2,587 research outputs found

    REDESIGNING THE COUNTER UNMANNED SYSTEMS ARCHITECTURE

    Get PDF
    Includes supplementary material. Please contact [email protected] for access.When the Islamic State used Unmanned Aerial Vehicles (UAV) to target coalition forces in 2014, the use of UAVs rapidly expanded, giving weak states and non-state actors an asymmetric advantage over their technologically superior foes. This asymmetry led the Department of Defense (DOD) and the Department of Homeland Security (DHS) to spend vast sums of money on counter-unmanned aircraft systems (C-UAS). Despite the market density, many C-UAS technologies use expensive, bulky, and high-power-consuming electronic attack methods for ground-to-air interdiction. This thesis outlines the current technology used for C-UAS and proposes a defense-in-depth framework using airborne C-UAS patrols outfitted with cyber-attack capabilities. Using aerial interdiction, this thesis develops a novel C-UAS device called the Detachable Drone Hijacker—a low-size, weight, and power C-UAS device designed to deliver cyber-attacks against commercial UAVs using the IEEE 802.11 wireless communication specification. The experimentation results show that the Detachable Drone Hijacker, which weighs 400 grams, consumes one Watt of power, and costs $250, can interdict adversarial UAVs with no unintended collateral damage. This thesis recommends that the DOD and DHS incorporates aerial interdiction to support its C-UAS defense-in-depth, using technologies similar to the Detachable Drone Hijacker.DASN-OE, Washington DC, 20310Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Research on improving maritime emergency management based on AI and VR in Tianjin Port

    Get PDF

    A Heterogeneous Swarm Solution for Disaster Reconnaissance: A Feasibility Study

    Get PDF
    The disaster mitigation process is dangerous to search-and-rescue (S&R) personnel. Organizations work to develop robotic technologies for disaster response. However, disaster robotics is often characterized by large, bulky, and expensive systems. The goal of this MQP is to analyze the feasibility of a simple, cost-effective heterogeneous robot swarm to map a disaster location for on-site S&R personnel. We designed a ground robot prototype that can be dropped by a drone. We tested collaborative algorithms to perform mapping of cluttered environments by both the ground robot and the drone. Our study also involves tests on durability and disposability of the droppable robot and scalability tests of the mapping algorithms

    Aerial Networking: Creating a Resilient Wireless Network for Multiple Unmanned Aerial Vehicles

    Get PDF
    The goal of this report is to design the groundwork of a wireless communications system between several Unmanned Aerial Vehicles (UAVs) that will help conduct Search and Rescue (SAR) missions. UAVs could help with these missions because they can provide aerial reconnaissance at low cost and risk. To maximize efficiency, the architecture of our ad hoc network includes several UAVs with cameras (drones) relaying their data through a central UAV called a mothership. Our specific objectives, which we successfully met, were to demonstrate the feasibility of such a network in the laboratory and to lay the groundwork for the physical implementation of the system, including the assembly of a motherboard and Wi-Fi transmitters that will perform the communication between the user and UAVs

    Developing Executable Digital Models with Model-Based Systems Engineering – An Unmanned Aerial Vehicle Surveillance Scenario Example

    Get PDF
    There is an increase in complexity in modern systems that causes inconsistencies in the iterative exchange loops of the system design process and in turn, demands greater quality of system organization and optimization techniques. A recent transition from document-centric systems engineering to Model-Based Systems Engineering (MBSE) is being documented in literature from various industries to address these issues. This study aims to investigate how MBSE can be used as a starting point in developing digital twins (DT). Specifically, the adoption of MBSE for realizing DT has been investigated, resulting in various literature reviews that indicate the most prevalent methodologies and tools used to enhance and validate existing and future systems. An MBSE-enabled template for virtual model development was executed for the creation of executable models, which can serve as a research testbed for DT and system and system-of-systems optimization. This study explores the feasibility of this MBSE-enabled template by creating and simulating a surveillance system that monitors and reports on the health status and performance of an armored fighting vehicle via an Unmanned Aerial Vehicle (UAV). The objective of this template is to demonstrate how executable SysML diagrams are used to establish a collaborative working environment between multiple platforms to better convey system behavior, modifications, and analytics for various system stakeholders

    A Trusted Platform for Unmanned Aerial Vehicle-Based Bridge Inspection Management System

    Get PDF
    Bridge inspection has a pivotal role in assuring the safety of critical structures constituting society. However, high cost, worker safety, and low objectivity of quality are classic problems in traditional visual inspection. Recent trends in bridge inspection have led to a proliferation of research utilizing Unmanned Aerial Vehicles (UAVs). This thesis proposes a Trusted Platform for Bridge Inspection Management System (Trusted-BIMS) for safe and efficient bridge inspection by proving the UAV-based inspection process and improving the prototype of the previous study. Designed based on a Zero-Trust (ZT) strategy, Trusted-BIMS consist of (1) a database-driven web framework with security features for bridge inspection management, (2) a mobile interface supporting the inspection data collection using UAVs, and (3) a mutual authentication protocol for the Internet of Things (IoTs). The server script language used to implement the web system was PHP and React Native was used for the mobile application development. The secure communication algorithm used server-side PHP and client-side JavaScript, and MySQL was adopted as the database. This paper provides an overview and details of Trusted-BIMS and demonstrates the overall process of bridge inspection using UAVs and applied technologies to the proposed platform. The result of this research will make an important contribution to the field of UAV-based bridge inspection. Further research can be conducted on refined implementations of security algorithms, more comprehensive security schemes, and machine learning technology to reduce human intervention

    Development of an Autonomous Aerial Toolset for Agricultural Applications

    Get PDF
    According to the United Nations, the world population is expected to grow from its current 7 billion to 9.7 billion by the year 2050. During this time, global food demand is also expected to increase by between 59% and 98% due to the population increase, accompanied by an increasing demand for protein due to a rising standard of living throughout developing countries. [1] Meeting this increase in required food production using present agricultural practices would necessitate a similar increase in farmland; a resource which does not exist in abundance. Therefore, in order to meet growing food demands, new methods will need to be developed to increase the efficiency of farming, thereby increasing yield from the present land. One way in which this problem can be solved is through the usage of autonomous aerial systems to scout for problems which could potentially affect the crop yield – such as nutrient deficiency, water stress, or diseases. Once located, this data can be used to determine the proper treatment for the field to alleviate the problem. Through this process, resources can be reduced to the required minimum, while problems affecting the crop yield will still be corrected, allowing greater production with a lower amount of resources. This project on the application of Unmanned Aerial Vehicles (UAV’s) to the field of agriculture consisted of two phases. First, a study was conducted on the required background to define the problem statement and what solutions were available for this application. This consisted of first defining the operations within agriculture where UAV’s could be used to increase efficiency, and then the sensors, hardware, and software these operations would require. The remainder of the project consisted of evaluating the tools which could be utilized to develop such a solution. Primarily, the project focused on software tools – programming software, simulation environments, and machine learning algorithms – which could be utilized by future students to develop a functional hardware and software toolchain for the research of autonomous systems for agricultural applications. After analyzing these development solutions, a set of tools was selected which showed promise in the creation of a functional solution. It was demonstrated that the core functions required for a UAV-based agricultural solution – navigation, perception, and feature detection – could be implemented within these systems, implying that they could be integrated into a full solution. As the tools were selected to ensure the developed algorithms would be transferable to physical platforms, this additionally supports a physical system could also be developed. The present work is part of the Autonomous Systems Lab which belongs to the WKU Center for Energy Systems. The author hopes that this project contributes to the advancement of the curriculum within the engineering department and serves as a foundation for future students developing autonomous systems, perception, and applied artificial intelligence at WKU

    Applications of Federated Learning in Smart Cities: Recent Advances, Taxonomy, and Open Challenges

    Full text link
    Federated learning plays an important role in the process of smart cities. With the development of big data and artificial intelligence, there is a problem of data privacy protection in this process. Federated learning is capable of solving this problem. This paper starts with the current developments of federated learning and its applications in various fields. We conduct a comprehensive investigation. This paper summarize the latest research on the application of federated learning in various fields of smart cities. In-depth understanding of the current development of federated learning from the Internet of Things, transportation, communications, finance, medical and other fields. Before that, we introduce the background, definition and key technologies of federated learning. Further more, we review the key technologies and the latest results. Finally, we discuss the future applications and research directions of federated learning in smart cities

    A survey of free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle

    Get PDF
    The objective of this paper is to analyze free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle (UAV). Free software is the best choice when the reduction of production costs is necessary; nevertheless, the quality of free software may vary. This paper probably does not include all of the free software, but tries to describe or mention at least the most interesting programs. The first part of this paper summarizes the essential knowledge about UAVs, including the fundamentals of flight mechanics and aerodynamics, and the structure of a UAV system. The second section generally explains the modelling and simulation of a UAV. In the main section, more than 50 free programs for the design, analysis, modelling, and simulation of a UAV are described. Although the selection of the free software has been focused on small subsonic UAVs, the software can also be used for other categories of aircraft in some cases; e.g. for MAVs and large gliders. The applications with an historical importance are also included. Finally, the results of the analysis are evaluated and discussed—a block diagram of the free software is presented, possible connections between the programs are outlined, and future improvements of the free software are suggested. © 2015, CIMNE, Barcelona, Spain.Internal Grant Agency of Tomas Bata University in Zlin [IGA/FAI/2015/001, IGA/FAI/2014/006
    • …
    corecore