8,627 research outputs found

    Research on Multi-Agent Simulation of Epidemic News Spread Characteristics

    Get PDF
    The spread of news about an epidemic can easily lead to a social panic. In order to devise measures to control such a panic, it is necessary to consider characteristics of the spread of epidemic news, based on mechanisms at the individual level. In this paper, first, some features of multi-agent simulation are reviewed. Then a multi-agent simulation model of epidemic news spread (ENS) is designed and realized. Based on simulation experiments and sensitivity analyses, the influence of social relationships, the degree of trust in news of the epidemic, the epidemic spread intensity and the network structure of the epidemic news spread are studied. The research results include: (1) As the number of social relationships increases, the rate of spread of epidemic news rapidly rises, and the ratio of people who have heard the news directly decreases. The result is that the \'radiation effect\' of the epidemic news spread will be enhanced when the number of social relationships increases. (2) With the increase of the degree of trust in the news, the rate of spread of the news will also rapidly increase, but variation in the ratio of the people who have heard the news directly is not significant. This means that the \'radiation effect\' of the spread of the news does not change much more in relation to the degree of trust in the epidemic news. (3) The ratio of the people who have heard the news directly increases when the infection range increases (i.e. the spread intensity of epidemic increases), and vice versa. But the variation of the speed of the epidemic news spread is not significant. (4) When the network structure is assumed to be a small world network, the spread speed will be slower than that in a random network with the same average vertex degree and the forgetting speed will be faster than that in a random network with the same average vertex degree.Multi-Agent Simulation, News Spread, Small World Network , Epidemic

    The Impact of Network Flows on Community Formation in Models of Opinion Dynamics

    Full text link
    We study dynamics of opinion formation in a network of coupled agents. As the network evolves to a steady state, opinions of agents within the same community converge faster than those of other agents. This framework allows us to study how network topology and network flow, which mediates the transfer of opinions between agents, both affect the formation of communities. In traditional models of opinion dynamics, agents are coupled via conservative flows, which result in one-to-one opinion transfer. However, social interactions are often non-conservative, resulting in one-to-many transfer of opinions. We study opinion formation in networks using one-to-one and one-to-many interactions and show that they lead to different community structure within the same network.Comment: accepted for publication in The Journal of Mathematical Sociology. arXiv admin note: text overlap with arXiv:1201.238

    Equation-Free Multiscale Computational Analysis of Individual-Based Epidemic Dynamics on Networks

    Full text link
    The surveillance, analysis and ultimately the efficient long-term prediction and control of epidemic dynamics appear to be one of the major challenges nowadays. Detailed atomistic mathematical models play an important role towards this aim. In this work it is shown how one can exploit the Equation Free approach and optimization methods such as Simulated Annealing to bridge detailed individual-based epidemic simulation with coarse-grained, systems-level, analysis. The methodology provides a systematic approach for analyzing the parametric behavior of complex/ multi-scale epidemic simulators much more efficiently than simply simulating forward in time. It is shown how steady state and (if required) time-dependent computations, stability computations, as well as continuation and numerical bifurcation analysis can be performed in a straightforward manner. The approach is illustrated through a simple individual-based epidemic model deploying on a random regular connected graph. Using the individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing I compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level under a pairwise representation perspective

    Some Remarks about the Complexity of Epidemics Management

    Full text link
    Recent outbreaks of Ebola, H1N1 and other infectious diseases have shown that the assumptions underlying the established theory of epidemics management are too idealistic. For an improvement of procedures and organizations involved in fighting epidemics, extended models of epidemics management are required. The necessary extensions consist in a representation of the management loop and the potential frictions influencing the loop. The effects of the non-deterministic frictions can be taken into account by including the measures of robustness and risk in the assessment of management options. Thus, besides of the increased structural complexity resulting from the model extensions, the computational complexity of the task of epidemics management - interpreted as an optimization problem - is increased as well. This is a serious obstacle for analyzing the model and may require an additional pre-processing enabling a simplification of the analysis process. The paper closes with an outlook discussing some forthcoming problems
    • …
    corecore