach to account for the iron saturation.

2.3.1. Approach

If the influence of the iron saturation on the harmonics is to be considered, the flat-
tening of the hysteresis curve B(H) in the nonlinear region and the resulting flattening
of the air gap flux density must be modeled, which is shown for the idealized case of a
sinusoidal air gap flux density in the middle plot of Figure 4. This can be realized math-
ematically by a circumferential location Θ dependent description of an effective air gap.
Here, as a consequence of the main field saturation, the air gap is increased on average
by a saturation factor kh ≥ 1. In the region of large iron saturation, i.e., at the maximum
of the air gap flux density Bδ, the air gap is increased by another saturation factor kh1 and
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decreased at zero crossings. Thus, the time- and location-dependent air gap conductance
function shown in the left plot of Figure 4 can be defined. This moves synchronously with
the fundamental wave field and therefore results in

λ(Θ, t) =
1
kh

− 1
kh1

cos
(

2πΘ
τp

− 2ωt
)

, (7)

where the factor of two in the cosine argument is a consequence of the simultaneous
iron saturation by the north and south poles of the air gap field. The flattened airgap
flux density Bδ,sat follows from multiplying the original airgap flux density by the airgap
conductance function given by

Bδ,sat(Θ, t) = Bδ(Θ, t) · λ(Θ, t). (8)

In the right plot of the Figure 4 exemplary flux density curves simulated by a TH-FEM,
a HWM, and an E-HWM are shown. Here the effect of the flattening of the flux density by
the application of the air gap conductance function can be seen.

Figure 4. Approach of the consideration of saturation in the E-HWM.

2.3.2. Calculation of the Air Gap Conductance Function

The derivation of the saturation factors kh and kh1 is done using the FWM. By dividing
the amplitude of the air gap flux density B̂δ,FWM of the FWM by the fundamental wave
B̂δ,1,HWM of the HWM the scaling factor

smax =
B̂δ,FWM

B̂δ,1,HWM
(9)

at maximum saturation can be calculated. This factor thus represents the minimum of the
air gap conductance function. Assuming a cosine fundamental wave, the amplitude 1

kh1
can be expressed as

1
kh1

= arccos(smax)
4

2π
smax (10)

and thus describes the part of a period that the magnitude of the fundamental wave of the
HWM is above the amplitude of the air gap flux density of the FWM, related to the scaling
factor at maximum saturation. The larger this part, the greater the difference between the
saturated and unsaturated regions, and thus the amplitude of the air gap conductance
function. The mean value 1

kh
follows from the addition of the minimum and amplitude.

Therefore kh can be expressed as

kh =
1

1 + arccos(smax)
4

2π

· 1
smax

. (11)

To consider the saturation effects on the curves of the flux densities in the HWM,
the calculated time and local curves of the air gap flux density, as well as the time curves
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of the tooth and yoke flux densities, can be multiplied by the function resulting from (7).
For the latter progressions, the scaling factors at maximum saturation must thereby be
calculated with the amplitudes of the tooth and yoke flux densities of the FWM and HWM,
respectively, resulting in different scaling functions than in the air gap.

The introduction of saturation phenomena in the iron loss calculation in the E-HWM
is based on the scaling of existing harmonics as well as the consideration of additional
saturation harmonics [7]. From (8), with the help of trigonometric relations, the scaling of
existing harmonics can be converted to

B̂1,sat =

(
1
kh

− 1
2kh1

)
· B̂1 (12)

B̂n,sat =
1
kh

· B̂n (13)

where the fundamental is scaled differently from the other harmonics. The derivation of
the additional saturation harmonics is done analogously. The flattening of the air gap flux
density results in particular in a dominant third harmonic, which is calculated differently
from the other saturation harmonics. In general, the n-th harmonic results in two additional
saturation harmonics with the order n ± 2. Their amplitudes result in

B̂3 =
1

1 − 2 kh1
kh

· B̂1,sat (14)

B̂n±2 = − 1
2kh1

· B̂n,sat. (15)

Since a change in the flux densities also results in new induced currents in the rotor, an
iterative adaptation in the E-HWM is required. For this purpose, starting from the scaled
flux densities, the rotor current is updated, which in turn changes the flux densities. The
updated flux densities are scaled again, and so on. To adjust the induced rotor current, a
constant scaling factor is applied according to

sind = λ =
1
kh

(16)

by which the inductances are multiplied. Based on the scaled inductances, the rotor
current can be updated. By integrating a relaxation factor, the convergence behavior
of the successive substitution can also be improved. In Figure 5 the same operating
point of an exemplary IM as in Figure 3 is simulated using non linear magnetic material
properties. The air gap flux density compared to the linear material in Figure 3 differs
strongly. Nevertheless, the use of the E-HWM makes it possible to simulate the saturation-
dependent flux density approximately well.

Figure 5. Simulated air gap flux density of an IM with non-linear stator and rotor magnetic material
properties using the T-FEM and E-HWM.
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2.4. Numerical Models Based on the Finite Element Method

The analytical models of the FWM, HWM, and E-HWM of the IM are limited in terms
of the value range and level of detail of the effects that can be modeled. Effects such
as ferromagnetic saturation, induced eddy currents, and a location-dependent air gap
reluctance can only be described in a limited and simplified way, as can be seen in the
model descriptions. Others, such as cut edge effects [13] or geometry- or motion-dependent
phenomena, cannot be modeled at all [14]. An extension of the range of values and level of
detail of machine modeling is offered by numerical models. However, the higher level of
detail is accompanied by an increase in computational effort. In this paper, the TH-FEM
and T-FEM are used and briefly explained in the following. In both cases, a 2D model is
used with a current excitation in the form of a specified current density in the stator slots.

2.4.1. Mathematical Description of the FEM

In the FE models of this paper, a magnetoquasistatic formulation over the magnetic
vector potential �A is considered. From the Maxwell equations the parabolic partial differ-
ential equation

∇× (ν∇× �A) + σ
∂�A
∂t

= �Js (17)

the reluctance ν, the conductivity σ, and the injected stator current density �Js can be
derived [14]. A discretization of the magnetoquasistatic formulation in (17) applying the
weighted-residual method, which is necessary for the FEM, leads to the weak vector
potential formulation

∫
V
(∇× (ν∇× �A) + σ

∂�A
∂t

) · �wi dV =
∫

V
�Js · �wi dV (18a)

�A = ∑
j

aj�vj, (18b)

with �wi being weighting functions. The magnetic vector potential is thereby divided into
a finite sum of shape functions �vj, and thus is described by its degrees of freedom aj [14].
Using Galerkin’s method [14], which prescribes �vj = �wj, by transformations based on
integral theorems and boundary conditions of the solution space, the system of equations
and the resulting matrix notation can be expressed as [15]

∑
j
(aj

∫
V

ν∇× �wi · ∇ × �wj dV︸ ︷︷ ︸
Kν,ij

+
∂aj

∂t

∫
V

σ�wi · �wj dV︸ ︷︷ ︸
Mσ,ij

) =
∫

V
�Js · �wi dV︸ ︷︷ ︸

fi

(19a)

Kν�a + Mσ
∂�a
∂t

= �f . (19b)

Here Kν is called stiffness matrix, Mσ is called mass matrix, and �f is called load vector.
From this system, the degrees of freedom of the magnetic vector potential and from it the
flux density distribution in the machine can be determined.

2.4.2. Time Harmonic Finite Element Model

In the TH-FEM, the time courses of physical quantities are simplified as sinusoidal
and can therefore be described by complex phasors [14]

y(t) = �(ŷejωt). (20)
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This has the advantage that the time derivative ∂
∂t passes into a multiplication by jω.

The differential equation from (19b) thus transforms into the linear system of equations

(Kν + jωMσ)�a = �f (21)

which can be solved with low computational effort. The disadvantage of the time-harmonic
simulation is the underlying assumption that no time harmonics with an order greater than
one exist, which is why in particular the accuracy of the calculated iron losses decreases
compared with the T-FEM [16].

Slip Transformation

Since the linear equation system (21) simulates the stator frequency ωS in the entire
solution domain, the lower frequency ωR in the rotor is not considered. This can be
accounted for by a slip transformation [17,18]. For this, the conductivity of the cage σR,comp
is scaled with the slip s, which changes the mass matrix Mσ for rotor nodes such that the
lower rotor frequency is considered in the induction effect.

Non Linear Material Properties

To consider the non-linear material behavior of the stator and rotor laminations, an
iterative procedure is used in the field solution. For this purpose, the successive substitution
approach or the Newton method can be used.

2.5. Transient Finite Element Model

The transient simulation solves the differential Equation (19b) for discrete time steps tk
within a time interval ΔT considering the field solution of the previous time step and the
motion of the rotor. Due to the discretization, the time derivative can be described as the
difference quotient �ak+1−�ak

Δt with the time difference Δt between two time steps. From this
the linear equation system results in

(KνΔt + Mσ)�ak+1 = �f (tk+1)Δt + Mσ�ak, (22)

which must be solved for each time step [14]. The corresponding rotor position Θ follows
from the Newton equation of motion

J
∂2Θ
∂t2 = T(t) (23)

with the moment of inertia J of the rotating body. This equation is also discretized in time,
with the torque T updated for each time step based on the calculated field solution. By
solving the differential equation in the time domain, temporal harmonics in particular are
modeled, which allows a more detailed view of the machine behavior. Since the Shannon
sampling theorem prescribes a sampling frequency f sample greater than or equal to 2 f
for physical consideration of a given frequency f [19], the time difference between each
time step must be small enough to consider the higher order harmonics, but the total
time interval large enough for consideration of the low frequencies in the rotor. This, in
combination with the required transient time of the vector potential solution, leads to a high
calculation effort of the transient Finite Element (FE) simulation. Faster transient is made
possible by a hybrid approach via estimation of a starting solution from an open-circuit
simulation [20].

In Figure 6 the simulated magnetic flux density of an exemplary IM at an saturated op-
erating point is shown. In Figure 6a the simulation was conducted using the TH-FEM and in
Figure 6b using the T-FEM. The simulation results show quite similar field characteristics.

102



Energies 2021, 14, 5623

(a) TH-FEM (b) T-FEM

Figure 6. Simulated magnetic flux density and isolines for an exemplary IM.

2.6. Used Iron Loss Model

The IEM-5 parameter formula is used to calculate the iron losses in each model. It
is based on the Bertotti model and adds an additional term considering the non-linear
material behavior [21]. The IEM-formula to calculate the iron loss density pFe is given by:

pFe = a1B̂α f + a2B̂2 f 2(1 + a3B̂a4) + a5B̂1,5 f 1,5, (24)

where a1, a2, a5 are the hysteresis, eddy current, and excess loss factors, a3 and a5 are
loss parameters describing the non-linear saturation losses, f the frequency, and B̂ the
amplitude of the magnetic flux density for the given frequency. In the numerical models,
the iron loss densities are calculated element by element and weighted by the element area.
The summation of the iron loss densities over all elements and multiplication by the iron
length then results in the iron losses. In the analytical models, the iron loss densities are
calculated for the stator and rotor yokes and teeth respectively with the calculated mean
tooth and yoke flux densities. Multiplication by the yoke and teeth mass then also results
in the value of the iron losses.

3. Model Selection Approach

The four-step generic procedure of the approach for model selection is shown in
Figure 7. The problem definition is based on four input variables. These describe the
searched output quantities, the effects to be investigated are whose influence on the output
quantities is to be modeled, and the respective required precision, i.e., the problem-specific
level of detail. Since the precision of the models depends on the operating point, a selection
of the operating points to be considered is also necessary. The problem-specific output
quantities to be considered define the electromagnetic coupling quantities for a coupled
model. Analogously, the effects to be studied describe the external coupling variables. By
means of this problem definition, suitable models can be derived on the basis of the value
ranges and levels of detail of the available models and simulation methods, respectively.
From the consideration of the value range the possible models follow, which represent all
output quantities and effects and can model an influence of the output quantities by the
effects. For the possible models, the required level of detail is examined in the following
step and the suitable models that meet all requirements are derived from this. From these,
the one with the lowest computational effort is selected.
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Figure 7. Process of the approach for the model selection.

One possibility to characterize the range of values and the level of detail of the models
are tables, which contain entries for possible output quantities and effects, separated by
the available models. The value range table contains a reference to the general ability of
the models to describe the output quantities and effects, whereas the level of detail table
contains the respective precision. The precision can be given in relation to a reference
model, if quantifiable. Alternatively, qualitative scales can be used to describe precision.
It is important to have a stringent procedure for the definition of these precisions in
order to allow a future consideration of further effects and to make them comparable.
Another possibility to describe the range of values and the level of detail, e.g. to consider
geometry and material effects, is given by sensitivity analyses, where the parameters
to be investigated are slightly varied and it is checked whether the models represent
an influence of the parameters on the searched output quantities. Precision is again
defined by a reference model. The characterization of the solution effort of the models
is done via the number of the respective degrees of freedom since the computation time
depends on computer-specific parameters such as the clock speed, the number of cores
and the main memory and thus cannot be generalized. In this paper, the described
approach for the model selection is presented using the example of an IM. An automated
implementation allows finding the most suitable problem-specific model based on the four
problem-defining input variables. In the following, the sensitivity analysis used in the
selection process and the four steps of the model selection process are presented.

3.1. Sensitivity Analysis

The influence of changes in geometry and material parameters on physical quantities
as well as temporal and spatial characteristics is investigated and quantified by means of
sensitivity analyses. In the case of coupling one of the presented electromagnetic machine
models with another, for example structural dynamic or thermal model, they also provide
information about the required accuracy of the coupled model, since the latter does not
have to have an influence on machine parameters to which the electromagnetic model is
not sensitive.

The starting point of the sensitivity analysis for the IM is a reference geometry. Based
on this, a second, slightly modified machine geometry is generated, depending on the
geometry or material parameter to be investigated. For this, the parameter is changed by a
user defined factor rsens. In this case, too small a change leads to numerical instabilities,
and too large changes possibly lead to inconsistent machine geometries. If the sensitivity to
a geometry parameter is to be investigated, it is also necessary to consider the influence of
this parameter on other geometry variables. For example, if the air gap width is changed,
the stator or rotor diameter must also be adjusted. These influences are described via a
correlation matrix, which describes for each possible variable geometry parameter which
other geometry parameters must also be changed. Subsequently, the machine models are
simulated for both geometries and the output quantities are compared. In this work, a
T-FEM simulation is not performed in the context of the sensitivity analysis due to the
high computational effort associated with it. Instead, the same results are assigned to
the T-FEM as to the TH-FEM, since the value ranges and levels of detail are very similar
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due to analogous procedures in meshing. The following findings can be derived from the
comparison of the output quantities of both geometries:

1. Sensitivity: For each of the models considered in the sensitivity analysis, it can be
stated separately for all physical quantities whether they are sensitive to the geometry
or material parameter under investigation.

2. Influence on Harmonics: The influence of the parameter to be examined on the
temporal and spatial courses can be described on the basis of the change of the
respective harmonic orders of the FFT spectrum. This influence can be recorded
qualitatively, but can also be normalized in relation to the largest change of the
occurring orders and thus quantified. In this way, the harmonics whose relative
change is the greatest can be recorded in particular.

3. Elasticity: The elasticity ε describes the ratio of the change of an output quantity,
related to the change of the input quantity and therefore results in the case of the
sensitivity analysis for a physical quantity to

εphys =
rphys

rsens
, (25)

where rphys describes the relative change of the physical quantity between the two
simulated machine models. This allows us to capture, for each model, how much a
certain quantity changes when the parameter under investigation is modified.

4. Level of Detail: The description of the level of detail of the detection of a geometry or
material change, related to a physical quantity can be done by means of a reference
model. For this purpose, the TH-FEM is selected in this work, since it has the
highest average precision after the T-FEM. The degree of detail of a physical quantity,
therefore, follows from the relative deviation of the elasticity of the model under
consideration from the elasticity of the TH-FEM.

3.2. Input Variables

Possible output quantities of the IM to be investigated are physical quantities such
as torque and losses, but also temporal and spatial flux density and torque characteristics.
The effects considered in this work include saturation phenomena, harmonics, and other
physical effects, but also geometry and material effects as well as dynamic processes. A
geometric effect is the change in a geometric quantity, such as the air gap width or tooth
width. A material effect is the change of a material property due to external influences such
as temperature.

3.3. Analysis of the Value Range and Degrees of Freedom

In the first step, the range of values of the described models is considered. Here,
it is investigated for all output quantities and effects whether these can be represented
by the value range of the individual models. When considering geometry or material
effects, each of the selected output quantities must be influenced by at least one of these
effects. The characterization of the value range of the IM is done by means of a table for
the output quantities and physical effects and by means of the sensitivity analysis for
geometry or material effects. The value range is analyzed in terms of spatial and temporal
resolution, the number of degrees of freedom, physical effects, dynamic processes, and
physical quantities for the five models presented. Here, for the FE simulations, the degrees
of freedom are composed of the number of operating points, the nodes in the mesh, the
iterations to account for saturation, and the transient steps. For the HWM, the degrees of
freedom are also described by the number of operating points and, in addition, by the stator
and rotor orders considered and the Fourier coefficients of the stator and rotor permeance
functions. In the E-HWM, the iterations for updating the rotor current are added. The
number of degrees of freedom in the FWM is composed only of the simulated stator flux
linkages and the operating points.
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3.4. Analysis of the Level of Detail

The procedure for characterizing the level of detail is analogous to that for character-
izing the range of values via tables and sensitivity analysis. The tables contain precision
values of the different physical output parameters and physical effects for linear and
non-linear operating points of an exemplary machine in the given power range. The quan-
tification of the precision values of the physical output parameters and effects is performed
on the basis of individual categories. These are subdivided as follows:

• Physical Values: For the physical output quantities, such as ohmic losses, and iron
losses, the simulation results of the T-FEM is used as a reference. The relative devia-
tions from the results of the T-FEM are determined for exemplary operating points in
the linear and non-linear range.

• Temporal and Spatial Characteristic: The precision of temporal and spatial character-
istic, such as the magnetic flux density in the stator tooth over time or the magnetic air
gap flux over time or position, is determined with reference to the simulation results
of the T-FEM. For each characteristic, an exemplary operating point in the linear range
and one in saturation are analyzed. The analysis is performed on the basis of the
frequency spectrum of the considered quantity. Spatial characteristics, such as the
spatial characteristic of the air gap flux density, are decomposed into their spectral
components using the Fast Fourier Transformation (FFT) with a rectangular window.
The level of detail is then separated into three subcategories. The precision of the
fundamental wave, the precision of the harmonic amplitudes, and the precision of the
occurring frequency orders. The slip dependence of an operating point during the
operation of the IM leads to the fact that frequency components occur in the time vari-
ables which do not correspond to an integer multiple of the fundamental frequency.
The use of a rectangular window in the FFT therefore leads to large spectral leakage.
Therefore, a window function is used for the temporal quantities, which reduces the
spectral leakage. A suitable window function is the Hann window. Figure 8a shows
an example of the temporal course of the air gap flux density simulated by means of
two different models at a particular position in the air gap. In Figure 8b the frequency
spectra are plotted by means of a FFT with a rectangular window and by means of a
FFT with a Hann window. To determine the level of detail, the output signal of the
FFT with the Hann window of the reference signal as well as that of the comparison
signal are analyzed for their local maxima. From the local maxima which are larger
than a certain threshold value, the level of detail of the fundamental, the amplitudes
of the harmonics and the occurring frequencies are then determined, as in the case of
the location-dependent characteristics. In Figure 8b the maxima used to analyze the
level of detail are marked with numbers.

• Physical Effects and Dynamic Processes: Since the level of detail of physical effects
and dynamic processes, such as saturation, skin effect, or cutting edge effects, cannot
be considered separately from other quantities, these precision are defined using a
subjective point scale from one to ten, where one describes a very high precision and
ten a very low precision.

The level of detail is analyzed for all output quantities and effects and matched with
the required level of detail. The affiliation of an operating point to the linear and non-
linear operating range of the machine is thereby determined on the basis of the FWM. The
influence of geometry and material effects to be considered must achieve the required
precision for each individual influenced output variable.
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(a) Flux density over time. (b) FFT using rectangular and Hann window.

Figure 8. Magnetic air gap flux density simulated by two different models.

3.5. Model Selection

Based on the results of the value range analysis and the level of detail analysis, the
model with the lowest degree of freedom is then selected from all suitable models. This
promises the lowest computational effort and thus the most efficient calculation for the
precision requirements. If a working point matrix is considered in the model selection
process, the selection of possible models is done analogously based on the range of values.
For the resulting models, the precision of the output quantities and effects to be examined
are considered in each working point. The selection of the most suitable machine model
can then be made using two procedures. One option is to consider those models that have
the required level of detail at all operating points. From these, the one with the lowest
computational effort is then derived. An alternative is a operating point specific model
selection by means of a Branch and Bound optimization, on the basis of which different
models can be assigned to different operating points, so that the required level of detail is
achieved at each point, but the overall solution effort is minimized.

4. Approach for Parameter Selection

Mathematical optimization algorithms are gaining importance for the design, revision,
and optimization of electrical machines. The optimization parameters in the context of such
machine optimizations represent those geometry and material parameters that are varied
during the optimization procedure in order to find a better solution. These parameters
should therefore cover a high degree of freedom of the geometry. However, as the number
of optimization parameters increases, so does the search space and the associated solution
effort. For this reason, it is advisable to select those geometry parameters that have
the greatest influence on the searched output quantities but have the lowest degree of
redundancy among themselves. The parameter selection approach presented in this paper
describes the selection of such parameters as a methodical procedure. The generic three-
step procedure of parameter selection is shown in Figure 9. The process of the parameter
selection is problem-specific and is also influenced by the selected system model, which
follows from the approach for the model selection. In the context of the optimization
environment, the output quantities and effects to be considered in the model selection
describe those variables that influence the decision parameters of the optimization problem.
The input variables for the problem definition of the parameter selection describe on
the one hand the resulting model and the output quantities already described for the
methodology for the model selection, but also those problem variables which come into
question as optimization parameters. In addition, a selection of the number of parameters
to be determined is required, which defines the degrees of freedom and thus the accuracy
of the optimization environment, but also describes the required solution effort.

107



Energies 2021, 14, 5623

Figure 9. Process of the approach for the parameter selection.

Based on these input variables, a sensitivity analysis is performed for each possible
optimization parameter using the model resulting from the model selection approach. Here,
the elasticities of the output quantities relevant to the optimization are examined so that
the possible optimization parameters can be sorted based on their elasticity. This identifies
those parameters that have the greatest possible influence on the optimization problem,
minimizing the global optimum in particular, since this correlates negatively with the
elasticity of the optimization parameters. From the sorting of the optimization parameters,
starting with the highest elasticity, the given number of parameters can be selected. For each
new optimization parameter to be added, the correlation with already selected parameters
must be checked, since the individual optimization variables must be independent of each
other and must not influence each other. Otherwise, contradictory solutions may result.
The optimization parameters resulting from the parameter selection procedure serve as
input variables of an optimization environment. Here, a problem-specific, experience-based
selection of upper and lower bounds of the parameters is important to reduce the size of the
solution space and thus the computational effort. A multi-step optimization environment
for the design of an IM using the model and parameter selection procedure presented here
is given in [3].

5. Application Example

The model selection procedure is exemplary applied to a multiphysics weakly coupled
simulation in this work. The weakly coupled simulation consists of an electromagnetic and
a thermal model of an exemplary IM. The electromagnetic model determines the actual
temperature-dependent ohmic and iron losses of the IM at different stator winding and
rotor cage temperatures. The calculated losses are the input parameters of the thermal
model. The thermal model is then used to update the machine temperatures and return
them to the electromagnetic model, resulting in a change of the material conductivities. The
electromagnetic model to be used is selected by applying the presented approach of model
selection. For the thermal model, an implementation in MATLAB® is used, which is based
on the Lumped Parameter Thermal Network (LPTN) model of Motor-CAD®. The resulting
simulated temperature curves are compared with measured results of the same machine
at the same operating point. The use of the parameter selection in combination with the
model selection is investigated in [3] using a multi-stage optimization of the design of
an IM.

5.1. Exemplary Induction Machine

The exemplary IM is an aluminum die-cast squirrel cage IM. The IM is used as a
traction drive in an electrical vehicle. The machine, the cross-sectional area of the stator
and rotor and important geometrical and electrical parameters are given in Figure 10. The
studied IM delivers a S2 power of 30 kW and is equipped with a forced air cooling in the
housing. The temperature measurement of the IM was performed on a test bench. The
test bench setup is described in [22]. Seven temperature sensors were used to measure the
average temperature of the stator winding. These were placed at different positions within
the winding.
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Figure 10. Cross section and parameter of the exemplary IM.

The rotor temperature measurement was performed using a non-contact infrared (IR)
sensor. The temperature was measured at the short-circuit ring of the squirrel-cage. To
achieve a high emissivity of the short-circuit ring, it was painted black [23]. The validation
of the IR temperature measurement was performed according to the procedure described
in [23].

5.2. Thermal Model

An LPTN model of the IM was used as the thermal model. This was built in Motor
CAD using the geometry and winding data of the exemplary machine. The LPTN created
by Motor-CAD® was extracted and imported into MATLAB®. The thermal parameters
and the LPTN of the machine are explained in [24]. The LPTN is solved in Matlab using
the modified nodal potential analysis and the Backward Euler method.

Two options can be used to calculate the electromagnetic losses used as input for
the thermal simulation. Both options are equivalent in their results. First, in each step
where the losses are updated, the electromagnetic model can be calculated with the actual
temperatures of the stator winding and the rotor cage. This implies a high computational
effort, especially for the numerical models, since the FE simulation must be performed
at each step. On the other hand, for a given stator winding and rotor cage temperature,
the machine can first be calculated with the selected model and the influences of the
temperature changes on the losses can be determined using the scaling laws of IM described
in [8,22,25,26]. This reduces the computational effort while maintaining the quality of the
calculated losses, as shown in [8,22,25,26].

5.3. Model Selection Approach

The selection of the electromagnetic simulation model of the IM to be used for the
described field of application of a coupled electromagnetic-thermal operating point simula-
tion is performed automatically with the presented approach of the model selection. The
output quantities and effects to be investigated to describe the problem and the required
levels of detail are shown in Table 1. A required level of detail of, for example, 25% means a
maximum permissible deviation of 25% from the T-FEM. The required level of detail of the
ohmic and stator and rotor losses is obtained assuming a measurement deviation of 5% and
a deviation of the electromagnetic reference model, the transient FEM, of 10%. The level of
detail of the iron loss components was chosen to be 25% because they have lower losses
compared to the ohmic losses at the considered operating point. The required level of detail
of the saturation was chosen to be 5 on the subjective point scale, which corresponds to the
middle value of the scale. A saturated point in the efficiency maximum of the machine is
selected as the operating point to be investigated. With a speed of 3700 rpm and a torque
of 60 Nm, this lies in the limit between the base speed and the field weakening range of
the IM.
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Table 1. Required level of detail of the output quantities and effects of the electromagnetic model.

Output Quantities and Effects Level of Detail

Output Quantities

Ohmic Stator Losses 14.5%
Ohmic Rotor Losses 14.5%

Hysteresis Losses 25%
Eddy Current Losses 25%

Excess Losses 25%
Saturation Losses 25%

Effects
Saturation 5

Winding Temperature 14.5%
Rotor Temperature 14.5%

The model resulting from the procedure, which can represent both the range of values
and the required levels of detail, is the E-HWM. The TH-FEM and T-FEM also meet the
desired levels of detail, but were not chosen due to the higher degrees of freedom and
associated higher computational effort.

5.4. Simulation Results

Using the determined electromagnetic E-HWM, the thermal behavior of the machine
is simulated by means of the coupled simulation at the given operating point of 3700 rpm
and 60 Nm. The simulated and measured temperature of the stator winding and the rotor
cage are shown in Figure 11. The stator winding temperature has a maximum deviation of
7.8 ◦C and 5.7%, respectively, with respect to the measured temperatures during the heat-up
phase. The rotor cage temperature shows a deviation of 13.9 ◦C and 8.2% respectively.
These values are therefore within the required level of detail of the losses. For comparison,
the simulation is also performed with T-FEM, which has a higher level of detail than the
E-HWM, and the FWM, which has a lower level of detail. The results are also plotted in
Figure 11. The maximum deviation related to the measurements of the stator winding
temperature for the simulation using the T-FEM is 3.7 ◦C and 3.4%, respectively, and
that of the rotor cage temperature is 4.3 ◦C and 2.5%, respectively. The deviations of the
simulations using the FWM are above 25% in both temperatures.

Figure 11. Simulated and measured stator winding and rotor bar temperature of the exemplary IM
using the T-FEM, the E-HWM, and FWM.

6. Discussion

The model and parameter selection approaches presented in this paper are based on
the analysis of different analytical and numerical models of an exemplary IM for a given
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power, torque, and speed range. The analysis is performed at certain operating points and
the models are evaluated in terms of their value ranges and levels of detail. The model and
parameter selection approaches can then be applied to problems requiring simulations of
IM in a similar power, torque, and speed range and with similar geometric dimensions.

In an example simulation of the thermal behavior of an IM the model selection
approach is used to determine the most appropriate electromagnetic machine model. The
results of this application example show that the model selection approach is suitable for
methodically determining the most suitable and computationally efficient model for given
requirements in terms of value range and level of detail. Thus, it is an efficient tool for the
characterization and methodological analysis of models, especially when selecting one of
several models with many different output quantities, effects, and parameters.

The parameter selection procedure provides an approach to identify machine parameters
that have a high impact on the defined target variable. This procedure lends itself to the
selection of optimization parameters in machine design optimizations as presented in [3].
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Abbreviations

The following abbreviations are used in this manuscript:

ECD Equivalent Circuit Diagram
E-HWM Extended Harmonic Wave Model
FE Finite Element
FWM Finite Element Model
FFT Fast Fourier Transformation
FWM Fundamental Wave Model
HWM Harmonic Wave Model
IM Induction Machine
IR Infrared
LPTN Lumped Parameter Thermal Network
MMF Magnetomotive Force
NVH Noise Vibration Harshness
T-FEM Transient Finite Element Model
TH-FEM Time Harmonic Finite Element Model

References

1. Zienkiewicz, O.C.; Chan, A.H.C. Coupled Problems and Their Numerical Solution. In Advances in Computational Nonlinear
Mechanics; Springer: Vienna, Austria, 1989; Volume 300, pp. 139–176. [CrossRef]

2. Nell, M.; Leuning, N.; Mönninghoff, S.; Groschup, B.; Müller, F.; Karthaus, J.; Jaeger, M.; Schröder, M.; Hameyer, K. Complete
and Accurate Modular Numerical Computation Scheme for Multi–Coupled Electric Drive Systems. IET Sci. Meas. Technol. 2020,
14, 259–271. [CrossRef]

3. Nell, M.; Kubin, A.; Hameyer, K. Multi-Stage Optimization of Induction Machines Using Methods for Model and Parameter
Selection. Energies 2021, 14, 5537. [CrossRef]

4. Oberretl, K. Allgemeine Oberfeldtheorie für ein- und dreiphasige Asynchron- und Linearmotoren mit Käfig unter Berücksichti-
gung der mehrfachen Ankerrückwirkung und der Nutöffnungen. Teil I: Theorie und Berechnungsverfahren. Arch. Elektrotechnik
1993, 76, 111–120. [CrossRef]

111



Energies 2021, 14, 5623

5. Oberretl, K. Allgemeine Oberfeldtheorie für ein- und dreiphasige Asynchron- und Linearmotoren mit Käfig unter Berücksichti-
gung der mehrfachen Ankerrückwirkung und der Nutöffnungen. Teil II: Resultate, Vergleich mit Messungen. Arch. Elektrotechnik
1993, 76, 201–212. [CrossRef]

6. Oberretl, K. Losses, Torques and Magnetic Noise in Induction Motors with Static Converter Supply, Taking Multiple Armature
Reaction and Slot Openings into Account. IET Electr. Power Appl. 2007, 1, 517–531. [CrossRef]

7. Binder, A. Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]
8. Nell, M.; Lenz, J.; Hameyer, K. Scaling Laws for the FE Solutions of Induction Machines. Arch. Electr. Eng. 2019, 68,

677–695. [CrossRef]
9. Oberretl, K. Die Oberfeldtheorie des Käfigmotors unter Berücksichtigung der durch die Ankerrückwirkung verursachten

Statoroberströme und der parallelen Wicklungszweige. Arch. Elektrotechnik 1965, 49, 343–364. [CrossRef]
10. Stoyanov, L.; Lazarov, V.; Zarkov, Z.; Popov, E. Influence of Skin Effect on Stator Windings Resistance of AC Machines for Electric

Drives. In Proceedings of the 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 6–8
June 2019; pp. 1–6. [CrossRef]

11. Oberretl, K. Einseitiger Linearmotor mit Käfig im Sekundärteil. Arch. Elektrotechnik 1974, 56, 305–319. [CrossRef]
12. Zhu, Z.Q.; Howe, D. Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors. III. Effect of Stator

Slotting. IEEE Trans. Magn. 1993, 29, 143–151. [CrossRef]
13. Elfgen, S.; Steentjes, S.; Bohmer, S.; Franck, D.; Hameyer, K. Influences of Material Degradation Due to Laser Cutting on the

Operating Behavior of PMSM Using a Continuous Local Material Model. IEEE Trans. Ind. Appl. 2017, 53, 1978–1984. [CrossRef]
14. Hameyer, K.; Belmans, R. Numerical Modelling and Design of Electrical Machines and Devices. In Advances in Electrical and

Electronic Engineering; WIT Press: Southampton, UK, 1999; Volume 1.
15. Schöps, S.; De Gersem, H.; Weiland, T. Winding Functions in Transient Magnetoquasistatic Field-Circuit Coupled Simulations.

COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2013, 32, 2063–2083. [CrossRef]
16. Vassent, E.; Meunier, G.; Foggia, A. Simulation of Induction Machines Using Complex Magnetodynamic Finite Element Method

Coupled with the Circuit Equations. IEEE Trans. Magn. 1991, 27, 4246–4249. [CrossRef]
17. De Gersem, H.; Hameyer, K. Air-Gap Flux Splitting for the Time-Harmonic Finite-Element Simulation of Single-Phase Induction

Machines. IEEE Trans. Magn. 2002, 38, 1221–1224. [CrossRef]
18. De Geserm, H.; Mertens, R.; Kay, H. Comparison of time-harmonic and transient finite element models for asynchronous

machines. In Proceedings of the Internationel Conference on Electrical Machines (ICEM00), Espoo, Finland, 28–30 August 2000;
Volume 1, pp. 66–70.

19. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
20. von Pfingsten, G.; Nell, M.; Hameyer, K. Hybrid Simulation Approaches for Induction Machine Calculation. COMPEL—Int. J.

Comput. Math. Electr. Electron. Eng. 2018, 37, 1744–1754. [CrossRef]
21. Steentjes, S.; von Pfingsten, G.; Hombitzer, M.; Hameyer, K. Iron-Loss Model With Consideration of Minor Loops Applied to

FE-Simulations of Electrical Machines. IEEE Trans. Magn. 2013, 49, 3945–3948. [CrossRef]
22. Nell, M.; Groschup, B.; Hameyer, K. Using Scaled Fe Solutions for an Efficient Coupled Electromagnetic—Thermal Induction

Machine Model. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 2021, 40, 267–279. [CrossRef]
23. von Pfingsten, G.; Steentjes, S.; Hameyer, K. Operating Point Resolved Loss Calculation Approach in Saturated Induction

Machines. IEEE Trans. Ind. Electron. 2017, 64, 2538–2546. [CrossRef]
24. Groschup, B.; Nell, M.; Pauli, F.; Hameyer, K. Characteristic Thermal Parameters in Electric Motors: Comparison between

Induction- and Permanent Magnet Excited Machine. IEEE Trans. Energy Convers. 2021, 36, 2239–2248. [CrossRef]
25. Nell, M.; Lenz, J.; Hameyer, K. Efficient Numerical Optimization of Induction Machines by Scaled FE Simulations. In Pro-

ceedings of the XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018;
pp. 198–204. [CrossRef]

26. Nell, M.; Groschup, B.; Hameyer, K. Efficient Coupled Electromagnetic-Thermal Induction Machine Model Using Scaled FE-
Solutions. In Proceedings of the 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and
Electronic Engineering (ISEF), Nancy, France, 29–31 August 2019; pp. 1–2. [CrossRef]

112



Citation: Martinez-Herrera, A.L.;

Ferrucho-Alvarez, E.R.;

Ledesma-Carrillo, L.M.;

Mata-Chavez, R.I.; Lopez-Ramirez,

M.; Cabal-Yepez, E. Multiple Fault

Detection in Induction Motors

through Homogeneity and Kurtosis

Computation. Energies 2022, 15, 1541.

https://doi.org/10.3390/en15041541

Academic Editors: Mario Marchesoni

and Ryszard Palka

Received: 4 January 2022

Accepted: 16 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Multiple Fault Detection in Induction Motors through
Homogeneity and Kurtosis Computation

Ana L. Martinez-Herrera, Edna R. Ferrucho-Alvarez, Luis M. Ledesma-Carrillo, Ruth I. Mata-Chavez,

Misael Lopez-Ramirez and Eduardo Cabal-Yepez *

Multidisciplinary Studies Department, Engineering Division, Campus Irapuato-Salamanca, University of
Guanajuato, Guanajuato 38944, Mexico; martinez.al@ugto.mx (A.L.M.-H.); er.ferruchoalvaez@ugto.mx (E.R.F.-A.);
lm.ledesma@ugto.mx (L.M.L.-C.); ruth@ugto.mx (R.I.M.-C.); lopez.misael@ugto.mx (M.L.-R.)
* Correspondence: educabal@ugto.mx; Tel.: +52-445-458-9040

Abstract: In the last few years, induction motor fault detection has provoked great interest among
researchers because it is a fundamental element of the electric-power industry, manufacturing
enterprise, and services. Hence, considerable efforts have been carried out on developing reliable,
low-cost procedures for fault diagnosis in induction motors (IM) since the early detection of any failure
may prevent the machine from suffering a catastrophic damage. Therefore, many methodologies
based on the IM startup transient current analysis have been proposed whose major disadvantages
are the high mathematical complexity and demanding computational cost for their development.
In this study, a straightforward procedure was introduced for identifying and classifying faults in
IM. The proposed approach is based on the analysis of the startup transient current signal through
the current signal homogeneity and the fourth central moment (kurtosis) analysis. These features
are used for training a feed-forward, backpropagation artificial neural network used as a classifier.
From experimentally obtained results, it was demonstrated that the brought-in scheme attained high
certainty in recognizing and discriminating among five induction motor conditions, i.e., a motor
in good physical condition (HLT), a motor with one broken rotor bar (1BRB), a motor with two
broken rotor bars (2BRB), a motor with damage on the bearing outer race (BRN), and a motor with an
unbalanced mechanical load (UNB).

Keywords: artificial neural network; fourth central moment; homogeneity analysis; induction motors;
mechanical unbalance; one broken rotor bar; outer-race bearing fault; startup transient current; two
broken rotor bars

1. Introduction

Induction motors have stayed for many years as essential components of every elec-
trical and manufacturing process. Because of their low cost, stiffness, and quality of
performing consistently well, they are extensively used around the planet. The squirrel
cage induction motor (SCIM) provides the most common type of electromechanical drive
for commercial, domestic, and, the most important, industrial applications, corresponding
to around 85% of the electrical energy utilization in this area [1]. In the past decades,
profound efforts have been devoted to induction motor (IM) fault diagnosis due to the
economic and technical consequences of an unexpected downtime caused by a failure.
As any other electrical device, an IM is vulnerable to numerous kinds of failures that can
be classified as bearings’ faults, with 50% of incidence, rotor faults, with the 10%, and
stator-related faults, with the 40% [2]. Some of the symptoms produced by these failures
are excessive vibrations, unbalanced line currents and/or voltages, torque pulsations and
decreased average torque, and excessive heating, among others, aggravating efficiency
losses on any process. Stator faults have been lessened at present by improving the SCIM
design and its building quality. On the other hand, broken rotor bars (BRB), bearing faults
(BRN), and rotor unbalance (UNB) constitute very common problems, particularly in heavy

Energies 2022, 15, 1541. https://doi.org/10.3390/en15041541 https://www.mdpi.com/journal/energies113



Energies 2022, 15, 1541

duty systems [3]. Many efforts have been made to prevent catastrophic failures to occur
with the application of several techniques for fault detection; unfortunately, most of them
focus on detecting a single, specific fault separately, such as BRB [4], BRN [5], or UNB [6].
These techniques are usually based on monitoring and analyzing current and vibration
signals [7]. Motor current signature analysis (MCSA) is one of the most popular and
effective techniques for induction motor fault detection. It has the advantages of being
noninvasive and simple to carry out, coming out with good results during faulty condition
identification [8]. MCSA processes either the startup transient or the steady-state electric
current signal fed to the SCIM stator, which is gathered with a current clamp probe to carry
out early detection of these types of faults, trying to avoid unscheduled maintenance and
interruption of production lines, which yield to critical outcomes in produced merchandise
conditions, manufacturing prices, and security.

One of the most difficult faults to detect is broken rotor bars (BRB) because they usually
do not lead to an abrupt total motor failure but to a progressive deterioration that may not
be detected until the motor is severely damaged, causing a shutdown in the production
line. In [9], a new technique was developed using the fast Fourier transform (FFT), and
an index-based classifier was introduced for BRB diagnosis. Nevertheless, several studies
have shown that analyzing the steady-state signal might not be an effective approach for
identifying certain operational conditions such as voltage fluctuations, bearing failures,
noise, and mechanical load changes [10]. Therefore, non-stationary signal analysis for
SCIM fault detection has generated great interest in recent years. Some advantages of
analyzing and monitoring the induction motor (IM) current signals during its transient
state are related to the close relation between the signal noise and the rotor fast slip [7],
making it easier to identify BRB and other kinds of faults during this regime. However,
the greatest obstacle for this type of monitoring comes from the startup span, which is
very short; besides that, non-stationary signals represent a challenging task as they cannot
be analyzed separately in time or frequency domains. The short-time Fourier transform
(STFT) [11] and the Hilbert transform [4] are well-known techniques for identifying faulty
conditions in SCIM. On the other hand, the wavelet transform (WT) has attained great
interest among researchers for BRB fault detection, as well as the high-resolution technique
known as multiple signal classification (MUSIC) [12]. On the other hand, most of the
techniques utilized for identifying bearing faults (BRN) rely on the analysis of vibration
signals [5]. However, the STFT and the WT and its variations directly depend on the correct
selection of a suitable window size and a mother wavelet function, respectively, to perform
an effective signal analysis. Other works based on quadratic distributions (QD) [13–15]
provide a time–frequency representation for non-stationary signals. However, QD may
generate spurious frequencies called cross terms that compromise the correct identification
of the fault-related frequencies. In an equivalent way, mechanical unbalance fault (UNB)
diagnosis has been traditionally addressed by analyzing vibration signals [16–18], too.

Although the methods and techniques mentioned before are suitable for detecting
and diagnosing independent induction motor faults, most of them rely on the combination
of complex mathematical bases that demand specialized hardware and software for their
implementation in order to take the time-domain signals into the frequency domain and
back to the time domain. This requires a long execution time and computational resources
for the signal processing. Furthermore, some of these techniques involve the analysis of the
electric current from the three phases along with the multi-axis vibration signals from the
SCIM. Therefore, in this study, an approach based on the examination of just one phase
from the electrical current fed to the IM during its startup transient through homogeneity
and kurtosis computations was presented for detecting and classifying distinct induction
motor faults, i.e., one broken rotor bar (1BRB), two broken rotor bars (2BRB), a motor with
damage on the bearing outer race (BRN), and a motor with an unbalanced mechanical
load (UNB). The introduced methodology has a low computational complexity compared
to other methods in related literature for signal examination aimed to IM fault detection;
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hence, the proposed approach required a short processing time, making it feasible for being
utilized in online-processing applications.

The paper is organized as follows. Section 2 provides a theoretical background for fault
and indexes’ description. Section 3 describes the experimental setup. Section 4 presents the
obtained results, and, finally, some conclusions are provided in Section 5.

2. Theoretical Framework

This section provides a mathematical background about the induction motor faults
treated in this work, as well as the signal processing techniques utilized for analyzing the
startup electric current signal and the artificial neural network utilized for classifying the
IM operational condition.

2.1. Broken Rotor Bar Fault (BRB)

The BRB fault is the most common rotor-related failure that affects SCIM, and it is very
difficult to detect because, under this state, the motor operates apparently under normal
condition. BRB is mainly caused by overload and thermal imbalances, electromagnetic
forces and noise, vibrations, environmental damage, or by manufacturing processes.

An induction motor operating with BRB defects generates an opposing succession
of rotor currents caused by the asymmetries, which bring on a distinctive element in the
frequency spectrum of the stator current. The fault-related frequencies (fBRB) indicating the
presence of BRB are given by:

fBRBs = (1 − 2ks) fs, k = 1, 2, 3, . . . (1)

where k is an integer number, f s is the main frequency component of the electric power
supply, and the motor slip is represented by s, which takes values in the range from 0 to
1 [19].

2.2. Bearing Fault (BRN)

Characteristic frequency components are generated on the stator current when an
SCIM has a faulty bearing. These specific frequency components can be predicted since
they are related to both the power supply frequency and the mechanical system frequency.
When there is a fault in any component of a bearing, for instance, its inner raceway, outer
raceway, or rolling elements, specific components are induced in the vibration and current
signals of the machine. These characteristic frequencies associated to the bearing faults
depend directly on the bearing geometry and the machine rotating speed. A defect on the
outer race will cause an impulse every time the rolling elements make contact with the
defect. The outer raceway-related frequency can be theoretically determined by

fo =
n
2

fr

[
1 −

(
BD
PD

)
cos(β)

]
(2)

where n is the number of balls (rolling elements), fr is the shaft rotating frequency, BD is the
diameter of the balls, PD is the bearing race diameter, and β is the angle between the ball in
the race [20].

2.3. Mechanical Unbalance Fault (UNB)

When the mechanical load of the induction motor is not evenly disseminated, dis-
placing the center of mass out of the motor rotating axis, there is an unbalance fault. A
manufacturing defect is the principal cause of rotor unbalance; also, heating dilation has
an effect on the internal misalignment or the shaft deviation that produces an unbalanced
rotor. The unbalance state occurs when there is an uneven distribution of weight around
the rotor center of rotation, generating an unbalance force U, which is given by

U = m × r (3)
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where m is the mass and r is its eccentricity, which is the separation between the rotor center
of mass and its rotating axis. Unbalance force fluctuates with the rotating speed and drags
the rotor off from the stator center bore to a distinct position, which is known as the heavy
spot. Mutual inductances between stator and rotor loops get to be uneven because of the
rotor unbalance, which results in frequency components induced in the stator current that
are given by

funb = fs[1 ± k(1 − s)/p], k = 1, 2, 3, . . . (4)

where f s is the fundamental frequency of the electric current supply, k is an integer number,
s is the motor slip, and p is the number of pole pairs in the SCIM [21].

2.4. Homogeneity

In image classification, homogeneity is a textural attribute that estimates the variability
of the gray level in the pixels from an image. It is derived from the gray level co-occurrence
matrix (GLCM) [22], and it measures the closeness of the element distribution in the GLCM
regarding its diagonal. The GLCM shows how many times each gray level comes about at
a pixel situated at a predetermined geometric position regarding any other pixel through a
function of their gray levels. Homogeneity ranges from 0 to 1 and reaches its maximum
value when the diagonal elements have a value of 1. Homogeneity can be computed by

H = ∑
i

∑
j

1

1 + (i − j)2 p(i, j) (5)

where p(i, j) is the (i, j)th element of the normalized GLCM. Homogeneity can be used as an
index for fault detection and classification in SCIM since distinct fault-associated frequency
elements are induced in the electrical current signal, changing its uniformity [23].

2.5. Kurtosis

Kurtosis has the capability of measuring the deviation, i.e., tailedness, of a probability
distribution, and discriminating between distributions with different shapes; therefore, it
can be used as an efficient indicator for SCIM fault detection. Kurtosis is the fourth-order
moment that describes the shape of a probability distribution from a signal. If there is a
high impulsive component, with a sharp signal intensity distribution, then there is a high
kurtosis value. Kurtosis of a random event X is computed as

Kurt[X] =
1
N ∑N

i=1(xi − μ)4(
1
N ∑N

i=1(xi − μ)2
)2 =

μ4

σ4 (6)

where N is the number of samples, xi is the time raw-signal sample for i = 1, 2, . . . , N, and
μ is the mean of the random event X = [x1, x2, x3, . . . , xN].

2.6. Artificial Neural Networks

Artificial neural networks (ANN) provide a powerful and speedy tool for classification
problems. Figure 1 shows the basic design of ANN with two layers where each neuron
produces a unique number. Inputs are multiplied by corresponding weights and summed
up. The corresponding output is derived after adding a bias term to the in-between results.
The sum of the weighted inputs is transformed through a nonlinear activation function
to get the outcome of each corresponding neuron. Several triggering functions are viable;
however, in this work, from an empirical analysis, a hyperbolic tangent function was
used. The multilayer perceptron architecture is used in the ANN during experimentation.
It is made up of a feed-forward architecture composed of an input layer, one or more
inside layers, and one output layer. The number of inside layers and neurons on each
layer is determined by the dealt issue; in this case, the inputs correspond to the signal-
obtained features, i.e., homogeneity and kurtosis. The hidden layer is set heuristically
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by experimentation, whereas the number of output neurons is related to the distinct
categories being recognized. The ANN employed in this experimentation was trained
using a Levenberg–Marquardt backpropagation scheme [24].

Figure 1. (a) Typical scheme of an ANN, (b) operation of an artificial neuron in a layer.

3. Experimentation

The electrical current signal from the startup transient of a SCIM is used for identifying
and classifying a healthy motor (HLT) or a motor with a faulty condition from those
treated in this study, i.e., one broken rotor bar (1BRB), two broken rotor bars (2BRB),
outer-race faulty bearing (BRN), and mechanical unbalance (UNB). Figure 2 shows the
testbench configuration, which employs distinct 1-HP SCIM (model WEG 00136APE48T)
for assessing the feasibility of using the introduced procedure to identify and classify
distinct operational states.

Figure 2. Testbench used for assessing the proposed method for detecting and classifying distinct
faults in SCIM.

The motors under test received an electric power supply of 220 V ac at 60 Hz. They
had 28 bars in the rotor, two poles, and the used mechanical load was an ordinary alternator
that was equivalent to one-quarter of the SCIM nominal load. One phase of the three-phase
electric current supply signal was collected through an i200s, ac current clamp from Fluke.
The data acquisition system (DAS) used a 16-bit analog-to-digital converter (ADS7809). The
instrumentation system used a sampling frequency f 0 of 1.5 kHz, obtaining 4096 samples
in 2.7 s during the induction motor startup transient.
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For this study, one motor was kept in healthy condition, i.e., in good physical condition,
to be used as benchmark. The 1BRB and 2BRB conditions were generated in a synthetic
way by drilling one hole and two holes, respectively, with a diameter of 7.938 mm, without
damaging the rotor shaft, as shown in Figure 3a,b, respectively. On the other hand, the
bearing was synthetically harmed on its outer race by boring a 1.191-mm hole utilizing a
tungsten drill bit. Figure 3c displays the bearing model 6203-2ZNR that was synthetically
damaged to carry out the experimentation. The mechanical unbalance fault was generated
by adding a mass in one of the pulley arms. In a drilled hole with 8 mm of diameter, a
two-sided screw was placed and secured using female screws on both sides of the pulley
arm, as depicted in Figure 3d. A total of 100 trials were executed for each motor condition.

Figure 3. Artificially generated faults. (a) One broken rotor bar (1BRB); (b) two broken rotor bars
(2BRB); (c) bearing with outer race damaged (BRN), and (d) mechanical unbalance.

Figure 4 depicts the proposed methodology for multiple fault diagnosis and classifica-
tion. The electrical current signal of the startup transient was obtained by the current clamp;
then, it was adjusted and analog-to-digital transformed in the DAS. The resulting discrete
current signal was treated for obtaining the desired features, homogeneity and kurtosis,
which were used as entries to the artificial neural network, a multilayer perceptron with a
feed-forward architecture.

Figure 4. Proposed approach for distinct fault detection and classification.

Homogeneity and kurtosis values were obtained and normalized for each motor
condition by the definitions (5) and (6), respectively. For each motor condition, a statistical
analysis was performed. The mean (μ) and standard deviation (σ) of the homogeneity
and kurtosis values for a motor without harm (HLT), a motor with one separated rotor
bar (1BRB), a motor with two shattered rotor bars (2BRB), a motor with outer-race bearing
damage (BRN), and a motor with unbalance (UNB) show that the respective probability
density functions (PDF) partially cover each other in some degree, impeding a direct
classification. Figure 5 shows the PDF of homogeneity and kurtosis features where the
overlap among some of the treated conditions is evident. Therefore, a neural network
classification was used for refining the proper operation that allowed a precise identification
of multiple operational conditions.
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Figure 5. Homogeneity and kurtosis PDF values for the different motor states: HLT, healthy; 1BRB, one
broken rotor bar; 2BRB, two broken rotor bars; BRN, outer-race bearing damage; and UNB, unbalance.

The classification was carried out utilizing the homogeneity and kurtosis data as
entries to the ANN. The artificial neural network was a multilayer perceptron with a feed-
forward architecture with two inputs (kurtosis values and homogeneity values) only, one
hidden layer, and one output. A Levenberg–Marquardt backpropagation algorithm was
used for training the ANN and the mean-square-error index was used for performance
assessment. Inputs to the ANN were the feature vectors composed of the homogeneity and
kurtosis data, where each motor condition had a total of 20 values in its validation data set,
given as a result of feature vectors of length 100.

4. Obtained Results

The proposed technique efficacy was validated through 100 different trials under
each treated motor condition. A holdout-type data set was employed, where the first
70 experiments were employed for teaching the network and the remaining ones were
used for checking the proposed methodology efficacy. Table 1 shows the performance
results, through a confusion matrix, of the introduced technique during the identification
and classification of the IM operational condition as HLT, 1BRB, 2BRB, BRN, and UNB. The
right-most column in Table 1 displays the average success rate of the suggested procedure.

The results obtained experimentally are depicted in Table 1 and they show that the
introduced methodology reached 100% of effectiveness on identifying and discriminating
among a healthy motor (HLT), a motor with one broken rotor bar (1BRB), a motor with
two broken rotor bars (2BRB), a motor with outer-race bearing damage (BRN), and a motor
with an unbalanced mechanical load (UNB). The proposed technique was executed in a
2.20-GHz Intel Core i7-8750 processor, making use of the software MATLAB 2020a.

Table 1. Confusion matrix and overall effectiveness of using homogeneity and kurtosis features for
fault detection and classification in SCIM.

IM Condition HLT 1BRB 2BRB BRN UNB
Overall

Effectiveness

HLT 20 0 0 0 0 100%
1BRB 0 20 0 0 0 100%
2BRB 0 0 20 0 0 100%
BRN 0 0 0 20 0 100%
UNB 0 0 0 0 20 100%

Discussion

The proposed methodology is compared against previous approaches used for detect-
ing SCIM faults in Table 2. The obtained results from real experimentation demonstrated
the usefulness of homogeneity and kurtosis as indexes for IM diagnosis and their high reli-
ability as indicators for multiple fault identification and classification [25,26]. The proposed
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approach can recognize and classify the operational condition of an induction motor as in
a good state (HLT), a motor with one split rotor bar (1BRB), a motor with two damaged
rotor bars (2BRB), a motor with outer race damage in the bearing (BRN), and a motor
with an unbalanced mechanical load (UNB) with high certainty, attaining up to 100% of
effectiveness, utilizing just two features of a single phase from the three-phase electrical
current supply to the SCIM, as inputs to a multilayer perceptron ANN. This is different
from other approaches reported in the reviewed literature that even require the signal
transformation from the time domain into the frequency domain and back to the time
domain to carry out the signal processing in order to extract up to 29 features of the current
signals from the three phases and the multi-axis vibration signals, in conjunction, in order
to be capable of performing the fault detection. In the proposed procedure, the electrical
current signal from the SCIM startup transient was analyzed just in time domain without
any pre-treatment, which is an evident convenience compared to the previous works in
Table 2, which require the combination of two or more processing techniques to carry out
a qualitative diagnosis or to perform it in a quantitative style by analyzing current and
vibration signals in time, frequency, and even time-frequency domains. Therefore, the
proposed methodology is a reliable tool that ensures high certainty during different fault
detections and classifications in induction motors through the analysis of just one phase
from startup electric current supply, outperforming previous approaches in the state of
the art.

Table 2. Comparison chart of the proposed methodology against the state of the art in related
literature for fault detection in IM.

Method Accuracy Rate Applied Techniques Detected Fault

Garcia-Bracamonte et al.
[8] From 90% to 99% Autocorrelation; FFT; independent component analysis; region-of-interest

segmentation; and 1-D, 2-D, and 3-D vector extraction.

BRB
only

Yang and Shi [27] Qualitative Wavelet packet, threshold optimization, Shannon entropy, wavelet packet
reconstruction, and FFT computation.

Haroun et al. [28] From 81.4% to 100%
Zero-crossing time, envelope extraction of the three phase currents,

frequency domain characterization, ReliefF algorithm, and self-organizing
map.

Li et al. [29] Qualitative
Fourier transform, power spectral density estimation, local characteristic

frequency bands’ synchronization, spectrum transformation, central point
computation, and kurtosis energy-based spectrum.

Gong et al. [30] Qualitative Wavelet packet transform and spectral kurtosis.

BRN
only

Gao and Xiang [31] Qualitative
Ensemble empirical mode decomposition, L-Kurtosis value, FFT,

clustering-based segmentation, inverse FFT, and Hilbert envelope
spectrum computation.

Navasari et al. [32] From 98% to 100% Wavelet decomposition, sampling of the decomposition streams, energy
computation, and ANN.

Ben Abid et al. [33] 100% Stationary wavelet packet transform, root mean square (RMS), aiNet
clustering algorithm, and directed acyclic graph support vector machine.

Rahman and Uddin [16] Qualitative
Standard deviation, crest factor, and kurtosis computation; FFT;

DWT-based frequency domain analysis; Hilbert transform; and envelope
detection.

UNB
onlyTahir et al. [17] 100% Multi-axis RMS value, variance, skewness, kurtosis, impulse factor, and

range computation; signed distance computation; and SVM.

Guo et al. [18] 86.87% DC part removal, signal resampling, continuous wavelet transform
scalogram (CWTS), cropping, and convolutional neural network.

Cunha Palacios et al. [34] From 99.7% to 100%
Signal segmentation, peak value, module computation, crossover detection,

normalization, input selection, classification through different intelligent
algorithms.

BRN, BRB, and
Stator Faults

Jigyasu et al. [35] From 99.7% to 100%
RMS, variance, kurtosis, peak value, skewness, median, crest factor, margin
factor, impulse factor, shape, and median range extraction; different neural

network structures.

BRN, BRB, and
Eccentricity

Proposed Approach 100% Homogeneity, kurtosis, and an ANN.
1BRB, 2BRB,

BRN, and UNB
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5. Conclusions

Recently proposed techniques can detect one single induction motor fault with an
adequate certainty; however, most of them rely on the combination of complex mathe-
matical operations that require specific hardware and software for their implementation.
Furthermore, they involve the monitoring and processing of different signals as electric
current supply and multi-axis vibration signals to obtain time, frequency, and even time–
frequency features that allow them to attain high certainty on the induction motor diagnosis.
Therefore, in this work, a straightforward technique for multiple IM fault detection, which
just requires the computation of homogeneity and kurtosis from a single phase of the
supplied electrical current signal during the SCIM startup transient, was introduced. The
obtained results from experimental studies demonstrated that the proposed methodology
provides highly reliable results on detecting and classifying distinct induction motor faults
by computing the homogeneity and kurtosis on the time domain, allowing the identifi-
cation of five different operational conditions, a motor in healthy state (HLT), a motor
with one broken bar (1BRB), a motor with two broken rotor bars (2BRB), a motor with
outer-race damage on its bearing (BRN), and a motor with an unbalanced mechanical load
(UNB), with remarkable certainty. A thorough comparison against the state of the art in the
subject of induction motor fault detection showed that the proposed method outperformed
previous approaches in the reviewed literature, which usually just detect one single type of
fault, by implementing a low-cost computational technique suitable for online applications.

Future work will focus on assessing the proposed technique for multiple IM fault
detection under different scenarios. It will contemplate incorporating additional faulty
conditions and signal examination techniques to recover other signal characteristics, as
well as assessing distinct kinds of classifications to carry out the fault identification and
sorting with high precision.
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Abstract: In this paper, a model-based predictive rotor field-oriented angle compensation approach
is proposed for induction machine drives. Indirect rotor field-oriented control is widely used in
induction machine drives for its simple implementation and low cost. However, the accuracy of
the rotor field-oriented angle is affected by variable parameters such as the rotor resistance and
inductance. An inaccurate rotor field-oriented angle leads to a degradation of the torque and dynamic
performance, especially in the high-speed flux-weakening region. Therefore, the d-axis and q-axis
currents in the rotation reference frame are predicted based on the model and compared with the
feedback current to correct the rotor field-oriented angle. To improve the stability and robustness,
the proposed predictive algorithm is based on the storage current, voltage, and velocity data. The
algorithm can be easily realized in real-time. Finally, the simulated and experimental results verify
the algorithm’s effectiveness on a 7.5 kW induction machine setup.

Keywords: rotor field-oriented angle error; indirect rotor field-oriented control; induction machine
drives; model-based prediction

1. Introduction

Indirect rotor field-oriented control (IRFOC) is widely used in induction machine
drives because of its high performance in the base speed and field-weakening region.
The control scheme of IRFOC is shown in Figure 1. Currently, the flux level and torque
control in IRFOC are the research highlights in the field-weakening region [1–6]. The
solutions are based on the accuracy of the rotor field-oriented angle. However, the rotor
field-oriented method based on the integration of the rotor angular velocity and rotor
slip angular velocity in IRFOC is affected by variations in parameters such as the rotor
resistance. The rotor resistance varies with temperature and can be more than twice that of
the normal resistance at 25 ◦C. The well-known solution to rotor field-oriented inaccuracy
is parameter identification [5–10] and observers [11–15]. In [5,6], a magnetizing curve
of induction in the field-weakening region and saturated region is proposed. Off-line
parameter identification methods are proposed in [7,8]. A simple calculation based on
the specification of an induction machine is introduced in [9]. These methods are useful
and easy to apply in industry. Online parameter identification schemes are proposed
in [10,11]. Solutions to address the parameter sensitivity problem in speed sensorless
control of induction machines have been proposed, such as a sliding mode observer [12–15],
a low-pass filter [16], square-wave voltage injection [17], and model reference adaptive
control [18]. These algorithms require considerable computational resources and mainly
aim to reduce the risk of instability phenomena. However, in the IRFOC of induction
machines, the inaccurate field orientation caused by variable parameters is due to not only
the instability but also the load capacity and dynamic performance.

Energies 2021, 14, 2049. https://doi.org/10.3390/en14082049 https://www.mdpi.com/journal/energies125
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Figure 1. Control diagram of induction machine IRFOC.

Model-based predictive control (MPC) for machine drives and power electronics is an
alternative control strategy that has gained attention in recent years. This approach can
be used to address multivariable system constraints and nonlinearities in a very intuitive
way [19]. Therefore, MPC has been successfully used for different applications, such as
power converters connected to resistor–inductor (RL) loads [20], power electronics fault
tolerance [21–23], energy management of electric vehicles [24,25], autonomous vehicle
control [26,27], and high-performance drives for AC machines [28–32]. In [28], an MPC-
based vector control method named GTV-MPTC for induction machines is proposed to
cause the instantaneous torque to reach its reference value at the end of the next control
period. The weighting factors in MPC are eliminated by investigating the relationship
between the torque and stator flux to avoid tedious tuning work in [29]. However, the
impact of variable parameters such as stator and rotor resistors is not given. In [30–32],
MPC is used to improve the dynamic performance and reduce torque ripples in permanent-
magnet synchronous motors (PMSM) drives. Compared to the vector control of induction
machines, the control of PMSMs does not require a calculation of the slip velocity. Therefore,
the rotor flux orientation for PMSMs is easy and accurate using a speed sensor.

In this paper, a compensation approach based on a model predictive algorithm of
the rotor field-oriented angle error is proposed for IRFOC of induction machines. The
d-axis and q-axis currents in the rotation reference frame are predicted and compared with
the currents by current sensors to correct the rotor flux oriented angle. To improve the
stability and robustness, the proposed predictive algorithm is based on the current, voltage,
and velocity data stored in the memory. The algorithm can be realized easily in real-time.
After compensation of the rotor field-oriented angle error, the output torque and current
control performance can be improved. In Section 2, the mathematical model of IRFOC is
introduced. Section 3 demonstrates the proposed model-based predictive algorithm and
its implementation based on the stored data. The simulated results are shown in Section 4.
Finally, the experimental results are presented to verify the proposed method in Section 5.

2. Induction Machine Control Model

2.1. Induction Machine Model

The dynamic model of the induction machine is important for the study of transient
analysis on computers. If the currents in the rotating reference frame are selected as the
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main variables, then the state space stator voltage equations in the rotating reference frame
can be obtained as

[
vqs
vds

]
=

[
Rs + Ls p
−ωeLs

ωeLs
Rs + Ls p

Lm p
ωeLm

ωeLm
Lm p

]⎡⎢⎢⎣
iqs
ids
iqr
idr

⎤⎥⎥⎦ (1)

where vqs, vds, iqs, and ids are the stator q-axis and d-axis voltages and currents, respec-
tively; iqr and idr are the rotor q-axis and d-axis currents, respectively; Rs and Ls the
stator resistance and inductance, respectively; Lm is the magnetizing inductance; ωe is the
synchronous rotating angular velocity; and p is the differential factor.

The rotor flux linkage expressions in terms of the currents can be written as

[
ψqr
ψdr

]
=

[
Lm
0

0
Lm

Lr + Lm
0

0
Lr + Lm

]⎡⎢⎢⎣
iqs
ids
iqr
idr

⎤⎥⎥⎦, (2)

where ψqr and ψdr are the rotor q-axis and d-axis flux linkages, respectively. Lr is the
inductance of the rotor.

The d-axis is located on the rotor flux linkage in the IRFOC. Therefore, ψqr = 0 and
ψr = ψdr. By Equation (2), the rotor current in Equation (1) can be substituted as

vqs = Rsiqs + δLs
diqs

dt
+ ωeLsids +

ωeLm

Lr
(ψr − Lmids), (3)

vds = Rsids + Ls
dids
dt

− ωeδLsiqs +
Lm

Lr

d(ψr − Lmids)

dt
, (4)

where δ = 1 − L2
m

Ls Lr
.

The rotor flux in the IRFOC can be expressed as

Lr

Rr

dψr

dt
+ ψr = Lmids, (5)

Then, Equation (5) is substituted into Equation (3) to obtain

vqs = Rsiqs + δLs
diqs

dt
+ ωeLsids − ωeLm

Rr

dψr

dt
(6)

And Equation (4) can be given as

vds = Rsids + δLs
dids
dt

− ωeδLsiqs +
Lm

Lr

dψr

dt
(7)

2.2. Discrete-Time Model

The first-order approximation, as shown in Equation (8), is usually used to transfer
the continuous-time model to the discrete-time model.

dx
dt

=
x(k)− x(k − 1)

Ts
(8)

where Ts is the sample period. By substituting Equation (8) into Equations (6) and (7), the
discrete-time model of the induction machine control system can be obtained as

vqs(k) = (Rs +
δLs
Ts

)iqs(k) + ωeLsids(k)−
δLs
Ts

iqs(k − 1) + ωe Lm
RrTs

(ψr(k)− ψr(k − 1))
(9)
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vds(k) = (Rs +
δLs
Ts

)ids(k)− δLs
Ts

ids(k − 1)−
ωeδLsiqs(k) + Lm

LrTs
(ψr(k)− ψr(k − 1))

(10)

The rotor flux varies slowly compared to the variation in the current and voltage.
Therefore, Equations (9) and (10) can be simplified as

vqs(k) = (Rs +
δLs

Ts
)iqs(k)− δLs

Ts
iqs(k − 1) + ωeLsids(k) (11)

vds(k) = (Rs +
δLs

Ts
)ids(k)− δLs

Ts
ids(k − 1)− ωeδLsiqs(k) (12)

3. Model-Based Predictive Algorithm and Implementation

3.1. Model-Based Predictive Algorithm

In the discrete model, based on Equations (11) and (12), the d-axis and q-axis currents
at the k + 1 instant are predicted by{

(Rs +
δLs
Ts

)iqs(k + 1) + ωeLsids(k + 1) = δLs
Ts

iqs(k) + vqs(k + 1)
−ωeδLsiqs(k + 1) + (Rs +

δLs
Ts

)ids(k + 1) = δLs
Ts

ids(k) + vds(k + 1)
(13)

Then, {
iqs(k + 1) = C×A−D×E

A2+F×E
ids(k + 1) = C×F+D×A

A2+F×E
(14)

where A = Rs +
δLs
Ts

, C = δLs
Ts

iqs(k) + vqs(k + 1), D = δLs
Ts

ids(k) + vds(k + 1), E = ωe(k)Ls,
and F = ωe(k)δLs. The voltages vds(k + 1) and vqs(k + 1) are the d-axis and q-axis voltages
at k + 1 instant, respectively. When the IRFOC is realized in a digital signal processor (DSP)
or microcontroller unit (MCU), vds(k + 1) and vqs(k + 1) can be obtained by the pulse width
modulation (PWM) duty cycle at the k instant because the PWM duty cycle calculated at
the k instant will be active at the k + 1 instant. Therefore, vds(k + 1) and vqs(k + 1) do not
need to be predicted.

Based on (14), the predicted currents, iqs(k + 1) and ids(k + 1), at the k + 1 instant can
be obtained without the rotor field-oriented angle. According to Equations (13) and (14), the
stator resistance Rs is needed and varies with temperature. However, the variation in the
stator resistance can be neglected because it is very small compared with the other parts of
Equation (14). Therefore, the stator resistance on the motor plate can be used. The predictive
model control diagram is shown in Figure 2. θcom in Figure 2 is the compensated angle
of the rotor field-oriented error; θwe is the rotor field-oriented angle with compensation;
ian(k), ibn(k), and icn(k) are the three-phase currents at the k instant; van(k + 1), vbn(k + 1),
and vcn(k + 1) are the phase voltages at the k + 1 instant; ids f ed(k + 1) and iqs f ed(k + 1) are
the d-axis and q-axis currents based on the feedback current at the k + 1 instant.

Figure 2. Control diagram of model-based predictive rotor field-oriented angle compensation.
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The cost function is g(k + 1).

g(k + 1) = p1g1(k + 1) + p2g2(k + 1) + . . . + pngn(k + 1) (15)

where p1, p2 . . . pn are the weighting coefficients and p1 + p2 + . . . + pn = 1. The func-
tions g1(k + 1), g2(k + 1) . . . gn(k + 1) are the different optimization objective cost func-
tions. Here,

g1(k + 1) = i∗ds(k + 1)− ids(k + 1) (16)

g2(k + 1) = i∗qs(k + 1)− iqs(k + 1) (17)

If the rotor field-oriented angle is accurate, then g1(k + 1) = 0 and g2(k + 1) = 0.
Therefore, g(k + 1) = 0. If the g(k + 1) �= 0, then the angle θwe will be compensated by
θcom. The proportional integral (PI) regulator shown in Figure 3 is used to linearly tune
the θcom. Zero is used as the input of the PI regulator. It means that the rotor field-oriented
angle error is none.

 
Figure 3. PI regulator used to tune the θcom.

3.2. Implemented Algorithm

The currents in the IRFOC are always in a dynamic state. The current at the k + 1
instant cannot be sensed at present. Therefore, an approach algorithm that takes advantage
of the historic current and voltage is proposed.

The historic data of the current, voltage, and field-oriented angle, e.g., i(k − n),
i(k − n + 1) . . . i(k − 1), i(k), as shown in Figure 4, can be recorded in the random-access
memory (RAM) of the DSP or MCU. According to (14), the current at the instant k − n + 1
can be predicted with the current i(k − n) and v(k − n + 1). That is{

i∗qs(k − n + 1) = C′×A−D′×E′
A2+F′×E′

i∗ds(k − n + 1) = C′×F′+D′×A
A2+F′×E′

(18)

where C′ = δLs
Ts

iqs(k − n) + vqs(k − n + 1), D′ = Ls
Ts

ids(k − n) + vds(k − n + 1),
E′ = ωe(k − n)Ls, F′ = ωe(k − n)δLs, i∗qs(k − n + 1) and i∗ds(k − n + 1) are the predicted
currents at the instant k − n.

Figure 4. Proposed implemented algorithm diagram.

The accuracy of the predicted current at the next instant can be improved with the data
at the previous instants. The current and voltage are always in a dynamic state because the
period of the current and voltage sample is very short and the closed-loop control period
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is usually the same as the sample period. Therefore, the predicted current is not stable
enough to tune θcom. By using the saved data, a filter for the predicted current can be used
to improve the stability of the predicted and feedback current as

i∗qds =
i∗qds(k − 4) + i∗qds(k − 3) + i∗qds(k − 2) + i∗qds(k − 1)

4
(19)

iqds =
iqds(k − 4) + iqds(k − 3) + iqds(k − 2) + iqds(k − 1)

4
(20)

where i∗qds = i∗qs − ji∗ds and iqds = iqs − jids are the predicted current and the actual feedback
current, respectively. Then, according to Equations (16) and (17), the cost function can be
calculated. Finally, θcom can be tuned using the PI regulator in Figure 3.

4. Simulation Results

4.1. System Description

Simulations were performed in the below-based speed region and the field-weakening
region based on the IRFOC with a speed sensor. The rotor field angle is usually calculated
by (21) and (22) in IRFOC.

θr =
∫

ωrdt +
∫

ωsldt (21)

ωsl =
1
tr
× i∗qs

i∗ds
(22)

where θr is the rotor field angle, ωr is the actual electric angular velocity of the rotor, which
can usually be obtained with a photoelectric encoder or rotating transformer, ωsl is the
slip angular velocity, tr is the rotor time constant and tr = Lr/Rr. Rr is the resistance of
the rotor, i∗qs is the torque current command, and i∗ds is the magnetic current command. To
reflect the inaccuracy of the rotor field orientation, the slip angular velocity is calculated
with different rotor resistances, namely,0.5Rr, 0.8Rr, and 1.5Rr. The specifications of the
simulated and experimental induction machines are shown in Table 1.

Table 1. Specification of the simulated and experimental induction machines.

Machine Type 3 ph IM Stator leakage inductance 3.3 mH

Rated power 7.5 kW Rotor leakage inductance 5.6 mH

Rated speed 1450 rpm Magnetizing inductance 56.4 mH

Maximum speed 12,000 rpm Inertia 0.029 kgm2

Rated frequency 50 Hz Number of pole pairs 2

Rated torque at rated speed 48.8 Nm Rated DC-line voltage 540 V

Stator resistance 0.374Ω Rated rotor flux level 0.73 Wb

Rotor resistance 0.267Ω Rated current 18.8 A

4.2. Simulated Results

Simulations were performed with the Saber simulator. Figure 5 shows the simulated
results at 1200 rpm. In the IRFOC, the d-axis current, referred to as the magnetic current,
is kept constant in the below-based speed region. According to Equation (5), the rotor
flux should be kept constant. A step load is set at 2.0 s with 30 Nm and at 4.0 s with
60 Nm. Figure 5a–c depicts the simulated results when the rotor resistance R∗

r is used in
the slip angular velocity calculation is set as 0.5Rr, 0.8Rr and 1.5Rr, respectively. The rotor
field-oriented angle is compensated from 1.0 s. The rated flux level is set to 0.73 Wb based
on the motor parameters. The flux level varies because of the inaccurate rotor field-oriented
angle without compensation. This effect can lead to the degradation of dynamic and
stable performance. After compensation, we observe that the flux intensity under the three
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simulation conditions could reach 0.73 Wb at 2.0 s. The flux level could be kept almost
constant during the load step.

 

(a) 

 

(b) 

(c) 

Figure 5. Flux and compensated angle at 1200 rpm with 30 Nm and 60 Nm step loads at 2.0 s and 4.0 s, respectively.
(a) R∗

r = 0.5Rr; (b) R∗
r = 0.8Rr; (c) R∗

r = 1.5Rr.

According to Equation (18), the predictive model needs stator resistance and induc-
tance. Inductance is almost constant. The variation in the stator resistance is neglected in
the proposed algorithm. To verify that the neglect is accepted, a simulation was performed.
In the simulation, the stator resistance was changed from 0.374 Ω to 0.748 Ω linearly, and
the rotor resistance was set to 0.5Rr. A step load is also set at 2.0 s with 30 Nm and at
4.0 s with 60 Nm. Compared with the simulated results in Figure 5a, the rotor flux and
compensated angle indicate little difference, as shown in Figure 6. The flux level with angle
error compensation, regardless of whether the stator resistance is changed, is much better
than that without compensation. Although the maximum deviation of the compensated
angle is almost 2.5 rad when the stator resistance changed to twice the nominal resistance,
the deviation of the rotor flux level is only 0.03 Wb. In the application, this small difference
of the rotor flux level could be neglected, and the algorithm proposed here is almost not
affected by the variation in the stator resistance.
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Figure 6. Rotor flux and compensated angle at 1200 rpm with the variable stator resistance.

In the IRFOC, the q-axis current reflects the developed torque when the motor runs
at a constant speed. Therefore, the q-axis current should be proportional to the torque.
That is, the q-axis current with a 60 Nm load should be twice the value with a 30 Nm
load at 1200 rpm. The q-axis current with different loads is presented in Figure 7. After
compensation, the q-axis current is changed from approximately 15 A to 30 A when the
load rises from 30 Nm to 60 Nm regardless of the R∗

r set. However, with no compensation,
the q-axis current is different from the same load and is not proportional to the torque. The
simulated current is compared in Table 2.

 

(a) 

 

(b) 

Figure 7. The q-axis current comparative waveforms at 1200 rpm with a 30 Nm load at 2.0 s and 60 Nm load at 4.0 s.
(a) Current with compensation; (b) Current without compensation.

Table 2. Q-axis current comparison.

Without Compensation With Compensation

R*
r=0.5Rr R*

r=0.8Rr R*
r=1.5Rr R*

r=0.5Rr R*
r=0.8Rr R*

r=1.5Rr

iqs1(A) 17.1 15.01 17.9 14.9 14.92 14.95
iqs2 (A) 26.1 26.5 42.2 30.1 30 30.15

ratio
(
iqs2/iqs1

)
1.52 1.77 2.35 2.02 2.01 2.02

In Table 2, R∗
r is the rotor resistance, which is used to calculate the slip angular velocity

in the program; Rr is the actual resistance of the induction machine; iqs1 and iqs2 are the
values of the q-axis current when the loads are 30 Nm and 60 Nm, respectively. If the rotor
field orientation is accurate, then the ratio of iqs2 and iqs1 should be 2. It can be seen that
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the q-axis current is not proportional to the load when the rotor resistance is not the actual
value. After compensation, the q-axis current is almost proportional to the load.

Figure 8 shows the simulation results at 3000 rpm. A step load at 20 Nm was set at 2.0 s.
When R∗

r = 0.5Rr, the speed could no longer be kept at 3000 rpm without compensation.
This is different from the simulation result at 1200 rpm shown in Figure 7 because the
voltage is limited to the supply torque current in the field-weakening region if the rotor
flux level is not sufficiently reduced, as shown in Figure 8b. The actual flux without
compensation when R∗

r = 0.5Rr was much higher than the normal level. Therefore, the
voltage could not supply enough q-axis current when the speed was 3000 rpm, and then
the speed was decreased. This finding means that an inaccurate field-oriented angle can
affect the maximum output torque of induction machines. This results of q-axis current can
also be seen in the following experimental results at 1200 rpm. Although the flux levels
with compensation are not constant, the variable in Figure 8a is much smaller than that
without compensation, as shown in Figure 8b.

 

(a) 

 

(b) 

Figure 8. Rotor flux, q-axis current, and d-axis current comparative waveforms at 3000 rpm with a 20 Nm load at 2.0 s.
(a) Rotor flux and d/q current with compensation; (b) Rotor flux and d/q current without compensation.

Figure 9 compares the waveform with and without the proposed compensation. In
the simulation, the rotor resistance began to change from 0.268 Ω to 0.536 Ω linearly
at the instant of 2.0 s during the following 2 s interval. Then, the rotor resistance was
changed back to 0.268 Ω linearly at the instant of 4.0 s during the next 2 s interval. After
compensation, the torque, rotor flux, and q-axis current are almost the same. There are
some fluctuations in the flux, especially when the resistance was changed instantly. This
change is mainly because the compensation of the proposed algorithm requires some
time to realize. In practice, the rotor resistance cannot be changed so fast. The proposed
algorithm has enough time to regulate the slip coefficient. The simulation at 3000 rpm
yielded similar results, as shown in Figure 10.
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Figure 9. Rotor flux, d-axis, and q-axis current comparative waveforms at 1200 rpm with a 60 Nm load.

Figure 10. Rotor flux, d-axis, and q-axis current comparative waveforms at 3000 rpm with a 15 Nm load.

5. Experimental Results

Experiments were performed on the setup, as shown in Figure 11. A 7.5 kW spindle
motor was used, and its parameters are shown in Table 1. The DC generator was used
as a load in the high-speed region. The output torque can be obtained by the torque
transducer, which was equipped between the spindle motor and the DC generator. A DSP
TMS320F28377D (Texas Instruments, Texas, USA), which is a two core MCU was used to
realize the proposed algorithm and IRFOC algorithm. A CPLD EPM240T100C5N (Altera,
California, USA) was used to realize PWM. In the experiment, the PWM frequency was
10 kHz. The current sample and control frequency was 20 kHz. The phase currents were
obtained by the two current sensors on the power converter board.

  
(a) (b) 

Figure 11. Experiment setup. (a) is the induction machine and load. and (b) is the control and power board.

In the experiment, the maximum q-axis current was set to 3
√

2irated. As the simulation
shows, the q-axis current was not proportional to the load at the same flux level when
the field-oriented angle is inaccurate. The q-axis current comparative experiment results
are given in Figure 12 at 1200 rpm with different loads. The torque was applied by a DC
generator. The q-axis current was calculated by the DSP and stored in RAM. Therefore,
the q-axis current of the experiment was read by the DSP and transferred to a computer.
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The experimental results are similar to the simulated results shown in Table 2. After
compensating for the rotor flux oriented angle error, the q-axis current is proportional to
the load torque and is almost the same regardless of which rotor resistance was used to
calculate the slip angular velocity.

 

(a) 

 

(b) 

 

(c) 

Figure 12. Q-axis current at 1200 rpm with 30 Nm, and 60 Nm loads. (a) R∗
r = 0.5Rr; (b) R∗

r = 0.8Rr;
(c) R∗

r = 1.5Rr.
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If the field-oriented angle is not accurate, the maximum torque will decrease, especially
in the flux weakening region. The maximum output torque at different speeds was recorded,
as shown in Figure 13. The maximum torque decreased with increasing speed when the
rotor resistance used in the slip angular velocity calculation was not accurate. After
compensation, the output torque was increased.

Figure 13. Maximum output torque from 1000 rpm to 6000 rpm.

6. Conclusions

This paper focuses on the correction of the field-oriented inaccuracy by a model
predictive method in induction machine drives, including the base speed region and field-
weakening region. The inaccuracy of the field-oriented control will lead to the actual flux
variation, which could be larger or smaller than the reference value. Furthermore, the
flux level variation will decrease the output torque and degrade the dynamic performance
and current control regulator, especially in the field-weakening region. Therefore, a q-axis
and d-axis current predictive method-based correction method for the field-oriented angle
is proposed in this paper. To easily realize the proposed method in real-time, the data,
such as the current, voltage and velocity used in MPC, are stored in the RAM of the DSP.
The effectiveness of this approach is verified by simulations and experiments on a 7.5 kW
induction machine setup.
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Abstract: Solid rotor induction machines are still used in high-speed systems. A two-dimensional
field-circuit model based on the finite element method and the complex magnetic vector potential
has been shown as a very time-effective tool in the analysis of their steady states compared to time-
domain models. This continuation work presents a validated computational algorithm that enables
the inclusion of the nonsinusoidal and/or asymmetrical voltage supply in the multi-harmonic
field-circuit model of these machines that was presented in the previous works by the authors.
The extended model accounts for both spatial harmonics due to slotting and/or winding distribution
and the time-harmonics due to voltage waveform. The applicability range of the model therefore
increases to cases when the machine is supplied with a nonsinusoidal three-phase system of voltages
with symmetry or asymmetry that can be decomposed into three symmetrical components. Its short
execution time characteristic allows for much more insightful design studies of the contribution
of voltage supply- and slotting-related harmonics to the overall efficiency of the machine than is
possible with the time-consuming time-domain models. The proposed computational framework
has never been presented in the literature. The model is verified positively by the comprehensive
time-domain model. It is especially useful in design studies on solid rotor induction motors related
to the optimisation of the efficiency of induction motor-based drive systems.

Keywords: induction motor; solid rotor; effective parameters; finite element method

1. Introduction

Despite the growing popularity of permanent magnet electric machines, induction
motors still remain the main components of industrial electric drives. This is due to
the simplicity of construction, reliability and the development of static converters that allow
the shaping of static characteristics and dynamic parameters of the drive system. Among
the various designs, the induction machine with solid rotor deserves special attention, being
one of the simplest and oldest AC electric machines, although requiring entirely different
design routines that have been in development for nearly a century [1–5]. The mechanical
properties of the solid rotor, as well as their resistance to aggressive chemical compounds,
are incomparable to any other structure, which makes them a suitable source of drive-in
applications requiring high or very high rotational speed such as those shown in [6–13].

The analysis of the properties and design of the discussed machine is still considered
a difficult task, mainly because of the very complex electromagnetic phenomena occurring
in the solid rotor. The only method that allows for the overall effect of these phenomena
to be taken into account is to utilize a non-linear three-dimensional numerical model
formulated in the time domain. Unfortunately, as the calculations would take a long time,
this method is difficult to apply in practice. For this reason, alternative approaches have
been developed which, in principle, can be divided into two groups: methods based on
the analytical solution of the field problem in the solid rotor presented in [14–18], and
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methods utilizing the two-dimensional numerical models formulated as time-domain or
frequency-domain models used in works [7,9–11,19–21].

The basic problem related to the analysis of high-speed induction machines with
solid rotors using two-dimensional numerical models formulated in the time domain is
a very long computation time resulting from a significant ratio of the electromagnetic time
constant of the machine to the supply voltage period. In the case where the subjects of
consideration are the steady states of the machine, the computation time can be shortened
by applying special modifications of the model formulated in the time-domain, such as:
elimination of the DC flux linkage in [22], elimination of the DC current at each step in [23],
transient magnetic solution initialized with proper initial values [24] or initial current
extraction in [19].

A very promising alternative to the models formulated in the time domain is the use
of modified time-harmonic models, such as, for example, the multi-harmonic field model
with a strong coupling, which takes into account the influence of the spatial harmonics
due to the slotting or winding distribution on the losses in the solid rotor and the value
of the developed electromagnetic torque [25–31]. In these models these effects can be
accounted for using the modified slip

s′ = 1 − ν(1 − s) (1)

where ν is the ordinal number of spatial harmonic (ν ∈ Z) and s is the fundamental slip.
As shown in the works [30,31], with the appropriate formulation of the stator–rotor

coupling scheme and the method of modelling materials non-linearity, it is possible to
obtain high accuracy of the results of steady-state calculations in a very short time of model
execution. This is because relatively coarse mesh densities are sufficient for the representa-
tion of the most important air gap magnetic field harmonics.

In this moment, the application of this type of model was limited to the case of
the symmetrical sinusoidal voltage supply of the stator winding. In the present work,
the concept of multi-harmonic effective magnetic permeability proposed in [31] was used to
develop an original approach that allows for taking into account the nonsinusoidal voltage
supply waveforms (that appear, for example, when supplying the machine through a quasi-
square voltage inverter) in a multi-harmonic model of a solid rotor induction machine.
It is shown that the steady-state time-harmonic model with only a few dominating time-
harmonics of the magnetic field attributed to the voltage supply provides solutions very
similar to ones obtained from a time-demanding time-domain solution. This is in terms
of the magnitude and phase relationships of the waveforms as well as the computed
torques and power losses. The execution time of the former is however only a fraction
of that of the latter. Moreover, the model is demonstrated to work correctly in cases
where the voltage supply exposes noticeable asymmetry that appears during inverter
fault conditions. The above means that in the mathematical sense the model is capable
of accounting for the space-harmonics and the time-harmonics that come from the power
supply, but not from the motional effects which are more important in the squirrel cage
machines. It is thus most suitable to analyze induction motors with solid rotors. To the best
of the authors’ knowledge such a model has not been proposed until this moment.

The basic operating characteristics of the machine were calculated for four different
supply voltage waveforms, and then compared with the results of calculations obtained
via the comprehensive model formulated in the time domain which in the steady-state
condition considers the whole spectrum of magnetic field harmonics. Original contributions
of this work include:

- development, implementation and validation of a cost-effective computational algo-
rithm for nonlinear steady-state analysis of solid-rotor induction motors with an accu-
racy characteristic comparable to that of the comprehensive time-domain model

- determination of the torque and power dissipation in the rotor as sets of separated
components associated with the time- and space-harmonics of the magnetic field
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allowing for a more detailed analysis of the impact of stator slotting and power supply
harmonics on machine efficiency.

2. Mathematical Model

2.1. Analysed Machine

The subject of research presented in the present work is a high-speed machine with
a homogeneous solid rotor, already analysed in the previous works by the authors [30,31].
The basic data of the converter and the materials’ magnetization characteristics of the stator
and rotor area adopted for the calculations are shown in Table 1 and Figures 1 and 2.

Table 1. Basic specifications of tested induction motor [31].

Parameter Value

Nominal power 125 W
Operation frequency (ω) 2000π rad/s
Number of pole pairs (p) 2

RMS phase voltage 50 V
Phase resistance 0.62 Ω

End-winding leakage inductance 98 μH
Rotor conductivity 5.2 MS/m
Machine length (lz) 32 mm

Number of stator slots 24

Figure 1. Solid rotor induction machine taking into consideration: (a) dimensions of the stator
package (cross-section area), (b) dimensions of the rotor [31].

Figure 2. DC magnetization curves used in computations.
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For the sake of simplicity, the influence of the rotor end-effects and losses in the stator
package, and those due to the hysteresis in the rotor area, have been neglected. The influ-
ence of the rotor end-effects can be taken into account by applying the so-called rotor end-
effect coefficient, that can be calculated analytically or numerically as shown in [21]. Taking
into account the above losses, however, will require separate research, which is the authors’
aim for the future. It should be noticed that the above assumptions are necessary from
the point of view of the possibility to validate the proposed approach by the comprehensive
time-domain model. It is also worth noticing that due to these assumptions the obtained
results will be very hard or even impossible to verify on the experimental test-stand.

2.2. Reference Time-Stepping Model

All the results of the calculations presented in this work using the proposed approach
were compared with the results of calculations using the complete model formulated in
the time domain. The equations for such a model after discretisation via the Galerkin
procedure and the implicit Euler method take the form of [31]:[

S(μDC) + GΔt−1 −DTKT

lzKDΔt−1 K
(
R + LΔt−1)KT

]n[
ϕ

iS

]n

=

[
GΔt−1 0

lzKDΔt−1 KLΔt−1KT

]n−1[
ϕ

iS

]n−1

+

+

[
0

KeS

]n−1

,
(2)

where: S—reluctivity matrix, G—conductivity matrix, D—matrix describing the winding,
K—matrix describing the winding connection method, R—winding resistance matrix,
L—winding leakage inductivity matrix, Δt—time-integration step, ϕ—vector of nodal
values of the vector magnetic potential, iS—vector of instantaneous values of the stator
loop currents, eS—vector of the instantaneous supply voltages in the stator winding,
μDC—DC magnetic permeability. The rotational movement was modelled using a simple
and reliable moving band technique which is presented in detail in [32,33].

2.3. Idea of the Polyharmonic Field-Circuit Model Accounting for Nonsinusoidal Supply

The analysis of the influence of higher harmonics on the operation of the squirrel cage
induction motor was the subject of very intensive research that has been carried out by
various authors over the last few decades [34–38]. In the context of high-speed machines
with solid rotors, this issue is of particular importance due to the significant influence
of the magnetic field higher harmonics on the machine operation, both resulting from
the power supply and core slotting. As shown in previous works by the authors [30,31],
the influence of the permeance (slot) harmonics of the magnetic field can be successfully
taken into account by applying a non-linear multi-harmonic field-circuit model. A detailed
analysis performed in those works proved that through the appropriate formulation
of the so-called effective magnetic permeability, it is possible to use a superposition of
several field rotor models associated with the appropriate harmonics of the magnetic
field distribution in the air gap of the machine that are strongly coupled with the stator
model. The results of this analysis prompted the authors to extend their deliberation over
the case of the nonsinusoidal power supply using the same main concepts of the model.
As an extension of the models presented in [30,31], the construction of a non-linear multi-
harmonic model of an induction machine with a solid rotor, taking into account both
the higher harmonics of the voltage supply and higher permeance harmonics, can be
presented in the following form:

(I) Perform the fast Fourier transform (FFT) analysis for the adopted nonsinusoidal
symmetric supply waveforms. Extract the amplitudes Ehn and phase angles ψhn for
N the most significant harmonics of the supply voltage of order {h1, h2, . . . , hN}.

(II) Discretise the model calculation area using standard first-order triangular elements.
Re-number the mesh elements to separate the grids associated with the stator and
rotor areas.

(III) Set the null magnetic field strength in all ferromagnetic areas.
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(IV) Calculate the effective magnetic permeability distribution μe f f for the stator and rotor
core using the DC magnetization characteristics and the formula [31]:

μe f f (Hh1, Hh2, . . . , HhN) =

√
B2

h1 + B2
h2 + . . . + B2

hN√
H2

h1 + H2
h2 + . . . + H2

hN

, (3)

where: Hhn—amplitude of the magnetic field strength related to hn supply voltage har-
monic, Bhn—magnetic flux density amplitude related to hn supply voltage harmonic:

Bhn = 2
π

π∫
0

μDC(Hh1 sin h1α + Hh2 sin h2α + . . . + Hh1 sin hNα)(Hh1 sin h1α

+Hh2 sin h2α + . . . + HhN sin hNα) sin hnαdα

(4)

(V) Create and solve N of independent multi-harmonic linear field-circuit models, each
including M of spatial harmonics of the magnetic field strength [30,31]:

⎡⎢⎣ M11

(
μe f f

)
M12 M13

M21 M22 0

M31 0 0

⎤⎥⎦
⎡⎢⎢⎣

ϕ
_ hn
I
_Shn
λ
_ hn

⎤⎥⎥⎦ =

⎡⎢⎣ 0

E
_ Shn

0

⎤⎥⎦, (5)

where: M11—matrix describing the magnetic and electrical properties of materials,
M12 = −MT

21/(jωlz) —matrix describing the distribution and connection method of
the stator winding, M13 = MT

31—matrices describing coupling between the rotor mod-
els and the stator model [23], M22—stator winding impedance matrix, ϕ

_ hn
—vector

of the nodal values of the complex magnetic vector potential for the model associ-
ated with hn harmonic of the supplying voltage, I

_Shn
—vector of the amplitudes of

the loop currents in the stator winding due to hn harmonic of the supplying volt-
age, λ

_ hn
—vector of complex circulations of the magnetic field strength vector for

the model associated with hn harmonic of the supplying voltage, E
_ Shn

—vector of

the complex voltage amplitudes in the loops in the stator winding circuit associated
with hn harmonic of the supplying voltage.

(VI) Based on the calculated magnetic field distributions, ϕ
_ hn

calculate new values of

the magnetic field strength Hhn. Update the effective magnetic permeability distribu-
tion according to (3) and the matrix parameters M11 in (5).

(VII) Repeat steps IV–VI until convergence criterion based on relative change of the norm
(equal to 0.1%) of the solution vector in (5) is reached.

The above procedure requires some additional comments. Firstly, it is assumed here
that the nonlinearity of the stator winding currents must be considered as a superposition
of nonlinear effects on the individual harmonic waveforms multiplied or divided by
a time-invariant function (impedance related with magnetic permeability dependent only
on magnitudes of magnetic quantities). The above means that the proposed method
does not account for the saturation harmonics of magnetic flux and thus of current. In
a solid rotor induction motor the saturation harmonics are, however, not significant due to
the large value of inductance of the stator winding, and as shown in [30,31], the calculation
results obtained in this way are very close to the ones coming from comprehensive time-
domain computations.

It is still assumed that to determine the effective magnetic permeability, the higher
harmonics of the magnetic field strength are to be used, and not the higher harmonics of flux
density. Due to the fact that each model associated with a given voltage harmonic is a multi-
harmonic model that includes M of spatial field harmonics, it is assumed that the magnetic
field strength calculated in step (VI) is the RMS value of the magnetic field strength from
M considered spatial harmonics, multiplied by

√
2. In addition, each model related to
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the corresponding supply voltage harmonic must be formulated for the corresponding
slip reference value related to the given voltage harmonic and the symmetrical voltage
system it creates (positive, negative or zero). Theoretically, the proposed approach allows
for taking into account any number of higher harmonics, because individual models are
solved independently and their coupling is established only through their common value
of the effective magnetic permeability, calculated after solving all particular models. Thus,
the solution can be executed simultaneously on distributed or parallel systems. In [31],
the effective magnetic permeability was determined as a multi-dimensional look-up table.
This type of approach provides accurate results with a small (less than or equal to three)
number of harmonics included. For a larger number of considered harmonics, in order
to avoid large sizes of data files or interpolation errors, it is necessary to elaborate more
suitable functions that calculate the value of effective magnetic permeability with the use
of numerical integration procedures.

3. Calculation Results

The above approach was utilised to calculate the basic operating characteristics (phase
current RMS and electromagnetic torque) of the machine described in Section 2.1 when
supplied by three different waveforms presented in Figure 3 accompanied by their total
harmonic distortion (THD) coefficients. The root mean square (RMS) value of the sta-
tor phase current I and the electromagnetic torque Te are determined on the basis of
the following formula:

I =
√

∑hN
h1 I2

hn, (6)

Te =
hN

∑
h1

Tehn (7)

where Ihn and Tehn are, respectively, the RMS value and the electromagnetic torque, ob-
tained as a result of solving the model related to the hn harmonic of the supply voltage.

Figure 3. Three different types of supply waveforms considered in computations: square (a), six-step
(b) and trapezoidal (c).

The calculated characteristics were compared with the results obtained with the time-
domain model and by adopting only one fundamental voltage harmonic with the RMS
value equal to the RMS value of the original supply waveform (note that all the waveforms
shown have the same 50 V RMS value). All the considered models were implemented
by the authors in the Matlab scripting language (Mathworks, Natick, MA, USA) [38]. To
discretise the computational area an open-source generator (GMSH) was used [39]. In
each case, the five most significant harmonics of the supply waveforms and two main
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slot harmonics were used (−11, +13). Due to the star-connected winding without neutral
wire, harmonics that are multiplicities of the third harmonic were not taken into account.
As a result, in addition to the fundamental harmonics, harmonics 5, 7, 11 and 13 were
also included. The voltage harmonics 1, 7 and 13 formed positive sequence of voltages,
whereas the 5 and 11 formed a negative sequence of voltages. The obtained results of
the calculations are shown in Figure 4.

Figure 4. Results of computations: electromagnetic torque (a) and RMS stator current (b) for square
supply waveforms (see Figure 3a); electromagnetic torque (c) and RMS stator current (d) for six-
step supply waveforms (see Figure 3b); electromagnetic torque (e) and RMS stator current (f) for
trapezoidal supply waveforms (see Figure 3c). Results obtained using the single-harmonic model
and the proposed model are practically the same.

When analysing the results of the calculations one can notice a very high consistency
between the characteristics calculated using the proposed approach in relation to the results
of the calculations using the standard model formulated in the time domain. At the same
time, one can see that by providing equality of the real and modelled waveforms the use of
the RMS value is sufficient when the supply waveform distortion is small (THD < 10%).
The developed methodology is also characterized by a relatively short calculation time.
When the models related to individual harmonics are solved sequentially using a standard
PC (Intel Core i7-5820K CPU @ 3.30 GHz, 16 GB RAM), the solution time for the speed
24 krpm with the square waveform supply is 2.5 min. For the sake of comparison, the time-
domain model solution time is 4 h 16 min.

In addition to determining the static characteristics of the analysed machine, the devel-
oped method also allows for the recovering of steady-state current waveforms and making
an assessment, for example, of electromagnetic torque resulting from the interaction of indi-
vidual harmonics, both related to the supply waveforms and the magnetic circuit grooves.
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The steady-state current waveform can be determined by solving individual component
models related to the individual harmonics of the supply waveforms (see Figure 5) as

i(t) =
hN

∑
h1

√
2|Ihn| cos(hnω + ψhn) (8)

Figure 5. Comparison of the phase current waveforms calculated with the use of the time-domain
model (red line) with the waveforms calculated with the use of the developed method (blue line)
for a rotational speed of 24,000 rpm: square supply waveform (a), six-step supply waveform (b),
trapezoidal supply waveform (c).

Since the electromagnetic torque is calculated as the sum of the components coming
from individual slot harmonics (within the model related to the considered harmonic of
the supply wave), it is possible to perform a detailed analysis of the influence of these
harmonics on its value and sign. An example of such an analysis for synchronous speed
with a square wave is presented in Table 2. Because the torque components correspond
with different harmonic slips, these are not directly proportional to power dissipation in
the rotor. The results of the rotor harmonic power dissipation computation are presented
in Table 3. These clearly show that the disadvantageous effect of distorted voltage wave
(first row in Table 3) is comparable to the disadvantageous effect of slotting (first column
in Table 3). These results best demonstrate the machine design areas where the proposed
modelling framework can be especially useful.
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Table 2. The results of the electromagnetic torque computations for the synchronous speed
(30,000 rpm) in mNm produced by the interaction of the harmonics of the magnetic field in the gap
(n—time harmonic number of voltage supply, m—spatial harmonic ordinal number). Value of total
electromagnetic torque obtained from the time-domain analysis is −4.256 mNm.

m
n

+1 −5 +7 −11 +13

+1 0(S) −0.249(B) 0.065(M) −0.013(B) 0.007(M) Σ = −0.190

−11 −2.714(B) −0.008(G) −0.004(B) 0(S) −0.005(B) Σ = −2.731

+13 −0.560(G) −0.002(B) −0.003(G) −0.002(B) 0(S) Σ = −0.567

Σ = −3.274 Σ = −0.259 Σ = 0.058 Σ = −0.015 Σ = 0.002 Σ = −3.488

(S): rotor in sync, (B): braking mode operation, (G): generating mode operation, (M): motoring mode operation,
(+) means positive phase sequence, (−) negative phase sequence relative to the stator.

Table 3. The results of the rotor power dissipation computations for the synchronous speed
(30,000 rpm) in Watt (n—time harmonic number of voltage supply, m—spatial harmonic ordinal
number). Value of total rotor power dissipation obtained from the time-domain analysis is 19.97 W.

m
n

+1 −5 +7 −11 +13

+1 0(S) 4.467(B) 1.171(M) 0.455(B) 0.234(M) Σ = 6.327

−11 8.520(B) 0.013(G) 0.017(B) 0(S) 0.003(B) Σ = 8.553

+13 1.488(G) 0.008(B) 0.001(G) 0.001(B) 0(S) Σ = 1.498

Σ = 10.008 Σ = 4.488 Σ = 1.189 Σ = 0.456 Σ = 0.237 Σ = 16.378

(S): rotor in sync, (B): braking mode operation, (G): generating mode operation, green: motoring mode operation,
(+) means positive phase sequence, (−) negative phase sequence relative to the stator.

The above analysis was carried out at synchronous speed because only in such a case
can the computed value of loss torque be compared with predictions obtained from a com-
prehensive time-domain model. It should be, however, noticed that the proposed model
can be used at any speed allowing for a more detailed investigation on power dissipation
in the rotor.

4. Including the Unbalance of Nonsinusoidal Voltage Waveforms

The developed approach can be generalized to cases where asymmetry is observed in
voltage supply waveforms, including the nonsinusoidal ones. The idea of the presented
method is based on an independent solution of coupled sub-models by the application
of single effective magnetic permeability distribution. As shown above, despite the non-
linearity of the problem, the use of the superposition principle allows one to obtain very
accurate results. Therefore, in the case of supply unbalance, the method of symmetrical
components can be used, allowing the presentation of the three-phase asymmetric distribu-
tion of a given harmonic of the supply waveform as a superposition of three symmetrical
systems, namely the zero, positive and negative phase sequence system. To include the un-
balance of the voltage supply, the model creation algorithm presented in the SubSection 2
should be modified as follows:

(I) Perform FFT analysis for the adopted non-linear asymmetrical supply waveforms
{eA(t) , eB(t), eC(t)}. Extract the amplitudes {EAhn, EBhn, EChn} and phase angles
{ψAhn, ψBhn, ψChn} for N of the most significant harmonics of the supply voltage
with orders {h1, h2, . . . , hN}.
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(II) Determine the amplitudes of three-phase symmetrical systems of zero, positive and
negative sequences, respectively {E0hn, E1hn, E2hn} for each most significant harmon-
ics of the supply voltage {EAhn, EBhn, EChn}:⎡⎣ E0hn

E1hn
E2hn

⎤⎦ =
1
3

⎡⎣ 1 1 1
1 a a2

1 a2 a

⎤⎦⎡⎣ EAhn
EBhn
EChn

⎤⎦ (9)

where a = ej 2
3 π .

(III) Discretise the model calculation area using standard first-order triangular elements.
Re-number the mesh elements to separate the grids associated with the stator and
rotor areas.

(IV) Set the null magnetic field strength in all ferromagnetic areas.
(V) Calculate the effective magnetic permeability distribution according to (2).
(VI) Create and solve 3N of the independent multi-harmonic linear field-circuit models

related to zero, positive and negative sequences, assigned to individual harmon-
ics of the supply voltage. Each one should take into account M spatial harmonics
of the magnetic field strength. Calculate the requested operational parameters of

the analysed machine according to (6)–(7), adopting Ihn =
√

I2
0hn + I2

1hn + I2
2hn and

Tehn = T0ehn + T1ehn + T2ehn. For a zero sequence of the supplying voltage, adopt
pulsation close to zero.

(VII) Based on the calculated magnetic field distributions, calculate new values of the mag-
netic field strength Hhn =H1hn + H2hn, where H1hn and H2hn are the magnetic field
strength derived from hn harmonic of the supply voltage as a result of solving
the model associated with the positive and negative sequence. The influence of
the zero-sequence system on the saturation of the magnetic circuit is disregarded. Up-
date the effective magnetic permeability distribution according to (3) and the matrix
parameters M11 in (5).

(VIII)Repeat steps V–VII until the convergence criterion based on the relative change of
the maximum value of norm (equal to 0.1%) for all vectors of the solution of (5)
is reached.

The above procedure was used to calculate the operational characteristics of the tested
machine when supplied by the harmonic-rich square waveforms with the amplitude of one
phase reduced by 25%. As shown in Figures 6 and 7, the presented approach allows one to
obtain predictions very close to ones obtained from a comprehensive time-domain model,
even in the case of a lack of supply symmetry. The reason why the assumptions hold
despite the asymmetry is that the circumferential distribution of winding magnetomotive
force is always a periodic function as it depends on the circumferential distribution of
the winding that has nothing to do with voltage asymmetry. Moreover, the degree of
voltage asymmetry does not break the validity of the assumptions.

In the considered case, the solution time using the proposed model increases to 8 min,
while the execution time of the complementary time-domain model solution time is similar
to the previously presented case and equal to 4 h 30 min. Connected with a very good
agreement of results, this result clearly exposes the benefits of the developed approach.

Looking from the practical point of view, it should be noticed that the voltage unbal-
ance problem is effectively reduced in modern fault-tolerant power converters; however,
the circumferential unbalance of magnetomotive force due to the faults of the motor
winding is a much more common case of the faulty operation of induction motor drives.
The corresponding computational problem can be effectively solved by the algorithm in
Section 3 with both winding distribution-related and slot-related spatial harmonics taken
into account.
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Figure 6. Results of computations for the square nonsymmetrical supplying waveforms: electromag-
netic torque (a) RMS stator currents (b).

Figure 7. Comparison of the phase currents waveforms calculated with the use of the model
formulated in the time domain (red line) with the waveforms calculated with the use of the developed
method (blue line), as a superposition of harmonic waveforms, for the rotational speed of 24,000 rpm
when supplied with square waveforms and 25% amplitude asymmetry.

5. Conclusions

The development of the strongly coupled multi-harmonic field model concept ef-
fectively accounted for the nonlinearity and asymmetry of the voltage supply in the cal-
culation of the operating characteristics of a high-speed induction machine with a solid
rotor in a steady-state complex-valued finite element modelling framework. According to
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the authors’ opinions, in combination with the previously developed numerical method
of determining the rotor end-effect coefficient [21], the multi-harmonic field-circuit model
may become an effective tool in the process of designing the above-mentioned motor type.
In particular, this may be an effective tool in the investigations on the reduction of losses
due to higher harmonics of the magnetic field of various origins.

Of course, the present work does not cover all aspects of the issue. Further research will
be undertaken to consider losses in the stator package, hysteresis losses in the solid rotor and
even the influence of the power supply using pulse-width modulation (PWM) converters.
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Abstract: Industries are adequately configured with the operational devices that are required to
develop induction motors. Engineers should precisely comprehend the kind of equipment that is
constructed, as with every other production system, and should start by having the goal in their
perspective. An adaptable simulation of an induction motor with a protective scheme is presented.
The adaptable simulation assists engineers in accurately designing motors that meet all protective
standards for certain purposes. This work achieved simulations of induction motors in stable and
unstable conditions. An extensive study was performed to determine the optimum design of an
induction motor. This paper attempts to provide engineers with a thorough grasp of the adaptable
modelling of an induction motor. In this work, a direct dq0-direct axis algorithm is presented to
implement both static and dynamic modelling of a three-phase induction machine due to possible
faults and high-performance requirements in induction machines. The proposed algorithm was
tested against several conventional methods, and it was observed that under the stable condition of
the machinery, the proposed algorithm could remove any developing faults. This conserves time and
minimises the labour required of the operator, which makes the proposed algorithm more efficient.
Furthermore, the machine is demonstrated in a steady-state performance with respect to the current,
active power, efficiency, reactive power, power factor, and speed when the torque loads range from
0 to 125% of its nominal torque. The transient behaviour of the machine was shown through the
current, electromagnetic torque, electromagnetic torque versus speed, and speed under no-load,
half-load (50%), and full-load (100%) conditions. Finally, the results of the proposed technique were
compared to the results of the measured parameters. It was observed that when the load changed
from a half load (50%) to a full load (100%), then the supply voltage was suddenly halved with the
load at full load (100%). It was observed that the proposed algorithm provides accurate estimates
with a deviation of not more than +/−2% from the measured parameters.

Keywords: dynamic model; induction motor; Matlab/Simulink; rotor winding; stator winding

1. Introduction

The most popular motors utilized in economic mobility automation applications and
primary-supply residential electrical consumables are AC induction machines. The key
benefits of AC induction machines are their simplicity and robust construction, competitive
prices, minimal servicing, and straightforward integration into an AC power supply. There
are many different kinds of AC induction machines accessible in the industry. Several
machines are appropriate for various functions [1]. However, AC induction machines
are convenient to construct compared to DC machines. Controlling the rpm and torque
in different varieties of AC induction machines requires a deeper grasp of the configura-
tion and features of such motors. However, DC motors are efficient at commencing and
moderating speed. Such machines have a great torque concentration [2]. A DC machine
works quietly and has a hugely variable speed. The electromagnetic disturbance is minimal,
and the overcurrent or inrush tolerance is substantial. The construction or assembly of a
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DC machine is one of its limitations. The commutator and the brush [3] have a rubbing
connection, resulting in sparks and mechanical degradation. As a result, DC machines
possess a comparatively limited operating lifespan, requiring a high service expense. This
also casts uncertainties about the system’s durability and safety. As a result, the usage of
DC machines in some industrial applications is restricted nowadays [4].

Over the years, motors have revolutionised the mining and automation industry.
Processes such as hoisting conveyor belt systems for moving minerals, e.g., gold, coal,
diamonds, etc., from underground and opencast mines, depend largely on the utilisation of
induction motors [5]. Thus, for the reliable operation of these machines, proper protection
needs to be implemented for safe operation under load conditions. Any malfunction of an
induction motor can be described as an electrical fault, environmental factor, or mechanical
breakdown. Rotor bearings could result in overheating, wear, and tear due to mechanical
stresses [6]. Drawing enormous magnitudes of currents ensure high temperatures. Mod-
elling an induction motor is somewhat complex, stemming from its non-linear behaviour
triggered by electromagnetic exhaustion and the significant temperature influence from the
synchronous motor settings [7].

Furthermore, the shaft time constant of an induction motor can change due to rotor
heat. Such characteristics render the mathematical modelling of induction motors some-
what insurmountable. Most researchers use simplified models that do not consider the
factors mentioned above. Production of these machines is imperative and requires urgency
in reproduction during their idle state [8].

Chitra and Prabhakar [9] presented a simulation of an induction machine by utilising
the fuzzy logic approach. The authors applied the approach in their study in order to
regulate the velocity of an induction machine to obtain the optimum torque with the least
amount of loss. They used the field-oriented control approach to create a fuzzy logic
controller that enables improved control of motor torque with greatly variable performance.
Their simulated design was evaluated by utilising multiple Matlab toolboxes. They ob-
served that the induction motor’s efficiency increased in stable conditions. The results
show that the suggested speed regulator was efficient and reliable.

Elnaghi et al. [10] proposed using a genetic algorithm (GA) to process experimental
loads on an inductive machine. The principle of predicting motor parameters from testing
data was demonstrated using a genetic algorithm-based technique. The specifications were
determined using typical no-load and blocked rotor experiments. The cost equation—the
graded sum of the stator currents and rotor velocity—was studied and improved for various
motor parameter values. The impact of differential equations on the estimates was also
shown. The estimated speed and torque parameters from the mathematical equation were
compared to the experimental findings, and both exhibited a strong connection, proving the
validity of the mathematical equation and the genetic algorithm method for improvement.

Sadasivan and Mammen [11] applied the same algorithm to obtain parameters that
linked the proposed technique and the loading of the electric motor using the evaluation
function. They used the genetic algorithm on three separate situations of simulated loading
and found that the outcomes were superior in terms of the overall losses induced by the
motor. The authors’ technique proved to be effective in terms of parameter estimation.

Jirdehi and Rezaei [12] presented a simulation of an induction motor by utilising an
artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS)
to investigate variables that are often difficult to obtain. They used both methods to test
20 induction motors of varying power outputs. The experimental results consisted of the
starting torque, current, maximum torque, full-load slip, efficiency, rated active power, and
reactive power. The authors compared the findings produced by the proposed ANN and
ANFIS models and the practical results. They discovered a good relationship between the
projected values and the practical data. However, the proposed ANFIS model was more
precise than the proposed ANN model.

Keerthipala et al. [13] explained the ANN algorithm and how it may be used to monitor
an induction motor’s torque and speed regulation using linear and non-linear models. The
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authors reported that the linear observer approach is simple to apply in real-time; however,
it does not accurately estimate the rotor and vector angle since the induction machine
generally works in the saturated region. The non-linear observer approach considers
the impact of the magnetic saturation of the induction machine; however, it cannot be
practically applied using conventional techniques because estimating the angle requires
too much time. Their suggested technique compensates for the effect of saturation and
estimates the angle in a few milliseconds, which is well within the real-time limit.

This study presents an adaptable simulation of an induction motor with a downstream
protective scheme [9]. In this work, a direct dq0-direct axis algorithm is presented to
implement both static and dynamic modelling of a three-phase induction machine due to
possible faults and high-performance requirements in induction machines. The proposed
algorithm was tested against several conventional methods, and it was observed that under
a stable condition of the machinery, the proposed algorithm could remove any developing
faults. This conserves time and minimises the labour required of the operator, which makes
the proposed algorithm more efficient. Furthermore, the machine is demonstrated in a
steady-state performance with respect to current, active power, efficiency, reactive power,
power factor, and speed when the torque loads range from 0 to 125% of its nominal torque.
The transient behaviour of the machine was shown through the current, electromagnetic
torque, electromagnetic torque versus speed, and speed under no-load, half-load (50%),
and full-load (100%) conditions. Finally, the proposed technique was compared to the
results of the measured parameters. It was observed that when the load changed from half
load (50%) to full load (100%), the supply voltage was suddenly halved with the load at
full load (100%). It was observed that the proposed algorithm provides accurate estimates
with a deviation of not more than +/−2% from the measured parameters.

2. Problem Statement

An induction motor is a complex machine to design and practically implement. Today,
a vast majority of software is used by different manufacturing institutions to simulate
the machine before the design is implemented. However, an induction motor’s dynamic
model is usually implemented in dq0-direct, quadrature, and zero-sequence axes. A static
and dynamic motor model’s implementation is a mathematical representation; this strat-
egy eliminates human error, enables designs of the utmost performance, and provides
highly efficient induction motors. This work implements both static and dynamic mod-
elling of a three-phase induction machine due to possible faults and high-performance
requirements for induction machines. Using the direct dq0-direct axis method, the dynamic
model’s differential equations were first derived and implemented in Matlab/Simulink;
their performance was assessed in the steady-state.

3. Objectives of the Research

Induction motors help companies run their operations efficiently. It is imperative
to extend studies that enhance the performance and accuracy of the designs for these
organisations. The objectives of this work are to conduct comprehensive modelling of
induction motors and [14]:

• To contribute to the development of induction motor models and protection systems.
• To simulate an adaptable simulation of a three-phase induction motor in Matlab/Simulink.
• To accurately size the motor parameters and increase performance thereof.
• To implement a dq0-axis reference frame modelling technique of a rotating machine.
• To implement a feeder protection system for the machine during its steady operation.

4. Methodology

To comprehend and engineer vector-controlled drives [15], an adaptable simulation
of the induction machine that is responsive to operation and safety needs to be defined.
Since every control must face possible changes and faults, the adaptable simulation of a
motor is argued to be an imitation of an actual factory. Nonetheless, the simulation must
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include the significant factor impacts that emerge throughout steady-state and transient-
state events. It should also be applicable for future modifications in supply voltages and
currents. Due to the precision and convenience of the space vector and phasor hypothesis,
such a simulation should be produced using this hypothesis and the two-axis principle [16]
of synchronous generators. All of the techniques, as well as the simulations of induction
motors, are discussed and criticised accordingly in this paper, along with the proposed dq0
axis reference frame strategy.

5. Simulations of Induction Motors

Algorithms for the regulation of motors with great velocity and performance are
required in spinning machinery and electrical cars. Iron loss (ILS) influences flux mea-
surement, variable detection, actual torque, and acceleration control. Motor losses are an
essential measure of the simulation variables [17]. The models of induction motors consid-
ered in this state-of-the-art literature survey are discussed in line with the following criteria:

• Two-pole, three-phase windings are symmetrical.
• The slotting impacts are considered.
• Iron losses are not disregarded.
• The conductivity of the iron elements is limitless.
• The magnetisation in the airgap is circular.
• The stator and rotor windings are coordinated as a single and multi-turn full-pitch

coil located on opposite sides of the air gap.

The dynamic models may be split into two major sections: the Γ Model and the
Loss Model.

5.1. Γ Model

Several evaluations of three-phase induction motors have employed a traditional
linear machinery design, which is generally in the internal and reciprocal inductances of
the well-known Γ type of equivalent circuit [5,18]. Such a model is considerably more
complicated than is required for a linear assessment. However, it is insufficient for usage
when machine characteristics vary, such as when the rotor time changes with heat and
reciprocal inductances are altered whenever the machine is overloaded. The inverse
Γ model, as indicated in Figure 1, is very useful for learning and analysing vector control
mechanisms [18], so it reduces complications when compared to the T-model. Once the
machinery settings are altered, it then becomes a non-linear system. The extended Kalman
filter (EKF) [19] is a randomised monitor for a non-linear system. The sound generators in
the EKF take the measurement and simulation errors into account.

 

Figure 1. Γ Model of an induction machine [20].

5.2. Inverse Γ Model

The three-phase stator windings of an induction machine are intended to create a
symmetrical waveform dispersed (MMF) in space across the airgap margin. The proportion
of magnetic flux [21] must similarly be symmetrically provided when the airgap is homoge-
neous, and the impacts of slot distortions are ignored. It is further presumed that the drive’s
neutral connector is free, ensuring that phase voltages, currents, and flux connections are
constantly symmetrical, and thus, the circuit contains no zero-phase sequence components.
Considering variable stability, two readings of complex impedance or four variables may
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be monitored on the stator by running under no-loading and lockout rotor conditions. It is
insufficient to provide five variables in these comparable systems. This is often corrected by
randomly setting the magnetising inductance to be identical to the rotor inductance [22,23].
Figure 2a,b show design configurations that are well suited for learning and analysing

vector control mechanisms. With this setup, the stator’s current space vector
→
iS is managed

in a manner in which the rotor flux connection via the magnetising current
→

i′M maintains

a fixed value, thus supplying a rotor current vector
→
i′R in the space inversion, with

→
iM

providing the appropriate power output.

  
(a) (b) 

Figure 2. (a) Transient circuit of the inverse Γ model; (b) steady-state inverse Γ model [20].

5.3. Loss Model

The induction motor simulation in [24] centres on an experimental three-phase stator
and rotor circuit design using a magnetic coupling in the intermediate stage, thus neglecting
core loss. As seen in Figure 3a, the concept serves as the backbone for major vector control
derivations and a design based on the study of an electric drive. The stator-side resistance,
leakage inductance, and mutual inductance [25] are denoted as RS, LlS, and Lms. R′

r,
Llr

′, and Lmr
′ are the rotor-side resistance, leakage inductance, and mutual inductance,

respectively, as with the stator side. The flux on each rotor or stator circuit is divided
into the leakage and mutual components because solely the former reaches the magnetic
connection field with which the stator and rotor interface. Figure 3b depicts a conventional
steady-state per-phase circuit diagram, which takes core loss into account as the energy
lost in rc_ph. Lm is the steady-state magnetising inductance corresponding to (1.5 × Lms).
It should be noted that the connection impacts of other phases are summed into Lm which
is acquired from steady-state observations. As a result, the diagram is entirely irrelevant
for transient applications [26]. Figure 4 depicts the suggested induction machine design,
which is influenced by the preceding two conventional designs. The core loss is understood
as a resistor Rc in parallel with Lms in each stator phase. It should be noted that Rc is not
equivalent to rc_ph, although they were associated in [27].

  
(a) (b) 

Figure 3. (a) The classical induction machine model considers only copper loss; (b) the steady-state
per-phase equivalent circuit [27].
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Figure 4. Loss model of an induction motor [27].

5.4. Simplified Model

Many stable algorithms contain an adaptable induction machine simulation that is
derived from either or both of the equivalent topologies shown. A single-cage induction
machine offers modest start-up torque multiplication. With that, the single-cage design is
frequently inaccurate. Such issues can be addressed by employing a dual-cage or deeper
bar rotor design. A shortage of data frequently limits the usage of dual-cage and deeper
bar designs. Improving the torque-slip property of a single-cage design is a streamlined
remedy for these instances. The rotor resistance is often changed with slip, which is simple
to accomplish during each convergence phase of the model. An adaptable design simulation
that relies on the equivalent circuits illustrated in [27] is often utilised for transient reliability
research [27–29].

5.5. Simplified d–q Design

The steady-state equivalent diagram depicted in [29] serves as the foundation for
the concept of the induction machine. The simplified model presented in [29] is utilised
for the dynamic simulation diagram. The d–q model of this analysis was regarded as
precisely acceptable for acting as a baseline design and was subsequently utilised to assess
the adequacy of different designs when implemented for voltage balance analyses [30]. The
variables of the designs are depicted in [29].

6. Proposed Design

Figure 5 presents the proposed modelling technique for an induction motor; the three-
phase supply voltage is supplied to the machine, and then the voltages are transformed
using the 0dq axis to produce the vectors Vq and Vd. Hence, the stator currents and voltages
are produced; subsequently, the rotor parameters are also considered. The implementation
is outlined in this paper.

 

Figure 5. A proposed dynamic model of an induction motor.

Figure 6 presents the workflow of designing a dynamic and static model of an in-
duction machine. The adaptable design is mathematically represented and subsequently
simulated. The equations are implemented separately in terms of subsystems and then
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integrated to present the full model of the machine. Similarly, for a static model, the deriva-
tion is almost the same as that of the dynamic model, but it only changes when the speed is
equal to zero (when the machine is stationary). The simulation is also given for the static
model [5].

 

Figure 6. Design workflow.

7. Proposed Design

7.1. Dynamic Model

There is a very deep relationship between the stator and the rotor of an induction
motor. If one is to extract parameters of the rotor, there is a need to know the relationship
of the currents and voltage between these two elements of an induction machine. A d–q
axis model of an induction machine is presented in Figure 7a. A q-axis equivalent circuit
for an adaptable design of an induction machine is presented in Figure 7b. The stator can
then be represented by (1) to (10), and the rotor’s d–q transformation is represented by (11)
to (18). The torque is then represented by the stator and rotor parameters (19) [31].

  
(a) (b) 

Figure 7. (a) The d-axis equivalent circuit of an induction motor. (b) The q-axis equivalent circuit of
an induction motor.

Stator voltage modelling:

Vsd =

√
2
3

[
cos(θds × vds) +

(
cos(θds × 2π

3
× vb)

)
+

(
cos(θds × 4π

3
× va)

)]
(1)

Vsq = −
√

2
3

[
sin(θds × vds) +

(
sin θds × 2π

3
× vb

)
+

(
sin θds × 4π

3
× va

)]
(2)

Vsd and Vsq may now be simplified to:

Vsd = RS × isd +
d
dt
(λsd)− ωd × λsq (3)
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Vsq = Rs × isq +
d
dt
(λsd)− ωd × λsd (4)

Stator fluxes:
λsd = LS × isd + Lm × ird (5)

λsq = LS × isq + Lm × ird (6)

Stator currents:
ids =

1
XlS

(λds − λmd) (7)

iqs =
1

XlS

(
λqs − λmq

)
(8)

Stator voltages:

Vsd = RS × isd +
d
dt
(λsd)− ωd × λsq (9)

Vsq = RS × isq +
d
dt
(
λsq

)− ωd × λsd (10)

Mathematical model of the rotor:

Vrd = Rr × ird +
d
dt
(λrd)− ωdA × λrq (11)

Vrq = Rr × ird +
d
dt
(λrd)− ωdA × λrd (12)

Rotor flux equations:
λrd = Lr × ird + Lm × isd (13)

λrq = Lr × irq + Lm × isd (14)

Rotor currents:
idr =

1
XlS

(λdr − λmd) (15)

iqr =
1

XlS

(
λqr − λmq

)
(16)

Rotor voltages:

Vrd = Rr × ird +
d
dt
(λrd)− ωdA × λrq (17)

Vrq = Rr × irq +
d
dt
(
λrq

)− ωdA × λrd (18)

Electromagnetic torque:

Tem =
P
2
× Lm

(
isq × ird − isd × irq

)
(19)

where
Vqs, Vds are the q and d axes of the stator voltage(s).
Vqr, Vdr are the q and d axes of the rotor voltage(s).
λmq, λmd are the q and d axes magnetising the flux linkages.
RS is the stator resistance.
Rr is the rotor resistance.
Xls is the stator leakage reactance.
Xlr is the rotor leakage reactance.
p is the number of poles.
Tem is the magnetic torque.

Figure 8a,b present the implantation of the dynamic model of the induction motor.
The stator supply voltages and currents are presented in Figure 8a,b. The rotor currents
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are presented in Figure 8b. The torque and speed are presented in Figure 9a,b [32], where
Figure 10 illustrates the complete model of the dynamic induction motor.

  
(a) (b) 

Figure 8. (a) Simulation of a dynamic model of an induction motor; (b) current equation of the stator.

  
(a) (b) 

Figure 9. (a) Torque equation; (b) speed equation.

 

Figure 10. A complete model of the dynamic induction motor.

7.2. Static Model

The standard-frame velocity in a static-source framework is that of the stator, i.e.,
ωs = ωr = 0. Such a standard frame is chosen when potential asymmetrical differences
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in the stator are interrupted and the potential differences in the rotor are symmetrical.
The potential difference equations of an induction machine in a static reference frame are
determined by substituting ωr = 0 into (3). The resultant solution is the static design of
an induction machine in which the rotor is removed. As a result, the machinery can be
described as static.

It is noticeable that there is a major relationship between the stator and the rotor of
an induction motor. As the subscripts, r and s indicate the stator (s) and rotor (r). The
electromagnetic subscripts are i, v, and λ. The resistance is r, the leakage inductance is Ll ,
and the mutual inductance is Lm. The phase voltages are represented by a, b, and c.

The actual values of the induction motor’s parameters can be derived from the model
specified in Section 4 [26]. To determine the parameters, a no-load test and a load test must
be performed, so the parameters can be determined as follows.

The no-load test is performed by supplying the voltage VS at a rated frequency. The
motor will rotate close to a synchronous speed, resulting in a close-to-zero slip [22].

Assuming that RS, Ω, and LSH are much lower than the magnetising inductance
Lm H, the following equation is derived [1].

Lm =
VS

2π fs I
(20)

where VS is the applied phase voltage in the stator, I is the current supplied to the stator,
and fs is the stator frequency.

Now that the magnetising inductance has been determined, the other parameters
are extracted with the locked rotor test, and the resulting equivalent circuit is shown
in Figure 11.⎡⎢⎢⎣

vds
vqs
vdr
vqr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
RS + sLs

0
Lm

−ωrLm

0
Rs + sLs
Rs + sLs

sLm

sLm
0

Rr + sLr
−ωrLr

0
sLm
ωrLr

Rs + sLr

⎤⎥⎥⎦
⎡⎢⎢⎣

ids
iqs
idr
iqr

⎤⎥⎥⎦ (21)

 

Figure 11. Equivalent circuit of the locked rotor.

Should ωr = ωs = 0, Equation (21) becomes:⎡⎢⎢⎣
vds
vqs
vdr
vqr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
RS + sLs

0
Lm
0

0
Rs + sLs
Rs + sLs

sLm

sLm
0

Rr + sLr
0

0
sLm

0
Rs + sLr

⎤⎥⎥⎦
⎡⎢⎢⎣

ids
iqs
idr
iqr

⎤⎥⎥⎦ (22)

where RS and Rr are the resistances of the stator and rotor, LS and Lr are the stator’s and
rotor’s self-inductance and the stator’s and rotor’s speeds.

Figure 12 illustrates a static model of an induction motor.
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Figure 12. A static model of an induction motor.

8. Results

The following parameters were acquired from experimental work with a three-phase
induction motor. These settings were then utilised to simulate and examine the behaviour
of the induction motor using Matlab/Simulink.

8.1. The Machine’s Steady-State Performance Behaviour When Loaded from 0 to 125% of the Rated
Load, Shown in Both Tabular and Graphical Form with Current, Power Factor, Real Power,
Reactive Power, Speed, Efficiency, and Power Factor versus the Percentage or Per-Unit Loading

The parameters indicated in Table 1 were used to simulate the induction machine
using Matlab/Simulink were:

Table 1. Parameters used for induction motor simulation.

Prated 7.5 kW Ls 42.5e − 3H

f 60 Hz Lr 41.8e − 3H

Vm 220 V Lm 41.2e − 3H

rs 288e − 3Ω Lls Ls − Lm

rr 158e − 3Ω Llr Lr − Lm

J 0.4 kg· m2 P 4

The rated torque was not provided; therefore, before we can calculate the rated torque,
the synchronous speed of the machine must first be calculated. The synchronous speed is
calculated as follows:

Ns =
120 × f

p
= 1800 rp

Knowing the synchronous speed of a four-pole, 60 Hz machine, the rated torque may
now be calculated.

T =
Prated × 9.5493

Ns
= 39.78875 N.m

To simplify, 40 N.m was used as the rated torque value. Table 2 provides the results
obtained from the induction machine.

As seen in Figure 13a, the higher the torque load is, the higher the current will be. In
Figure 13b, we can see that the active power drawn by the induction machine is almost
linear. Thus, the active power is proportional to the percentage of the loading.

As shown in Figure 14a, the efficiency of the induction motor is poor when the machine
is lightly loaded. Theoretically, the optimal point must be at 100% loading; however, in
this case, the optimal point is at 80–90%. This is mainly due to additional power losses
(theoretical vs practical).

Figure 14b illustrates that the reactive power initially decreases. This is because the
power factor is poor with no load and increases with the increase in the load; however, the
reactive power drawn will also increase due to the increase in the load.
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Table 2. The induction machine’s results.

Torque
Load (%)

Current (A)
Pin Pout Efficiency

(%)

Qin Power
Factor (PF)

Speed
(rpm)

Tem (N.m)
(W) (W) (Var)

0 9.708 81.42 1.14 × 10−7 1.40 × 10−9 4530 0.01797 1800 6.05 × 10−10

10 9.826 837.4 752.7 0.8988 4509 0.1826 1797 4
20 10.23 1598 1503 0.9401 4499 0.3348 1794 8
30 10.9 2365 2250 0.9411 4502 0.465 1790 12
40 11.78 3136 2994 0.9452 4517 0.5703 1787 16
50 12.85 3913 3736 0.9497 4544 0.6525 1784 20
60 14.06 4695 4475 0.9521 4584 0.7155 1780 24
70 15.39 5482 5210 0.9532 4638 0.7635 1777 28
80 16.81 6276 5943 0.9549 4705 0.8001 1773 32
90 18.3 7075 6672 0.9549 4786 0.8283 1770 36

100 19.86 7881 7399 0.9531 4881 0.8502 1766 40
110 21.48 8692 8122 0.9504 4990 0.8672 1763 44
120 23.14 9510 8841 0.9469 5115 0.8807 1759 48
125 23.99 9922 9199 0.9454 5184 0.8863 1757 50

  
(a) (b) 

Figure 13. (a) Current vs torque load; (b) active power vs torque load.

  
(a) (b) 

Figure 14. (a) Efficiency vs torque load; (b) reactive power vs torque load.

As shown in Figure 15a, the power factor is similar to the efficiency. The lower the
load is, the lower the power factor will be, and a very good power factor is reached at the
rated torque.

As shown in Figure 15b, the induction machine’s speed decreases as the torque load
increases, starting from a value that is very close to the synchronous speed. Because the
machine acts as an induction motor, it will always run below the synchronous speed.
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(a) (b) 

Figure 15. Power factor vs torque load (a); speed vs torque load (b).

8.2. Transient Behaviour of the Current and Torque Versus Speed during Starting, Assuming That
(i) the Machine Is Unloaded, (ii) the Machine Is 50% Loaded, and (iii) the Machine Is 100% Loaded

In Figure 16b, we see the three-phase current. One characteristic of an induction
machine is that it has a very high starting current in the transient state.

As seen in Figure 17a, the electromagnetic torque oscillates during the transient state
until the oscillation stops and moves towards the torque load.

In Figure 17b, we see the same oscillation behaviour in the transient state; however,
the machine reaches an optimal point that is close to the synchronous speed due to lack of
a load.

In Figure 18, we see a small disturbance in the speed. This is due to the oscillation
of the electromagnetic torque. The motor reaches a steady-state close to the synchronous
speed due to the lack of a load.

CRITERIA—0% Torque Load; thus, 0 N.m 

  
(a) (b) 

Figure 16. (a) Voltage supply under no-load; (b) line currents under no-load.
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(a) (b) 

Figure 17. (a) Electromagnetic torque under no-load; (b) electromagnetic torque vs speed under
no-load.

 

Figure 18. Speed under no load.

The supply stays the same because no impedances exist at the source in this simulation.
Figure 19a–c illustrates that the steady-state reached approximately 0.15 s later than with
no load. This was expected because of the increase in the load.

As seen in Figure 19a, the amplitude was not affected by the higher magnitude of the
load. Therefore, the conclusion can be drawn that the machine current is only a function of
the machine’s parameters.

As seen in Figure 20, the optimal point is at a lower speed than with no load.
As seen previously, as the loading increases, it takes longer for the steady-state to be

achieved. At a full load (100% torque load), reaching the steady-state took approximately
0.2 s longer than with the half load (50% torque load). This can be seen in Figure 21a–c.
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CRITERIA—50% Torque Load; thus, 20 N.m 

 
(a) 

  
(b) (c) 

Figure 19. (a) Line currents at 50% loading. (b) Electromagnetic torque at 50% loading. (c) Electro-
magnetic torque vs. speed at 50% loading.

 

Figure 20. The speed at 50% loading.
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CRITERIA—100% Torque Load; thus, 40 N.m 

 
(a) 

  
(b) (c) 

Figure 21. (a) Current at 100% loading. (b) Electromagnetic torque at 100% loading. (c) Electromag-
netic torque vs speed at 100% loading. As seen in Figure 22b, the optimal point is at a lower speed
than with no-load or half-load.

 

Figure 22. The speed at 100% loading.
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8.3. Dynamic Behaviour of the Machine When (i) the Load Was Suddenly Changed from 50% to
100% and (ii) the Supply Voltage (for the Motors) or the Torque Input (for the Generators) Was
Suddenly Halved While the Load Was Maintained at 100%

As seen in Figure 23a, we have a normal transient state; however, an increase in
currents may be seen as the load changes from a half load to a full load (50% to 100%).

As seen in Figure 23b, we have a normal transient state; however, with an increase in
the electromagnetic torque, the load changes from a half load to a full load (50% to 100%).
It can be seen in Figure 23c that the optimal point of the full load (100%) is at a lower speed;
however, there is a higher torque than with the half load.

In Figure 24, we see the decrease in the speed of the machine after 1 s when the load
changes from 50% to 100%.

As seen in Figure 25a, the voltage supply is halved at 1.5 s. We can see in Figure 25b
that the current at 1.5 s approximately doubles. At 1.5 s, the protection of the induction
machine will operate with a disconnect from the supply voltage.

In Figure 26a, at 1.5 s, the machine cannot produce the electromagnetic torque required
for the load torque; thus, the speed of the machine decreases. In Figure 26b, we see that no
stable point has been reached.

Dynamic simulations: Load changes from 50% to 100% at 1 s 

(a) 

  
(b) (c) 

Figure 23. (a) Line current at 50% to 100% loading at 1 s. (b) Electromagnetic torque at 50% to 100%
loading at 1 s. (c) Electromagnetic torque vs. speed at 50% to 100% loading at 1 s.
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Figure 24. Speed at 50% to 100% loading at 1 s.

Supply voltage changes from 100% to 50% at 1.5 s 

  
(a) (b) 

Figure 25. (a) The change in the voltage supply from 100% to 50% at 1.5 s. (b) Line current when the
voltage changes from 100% to 50% at 1.5 s.

  
(a) (b) 

Figure 26. (a) Electromagnetic torque when the supply voltage changes from 100% to 50% at 1.5 s. (b)
Electromagnetic torque vs speed when the supply voltage changes from 100% to 50% at 1.5 s.

As seen in Figure 27, the speed decreases due to the supply voltage being halved at
1.5 s; thus, the electromagnetic torque is less than the loading torque. This means that the
machine is not able to operate under these specific conditions.
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Figure 27. The speed when the supply voltage changes from 100% to 50% at 1.5 s.

9. Conclusions

The performance of the stator and rotor variables was effectively studied by utilising
dynamic and static Simulink designs for the modelling of an induction machine. In contrast
to several existing induction machine design applications, the operator has access to
all internal parameters in this design in order to gain knowledge about the machine’s
operations. By utilising such designs, any machine control method can be modelled in the
Matlab/Simulink software without estimation techniques. For every module, individual
variable calculations were performed. Each designer’s function was modelled, and critical
variables were observed.

In this work, a dq0-direct axis algorithm was presented in order to implement both
static and dynamic modelling of a three-phase induction machine due to possible faults
and high-performance requirements for induction machines. The proposed algorithm
was compared with several conventional methods. It was observed that under stable
conditions of the machinery, the proposed algorithm could remove any developing faults.
This conserves time and minimises the labour required of an operator, which makes the
proposed algorithm more efficient. Furthermore, the machine demonstrated a steady-state
performance with respect to the current, active power, efficiency, reactive power, power
factor, and speed when the torque loads ranged from 0% to 125% of the nominal torque.
The transient behaviour of the machine was shown through the current, electromagnetic
torque, electromagnetic torque versus speed, and speed under no-load, half-load (50%), and
full-load (100%) conditions. Finally, the results of the proposed technique were compared
to the results of the measured parameters. It was found that when the load changed from
a half load (50%) to a full load (100%), the supply voltage was suddenly halved with the
load at full load (100%). It was observed that the proposed algorithm provides accurate
estimates with a deviation of not more than +/−2% from the measured parameters.
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Abstract: While urban maglev trains have the advantage of being optimized for urban environments
where noise is low and dust is less generated, their driving efficiency is low when compared to
rotary induction motors owing to the structural limitations of linear devices. To compensate for these
disadvantages, various studies on train control schemes have been conducted. Representative control
methods include improving the efficiency of using slip frequency by directly controlling the propulsion
force using vector control. However, this method has limitations in its use as it relates to the normal
force that affects the train’s levitation system. Therefore, in this study, mathematical analysis was
conducted for each factor that mutually affects the control of the train. On this basis, the magnitude
of the normal force related to the safety of the train is limited. Operating efficiency was improved
by varying the slip frequency according to the operating conditions of the train. In addition,
for verification, the effect was proved through a comparative experiment using an 18 ton class maglev
train running at Incheon International Airport.

Keywords: LIM; slip frequency; linear induction motor; automatic train operation

1. Introduction

The linear induction motor (LIM) has been widely studied as a transportation system running in
urban areas owing to its low noise, environmentally friendly factors that do not generate dust, and its
excellent performance on slopes and around sharp curves. An LIM is a system that levitates and
is propelled through the interaction of the rails and vehicles using the power of an electromagnet.
It comprises, primarily, a levitation system and a propulsion system. In the levitation system, as shown
in Figure 1b, the train guide generates an attraction force through the lower part of the rail to levitate
the train. As shown in Figure 1a, the propulsion system generates magnetic flux using an electromagnet
mounted on the train, linking it to the rail. Subsequently, the linkage magnetic flux generates a
counteracting flux in the direction of the train on the rail. Consequently, the train and rail are attracted
and repelled by the correlation between the magnetic flux generated by the electromagnet mounted
on the train and the counteracting magnetic flux of the rail. The LIM generate thrust for propulsion
through attraction and repulsion—a normal force being generated in the rail direction. Therefore,
to generate the thrust required to propel the train, a normal force that does not contribute to the
propulsion of the train is generated. In addition, because the normal force is generated in the opposite
direction of the levitation force of the train, the levitation system must overcome gravity and normal
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forces, and float the train. In other words, the unnecessarily generated normal force is a factor that
destabilizes the levitation system of the train, it being a potential safety problem due to train levitation
failure. It also induces additional energy consumption in both the propulsion system and the levitation
system, thereby reducing efficiency [1]. Therefore, for the efficient operation of trains, a train control
technique that reflects the characteristics of linear devices is required.

(a)  (b)  

Figure 1. Structure of maglev train: (a) Structure of trains and rails and (b) Structure of levitation system.

For LIM control, a control method using slip frequency and a method using indirect vector control
were widely studied. The slip-frequency control method was used because of its independence from
parameter fluctuations and ease of implementation. Because the linear motor is based on an induction
motor, the size of final load RL fluctuated according to slip, as shown in Figure 2a. Accordingly,
the ratio of the current for magnetization and the current for propulsion fluctuated. As shown in
Figure 2b, the magnitude of the input current required for operation based on the slip increased when
the slip was large, and decreased when the slip was small [2–5].

 

(a)  (b)  

Figure 2. Efficiency fluctuation due to slip: (a) Induced motor equivalent circuit and (b) Input current
and slip.

Because the LIM is a system based on an induction motor that cannot directly control the slip,
the slip frequency (having a proportional relationship to the slip) was used. Accordingly, a study was
conducted on a method of improving efficiency through the size of the slip frequency [6–8]. However,
slip is a factor related to the normal force that affects the potential failure of the train. There is also a
problem in that normal force increases when the size of slip frequency decreases [9].

In [8], a fixed slip-frequency control method was proposed that used fixed high slip frequency that
did not fail to levitate the train. However, by using the same slip frequency in the operating bands of
all trains, a problem occurred in that operating efficiency was lowered by using the same slip frequency,
even in sections where high slip frequency was not required (on the basis of train operating conditions).
Subsequently, a study of a variable slip-frequency control method was conducted to change the slip
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frequency on the basis of the operating conditions of the train to lower the slip frequency while limiting
the normal force of the LIM [10].

Second, as a method, an indirect vector control method was proposed that is widely used in
rotary induction motors with fast response and excellent performance [11]. However, for indirect
vector control, the air-gap magnetic flux must be kept constant, but is difficult to apply in the LIM
because the air-gap magnetic flux fluctuates during train operation owing to the characteristics of
linear devices. In [12–15], a method was presented using the current of the d axis, which is the axis
where the magnetic flux of the motor is generated during the vector control of an induction motor.
The attenuated magnetic flux was compensated by controlling d-axis current id. However, this method
also had a problem, in that iq associated with the thrust force fluctuated to maintain the slip frequency
constant when id was changed to compensate for the attenuated magnetic flux, as shown in slip angular
velocity Equation (1) of indirect vector control (here, iq means the current in the q axis generating
torque in the d-q axis for vector control):

ωsl =
1
Tr

+
iq
id

, (1)

where ωsl is the slip angular velocity, Tr = Lr
Rr

, Lr is rotor winding impedance, Rr is rotor winding
resistance, id is the d-axis current (air-gap magnetic flux), and iq is the q-axis current (thrust).

Accordingly, in [16], a control method using both indirect vector control and variable slip-frequency
control was proposed. When the id value was changed to compensate for the air-gap magnetic flux,
ωsl changed using iq such that the slip value was within the allowable range. However, because this
method was not a result derived through mutual mathematical analysis of train operating conditions,
it was difficult to guarantee safety because the exact normal force was unknown. In addition, because all
input values for each condition must be derived through direct experiments, the process costs much
time and money. For this reason, maglev trains currently in operation utilize a fixed slip-frequency
control method that can guarantee train safety. Therefore, in order to improve train efficiency while
ensuring safety, it is necessary to analyze the mutual influence through mathematical analysis of
the slip, normal force, and propulsion force. On the basis of the analyzed data, if the calculated
slip frequency is instantaneously changed on the basis of the operating conditions of the train, it is
possible to safely and efficiently operate the train (the proposed method increases efficiency by
using the ratio of slip frequency, normal force, and traction force, which are the characteristics of
electromagnetic-suspension-type LIM. Therefore, it is difficult to apply this method to types of maglev
trains with different structures and driving methods).

The remainder of this paper is organized as follows. In Section 2, the mathematical relationship
between normal/propulsion force and slip frequency is analyzed through an investigation of the
relationship among normal force, propulsion force, slip, and slip frequency. After that, through the
derived equation, the change in efficiency within the limited normal force is presented. Consequently,
a control algorithm for controlling the proposed method is presented. In Section 3, the effect is shown
through simulation. In Section 4, experimental evaluation conducted using actual vehicles running on
the island of Yeongjong, Korea is summarized. Lastly, Section 5 presents our conclusions.

2. Control Method

2.1. Conventional Method

As described above, in a maglev train, both propulsion and normal force fluctuate according to
slip. In particular, levitation in the normal force affecting the levitation system of the train becomes
a factor that can hinder the safety of the train. Therefore, to control the train, normal force must be
controlled by slip. However, because the LIM is a system based on an induction motor and cannot
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directly control the slip, it was controlled using slip frequency that has a proportional relationship
with the slip, as shown in Equation (2):

fsl = feS (2)

fe = fm + fsl (3)

where fe is the synchronization frequency, which means the supply frequency of the AC voltage
supplied to the stator winding; fm is the rotor frequency, which is the physical rotation frequency;
fsl is the slip frequency, which is the difference between the synchronization frequency and the rotor
frequency; and S is the slip, which is the ratio of the slip frequency to the synchronization frequency,
and it can be expressed as s = fsl/ fe.

Table 1 shows an example of fluctuations in slip and normal force when slip frequency is fixed
and the synchronous speed of the train is changed using Equation (2) and Figure 3. Figure 3 shows the
normal force value derived through finite-element analysis.

Table 1. Correlation between elements in fixed slip-frequency control.

fsl (Hz) fe (Hz) s Normal Force (N)

10
100 0.1 −4500
50 0.2 −3000
33 0.3 −2000

Figure 3. Normal force by slip frequency through finite-element analysis.

Table 1 shows that, as the synchronous frequency associated with the train’s synchronous speed
decreased, slip increased, maintaining a fixed slip frequency. As shown in Figure 3, as slip increased,
vertical force changed in the direction of decreasing, increasing the safety of the train [5,13]. If the slip
frequency were fixed, Equation (3) shows that the synchronous speed also had its maximal value at
the point where the speed of the train was maximal, and the greatest vertical force occurred at this
moment (here, the maximal synchronous speed was the maximal change speed of the magnetic field
generated by the stator when the train was running at maximal speed. The greatest normal force was
at the moment when the magnitude of the levitation force that made the levitation system unstable
was the greatest), that is, if slip magnitude and the normal force at which the levitation did not fail at
the maximal speed of the train, maximal slip frequency could be derived from the synchronous speed
of the train. If the derived slip frequency were fixed, the train would be in an area where there was less
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risk of accidents caused by vertical force when the train is running at full speed. This means that the
risk of accidents caused by vertical force would also be low in the section where the speed of the train
was decreasing. So, the train could safely run in all speed zones. For train safety, this method is applied
to currently running maglev trains. However, this method ignores the train’s operating conditions and
uses a fixed slip frequency, which leads to low-efficiency train operation due to large slip at low speeds.
Consequently, if the ratio of the fluctuations of the propulsion force and normal force of the train based
on the slip frequency is known, the efficiency of the train can be improved by adjusting slip frequency
within the normal force that operates safety zones according to the required propulsion force.

2.2. Proposed Method

The equations of normal force and levitation force used in the control of a maglev train
can be obtained through FEM analysis [17] and the structural properties of the target vehicle.
Equations (4) and (5) show the relationship between normal force and slip frequency, and driving force
and slip frequency, respectively:

FN =
lτμ0

2
1− (RmS)2

(sinhβg)2 + (RmScoshβg)2
(ZmIm)

2 (4)

FT = lτμ0
RmS

(sinhβg)2 + (RmScoshβg)2
(ZmIm)

2 (5)

where Rm = σtμ0λ f is the magnetic Reynolds number, σt = σte f f is the effective conductivity, te f f is the

effective thickness of the secondary conductor, β = π
τ is the air:gap:wavelength ratio, S = 1− Vm

Vsy
=

fsl
f

is the slip, Vm is a variable representing the speed of the train, Vsy is a variable representing synchronous
speed, Zm is maximal winding density (the maximal winding density per unit length of the train core),
Im is the maximal current (the maximal current input for the required current to operate the system),
g is the effective void, τ is the pole spacing, f is the power frequency, σ is the conductivity of the
secondary conductor, fsl is the slip frequency, and l is the primary core width.

By deriving the relational expression between driving force and normal force from the relational
expressions in Equations (4) and (5), the ratio of normal force and driving force, as shown in Equation (6),
can be derived using the equation related to slip frequency:

FN

FT
= −1

2
(RmS− 1

RmS
) (6)

where Rm = σtμ0λ f and S =
fsl
f . From this result, RmS is slip frequency.

If this is summarized in terms of slip frequency, it can be expressed as Equations (7) and (8).
Through Equation (8), the maximal normal force can be obtained from the currently running fixed
slip-frequency value. If this maximal normal force is then substituted for the required thrust,
the maximal usable slip frequency range can be calculated for each operating condition. That is, if the
normal force and the propulsion force at the maximal propulsion force of a currently running train are
substituted, slip frequency can be determined and controlled so as to be limited to a range that does
not fail in levitation.

0 = (σtμ0λ)
2 fsl

2 + 2
FN

FT
(σtμ0λ) fsl − 1 (7)

fsl =
−2 FN

FT
σtμ0λ±

√
(2 FN

FT
σtμ0λ)2 + 4(σtμ0λ)

2

2(σtμ0λ)
2 (8)

Figure 4 shows the ratio of normal force/thrust force according to slip frequency using Equation (6).
Table 2 uses Figure 4 and Equation (8) to calculate the slip frequency in which the maximal normal
force is generated within the range of levitation not failing when propulsion force is changed (if slip
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frequency is negative, it operates as a braking mode; if it is positive, it operates as a powering mode
for thrust).

Figure 4. Ratio of normal force and thrust force according to slip frequency.

Table 2. Normal force margin ratio by slip frequency at each thrust.

Thrust Margin Slip Frequency (Hz)

100% 1 13.5
75% 1.33 12.5
50% 2 9
30% 3.33 6.5

Table 2 shows that, when the maximal driving force was 100%, when the driving force decreased,
the normal force also decreased. Therefore, when using the same slip frequency of 13.5 Hz at
approximately 75%, 50%, and 30% thrust, the amount of normal force generated on the basis of
maximal thrust is reduced. Assuming that the margin ratio of the normal force is 1 at a slip frequency
of 13.5 Hz, margin rates at each operating condition are 1.33, 2, and 3.33, respectively. If slip frequency
was lowered by this margin factor, efficient operation would be possible within the range of normal
force that did not affect safety. If the optimal slip frequency suitable for train operation conditions
were derived in this way, a train-operation pattern capable of varying the appropriate slip frequency
during train operation could be obtained.

2.3. Algorithm

Figure 5 shows a block diagram of the proposed control algorithm. Looking at the left side of
Figure 5, given thrust command FT

∗ and train speed vm, the recommendation calculator determines
the slip-frequency command that can be used within the range not exceeding the normal force limit
through the previously proposed method.
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Figure 5. Control algorithm of proposed method.

At this time, the normal force-limit value was derived from finite-element analysis and the initial
train test. If derived slip-frequency command fsl

∗ and command Im
∗ of the total current required to

drive the system are given as “reference current generator”, id and iq for vector control are derived.
At this time, total current command Im

∗ is determined through Equation (5), and the method of deriving
id and iq using “reference current generator” is as follows.

ωsl =
Rr

Lr

iq
id

(9)

Irms
2 = id2 + iq2 (10)

Equation (9) shows the relationship between slip frequency and d-q axis reference currents id
and iq in the induction motor, and Equation (10) shows the relationship between Im and id, iq derived
through the propulsion force. These two equations are used to determine the id, iq current command in
the “reference current generator”.

id =
Rr

Lr

iq
ωsl

(11)

Irms
2 = (

Rr

Lr
)2(

iq
ωsl

)2 + iq2 (12)

If Equation (9) is summarized for id as in Equation (11) and substituted into Equation (10),
Equation (12) representing the relationship between iq and Im can be obtained. Reorganizing this for iq
can be expressed as Equation (13):

iq =
Lr

Rr
ωsl

√
1

(1 + ( Lr
Rr
ωsl))2

Irms (13)

id =

√
1

(1 + ( Lr
Rr
ωsl))2

Irms (14)

By arranging id in the same way, we can obtain Equation (14). The current command of the d-q
axis can be derived from constants Rr and Lr of the train, total current Im required by the driving force,
and slip angular velocity ωsl that can be obtained from the slip frequency. Therefore, when the thrust
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and normal force-limit values, which are the driving conditions of the train, are proposed, it is possible
to directly control the iq current, involved in the propulsive force of the train, and id, involved in the lift
of the train.

3. Simulation

In order to perform the simulation under the same conditions as those of the actual train, the data
of a train that was actually operated were used as input values, as shown in Figure 6a, through which
the current command and slip required for control of the slip frequency was derived and utilized.
The black waveform represents the speed pattern of the train, and the blue waveform represents
the driving-force waveform of the train. For efficiency comparison, total power consumption and
generated normal force were compared between the conventional method using a slip frequency of
13.5 Hz, and the proposed method in which the slip frequency fluctuated during train operation based
on the operating conditions. In the proposed method, the margin rate of the limited normal force was
set to vary between 9.5 and 13.5 Hz according to the applied operating conditions.

  
(a)  (b)  

Figure 6. Simulation conditions and calculation blocks: (a) Train operation pattern (train data) and
(b) Block diagram using train pattern.

Figure 7 compares the results of the existing control method and the proposed method. Figure 7a
shows the accumulated power consumption while the train was running. The existing control method
of the red curve consumed approximately 140 Wh of power while operating under the same conditions
and section, whereas the proposed method of the black curve consumed approximately 116 Wh of
power, an improvement of approximately 24 Wh, which is a reduction in power consumption and an
efficiency improvement of approximately 19.6%. Figure 7b shows the normal force change during train
operation. When a margin ratio of approximately 30% was compensated for safety from the actual
train’s limited normal force, the limit value was about −2.5 kN, called the critical normal force. If the
normal force falls below this value, levitation fails. Looking at the waveform in Figure 7b, the maximal
generated normal force of the conventional method was −2.04 kN, and the maximal generated normal
force of the proposed method was −2.45 kN. Both systems were in the safe area. Therefore, when using
the proposed method, efficiency increased by approximately 17.14%, but it was confirmed that the
efficiency improvement of the proposed method was effective because the train was running within a
safe range of normal force.
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(a)  (b) 

Figure 7. Comparison of existing and proposed condition data: (a) Accumulated power consumption
and (b) Normal train force.

4. Experiment

Figure 8a shows the LIM train of Incheon International Airport in Korea used for the experiment.
In order to compare train efficiency, the power system installed on the train and inverter power were
directly measured. Figure 8b shows the train’s operating route used in the experiment. Five sections
were operated over one round trip from Station 101 (the start station) to Station 106 (the end station).

  

(a)  (b)  

Figure 8. Actual vehicle test conditions and used vehicle: (a) Experimental linear induction motor
(LIM) and (b) Train test-run section.

Table 3 shows the specifications of the trains used in the experiment; the train was composed of
1 car and 2 trains. For comparison, the widely used 13.5 Hz slip-frequency fixed control method and
the proposed slip-frequency variable-vector control method were compared. To increase the reliability
of the experiment, it was conducted in triplicate, and results were calculated using the average. Lastly,
the train was operated using the automatic-train-operation (ATO) method [18], an automatic train
control system that propels, rides, and brakes trains according to given commands. The ATO was
used for train operations because it reduces the deviation of experiment results using train drivers and
quickly responds to slip-frequency fluctuations during operation.
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Table 3. Experimental vehicle specifications.

Traction System Levitation System

Parameter Value Parameter Value

Length 1785 mm Length 2600 mm
Number of slots 53 Number of yokes/poles 4
Number of poles 8 Number of coils/poles 2

Air gap 11 mm Turns/coil 193
Turns/coil 5 Air gap 8 mm

Al plate thickness 5 mm Pole width 32 mm
Required thrust 60.4 kN Rated life force 33 kN
Maximal speed 110 km/h

Figures 9 and 10 show the accumulated power consumption of each part according to actual train
operation. Figure 9 shows the operating results from Station 101 to Station 106, and Figure 10 shows
the train operating results from Station 106 to Station 101. Figures 9 and 10a show the results of the
conventional train control method, and Figures 9 and 10b show those of the proposed control method.
In each curve, the green line represents the total amount of consumed power to float the train, the blue
line represents the total power consumption used to propel the train, and the red line represents the
sum of the power consumption of propulsion. Lastly, the black line indicates the speed of the train.
The moment when the curve changed in value was when the train was running between the stations,
and the moments when the curve had no value indicate the waiting time after arriving at the station.
To exclude the effect of energy consumption caused by differences in waiting times at each station on
the results, the consumed energy during the waiting time at each station was removed from the actual
comparison. In addition, the test train was used when comparing the actual consumed energy twice as
often as the measured value in the two trains.

  
(a)  (b)  

Figure 9. Comparison of accumulated power consumption between existing and proposed methods
(101→ 106): (a) Conventional method and (b) Proposed method.
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(a) Conventional method. (b) Proposed method. 

Figure 10. Comparison of accumulated power consumption of existing and proposed methods
(106→ 101): (a) Conventional method and (b) Proposed method.

Table 4 shows the results of comparing the two methods in consideration of the elimination of
reverse waiting time, and (1) quantity and (2) schedule. When moving from Station 101 to Station 106,
the total power consumption of the existing method was 27.74 kWh, and the total power consumption
of the proposed method was 25.12 kWh. When using the proposed method, there was approximately
2.62 kWh (9.45%) increased efficiency. When moving from Station 106 to Station 101, the total power
consumption of the existing method was 27.8 kWh, the total power consumption of the proposed
method was 23.64 kWh; when using the proposed method, there was approximately 4.16 kWh (14.96%)
increased efficiency. As a result, efficiency increased by approximately 6.78 kWh (12.2%) when using
the proposed method, to 55.54 and 48.76 kWh, respectively, from Station 101 to Station 106.

Table 4. Comparison of power-consumption results.

Operation from 101 to 106 Operation from 106 to 101

Conventional Proposed Conventional Proposed

Total (kWh) 27.74 25.12 27.8 23.64
Thrust (kWh) 22.1 19.6 22.1 18.54

Levitation (kWh) 5.64 5.52 5.7 5.1
Reduction rate (%) 9.45% 14.96%

5. Conclusions

In this study, as part of our research on improving the operating efficiency of a maglev train using
an LIM, the relationship between train slip frequency, normal force, and propulsion force was analyzed
through a mathematical study. Using the analytical results, the slip frequency having the optimal
efficiency was derived on the basis of the train’s operating conditions while limiting the normal force
to the extent to which the levitation system of the train did not fail. Subsequently, slip frequency was
changed according to the operating conditions of the train in real time. Through the ATO driving
system, a simulation test in which slip frequency was varied on the basis of the driving conditions
of the train while it was running, and an experiment using an actual train were conducted. As a
result of the simulation test for one operating section in which the actual train was running, when the
proposed method was used rather than the existing fixed system slip frequency of 13.5 Hz, a cumulative
power-consumption decrease of approximately 24 Wh and an efficiency gain of approximately 17.14%
were achieved. These results confirmed that the efficiency improvement using the proposed method
was significant. In the case of the experiment, when the proposed method was compared with the
existing fixed system slip frequency of 13.5 Hz, the cumulative power consumption decreased by
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approximately 6.78 kWh and efficiency increased by approximately 12.2%. Through this, we verified
that the proposed method is more efficient than the existing method is (the proposed method uses
LIM characteristics, which are suitable for low- and medium-speed types. Therefore, it is difficult to
apply to maglev trains with different structures and principles, such as superconducting-repulsion or
permanent-magnet types).
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Abstract: This paper provides an overview of the Linear Transportation System (LTS) and focuses
on the application of a Linear Induction Motor (LIM) as a major constituent of LTS propulsion. Due
to their physical characteristics, linear induction motors introduce many physical phenomena and
design constraints that do not occur in the application of the rotary motor equivalent. The efficiency
of the LIM is lower than that of the equivalent rotary machine, but, when the motors are compared as
integrated constituents of the broader transportation system, the rotary motor’s efficiency advantage
diminishes entirely. Against this background, several solutions to the problems still existing in
the application of traction linear induction motors are presented based on the scientific research
of the authors. Thus, solutions to the following problems are presented here: (a) development of
new analytical solutions and finite element methods for LIM evaluation; (b) comparison between
the analytical and numerical results, performed with commercial and self-developed software,
showing an exceptionally good agreement; (c) self-developed LIM adaptive control methods; (d) LIM
performance under voltage supply (non-symmetrical phase current values); (e) method for the power
loss evaluation in the LIM reaction rail and the temperature rise prediction method of a traction LIM;
and (f) discussion of the performance of the superconducting LIM. The addressed research topics
have been chosen for their practical impact on the advancement of a LIM as the preferred urban
transport propulsion motor.

Keywords: linear induction motors; finite element analysis; end effect

1. Introduction

A traction Linear Induction Motor (LIM) has been deployed worldwide in numerous
transit systems and in driverless, elevated guideway systems requiring all weather oper-
ations under very short headways. LIM-based urban transport has proven to be, by far,
the least expensive in terms of operations and maintenance (including the energy costs).
LIMs are also found in other various applications, ranging from small-power industrial
material handling and amusement park roller-coaster propulsion to very high-output
military aircraft launchers; advanced research is underway to investigate LIMs as potential
power conversion devices for ocean wave energy recovery [1].

Because of low operating costs and extremely high reliability, LIM-propelled sys-
tems have become an ever more frequent part of the public transport offering. LIM-
based public transit systems have already been in operation for a few decades, and they
are serving such cities as Yokohama, Vancouver, Toronto, Tokyo, Osaka, Seoul (Yongin),
New York, Moscow (Moscow Monorail), Kuala Lumpur, Guangzhou, Fukuoka, and Beijing.
References for the applications are readily available by any browser search using such
keywords as “Linear Metro”. For economic reasons, the operation of these systems as
well as most other LIM-based systems has been based on a single-sided LIM [1,2]. Al-
though, in comparison to its rotary counterpart, a traction LIM has necessarily a large air
gap between the stator and its rotor equivalent and thus is less efficient on the motor-to-
motor comparison bases, the LIM-based systems show better system-level performance
resulting from several characteristic features specific to the LIMs. First, in comparison
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with rotary induction motors, a mechanical gear box that introduces high energy losses
and accounts for a significant life cycle cost and is a potential source of serious reliability
issues is eliminated. The LIM has no moving parts, and the propelling force is directly
applied to the vehicle in the direction of motion, thus avoiding the losses introduced by
the mechanical gear box. In most instances, rotary-motor-based transportation systems
rely on adhesion between the wheels and the running rail. Relying on adhesion limits
their acceleration and deceleration performance under wet or otherwise contaminated rail
conditions. LIM systems do not suffer such disadvantages because their tractive effort is
developed as a direct electrodynamic force between the LIM primary and the reaction rail,
and this allows for an adhesion independent, reliable operation under all environmental
conditions. This also means that LIM-propelled trains (objects) can accelerate at any rate
and achieve their nominal speeds sooner, which limits the high current/tractive effort
demand period and decreases the overall energy consumption. Because of their flat form,
LIMs occupy significantly smaller vertical space, which enables a lower profile steerable
bogie construction and, consequently, a lower vehicle cross-sectional area, thus decreasing
the potential tunnel construction costs and energy consumption resulting from the motion
air resistance [3,4]. In addition, LIM-based vehicles can run on steeper grades (due to direct
forces) and negotiate sharper curves (due to steerable bogies), providing more flexibility
in the elevated guideway structure design, which helps to reduce civil and land release
costs. A large urban center allows for more targeted interconnection of the various multi-
modal transportation systems, which is not always achievable with rotary-motor-based
rail vehicles. The uniqueness of Linear Motor (LM) systems led to a heightened interest in
LIM technology and resulted in a number of research projects aimed at improving LIM
performance and further decreasing the operating cost.

In this paper, an overview and categorization of linear transportation systems is com-
pleted, in which LIMs are found to mainly be used for traction and braking. Next, the
major characteristics of a LIM are described and associated with the system performance.
Finally, a series of important practical research works carried out by the authors and aimed
at advancing LIM system performance are reported, highlighting challenges associated
with improving LIM performance in such areas as performance prediction, LIM adaptive
control, LIM thermal protection, and the application of superconductivity. The conclu-
sions summarize the authors’ experience in the subject matter and highlight the areas of
advancement for future research.

2. Overview of Linear Transportation Systems

Linear transportation systems (LTSs) can be divided into some fundamental groups
according to their support, guidance, and drive solutions. The most important groups are
listed below.

2.1. Levitated LTS

Levitated LTSs mainly use electromagnetic suspension. These systems, Maglevs, can
be divided into Permanent Magnet (PM)- and superconductor-based levitating systems.
According to the postulate on the stability of bodies in various static force fields given in
1842 by Earnshaw [5], no object placed in an inverse square law force field (e.g., magnetic
field) could be in a stable equilibrium; thus to achieve stability, PM flux should be modu-
lated by the respective control coil currents that depend on the size of the air gap. Such
controlled electromagnets are utilized in many different levitation systems, for both side
and vertical stabilization [6]. Efficient operation of these systems depends on the advanced
optimization of the magnetic field distribution within the air gap by means of proper
geometry design and proper selection of material and power supply characteristics [7,8].

The first Maglev line to open to public traffic was the Birmingham Maglev in 1984
(propelled by a LIM), the second was the M-Bahn in Berlin (also 1984), and the third
was the Shanghai Transrapid Maglev (the latter two using a long-stator synchronous
linear-motor-based propulsion).
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Braunbeck [9] extended stability investigations to the systems containing diamagnetic
materials. The characteristic feature of a diamagnetic material is that it opposes the external
field variations, the feature exhibited by the superconductors. Since their inception, super-
conducting levitation systems have been used in many different industrial applications.
The principle of these systems is based on the interaction between the magnetic field and
high-temperature superconductors [10,11]. Two examples of superconducting levitation
systems are the Miyazaki and Yamanashi Maglevs. In the early stages of Maglev devel-
opment, at the Miyazaki test track (1977), a purely repulsive electrodynamic suspension
system was used [12]. A major advantage of the repulsive electrodynamic suspension
system is its inherent stability—a decreasing distance between the track and the vehicle
results in strong reactive forces bringing the system to its original position. The magnetic
field can be produced by either superconducting magnets (as in JR-Maglev) or an array of
permanent magnets (as in Inductrack). The disadvantage of the electrodynamic suspension
is that the repulsive forces are speed dependent and are low at low vehicle speeds. For this
reason, the vehicle must use support wheels until it reaches take-off speed.

In [13], the hyperloop all-in-one advanced LIM system (propulsion, levitation, and
guidance) was proposed. The Superconducting Transverse Flux Linear Motor with in-
tegrated levitation, guidance, and propulsion system was described in [14]. Another
superconducting levitation system for linear drives was proposed in [15].

In 2015, an SC-Maglev train operated by the Central Japan Railway Company (JR
Central) broke the train speed world record by clocking in at 603 km/h (374 mph); a new
Chinese Maglev system intended for speeds up to 620 km/h was unveiled in January 2021
by CRRC in Chengdu.

2.2. Non-Levitated LTS

This type of LTS uses conventional wheels and is the most typical solution of linear
transportation systems [1,16–18]. According to the electrical drive system, these linear
transportation systems can be driven by DC motors and synchronous or induction motors—
conventional or superconducting.

2.3. LTS with Synchronous Motors

Various levitated LTSs using conventional synchronous motors based propulsion were
described in [19], e.g., they are permanent-magnet-excited machines. A high-temperature
superconducting linear synchronous motor was described in [20]. The application of
superconducting linear flux-switching permanent magnet motors was discussed in [21].

2.4. LTS with Induction Motors

Linear induction machines were discussed as the most promising solution for LTSs
in [1,15,17,18]. In the late 1940s, the British electrical engineer Eric Laithwaite, Professor
at Imperial College London, developed the first full-size working prototype of the linear
induction motor. The first commercial Maglev transport system in the world, the Birming-
ham Maglev, which opened in 1984, was also propelled with a linear induction motor. The
latest problems related to the application of LIMs are discussed in Section 3.

2.5. LTS with Superconducting Induction Motors

When it comes to LTSs, superconductivity can not only be used for levitation but also
for generating a tractive effort [10,21–26]. Superconducting motors have their windings
made of low-temperature, conventional, or high-temperature superconductors. A typical
linear induction motor with an iron core and copper winding can produce only a limited
thrust because of the flux saturation of the iron core. High-temperature superconducting
windings can generate a strong magnetic field and, consequently, large thrust. High flux
density and high thrust can be produced over a wide gap range because of extremely high
ampere turns (see Section 4.5).

191



Energies 2021, 14, 2549

Some general problems connected with the electromagnetic fields related to high-
speed LTSs driven by different linear motors (synchronous, induction, superconducting)
were described in [27].

3. Linear Transportation Systems Using Induction Motors

A LIM can be obtained from its rotary counterpart, the induction motor, by an imagi-
nary process of cutting the rotary’s stator and rotor in a radial plane and unrolling it, at the
same time as replacing a cage or a winding with a conducting sheet, as in Figure 1.

 
Figure 1. Conversion of rotary machine into LIM.

Should the second primary be added to the single-sided LIM in Figure 1, a double-
sided LIM would be formed. Depending on the relative length of the secondary and
primary, the LIM can be categorized as a short-secondary (Figure 2) or a short-primary
LIM.

Figure 2. Short-primary LIM (a); short-secondary LIM (b).

The rotary motor can be thought of as “infinite” in that its primary winding generated
magnetic field is continuous and has no beginning or end around its circumference. Unlike
the rotary, the short-primary LIM has a finite length. Thus, only the part of the secondary
side that is immediately below the primary is subjected to a primary generated magnetic
field. During motion, the new unexcited parts of the secondary side equivalent “rotor”
continually enter under the LIM primary magnetic field generated by a distributed Magne-
tomotive Force (MMF). This process generates a continuous electromagnetic response in
the new incoming segments of the secondary, the Reaction Rail (RR), in a form of induced
MMF, thereby resisting the immediate establishment of the magnetic flux under the front
end of the LIM primary. Subsequently, the reaction rail MMF decays but at a lower rate
dictated by the “rotor time constant” of the motor. Figure 3a shows a short-primary LIM,
and Figure 3b shows the reaction rail. The RR consists of a series of aluminum top cap
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segments, connected for electric continuity, and underlying iron bars, the Back Iron (BI),
corresponding to the conventional rotor winding and rotor laminations, respectively.

  
(a) (b) 

Figure 3. LIM primary (supplied part) (a); LIM secondary (reaction rail) (b) [28].

LIMs can be further classified into a number of other topologies, but so far only
the single-sided, short-primary linear induction machine has been successfully used in
urban transportation systems [1,2,15]. It seems to be a natural choice since the cost of
building an active multiphase primary along a multikilometer guideway would render
such systems uneconomical. In most existing urban applications, the primary is suspended
under the bogie, over a track-installed reaction rail consisting of either solid or laminated
mild steel BI covered with an aluminum extrusion supported on an assembly that permits
the transfer of forces to the guideway. In most current applications, mainly in South-East
Asia, Canada, and the USA, the guideway is of an elevated, right-of-way type requiring a
minimal footprint and does not affect other modes of ground transportation.

As already mentioned, the relative motion between the finite-length primary and
the infinite secondary induces a dynamic end effect by creating end-effect currents in the
aluminum top cap that demagnetize the oncoming end of the motor. The currents produce
additional forces and losses that exist even at synchronous speed and increase with vehicle
velocity. The static end effect, another LIM-related phenomenon, occurs because of the
phase impedance imbalance caused by the finite length of the phase winding. The effect
is amplified by the dynamic end effect, which distorts the air-gap magnetic flux density,
having a direct effect on the flux linked to the phase windings. The transverse edge effect
is yet another phenomenon characteristic of LIMs. Its major source is the longitudinal
component of the top cap induced current. The two major impacts of the transverse edge
effect are an increase of the equivalent secondary resistance and an uneven flux distribution
across the LIM’s primary. Because of the dynamics of the vehicle as well as the RR’s limited
construction accuracy, the reaction rail is usually offset from the longitudinal symmetry
line of the primary side of the LIM, leading to decentralized transverse forces and potential
lateral instability. The asymmetrical construction of the reaction rail necessitated by the
vicinity of switches aggravates this effect.

Many constraints exist in the high-speed urban electric traction LIM application, which
requires a large distance between the LIM primary and the secondary side RR. Running rail
and truck deflection, rail canting, and wheel wear are the major reasons for using a large
air gap with the LIM. For a gap length of ten to fifteen millimeters, the ratio between the
air-gap width and the pole pitch is significant and leakage flux is considerable. The values
of up to 100 Hz are not uncommon in today’s applications of urban traction LIMs. At the
operational slip of around 10–15%, the skin effect in the aluminum cap is not completely
negligible. Finally, there are unbalanced normal forces, attractive and repulsive, that add
additional complexity in the analysis of the optimal gap and the construction of the motor,
as they affect the distance between the lowest point of the primary and the top of the
reaction rail top cap.
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Because of the differences between the LIM and the rotary machine, unconventional
analysis techniques and modeling methods have been developed in an attempt to account
for the number and magnitude of LIM-characteristic phenomena.

Many methods of LIM calculation, optimization, and control are identical (or very
similar) with the methods applicable to rotating induction machines. The electromagnetic
calculations of the rotary motor are reasonably simple because of the motor’s “infinite”
character and the possibility of applying symmetry boundary conditions, thus limiting
the solution region and speeding up the calculations even further. Two dimensional
calculations assure sufficient accuracy for the performance prediction of a standard rotary
motor. However, the LIM is not symmetrical. The phenomena occurring in the front end of
the motor are different than in the receding end and therefore the symmetry boundaries
cannot be used, which leads to longer calculation times.

3.1. Analytical Solutions Applied for the LIM Evaluation

LIMs are made of several major components such as the magnetic steel primary core,
distributed three-phase copper winding with a three-phase excitation terminal, aluminum
top cap, and magnetic BI. The primary is finely laminated and during LIM electromagnetic
calculations, for simplicity, the conductivity of the primary can be set to zero. However,
the BI conductivity cannot be assumed as zero because the BI is usually only coarsely
laminated—mainly for economic reasons. Instead, for the case of the slab-shaped BI, the
BI conductivity must be set to its true material value and a respectively lower value for
the case of coarse laminations. This value of conductivity is usually determined based
on matching the test LIM’s longitudinal performance with the simulation model results.
Theoretical methods of assessing the BI conductivity have been proposed but, so far, they
only serve as a guidance for the empirical derivation. Figure 4 shows the three-dimensional
model of the LIM [29].

 
 

(a) (b) 

Figure 4. Three-dimensional model of the LIM [29].

The development of analytical methods aimed at solving the LIM problems (separation
of variables method, integral equations method) took place in the 1970s. Currently, the
main method of analysis is Finite Element Analysis (FEA). Many recently published papers
contain both analytical and numerical solutions, where the analytical calculations have
mostly been made for validating the results of the numerical models.

Despite significant progress in numerical algorithm efficiency and modern computer
speeds, the 3D simulation models of large LIMs are still prohibitively time consuming to
solve. The following simplifying assumptions are usually made to the LIM to simplify the
calculation process:

1. A 2D analysis can be used;
2. The iron magnetization curve is linear;
3. The conductivity of the reaction rail is constant;
4. Motion in the x-direction only is allowed.
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The equation that describes the electromagnetic field distribution within the 2D LIM
model has the following form:

∂2 A
∂x2 +

∂2 A
∂y2 = μ(−J + jωσA + σvx

∂A
∂x

) (1)

where A is the z-component of the magnetic vector potential, J is the z-component of current
density, ω is the angular frequency, vx is the velocity in the x-direction, and σ and μ are the
conductivity and permeability, respectively.

Analytical solutions for the evaluation of the LIM properties have been discussed in many
papers. In most of them, the standard mathematical approach to LIM modeling is to define
the currents of the primary windings as sinusoidally distributed current sheets [17,30–35].

Mathematical and experimental research of coils or filaments moving above a con-
ducting plate (limited to DC excitation) were performed in the majority of the Maglev
application studies [36–40]. The system of a stationary filament or coil with AC excitation
above a conducting plate has also been studied [41]. In [42], a method of LIM winding
optimization has been discussed.

The finite length of a LIM results in a number of well-recognized effects such as the
previously mentioned highly speed dependent end effect responsible for the demagnetiza-
tion of the front end of the machine [17,35]. The end effect has been described by many
authors. One description in particular [26], based on an average model of the non-saturated
LIM and later expanded to include saturation [2], has been adopted for practical, real-life
LIM control algorithms [29,43].

The end effect causes a drop in the effective magnetizing inductance [44,45] and a total
motor impedance, which results in a more complex LIM control scheme [43]. Analytical
equations defining the end-effect induced magnetizing inductance correction factor are
derived in [46]. Extensive studies on the compensation of the magnetizing inductance,
reported in [29], propose the adaptation of traction LIM control methods to the depth of
demagnetization of the machine in real time. Correction of the end effect for vector controls
was also proposed by others, as in [43] and [46], with the equivalent circuit of the LIM
based on the formula proposed by Duncan [46]. The equivalent circuit concept developed
by Duncan inspired many subsequent investigations [47–52]. In [43] and [53], the control
circuit is based on d-axis and q-axis equivalent circuits with parameter correction based on
Duncan’s method. A fuzzy logic controller is suggested in [54] based on the flux linkages
of the primary and secondary. LIM performance calculations of both the motoring and
braking forces, impacted by the end effect, based on the space-vector equivalent circuit of
the LIM, are calculated in [55–57]. Applications of the field-oriented controls and a model
reference adaptive speed observer for LIMs are also reported in [58,59], respectively. The
transverse edge effect and the saturation effect are added to Duncan’s model in [60]. The
last examples prove that any improvement in Duncan’s approach have a high potential to
enhance subsequent control schemes.

Experimental measurements carried out on a traction LIM demonstrate that the leak-
age inductance can be, depending on the design of the reaction rail, as high as ten percent
of the secondary inductance. The effects of the secondary leakage become significant as the
LIM speed increases. The non-immediate current response of the RR due to its non-zero
leakage inductance causes the demagnetization to be less pronounced. The assumption,
in [26], that only the constant magnetizing current of the primary elicits the RR current
response has been adapted by many researchers. In [28], a more accurate assumption is
made. It is observed that the induced current in the RR is excited by the sum of the aver-
aged primary magnetizing current and the RR induced current. The resultant steady-state
current response is obtained by an application of a recursive algorithm converging to a
finite sum of the infinite series. The final form of the sum of the infinite series represents the
magnetizing current correction for the equivalent LIM circuit. As has been demonstrated
by comparing experimental results with measurement, a derived magnetizing inductance
correction factor predicts the LIM performance much better.
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The Fourier series method was applied in [61,62] for the LIM evaluations. Instead of
simplifying the primary excitation to a form of current sheets, the authors modeled the
primary excitations as discrete coils. The discrete coils approach leads to a more intuitive
and realistic model of the LIM and allows for the representation of spatial harmonics
arising from a discrete current distribution. Frequency domain solver FEA simulations
are also used here to validate and cross check the analytical model results. This is im-
portant as it establishes the practicality of the FEA frequency domain computation as a
preferred replacement for the time-consuming transient computations. First, the evalu-
ation is done by analytically solving a simple pair of filaments moving relative to a RR
constructed of aluminum and iron plates and carrying a harmonic current. This solution
becomes a building block for modeling a complete LIM. Because of speed and convenience,
the analytical model is a practical and efficient way of rapidly assessing the impact of
design changes on the performance of the LIM and helps to qualify the adapted FEA
solution method.

Figure 5a shows a steady-state 2D calculation model of a discretely distributed coil
with AC current excitation at an arbitrary frequency, moving over and in parallel to a
conducting plate with an arbitrary speed [61], and Figure 5b shows the extension of
this model.

 

Figure 5. Two filaments 2x0 apart, placed at a distance g above the conducting plate of thickness
d [61] (a). The back iron and primary iron are additionally modeled as two infinite layers with zero
conductivity and infinite permeability (b).

The approach presented in [61] is similar to the algorithm given in [63,64], where
Fourier transform and a mixture of magnetic scalar and vector potential formalism were
used. However, the solution presented in [61] makes use of the Fourier series instead
of transform and of vector potential formalism without the need of scalar potential to
achieve the desired results. The analytical treatment of a 2D LIM model with a primary
source moving relative to a conducting plate has many applications, including Maglev and
traditional linear propulsion machines.

The analytical approach presented in [62] is similar to the work first presented in [32]
and [61], where models of the LIM with current sheet finite primary excitations were
presented using Fourier transforms and series methods, respectively. Two papers, [61,62],
satisfy the analytical solution for the entire LIM by referring to a vector potential formalism
only. The validation of results obtained in [61] and [62] was performed by means of FEA,
described in the next chapter.
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3.2. FE Methods Applied for Linear Induction Motors

In recent decades, LIM modeling and analysis started relying more on FEA simulations
instead of analytical solutions [55,65–69]. Electromagnetic FEA calculations are crucial to
optimizing LIM system performance as they can provide results necessary for predicting
the end-effect shaped mechanical characteristic—force versus speed. This characteristic
is crucial in designing efficient LIM controls as well as traction vehicle functionality. To
simplify the FEA model and to minimize the time to numerical solution, the symmetrical
three-phase current is typically used. In addition, the non-linear magnetizing characteristics
of the LIM primary and back iron are simplified by linearization.

The most typical LIM analysis is the static analysis. One of the challenges that must
be solved in the numerical FEA calculation is the proper evaluation of the penetration of
the electromagnetic field into the moving and conducting reaction rail. Such modeling and
analysis can be extremely difficult and time consuming as it requires a proper choice of the
FE mesh, which depends on the velocity of the LIM and slip [70–72].

Because of non-linearity of the magnetizing characteristics and the continuous quasi
steady state of LIM operation, time domain (transient) analysis must be performed to
achieve a steady state. A transit LIM is a large machine, more than 2 m in length and over
60 cm wide, and even for 2D calculation it demands an extremely high number of mesh
nodes. At high speeds, to achieve satisfactory computation accuracy, the time step of a tran-
sient analysis must necessarily be small and with the addition of a large distance the LIM
must traverse before the steady state has been achieved, which significantly increases the
solution space, the transient solution often becomes impractical. To overcome this problem,
a recently developed feature of the Maxwell2D software, the translational motion periodic
Master-Slave boundary, has been used to make the necessary calculations to render the
LIM performance characteristics [73]. A time decomposition method, patented by ANSYS,
is yet another attempt to improve on a solution time in electromagnetic transient analysis
but even with these advances the time to solution for large a LIM is prohibitively long.

The analytically calculated forces acting on a coil in the horizontal and vertical di-
rections as a function of frequency for different velocities are shown in Figure 6. The
comparison between the analytical results and the FEA simulations, performed with COM-
SOL and ANSYS Maxwell2D software, shows an exceptionally good agreement.

 
(a) 

 
(b) 

Figure 6. Average horizontal force density (a) and average vertical force density (b) acting on the coil
as a function of frequency for different LIM velocities [61].

LIM 2D models are shown in Figure 7. The analytical approach presented in [62]
applies to a simplified 2D LIM model, as shown in Figure 7a. The source vector potential is
obtained by summing vector potentials of all current-carrying wires of the LIM winding.
The real coils of the motor are modeled to retain their position and currents and to form a
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complete three-phase, six-pole winding. The modeled winding is a two-layer type, but the
analytical model treats the respective top and bottom layer currents as positioned at the
same distance from the conducting plate. This was done to make sure that the magnetic
reluctance for currents corresponding to two different layers but located in the same slot
are identical, which closely approximates the conditions of the real motor.

 

Figure 7. Evolution of 2D models of the LIM used for the numerical field evaluation. Idealized coils
of a three-phase, six-pole machine [62] (a). Full model of the LIM [70] (b).

To further investigate and evaluate the applicability of the analytical solution of a
simplified model as a LIM performance prediction tool, a 2D LIM model with teeth and
a finite primary, as shown in Figure 7b, was developed and calculated using the FEA
simulations.

For comparison, as shown in Figure 8, the performance characteristics obtained by
the analytical approach were overlaid with the results generated by FEA simulations
(COMSOL and ANSYS Maxwell2D). The agreement between these different calcula-
tion methods confirms the accuracy of the applied analytical and numerical methods
and models.

The electric vector potential formalism was chosen for the calculations of the back
iron power loss [29,74,75] (see Section 4.3). The same formalism was used to determine
the magnetic field in the end regions of the induction motors as well as the motors’
impedances [74,75]. This approach was also used for the formulation of the 3D equation for
the scalar potential describing distribution of the electromagnetic field. The equations were
solved analytically (separation of variables method) and numerically (FEA), which made it
possible to determine the impedance of the windings for different boundary conditions
defined on the surface of the region of analysis.

198



Energies 2021, 14, 2549

 
Figure 8. Average thrust per unit depth versus slip frequency for a LIM from Figure 7 [62].

4. Selected Problems of LIM Applications

The following section presents some of the LIM problems that were addressed and
solved by the authors. The subject transit LIM is a six-pole, double-layer back wound
motor with a pole pitch of 45 cm, a 9 mm mechanical gap, and a 13.5 mm magnetic gap.
The reaction rail is made of a 4.5 mm thick aluminum screen over an inch-thick back iron.

4.1. LIM Performance Control; Adaptive Control

The flux vector-oriented control is one of the most advanced and widely accepted meth-
ods used for the rotary machine torque control. It was first conceptualized by Blaschke [76]
in 1972 and has been a subject of interest of many researchers ever since, e.g., [77–85].
With progress in microprocessor techniques and power electronics, the flux vector-oriented
control has become a method of choice for most industrial applications, especially in the
development of electric traction propulsion systems, historically based mostly on DC mo-
tors, in an effort to replace them with the much less expensive and more robust induction
machines. Vector control signifies the independent, or decoupled, control of flux and
torque of the motor through coordinated change in the supply voltage and frequency [83].
Flux level control is essential to avoid saturation and minimize core losses under various
steady-state operating conditions. As the flux variation tends to be slow, especially with
the current control, maintaining constant flux may provide precise torque response and,
consequently, a desired speed response.

It is possible to distinguish three flux linkages in the induction machine complex form
equations. These flux linkages are the stator flux linkage, the main, or air gap, flux linkage,
and the rotor flux linkage. The current decoupling network simplifies only for the rotor
flux orientation, whereas the voltage-decoupling network simplifies for the stator flux
orientation. Only for a constant rotor flux orientation, the mechanical characteristic does
not have a peak value and is a straight line. This linear characteristic is ideal for control
application. For a given stator flux in the flux-weakening region and under steady-state
operation, however, the stator flux is superior in terms of torque per unit stator current.

Direct Torque Control (DTC) is yet another vector control technique. It was introduced
by Depenbrock [84,85] and Takahashi [86] and has been developed by others [87,88]. The
fundamental premise of DTC is that a specific DC-link voltage and a specific stator flux
establish a unique frequency of inverter operation. This is because the time required by the
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time integral of the DC-link voltage to integrate up to the reference flux level is unique and
represents the half-period time of the frequency of operation. Despite its simplicity, DTC
can produce a fast torque response and is robust with respect to transient perturbations and
motor parameter detuning [14]. It must also be noted that beside the already mentioned
advantages, DTC does not use a modulator and does not employ current control loops,
inherent to the vector-oriented flux control. However, during steady-state operation, a
pulsation of torque, flux, and current may occur, affecting speed estimation and increasing
the acoustic noise. This method is not established so well as the flux-oriented control and
has not been applied in LIM controls; however, based on the up-to-date progress in its
development, it shows exceedingly high application potential, particularly in the area
where parameter sensitivity can be an issue.

Industrial applications of LIM motors require a relatively simple control algorithm
because the parameters of industrial process LIMs are well known or can be measured
in an off-line experiment. This is not so in urban transit applications since the motors
are usually required to operate at peak thrust and the main parameters responsible for
the precise peak tracking—the rotor resistance, R2, and the mutual inductance, M—vary
in a very wide range. Thus, the controller of a transit traction LIM should be capable of
tracking the maximum available thrust, independent of the air-gap length or the reaction
rail construction properties and temperature. Several LIM control methods have been
reported thus far, most of them based on the concept of vector control [35]; however, none
of them attempt to resolve the parameter adaptation issue. To solve this problem a modified
flux vector control technique has been applied [29,43].

The thrust calculated in the rotor flux reference frame compares to measurement only
if the rotor parameters, R2 and L2, are correctly estimated and their values do not change
due to physical or environmental conditions. When these conditions are met, the secondary
flux aligns with a d-axis and the back Electro-Motoric Force (EMF) naturally aligns with a
q-axis. Should the rotor resistance, R2, change its value from the set point, the secondary flux
would become misaligned and so a non-zero, q-axis component would develop; this means
that more voltage is demanded from the supply inverter. This increased voltage generates
a negative EMF d-component by advancing the rotor flux. Although the magnitude of
the primary current vector remains constant and the secondary flux has increased, the
angle between the two vectors has changed and is no longer optimal. A change of the
machine secondary resistance from the reference value detunes the controls and a non-zero
d-component of the EMF is generated. The optimal operation can be achieved again with
the adapted rotor resistance reference value but at a different synchronous frequency. For
the magnetizing inductance change, regardless of the cause, e.g., change in air gap, change
in the reaction rail geometry, or change in the lamination coarseness or magnetization
characteristics of the RR, a q-component of the secondary flux is generated. The induced
voltage develops a negative d-component, such as in the case of the secondary resistance
detuning. If the value of the reference magnetizing inductance is corrected to equal that
of the motor, the controls would become tuned in again and a developed thrust would be
optimal, although it would be lower. Since the secondary resistance compensation loop
that corrects a d-component of the induced voltage is active, the secondary flux will be
regulated to align with the d-axis.

To verify the above parameter compensation control concept in the simulation soft-
ware, a d–q model of the LIM is first derived, see Figure 9. This LIM signal network clearly
shows the impact of parameter detuning on the rotor flux and slip frequency estimation.
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Figure 9. Rotor flux-oriented control LIM model [29,30].

To correlate the model and control variables of the d–q system with the real-time three-
phase values, standard Clarke and Park transformations are applied [17].
Figure 10a,b shows the simulated response of the system to a step change of R2 and
M both with and without the adaptive compensation control loops.

 
(a) (b) 

Figure 10. Response to a step of the secondary resistance R2 (a); response to a step of the mutual inductance M (b) [29].

The adaptive algorithm improves the performance of the system by a significant mar-
gin by improving the mechanical output. The proposed algorithm successfully addresses
the problem of LIM parameter detuning while preserving all the positive features of the ro-
tor flux referenced vector control. The verification of the simulation results was performed
by comparing the calculated output with measurements from a transit test vehicle fitted
with the subject test LIM. This method exhibits the robustness necessary in severe transient
conditions associated with the application of the LIM in transportation systems.

4.2. LIM Driven from the Voltage Inverter

In all typical LIM simulation models, the symmetrical three-phase current is fed into
the three-phase winding to simulate a constant current mode; however, this does not
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reflect reality when the LIM is driven from the voltage inverter. The differences in slip
versus thrust characteristics between the simplified approach and the approach where an
asymmetry of phase currents arises naturally from the real supply conditions are presented
in [70].

Typically, the LIM is powered from a PWM voltage inverter, converting thrust com-
mand into current at a desired frequency. However, as the phase impedances are unequal
and the three-phase currents differ in their phase and magnitude, the negative sequence
currents are produced leading to a decreased motor performance. In theory, if the LIM
phase impedances were known, the phase currents could be equalized, although not en-
tirely, by a proper phase voltage control, but at a price of increased voltage harmonics.
The electromagnetic fields shown below (Figure 11) are calculated considering the natural
asymmetry of phase currents under symmetrical voltage excitation.

 

Figure 11. Magnetic field distribution within the LIM [70].

As can be seen from Figure 11, the magnetic field shows significant asymmetry on
both ends of the machine. This results in asymmetric coupling and an asymmetric back
electromotive force that leads to unequally coupled impedances and the asymmetry of
phase currents. Because the phase currents are magnetically coupled with one another and
additionally coupled with the induced currents of the reaction rail, these impedances are
frequency and speed dependent; thus, their determination can be very involving.

The exemplary performance characteristics of the subject LIM in current and voltage
modes for different speeds are shown in Figure 12.

(a) (b) 

Figure 12. LIM characteristics obtained for the current supply (I = 550 A) (a) and the voltage supply (V = 460 V) (b) [70].

The characteristic increase of peak-thrust slip frequency that can be seen in the figure
above results from the end-effect induced magnetizing impedance change. As can be seen
from above figure, it is important to account for the asymmetry of phase currents when
determining the LIM performance. To do so, the electromagnetic transient FEA simulation
with the symmetrical three-phase voltage source would have to be used. However, that
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would become prohibitively time consuming due to a need of remeshing a large solution
space at every time step. Alternatively, the quasi-steady-state transient solution can be
achieved by simulating in the frequency domain but only if the software allows for the
modification of Ampere’s law.

4.3. Losses in the Reaction Rail

In order to determine the transverse effects of the current flowing in the reaction
rail, another numerical FE model should be applied. This can be done using the electric
vector potential T, defined by the formula rotT = J, where J denotes the current density
vector [74,75]. The differential equation for the electrical vector potential can be written as
follows (movement only in x-direction is allowed):

∂2T
∂x2 +

∂2T
∂y2 = σ(

∂B
∂t

+ vx
∂B
∂x

) (2)

Solving Equation (2) with different values of σ, vx, and f, it is possible to calculate the
current density distribution (and other important parameters of the LIM, such as power
losses and forces) for any combination of these parameters. Figure 13 shows an example of
the current density distribution in the aluminum rail of the LIM for different slip values of
constant frequency.

  
(a) (b) 

Figure 13. Current density distribution in the rail of the LIM with constant frequency and different slip values [29].

The electric vector potential method can also be applied for the calculation of eddy cur-
rent distribution in the copper sheet of the rotor due to skewed armature slots
(Figure 14a) and for the analysis of influence of the rotor slits on the eddy current distribu-
tion in the rotor of rotating induction machines (Figure 14b).

  
(a) (b) 

Figure 14. Eddy current distribution in the copper sheet of the rotor due to skewed armature slots (a).
Influence of the rotor slits on eddy current distribution in the rotor (b) [89,90].
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The method presented here has a broader meaning. It is a practical tool that enables
the analysis of the power losses in the LIM reaction rail and their minimization. Similar
results have also been presented in [55].

4.4. Real-Time Temperature Rise Prediction of a Traction LIM

The enclosed structure of the LIM primary, its continuous movement over the reaction
rail, and a large gap between the primary and the reaction rail effectively isolate the
primary from the heat flux generated in the RR. For all electric and electronic components
and devices for which the heat losses can be determined solely from the electric current
measurement, such as cables, inductors, relay coils, linear motors, actuators, etc., the
maximum nominal temperature rise above ambient can be directly associated with the
value of nominal current. However, the device’s heat-producing current often varies, due
to load changes, ranging from zero to values exceeding the value of the nominal current
by a large factor. Such complex load cycles can produce highly variable thermal cycling
and result in uncontrolled over-temperature, which negatively impacts the life cycle of a
device. During the acceleration and deceleration of a LIM-powered electric traction vehicle,
the instantaneous current of the motor exceeds, by a high margin, the nominal thermal
value and then decreases below that value during coasting and drops to zero at station
stops, therefore undergoing severe thermal cycling. The basic heat equation describes the
balance between the dissipated, stored, and radiated heat. The dissipated heat will be
partially transferred into the surrounding ambient and partially stored in the heated device
by increasing its temperature. So long as the heat power is constant, the temperature rise
will achieve a maximum value of ΔTmax, and the thermal transient state will be described
by the following equation [91]:

ΔT = ΔTmax

(
1 − e−

t
τ

)
+ ΔT0e−

t
τ (3)

where ΔT0 is the temperature rise over ambient at t = 0, ΔTmax is the maximum temperature
rise over ambient for t → ∞ , and τ is a characteristic constant (thermal time constant).

Equation (3) is frequently used to determine an initial temperature rise estimation
of a device undergoing thermal cycling by solving it for the thermal cycle average rms
current. However, this approach leads to an error in temperature prediction as it does not
account for the temperature dependence of a heat power source. This problem was solved
in [91] by correcting and then solving the conventional differential equation/algorithm and
providing an exact solution that utilized a single heat-run-test data point. The temperature
prediction performance of the basic and improved equations was analyzed by calculating
the temperature rise of a linear motor subjected to a typical, nominal service duty cycle.
The simulation took into consideration the result of a thermal test performed during a
thermal qualification of the subject LIM. The simulation results were further compared
against the results of temperature measurement taken from a thermal sensor imbedded in
a production LIM’s winding while operating the LIM-powered vehicle with the nominal
load on the existing Vancouver Expo line system. The experimental data in the form of
motor temperature and phase current were collected and overlayed with the simulation
results. The results (see Figure 15) confirm that the improved algorithm (blue) predicts
the LIM temperature rise (green) with much better accuracy than the basic algorithm
(red). The measured temperature is still lower than the improved prediction, mainly due
to an additional cooling effect resulting from the increased convection of a moving train.
Because of a high degree of prediction accuracy and minimal application cost, the improved
software algorithm found practical application and had been installed fleet wide.
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Figure 15. Comparison of different algorithms of temperature rise versus measured temperature
results [91].

The efficiency of a traction LIM motor, as has already been mentioned, is rather low
and in the case of a loss of forced cooling high losses can drive the temperature of the center
of the winding quickly to above the maximum allowed level. Precise detection of this
process is important as it allows the train control system to maintain the LIM in operation
for as long as possible without compromising the insulation life cycle. Figure 16 shows
the typical dependencies of power factor and efficiency for a traction LIM applied on most
urban transportation systems in the world. These results were confirmed by experimental
measurements taken by one of the authors for the motor, which now operates on a Rapid
KL Rail System in Kuala Lumpur, Malaysia. It characterizes similarly built traction LIMs
of comparable size and cooling efficiency.

 
Figure 16. Power factor and efficiency curves for one example of a traction LIM.

4.5. Superconductig LIM

A typical linear induction motor with an iron core and copper windings can only
produce limited thrust because of the saturation of the iron core and, in particular, its
teeth. Superconducting Linear Induction Motors (SLIMs) are a promising alternative to
conventional traction solutions. A novel high-temperature superconducting (HTSC) SLIM
was proposed in [26]. This SLIM uses stacks of second generation (2G) superconducting
tapes. Such a SLIM, capable of high ampere turns, can generate a strong magnetic field
and, consequently, exceptionally large thrust as it can achieve high flux densities over wide
air gaps. Commercial 2G HTS tapes utilizing yttrium- and gadolinium-based ceramics
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(YBCO) can operate up to critical temperatures of 77 K, which can be provided by liquid
nitrogen refrigerants. They can carry a critical current of 600 A at 77 K and self-field.
These properties make 2G tapes a promising material for use in power electric equipment,
including rotating and linear induction machines [23–25].

The conventional variant of such a SLIM has already been analyzed in [29,61,70]. The
only additional component of the SLIM is the cryostat, as in [24].

To determine all the crucial parameters of the SLIM, the FEA has been applied. One
of the challenges that must be solved is a proper evaluation of penetration of the strong
electromagnetic field into the moving and conducting reaction rail. Such modeling and
analysis can be extremely difficult and time consuming as it requires a proper choice of the
FE mesh (depending on the velocity and slip) [70]. Because of the strong saturation of the
laminated magnetic core, classical LIM construction methods may be put into question.

The current density within the HTSC coil was modeled according to the power law
for superconducting windings [14]. Figure 17a shows an example of the magnetic field
distribution within the subject SLIM, and Figure 17b shows the thrust characteristics for
different speeds.

 
(a) 

 
(b) 

Figure 17. Magnetic field distribution within the end part of the SLIM (a). SLIM characteristics for
different speeds (b) [26].

As can be seen from the figures above, the superconducting LIM has significantly
increased thrust values compared to a conventional solution. An important computational
problem here is the correct modeling of the superconducting windings in the LIM, as well
as the correct consideration of the strong saturation of the magnetic circuit.

5. Conclusions

The paper provides an overview of different linear transportation systems and focuses
on the applications that use linear induction motors. Against this background, the authors
have presented and discussed new practical methodologies capable of solving some impor-
tant transportation LIM problems. Despite the LIM’s lower efficiency, when compared with
the rotary motor, for many applications the LIM system is a superior transport solution
that successfully competes against the conventional, rotary-motor-based alternative. This
is because the efficiency is a broader concept and the efficiency of a transportation system
must be analyzed in the context of the application. For elevated, driverless automated

206



Energies 2021, 14, 2549

systems, the LIM is indeed a superior solution because it does not rely on adhesion, has no
moving parts, and provides the lowest life cycle and operation and maintenance costs.

Based upon the experience gathered in the subject area of LIMs, the authors believe
that future research work should concentrate on increasing the motor efficiency by improv-
ing the construction materials and production technology and researching the application
of high-temperature superconductivity. This progress must be accompanied by the im-
provement in efficiency of predictive algorithms and more efficient FEA methods.

LIMs have been known and widely researched by the scientific community but mostly
as standalone electric motors. However, LIMs often work as parts of an overly com-
plex transportation system. Thus, future research should take into account the complex
interaction of the LIM with its specific system environment.
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