
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2012

Aerial Networking: Creating a Resilient Wireless
Network for Multiple Unmanned Aerial Vehicles
Anastasios Vafeiadis
Worcester Polytechnic Institute

Archibald Alexander Owen
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Vafeiadis, A., & Owen, A. A. (2012). Aerial Networking: Creating a Resilient Wireless Network for Multiple Unmanned Aerial Vehicles.
Retrieved from https://digitalcommons.wpi.edu/mqp-all/2412

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2412?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2412&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Aerial Networking:

Creating a Resilient Wireless Network for

Multiple Unmanned Aerial Vehicles

A Major Qualifying Project
Submitted to the Faculty of

Worcester Polytechnic Institute
In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science

Prepared by:

Archibald Owen

Anastasios Vafeiadis

Advisors:

Professor Alexander Wyglinski

Professor Taskin Padir

Sponsor:

The MathWorks Inc.

April 26, 2012

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer

review.

AW1-MQP-WND3

Unmanned Aerial Vehicles, Software-Defined Radio, Ad Hoc Wireless Networks

I

Abstract

In this report, we present the foundations for a wireless communications system between

several Unmanned Aerial Vehicles (UAVs) that will facilitate their mission of Search and

Rescue (SAR). This goal was chosen because the need for capable SAR crews is an ever-present

requirement in the modern world. To accomplish their mission, these crews need knowledge of a

disaster area or the locations of missing people. UAVs possess the ability to acquire this

knowledge safely from above the search area and relay it to a user. In order to increase

efficiency, a group of UAVs equipped with cameras (drones) can be used and relay their data

through a central UAV called a “mothership.” Such a system increases the search area while

minimizing the risk to the rescuers. It could also be adapted to many other functions, such as law

enforcement or research. For this project, we propose creating the initial stages of a mobile ad

hoc network that enables the separate UAVs to interact, coordinate SAR efforts, and transmit

information to the user. Our specific goals are to demonstrate the feasibility of such a network in

the laboratory, simulating transmission between different nodes while accounting for possible

errors and interference. We also define the groundwork for the physical implementation of the

system, including the assembly of a motherboard and Wi-Fi transmitters that will perform the

eventual communication between the mothership, drones, and user. The long term vision for our

wireless network will be one that can handle many of the problems encountered on multiple

mobile platforms moving in various formations. These problems include implementing a

medium access control (MAC) protocol, the ability to add drones in real-time or account for ones

that go out of range, and manage spectrum allocation for the different users. Thus, our work is

the first step towards implementing a fully-functional UAV ad hoc network that utilizes the

flexibility of software defined radio to improve efficiency and safety while performing a desired

mission.

II

Executive Summary

The need for capable SAR crews is an ever-present requirement in the modern world.

From large-scale events like earthquakes to small-scale events like missing hikers, there is

always the possibility of a disaster or emergency that will require search and rescue efforts to

help save lives and recover from the event. The number of catastrophes – both man-made and

natural – where the efforts of first responders were stunted by physical obstacles is as bleak as it

is long. Hurricanes, bombings, fires, natural gas explosions, flooding, or large-scale construction

failure; the list is endless, and all can pose unique and cumbersome restrictions on the progress

of the attending personnel.

While techniques for search and rescue have improved over the years, new technology in

many instances could have aided the recovery efforts of the affected society. Among those the

most promising of these is the use of Unmanned Aerial Vehicles (UAVs). UAVs have the

potential to expand the rescuers’ ability to assess the situation and search for individuals. Like

helicopters or planes, UAVs provide aerial reconnaissance that can help create an overall picture

of the situation. However, UAVs are cheaper than manned aircraft, they can stay airborne for

hours, and they often have high resolution cameras, making them useful tools. The application of

UAVs to SAR is thus of vital importance to saving more lives.

 The goal of this project was to develop resilient wireless communications between a

network of UAVs as seen in Figure 1. Using the concepts from software defined radio, the

problem of varying link quality will be resolved by devising a mechanism that would

continuously operate onboard the wireless node, sensing the radio environment and making

decisions that would allow the wireless node to maintain connectivity with the rest of the

network at all costs. Knowing the approximate trajectory and speed of each wireless node will

allow for the network to be prepared when the wireless node is finally out of range and loses

connectivity with the rest of the network.

III

Figure 1: Proposed UAV Network Architecture

 Software defined radio (SDR) has revolutionized the communications industry by

providing unprecedented levels of flexibility. SDRs implement nearly all radio functionality in

programmable components such as field programmable gate arrays (FPGA) and computers,

allowing them to be reconfigured without any changes to the radio hardware. This flexibility

makes SDR popular for applications such as rapid prototyping, scientific experimentation,

limited-production devices and cognitive radio. The software defined radio platform that was

used for this project was the Universal Software Radio Peripheral 2 (USRP2).

 In order to achieve our goal, we studied and evaluated our proposed implementations

using computer simulations. We used SDRs under lab conditions with the help of programming

tools such as MATLAB/Simulink as seen in Figure 2. Since the radio that was used had

inexpensive hardware and also due to the Doppler Effect on moving objects, the frequency offset

between the transmitter and the receiver had to be fixed. Techniques such as observing the Fast

Fourier Transform graph of the signal, squaring the signal and also locating its peaks were used

to address this issue.

IV

Figure 2: A USRP2 in AK318 and its related Simulink block

 Secondly, the process of frame synchronization had to be achieved. Frame

synchronization is when the receiving radio finds the beginning and end of each frame, or

segment of information, in the incoming binary message. This task was accomplished by using

purpose-built blocks in Simulink that located a unique marker sequence in each frame called a

Barker Code. Once this segment was found, the receiver could then begin decoding the received

binary message at the correct point. Decoding the message at the wrong point would create

errors, making correct frame synchronization very important.

 Lastly, the entire code had to be implemented on the Intel Atom Pico ITX motherboard as

seen in Figure 3 and tested in a controlled environment such as Harrington Auditorium, the

results of which can be seen in Table 1. Power and heating issues were faced and solved during

this step. Our results proved that the code could provide sufficient results within the constraints

of this project and that the default amplification of the radio could transmit any file type within a

range of 40+ yards.

V

Table 1: USRP2 Range Test Results

Transmitter Gain 40 Yards 25 Yards

32 dB Successfully received Successfully received

16 dB Successfully received Successfully received

8 dB Received "? ? @? @P ? @?

? ? A? ? A E@ ???"

Received

"? ?? ?? @? ?"

0 dB Received nothing Received nothing

Figure 3: Final setup of the motherboard interfacing with a USRP2

VI

Acknowledgements

This project would not have been possible without the help of certain individuals and

organizations.

 First, we would like to thank professors Alexander Wyglinski and Taskin Padir. Professor

Wyglinski was the primary advisor for this project, providing valuable advice, references,

knowledge, and technical expertise. His guidance was vital to the team as it carried out its work.

Professor Padir also played an important role as co-advisor, providing the team with additional

help and experience, especially from the robotics perspective.

 In addition, we would like to thank Worcester Polytechnic Institute and the Electrical and

Computer Engineering Department. WPI providing the opportunity to work on such an important

project; the ECE Department provided the hardware and software resources to carry it out.

 Lastly, we would like to thank The MathWorks Inc. Their support through a grant proved

helpful in purchasing most of our equipment. Their software MATLAB and Simulink also

powered our design, making them vital components of our project.

VII

Contents

Abstract .. I

Executive Summary .. II

Acknowledgements ... VI

Contents .. VII

List of Figures .. X

List of Tables .. XII

Chapter 1 – Introduction ... 1

1.1. The Importance of Search and Rescue ... 1

1.2. The Application of UAVs to SAR ... 3

1.3. Other Applications of UAV Networks ... 4

1.4. Current State of UAV SAR Systems.. 5

1.5. Issues with Current Systems .. 6

1.6. Proposed UAV System... 7

1.7. Report Organization ... 9

Chapter 2 – Overview of Search and Rescue and Communications Methods 10

2.1. Overview of Search and Rescue... 10

2.2. History of UAVs .. 12

2.3. Software Defined Radio (SDR).. 14

2.3.1 Universal Software Defined Radio 2 (USRP2) .. 17

2.3. Data Transmission .. 20

2.3.1. Received Signal Strength Indicator (RSSI) ... 20

2.3.2. Error Detection/ Repetition Coding ... 21

2.3.3. Spectrum Sensing .. 24

2.4. Software Selection for SDR Design ... 28

2.4.1. GNU Radio Companion (GRC) .. 28

2.4.2. Simulink Communications Blockset ... 30

2.5. Chapter Summary ... 32

Chapter 3 – Proposed Approach ... 33

3.1. Introduction .. 33

3.2. Evolution of Design ... 33

3.2.1. Initial Plans .. 33

3.2.2. Revised Plans ... 34

VIII

3.3. Project Logistics ... 36

3.3.1. Design Decisions ... 36

3.3.2. Project Costs .. 37

3.4. Final Project Deliverables .. 38

3.5. Summary .. 39

Chapter 4 – Implementation.. 40

4.1. Offset calculation and automatic detection .. 40

4.2. Performing Frame Synchronization ... 48

4.2.1. Performance Evaluation .. 51

4.3. Hardware Selection .. 58

4.4. Issue with Conversion from UDP to UHD... 62

4.5. Increasing Flexibility of Transmitter and Receiver Models... 64

4.5.1. Variable Length Messages ... 64

4.5.2. XML to Bits Conversion ... 67

4.6. Testing USRP2 Transmission Range ... 68

4.7. Implementation on Motherboard .. 71

4.7.1. Choosing the operating system .. 71

4.7.2. Power and Heat Issues ... 73

4.8. Summary .. 76

Chapter 5 – Conclusion and Future Work .. 77

5.1. Conclusions .. 77

5.1.1. USRP2 and Simulink Communications System .. 77

5.1.2. Motherboard Implementation .. 78

5.2. Future Work ... 79

References ... 80

Appendices .. 86

Appendix A ... 86

Characters to bits and back MATLAB file (Transmitter Side) ... 86

Appendix B. .. 89

Characters to bits and back MATLAB file (Receiver Side) .. 89

Appendix C ... 90

Alternative FramSync – Receiver Side ... 90

Appendix D ... 92

Encoding an ASCII file into a binary file .. 92

IX

Decoding a *.txt file using ASCIITable .. 92

Appendix E .. 94

Input an XML file for transmission (multiple frames) .. 94

CommsAbstract.xml file .. 94

APPENDIX F .. 96

MATLAB/Simulink Installation and Testing .. 96

X

List of Figures

Figure 1: Proposed UAV Network Architecture .. III
Figure 2: A USRP2 in AK318 and its related Simulink block ... IV
Figure 3: Final setup of the motherboard interfacing with a USRP2 .. V

Figure 4: A Helicopter Performing a Search and Rescue Mission in Grand Teton National Park

[60] .. 2
Figure 5: Theoretical Use of a UAV During a SAR Mission [62] ... 4
Figure 6: Linkoping University UAVs in action .. 6
Figure 7: Proposed UAV Network Architecture .. 8

Figure 8: NPS Search and Rescue Success Statistics [38] .. 11

Figure 9: USCG Search and Rescue Success Statistics [27] .. 12
Figure 10: A Predator Drone, One of the Most Famous UAVs .. 13

Figure 11: Block diagram of a generic Software Defined Radio Transceiver 16
Figure 12: XCVR 2450 Daughter Card used for transmission and reception, ranging between

2.4-2.5 GHz and 4.9-6.0 GHz ... 19

Figure 13: A USRP2 (left) VS USRPN210 located in Atwater Kent Laboratories...................... 19
Figure 14: Relating repetition coder input and output bit rates for fixed sample rate 21
Figure 15: Example of an eight bit to redundancy scheme ... 22

Figure 16: Example of a parity scheme where the eighth bit is an odd parity bit 23
Figure 17: PSK BER curve (from [46]) .. 24

Figure 18: Time representation of energy detection mechanism .. 25
Figure 19: Frequency domain representation of energy detection mechanism 25
Figure 20: Spectral correlation block diagram [5] .. 27

Figure 21: Implementation of Cyclostationary Feature Detector [5].. 27

Figure 22: GNU Radio Companion Overflow Example... 30
Figure 23: Block Properties of the SDRu Transmitter .. 31
Figure 24: Simulink Transmitter Block for frame synchronization .. 32

Figure 25: The observeFFT.mdl consisting of the SDRu block receiver and the FFT display

block .. 41

Figure 26: Example FFT plot at 2.42GHz .. 41
Figure 27: Simulink model of siggen.mdl for a generation and transmission of a signal 42
Figure 28: DBPSKRx.mdl; DBPSK protocol implementation on the receiver side 43
Figure 29: Example Plot of Received Data for DBPSK receiver with 10kHz offset 43
Figure 30: Example Plot of Received Data for DBPSK receiver with 20kHz offset. 44

Figure 31: Example Plot of Received Data for DBPSK receiver with -30kHz offset 44

Figure 32: Complete auto-offset Simulink block that was designed for this project.................... 45

Figure 33: Example of MagFFT block output, not adjusted to actual values. 47
Figure 34: Auto-frequency offset error performance for various offsets 48
Figure 35: Simulink model for frame sync (transmitter) .. 49
Figure 36: Frame Sync Simulink model (Receiver). .. 51
Figure 37: Number of samples between detected frame synchronization points 52

Figure 38: Example configuration of AWGN block to test repetition coder/decoder performance

... 54
Figure 39: Simulink model showing port properties for a repetition rate, k = 2 54

file:///C:/Users/Alex/Documents/WPI/11-12%20documents/MQP/final%20report.docx%23_Toc323149812

XI

Figure 40: Error performance of different code repetition rates in AWGN channel 55

Figure 41: Error performance of different code repetition rates compared to interleaver addition

in AWGN channel... 57
Figure 42: The Ubiquiti Wi-Fi Bullet M [69] ... 59

Figure 43: Pico ITX Motherboard [66] ... 60
Figure 44: ADATA 30 GB Solid State Drive [68] ... 61
Figure 45: MiniCircuits ZX60-33LN Amplifier [67] ... 61
Figure 46: MATLAB Version 2010b USRP2 Transmitter Block .. 63
Figure 47: MATLAB Version 2011a USRP2 Transmitter Block .. 63

Figure 48: mFindFrameStartTx.mdl - Text Message Transmitter Model 65
Figure 49: "Signal From Workspace" Block Settings .. 65
Figure 50: FrameSyncFinalv2.mdl – Text Message Receiver Model .. 66
Figure 51: FrameSync Subsystem .. 66

Figure 52: XML Conversion Flow Diagram .. 67
Figure 53: USRP2 Range Test Setup .. 69

Figure 54: Harrington Range Test Map .. 70
Figure 55: MATLAB running on the picoITX motherboard .. 72

Figure 56: CPU power consumption using the XUBUNTU's system monitor 72
Figure 57: CPU power consumption using the Debian system monitor 73
Figure 58: Final setup of the motherboard with the cooling fan installed and the USRP2

connected .. 74
Figure 59: Successful transmission of the XML file using an interpolation of 512 at 2.42GHz.. 75

Figure 60: Successful reception of the XML file using a decimation of 512 at 2.42GHz on the

picoITX motherboard.. 75

file:///C:/Users/Alex/Documents/WPI/11-12%20documents/MQP/final%20report.docx%23_Toc323149869
file:///C:/Users/Alex/Documents/WPI/11-12%20documents/MQP/final%20report.docx%23_Toc323149869

XII

List of Tables

Table 1: USRP2 Range Test Results ... V
Table 2: Applications of UAV Networks [61] .. 5
Table 3: Comparison chart between USRP and USRP2 [3] ... 18

Table 4: Initial Chronological Objectives ... 34
Table 5: Initial Project Timeline ... 34
Table 6: Revised Chronological Objectives ... 35
Table 7: Revised Project Timeline .. 36
Table 8: Hardware Purchases.. 37

Table 9: Functionality of Simulink blocks in the auto-frequency model 45

Table 10: Simulink initialization parameters for the auto-frequency offset model 46
Table 11: Functionality of blocks used in the Frame Sync model .. 49

Table 12: Initialization parameters for the frame synchronization model 50
Table 13: Hardware Specifications [66], [67], [68], [69] ... 62
Table 14: USRP2 Range Test Results .. 70

1

Chapter 1 – Introduction

1.1. The Importance of Search and Rescue

The need for capable SAR crews is an ever-present requirement in the modern world.

From large-scale events like earthquakes to small-scale events like missing hikers, there is

always the possibility of a disaster or emergency that will require search and rescue efforts to

help save lives and recover from the event. SAR crews are uniquely suited to these incidents

because of their training and equipment [56]. Normal police or fire departments are often not

capable of performing these missions as effectively, making specially trained crews a vital tool

in preparing for any potential emergency.

SAR missions span a wide variety of possible disaster scenarios. The general categories

are mountain, ground, urban, combat, and air-sea search and rescue. Each of these scenarios

poses different requirements and challenges for the rescue crews. For example, a mountain SAR

mission would often involve looking for a missing hiker [57]. This situation requires knowledge

of the terrain and conditions, the description of the missing hiker, and the last known location.

Such information can help the crew find the hiker faster and get him to safety. For example, the

National Park Service carried out an annual average of 4,090 SAR operations between 1992 and

2007 at a hefty price of $3.66 million each year [38]. The picture below demonstrates an NPS

SAR team in action.

2

Figure 4: A Helicopter Performing a Search and Rescue Mission in Grand Teton National Park [60]

In contrast, an urban SAR mission might involve responding to a large earthquake. An

earthquake could devastate a city, topple numerous buildings, bury many people, and start fires.

The SAR crew would need to assess the damage, determine the current state of the disaster area,

determine the number of casualties, and rescue and treat the survivors [58]. This knowledge

would hopefully help the crew save as many people as possible.

This urban scenario is much more resource intensive than a mountain rescue, but the two

share many similarities with each other and the other types of rescue. In both cases, the SAR

crews need basic knowledge of the area and their objective. This is often called situational

awareness, and it is very valuable because it helps the rescuers minimize further hazards,

coordinate their efforts, and more efficiently save lives. The end objective, whether it be one of

these scenarios or something else like finding a lost boater or looking for a downed fighter pilot,

is based upon the knowledge that rescuers have of the disaster. In addition, proper training and

equipment are also vital to a successful mission. Specialized equipment, along with the ability to

use it, is important because it lets the crews look for that individual or move debris to get to the

survivors [59]. Thus, training and knowledge of the situation are two of the chief requirements

for crews to perform a successful SAR mission.

Ideally, every SAR mission would result in a successful rescue of the given individual.

However, there are always cases where the rescue is not successful and the individual does not

survive. For example, out of the US Coast Guard’s average of 55,041 annual SAR responses

from 1992 through 2007, they were able to save each year about 4,887 people, but another 781

3

lives were lost [27]. Sobering statistics like this are often due to unavoidable circumstances, such

as if the person perishes before rescue arrives. Sometimes, though, the unsuccessful rescue is due

to an inadequate response from the SAR crew. This failure would have to be attributed to one of

the main aspects of a rescue, which are their training, planning, or knowledge. Training and

planning can be improved through additional practice, but situational knowledge must be

obtained when the crisis happens. Thus, increased knowledge of the disaster situation can better

prepare the SAR crew and save more lives. The problem is that current methods of obtaining

such information are limited to sources such as maps, personal accounts, and visually inspecting

the area. These are often time consuming or unreliable, which limits the SAR crew’s

effectiveness at gathering information and saving as many lives as possible. Another option must

be available to obtain the needed information.

Fortunately, such an additional means of gaining knowledge of a disaster area is

available. Unmanned Aerial Vehicles (UAVs) have the potential to expand the rescuers’ ability

to assess the situation and search for individuals. Like helicopters or planes, UAVs provide aerial

reconnaissance that can help create an overall picture of the situation. However, UAVs are

cheaper than manned aircraft, they can stay airborne for hours, and they often have high

resolution cameras, making them useful tools. The application of UAVs to SAR is thus of vital

importance to saving more lives.

1.2. The Application of UAVs to SAR

UAVs are potentially a valuable tool for SAR missions. They possess the ability to

acquire the knowledge rescue crews need from high above the disaster area and then relay it to a

user at a ground station. They could use a combination of normal and infrared cameras in

addition to other sensors to maximize the likelihood of detecting an individual. Because there is

no one on board, UAVs are safe since they don’t put anyone’s life directly at risk. Their lack of a

pilot also decreases their size and power requirements, making them relatively small and cheap

and giving them longer endurance. This can increase their flight time in the search area, making

each flight more efficient [63]. The lower power and weight requirements would also make it

easier for them to carry supplies to affected individuals. These qualities make them the ideal tool

for searching and observation, especially for organizations such as the National Park Service that

4

spend significant amounts of money on SAR. An artist’s concept of a UAV performing such a

SAR mission, equipped with camera, is shown here.

Figure 5: Theoretical Use of a UAV During a SAR Mission [62]

Furthermore, UAVs can be grouped together to more quickly search a given area and

obtain needed data. This network of UAVs could coordinate its efforts to efficiently cover more

ground and acquire a better picture of the situation in the disaster area. Such a network could

include as many UAVs as desired, making it fast and easy to acquire information. The network

could be modified and adapted to any disaster scenario. For example, if there were a missing

individual the UAVs could carry out a detailed search pattern in the given area to cover as much

ground as possible to find the person. If the search was unsuccessful, the rescue crew could add

more UAVs to the network to expand the search area. On the other hand, the UAVs could be

applied to an urban disaster scenario such as a bomb explosion to look in the most critically hit

areas. The user at the base station could coordinate all this activity from a single console. The

UAVs would send their data to this user, who could then direct this knowledge to the SAR

coordinator to better allocate the rescuers’ manpower and resources.

1.3. Other Applications of UAV Networks

The potential applications of UAV networks to SAR are numerous: searching for missing

hikers, assessing damage from a terrorist attack, looking for survivors in the most hard-hit areas

after an earthquake, determining the size and strength of a forest fire, etc. These capabilities are

useful for a wide variety of public service agencies. However, the applications of such a UAV

network extend beyond SAR. Law enforcement, universities, and the military could all use such

a network [61]. While most of these organizations already use UAVs to some degree, they have

5

not applied a networked group of UAVs to a given problem. The table below lists a number of

applications to which such a network could prove advantageous.

Table 2: Applications of UAV Networks [61]

Civilian Law Enforcement Military

 University project

platform

 Crop dusting

 Forest fire monitoring

 Search for fugitives,

stolen cars

 Monitor demonstration

 Border protection

 Sovereignty patrols

 Improve situational

awareness

 Scout enemy positions

 Attach or decoy

operations

1.4. Current State of UAV SAR Systems

 The current state of UAV search and rescue systems is largely in the theoretical and

testing phase. This is best evidenced by providing several examples. One such project which

helped inspire this one was the iSOAR UAV system developed at the University of Adelaide in

South Australia from 2007-2009. Its purpose was to build a remotely controlled UAV that would

use a camera to search an area for a missing hiker and then dropping emergency supplies. The

user would be gathering the UAV’s video data from a distance to help coordinate SAR efforts

while the vehicle itself flew autonomously. This project was entered into the ARCAA Outback

Challenge for UAV search and rescue systems. While it did not initially succeed, it set a strong

example of the capabilities of such a system [29], [35].

 Another more advanced example is the UAV Search and Rescue with Human Body

Detection project undertaken at Linkoping University in Sweden from 2007-2008. Its purpose

was, as the title indicates, to locate individual from the UAV and use this information to

coordinate SAR efforts. The project used small remote-control helicopters flying autonomously

and equipped with both infrared and regular cameras. During a test scenario, several of these

UAVs flying together were able to locate individuals on the ground in a disaster zone and drop

emergency supplies to them. The picture below shows two of these UAVs beginning the search

phase of the mission. This demonstration of their system proved its functionality, but it has not

progressed past this point [33].

6

Figure 6: Linkoping University UAVs in action

 One project that is more closely related to this one was titled Flight Demonstrations of

Cooperative Control for UAV Teams, and was worked on by a team of students at the

Massachusetts Institute of Technology in 2004. The team used a fleet of eight UAVs as a test

platform for evaluating autonomous coordination and control algorithms. The goal was to create

a system that manages the simultaneous flight of these UAVs as they carried out a task, which is

very similar to this project’s goal. They focused on the use of task assignment and waypoint

following to coordinate the separate platforms. They tested a number of the algorithms that they

developed, but were not able to fully implement the system on the UAVs [64].

 Lastly, another project that directly addresses the communications aspect of UAVs is the

paper entitled Cross-Layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad

Hoc Networks, by a group at the State University of New York at Buffalo. Their project was

largely theoretical and sought to create an algorithm that maximized throughput in an ad hoc

aerial network. They produced an algorithm called ROSA (routing and spectrum allocation

algorithm), which performed multi-hop routing, dynamic spectrum allocation, and maintained a

bounded bit error rate (BER). They successfully tested the algorithm in the lab but did not

implement it on a platform such as a UAV [65].

1.5. Issues with Current Systems

 These examples of UAV search and rescue systems demonstrate how this specific area of

research has made significant progress over the last decade. All the projects were able to make

7

advanced communications algorithms or functioning UAVs capable of flight and, for some,

video transmission. Such previous demonstrations provide an excellent example of what these

systems can accomplish.

 However, despite their success these projects suffered from one main flaw: lack of

scalability in a functioning UAV system. The Linkoping and Adelaide University projects

focused mainly on one UAV as it performs search and rescue missions; the MIT project was not

fully operational; and the Buffalo project was largely theoretical with no UAVs used. Even the

best precedents such as the project at Linkoping University are only able to incorporate a couple

UAVs functioning at a time, and even then their total efficiency at carrying out the search is

limited.

The abilities of a UAV network with resilient communications would be useful in many

applications, but these current systems have not taken steps to pursue this possibility. There is a

clear need for a resilient and modular UAV SAR system with a scalable number of platforms that

can coordinate their efforts to improve the probability of successfully completing the mission. In

particular, the communications aspect of this needed network would be important because its

resilient nature would provide the UAVs and user with the flexibility to deal with varying search

conditions, multiple UAVs, and multiple data sources.

1.6. Proposed UAV System

 To satisfy this need, this team proposes the creation of a resilient aerial wireless network

among a group of UAVs to facilitate the gathering of information for rescue crews during a SAR

operation. The full system will include a number of UAVs coordinating their efforts to cover a

large area and obtain the desired information. There will be a variable number of drones

equipped with cameras that perform the actual searching and relay their data to a mothership

using Wi-Fi. The mothership will compile this information and then use software-defined radio

in the form of the Simulink program and USRP2 radios to transmit the data to a user at the base

station. Thus, the use of communications in this UAV system is the focus of this project. A

concept diagram of the project’s architecture is seen below.

8

Figure 7: Proposed UAV Network Architecture

The novel aspects of the design that differentiate this project from similar precedents are:

 Scalability of UAV network due to ad hoc architecture: System will be able to

incorporate more or fewer drones in real time during operation.

 Combining Wi-Fi and SDR communications links: Mothership will take data from drones

over Wi-Fi and send to the base station using SDR.

 Original implementation of user-mothership link: Team will design the SDR protocols

that link the user and mothership.

 More specifically, this project will lay the groundwork for this communications network

by designing its architecture and demonstrating proof of concept in lab. Such a system is very

large and complex and cannot be completed in one MQP. Instead, the team will design the

overall architecture for the network and how the UAVs will communicate, create a basic

communications system to demonstrate feasibility, and put it on a small motherboard that can

eventually be mounted on the mothership. These steps will create the basic elements of the

desired system and allow the next group to begin the integration of the communications,

software, and hardware components of the three separate MQP teams.

9

1.7. Report Organization

 Now that the general motivation for the project has been introduced along with the

proposed solution, the rest of the report will delve into the more technical aspects. Chapter 2 will

provide relevant background information about SAR statistics and UAV history. It will also

provide in great detail the basic theory behind communications systems with the protocols and

analysis necessary to understand their functioning. Chapter 3 will then describe the proposed

approach of the project. This will include the logistics involved, the way in which the scope of

the project evolved, and the general manner in which it was carried out. Chapter 4 will discuss in

detail the actual design, implementation, and testing of the groundwork of the communications

systems. It will progress in a roughly chronological manner while describing the steps involved

with completing each separate section. Lastly, chapter 5 will be a summary of the background

topics covered, the structure of the project, the final results, and areas for further study.

10

Chapter 2 – Overview of Search and

Rescue and Communications Methods

 Prior to making any design decisions, it is crucial to understand the current state of the

art. This chapter will explore the history of SAR UAVs, it will analyze how crucial is the use of

more SAR techniques are according to statistics. Furthermore, it will elaborate on what software

defined radio is, its architecture and the different tools that are available for implementation.

Hence, it will include what is a mobile ad-hoc network (MANET), radio resource management

techniques, existing protocols and multi-hop routing algorithms.

2.1. Overview of Search and Rescue

To understand the usefulness of SAR, it is helpful to look at some data. The US National

Parks are a perfect example because they have millions of visitors a year. Since these people are

often in the wilderness, they experience many possible dangers such as getting lost, injuring

themselves, or numerous other hazards. As a result, the Park Service routinely undertakes many

SAR missions each year. From 1992 to 2007, there were a total of 65,439 SAR incidents to help

78,488 individuals. The Park Service spent a total of $58,572,164 during this time frame on

rescues. Hiking and boating accounted for most of the incidents. In addition, it is estimated that 1

out of 5 of these incidents would have resulted in fatalities. However, 2,659 people still died

[38]. The chart below shows the number of lives lost and saved each year.

11

Figure 8: NPS Search and Rescue Success Statistics [38]

As the chart demonstrates, the number of lives saved and lost varies significantly from year to

year, but has stayed somewhat constant over time. This is commendable because the ever-

increasing number of visitors to the National Parks makes it difficult to keep the amount of lives

lost constant. Still, the ideal number of annual fatalities would be zero.

 Another branch of the government that is heavily involved with search and rescue is the

US Coast Guard. They are responsible for the safety of all people and activities on or near the

coast. This is a significant challenge because of the dangers involved, ranging from swimmers

being swept away to sea to fishing ships sinking in violent storms. During the same timeframe

from 1992 to 2007, the Coast Guard responded to 880654 incidents. They were able to save

78,194 individuals, while another 12,499 lives were lost [27].

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Li

ve
s

Year

NPS SAR: Lives Saved and Lost

Fatalitities

Saves

12

Figure 9: USCG Search and Rescue Success Statistics [27]

As the chart demonstrates, the USCG was also able to keep the number of lives lost fairly

constant despite the increasing use of US coastal areas. Still, the fatality rate is much higher than

it ideally should be.

2.2. History of UAVs

 The history of UAVs has largely followed their growth as a military technology. While

they do possess a wide range of capabilities that can be applied to missions such as SAR, the

military was the first organization to fund and develop them. This process began as early as

World War 1, with the Sperry Aerial Torpedo, when Peter Cooper and Elmer Sperry converted a

US Navy biplane into the first radio-controlled UAV. The British improved on this design in the

1930s with the Queen Bee, the first returnable and reusable UAV that was used mainly for target

practice. While these designs proved that making a radio-controlled, unmanned aircraft was

possible, they were little more than modified airplanes used for simple experimentation [30].

 UAV design made a large leap forward beginning with World War 2. In particular, the

Germans launched thousands of their new V-1 and V-2 rockets at England with devastating

effect. While they are more easily classified as missiles, they were still technically UAVs and

thus demonstrated the warfighting capabilities of such a system. The US acquired and adapted

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Li

ve
s

Fiscal Year

USCG SAR: Lives Saved and Lost

Lives Saved

Lives Lost

13

this technology, which eventually became the Ryan Firebee drones of the Vietnam War. These

UAVs were jet-powered vehicles that were widely used for various tasks such as surveillance

and intelligence gathering [36], [41].

 Following the Vietnam War, the development of UAVs progressed in leaps and bounds.

In the 1970s and 1980s, Israel developed smaller reconnaissance aircraft such as the Scout and

Pioneer. By the late 1990s, the US had developed one of the most famous UAVs, the Predator.

Similar to the Scout and Pioneer, it was a slightly larger aircraft that could provide up to 16

hours of onsite surveillance with a range of 450 miles. Hellfire anti-tank missiles were fitted to it

and provided it with an attack capability that has been extensively used. Other, more advanced

UAVs have since been developed, such as the US’s high endurance Global Hawk surveillance

aircraft. The use of such vehicles has grown exponentially with the wars in Iraq and Afghanistan

as UAVs have been used for everything from intelligence to attack missions [30].

Figure 10: A Predator Drone, One of the Most Famous UAVs

 All of these historical examples of UAVs are from the military, and for good reason. The

development of these systems is time consuming and expensive, which requires resources that

usually only the military can supply. In addition, the military applications of UAVs were much

more evident than the civilian ones. As a result, there have been few uses of UAVs in non-

military fields over the past several decades. However, that is starting to change. They are

beginning to be tested in applications such as scientific research, education, agriculture, law

enforcement, and especially search and rescue.

 Over the past several years, UAVs have begun to be applied to search and rescue. For

example, many state National Guards in the US own the Predator UAV and can apply it to SAR

14

missions. Specific instances when UAVs have been used for this purpose include Hurricanes

Wilma, Rita, and Katrina in the US in 2005 and the Niigati Chuetsu earthquake in Japan. The

specific systems that were used during these disasters were man-portable fixed and rotary wing

UAVs, meaning that they were quite small and had limited capabilities [63]. These disasters

show that UAVs are beginning to be used for SAR, but the small number of such instances

indicates that the field is small and has yet to gain wider acceptance.

2.3. Software Defined Radio (SDR)

 Traditional radios often consist of a super-heterodyne or integrated circuit transceiver

implemented using dedicated hardware, in contrast with software defined radio. Since software

defined radio is such a relatively new concept, it is difficult to find a consensus on a single

definition. The basic concept of the SDR software radio is that the radio can be totally

configured or defined by the software so that a common platform can be used across a number of

areas and the software used to change the configuration of the radio for the function required at a

given time. There is also the possibility that it can then be re-configured as upgrades to standards

arrive, or if it is required to meet another role, or if the scope of its operation is changed. The

SDR Forum, in collaboration with IEEE, has defined it as “radio in which some or the entire

physical layer functions are software defined” [3], [4].

 The concept of software radio was first published in the early nineties by Joseph Mitola

III in a paper on radio architectures at the National Telesystems Conference, New York, in May

1992 [70]. This was followed in May 1995 by a special issue of the IEEE Communication

Magazine describing the architecture, ADC, DSP, systems, smart antennas technology and the

economy of SDR Technology. At the same time the US DoD initiated SPEAKeasy as the first

publicly announced military software radio, then DARPA continued with the SPEAKeasy II

program. The interest was further spurred on by the formation of the MMITS (Modular

Multifunction Information Transmission System) Forum in 1996 (later transformed into the SDR

Forum) [3].

 The SPEAKeasy program started with a phase where functions such as programmability,

flexibility, reconfigurability, and the use of signal processors were illustrated. It showed the

capability of being able to communicate with multiple legacy systems simultaneously at

15

demonstrations. The demonstrations in 1994 were conducted with over-the-air transmission and

reception using standard HF (high frequency), VHF (very high frequency), and UHF (ultra high

frequency) antennas covering the 90-200MHz band.

The successes of the initial phase lead to a continuation in 1995 where the objective was

set to develop field capable prototypes with full RF capability. The implementation had to

include commercial off the shelf (COTS) components, the use of non-proprietary buses, open

architecture, INFOSEC (information security) and wideband data waveforms. Lacking additional

funding the SPEAKeasy program was restructured in 1997 as all the tasks related to the

wideband capability were eliminated [3]. However, there was sufficient interest to initiate a new

program and the Joint Tactical Radio Systems (JTRS) program was established to investigate the

requirements for scalability, the portability of waveforms, and the development of a common

software communications architecture (SCA) that would facilitate the simple exchange of

waveforms.

 This unique radio technology works much like personal computing, where a single

hardware platform can carry out many functions based on the software applications loaded. SDR

uses software to perform radio-signal processing functions instead of using discrete electronic

components, or application-specific integrated circuits. Frequency tuning, filtering,

synchronization, encoding and modulation are now functions performed in software on high-

speed reprogrammable devices such as digital signal processors (DSP), field programmable field

arrays (FPGA), or general purpose processors (GPP). RF components are still needed for

generation of high frequencies or for signal amplifications and radiation but SDR aims at

reducing their usage to a minimum [3].

One major initiative that uses the SDR, software defined radio, is a military venture

known as the Joint Tactical Radio System (JTRS). Using this, a single hardware platform could

be used and it could communicate using one of a variety of waveforms simply by reloading or

reconfiguring the software for the particular application required. This is a particularly attractive

proposition, especially for coalition style operations where forces from different countries may

operate together. An application of those radios is that they could be re-configured to enable

communications to occur between troops from different countries.

SDR technology supports over-the-air upload of software modules to subscriber handsets.

This helps both network operators as well as handset manufacturers. Network operators can

16

perform mass customizations on subscriber’s handsets by just uploading appropriate software

modules resulting in faster deployment of new services. Manufacturers can perform remote

diagnostics and provide defect fixes by just uploading a newer version of the software module to

consumers’ handsets as well as network infrastructure equipment [3].

The SDR software radio concept is equally applicable for the commercial world as well.

One application may be for cellular base stations where standard upgrades frequently occur. In

this project we were able to use a Software Defined Radio platform in order to achieve reliable

communications between Unmanned Aerial Vehicles (UAVs). Our goal was to implement an

algorithm that could be able to exchange information (e.g. global position status for rescuing a

person) between two or more SDR platforms. Using concepts such as spectrum sensing and error

detection, our initial objective was achieved.

Figure 11: Block diagram of a generic Software Defined Radio Transceiver

 Figure 11 provides a demonstration of a digital transceiver. The RF section (also called as

RF front-end) is responsible for transmitting/receiving the radio frequency (RF) signal from the

antenna via a coupler and converting the RF signal to an intermediate frequency (IF) signal. The

RF front-end on the receive path performs RF amplification and analog down conversion from

RF to IF. On the transmit path, RF front-end performs analog up conversion and RF power

amplification. The Sampling Conversion Stage consisting of the ADC/DAC blocks perform

analog-to-digital conversion (on receive path) and digital-to analog conversion (on transmit

path), respectively. ADC/DAC blocks interface between the analog and digital sections of the

radio system. DDC/DUC blocks perform digital down conversion (on receive path) and digital-

up-conversion (on transmit path), respectively. DUC/DDC blocks essentially perform modem

Sampling Conversion Stage RF Section
Baseband
Section

17

operations, i.e., modulation of the signal on transmit path and demodulation (also called digital

tuning) of the signal on receive path. The baseband section performs baseband operations

(connection setup, equalization, frequency hopping, timing recovery, correlation) and also

implements the link layer protocol.

 Some of the advantages of a software defined radio relative to an analog radio are [45]:

i. “The ability to receive and transmit various modulation methods using a common set

of hardware; ”

ii. “The ability to alter functionality by downloading and running new software at will.”

iii. “The possibility of adaptively choosing an operating frequency and a mode best

suited for prevailing conditions;”

iv. “The opportunity to recognize and avoid interference with other communications

channels;”

v. “Elimination of analog hardware and its cost, resulting in simplification of radio

architectures and improved performance;” and

vi. “The chance for new experimentation.”

However, a few obstacles remain to their universal acceptance. Those include [7]:

i. “The difficulty of writing software for various target systems”,

ii. “The need for interfaces to digital signals and algorithms”,

iii. “Poor dynamic range in some SDR designs” and

iv. “A lack of understanding among designers as to what is required”.

2.3.1 Universal Software Defined Radio 2 (USRP2)

 The USRP2 is a low-cost software defined radio platform produced by Ettus Research.

The device consists of a Gigabit Ethernet host computer interface, a Xilinx Spartan FPGA, and

compatibility with all USRP RF modules. Two input channels and two output channels are

provided, and MIMO capability is supported when multiple USRP2s are connected together.

Only one full transceiver is supported, but up to 50MHz of signal bandwidth can be used due to

the 100MS/s ADC sampling rate [13]. The USRP2 is fully supported by GNU Radio and

Simulink, which are discussed in Section 2.4.1 and Section 2.4.2 respectively. The specifications

18

of the USRP2 comparing to USRP, which uses a USB 2.0 computer interface in contrast with the

Gigabit Ethernet, resulting in slower data transmission

Table 3: Comparison chart between USRP and USRP2 [3]

USRP* SPECIFICATIONS

 USRP(1) USRP(2)

Interface USB 2.0 Gigabit Ethernet

FPGA Altera EP1C12 Xilinx Spartan 3 2000

RF BW (to/from host) 8 MHz @ 16bits 25 MHz @ 16bits

ADC 12-bit, 64 MS/s 14-bit, 100 MS/s

DAC 14-bit, 128 MS/s 16-bit, 400 MS/s

Daughter boards (capacity) 2 TX, 2 RX 1 TX, 1 RX

SRAM None 1 Megabyte

Other - MIMO support

At time of writing, the USRP2 is being discontinued in favor of the USRP N200 and

USRP N210. These radios offer the same daughter card and transceiver capabilities along with a

100MS/s ADC sampling rate, but have different Xilinx FPGAs and several more subtle

differences. Ettus Research has stated that the USRP N200-series is code-compatible with the

USRP2, allowing code written for the USRP2 to be used seamlessly with a newer radio [13]. The

most important advantage of an N210 USRP is that it requires no flash card for configuration of

UHD or UDP packets as discussed in section 2.4.3.

19

Figure 12: XCVR 2450 Daughter Card used for transmission and reception, ranging between 2.4-2.5 GHz and 4.9-6.0 GHz

Figure 13: A USRP2 (left) VS USRPN210 located in Atwater Kent Laboratories

Figure 12 shows the PCB layout of the XCVR 2450 Daughter card that was used in this

project for transmission and reception. Filtering on the XCVR2450 provides exceptional

selectivity and dynamic range in the intended bands of operation. The typical power output and

noise figure of the XCVR2450 is 100 mW and 8 dB, respectively. Notice the two RF antennas

that they were connected to the front end of the USRP2.

 Figure 13 shows one of the USRP2s that was used for this project VS the USRP N210

which will replace USRP2. The main advantage of the USRP N210 is that it does not use an SD

card in order to configure its hardware. In fact, it can automatically adjust the software that

controls its hardware to any configuration of the radio.

Transmit/Receive Antennas J1(bottom)

and J2 (up)

SD Card
No-SD Card

Varying between 2.4-5 GHz

20

2.3. Data Transmission

 Data transmission is related to the software defined radio parameters are also known as

decision variables since their purpose is to provide the information needed to a cognitive

algorithm that will optimize the system. The cognitive parameters presented here are RSSI, and

BER. This section will serve as a tutorial for communication parameters.

2.3.1. Received Signal Strength Indicator (RSSI)

The received signal strength indicator is one of the most common cognitive parameters to

be measured in wireless systems. The principle concept of RSSI is that the transmitted power is

proportionately related to the received power. The received power decreases quadratically with

the propagation distance. This can be modeled by [7]:

 (

) (

)

 (1)

In this equation (Friis’ free space equation), PR and PT are the received and transmitted powers

respectively. Likewise GT and GR are the gains of both the receiver and transmitter antennas.

The wavelength is represented with λ. The distance between transmitter and receiver is d. As

the distance from the transmitter increases there is a quadratic decrease in signal strength. The n

in the system for free space is 2, but can be higher in different medium. It can be seen that the

larger the wavelength of the propagating wave the less susceptible it is to path loss. Therefore at

higher frequencies, radio waves cannot travel as far with the same transmission power [7]. Friis’

free space equation is a generalization of the signal strength that will be received [7]. However,

when interference is considered the signal strength may no longer follow the equation. This

interference may be due to multi-path signals or other devices in the frequency band. This

interference may be constructive, which will appear to be higher signal strength than the power

received from the target. On the other hand, destructive interference will cause the device to read

signal strength lower than the equation would predict. RSSI is a widely used cognitive parameter

that is readily accessible on most devices. Though the measured RSSI may not correspond

exactly to the power of the desired signal it is a fairly reliable guide to the general performance

of the system [7].

21

2.3.2. Error Detection/ Repetition Coding

 Repetition coding is a relatively simple coding scheme in which bits are repeated before

being sent across a communications channel. For a repetition factor of k, each bit is repeated k

times. Repetition coding effectively increases the bit-rate requirements for the channel capacity.

Thus for a given channel capacity, increasing the repetition rate effectively reduces the rate at

which information can be sent (i.e. it limits the coder input rate). This is illustrated in Figure 14.

Note that the increased bit rate assumes that the frame/sample rate remains the same, and only

the frame size increases by a factor of k.

Figure 14: Relating repetition coder input and output bit rates for fixed sample rate

After passing through the channel, the repetition decoder removes the redundant bits. This was

done by the use of a ‘majority bit approach’ as follows. In general for a received bit at time nTs,

where Ts is the sample time, and n is the integer-valued time index,

r(nTs) = s(nTs) + v(nTs) In our representation channel delay is ignored, s(nTs) represents the

transmitted bit and v(nTs) represents the additive white Gaussian noise added to the bit. Using

this model for the k copies of the received bit, it is clear to see that each one may be

independently corrupted by noise. To determine the value of a particular bit, we calculate the

average of the k values and then use the following decision rule,

 () {

 (2)

By using repetition within transmission it can be easy to detect corruption in the data. It also

provides clues as to what the correct sequence should be. By repeating bits or blocks a

predetermined number of times then they can be compared with each other for continuity. If all

of the blocks or bits are the same in the sequence it can be determined that an error did not occur.

If there is a difference in bits then it is common to quantize the bit to the high mode of the string.

Therefore if an odd number of repetitions are sent in a binary decision, whichever of the two

22

choices was transmitted more times is more likely to be the original transmission. This

technique is much more effective when the blocks of data repeated are small or are repeated

many times. This gives a clearer mode of the data or can make it such that there are less ways

for it to fail and therefore makes it easier to determine 10 which sequence is the correct one. The

negative aspect to this technique is that it is very inefficient. By transmitting the same

information with much redundancy the overall transmission will be longer and at a given symbol

period, it will appear that there is a slower bit rate or a delay. In Figure 15, there is an example of

an eight bit to redundancy scheme

Figure 15: Example of an eight bit to redundancy scheme

Parity can be used for a more efficient practice. In this technique a parity bit is assigned

for a known number of bits to be determined. The parity scheme can either be even or odd as

decided by the programmer. The parity algorithm counts how many ones are in the stream

behind it. If the parity scheme is odd then the parity bit will assign a one if there are an odd

number of ones in the stream behind it. It will assign a zero for an even number of ones. An

even parity scheme would work in the opposite way. This means that there only needs to be one

bit every sequence to determine error rather than redundancy of the transmission. This makes

the process faster by making the total data shorter. There are several issues with the reliability of

this method. For instance, there is a problem if the number of corrupted bits is a multiple of two.

This will not change if there is an even or an odd number of ones in the sequence. Therefore, the

parity bit will return a “no error” when one has occurred. The other problem is when the parity

bit itself is corrupted while the data is correct. This will return an “error” even when one has not

occurred. Calling for parity bits more often will reduce the possibility of the first error

happening while increasing the possibility of the second error happening. This will be a design

decision implemented into any forward error correction that may be used. An example of a parity

scheme can be seen in Figure 16. In each byte in the figure, the number of bits set to ‘1’ is made

even by setting the last bit, known as the parity bit, to ‘1’ or ‘0’. If the number of bits set to ‘1’ is

not even in each byte when the signal is received, then there has been a bit error in the byte

checked.

23

Figure 16: Example of a parity scheme where the eighth bit is an odd parity bit

The technique of checksum is used for overall transmission. It assigns a sequence at the

end of the transmission that can be decoded to an equivalent of the number of bits that should

have been received. This is so that the system knows if it has received the entire sequence or if

packets had been dropped. The system counts the received bits and compares its checksum with

the equivalent sequence that is generated for the number of bits received. If the checksum and

the counted number of bits correspond, the entire sequence is deemed to have been transmitted.

2.3.2.1. Bit Error Rate

One of the most important ways to determine the quality of a digital transmission system

is to measure its Bit Error Ratio (BER). The BER is calculated by comparing the transmitted

sequence of bits to the received bits and counting the number of errors. The ratio of how many

bits received in error over the number of total bits received is the BER. This measured ratio is

affected by many factors including: signal to noise, distortion, and jitter. The most obvious

method of measuring BER is to brute force send bits through the system and calculate the BER.

Since this is a statistical process, the measured BER only approaches the actual BER as the

number of bits tested approaches infinity. Fortunately, in most cases we need only to test that the

BER is less than a predefined threshold. The number of bits required to accomplish this will only

depend on the required confidence level and BER threshold.[46] The confidence level is the

percentage of tests that the system’s true BER is less than the specified BER. Since we cannot

measure an infinite number of bits and it is impossible to predict with certainty when errors will

occur, the confidence level will never reach 100%. The test time will be determined by how

often the software defined radio receiver will want the value to be refreshed. This is an

important decision as BER will be an important cognitive value in the system. It will be

24

necessary for knowing how poorly the filtering in the system is working and how much noise is

present in the system. The test time can be determined with:

 ()

 , (3)

where t is the test time, c the degree of confidence level desired, b the upper bound of the BER

and r the data rate.

 For this project, we had to follow a procedure named as bit error rate test or tester

(BERT) in order to measure the BER for a given transmission. The formula that helped us plot

our results is the energy per bit to noise power spectral density ratio:

 () () (4)

where fb is the transmission rate; No is the noise spectral density (dBm/Hz); Eb is the energy per

bit (dBm/Hz) and C is the carrier power (dBm). Figure 17 shows the bit error rate plot versus the

energy per bit to noise power spectral density ratio between different modulation schemes. Our

results for the calculation of the bit error rate can be seen in chapter 4.

Figure 17: PSK BER curve (from [46])

2.3.3. Spectrum Sensing

 Spectrum sensing is where the focus of cognitive radio research is starting to move

towards. It is the capability of a device being aware of the frequency domain, or the radio

frequency spectrum, of its surroundings. This can detect various forms of interference. It can be

http://upload.wikimedia.org/wikipedia/commons/7/77/PSK_BER_curves.svg

25

as simple as evaluating where there is high energy in the system or as complicated as detecting

unknown modulated signals over random noise.

2.3.3.1. Energy Detection

 Energy detection is a signal detection mechanism based on Neyman-Pearson approach

[9]

[10]. The concept of energy detection mechanism is quite simple. The detector computes the

energy of the received signal and compares it to certain threshold value to decide whether the

desired signal is present or not. The energy of the signal is preserved in both time domain and

frequency domain. The time domain representation of this mechanism is shown in Figure 18.

The frequency domain representation of this mechanism is shown in Figure 19. Theoretically,

whichever representation is used for signal detection and analysis makes no difference in result.

However in the former representation a pre-filter matched to the bandwidth of the signal is

required. This need makes this representation quite inflexible compared to the frequency domain

representation. So, it is intended to use the second representation in near future for analyzing the

received signal via simulation.

Figure 18: Time representation of energy detection mechanism

Figure 19: Frequency domain representation of energy detection mechanism

In order to measure the signal energy, the received signal is first sampled, then converted

to frequency domain taking FFT followed by squaring the coefficients and then taking the

average.

2.3.3.2. Cyclostationary Feature Detection

Cyclostationary feature detection is a method of differentiating primary user signals from

noise without prior knowledge of their modulation schemes or protocols. All signals can be

modeled as stochastic processes which are probability functions with random variables through

26

time. Stochastic processes are broken up into subcategories based on how random they are. Wide

sense stationary processes are stochastic processes with a constant mean such as noise which has

zero mean. Cyclostationary processes are stochastic processes with statistical properties that vary

cyclically. Modulated signals are cyclostationary processes because they are double sided with

sine wave carriers, they have a fixed symbol period, and each modulation type has its own

unique cyclostationary features [47].

In a more mathematized definition, cyclostationary processes have periodic

autocorrelation functions where wide sense stationary signals do not. This means that the

autocorrelation of cyclostationary processes can be written as a Fourier coefficient. The Fourier

coefficient form of autocorrelation for cyclostationary processes is expressed in [47];

 ()

∫ (

) (

) (5)

This is called the cycle autocorrelation. If the statistically correlated periodic features in a

cyclostationary process repeat every T, then the cycle autocorrelation has a cycle of α. Since the

autocorrelation function is a quadratic transform the features of modulated signals that are

functions of symbol rate and carrier can be detected.

 The cycle autocorrelation is only a time domain transform. This means it falls short in

measuring power spectral density of modulated signals. This is because the system is

demodulating many different signals. The maximum energy of all the modulated signals is

unlikely to be equivalent. Therefore a threshold would only be set by the highest energy signal.

The frequency domain equivalent is called the spectral correlation function, which is expressed

in [47]:

 ()

∫ (

)

 (

)

 ()

 () ∫ ()

 ()

Through Weiner’s relationship, the Fourier transform of cycle autocorrelation is the spectral

correlation function. The spectral correlation function is a two dimensional complex transform

with to frequency based axis cycle α and frequency f that is used for feature detection [47].

27

To measure spectral correlation of a function, the received signal can be frequency

shifted α Hz and –α Hz in two parallel mixers. This searches many different frequencies for

possible carriers. After each frequency shifted signal is passed through identical band pass filters,

the signal that was frequency shifted –α Hz is then complex conjugated. After the complex

conjugation, the two signals match in carriers of both the real and imaginary plane for attempted

demodulation. The two signals are then frequency multiplied back together and averaged over a

period of time. If the final signal possess a high energy level, this means that the cycle α

corresponds to a carrier frequency of a modulated signal [47]. The block diagram is depicted in

Figure 20.

Figure 20: Spectral correlation block diagram [5]

The frequency shifting, bandpass filtering and the complex conjugation can all be

implemented using a fast Fourier transform for any f and α. To implement the cyclostationary

feature detector the received analog signal must be converted to digital. The digital signal is then

input into an N point FFT. The conjugate outputs are then correlated and averaged over a period

T. The feature detection then senses the peaks for α>0 and can even distinguish between

different modulation schemes and protocols with simplified matched filtering [47]. The

implementation is depicted in Figure 21.

Figure 21: Implementation of Cyclostationary Feature Detector [5]

28

2.3.3.3. Matched Filtering

Matched filtering is the optimal method of signal detection since it effectively maximizes

received signal to noise ratio. It follows the full cognitive radio model described earlier in that a

prior knowledge of the primary user signal at both the physical and medium access control layers

is required. This knowledge is the pulse shape that is used for the transmission. The radio has

stored memory effectively describing the modulation type, order, pulse shaping and packet

format to demodulate the signal. It is also required to synchronize with the carrier and time

scheme as well as perform channel equalization [48].

Match filtering takes advantage of the fact that a filter that is the time reverse of the pulse

shape used, when convolved with the signal, optimizes the energy of the signal. This is due to

the fact that the filter is time reversed again and passed over the system when the convolution

occurs. If the filters match, it will be a perfectly constructive superposition. However, a major

drawback is the programming of all the different standards into the memory of the radio and

dedicating enough receivers to detect all the primary users [48].

2.4. Software Selection for SDR Design

 In order to use the USRP2 we had to find the appropriate software. This software could

help us program the device and achieve reliable communications between the radios. The two

main software platforms that could achieve that are GNU Radio Companion and

MATLAB/Simulink. In this section we will elaborate on how each of these two platforms

operates.

2.4.1. GNU Radio Companion (GRC)

GNU Radio is a free, open-source software environment for the implementation of low-

cost software defined radio systems. The GNU Radio project was created so the general public

could experiment with radio hardware and the wireless spectrum, and does so by providing free

software to complement low-cost hardware [49]. The project is used by a variety of academic,

government, and commercial researchers as well as some amateur radio enthusiasts, and supports

29

both simulation environments and Ettus Research software-defined radio hardware products [49]

[50][51].

As of GNU Radio 3.2.2 and 3.3.0, the software provides a framework for combining

signal processing blocks into flowgraphs. Each block, written in the C++ programming language

for performance reasons, implements a single data processing step such as matched filtering

[6][52]. GNU Radio provides numerous commonly-used blocks, though users are encouraged to

create their own when a block they need is unavailable [49]. Each block executes in a separate

operating system thread, allowing for pipelined processing that efficiently exploits multicore

computer architectures [53]. Flowgraphs are typically written in the Python programming

language and represent a data stream between the radio hardware and the user‘s choice of a data

source or output. Additionally, flowgraphs can be produced automatically through a graphical

user interface (GUI) tool called GNU Radio Companion (GRC). This implementation permits

easy radio system design and development without compromising runtime performance [6], [49].

While GNU Radio is fully open source, has a strong user base, and is a well-established

software-defined radio platform, the code remains in active development and is generally lacking

in documentation. Significant bugs are routinely discovered and fixed, while backwards

compatibility is often broken as the software attempts to benefit from the latest developments in

the many libraries it depends on. Documentation consists of several tutorials, an API, email

archives and code comments while end-user support is frequently performed by volunteers [49].

GNU Radio addresses the host computer software used with a USRP or USRP2, and when

combined with either Ettus Research product a complete software-defined radio is formed.

30

Figure 22: GNU Radio Companion Overflow Example

 Figure 22 shows a screen capture of the Graphical User Interface (GUI) of then GRC.

This block consists of a message in a text format that connects to the USRP Sink in order to get

transmitted. However, we get an overflow since this message had to be formatted correctly using

Python scripts in order to get transmitted properly.

2.4.2. Simulink Communications Blockset

 The MathWorks Inc. chose to extend their MATLAB and Simulink software with a real-

time communications processing toolbox, including USRP2 hardware blocks [51]. Simulink has

long been established as a simulation toolbox, and can be used to implement flowgraphs in a

visual form. This functionality is similar to GNU Radio Companion, except fully integrated with

the Simulink product line. This provides easy access to, for example, common digital signal

processing and logic functions. Additionally, this software interfaces with the well-established

software package MATLAB. MATLAB focuses on offline vector and matrix manipulation as

well as data visualization [52]. At the time of writing, numerous limitations still exist, such as

comparatively weak USRP2 support and an implementation that was poorly optimized for real

OVERFLOW

31

time data processing on multicore processors. The authors were exposed to this product and its

limitations during an academic course on software defined radio during which the MathWorks

Inc. gathered feedback about its performance. It is expected that many of these issues will be

resolved in future releases.

 We started completing our project using the R2011a version of MATLAB. However, as

the project was on going The MathWorks released the version R2011b. The significant

difference between those two versions was that the USRP2 hardware blocks no longer required

the use of UDP packages. The new configuration was called a UHD package. In section 2.4.3 we

explain the difference between UDP and UHD.

 One of the most important advantages of Simulink in contrast to GNU Radio Companion

is that it is friendlier to the user. One can customize the properties of each block that is essential

for the reliable communication between the radios without having a strong background in

programming languages such as Python and XML. Figure 23 shows the block properties of the

SDRu Transmitter that was used for this project.

Figure 23: Block Properties of the SDRu Transmitter

2.45GHz was used as a

center frequency

A gain of 8 dB was

sufficient for lab testing

Interpolation rate, showing how

fast the packets were sent

32

Figure 24: Simulink Transmitter Block for frame synchronization

 In figure 24 we provide the block diagram of the transmitter that we used in our project in

order to perform frame synchronization. In Chapter 4 we will explain in further detail the

functionality of each block.

2.5. Chapter Summary

 In this chapter, search and rescue statistics, UAV history, and the principles of

communications were introduced and discussed. The SAR data showed the importance of this

function for both the US National Park Service and the US Coast Guard. However, the need for

SAR extends far beyond these two organizations to almost every conceivable disaster. The

history of UAVs and their evolution over the past century was discussed, including their use in

the military and their recent application to SAR. In addition, a number of topics in

communications systems were covered. These topics included the theoretical background of

software-defined radio along with specific details of error detection, bit error rate, spectrum

sensing, and matched filtering. Lastly, two important tools for the project – the USRP2 radios

and the Simulink programming environment – were introduced. How they function was

discussed, along with their importance in fulfilling the project’s goal. With this theoretical

background, the detailed analysis of the project’s progression is now possible.

33

Chapter 3 – Proposed Approach

3.1. Introduction

 Before delving into the technical details of how the project was completed, it will be

helpful to understand the structure of the overall approach to designing and completing the stated

goals. Analyzing the evolution of the design, logistics, problems encountered, and final

deliverables of the project provide a broad overview of how it progressed. This chapter will

discuss these issues to give a better understanding of the project’s course.

3.2. Evolution of Design

 Like many projects, this one went through several design stages. The initial goals and

timeline at the beginning of A term were very different from the revised objectives midway

through C term. This evolution of the overall goal and design of the project was a result of

several variables and the realization of the project’s scope. In addition, several problems that

were encountered throughout the project also forced the readjustment of the goals.

3.2.1. Initial Plans

 The initial goal of the project was to create a functional wireless network among several

UAVs to aid in data collection during SAR operations. This goal seemed plausible because the

design was split up among the three MQP teams who would work on communications, hardware,

and software. It also matched the initial vision for the project of creating a small fleet of UAVs

34

that were communicating with each other and the user as they carried out a SAR mission. That

left this group with ensuring the UAVs had a working communications link between themselves

and the base station. This goal seemed feasible over a three term timeframe, so the preliminary

timeline was created around this objective. The group’s goal was split up into the separate

chronological objectives shown below.

Table 4: Initial Chronological Objectives

First Objective Second Objective Third Objective

Theoretical Preparation –

become familiarized with

communications protocols and

software-defined radio

In-Lab Text and Video

Communications – use

Simulink and USRP2s to send

text and video messages

Testing Motherboard on UAV

– put Simulink on

motherboard, test on

mothership

The initial timeline in table 5 had the group learning about SDR prototyping using Simulink in A

term for theoretical preparation, achieving radio to radio text and video communications in lab

by the end of B term, and then finally loading the system onto a motherboard in a UAV for flight

tests by the end of C term.

Table 5: Initial Project Timeline

3.2.2. Revised Plans

However, the group encountered a number of issues. First and foremost, it was quickly

discovered that completing the entire stated project goal was not feasible within the given

35

timeframe. Designing, building, and testing a functioning communications network between

several UAVs and a user is a significant challenge that simply could not be completed within the

given amount of time. This problem arose because the design and implementation of each

separate section, such as achieving in-lab text and video communications, was much more time

intensive than originally anticipated. Issues such as certain programs not working, needing to

order additional hardware, and basic troubleshooting contributed to this larger problem. The

realization of this unfeasible goal was further enforced once the inherent difficulties of the

hardware and software elements of the UAV network were also considered. They encountered

similar problems, requiring much of the project to be adjusted. As a result, the end goals had to

be scaled back.

 Although the group realized it had to change the project goals, it was not immediately

apparent what the new goals should be. Instead, the group decided to work in the same direction

as planned and attempt to achieve as much of the original objective as possible. By around the

end of B term, it was determined that a more realistic goal was to test the Simulink USRP2

communications program in lab and get the motherboard functioning when connected to the

radio. An additional “nice to have” objective was having the motherboard take in a file from

another computer through Wi-Fi and transmit it to the simulated base station through the created

radio link. However, this step was not deemed immediately essential. Once this goal was

solidified, working towards it became much easier. The chronological objectives were also

updated to reflect the new goal.

Table 6: Revised Chronological Objectives

First Objective Second Objective Third Objective

Frame Synchronization –

successfully transmit and

receive “hello world” text

message

Purchase Components – select

and buy motherboard, hard

drive, Wi-Fi transmitters

Run Simulink on Motherboard

– load Simulink on Pico ITX,

use it to run USRP2s in lab for

proof of concept

The accompanying revised timeline is shown in table 7. While the revised objectives were not as

far down the design path as initially hoped, they were much more realistic. The group realized

and understood that continuing the design of the communications system would have to be

continued by future project teams.

36

Table 7: Revised Project Timeline

3.3. Project Logistics

 In the process of designing this project, the team encountered a number of logistical

issues. These issues mainly included the design decisions that had to be made about which

components to use and how to pay for them with the given budget.

3.3.1. Design Decisions

 The group had to make a number of decisions when designing the groundwork for the

UAV communications system. First and foremost was deciding how to create the programs that

would actually send a receive data with a radio. MATLAB with the add-on Simulink was chosen

for this purpose because of its availability and relative ease of use. Simulink allows the user to

create almost any system desirable simply by placing blocks on a model. Its inclusion of a

Communications System Toolbox with various relevant blocks was very useful. In addition, the

flexibility of the MATLAB programming environment and its ability to work with Simulink

provided further use. As for the specific radios themselves, the Universal Software Radio

Peripheral (USRP2) was chosen. It was selected for similar reasons: it was readily available and

fairly straightforward to use. It also had a specially designed block in Simulink that allowed the

radio to be operated from the program over a gigabit Ethernet cable. The program and radio fuse

well together, and the fact that they were already provided by the school meant that no funds had

to be expended on purchasing them.

37

 The process of choosing the motherboard and accompanying hardware was more

challenging. This decision had to be based on its ability to interface with and run the USRP2. In

addition, the motherboard needed an accompanying hard drive to store information. The team

also had to select a Wi-Fi amplifier to meet the requirement that the drones and mothership be

able to communicate at longer range. Lastly, a small amplifier was needed to attach to the

USRP2 to boost its transmission range. All of these components are listed in the table below,

along with their prices and specific reasons for purchase.

Table 8: Hardware Purchases

Item Price Reasons for Purchase

Axiomtek Pico820

Motherboard with 1.5GHz

Atom Z530 Processor

$550  Small footprint: 100x72 mm

 Low power consumption: 20 W

 Gigabit Ethernet

 Sufficiently powerful processor

 mSATA connector

ADATA 30 GB SATA Solid

State Drive

$65  Small footprint: 51x30x4 mm

 Sufficient memory size

 Low price

Ubiquiti Bullet M Wi-Fi

Amplifier

$80  Large range: 3-5 km

 Few comparable alternatives

 Decent prince

MiniCircuits 13 dB Low

Noise Amplifier

$0 (already

available)

 Already available

 Small and efficient

 Sufficient for testing purposes

Aleratec mSATA to SATA

SSD Adapter

$25  Required adapter to connect hard

drive to motherboard

3.3.2. Project Costs

 Due to the nature of the project, overall costs were relatively low. The majority of the

design and testing was performed on available school computers. The Electrical and Computer

Engineering Department also provided the MATLAB and Simulink software and the USRP2

38

radios, resulting in no required spending for these items. The main expenditure for the project

was the Pico ITX Motherboard, which was actually quite expensive because of its relatively

powerful processor and capabilities. The additional items cost relatively little, and added up to a

total of $720. About $700 of this cost was covered by a $6000 grant from the MathWorks for the

project and the rest was covered with personal funds. The additional money from the grant was

used by the other teams, which required significantly more money for items such as the UAVs

themselves.

3.4. Final Project Deliverables

 At the end of C term, the deliverables that the team produced were largely in line with the

goals set out in the revised timeline. These items were as follows:

 Two functioning Simulink programs that send a receive a text message via USRP2

 MATLAB program that converts given file type (e.g. XML) to bits for transmission and

rebuilds file upon reception

 Pico ITX motherboard running Ubuntu with MATLAB and Simulink connected to

USRP2

 Long range test of USRP2s in Harrington Gymnasium to demonstrate proof of concept

These deliverables are the basic elements for a UAV communications system. Further testing and

design will be required before it can be fully implemented onboard the UAV network, but these

items are a large step towards this final goal.

 Unfortunately, not all of the originally desired capabilities were included. Upon

realization that the initial project goal was not feasible, the objective had to change along with

the planned functionality. The main dropped capabilities were video transmission with the

USRP2s and Wi-Fi to Simulink program data conversion. The USRP2s, while very flexible in

their programming, simply could not sustain a high enough bit rate to transmit video. Once

repetition coding and the decimation factor were taken into account, the sample rate dropped

from 100 Ms/s to less than 100 ks/s, which is enough for only text and possibly low quality

pictures. In addition, the ability to receive a file via Wi-Fi and then route it to the simulated user

over the USRP2s also proved unrealistic. This step would require a separate non-MATLAB

program to receive the file and put it in the proper directory, all before the Simulink program ran.

39

This degree of integration involves significant programming beyond the capabilities of the team

within the given timeframe. Thus, some of these desired goals must be addressed with any

further work on the project.

3.5. Summary

 Like many projects, this one evolved over time. The initial goals were unrealistic and had

to be scaled back to meet time and resource constraints. As the project progressed, the final

objectives became more solidified and feasible. They were accomplished successfully by the end

of the project, leaving additional desired objectives as future work. In addition, the overall cost

of the equipment was fairly low because much of it was already available and most of the rest

was quite cheap. Funding from The MathWorks was able to cover most of the expenses. Thus,

team was able to achieve its modified goals while staying within a fairly small budget.

40

Chapter 4 – Implementation

 In this chapter our implementation and the results of the project are elaborated. More

precisely the setup of the two main Simulink blocks that were used regarding the auto-frequency

offset and the frame synchronization are analyzed. The transition from the simple messages to

XML files and the Wi-Fi protocol use is also elaborated. Lastly, the chapter ends with the

implementation of the project into the motherboard and the success in transmission and reception

of any type message.

4.1. Offset calculation and automatic detection

 As in any radio, USRP2’s hardware design is characterized by the disadvantage of having

offset between the transmitter radio and the receiver radio. The main reason of the frequency

offset between the two radios is the relatively inexpensive hardware. In our case, the offset

frequency was first measured manually by using the FFT plot from observeFFT.mdl and then we were

able to implement an algorithm in order to automatically correct this offset. The Doppler Effect was

another issue for the frequency offset between the radios that would be placed in the UAV. Therefore, our

algorithm had to be able to detect and automatically correct any offset. An example is illustrated in

figures 25 and 26.

41

Figure 25: The observeFFT.mdl consisting of the SDRu block receiver and the FFT display block

Figure 26: Example FFT plot at 2.42GHz

Another USRP2 was used to run siggen.mdl at 2.42GHz as shown in Figure 27. A 30kHz

baseband signal was transmitted, and the baseband FFT was observed on the receiver end. The

peak at 30kHz was magnified, and visually inspected to determine the value at which the peak

occurred. This was then compared to the expected 30kHz transmitted baseband frequency. Thus

using the results of the previous two sections, it was then determined that the offset is effectively

given by the formula: foffset = fobserved – 30kHz.

Center peak of the received

signal at 2.42GHz

42

Figure 27: Simulink model of siggen.mdl for a generation and transmission of a signal

Initially in the offset was determined to be 8kHz. This was repeated for several carrier

frequencies and a similar offset was observed. Then the entire process was repeated by swapping

the roles of the transmitter and receiver. The offset was determined to be -7.8kHz. It was

interesting to note that when other devices were paired the offset was different as expected.

However, upon powering down and then repeating the experiment with the same pairs, the offset

was significantly different. For example offsets below 1kHz were observed using the same pair

for which the offset was previously measured as being around 7kHz. This was noted as a

practical issue to be wary of, and it was concluded that frequency offsets are inevitable even if

transmitter-receiver pairs are compensated at a specific time, as offsets would be time-varying

with the same pairs. Also, noting the effects of frequency and phase offsets on the system

operation, this must be compensated for.

Using the Simulink models of DBSKTx.mdl and DBPSKRx.mdl as shown in Figure 28,

the effect of frequency offset on digital communications was investigated. Frequencies ranging

from -30kHz to +30kHz were added to the transmitter center frequency, to simulate the

transmitter-receiver carrier frequency offset. These were stepped in increments of 10kHz. For

ease of pattern recognition, alternating 1’s and 0’s were sent at the transmitter, and the

demodulated receiver output was plotted. In theory these could be used to determine average

error rates, since it would be expected that there be a series of alternating ones and zeros in the

receiver output. However instead of calculating approximate values for this, visual inspection of

the stem plots was used to gauge the impact qualitatively. The rationale for this was firstly

because it was not possible to know which bit at the transmitter mapped back to the receiver, in

43

terms of the time offset. Also, even if an error rate was calculated for this exercise, it would only

be for limited transmitted patters, and may not necessarily be used for generalization. However,

the stem plots provide a quick visual approach to qualitatively observe the impact of frequency

offset and simulating device mobility.

Figure 28: DBPSKRx.mdl; DBPSK protocol implementation on the receiver side

Figures 29-31 provide examples of the plots obtained, taking consideration of the

comments above.

Figure 29: Example Plot of Received Data for DBPSK receiver with 10kHz offset

Notice the peaks in this case of a small offset. Almost no

information is lost.

44

Figure 30: Example Plot of Received Data for DBPSK receiver with 20kHz offset.

Figure 31: Example Plot of Received Data for DBPSK receiver with -30kHz offset

The general trend noticed was that increasing the frequency offset generally caused

increasing lost information. This was the case since whenever a window was opened the overrun

scope went high (i.e. from 0 to 1). Even though the overrun scope was mostly in the low state

indicating no overloads, there was still much lost information. There was not much variation due

to simulating limited mobility within the lab located in AK227, but it was also noted that when

Compared with the previous Figure, one can notice that

there is a large amount of information lost as the offset

increased

Great amount of data is lost at -30kHz of offset; hence no

message could be decoded successfully

45

the lab was busy (C term 2012 when ECE4305 was offered), the errors were higher. This might

have been the result of interference between the devices.

Our final design can be seen in Figure 32 and also in tables 9 and 10, where we highlight

its key features and the initialization parameters.

Figure 32: Complete auto-offset Simulink block that was designed for this project

Table 9: Functionality of Simulink blocks in the auto-frequency model

Main Blocks Function

DBPSK Modulator Baseband

Modulate the input signal using the differential

binary phase shift keying method.

Raised Cosine Transmit Filter

Upsample and filter the input signal using a

square root raised cosine FIR filter.

Insert Frequency Offset

Apply a frequency offset to the input signal

with the purpose of simulating frequency offset

caused by inaccuracies in the oscillator circuits

in the RF end.

Square of the signal Take the square of a signal, so the FFT of the

46

received signal will be shifted double of the

frequency offset.

Magnitude FFT

Compute magnitude-squared FFT of the signal

with offset after taking a square.

Maximum

Returns the value and index of the maximum

elements of the input signal coming out from

Magnitude FFT block. Indices are the locations

of maximums, which should be equal to double

of the offset in this system.

Offset Display

Numeric display of input value which is the

estimated offset we calculate from the

receiving side.

Table 10: Simulink initialization parameters for the auto-frequency offset model

Parameter Value

Interpolation 500

Oversampling 2

Fs1 (Relevant sampling frequency) 10
8
/interpolation

Fs2 (Symbol rate) Fs1/oversampling

Bitrate Fs2/bitsPerSym

Center frequency of USRP2 Tx/Rx Set to 2.42 GHz

Frequency scaling factor (1024 point FFT) 2048/FS

In addition to the initialization parameters, the key to the correct frequency representation

was the conversion of the FFT indices into actual frequency units. To illustrate the issue, a plot

47

of the MagFFT block output is provided in Figure 33. As seen there is no link in the figure,

relating the index to a frequency value as yet. Also the Max block output should start counting

from 0, not 1; and the frequency scaling used for division in the last block, must be adjusted.

Since a 1024 point FFT was used, the indices of the FFT vector represent increments of Fs

/1024. Thus the constant used for frequency calculation was changed to 2048/ Fs.

Figure 33: Example of MagFFT block output, not adjusted to actual values.

Using siggen.mdl, various frequency offsets were simulated on the transmitter end. It must be

noted that the transmitter offsets are the values input into the software to offset the transmitter

center frequency from the receiver center frequency. The actual offset from the receiver must

also be incorporated into these in the estimate. The AFOC was then manually observed to

determining the frequency offset. This was recorded in addition to the displayed estimate. These

are all plotted in Figure 34.

A peak of the signal at 2.42GHz, which was detected by

squaring its magnitude.

48

Figure 34: Auto-frequency offset error performance for various offsets

4.2. Performing Frame Synchronization

 Frame synchronization is the process in the telecommunications transmission system to

align the digital channel (time slot) at the receiving end with the corresponding time slot at the

transmission end as it occurs [55]. For example, one transmits a packet which contains numerous

frames. At the receiver side, you want to know where a specific frame actually starts, and then

one needs to implement frame synchronization.

Frame synchronization involves the following steps: In the first step, the transmitter

injects a fixed length symbol pattern, called a marker, into the beginning of each frame to form a

marker and frame pair, which is known as a packet. Packets are then converted from symbols

into a waveform and transmitted through the channel [55]. The receiver detects the arrival of

packets by searching for the marker, removes the markers from the data stream, and recovers the

transmitted messages. Marker detection is the most important step for frame synchronization.

The USRP2 solution consists of two aspects: the transmitting node and the receiving

node. Figure 35 illustrates the model for the transmitter.

Automatic Frequency Offset Correction

Manual Frequency Offset Correction

49

Figure 35: Simulink model for frame sync (transmitter)

The system consisted of six blocks as shown. The Unipolar Barker Code subsystem

generated the synchronization bits at a rate of 13 bits in the entire frame sampling period that is

sent to the concatenation and padding block to the right. The sBit block accepted any messages

which were to be sent. Since we wanted the input of the DBPSK modulator block to be a 179x1

frame each sample time, the concatenation and padding block was coded to essentially generate

the required frame. The code for this block is presented in the Appendix. The intent for this

block is to expand it such that all required frame construction for the model is done here. Thus

we also decided that in future work we would also consider implementing the other framing

functions (e.g. adding addresses, framing and error detection/correction codes, additional

synchronization information, as well as fragmentation and reassembly information if necessary).

Table 11 presents a listing of the blocks and summarizes their functionality.

Table 11: Functionality of blocks used in the Frame Sync model

Main Blocks Function

Unipolar Barker Code Generator Generate Barker code of length 13, used for

frame synchronization. The sample rate was set

to 1/13 samples per frame. Note that this is

subsequently normalized based upon the

USRP2 Tx sample rate. Note that this should

not be confused with the digital sampling rate.

In fact the rate specified here is the rate at

which Simulink blocks’ states and outputs are

updated.

50

DBPSK Modulator Baseband Modulate the input signal using the differential

binary phase shift keying method.

Raised Cosine Transmit Filter Upsample and filter the input signal using a

square root raised cosine FIR filter.

Signal from workspace This was used to generate the data required for

transmission.

Concatenation and Padding Add the 13bit Barker code to the start of the

frame, and pad to the end of the frame with

zeros if it is less than the frame samples frame-

size.

The next aspect was the receiver. The receiver model is illustrated in Figure 36. The main

blocks included the auto-frequency offset which compensated for frequency offset. This has been

discussed previously. In this case, it was not known when the first piece of data received actually

began in the frame. When the receiver code was initiated, it could pick up data starting in any

part of the frame. Thus in our case we used the correlation against the barker code to determine

the instants at which the synchronization sequences existed, and ignored the data before the first

case. Model initialization parameters for both transmitter and receiver are given in Table 12.

Table 12: Initialization parameters for the frame synchronization model

Parameter Value

Interpolation 500

Oversampling 2

Fs1 (Relevant sampling frequency) 10
8
/interpolation

Fs2 (Symbol rate) Fs1/oversampling

Bitrate Fs2/bitsPerSym

Center frequency of USRP2 Tx/Rx Set to 2.42 GHz

Frequency scaling factor (1024 point FFT) 2048/FS

.

51

Figure 36: Frame Sync Simulink model (Receiver).

4.2.1. Performance Evaluation

According to our results of successfully decoding the message, the success rate was

generally below 5% without frequency offset compensation. We thus thought we should examine

the reasons behind the rates being achieved by our other class mates as well as ourselves. There

was a 2-4% increase in the performance when we tried varying the various parameters from

Table 12, with the exception of the data rate.

4.2.1.1. Unexpected Frame Lengths

 We decided to investigate this further since we were getting very low success rates. We

realized that the max function only retrieves the first instance of the maximum occurring in the

argument for the function. Since we buffered a few received frames and visualized them, we

noted that the correlation was 13 at the frame start points, and this was repeated almost

periodically, except in a few instances where perhaps there was noise and a barker code got

garbled. We essentially detected all frame starts in our received sequence, and found the

difference between successive start points. An example of this is presented in Figure 37. As seen

in the figure, on average there were about 230 bit samples between each successive detected

frame in the data stream. The higher spikes corresponded to instances where perhaps the frame

synchronization was lost and a frame thus seemed longer than it really was. We expected the

number of bits between frames to be about 179. We double-checked our models, and they did not

suggest an alternate frame length was erroneously input. Thus we decided to try other USRP2

devices with our code. We got different frame lengths, but the same result as with our own.

Essentially, the frame lengths seemed to spread out at the receiver. We thought that perhaps we

could resample, by low-pass filtering followed by sampling to obtain the required frame sizes, in

case there was some sort of temporal spreading.

52

Figure 37: Number of samples between detected frame synchronization points

We then thought that maybe that would not work because we were able to pick up the frame

starts, and the values for the correlation were 13 which corresponded to what we expected for the

13 bit barker code. Thus if the barker code was exactly 13 indicating that we were able to pick it

up, then we assumed the remainder of the frame was also not spread temporally. Thus we

wondered what could possibly cause the spacing between received frames to be more than 179.

4.2.1.2. Adjusting Data Rates

 To investigate this further, we looked at the transmitting data rates. What we observed

was that we got better performance when we transmitted at slower data rates. To better

understand this we referred to the transmitter and receiver models from Figures 27 and 28 to

determine what was going on. The USRP2 DAC samples the data at 100Msamples/second. By

adjusting the interpolation we can adjust the rate at which the USRP2 samples the data at the

input of the USRP2 Transmitter block. It must be noted that the definition of sample time in

Simulink refers to the times at which the block outputs and their states change. By looking at the

sample times we realized that at the transmitter, the typical rate was around 0.00179s. This meant

that the blocks changed their outputs at this rate.

Locating the preamble

53

Now after passing through the Raised Cosine Transmit Filter block the system essentially

increases the frame size from 179 to 358 elements. This is held at the USRP2 block input for

0.00179s before it changes again. Since the USRP2 interpolation was set to 500, the sampling

rate at the DAC essentially transmitted the data at 200,000 samples per second, where each

sample was a frame of 179 bits. This means that the frame was transmitted roughly 200,000

times in one second. Hence, in theory it may be possible to get a raw rate of 35.8Mbps ignoring

the other practical issues. However, realistically we know that this is not the case, since details of

the USRP implementation will determine the threshold for the rates. Furthermore, since the data

at the input of the USRP block does not change for 0.00179 seconds, what we in fact get is that

we can send the a maximum of around 200,000 frames for each change in the Simulink sample

time. Since between Simulink sample times the data is latched at the USRP block input, this

restricts the data transmission to the times at which the data changes.

When we adjusted the rates via the block, we were able to get varying rates of success at

the receiver. We were able to have a form of repeater coding inadvertently achieved due to the

sampling rate of the USRP2 device sending multiple samples of the message between Simulink

sample instants. It must be noted that this benefit would also depend upon the rate at which

samples from the USRP2 receiver block are input into the receiver model in Figure 28. This

depends upon the sample time for this block, which determines the rate at which samples were

logged. Thus there is a pairing between the interpolation and decimation of the USRP2 blocks

which in theory can be used to adjust the data rates.

4.2.1.3. Bit Error Rate Results
 We examined the typical performance of the system under different SNR values, in 5dB

increments from 0 to 75dB. First we set the interleaver so that its output mirrored the input, using

the statement y = u, where y was the output and u was the input. This was then done for the de-

interleaver. These were plotted for various repetition rates to compare, as shown in Figure 40.

To change the SNR it was noted that the Bernoulli generator produced equally probable

0’s and 1’s. Thus the input symbol power was calculated from (Wyglinski 2011) as 0.5 for 16-

QAM, when normalized for an amplitude of 1. Then the AWGN channel parameters were

adjusted to change the SNR values. Since 16-QAM was used, the number of bits per symbol was

let at 4. Also with no loss of generality the symbol period was left at 1. Note that Simulink would

also determine the noise variance based upon our specification of the Eb/No ratio. An example of

54

the configuration is shown in Figure 38 below. Figure 39 shows the port properties when a

repetition code rate of 2 was used.

Figure 38: Example configuration of AWGN block to test repetition coder/decoder performance

Figure 39: Simulink model showing port properties for a repetition rate, k = 2

55

Figure 40: Error performance of different code repetition rates in AWGN channel

Observing Figure 40, there was not a significant improvement in the error performance

(less than 1dB of error improvement) for a given SNR, by increasing the code repetition rate.

Without code repetition (i.e. k = 1), for a given SNR, in general the performance was better than

with code repetition. However for k > 1, it was seen that for SNR’s above 60dB increasing k

improved the performance. However for lower SNRs (i.e. when better error performance would

be desirable), the performance was comparable for the three cases examined. This did not fit well

with the expected calculations, but can be explained by first noting that the performance would

tend to increase for much larger code repetition rates. However, this would be impractical and a

waste of channel bandwidth in transmitting so much redundancy.

Additionally, the trend can be explained by noting that if there were noise bursts greater

than the code repetition rate, it can affect the error performance gained by code repetition. Thus,

again it seems that only by increasing k to impractical values can significantly improve the

performance. In fact, if the noise burst durations could be characterized, then the value for k

should be at least twice the expected duration of bursts, to counteract them by averaging out the

corrupted bits. This is further supported by considering the minimum Hamming distance for a k-

56

rate repetition code as discussed in [71]. Since there are two valid code-words (i.e. all ones and

all zeros), then the minimum distance will be k, and the maximum number of bit errors which it

can correct, will be approximately 1/2 r.

Another thing to note would be that the performance of the coder may actually be

different in different channel models. Intuitively, repetition coding may work better to counteract

channel fading as opposed to the effect of AWGN. Clearly the extra redundancy can assist with

errors of certain types (more on this in the next section). At the receiver end, the decoder

essentially reduces the rate by a factor of k, removing the added redundancy. Compared to other

approaches such as convolutional coding and block coding, this method is extremely simple, and

its error performance is not as good. Thus it can be concluded that repetition coding presents a

mediocre compromise between error performance and data rate compared to other coding

schemes, and the main advantage over these alternatives, is its ease and simplicity of

implementation. The above thus summarizes the tradeoffs in choosing a repetition rate, as well as

repetition coding itself.

As discussed previously the repetition coder does not provide great performance by itself,

and in AWGN channels the presence of burst errors limits the error performance of simple code

repetition. Errors usually occur in bursts and are not independent. As shown above, if the number

of errors exceeds 1/2 the repetition rate, k, then the error-correcting capability is compromised

and it may not be possible to recover the original code word. Interleaving permutes the bits, by

some pre-determined form of systematic shuffling (i.e. depending on the interleaving algorithm)

so if burst errors occur, the errors are more uniformly distributed and can thus improve the error

performance. The interleaver and repetition coding effectively repeated each frame k times. For

example 101 produces the 12-bit sequence 101101101101, for k = 4. Figure 41 presents a

comparison of k=4 plus interleaving versus no interleaving for k = 4 and k = 8.

57

Figure 41: Error performance of different code repetition rates compared to interleaver addition in AWGN channel

As seen from the graph, there was also no significant improvement in the error

performance when the interleaver was added. Observing Figure 41, there was not a significant

improvement in the error performance (less than 1dB of error improvement) for a given SNR, by

increasing the code repetition rate to 8 or by adding interleaving to the k = 4 coding. It was seen

that for SNR’s above 60dB increasing k improved the performance, while interestingly

interleaving reduced it. However for lower SNRs (i.e. when better error performance would be

desirable), the performance was comparable for the three cases examined. This did not fit well

with the expected calculations, but can be explained by first noting that the interleaver used was

very simple. More complex interleavers or decoders can capitalize upon knowledge of the error

structure improving error performance. As before, it must be noted that in other non-AWGN

channels interleaving may work better. These issues can be further examined, but due to the

limited course time, are just noted as areas for further investigation, perhaps in the project.

Because of the need to store the bits of a frame for interleaving and de-interleaving, it can be

seen that these techniques can potentially improve error performance at the expense of added

58

latency. This represents a tradeoff of this technique. However this would hold for many other

coding schemes which all rely upon some form of framing or are block-based (e.g. convolutional

coding and block coding schemes).

Another interesting observation was that whenever the simulation was run over, the

results were generally the same unless the seed was changed. Thus for each run the seed was

changed. When this was done, it was observed that successive runs for the same SNR value

produced significantly different results. This hinted that perhaps the simulation cut-off was too

short, or that the variation in the performance would change for different runs. Thus insight was

actually incorporated into the process for data collected for each scenario at each SNR value.

Hence, average values were used for several runs, and it was these that were plotted in the graphs

in Figures 40 and 41 above.

When the input was connected to both inputs of the BER calculator, the BER was always

0, no matter how long the simulation was run. With reference to the MATLAB documentation

persistent variables store data even after functions are exited. This provides a way to accumulate

data and track states, at periodic function calls each sample instant or asynchronous function call.

If one of the inputs is inverted, and the AWGN is removed, then the BER is 1 (i.e. all bits

are in error). As seen in [71] and [72], different constellations correspond to different modulation

schemes, and this may translate into different error performances. As seen in [73], 16-QAM

outperforms 16-PSK, and 16-PAM for a given SNR in terms of Eb/No ratio. Thus if the

constellation diagrams were changed (i.e. different modulation schemes) it is expected that the

error performance would be different.

4.3. Hardware Selection

 After progress had been made in transmitting a text message from one computer to

another via the Simulink-USRP2 interface, the actual hardware on which this system would be

implemented needed to be selected. Work on the Simulink program and improving its resiliency

would continue, but the team had to now also work on selecting, purchasing, and testing the

equipment. This was a vital part of the project because it is this hardware that would eventually

be placed on the UAVs and run the overall communications system.

59

 First, the team had to decide upon which hardware components would be needed for the

system. Because the team was only responsible for the communications, this included all

equipment that would be involved with this process. Overall, the system would be required to

transmit data from the drones to the mothership, have the mothership compile and prioritize the

information, and then transmit it to the base station. This process would thus need hardware

capable of a drone-mothership link, signal processing, and a mothership-base station link. The

separate hardware components were selected to meet these specific needs.

 To enable the drones to communicate with the mothership, a basic Wi-Fi link was used.

Because Wi-Fi has a limited range, an amplifier and antenna was needed to increase the

transmission distance. The Bullet M Wi-Fi radio amplifier was selected for this application. An

example of the Bullet M can be seen below.

Figure 42: The Ubiquiti Wi-Fi Bullet M [69]

The Bullet M weighs a light 0.18 kg, which is important when trying to cut weight on a UAV. It

consumes up to 600 mW of power, has a data rate of 100+ Mbps, and a range of several

kilometers [69]. These specifications made the Bullet M unique among Wi-Fi amplifiers,

enabling it to have a relatively large range with low power and weight requirements. The Bullet

M was the ideal choice for the drone-mothership communications. However, due to budget

constraints, the team was only able to purchase one unit for $80. It is sufficient for testing, but

further funding will need to be acquired in order to purchase more units and install them on all

the UAVs.

60

 The next important purchase item was the motherboard. This component was required for

compiling all the incoming data from the other drones into one data stream that could be sent to

the base station using software-defined radio. Specifically, the Simulink program the team wrote

would carry out much of this task, which meant that the motherboard would need sufficient

processing power to run MATLAB and Simulink and a gigabit Ethernet port to connect to the

USRP2. After much searching, the team settled on the Axiomtek Pico820 motherboard, as seen

below.

Figure 43: Pico ITX Motherboard [66]

The board was a small 100mm×72mm requiring a standard 5V power supply. It possessed a 1.6

GHz Intel Atom Z-series processor and 2 GB of RAM. These specifications meant that it would

be capable of adequately running Simulink for the desired application. In addition, it had

numerous input and output ports, including 4 USB 2.0 slots and a gigabit Ethernet port [66]. This

Ethernet port was an important requirement in order for it to interface with the USRP2. The

board was purchased for $550, making it the largest expense. However, only one was needed to

place on the mothership; separate computers would perform any required computation on the

drones and base station. Thus, this Pico ITX would meet all of the required processing needs for

the communications system.

 Two additional components were the solid state drive and the radio amplifier. The drive

was needed as storage for the motherboard and to complete the fully-functioning computer that

61

would run Simulink. The team selected the ADATA 30 GB mSATA Internal Solid State Drive.

It was chosen because of its large storage capacity, small 51mm×30mm×4mm footprint, high

280 MB/s data transfer rate, minimal 1.5 W power consumption, and reasonable $65 price [68].

A picture of it can be seen below.

Figure 44: ADATA 30 GB Solid State Drive [68]

The other additional component, the radio amplifier, was needed to provide additional power to

the USRP2 and increase its transmission range. The ECE Wireless Laboratory already possessed

such an amplifier, the MiniCircuits ZX60-33LN Low Noise Amplifier, so that is the one the

team selected. It had a bandwidth of 50 to 3000 MHz, a gain of 16.5 dB, and a required DC

voltage of 5.5 V [67]. These specifications, along with its small size, made it ideal for increasing

the USRP2 range. In addition, using the one already supplied by the ECE department saved the

team the $80 on the price. The amplifier can be seen below.

Figure 45: MiniCircuits ZX60-33LN Amplifier [67]

 A table detailing all of these specifications for the different components can be seen in

table 13.

62

Table 13: Hardware Specifications [66], [67], [68], [69]

Ubiquiti Bullet M  Weight: 0.18 kg

 Power: 600 mW

 Data rate: 100+ Mbps

 Range: several kilometers

Axiomtek Pico820  Size: 100mm×72mm

 Power supply: 5 V

 Processor: 1.6 GHz Intel Atom

 RAM: 2 GB

 Ports: gigabit Ethernet, 4 USB 2.0

ADATA mSATA Solid State Drive  Capacity: 30 GB

 Size: 51mm×30mm×4mm

 Transfer rate: 280 MB/s

 Power: 1.5 W

MiniCircuits zx60-33LN Amplifier  Bandwidth: 50 to 3000 MHz

 Gain: 16.5 dB

 Power supply: 5.5 V

4.4. Issue with Conversion from UDP to UHD

 A major issue was encountered at the beginning of C term with the progression of the

project. By the end of B term, the team had begun to successfully transmit and receive basic

string messages such as “hello world” from one USRP2 to the other. This was a significant step

and signaled that the project was making good progress. However, with the start of C term, the

class ECE 4305: Software Defined Radio began to use the USRP2s and upgraded all of the

MATLAB copies from version 2010b to 2011a. Along with this change was a switch from the

driver software for the USRP2s from UDP to UHD. This seemingly minor change actually

caused several weeks of problems as the Simulink models ceased to work and the team had to

make numerous changes to ensure that it functioned properly again.

 UDP, or User Datagram Protocol, is the driver software that Simulink used to interface

with the USRP2 in the 2010b and prior versions of MATLAB. UDP’s functioning is not visible

to the user at all because it defines the lower level interactions between the radio and the

computer, but it is for this very reason that it is important. With UDP, Simulink programs using

the USRP2 interface block must run with the frame size set at 358 samples. This is a set

63

parameter that cannot change, making the user define their programs to meet this requirement.

The team went through this process during B term, designing the text transmission program to fit

the message within the 358 samples of the frame. In addition, the sample time of each program

had to be tailored to match the frame size and message length. While this parameter limits how

data may be transmitted, the user can modify the program to separate a larger message into

separate frames. The team was planning on doing this very step at the beginning of C term to

send larger and more complex messages over the USRP2s.

 However, when C term started ECE 4305 updated all of the computers to run MATLAB

2011a with the UHD driver software. UHD stands for Universal Software Radio Peripheral

Hardware Driver, and operates very differently from UDP. It can have a variable frame length,

letting the user decide to incorporate any number of samples ranging from, for example, 50 to

over 10,000. The sample time could then be matched to this new frame length instead of a set

length of 358. These two different parameters allow the user much greater flexibility in creating

a program by not limiting how the radio transmits data. Furthermore, there were even changes to

the Simulink blocks themselves, requiring the USRP2 blocks from the original programs to be

updated to the new USRP2 blocks. The different blocks can be seen in Figures 46 and 47.

Figure 46: MATLAB Version 2010b USRP2 Transmitter Block

Figure 47: MATLAB Version 2011a USRP2 Transmitter Block

 While these updates may seem relatively inconsequential, they had a large impact on the

progress of the project. Several weeks at the beginning of C term had to be devoted to including

the changes and ensuring that the original Simulink transmit and receive programs were again

working. Because all of the settings and blocks in Simulink are so closely intertwined and

64

dependent, changing one number such as the sample time in the setting for one block could

create a cascade of errors in the following blocks. The only blocks that required visible

modification were the USRP2 transmitter and receiver blocks; all the other changes were in the

settings. As a result, there is no way to document the work done to update the models.

Significant time was devoted in lab to sorting through the errors resulting from these updates and

modifying the programs to work with UHD. After much troubleshooting to determine and fix the

source of these errors, the team was able to modify the Simulink programs to work with UHD at

any chosen frame length.

4.5. Increasing Flexibility of Transmitter and Receiver
Models

After modifying the basic Simulink transmitter and receiver models to operate with

UHD, the group continued on to improve the flexibility and resiliency of these models. This was

an important next step because the radios needed to be able to transmit different messages under

different scenarios. To account for this possibility, the team implemented the option to send

variable length messages and different file types.

4.5.1. Variable Length Messages

First, the group needed to be able to modify the frame length as desired. This ability

would enable messages of any length to be transmitted efficiently using as few frames as needed.

Using UHD, this proved to be a relatively straightforward task. The first step was to select the

message; in this example, the string “hello world” was chosen. The MATLAB m-file

charToBitsAndBack.m (as seen in the appendix) was used to convert the string to a binary array

where each character was represented by seven bits. Thus, this string would be 77 bits long. It

was defined as the variable sBit and sent to the model mFindFrameStartTx.mdl, which then

transmitted the message to the receiver through the USRP2. The model is shown below.

65

Figure 48: mFindFrameStartTx.mdl - Text Message Transmitter Model

In addition to modifying the input string, the settings for the model had to also be modified to

accommodate different frame lengths. Specifically, the sample time in the “Signal From

Workspace” block had to be set to 1/77 with 77 samples per frame to match the length of the

message, as seen below. These numbers would be different if the message was a different length.

Figure 49: "Signal From Workspace" Block Settings

The other blocks did not depend on the frame length, so their settings did not need to be changed.

In this manner – selecting the message, entering it into charToBitsAndBack.m, and then

66

modifying the sample time and samples per frame in the “Signal From Workspace” block – the

Simulink transmitter program was made to accommodate messages of any desired length.

 To receive the message with its variable length, the receiver model required similarly

straightforward modifications. The full model and its “FrameSync” subsystem, as seen in the two

figures below, did not require any visible changes.

Figure 50: FrameSyncFinalv2.mdl – Text Message Receiver Model

Figure 51: FrameSync Subsystem

Instead, parameters in the settings of the blocks had to be modified. Specifically, the MATLAB

function in the subsystem had a variable mlength that needed to be set to the desired frame

length of 77. In addition, the m-file that decoded the received message from bits into a string,

CharToBitsAndBackRxv2.m, also had a variable mlength that needed to be set to the desired

frame length. Both these functions can be seen in the appendix. Once these changes were made,

the receiver model was able to work in unison to send and receive any message put into a frame

of variable length, thus increasing the overall flexibility of the system.

67

4.5.2. XML to Bits Conversion

 Although the system could now handle variable length messages and frames, it still had

room for further improvement. The messages that it was sending were simple strings defined in a

MATLAB script, which are not very challenging to decode and transmit. The next step needed to

be the addition of a feature that allowed the system to take in a file of any type and convert it to a

binary vector which could then be transmitted. This would be much more realistic for when the

system is fully implemented on the mothership and taking in various types of files such as video.

 In order to meet this need for interoperability with different file types, the m-file

inputXML.m was created, which can be seen in the appendix. It began by calling any desired file

of any type, in this case the XML document CommsAbstract.xml. It used the functions fopen()

and fread() to take in the file and convert it into an array of bits that represent the ASCII values

in the original file. The array was defined so that each column was one frame with the frame

length being 987, resulting in 987 rows. The number of columns was determined by the size of

the original file.

 At this point, the transmitter program was able to transmit the frames in the array one at a

time, allowing the entire file to be transmitted in separate packets. The receiver would then run

the last several lines of code in inputXML.m, which used the functions fopen() and fwrite() to

create a new blank file, convert the incoming binary frames into ASCII characters, and then

write these characters into the file. This last step thus completed the process of transmitting and

receiving the XML file. A flow diagram demonstrating this process can be seen below.

Figure 52: XML Conversion Flow Diagram

 This process using inputXML.m is fairly simple yet very important. The three main

functions used in the script– fopen(), fread(), and fwrite() – are all predefined MATLAB

functions designed for this type of file manipulation. When they are combined and applied in this

manner, they make a script that is capable of taking in any file type of any size and successfully

transmitting it with the USRP2s. This is an important step for the large video files that will need

Input File
Type to

Program

Covert
File to

Array of
Binary
Frames

Transmit
Frame

Receive
Frame

Convert
Received

Bits to
ASCII File

68

to be sent to the base station. The one problem encountered with this method was that the

Simulink program could not switch quickly from sending one frame to the next. There was no

clear way to address this problem using blocks in the transmitter model to switch between the

columns of the array, so a separate test script was written that called the model repeatedly and

sent a separate frame to it on each call. This method was slow and inefficient, but there was no

better alternative. A more effective means of transmitting multiple frames in a row should be

developed in further work.

4.6. Testing USRP2 Transmission Range

 Now that the system could handle transmitting messages with multiple frames originating

from different file types, the next step was to determine the effective range of the USRP2s. Since

the UAVs will be moving around while carrying out the search, they will be at varying distances

from the user. The communications system will need to handle such a situation and ensure that

contact is always maintained between the mothership and base station. Knowing the effective

range of the radios is imperative while designing the communications system to ensure that this

requirement is met.

 To determine the range of the USRP2s, a field test needed to be carried out in a

controlled environment. This test would require a large open space to provide the radios an

unrestricted line of sight and thus maximize the likelihood of transmission. In addition, the site

needed electrical outlets available to power the computers and radios. Lastly, Wi-Fi was required

to connect the laptops to the WPI network and obtain the license for MATLAB, which would run

with Simulink to control the USRP2s. These requirements logically led to doing the experiment

in a large indoor space, which is why Harrington Auditorium was ultimately selected.

 To conduct the test, the team set up a USRP2 connected to a laptop at either end of the

basketball courts in Harrington, with each pair operated by a team member. There was a clear

line of sight between both radios. A picture of this setup is seen below.

69

Figure 53: USRP2 Range Test Setup

The frequency offset between the two radios was first determined to be 80 kHz by using the

model observeFFT.mdl, which permitted the receiver to observe the spectrum of the transmitter.

This is a very large number because the normal offset is no more than 20 kHz, leading to

speculation that there was a problem with the radios. Nonetheless, the offset value was

incorporated into the receiver’s frequency setting to ensure correct transmission. In addition, the

transmitter used the Simulink model mFindFrameSyncTx.mdl to transmit the message and the

m-file char2BitsAndBack.m to encode the message. The receiver used the model

frameSyncFinalv2.mdl to receive and the m-file char2BitsAndBackRxv2.m to decode the

message. These models are in figures 48, 50, and 51, and the m-files are in the appendix.

Next, the range and transmitter power were selected to be the independent variables.

Modifying the range between the radios would simulate the varying range between the

mothership and the base station; modifying the transmit power would simulate cases of path loss

due to atmospheric interference or larger distances. The ranges were set at approximately 40

yards and 25 yards, and the power of the transmitting USRP2 was switched between 32 dB, 16

dB, 8 dB, and 0 dB at each distance. A map of the setup of the radios in Harrington is shown in

Figure 54.

70

Figure 54: Harrington Range Test Map

Changing the receiving USRP2’s power was deemed unnecessary since it simulated the base

station, which would be stationary and possess a constant gain. Thus, the receiver’s power was

kept at a constant 32 dB, which was the maximum possible gain. The transmitted message was

“Is it the Apocalypse… or is it just C term?” The results were recorded for each set of variables

and are shown below.

Table 14: USRP2 Range Test Results

Transmitter Gain 40 Yards 25 Yards

32 dB Successfully received Successfully received

16 dB Successfully received Successfully received

8 dB Received "? ? @? @P ? @?

? ? A? ? A E@ ???"

Received

"? ?? ?? @? ?"

0 dB Received nothing Received nothing

As these results demonstrate, the USRP2s performed well at varying ranges. The received

messages were nearly identical between 40 yards and 25 yards, which was not expected. Instead,

the team anticipated that the message would be received better when the radios were closer. The

71

message was received at both ranges if the transmitter gain was above 16 dB but not if it was

below 8 dB, indicating that the cutoff gain between successful and unsuccessful transmission

was somewhere in between the two. This result indicates that provided there is a clear line of

sight between the radios, then the likelihood of successful reception is high for a sufficiently high

gain. Furthermore, the radios could likely still work at a much greater range – such as 50, 70, 100

yards or more – since the message was received even at well under the transmitter’s maximum

gain of 32 dB. Further testing at longer ranges would have been ideal to confirm this expectation.

Unfortunately, the group was pressed for time and there was no way to increase the range of the

test in Harrington.

This USRP2 range test proved to be highly successful. It demonstrated the capability of

the radios to successfully transmit and receive a message at ranges up to at least 40 yards,

provided that the gain was sufficiently high. In addition, the results suggest that the radios could

operate just as well at much greater ranges. The addition of an amplifier, such as the

MiniCircuits ZX60-33LN, would increase the distance even more. These results bode well for

the mothership, suggesting that it can operate well at a minimum of 40 yards and, with sufficient

gain, probably at 100 yards or more. Thus, this field test provides proof-of-concept for the

chosen architecture of a wireless UAV system.

4.7. Implementation on Motherboard

 At this point our complete communications protocol had to be implemented on the Pico

ITX motherboard. This step is highly important and innovative because it is the first time that

such an SDR system has been implemented on a small processor with the intent of placing it on a

UAV. This section elaborates the steps that were followed in order to have a fully functional

motherboard, capable of performing reliable communications while operating in the sky.

4.7.1. Choosing the operating system

 First of all, the appropriate operating system that would be loaded in the motherboard had

to be chosen. The initial choice was the Debian operating system. Debian is a free and open

source software. It is known for relatively strict adherence to the philosophies of UNIX and free

software as well as using collaborative software development and testing processes [54]. In brief,

72

this software would have been the most suitable for our purpose since it has the least CPU

consumption comparing to other similar operating systems.

However, due to issues that were faced during the installation of Debian, we chose a

similar operating system, the XUBUNTU. The installation error of Debian was caused by the

graphics card that was installed in the motherboard. Since it was a built-in feature we could not

fix it. Hence, XUBUNTU was installed in the motherboard. This operating system is based on

the same concept as Debian and it also has a similar friendly Graphic User Interface to Debian.

Figure 55 shows are successful installation of MATLAB/Simulink on the Pico ITX motherboard

Figure 55: MATLAB running on the Pico ITX motherboard

 Several tests regarding the CPU power consumption between the two operating systems

were performed. The results can be summarized in Figures 56 and 57 for XUBUNTU and the

Debian respectively.

Figure 56: CPU power consumption using the XUBUNTU's system monitor

15.2 % peak of the CPU performance

73

 Figure 56 shows that after 1 minute of monitoring the CPU power usage while installing

MATLAB in XUBUNTU, 15.2 % of the total CPU was being used.

Figure 57: CPU power consumption using the Debian system monitor

 Figure 57 verifies the significant difference in CPU power usage while installing

MATLAB in Debian. Looking at the CPU2, only 3.0 % was being used after 1 minute of

monitoring.

4.7.2. Power and Heat Issues

 As mentioned in section 4.7.1 XUBUNTU consumed more CPU power while MATLAB

was being installed. The CPU usage could go up to 85.7% that caused our processor to overheat

(over 60
o
C) and therefore to get our motherboard “frozen”. We also realized that our initial

assumption of the 1.5A current that was needed to power the motherboard was not sufficient;

therefore we had to increase it to 3A.

 In order to fix the overheating issues we had to install a fan on the top of the heat sink of

the microprocessor. The result of this installation was that the temperature was stable at 35
o
C and

hence the performance of the motherboard was significantly improved.

3.0 % peak of the CPU performance

74

Figure 58: Final setup of the motherboard with the cooling fan installed and the USRP2 connected

 Figure 58 shows the final setup of the motherboard. Notice that the USRP2 is also

connected to it via the Ethernet interface. The cooling fan uses the 5V that was needed to power

the Pico ITX. This picture was taken in AK 227 on March 2
nd

 2012 at 20:35 during the final

successful transmission test of an XML file that can be found on Appendix E.

 At this point all the components were successfully installed. Therefore we run several

tests using a decimation of 512 while transmitting any message. As expected the transmission

was successful since we were able to receive any message that was generated using the Pico ITX

motherboard.

5V, 5cm Cooling Fan

75

Figure 59: Successful transmission of the XML file using an interpolation of 512 at 2.42GHz.

 Figure 59 and 60 shows the successful transmission of the XML file that can be found on

Appendix E using a decimation of 512 at 2.42 GHz.

Figure 60: Successful reception of the XML file using a decimation of 512 at 2.42GHz on the picoITX motherboard

76

4.8. Summary

This project was able to achieve most of its final goals during the implementation phase. The

team’s achievements were as follows:

 Successfully created a functioning Simulink system using the USRP2s that

could transmit a text message.

 Improved system flexibility by modifying the length of the message and the

frames.

 Applied script that allowed the program to read in and transmit any file type of

any length and then decode it at the receiver.

 Carried out range test of USRP2s in Harrington Auditorium to determine that

they can transmit a minimum of 40 yards and likely much further.

 Loaded MATLAB and Simulink onto Pico ITX motherboard and used them to

operate a USRP2.

Several issues were encountered along the way, particularly the conversion from UDP to UHD,

but they were eventually overcome. These accomplishments have successfully provided proof-

of-concept for the architecture of the desired wireless UAV search network and laid the

groundwork for future work on the system.

77

Chapter 5 – Conclusion and Future Work

5.1. Conclusions

 Overall, this project was successful. The group’s goal was to lay the groundwork and

provide proof-of-concept for an unmanned aerial vehicle communications system that would aid

in search and rescue missions. The specific objectives for the end of C term were to perform a

range test of the USRP2 radios in Harrington Auditorium and operate the radios using Simulink

installed on the motherboard. These objectives were successfully met, and many conclusions can

be drawn from the results. However, time and budget constraints meant that the team was unable

to progress further and implement a fully functional communications system on the UAVs,

leaving room for future work.

5.1.1. USRP2 and Simulink Communications System

 One of the main objectives of the project was to create a communications system using

Simulink that would simulate the mothership-base station link. The team was able to successfully

achieve this objective by sending text messages between two USRP2s in lab. The

Communications Systems Toolbox in Simulink was used to design a system that would take in a

predetermined message, encode it, transmit it with the radios, and decode it at the receiver. This

process was accomplished using the mFindFrameSyncTx.mdl and frameSyncFinalv2.mdl

models as the transmitter and receiver, respectively. However, transmitting video data was

deemed too difficult with the limitations of a 200 kbit/s sampling rate and 512 decimation rate

78

for the radios. In addition, Simulink was not optimized to transmit video. Instead, the team

focused on improving the flexibility of this system and testing the radio transmission range.

 The team sought to improve the Simulink program’s flexibility by modifying the frame

length and the file type that could be sent. Modifying the frame length proved to be fairly

straightforward with UHD and was accomplished by changing a number of settings in the

transmitter and receiver files. The frame length could thus be set to any desired number from

about 50 to 10,000 samples, although a length of 77 was often used for testing. Transmitting

different file types was accomplished by writing a script that used the fopen() fread(), and

fwrite() functions. It converted any given file to bits at the transmitter and reconverted them to a

file at the receiver. Although the script successfully accomplished this conversion, the team was

unable to find a method to quickly transmit multiple frames, which led to a slower data rate.

 Once the Simulink system was improved in this manner, the team then focused on testing

the range of the USRP2s. A large open area was needed to provide a clear line of sight, and it

needed both Wi-Fi and power outlets for the computer and radios. Thus, Harrington Auditorium

was chosen for the test. The radios were set at 40 then 25 yards apart, with the transmitter

varying the gain between 32 dB, 16 dB, 8 dB, and 0 dB. Surprisingly, the results were largely the

same for the two ranges, with the message being correctly received at 32 dB and 16 dB, a

garbled message received at 16 dB, and nothing received at 0 dB. These results show that the

USRP2s can function at a range of at least 40 yards, and likely much further, especially with

amplification. This test proved that when the radios are mounted on the UAVs, they will be able

to maintain connectivity over varying distances.

5.1.2. Motherboard Implementation

 The other main objective of this project was the implementation of the Simulink system

on a Pico ITX motherboard. The purpose of this objective was to demonstrate that the

communications system could operate on a small processor located on the UAV during flight,

which is a requirement for the UAVs to be able to communicate with the user. The Axiomtek

Pico820 was chosen for this application for its small size, sufficient 1.6 GHz processor, and

sizable 2 GB of RAM.

 To achieve this objective, the team first attempted to install Xubuntu onto the

motherboard. However, the board overheated and the installation could not be completed. A fan

79

was fixed onto the heat sink to address the issue. With the fan, the overheating was dissipated

and Xubuntu was successfully installed. MATLAB and Simulink were then installed without

error. Lastly, the USRP2 was connected to the Pico ITX’s gigabit Ethernet port and the model

mFindFrameSyncTx.mdl was run, which used the radio to transmit a basic text message. This

test proved that a small motherboard could operate the USRP2, which is proof-of-concept that it

could also function in this manner on the UAV to provide a link between the mothership and

base station.

5.2. Future Work

 There is a large amount of future work that can be done on this project. Since the team

was only able to lay the groundwork for an aerial wireless ad hoc network, future MQP groups

can continue the progress and full implementation of the system on the UAVs. Specific areas of

potential work include:

 Further improving resiliency of Simulink programs – incorporate energy

detection, bidirectional communications, and handshaking with USRP2s.

 Increasing effective data rate of USRP2s – implement transmission of videos and

dual-direction control commands over faster network.

 Integrate Wi-Fi and USRP2 – will allow conversion of data between the drones to

mothership Wi-Fi link and the mothership to base station USRP2 link.

 Load motherboard onto mothership – test performance of Simulink system and

ability to interface with Wi-Fi.

The first two bullet points are the areas of work that are most feasible in the near term.

They are the next logical steps from the products of this project and are required in order for the

communications system to have the improved resiliency needed for actual implementation. The

second two bullet points are longer term goals that will prove more difficult because they require

the integration of the hardware, software, and communications aspect of the project. However,

they are the important final steps for testing the full implementation of the system. All of these

opportunities for future work will extend the capabilities of the products that the team created. In

addition, they will bring the project further towards the final vision of a functional UAV search

and rescue system.

80

References

[1] J. I. Mitola and G. Q. J. Maguire, "Cognitive Radio: Making Software Radios More

Personal," IEEE Personal Communications Magazine, pp. 13-18, Aug. 1999.

[2] P. Kolodzy, "Spectrum Policy Task Force," Federal Communications Commission,

2002.

[3] SDR Forum. (2007, Nov.) SDR Forum. [Online].

http://www.sdrforum.org/pages/documentLibrary/documents/SDRF-06-R-0011-

V1_0_0.pdf

[4] Ansari, J.; Xi Zhang; Achtzehn, A.; Petrova, M.; Mahonen, P.; , "A flexible MAC

development framework for cognitive radio systems," Wireless Communications and

Networking Conference (WCNC), 2011 IEEE , vol., no., pp.156-161, 28-31 March

2011.

[5] Mitola, J.; , "The software radio architecture," Communications Magazine, IEEE ,

vol.33, no.5, pp.26-38, May 1995

[6] D. Valerio, ―Open Source Software-Defined Radio: A survey on GNUradio and its

applications, Forschungszentrum Telekommunikation Wien, Vienna, Austria, Rep.

FTWTR-2008-002, 2008.

[7] Buracchini, E.; "The software radio concept," Communications Magazine, IEEE ,

vol.38, no.9, pp.138-143, Sep 2000.

[8] M. Srbinovska, C. Gavrovski, and V. Dimcev. (2008, Sep.) Localization Estimation

System Using Measurment of RSSI Based on ZigBee Standard. [Online]. http://fett.tu-

sofia.bg

[9] S. Kay, “Statistical decision theory I (Ch. 3)” and “Deterministic signals (Ch. 4),” in

Fundamentals of Statistical Signal Processing, Detection Theory, pp.60-140, Prentice

Hall, 1998.

81

[10] H. Tang, “Some physical layer issues of wide-band cognitive radio systems,” 2005

First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access

Networks (DySPAN 2005), pp.151-159, Nov. 2005.

[11] K. Po and J. Takada, “Signal detection for analog and digital TV signals for cognitive

radio,” IEICE Technical Report, SR2006-54(2006-11).

[12] Ettus Research. (2009, Nov. 18). USRP2: The Next Generation of Software Radio

Systems [Online]. Available: http://www.ettus.com/downloads/ettus_ds_usrp2_v5.pdf.

[13] Ettus Research, http://www.ettus.com/.

[14] Sahin, G.; Chindapol, A.; , "Adaptive Spectrum Management in UAV-Aided Ad-Hoc

Wireless Networks in Single-area Theater," 2007 Mobile Networking for Vehicular

Environments , vol., no., pp.133-138, 11-11 May 2007.

[15] Alshbatat, A.I.; Liang Dong; , "Cross layer design for mobile Ad-Hoc Unmanned

Aerial Vehicle communication networks," Networking, Sensing and Control (ICNSC),

2010 International Conference on , vol., no., pp.331-336, 10-12 April 2010.

[16] Alshbatat, A.I.; Liang Dong; , "Adaptive MAC protocol for UAV communication

networks using directional antennas," Networking, Sensing and Control (ICNSC),

2010 International Conference on , vol., no., pp.598-603, 10-12 April 2010.

[17] Song Lu; Huang Ting-lei; , "A summary of key technologies of ad hoc networks with

UAV node," Intelligent Computing and Integrated Systems (ICISS), 2010

International Conference on , vol., no., pp.944-949, 22-24 Oct. 2010.

[18] Ke Zhang; Wei Zhang; Jia-Zhi Zeng; , "Preliminary Study of Routing and Date

Integrity in Mobile Ad Hoc UAV Network," Apperceiving Computing and

Intelligence Analysis, 2008. ICACIA 2008. International Conference on , vol., no.,

pp.347-350, 13-15 Dec. 2008.

[19] Dawei Ma; Shizhong Yang; , "UAV image transmission system based on satellite

relay," Microwave and Millimeter Wave Technology, 2004. ICMMT 4th International

Conference on, Proceedings , vol., no., pp. 874- 878, 18-21 Aug. 2004.

[20] Bennett, R.R.; , "Satellite relay for unmanned air vehicle data," Military

Communications Conference, 1992. MILCOM '92, Conference Record.

'Communications - Fusing Command, Control and Intelligence'., IEEE , vol., no.,

pp.1146-1150 vol.3, 11-14 Oct 1992.

82

[21] Lei Ding; Melodia, T.; Batalama, S.N.; Matyjas, J.D.; Medley, M.J.; , "Cross-Layer

Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks,"

Vehicular Technology, IEEE Transactions on , vol.59, no.4, pp.1969-1979, May 2010.

[22] Tisdale, J.; Ryan, A.; Zu Kim; Tornqvist, D.; Hedrick, J.K.; , "A multiple UAV system

for vision-based search and localization," American Control Conference, 2008 , vol.,

no., pp.1985-1990, 11-13 June 2008.

[23] Wood, L.; Eddy, W.M.; Ivancic, W.; McKim, J.; Jackson, C.; , "Saratoga: a Delay-

Tolerant Networking convergence layer with efficient link utilization," Satellite and

Space Communications, 2007. IWSSC '07. International Workshop on , vol., no.,

pp.168-172, 13-14 Sept. 2007.

[24] Yucek, T.; Arslan, H.; , "A survey of spectrum sensing algorithms for cognitive radio

applications," Communications Surveys & Tutorials, IEEE , vol.11, no.1, pp.116-130,

First Quarter 2009.

[25] Tisdale, J.; Ryan, A.; Zu Kim; Tornqvist, D.; Hedrick, J.K.; , "A multiple UAV system

for vision-based search and localization," American Control Conference, 2008 , vol.,

no., pp.1985-1990, 11-13 June 2008.

[26] Morgenthaler,S; "Prototype of a Highly Adaptive and Mobile Communication

Network using Unmanned Arial Vehicules (UAVs) ", University of Barne, 18

November 2009.

[27] United States Coast Guard; "U.S. Coast Guard SAR Statistics," United States Coast

Guard, vol. 2012, 6 February 2012, 2012.

[28] Homeland Security; "UAVs Perform Autonomous Search-and-Rescue Operations,"

Homeland Security News Wire, vol. 2012, 19 July, 2010.

[29] University of Adelaide; "Design and Build of a Search and Rescue UAV," YouTube,

vol. 2012, 26 October, 2009.

[30] PBS; "Time Line of UAVs," NOVA, vol. 2012, pp. 1, November 2002, 2002.

[31] S. Churchill, "Mountain Rescue UAVs, E911 and Triangulation," DailyWireless. Org,

vol. 2012, 13 December, 2006.

[32] C. Danilov, T. R. Henderson, T. Goff, J. H. Kim, J. Macker, J. Weston, N. Neogi, A.

Ortiz and D. Uhlig, "Experiment and Field Demonstration of a 802.11-Based Ground-

83

UAV Mobile Ad-Hoc Network," Military Communications Conference, 2009.

MILCOM 2009. IEEE, pp. 1, 18 October, 2009.

[33] P. Doherty, "Autonomous UAV Search andRescue," VideoLectures. Net, vol. 2012, 3

July, 2007.

[34] P. Doherty and P. Rudol, "A UAV Search and Rescue Scenario wit Human Body

Detection and Geolocalization," Lecture Notes in Computer Science, 2007.

[35] M. Eldridge, J. Harvey, T. Sandercock and A. Smith, "Design and Build a Search and

Rescue UAV," University of Adelaide, vol. 2012, pp. 298, 30 October, 2009.

[36] J. Garamone, "From U.S. Covil War to Afghanistan: A Short Hisotry of UAVs," US

Department of Defense, vol. 2012, pp. 1, 16 April 2002, 2002.

[37] M. Goodrich, "UAV-Enabled Wilderness Search and Rescue," Brigham Young

University, vol. 2012, 12 October`, 2006.

[38] T. W. Heggie and M. E. Amundson, "Dead Men Walking: Search and Rescue in US

National Parks " Sierra Nature Notes, vol. 2012, pp. 6, 2009.

[39] J. Huo, Z. Xu, Y. Zhang and X. Shan, "A UAV Mobile Strategy in Mobile Ad Hoc

Networks," Electronics, Communications and Control (ICECC), 2011 International

Conference on, pp. 686, 9 September, 20122.

[40] P. Rudol and P. Doherty, "Human body detection and geolocation for UAV search and

rescue missions using color and thermal imagery," in Aerospace Conference, 2008

IEEE, Big Sky, MT, 2008, pp. 1.

[41] T. Scheve, "How the MQ-9 Reaper Works," How Stuff Works, vol. 2012, pp. 1, 2012.

[42] S. Waharte and N. Trigoni, "Supporting Search and Resuce Operations with UAVs,"

University of Oxford, vol. 2012, pp. 6, .

[43] Z. Xu, J. Huo, Y. Wang, J. Yuan, X. Shan and Z. Feng, "Analyzing Two

Connectivities in UAV-Ground Mobile Ad Hoc Networks," Computer Science and

Automation Engineering (CSAE), 2011 IEEE International Conference on, vol. 2, pp.

158, 10 June, 2011.

[44] K. Zhang, W. Zhang and J. Zeng, "Preliminary Study of Routing and Date Integrity in

Mobile Ad Hoc UAV Network," Apperceiving Computing and Intelligence Analysis,

2008. ICACIA 2008. International Conference on, pp. 347, 13 December, 2008.

84

[45] J.R. MacLeod, M.A. Beach, P.A. Warr, T Nesimoglu, Filter Considerations In The

Design Of A Software-Defined Radio, IST Mobile Communications Summit,

Barcelona, Spain, September 2001.

[46] Jeruchim, M.; , "Techniques for Estimating the Bit Error Rate in the Simulation of

Digital Communication Systems," Selected Areas in Communications, IEEE Journal

on , vol.2, no.1, pp. 153- 170, Jan 1984.

[47] A. Sahai and D. Cabric. (2005, Nov.) Electrical Engineering and Computer Science

UC Berkeley. [Online].

http://www.eecs.berkeley.edu/~sahai/Presentations/DySPAN05_part2.ppt

[48] D. Cabric, S. M. Mishra, and R. W. Brodersen, "Implementation Issues in Spectrum

Sensing for Cognitive Radios," Berkeley Wireless Research Center, Berkeley, Lab

Research Report, 2005.

[49] Introducing Wideband RF Transceiver Board U-RFX,

http://osdir.com/ml/discussgnuradio-gnu/2011-02/msg00017.html

[50] Ettus Research. (2009, Nov. 18). Universal Software Radio Peripheral: The

Foundation for Complete Software Radio Systems [Online]. Available:

http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf.

[51] Ettus Research. (2009, Nov. 18). USRP2: The Next Generation of Software Radio

Systems [Online]. Available: http://www.ettus.com/downloads/ettus_ds_usrp2_v5.pdf.

[52] Scaperoth, D.; ―Cognitive Software Defined Radio, May,2005.

[53] GNU Radio and multi core processors, http://www.ruby-forum.com/topic/217088.

[54] Debian Social Contract, http://www.debian.org/social_contract

[55] A. Wyglinski, “Software Defined Radio Systems and Analysis Laboratory Assignment

2”, http://dot.ece.wpi.edu/wp-content/uploads/2011/11/ece4305_lab2.pdf

[56] Federal Emergency Management Agency, "About US&R," vol. 2012, 2012.

[57] D. Ferguson, "GIS For Wilderness Search and Rescue," ESRI Federal User

Conference, vol. 2012, pp. 10, 2008.

[58] Indiana Department of Homeland Security, "Wilderness Search and Rescue," vol.

2012, 2008. .

[59] New Hampshire Fish and Game, "Specialized Search and Recue Team," vol. 2012, pp.

1, 2012.

http://www.eecs.berkeley.edu/~sahai/Presentations/DySPAN05_part2.ppt
http://osdir.com/ml/discussgnuradio-gnu/2011-02/msg00017.html
http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf
http://www.ettus.com/downloads/ettus_ds_usrp2_v5.pdf
http://www.ruby-forum.com/topic/217088
http://www.debian.org/social_contract
http://dot.ece.wpi.edu/wp-content/uploads/2011/11/ece4305_lab2.pdf

85

[60] J. Stanford, "Crash Highlights Rescue Risks," JH Underground, vol. 2012, 2012.

[61] C. Frederick-Recascino, "Strata: New Uses for UAVs," Embry-Riddle Aeronautical

University, vol. 2012, pp. 8, 2006.

[62] A. Fournier, "Unmanned Aerial Vehicle Competition Focuses on SAR," SAR Scene,

vol. 2012, 2006.

[63] R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset and A. Erkmen,

"Search and Rescue Robotics," Springer Handbook of Robotics, vol. 2012, 2008.

[64] J. How, E. King and Y. Kuwata, "Flight Demonstrations of Cooperative Control for

UAV Teams," AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop

and Exhibit, vol. 2012, pp. 9, 2004.

[65] L. Ding, T. Melodia, S. Batalama, J. Matyjas and M. Medley, "Cross-Layer Routing

and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Netowrks," AIAA 3rd

"Unmanned Unlimited" Technical Conference, Workshop and Exhibit, vol. 2012, pp.

10, 2010.

[66] Axiomtech, "Pico820," E-ITX, vol. 2012, pp. 1, 2012.

[67] MiniCircuits, "Coaxial Low Noise Amplifier ZX60-33LN," vol. 2012, pp. 2, 2012.

[68] Newegg, "ADATA XM13 mSATA 30 GB SATA II Internal Solid State Drive," vol.

2012, 2012.

[69] Ubiquiti Networks, "Bullet M: Zero-Variable Wireless Infrastructure Deployment,"

vol. 2012, pp. 8, 2011.

[70] Mitola J, “Software Radio Architecture–Object Oriented Approaches to Wireless

Systems Engineering”, Wiley-Interscience, ISBN 0-471-38492-5, 2000

[71] Wyglinski, Alexander M. ECE4305: Software Defined Radio Systems and

Analysis[C-Term, 2011]. 12 9, 2011.

http://www.wireless.wpi.edu/courses/ece4305c11/index.html (accessed January 17,

2011).

[72] Rice, M; Digital communications: a discrete-time approach. Upper Saddle River, New

Jersey: Prentice Hall, 2009.

[73] Proakis J; Digital Communications: McGraw-Hill, 1995

86

Appendices

Appendix A

Characters to bits and back MATLAB file (Transmitter Side)

The following MATLAB code was generated before running the transmitter for the

framesync (sending hello world). The main purpose of this code is to transform a string to a

binary stream and back again. All the characters from the ASCII table are defined in the variable

ASCIITable.
% Transform a string to a binary stream and back again.
%MQP version
s = 'Hello, world!';
ASCIITable = [32 ' ';...
 33 '!';...
 34 '"';...
 35 '#';...
 36 '$';...
 37 '%';...
 38 '&';...
 39 '''';...
 40 '(';...
 41 ')';...
 42 '*';...
 43 '+';...
 44 ',';...
 45 '-';...
 46 '.';...
 47 '/';...
 48 '0';...
 49 '1';...
 50 '2';...
 51 '3';...
 52 '4';...
 53 '5';...
 54 '6';...
 55 '7';...
 56 '8';...
 57 '9';...
 58 ':';...
 59 ';';...
 60 '<';...
 61 '=';...
 62 '>';...
 63 '?';...
 64 '@';...
 65 'A';...

87

 66 'B';...
 67 'C';...
 68 'D';...
 69 'E';...
 70 'F';...
 71 'G';...
 72 'H';...
 73 'I';...
 74 'J';...
 75 'K';...
 76 'L';...
 77 'M';...
 78 'N';...
 79 'O';...
 80 'P';...
 81 'Q';...
 82 'R';...
 83 'S';...
 84 'T';...
 85 'U';...
 86 'V';...
 87 'W';...
 88 'X';...
 89 'Y';...
 90 'Z';...
 91 '[';...
 92 '\';...
 93 ']';...
 94 '^';...
 95 '_';...
 96 '`';...
 97 'a';...
 98 'b';...
 99 'c';...
 100 'd';...
 101 'e';...
 102 'f';...
 103 'g';...
 104 'h';...
 105 'i';...
 106 'j';...
 107 'k';...
 108 'l';...
 109 'm';...
 110 'n';...
 111 'o';...
 112 'p';...
 113 'q';...
 114 'r';...
 115 's';...
 116 't';...
 117 'u';...
 118 'v';...
 119 'w';...
 120 'x';...
 121 'y';...
 122 'z';...

88

 123 '{';...
 124 '|';...
 125 '}';...
 126 '~'];

% Cycle through the string and convert characters to integers
lenS = length(s);
sInt = zeros(lenS,1); % Preallocate for speed

% at the transmitter side (1st half) generates sBit for transmission
% If you need this part, comment the 2nd half
% Convert integers to bit stream
for idx = 1 : lenS
 ASCIIIdx = find(ASCIITable(:,2) == s(idx));
 sInt(idx) = ASCIITable(ASCIIIdx,1);
end

% Convert integers to 7-bit words and columnize
sBit = de2bi(sInt, 7, 'left-msb')';
sBit = sBit(:); % This is the sBit for transmission [77*1]

% % at the receiver side (2nd half)
% % Convert bit stream back to integers
% rx=received(1,:); % you only need the first 77 bits
% sBit1 = reshape(rx, 7, lenS);
% sBit2 = sBit1';
% sIntEst = bi2de(sBit2, 'left-msb');
%
% % Convert integers back to characters
% sEst = (char(sIntEst))';
%
% % [EOF]

89

Appendix B.

Characters to bits and back MATLAB file (Receiver Side)

The following MATLAB code was generated before running the receiver for the framesync

(receiving and decoding hello world). The main purpose of this code is to convert integers to 7-

bit words and columnize and then convert a bit stream back to integers. All the characters from

the ASCII table are defined in the variable ASCIITable.
mlength =245; %need to change in matlab function block, too
lenS=mlength/7;
sBit=[];
for index=1:mlength;
 sBit=[sBit mode(simout(:,index))];
end

% at the receiver side (2nd half)
% Convert bit stream back to integers
sBit = reshape(sBit, 7, lenS);
sBit = sBit';
sIntEst = bi2de(sBit, 'left-msb');

% Convert integers back to characters
message = (char(sIntEst))'
% for i=1:50 %200:301 works-ish
% sBit1 = reshape(sBit(i,:), 7, lenS);
% sBit2 = sBit1';
% sIntEst = bi2de(sBit2, 'left-msb');
% % Convert integers back to characters
% (char(sIntEst))'
% end

90

Appendix C

Alternative FramSync – Receiver Side

 The MATLAB script below takes care of the entire frame sync, without using the

Simulink blocks as described in the Results Section. In general, we wrote a MATLAB script for

frame synchronization on the receiver side.
%% Tasos Code for frame sync 2nd attempt
function [sEst_1 sEst_2] = fcn(u)
s = 'Hello world';
lenS = length(s);
length_of_ASC = 77;

% Barker code
barker = [0 0 0 0 0 1 1 0 0 1 0 1 0]';
barker_bipolar = strrep(barker,0,-1)';

% Correlation
data_bipolar = strrep(u,0,-1)';
corr_temp = xcorr(data_bipolar,barker_bipolar);
corr = corr_temp(length(data_origin)-length(barker_bipolar)+1:end,1);

% Peak detection
peak_pos = [];
peak_val = []'
valid_data = [];
sBit1 = [];
m = 1;
valid_data_output = [];

max_num = 20;
corr_change = corr;
peak_pos = find(corr > 12.5);

% Find start and end of each frame
start_frame = peak_pos+1;
end_frame = peak_pos+77;

% Difference between frame lengths
diff = peak_pos(2:end)-peak_pos(1:end-1);

% Extract frames
for i=1:length(peak_pos)
 valid_data(:,1) = data_origin(start_frame(i):end_frame(i));
end

% Find the "correct data" (1 way)
valid_data_output_1 = mode(valid_data,2);

% Find the "correct data" (2 way)
valid_data_output_2 = mean(valid_data,2) > 0.5;

91

% Extract data
sBit1 = reshape(valid_data_output_1(14:90), 7, lenS);
sBit1 = sBit1';
sIntEst_1 = bi2de(sBit1, 'left-msb');

sBit2 = reshape(valid_data_output_2(14:90), 7, lenS);
sBit2 = sBit2';
sIntEst_2 = bi2de(sBit2, 'left-msb');

92

Appendix D

Encoding an ASCII file into a binary file

 This script converts ASCII text to Binary numbers
function encode(File,File2)
%ENCODE Converting ASCII text to Binary numbers
% DECODE(FILE,FILE2) where FILE is an input text file consisting of ASCII

text and
% FILE2 is the output file.
% The code key file (code.m) should be included in the same directory

in order
% for this program to run.

wpl=0;
[spc_ent,C0]=textread('code.m','%s %s',2);
[L,C]=textread('code.m','%s %s','headerlines',2);
L=char(L);
FID = fopen(File,'r');
OUT = fopen(File2,'w');
while 1
 tline = fgetl(FID);
 if ~ischar(tline), break, end
 for i=1:size(tline,2)
 x=find(L==tline(i));
 if isempty(x)==1
 fprintf(OUT,'%s',char(C0(1)));
 wpl=wpl+1;
 else
 fprintf(OUT,'%s',char(C(x)));
 wpl=wpl+1;
 end
 if wpl==10, fprintf(OUT,'\n');, wpl=0;, end
 end
 fprintf(OUT,char(C0(2)));
 wpl=wpl+1;
end
fclose('all');

Decoding a *.txt file using ASCIITable

 This script converts binary numbers to ASCII text
function decode(File,File2)
%DECODE Converting Binary numbers to ASCII text
% DECODE(FILE,FILE2) where FILE is an input text file consisting of binary

numbers
% and FILE2 is the output ASCII text file.
% The code key file (code.m) should be included in the same directory

in order
% for this program to run.

93

t=0;
[spc_ent,C0]=textread('code.m','%s %s',2);
[L,C]=textread('code.m','%s %s','headerlines',2);
L=char(L);
bit = length(char(C(1)));
FID = fopen('matlab.txt','r');
OUT = fopen('matlab1.txt','w');
while 1
 tline = fgetl(FID);
 if ~ischar(tline), break, end
 for i=1:size(tline,2)/bit
 for j=1:93
 x=isequal(char(C(j,:)),tline(8*i-7:8*i));
 if x==1
 t=j;
 end
 end
 if t~=0
 fprintf(OUT,'%s',L(t));
 elseif tline(8*i-7:8*i)==char(C0(2))
 fprintf(OUT,'\n');
 elseif tline(8*i-7:8*i)==char(C0(1))
 fprintf(OUT,' ');
 end
 t=0;
 end
end
fclose('all');

94

Appendix E

Input an XML file for transmission (multiple frames)

 The following MATLAB script was generated prior to the start of the transmitter. This

scripts takes in an XML file and converts it to a binary array so that Simulink can then transmit.
statsXML=dir('CommsAbstract.xml'); %make a struct with info of file,

including length
numBits=statsXML.bytes*8; %total number of bits in file
lenFrame=987; %define frame length - weird thing: later functions don't work

well when lenFrame is over 57769
numFrame=ceil(numBits/lenFrame); %number of frames required to fully transmit

message

idXML=fopen('CommsAbstract.xml', 'r+b'); %open the desired file and return

the file identifier
%charXML=fread(idXML, lenFrame, 'ubit2=>char'); %convert first N values to
%a char vector - for some reason, the script DOES NOT write to the new xml
%file properly when this line runs, so DON'T RUN IT

bitsXML=zeros(ceil(numBits/lenFrame)*lenFrame, 1); %initialize bits vector
bitsXML(1:numBits)=fread(idXML, numBits, 'ubit1'); %convert file to a bits

vector
TxXML=reshape(bitsXML, lenFrame, numFrame); %reshape bits vector into frames

in transmission array
%NOTE: there will probably be extra zeros padded on the end

%now pretend that bitsXML was transmitted and received perfectly...

blankXML=fopen('blankXML.xml', 'r+b'); %open XML document to write to
printXML=fwrite(blankXML, bitsXML, 'ubit1'); %write bits to chars in document
%fprintXML=fprintf(bitsXML, 'ubit1')

CommsAbstract.xml file

 Below, we provide the sample CommsAbstract.xml file that was used as an input for the

statsXML variable in the previous code

Comms group

Abstract

Wednesday, September 14, 2011

The need for capable search and rescue (SAR) crews is an ever-present need in the modern

world. To accomplish their mission, these crews need knowledge of a disaster area or the

locations of missing people. Unmanned Aerial Vehicles (UAVs) possess the ability to acquire

this knowledge safely from above the search area and relay it to a user. In order to increase

efficiency, a group of UAVs equipped with cameras (drones) can be used and relay their data

through a central UAV called a mothership. This presents a number of challenges about how the

separate UAVs will communicate with each other and the user. For this project, we will propose

creating a mobile ad hoc network that enables the separate UAVs to interact, coordinate SAR

95

efforts, and transmit information to the user. Two additional groups will work on the UAV

platform and systems integration, thus dividing the work for the overall UAV system. Our

wireless network will be designed to handle many of the problems encountered on multiple

mobile platforms moving in various formations. As link quality will not be consistent between

nodes, drones may suddenly drop out or join the network. These factors are based largely on the

relative movement of each platform, and can thus be measured and accounted for. The primary

goal of this project will be to address these problems by creating a resilient communications

system in which the UAVs beam their data to the user through the mothership. The mothership

will coordinate most user-UAV interaction and manage spectrum allocation and monitoring the

other UAVs. This will increase overall network resiliency by centralizing system management.

By utilizing concepts from cognitive radio and predictive models based on the motion of each

node, our network will attempt to maintain connectivity at all costs and compensate in the event

of a disruption. The network can be optimized based on current node states to preserve

connectivity, and still recover from entry or exit events when they happen. Numerous lab and

field tests will be conducted to achieve this goal. The end product will be a wireless system

encoded in the onboard processors of each UAV that successfully enables the user to use the

UAV system to carry of their mission of search and rescue.

96

APPENDIX F

MATLAB/Simulink Installation and Testing

 The final step after setting up the motherboard was to install MATLAB with Simulink in

order to perform tests to check the capabilities of the motherboard. The steps for the installation

are the following:

1. sudo wget
‘ece.wpi.edu/linux/MATLAB?action=AttachFile&do=get&target=matlab-

r2011b.desktop' -O /usr/share/applications/matlab.desktop

However this command gave an error regarding an outdated version of the GNU

Compiler Collection. The way to fix it is the following:

1. Install The GNU Compiler Collection 4.3 and The GNU Standard C++ Library

sudo apt-get install gcc-4.3-multilib libstdc++6-4.3-dev

2. Make a MATLAB specific 'bin' directory for gcc symlink.

mkdir ~/.matlab/bin

3. Symlink gcc to gcc-4.3 via user MATLAB specific 'bin' directory.

ln -s /usr/bin/gcc-4.3 ~/.matlab/bin/gcc

4. Add MATLAB specific 'bin' directory to the front of your system $PATH within your local

startup.m file.

printf

"setenv('PATH',sprintf('/home/%%s/.matlab/bin:%%s',getenv('USER'),getenv('

PATH')));\n" >> ~/Documents/MATLAB/startup.m

5. Run MATLAB

root@UAVMqp – Xubuntu:~$ matlab &

	Worcester Polytechnic Institute
	Digital WPI
	April 2012

	Aerial Networking: Creating a Resilient Wireless Network for Multiple Unmanned Aerial Vehicles
	Anastasios Vafeiadis
	Archibald Alexander Owen
	Repository Citation

	Communications team

