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Abstract 

In this report, we present the foundations for a wireless communications system between 

several Unmanned Aerial Vehicles (UAVs) that will facilitate their mission of Search and 

Rescue (SAR). This goal was chosen because the need for capable SAR crews is an ever-present 

requirement in the modern world. To accomplish their mission, these crews need knowledge of a 

disaster area or the locations of missing people. UAVs possess the ability to acquire this 

knowledge safely from above the search area and relay it to a user. In order to increase 

efficiency, a group of UAVs equipped with cameras (drones) can be used and relay their data 

through a central UAV called a “mothership.” Such a system increases the search area while 

minimizing the risk to the rescuers. It could also be adapted to many other functions, such as law 

enforcement or research. For this project, we propose creating the initial stages of a mobile ad 

hoc network that enables the separate UAVs to interact, coordinate SAR efforts, and transmit 

information to the user. Our specific goals are to demonstrate the feasibility of such a network in 

the laboratory, simulating transmission between different nodes while accounting for possible 

errors and interference. We also define the groundwork for the physical implementation of the 

system, including the assembly of a motherboard and Wi-Fi transmitters that will perform the 

eventual communication between the mothership, drones, and user. The long term vision for our 

wireless network will be one that can handle many of the problems encountered on multiple 

mobile platforms moving in various formations. These problems include implementing a 

medium access control (MAC) protocol, the ability to add drones in real-time or account for ones 

that go out of range, and manage spectrum allocation for the different users. Thus, our work is 

the first step towards implementing a fully-functional UAV ad hoc network that utilizes the 

flexibility of software defined radio to improve efficiency and safety while performing a desired 

mission. 
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Executive Summary 

The need for capable SAR crews is an ever-present requirement in the modern world. 

From large-scale events like earthquakes to small-scale events like missing hikers, there is 

always the possibility of a disaster or emergency that will require search and rescue efforts to 

help save lives and recover from the event. The number of catastrophes – both man-made and 

natural – where the efforts of first responders were stunted by physical obstacles is as bleak as it 

is long. Hurricanes, bombings, fires, natural gas explosions, flooding, or large-scale construction 

failure; the list is endless, and all can pose unique and cumbersome restrictions on the progress 

of the attending personnel.  

While techniques for search and rescue have improved over the years, new technology in 

many instances could have aided the recovery efforts of the affected society. Among those the 

most promising of these is the use of Unmanned Aerial Vehicles (UAVs). UAVs have the 

potential to expand the rescuers’ ability to assess the situation and search for individuals. Like 

helicopters or planes, UAVs provide aerial reconnaissance that can help create an overall picture 

of the situation. However, UAVs are cheaper than manned aircraft, they can stay airborne for 

hours, and they often have high resolution cameras, making them useful tools. The application of 

UAVs to SAR is thus of vital importance to saving more lives. 

 The goal of this project was to develop resilient wireless communications between a 

network of UAVs as seen in Figure 1. Using the concepts from software defined radio, the 

problem of varying link quality will be resolved by devising a mechanism that would 

continuously operate onboard the wireless node, sensing the radio environment and making 

decisions that would allow the wireless node to maintain connectivity with the rest of the 

network at all costs. Knowing the approximate trajectory and speed of each wireless node will 

allow for the network to be prepared when the wireless node is finally out of range and loses 

connectivity with the rest of the network.  
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Figure 1: Proposed UAV Network Architecture 

 Software defined radio (SDR) has revolutionized the communications industry by 

providing unprecedented levels of flexibility. SDRs implement nearly all radio functionality in 

programmable components such as field programmable gate arrays (FPGA) and computers, 

allowing them to be reconfigured without any changes to the radio hardware. This flexibility 

makes SDR popular for applications such as rapid prototyping, scientific experimentation, 

limited-production devices and cognitive radio. The software defined radio platform that was 

used for this project was the Universal Software Radio Peripheral 2 (USRP2). 

 In order to achieve our goal, we studied and evaluated our proposed implementations 

using computer simulations. We used SDRs under lab conditions with the help of programming 

tools such as MATLAB/Simulink as seen in Figure 2. Since the radio that was used had 

inexpensive hardware and also due to the Doppler Effect on moving objects, the frequency offset 

between the transmitter and the receiver had to be fixed. Techniques such as observing the Fast 

Fourier Transform graph of the signal, squaring the signal and also locating its peaks were used 

to address this issue. 
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Figure 2: A USRP2 in AK318 and its related Simulink block 

 Secondly, the process of frame synchronization had to be achieved. Frame 

synchronization is when the receiving radio finds the beginning and end of each frame, or 

segment of information, in the incoming binary message. This task was accomplished by using 

purpose-built blocks in Simulink that located a unique marker sequence in each frame called a 

Barker Code. Once this segment was found, the receiver could then begin decoding the received 

binary message at the correct point. Decoding the message at the wrong point would create 

errors, making correct frame synchronization very important.  

 Lastly, the entire code had to be implemented on the Intel Atom Pico ITX motherboard as 

seen in Figure 3 and tested in a controlled environment such as Harrington Auditorium, the 

results of which can be seen in Table 1. Power and heating issues were faced and solved during 

this step. Our results proved that the code could provide sufficient results within the constraints 

of this project and that the default amplification of the radio could transmit any file type within a 

range of 40+ yards. 
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Table 1: USRP2 Range Test Results 

Transmitter Gain 40 Yards 25 Yards 

32 dB Successfully received Successfully received 

16 dB Successfully received Successfully received 

8 dB Received "?  ?   @? @P  ? @? 

? ? A? ? A  E@   ???" 

Received 

"?      ??         ??  @?     ?" 

0 dB Received nothing Received nothing 

 

 

  

Figure 3: Final setup of the motherboard interfacing with a USRP2 
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Chapter 1 – Introduction 

1.1. The Importance of Search and Rescue 

The need for capable SAR crews is an ever-present requirement in the modern world. 

From large-scale events like earthquakes to small-scale events like missing hikers, there is 

always the possibility of a disaster or emergency that will require search and rescue efforts to 

help save lives and recover from the event. SAR crews are uniquely suited to these incidents 

because of their training and equipment [56]. Normal police or fire departments are often not 

capable of performing these missions as effectively, making specially trained crews a vital tool 

in preparing for any potential emergency. 

SAR missions span a wide variety of possible disaster scenarios. The general categories 

are mountain, ground, urban, combat, and air-sea search and rescue. Each of these scenarios 

poses different requirements and challenges for the rescue crews. For example, a mountain SAR 

mission would often involve looking for a missing hiker [57]. This situation requires knowledge 

of the terrain and conditions, the description of the missing hiker, and the last known location. 

Such information can help the crew find the hiker faster and get him to safety. For example, the 

National Park Service carried out an annual average of 4,090 SAR operations between 1992 and 

2007 at a hefty price of $3.66 million each year [38]. The picture below demonstrates an NPS 

SAR team in action.  
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Figure 4: A Helicopter Performing a Search and Rescue Mission in Grand Teton National Park [60] 

In contrast, an urban SAR mission might involve responding to a large earthquake. An 

earthquake could devastate a city, topple numerous buildings, bury many people, and start fires. 

The SAR crew would need to assess the damage, determine the current state of the disaster area, 

determine the number of casualties, and rescue and treat the survivors [58]. This knowledge 

would hopefully help the crew save as many people as possible. 

This urban scenario is much more resource intensive than a mountain rescue, but the two 

share many similarities with each other and the other types of rescue. In both cases, the SAR 

crews need basic knowledge of the area and their objective. This is often called situational 

awareness, and it is very valuable because it helps the rescuers minimize further hazards, 

coordinate their efforts, and more efficiently save lives. The end objective, whether it be one of 

these scenarios or something else like finding a lost boater or looking for a downed fighter pilot, 

is based upon the knowledge that rescuers have of the disaster. In addition, proper training and 

equipment are also vital to a successful mission. Specialized equipment, along with the ability to 

use it, is important because it lets the crews look for that individual or move debris to get to the 

survivors [59]. Thus, training and knowledge of the situation are two of the chief requirements 

for crews to perform a successful SAR mission. 

Ideally, every SAR mission would result in a successful rescue of the given individual. 

However, there are always cases where the rescue is not successful and the individual does not 

survive. For example, out of the US Coast Guard’s average of 55,041 annual SAR responses 

from 1992 through 2007, they were able to save each year about 4,887 people, but another 781 
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lives were lost [27]. Sobering statistics like this are often due to unavoidable circumstances, such 

as if the person perishes before rescue arrives. Sometimes, though, the unsuccessful rescue is due 

to an inadequate response from the SAR crew. This failure would have to be attributed to one of 

the main aspects of a rescue, which are their training, planning, or knowledge. Training and 

planning can be improved through additional practice, but situational knowledge must be 

obtained when the crisis happens. Thus, increased knowledge of the disaster situation can better 

prepare the SAR crew and save more lives. The problem is that current methods of obtaining 

such information are limited to sources such as maps, personal accounts, and visually inspecting 

the area. These are often time consuming or unreliable, which limits the SAR crew’s 

effectiveness at gathering information and saving as many lives as possible. Another option must 

be available to obtain the needed information. 

Fortunately, such an additional means of gaining knowledge of a disaster area is 

available. Unmanned Aerial Vehicles (UAVs) have the potential to expand the rescuers’ ability 

to assess the situation and search for individuals. Like helicopters or planes, UAVs provide aerial 

reconnaissance that can help create an overall picture of the situation. However, UAVs are 

cheaper than manned aircraft, they can stay airborne for hours, and they often have high 

resolution cameras, making them useful tools. The application of UAVs to SAR is thus of vital 

importance to saving more lives. 

1.2. The Application of UAVs to SAR 

UAVs are potentially a valuable tool for SAR missions. They possess the ability to 

acquire the knowledge rescue crews need from high above the disaster area and then relay it to a 

user at a ground station. They could use a combination of normal and infrared cameras in 

addition to other sensors to maximize the likelihood of detecting an individual. Because there is 

no one on board, UAVs are safe since they don’t put anyone’s life directly at risk. Their lack of a 

pilot also decreases their size and power requirements, making them relatively small and cheap 

and giving them longer endurance. This can increase their flight time in the search area, making 

each flight more efficient [63]. The lower power and weight requirements would also make it 

easier for them to carry supplies to affected individuals. These qualities make them the ideal tool 

for searching and observation, especially for organizations such as the National Park Service that 
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spend significant amounts of money on SAR. An artist’s concept of a UAV performing such a 

SAR mission, equipped with camera, is shown here.  

 

Figure 5: Theoretical Use of a UAV During a SAR Mission [62] 

Furthermore, UAVs can be grouped together to more quickly search a given area and 

obtain needed data. This network of UAVs could coordinate its efforts to efficiently cover more 

ground and acquire a better picture of the situation in the disaster area. Such a network could 

include as many UAVs as desired, making it fast and easy to acquire information. The network 

could be modified and adapted to any disaster scenario. For example, if there were a missing 

individual the UAVs could carry out a detailed search pattern in the given area to cover as much 

ground as possible to find the person. If the search was unsuccessful, the rescue crew could add 

more UAVs to the network to expand the search area. On the other hand, the UAVs could be 

applied to an urban disaster scenario such as a bomb explosion to look in the most critically hit 

areas. The user at the base station could coordinate all this activity from a single console. The 

UAVs would send their data to this user, who could then direct this knowledge to the SAR 

coordinator to better allocate the rescuers’ manpower and resources. 

1.3. Other Applications of UAV Networks 

The potential applications of UAV networks to SAR are numerous: searching for missing 

hikers, assessing damage from a terrorist attack, looking for survivors in the most hard-hit areas 

after an earthquake, determining the size and strength of a forest fire, etc. These capabilities are 

useful for a wide variety of public service agencies. However, the applications of such a UAV 

network extend beyond SAR. Law enforcement, universities, and the military could all use such 

a network [61]. While most of these organizations already use UAVs to some degree, they have 
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not applied a networked group of UAVs to a given problem. The table below lists a number of 

applications to which such a network could prove advantageous.  

Table 2: Applications of UAV Networks [61] 

Civilian Law Enforcement Military 

 University project 

platform 

 Crop dusting 

 Forest fire monitoring 

 Search for fugitives, 

stolen cars 

 Monitor demonstration 

 Border protection 

 Sovereignty patrols 

 Improve situational 

awareness 

 Scout enemy positions 

 Attach or decoy 

operations 

1.4. Current State of UAV SAR Systems 

 The current state of UAV search and rescue systems is largely in the theoretical and 

testing phase. This is best evidenced by providing several examples. One such project which 

helped inspire this one was the iSOAR UAV system developed at the University of Adelaide in 

South Australia from 2007-2009. Its purpose was to build a remotely controlled UAV that would 

use a camera to search an area for a missing hiker and then dropping emergency supplies. The 

user would be gathering the UAV’s video data from a distance to help coordinate SAR efforts 

while the vehicle itself flew autonomously. This project was entered into the ARCAA Outback 

Challenge for UAV search and rescue systems. While it did not initially succeed, it set a strong 

example of the capabilities of such a system [29], [35]. 

 Another more advanced example is the UAV Search and Rescue with Human Body 

Detection project undertaken at Linkoping University in Sweden from 2007-2008. Its purpose 

was, as the title indicates, to locate individual from the UAV and use this information to 

coordinate SAR efforts. The project used small remote-control helicopters flying autonomously 

and equipped with both infrared and regular cameras. During a test scenario, several of these 

UAVs flying together were able to locate individuals on the ground in a disaster zone and drop 

emergency supplies to them. The picture below shows two of these UAVs beginning the search 

phase of the mission. This demonstration of their system proved its functionality, but it has not 

progressed past this point [33]. 
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Figure 6: Linkoping University UAVs in action 

 One project that is more closely related to this one was titled Flight Demonstrations of 

Cooperative Control for UAV Teams, and was worked on by a team of students at the 

Massachusetts Institute of Technology in 2004. The team used a fleet of eight UAVs as a test 

platform for evaluating autonomous coordination and control algorithms. The goal was to create 

a system that manages the simultaneous flight of these UAVs as they carried out a task, which is 

very similar to this project’s goal. They focused on the use of task assignment and waypoint 

following to coordinate the separate platforms. They tested a number of the algorithms that they 

developed, but were not able to fully implement the system on the UAVs [64]. 

 Lastly, another project that directly addresses the communications aspect of UAVs is the 

paper entitled Cross-Layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad 

Hoc Networks, by a group at the State University of New York at Buffalo. Their project was 

largely theoretical and sought to create an algorithm that maximized throughput in an ad hoc 

aerial network. They produced an algorithm called ROSA (routing and spectrum allocation 

algorithm), which performed multi-hop routing, dynamic spectrum allocation, and maintained a 

bounded bit error rate (BER). They successfully tested the algorithm in the lab but did not 

implement it on a platform such as a UAV [65]. 

1.5. Issues with Current Systems 

 These examples of UAV search and rescue systems demonstrate how this specific area of 

research has made significant progress over the last decade. All the projects were able to make 
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advanced communications algorithms or functioning UAVs capable of flight and, for some, 

video transmission. Such previous demonstrations provide an excellent example of what these 

systems can accomplish. 

 However, despite their success these projects suffered from one main flaw: lack of 

scalability in a functioning UAV system. The Linkoping and Adelaide University projects 

focused mainly on one UAV as it performs search and rescue missions; the MIT project was not 

fully operational; and the Buffalo project was largely theoretical with no UAVs used. Even the 

best precedents such as the project at Linkoping University are only able to incorporate a couple 

UAVs functioning at a time, and even then their total efficiency at carrying out the search is 

limited.  

The abilities of a UAV network with resilient communications would be useful in many 

applications, but these current systems have not taken steps to pursue this possibility. There is a 

clear need for a resilient and modular UAV SAR system with a scalable number of platforms that 

can coordinate their efforts to improve the probability of successfully completing the mission. In 

particular, the communications aspect of this needed network would be important because its 

resilient nature would provide the UAVs and user with the flexibility to deal with varying search 

conditions, multiple UAVs, and multiple data sources. 

1.6. Proposed UAV System 

 To satisfy this need, this team proposes the creation of a resilient aerial wireless network 

among a group of UAVs to facilitate the gathering of information for rescue crews during a SAR 

operation. The full system will include a number of UAVs coordinating their efforts to cover a 

large area and obtain the desired information. There will be a variable number of drones 

equipped with cameras that perform the actual searching and relay their data to a mothership 

using Wi-Fi. The mothership will compile this information and then use software-defined radio 

in the form of the Simulink program and USRP2 radios to transmit the data to a user at the base 

station. Thus, the use of communications in this UAV system is the focus of this project. A 

concept diagram of the project’s architecture is seen below. 
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Figure 7: Proposed UAV Network Architecture 

The novel aspects of the design that differentiate this project from similar precedents are: 

 Scalability of UAV network due to ad hoc architecture: System will be able to 

incorporate more or fewer drones in real time during operation. 

 Combining Wi-Fi and SDR communications links: Mothership will take data from drones 

over Wi-Fi and send to the base station using SDR. 

 Original implementation of user-mothership link: Team will design the SDR protocols 

that link the user and mothership. 

 More specifically, this project will lay the groundwork for this communications network 

by designing its architecture and demonstrating proof of concept in lab. Such a system is very 

large and complex and cannot be completed in one MQP. Instead, the team will design the 

overall architecture for the network and how the UAVs will communicate, create a basic 

communications system to demonstrate feasibility, and put it on a small motherboard that can 

eventually be mounted on the mothership. These steps will create the basic elements of the 

desired system and allow the next group to begin the integration of the communications, 

software, and hardware components of the three separate MQP teams. 
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1.7. Report Organization 

 Now that the general motivation for the project has been introduced along with the 

proposed solution, the rest of the report will delve into the more technical aspects. Chapter 2 will 

provide relevant background information about SAR statistics and UAV history. It will also 

provide in great detail the basic theory behind communications systems with the protocols and 

analysis necessary to understand their functioning. Chapter 3 will then describe the proposed 

approach of the project. This will include the logistics involved, the way in which the scope of 

the project evolved, and the general manner in which it was carried out. Chapter 4 will discuss in 

detail the actual design, implementation, and testing of the groundwork of the communications 

systems. It will progress in a roughly chronological manner while describing the steps involved 

with completing each separate section. Lastly, chapter 5 will be a summary of the background 

topics covered, the structure of the project, the final results, and areas for further study. 
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Chapter 2 – Overview of Search and 

Rescue and Communications Methods 

 Prior to making any design decisions, it is crucial to understand the current state of the 

art. This chapter will explore the history of SAR UAVs, it will analyze how crucial is the use of 

more SAR techniques are according to statistics. Furthermore, it will elaborate on what software 

defined radio is, its architecture and the different tools that are available for implementation. 

Hence, it will include what is a mobile ad-hoc network (MANET), radio resource management 

techniques, existing protocols and multi-hop routing algorithms. 

  

2.1. Overview of Search and Rescue 

To understand the usefulness of SAR, it is helpful to look at some data. The US National 

Parks are a perfect example because they have millions of visitors a year. Since these people are 

often in the wilderness, they experience many possible dangers such as getting lost, injuring 

themselves, or numerous other hazards. As a result, the Park Service routinely undertakes many 

SAR missions each year. From 1992 to 2007, there were a total of 65,439 SAR incidents to help 

78,488 individuals. The Park Service spent a total of $58,572,164 during this time frame on 

rescues. Hiking and boating accounted for most of the incidents. In addition, it is estimated that 1 

out of 5 of these incidents would have resulted in fatalities. However, 2,659 people still died 

[38]. The chart below shows the number of lives lost and saved each year. 
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Figure 8: NPS Search and Rescue Success Statistics [38] 

As the chart demonstrates, the number of lives saved and lost varies significantly from year to 

year, but has stayed somewhat constant over time. This is commendable because the ever-

increasing number of visitors to the National Parks makes it difficult to keep the amount of lives 

lost constant. Still, the ideal number of annual fatalities would be zero. 

 Another branch of the government that is heavily involved with search and rescue is the 

US Coast Guard. They are responsible for the safety of all people and activities on or near the 

coast. This is a significant challenge because of the dangers involved, ranging from swimmers 

being swept away to sea to fishing ships sinking in violent storms. During the same timeframe 

from 1992 to 2007, the Coast Guard responded to 880654 incidents. They were able to save 

78,194 individuals, while another 12,499 lives were lost [27]. 
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Figure 9: USCG Search and Rescue Success Statistics [27] 

As the chart demonstrates, the USCG was also able to keep the number of lives lost fairly 

constant despite the increasing use of US coastal areas. Still, the fatality rate is much higher than 

it ideally should be. 

2.2. History of UAVs 

 The history of UAVs has largely followed their growth as a military technology. While 

they do possess a wide range of capabilities that can be applied to missions such as SAR, the 

military was the first organization to fund and develop them. This process began as early as 

World War 1, with the Sperry Aerial Torpedo, when Peter Cooper and Elmer Sperry converted a 

US Navy biplane into the first radio-controlled UAV. The British improved on this design in the 

1930s with the Queen Bee, the first returnable and reusable UAV that was used mainly for target 

practice. While these designs proved that making a radio-controlled, unmanned aircraft was 

possible, they were little more than modified airplanes used for simple experimentation [30]. 

 UAV design made a large leap forward beginning with World War 2. In particular, the 

Germans launched thousands of their new V-1 and V-2 rockets at England with devastating 

effect. While they are more easily classified as missiles, they were still technically UAVs and 

thus demonstrated the warfighting capabilities of such a system. The US acquired and adapted 
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this technology, which eventually became the Ryan Firebee drones of the Vietnam War. These 

UAVs were jet-powered vehicles that were widely used for various tasks such as surveillance 

and intelligence gathering [36], [41]. 

 Following the Vietnam War, the development of UAVs progressed in leaps and bounds. 

In the 1970s and 1980s, Israel developed smaller reconnaissance aircraft such as the Scout and 

Pioneer. By the late 1990s, the US had developed one of the most famous UAVs, the Predator. 

Similar to the Scout and Pioneer, it was a slightly larger aircraft that could provide up to 16 

hours of onsite surveillance with a range of 450 miles. Hellfire anti-tank missiles were fitted to it 

and provided it with an attack capability that has been extensively used. Other, more advanced 

UAVs have since been developed, such as the US’s high endurance Global Hawk surveillance 

aircraft. The use of such vehicles has grown exponentially with the wars in Iraq and Afghanistan 

as UAVs have been used for everything from intelligence to attack missions [30]. 

 

Figure 10: A Predator Drone, One of the Most Famous UAVs 

 All of these historical examples of UAVs are from the military, and for good reason. The 

development of these systems is time consuming and expensive, which requires resources that 

usually only the military can supply. In addition, the military applications of UAVs were much 

more evident than the civilian ones. As a result, there have been few uses of UAVs in non-

military fields over the past several decades. However, that is starting to change. They are 

beginning to be tested in applications such as scientific research, education, agriculture, law 

enforcement, and especially search and rescue.  

 Over the past several years, UAVs have begun to be applied to search and rescue. For 

example, many state National Guards in the US own the Predator UAV and can apply it to SAR 
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missions. Specific instances when UAVs have been used for this purpose include Hurricanes 

Wilma, Rita, and Katrina in the US in 2005 and the Niigati Chuetsu earthquake in Japan. The 

specific systems that were used during these disasters were man-portable fixed and rotary wing 

UAVs, meaning that they were quite small and had limited capabilities [63]. These disasters 

show that UAVs are beginning to be used for SAR, but the small number of such instances 

indicates that the field is small and has yet to gain wider acceptance. 

2.3. Software Defined Radio (SDR) 

 Traditional radios often consist of a super-heterodyne or integrated circuit transceiver 

implemented using dedicated hardware, in contrast with software defined radio. Since software 

defined radio is such a relatively new concept, it is difficult to find a consensus on a single 

definition. The basic concept of the SDR software radio is that the radio can be totally 

configured or defined by the software so that a common platform can be used across a number of 

areas and the software used to change the configuration of the radio for the function required at a 

given time. There is also the possibility that it can then be re-configured as upgrades to standards 

arrive, or if it is required to meet another role, or if the scope of its operation is changed. The 

SDR Forum, in collaboration with IEEE, has defined it as “radio in which some or the entire 

physical layer functions are software defined” [3], [4].  

 The concept of software radio was first published in the early nineties by Joseph Mitola 

III in a paper on radio architectures at the National Telesystems Conference, New York, in May 

1992 [70].  This was followed in May 1995 by a special issue of the IEEE Communication 

Magazine describing the architecture, ADC, DSP, systems, smart antennas technology and the 

economy of SDR Technology.  At the same time the US DoD initiated SPEAKeasy as the first 

publicly announced military software radio, then DARPA continued with the SPEAKeasy II 

program.  The interest was further spurred on by the formation of the MMITS (Modular 

Multifunction Information Transmission System) Forum in 1996 (later transformed into the SDR 

Forum) [3]. 

 The SPEAKeasy program started with a phase where functions such as programmability, 

flexibility, reconfigurability, and the use of signal processors were illustrated. It showed the 

capability of being able to communicate with multiple legacy systems simultaneously at 
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demonstrations. The demonstrations in 1994 were conducted with over-the-air transmission and 

reception using standard HF (high frequency), VHF (very high frequency), and UHF (ultra high 

frequency) antennas covering the 90-200MHz band.  

The successes of the initial phase lead to a continuation in 1995 where the objective was 

set to develop field capable prototypes with full RF capability. The implementation had to 

include commercial off the shelf (COTS) components, the use of non-proprietary buses, open 

architecture, INFOSEC (information security) and wideband data waveforms. Lacking additional 

funding the SPEAKeasy program was restructured in 1997 as all the tasks related to the 

wideband capability were eliminated [3]. However, there was sufficient interest to initiate a new 

program and the Joint Tactical Radio Systems (JTRS) program was established to investigate the 

requirements for scalability, the portability of waveforms, and the development of a common 

software communications architecture (SCA) that would facilitate the simple exchange of 

waveforms. 

 This unique radio technology works much like personal computing, where a single 

hardware platform can carry out many functions based on the software applications loaded. SDR 

uses software to perform radio-signal processing functions instead of using discrete electronic 

components, or application-specific integrated circuits. Frequency tuning, filtering, 

synchronization, encoding and modulation are now functions performed in software on high-

speed reprogrammable devices such as digital signal processors (DSP), field programmable field 

arrays (FPGA), or general purpose processors (GPP). RF components are still needed for 

generation of high frequencies or for signal amplifications and radiation but SDR aims at 

reducing their usage to a minimum [3]. 

One major initiative that uses the SDR, software defined radio, is a military venture 

known as the Joint Tactical Radio System (JTRS). Using this, a single hardware platform could 

be used and it could communicate using one of a variety of waveforms simply by reloading or 

reconfiguring the software for the particular application required. This is a particularly attractive 

proposition, especially for coalition style operations where forces from different countries may 

operate together. An application of those radios is that they could be re-configured to enable 

communications to occur between troops from different countries.  

SDR technology supports over-the-air upload of software modules to subscriber handsets. 

This helps both network operators as well as handset manufacturers. Network operators can 
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perform mass customizations on subscriber’s handsets by just uploading appropriate software 

modules resulting in faster deployment of new services. Manufacturers can perform remote 

diagnostics and provide defect fixes by just uploading a newer version of the software module to 

consumers’ handsets as well as network infrastructure equipment [3]. 

The SDR software radio concept is equally applicable for the commercial world as well. 

One application may be for cellular base stations where standard upgrades frequently occur. In 

this project we were able to use a Software Defined Radio platform in order to achieve reliable 

communications between Unmanned Aerial Vehicles (UAVs). Our goal was to implement an 

algorithm that could be able to exchange information (e.g. global position status for rescuing a 

person) between two or more SDR platforms. Using concepts such as spectrum sensing and error 

detection, our initial objective was achieved.  

 
Figure 11: Block diagram of a generic Software Defined Radio Transceiver 

 

 Figure 11 provides a demonstration of a digital transceiver. The RF section (also called as 

RF front-end) is responsible for transmitting/receiving the radio frequency (RF) signal from the 

antenna via a coupler and converting the RF signal to an intermediate frequency (IF) signal. The 

RF front-end on the receive path performs RF amplification and analog down conversion from 

RF to IF. On the transmit path, RF front-end performs analog up conversion and RF power 

amplification. The Sampling Conversion Stage consisting of the ADC/DAC blocks perform 

analog-to-digital conversion (on receive path) and digital-to analog conversion (on transmit 

path), respectively. ADC/DAC blocks interface between the analog and digital sections of the 

radio system. DDC/DUC blocks perform digital down conversion (on receive path) and digital-

up-conversion (on transmit path), respectively.  DUC/DDC blocks essentially perform modem 

Sampling Conversion Stage RF Section 
Baseband 
Section 
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operations, i.e., modulation of the signal on transmit path and demodulation (also called digital 

tuning) of the signal on receive path. The baseband section performs baseband operations 

(connection setup, equalization, frequency hopping, timing recovery, correlation) and also 

implements the link layer protocol. 

 Some of the advantages of a software defined radio relative to an analog radio are [45]: 

   

i. “The ability to receive and transmit various modulation methods using a common set 

of hardware; ” 

ii. “The ability to alter functionality by downloading and running new software at will.” 

iii. “The possibility of adaptively choosing an operating frequency and a mode best 

suited for prevailing conditions;” 

iv. “The opportunity to recognize and avoid interference with other communications 

channels;” 

v. “Elimination of analog hardware and its cost, resulting in simplification of radio 

architectures and improved performance;” and 

vi.  “The chance for new experimentation.” 

However, a few obstacles remain to their universal acceptance. Those include [7]: 

i. “The difficulty of writing software for various target systems”, 

ii. “The need for interfaces to digital signals and algorithms”, 

iii. “Poor dynamic range in some SDR designs” and 

iv. “A lack of understanding among designers as to what is required”. 

2.3.1 Universal Software Defined Radio 2 (USRP2) 

 The USRP2 is a low-cost software defined radio platform produced by Ettus Research. 

The device consists of a Gigabit Ethernet host computer interface, a Xilinx Spartan FPGA, and 

compatibility with all USRP RF modules.  Two input channels and two output channels are 

provided, and MIMO capability is supported when multiple USRP2s are connected together. 

Only one full transceiver is supported, but up to 50MHz of signal bandwidth can be used due to 

the 100MS/s ADC sampling rate [13]. The USRP2 is fully supported by GNU Radio and 

Simulink, which are discussed in Section 2.4.1 and Section 2.4.2 respectively. The specifications 
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of the USRP2 comparing to USRP, which uses a USB 2.0 computer interface in contrast with the 

Gigabit Ethernet, resulting in slower data transmission 

Table 3: Comparison chart between USRP and USRP2 [3] 

USRP* SPECIFICATIONS 

 USRP(1) USRP(2) 

Interface USB 2.0 Gigabit Ethernet 

FPGA Altera EP1C12 Xilinx Spartan 3 2000 

RF BW (to/from host) 8 MHz @ 16bits 25 MHz @ 16bits 

ADC 12-bit, 64 MS/s 14-bit, 100 MS/s 

DAC 14-bit, 128 MS/s 16-bit, 400 MS/s 

Daughter boards (capacity) 2 TX, 2 RX 1 TX, 1 RX 

SRAM None 1 Megabyte 

Other - MIMO support 

At time of writing, the USRP2 is being discontinued in favor of the USRP N200 and 

USRP N210. These radios offer the same daughter card and transceiver capabilities along with a 

100MS/s ADC sampling rate, but have different Xilinx FPGAs and several more subtle 

differences. Ettus Research has stated that the USRP N200-series is code-compatible with the 

USRP2, allowing code written for the USRP2 to be used seamlessly with a newer radio [13]. The 

most important advantage of an N210 USRP is that it requires no flash card for configuration of 

UHD or UDP packets as discussed in section 2.4.3. 
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Figure 12: XCVR 2450 Daughter Card used for transmission and reception, ranging between 2.4-2.5 GHz and 4.9-6.0 GHz 

 
Figure 13: A USRP2 (left) VS USRPN210 located in Atwater Kent Laboratories 

Figure 12 shows the PCB layout of the XCVR 2450 Daughter card that was used in this 

project for transmission and reception. Filtering on the XCVR2450 provides exceptional 

selectivity and dynamic range in the intended bands of operation. The typical power output and 

noise figure of the XCVR2450 is 100 mW and 8 dB, respectively. Notice the two RF antennas 

that they were connected to the front end of the USRP2. 

 Figure 13 shows one of the USRP2s that was used for this project VS the USRP N210 

which will replace USRP2. The main advantage of the USRP N210 is that it does not use an SD 

card in order to configure its hardware. In fact, it can automatically adjust the software that 

controls its hardware to any configuration of the radio. 

Transmit/Receive Antennas J1(bottom) 

and J2 (up) 

SD Card 
No-SD Card 

Varying between 2.4-5 GHz 
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2.3. Data Transmission 

 Data transmission is related to the software defined radio parameters are also known as 

decision variables since their purpose is to provide the information needed to a cognitive 

algorithm that will optimize the system. The cognitive parameters presented here are RSSI, and 

BER. This section will serve as a tutorial for communication parameters. 

2.3.1. Received Signal Strength Indicator (RSSI) 

The received signal strength indicator is one of the most common cognitive parameters to 

be measured in wireless systems. The principle concept of RSSI is that the transmitted power is 

proportionately related to the received power. The received power decreases quadratically with 

the propagation distance.  This can be modeled by [7]: 

                ( 
 

  
)  (

 

 
)
 
          (1) 

In this equation (Friis’ free space equation), PR and PT are the received and transmitted powers 

respectively.  Likewise GT and GR are the gains of both the receiver and transmitter antennas.  

The wavelength is represented with λ.  The distance between transmitter and receiver is d.  As 

the distance from the transmitter increases there is a quadratic decrease in signal strength.  The n 

in the system for free space is 2, but can be higher in different medium.  It can be seen that the 

larger the wavelength of the propagating wave the less susceptible it is to path loss.  Therefore at 

higher frequencies, radio waves cannot travel as far with the same transmission power [7].  Friis’ 

free space equation is a generalization of the signal strength that will be received [7]. However, 

when interference is considered the signal strength may no longer follow the equation.  This 

interference may be due to multi-path signals or other devices in the frequency band.  This 

interference may be constructive, which will appear to be higher signal strength than the power 

received from the target. On the other hand, destructive interference will cause the device to read 

signal strength lower than the equation would predict. RSSI is a widely used cognitive parameter 

that is readily accessible on most devices.  Though the measured RSSI may not correspond 

exactly to the power of the desired signal it is a fairly reliable guide to the general performance 

of the system [7]. 
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2.3.2. Error Detection/ Repetition Coding 

 Repetition coding is a relatively simple coding scheme in which bits are repeated before 

being sent across a communications channel. For a repetition factor of k, each bit is repeated k 

times. Repetition coding effectively increases the bit-rate requirements for the channel capacity. 

Thus for a given channel capacity, increasing the repetition rate effectively reduces the rate at 

which information can be sent (i.e. it limits the coder input rate). This is illustrated in Figure 14. 

Note that the increased bit rate assumes that the frame/sample rate remains the same, and only 

the frame size increases by a factor of k. 

 

 
Figure 14: Relating repetition coder input and output bit rates for fixed sample rate 

 

After passing through the channel, the repetition decoder removes the redundant bits. This was 

done by the use of a ‘majority bit approach’ as follows. In general for a received bit at time nTs, 

where Ts is the sample time, and n is the integer-valued time index,  

r(nTs) = s(nTs) + v(nTs) In our representation channel delay is ignored, s(nTs) represents the 

transmitted bit and v(nTs) represents the additive white Gaussian noise added to the bit. Using 

this model for the k copies of the received bit, it is clear to see that each one may be 

independently corrupted by noise. To determine the value of a particular bit, we calculate the 

average of the k values and then use the following decision rule, 

                                                      (   )  {
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By using repetition within transmission it can be easy to detect corruption in the data. It also 

provides clues as to what the correct sequence should be. By repeating bits or blocks a 

predetermined number of times then they can be compared with each other for continuity.  If all 

of the blocks or bits are the same in the sequence it can be determined that an error did not occur.  

If there is a difference in bits then it is common to quantize the bit to the high mode of the string.  

Therefore if an odd number of repetitions are sent in a binary decision, whichever of the two 



22 

 

choices was transmitted more times is more likely to be the original transmission.  This 

technique is much more effective when the blocks of data repeated are small or are repeated 

many times.  This gives a clearer mode of the data or can make it such that there are less ways 

for it to fail and therefore makes it easier to determine 10 which sequence is the correct one.  The 

negative aspect to this technique is that it is very inefficient.  By transmitting the same 

information with much redundancy the overall transmission will be longer and at a given symbol 

period, it will appear that there is a slower bit rate or a delay. In Figure 15, there is an example of 

an eight bit to redundancy scheme 

 

Figure 15: Example of an eight bit to redundancy scheme 

Parity can be used for a more efficient practice.  In this technique a parity bit is assigned 

for a known number of bits to be determined.  The parity scheme can either be even or odd as 

decided by the programmer.  The parity algorithm counts how many ones are in the stream 

behind it.  If the parity scheme is odd then the parity bit will assign a one if there are an odd 

number of ones in the stream behind it.  It will assign a zero for an even number of ones.  An 

even parity scheme would work in the opposite way.  This means that there only needs to be one 

bit every sequence to determine error rather than redundancy of the transmission.  This makes 

the process faster by making the total data shorter.  There are several issues with the reliability of 

this method.  For instance, there is a problem if the number of corrupted bits is a multiple of two.  

This will not change if there is an even or an odd number of ones in the sequence.  Therefore, the 

parity bit will return a “no error” when one has occurred.  The other problem is when the parity 

bit itself is corrupted while the data is correct.  This will return an “error” even when one has not 

occurred.  Calling for parity bits more often will reduce the possibility of the first error 

happening while increasing the possibility of the second error happening.  This will be a design 

decision implemented into any forward error correction that may be used. An example of a parity 

scheme can be seen in Figure 16. In each byte in the figure, the number of bits set to ‘1’ is made 

even by setting the last bit, known as the parity bit, to ‘1’ or ‘0’. If the number of bits set to ‘1’ is 

not even in each byte when the signal is received, then there has been a bit error in the byte 

checked. 
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Figure 16: Example of a parity scheme where the eighth bit is an odd parity bit 

The technique of checksum is used for overall transmission.  It assigns a sequence at the 

end of the transmission that can be decoded to an equivalent of the number of bits that should 

have been received.  This is so that the system knows if it has received the entire sequence or if 

packets had been dropped.  The system counts the received bits and compares its checksum with 

the equivalent sequence that is generated for the number of bits received.  If the checksum and 

the counted number of bits correspond, the entire sequence is deemed to have been transmitted. 

2.3.2.1. Bit Error Rate  

One of the most important ways to determine the quality of a digital transmission system 

is to measure its Bit Error Ratio (BER). The BER is calculated by comparing the transmitted 

sequence of bits to the received bits and counting the number of errors. The ratio of how many 

bits received in error over the number of total bits received is the BER. This measured ratio is 

affected by many factors including: signal to noise, distortion, and jitter. The most obvious 

method of measuring BER is to brute force send bits through the system and calculate the BER. 

Since this is a statistical process, the measured BER only approaches the actual BER as the 

number of bits tested approaches infinity. Fortunately, in most cases we need only to test that the 

BER is less than a predefined threshold. The number of bits required to accomplish this will only 

depend on the required confidence level and BER threshold.[46] The confidence level is the 

percentage of tests that the system’s true BER is less than the specified BER. Since we cannot 

measure an infinite number of bits and it is impossible to predict with certainty when errors will 

occur, the confidence level will never reach 100%. The test time will be determined by how 

often the software defined radio receiver will want the value to be refreshed.  This is an 

important decision as BER will be an important cognitive value in the system.  It will be 
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necessary for knowing how poorly the filtering in the system is working and how much noise is 

present in the system.  The test time can be determined with: 

                                                                           
  (   )

   
  ,                                      (3) 

where t is the test time, c the degree of confidence level desired, b the upper bound of the BER 

and r the data rate.  

 For this project, we had to follow a procedure named as bit error rate test or tester 

(BERT) in order to measure the BER for a given transmission. The formula that helped us plot 

our results is the energy per bit to noise power spectral density ratio: 

                                                       
  

  
 (  )                (  )                            (4)      

where fb is the transmission rate; No is the noise spectral density (dBm/Hz); Eb is the energy per 

bit (dBm/Hz) and C is the carrier power (dBm). Figure 17 shows the bit error rate plot versus the 

energy per bit to noise power spectral density ratio between different modulation schemes. Our 

results for the calculation of the bit error rate can be seen in chapter 4. 

 

Figure 17: PSK BER curve (from [46]) 

2.3.3. Spectrum Sensing 

 Spectrum sensing is where the focus of cognitive radio research is starting to move 

towards. It is the capability of a device being aware of the frequency domain, or the radio 

frequency spectrum, of its surroundings. This can detect various forms of interference. It can be 

http://upload.wikimedia.org/wikipedia/commons/7/77/PSK_BER_curves.svg
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as simple as evaluating where there is high energy in the system or as complicated as detecting 

unknown modulated signals over random noise. 

2.3.3.1. Energy Detection 

 Energy detection is a signal detection mechanism based on Neyman-Pearson approach 

[9]
 
[10]. The concept of energy detection mechanism is quite simple. The detector computes the 

energy of the received signal and compares it to certain threshold value to decide whether the 

desired signal is present or not. The energy of the signal is preserved in both time domain and 

frequency domain. The time domain representation of this mechanism is shown in Figure 18. 

The frequency domain representation of this mechanism is shown in Figure 19. Theoretically, 

whichever representation is used for signal detection and analysis makes no difference in result. 

However in the former representation a pre-filter matched to the bandwidth of the signal is 

required. This need makes this representation quite inflexible compared to the frequency domain 

representation. So, it is intended to use the second representation in near future for analyzing the 

received signal via simulation.  

 
Figure 18: Time representation of energy detection mechanism 

 
Figure 19: Frequency domain representation of energy detection mechanism 

In order to measure the signal energy, the received signal is first sampled, then converted 

to frequency domain taking FFT followed by squaring the coefficients and then taking the 

average.  

2.3.3.2. Cyclostationary Feature Detection 

Cyclostationary feature detection is a method of differentiating primary user signals from 

noise without prior knowledge of their modulation schemes or protocols. All signals can be 

modeled as stochastic processes which are probability functions with random variables through 
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time. Stochastic processes are broken up into subcategories based on how random they are. Wide 

sense stationary processes are stochastic processes with a constant mean such as noise which has 

zero mean. Cyclostationary processes are stochastic processes with statistical properties that vary 

cyclically. Modulated signals are cyclostationary processes because they are double sided with 

sine wave carriers, they have a fixed symbol period, and each modulation type has its own 

unique cyclostationary features [47]. 

In a more mathematized definition, cyclostationary processes have periodic 

autocorrelation functions where wide sense stationary signals do not. This means that the 

autocorrelation of cyclostationary processes can be written as a Fourier coefficient. The Fourier 

coefficient form of autocorrelation for cyclostationary processes is expressed in [47]; 
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This is called the cycle autocorrelation. If the statistically correlated periodic features in a 

cyclostationary process repeat every T, then the cycle autocorrelation has a cycle of α. Since the 

autocorrelation function is a quadratic transform the features of modulated signals that are 

functions of symbol rate and carrier can be detected. 

 The cycle autocorrelation is only a time domain transform. This means it falls short in 

measuring power spectral density of modulated signals.  This is because the system is 

demodulating many different signals.  The maximum energy of all the modulated signals is 

unlikely to be equivalent.  Therefore a threshold would only be set by the highest energy signal.  

The frequency domain equivalent is called the spectral correlation function, which is expressed 

in [47]: 
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Through Weiner’s relationship, the Fourier transform of cycle autocorrelation is the spectral 

correlation function. The spectral correlation function is a two dimensional complex transform 

with to frequency based axis cycle α and frequency f that is used for feature detection [47]. 
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To measure spectral correlation of a function, the received signal can be frequency 

shifted α Hz and –α Hz in two parallel mixers.  This searches many different frequencies for 

possible carriers. After each frequency shifted signal is passed through identical band pass filters, 

the signal that was frequency shifted –α Hz is then complex conjugated.  After the complex 

conjugation, the two signals match in carriers of both the real and imaginary plane for attempted 

demodulation.  The two signals are then frequency multiplied back together and averaged over a 

period of time.  If the final signal possess a high energy level, this means that the cycle α 

corresponds to a carrier frequency of a modulated signal [47]. The block diagram is depicted in 

Figure 20.     

 

Figure 20: Spectral correlation block diagram [5] 

The frequency shifting, bandpass filtering and the complex conjugation can all be 

implemented using a fast Fourier transform for any f and α. To implement the cyclostationary 

feature detector the received analog signal must be converted to digital. The digital signal is then 

input into an N point FFT. The conjugate outputs are then correlated and averaged over a period 

T.  The feature detection then senses the peaks for α>0 and can even distinguish between 

different modulation schemes and protocols with simplified matched filtering [47]. The 

implementation is depicted in Figure 21.  

 

Figure 21: Implementation of Cyclostationary Feature Detector [5] 
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2.3.3.3. Matched Filtering 

Matched filtering is the optimal method of signal detection since it effectively maximizes 

received signal to noise ratio. It follows the full cognitive radio model described earlier in that a 

prior knowledge of the primary user signal at both the physical and medium access control layers 

is required. This knowledge is the pulse shape that is used for the transmission. The radio has 

stored memory effectively describing the modulation type, order, pulse shaping and packet 

format to demodulate the signal. It is also required to synchronize with the carrier and time 

scheme as well as perform channel equalization [48].  

Match filtering takes advantage of the fact that a filter that is the time reverse of the pulse 

shape used, when convolved with the signal, optimizes the energy of the signal.  This is due to 

the fact that the filter is time reversed again and passed over the system when the convolution 

occurs.  If the filters match, it will be a perfectly constructive superposition.  However, a major 

drawback is the programming of all the different standards into the memory of the radio and 

dedicating enough receivers to detect all the primary users [48]. 

2.4. Software Selection for SDR Design 

 In order to use the USRP2 we had to find the appropriate software. This software could 

help us program the device and achieve reliable communications between the radios. The two 

main software platforms that could achieve that are GNU Radio Companion and 

MATLAB/Simulink. In this section we will elaborate on how each of these two platforms 

operates. 

2.4.1. GNU Radio Companion (GRC) 

GNU Radio is a free, open-source software environment for the implementation of low-

cost software defined radio systems. The GNU Radio project was created so the general public 

could experiment with radio hardware and the wireless spectrum, and does so by providing free 

software to complement low-cost hardware [49]. The project is used by a variety of academic, 

government, and commercial researchers as well as some amateur radio enthusiasts, and supports 
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both simulation environments and Ettus Research software-defined radio hardware products [49] 

[50][51]. 

As of GNU Radio 3.2.2 and 3.3.0, the software provides a framework for combining 

signal processing blocks into flowgraphs. Each block, written in the C++ programming language 

for performance reasons, implements a single data processing step such as matched filtering 

[6][52]. GNU Radio provides numerous commonly-used blocks, though users are encouraged to 

create their own when a block they need is unavailable [49]. Each block executes in a separate 

operating system thread, allowing for pipelined processing that efficiently exploits multicore 

computer architectures [53]. Flowgraphs are typically written in the Python programming 

language and represent a data stream between the radio hardware and the user‘s choice of a data 

source or output. Additionally, flowgraphs can be produced automatically through a graphical 

user interface (GUI) tool called GNU Radio Companion (GRC). This implementation permits 

easy radio system design and development without compromising runtime performance [6], [49]. 

While GNU Radio is fully open source, has a strong user base, and is a well-established 

software-defined radio platform, the code remains in active development and is generally lacking 

in documentation. Significant bugs are routinely discovered and fixed, while backwards 

compatibility is often broken as the software attempts to benefit from the latest developments in 

the many libraries it depends on. Documentation consists of several tutorials, an API, email 

archives and code comments while end-user support is frequently performed by volunteers [49]. 

GNU Radio addresses the host computer software used with a USRP or USRP2, and when 

combined with either Ettus Research product a complete software-defined radio is formed. 
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Figure 22: GNU Radio Companion Overflow Example 

 Figure 22 shows a screen capture of the Graphical User Interface (GUI) of then GRC. 

This block consists of a message in a text format that connects to the USRP Sink in order to get 

transmitted. However, we get an overflow since this message had to be formatted correctly using 

Python scripts in order to get transmitted properly. 

2.4.2. Simulink Communications Blockset 

   The MathWorks Inc. chose to extend their MATLAB and Simulink software with a real-

time communications processing toolbox, including USRP2 hardware blocks [51]. Simulink has 

long been established as a simulation toolbox, and can be used to implement flowgraphs in a 

visual form. This functionality is similar to GNU Radio Companion, except fully integrated with 

the Simulink product line. This provides easy access to, for example, common digital signal 

processing and logic functions. Additionally, this software interfaces with the well-established 

software package MATLAB. MATLAB focuses on offline vector and matrix manipulation as 

well as data visualization [52]. At the time of writing, numerous limitations still exist, such as 

comparatively weak USRP2 support and an implementation that was poorly optimized for real 

OVERFLOW 
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time data processing on multicore processors. The authors were exposed to this product and its 

limitations during an academic course on software defined radio during which the MathWorks 

Inc. gathered feedback about its performance. It is expected that many of these issues will be 

resolved in future releases. 

 We started completing our project using the R2011a version of MATLAB. However, as 

the project was on going The MathWorks released the version R2011b. The significant 

difference between those two versions was that the USRP2 hardware blocks no longer required 

the use of UDP packages. The new configuration was called a UHD package. In section 2.4.3 we 

explain the difference between UDP and UHD.  

 One of the most important advantages of Simulink in contrast to GNU Radio Companion 

is that it is friendlier to the user. One can customize the properties of each block that is essential 

for the reliable communication between the radios without having a strong background in 

programming languages such as Python and XML. Figure 23 shows the block properties of the 

SDRu Transmitter that was used for this project. 

 

Figure 23: Block Properties of the SDRu Transmitter 

2.45GHz was used as a 

center frequency 

A gain of 8 dB was 

sufficient for lab testing 

Interpolation rate, showing how 

fast the packets were sent 
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Figure 24: Simulink Transmitter Block for frame synchronization 

 In figure 24 we provide the block diagram of the transmitter that we used in our project in 

order to perform frame synchronization. In Chapter 4 we will explain in further detail the 

functionality of each block. 

2.5. Chapter Summary 

 In this chapter, search and rescue statistics, UAV history, and the principles of 

communications were introduced and discussed.  The SAR data showed the importance of this 

function for both the US National Park Service and the US Coast Guard. However, the need for 

SAR extends far beyond these two organizations to almost every conceivable disaster. The 

history of UAVs and their evolution over the past century was discussed, including their use in 

the military and their recent application to SAR. In addition, a number of topics in 

communications systems were covered. These topics included the theoretical background of 

software-defined radio along with specific details of error detection, bit error rate, spectrum 

sensing, and matched filtering. Lastly, two important tools for the project – the USRP2 radios 

and the Simulink programming environment – were introduced. How they function was 

discussed, along with their importance in fulfilling the project’s goal. With this theoretical 

background, the detailed analysis of the project’s progression is now possible. 

  



33 

 

 

Chapter 3 – Proposed Approach 

3.1. Introduction 

 Before delving into the technical details of how the project was completed, it will be 

helpful to understand the structure of the overall approach to designing and completing the stated 

goals. Analyzing the evolution of the design, logistics, problems encountered, and final 

deliverables of the project provide a broad overview of how it progressed. This chapter will 

discuss these issues to give a better understanding of the project’s course. 

3.2. Evolution of Design 

 Like many projects, this one went through several design stages. The initial goals and 

timeline at the beginning of A term were very different from the revised objectives midway 

through C term. This evolution of the overall goal and design of the project was a result of 

several variables and the realization of the project’s scope. In addition, several problems that 

were encountered throughout the project also forced the readjustment of the goals. 

3.2.1. Initial Plans 

 The initial goal of the project was to create a functional wireless network among several 

UAVs to aid in data collection during SAR operations. This goal seemed plausible because the 

design was split up among the three MQP teams who would work on communications, hardware, 

and software. It also matched the initial vision for the project of creating a small fleet of UAVs 
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that were communicating with each other and the user as they carried out a SAR mission. That 

left this group with ensuring the UAVs had a working communications link between themselves 

and the base station. This goal seemed feasible over a three term timeframe, so the preliminary 

timeline was created around this objective. The group’s goal was split up into the separate 

chronological objectives shown below.  

Table 4: Initial Chronological Objectives 

First Objective Second Objective Third Objective 

Theoretical Preparation – 

become familiarized with 

communications protocols and 

software-defined radio 

In-Lab Text and Video 

Communications – use 

Simulink and USRP2s to send 

text and video messages 

Testing Motherboard on UAV 

– put Simulink on 

motherboard, test on 

mothership 

 

The initial timeline in table 5 had the group learning about SDR prototyping using Simulink in A 

term for theoretical preparation, achieving radio to radio text and video communications in lab 

by the end of B term, and then finally loading the system onto a motherboard in a UAV for flight 

tests by the end of C term.  

Table 5: Initial Project Timeline

 

3.2.2. Revised Plans 

However, the group encountered a number of issues. First and foremost, it was quickly 

discovered that completing the entire stated project goal was not feasible within the given 
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timeframe. Designing, building, and testing a functioning communications network between 

several UAVs and a user is a significant challenge that simply could not be completed within the 

given amount of time. This problem arose because the design and implementation of each 

separate section, such as achieving in-lab text and video communications, was much more time 

intensive than originally anticipated. Issues such as certain programs not working, needing to 

order additional hardware, and basic troubleshooting contributed to this larger problem. The 

realization of this unfeasible goal was further enforced once the inherent difficulties of the 

hardware and software elements of the UAV network were also considered. They encountered 

similar problems, requiring much of the project to be adjusted. As a result, the end goals had to 

be scaled back.  

 Although the group realized it had to change the project goals, it was not immediately 

apparent what the new goals should be. Instead, the group decided to work in the same direction 

as planned and attempt to achieve as much of the original objective as possible. By around the 

end of B term, it was determined that a more realistic goal was to test the Simulink USRP2 

communications program in lab and get the motherboard functioning when connected to the 

radio. An additional “nice to have” objective was having the motherboard take in a file from 

another computer through Wi-Fi and transmit it to the simulated base station through the created 

radio link. However, this step was not deemed immediately essential. Once this goal was 

solidified, working towards it became much easier. The chronological objectives were also 

updated to reflect the new goal.  

Table 6: Revised Chronological Objectives 

First Objective Second Objective Third Objective 

Frame Synchronization – 

successfully transmit and 

receive “hello world” text 

message 

Purchase Components – select 

and buy motherboard, hard 

drive, Wi-Fi transmitters 

Run Simulink on Motherboard 

– load Simulink on Pico ITX, 

use it to run USRP2s in lab for 

proof of concept 

 

The accompanying revised timeline is shown in table 7. While the revised objectives were not as 

far down the design path as initially hoped, they were much more realistic. The group realized 

and understood that continuing the design of the communications system would have to be 

continued by future project teams. 
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Table 7: Revised Project Timeline 

 

3.3. Project Logistics 

 In the process of designing this project, the team encountered a number of logistical 

issues. These issues mainly included the design decisions that had to be made about which 

components to use and how to pay for them with the given budget. 

3.3.1. Design Decisions 

 The group had to make a number of decisions when designing the groundwork for the 

UAV communications system. First and foremost was deciding how to create the programs that 

would actually send a receive data with a radio. MATLAB with the add-on Simulink was chosen 

for this purpose because of its availability and relative ease of use. Simulink allows the user to 

create almost any system desirable simply by placing blocks on a model. Its inclusion of a 

Communications System Toolbox with various relevant blocks was very useful. In addition, the 

flexibility of the MATLAB programming environment and its ability to work with Simulink 

provided further use. As for the specific radios themselves, the Universal Software Radio 

Peripheral (USRP2) was chosen. It was selected for similar reasons: it was readily available and 

fairly straightforward to use. It also had a specially designed block in Simulink that allowed the 

radio to be operated from the program over a gigabit Ethernet cable. The program and radio fuse 

well together, and the fact that they were already provided by the school meant that no funds had 

to be expended on purchasing them. 
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 The process of choosing the motherboard and accompanying hardware was more 

challenging. This decision had to be based on its ability to interface with and run the USRP2. In 

addition, the motherboard needed an accompanying hard drive to store information. The team 

also had to select a Wi-Fi amplifier to meet the requirement that the drones and mothership be 

able to communicate at longer range. Lastly, a small amplifier was needed to attach to the 

USRP2 to boost its transmission range. All of these components are listed in the table below, 

along with their prices and specific reasons for purchase. 

Table 8: Hardware Purchases 

Item Price Reasons for Purchase 

Axiomtek Pico820 

Motherboard with 1.5GHz 

Atom Z530 Processor 

$550  Small footprint: 100x72 mm 

 Low power consumption: 20 W 

 Gigabit Ethernet 

 Sufficiently powerful processor 

 mSATA connector 

ADATA 30 GB SATA Solid 

State Drive 

$65  Small footprint: 51x30x4 mm 

 Sufficient memory size 

 Low price 

Ubiquiti Bullet M Wi-Fi 

Amplifier 

$80  Large range: 3-5 km 

 Few comparable alternatives 

 Decent prince 

MiniCircuits 13 dB Low 

Noise Amplifier 

$0 (already 

available) 

 Already available  

 Small and efficient 

 Sufficient for testing purposes 

Aleratec mSATA to SATA 

SSD Adapter 

$25  Required adapter to connect hard 

drive to motherboard 

3.3.2. Project Costs 

 Due to the nature of the project, overall costs were relatively low. The majority of the 

design and testing was performed on available school computers. The Electrical and Computer 

Engineering Department also provided the MATLAB and Simulink software and the USRP2 
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radios, resulting in no required spending for these items. The main expenditure for the project 

was the Pico ITX Motherboard, which was actually quite expensive because of its relatively 

powerful processor and capabilities. The additional items cost relatively little, and added up to a 

total of $720. About $700 of this cost was covered by a $6000 grant from the MathWorks for the 

project and the rest was covered with personal funds. The additional money from the grant was 

used by the other teams, which required significantly more money for items such as the UAVs 

themselves. 

3.4. Final Project Deliverables 

 At the end of C term, the deliverables that the team produced were largely in line with the 

goals set out in the revised timeline. These items were as follows: 

 Two functioning Simulink programs that send a receive a text message via USRP2 

 MATLAB program that converts given file type (e.g. XML) to bits for transmission and 

rebuilds file upon reception 

 Pico ITX motherboard running Ubuntu with MATLAB and Simulink connected to 

USRP2 

 Long range test of USRP2s in Harrington Gymnasium to demonstrate proof of concept 

These deliverables are the basic elements for a UAV communications system. Further testing and 

design will be required before it can be fully implemented onboard the UAV network, but these 

items are a large step towards this final goal. 

 Unfortunately, not all of the originally desired capabilities were included. Upon 

realization that the initial project goal was not feasible, the objective had to change along with 

the planned functionality. The main dropped capabilities were video transmission with the 

USRP2s and Wi-Fi to Simulink program data conversion. The USRP2s, while very flexible in 

their programming, simply could not sustain a high enough bit rate to transmit video. Once 

repetition coding and the decimation factor were taken into account, the sample rate dropped 

from 100 Ms/s to less than 100 ks/s, which is enough for only text and possibly low quality 

pictures. In addition, the ability to receive a file via Wi-Fi and then route it to the simulated user 

over the USRP2s also proved unrealistic. This step would require a separate non-MATLAB 

program to receive the file and put it in the proper directory, all before the Simulink program ran. 
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This degree of integration involves significant programming beyond the capabilities of the team 

within the given timeframe. Thus, some of these desired goals must be addressed with any 

further work on the project. 

3.5. Summary 

 Like many projects, this one evolved over time. The initial goals were unrealistic and had 

to be scaled back to meet time and resource constraints. As the project progressed, the final 

objectives became more solidified and feasible. They were accomplished successfully by the end 

of the project, leaving additional desired objectives as future work. In addition, the overall cost 

of the equipment was fairly low because much of it was already available and most of the rest 

was quite cheap. Funding from The MathWorks was able to cover most of the expenses. Thus, 

team was able to achieve its modified goals while staying within a fairly small budget.  



40 

 

 

Chapter 4 – Implementation 

 In this chapter our implementation and the results of the project are elaborated. More 

precisely the setup of the two main Simulink blocks that were used regarding the auto-frequency 

offset and the frame synchronization are analyzed. The transition from the simple messages to 

XML files and the Wi-Fi protocol use is also elaborated. Lastly, the chapter ends with the 

implementation of the project into the motherboard and the success in transmission and reception 

of any type message. 

4.1. Offset calculation and automatic detection 

 As in any radio, USRP2’s hardware design is characterized by the disadvantage of having 

offset between the transmitter radio and the receiver radio. The main reason of the frequency 

offset between the two radios is the relatively inexpensive hardware. In our case, the offset 

frequency was first measured manually by using the FFT plot from observeFFT.mdl and then we were 

able to implement an algorithm in order to automatically correct this offset. The Doppler Effect was 

another issue for the frequency offset between the radios that would be placed in the UAV. Therefore, our 

algorithm had to be able to detect and automatically correct any offset. An example is illustrated in 

figures 25 and 26. 
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Figure 25: The observeFFT.mdl consisting of the SDRu block receiver and the FFT display block 

 
Figure 26: Example FFT plot at 2.42GHz 

Another USRP2 was used to run siggen.mdl at 2.42GHz as shown in Figure 27. A 30kHz 

baseband signal was transmitted, and the baseband FFT was observed on the receiver end. The 

peak at 30kHz was magnified, and visually inspected to determine the value at which the peak 

occurred. This was then compared to the expected 30kHz transmitted baseband frequency. Thus 

using the results of the previous two sections, it was then determined that the offset is effectively 

given by the formula: foffset = fobserved – 30kHz. 

Center peak of the received 

signal at 2.42GHz 
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Figure 27: Simulink model of siggen.mdl for a generation and transmission of a signal 

  

Initially in the offset was determined to be 8kHz. This was repeated for several carrier 

frequencies and a similar offset was observed. Then the entire process was repeated by swapping 

the roles of the transmitter and receiver. The offset was determined to be -7.8kHz. It was 

interesting to note that when other devices were paired the offset was different as expected. 

However, upon powering down and then repeating the experiment with the same pairs, the offset 

was significantly different. For example offsets below 1kHz were observed using the same pair 

for which the offset was previously measured as being around 7kHz. This was noted as a 

practical issue to be wary of, and it was concluded that frequency offsets are inevitable even if 

transmitter-receiver pairs are compensated at a specific time, as offsets would be time-varying 

with the same pairs. Also, noting the effects of frequency and phase offsets on the system 

operation, this must be compensated for.  

Using the Simulink models of DBSKTx.mdl and DBPSKRx.mdl as shown in Figure 28, 

the effect of frequency offset on digital communications was investigated. Frequencies ranging 

from -30kHz to +30kHz were added to the transmitter center frequency, to simulate the 

transmitter-receiver carrier frequency offset. These were stepped in increments of 10kHz. For 

ease of pattern recognition, alternating 1’s and 0’s were sent at the transmitter, and the 

demodulated receiver output was plotted. In theory these could be used to determine average 

error rates, since it would be expected that there be a series of alternating ones and zeros in the 

receiver output. However instead of calculating approximate values for this, visual inspection of 

the stem plots was used to gauge the impact qualitatively. The rationale for this was firstly 

because it was not possible to know which bit at the transmitter mapped back to the receiver, in 
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terms of the time offset. Also, even if an error rate was calculated for this exercise, it would only 

be for limited transmitted patters, and may not necessarily be used for generalization. However, 

the stem plots provide a quick visual approach to qualitatively observe the impact of frequency 

offset and simulating device mobility. 

 

Figure 28: DBPSKRx.mdl; DBPSK protocol implementation on the receiver side 

Figures 29-31 provide examples of the plots obtained, taking consideration of the 

comments above. 

 

Figure 29: Example Plot of Received Data for DBPSK receiver with 10kHz offset 

Notice the peaks in this case of a small offset. Almost no 

information is lost. 
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Figure 30: Example Plot of Received Data for DBPSK receiver with 20kHz offset. 

 
Figure 31: Example Plot of Received Data for DBPSK receiver with -30kHz offset 

The general trend noticed was that increasing the frequency offset generally caused 

increasing lost information. This was the case since whenever a window was opened the overrun 

scope went high (i.e. from 0 to 1). Even though the overrun scope was mostly in the low state 

indicating no overloads, there was still much lost information. There was not much variation due 

to simulating limited mobility within the lab located in AK227, but it was also noted that when 

Compared with the previous Figure, one can notice that 

there is a large amount of information lost as the offset 

increased 

Great amount of data is lost at -30kHz of offset; hence no 

message could be decoded successfully 
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the lab was busy (C term 2012 when ECE4305 was offered), the errors were higher. This might 

have been the result of interference between the devices. 

Our final design can be seen in Figure 32 and also in tables 9 and 10, where we highlight 

its key features and the initialization parameters. 

 

Figure 32: Complete auto-offset Simulink block that was designed for this project 

Table 9: Functionality of Simulink blocks in the auto-frequency model 

Main Blocks Function 

DBPSK Modulator Baseband 

 

Modulate the input signal using the differential 

binary phase shift keying method. 

Raised Cosine Transmit Filter 

 

Upsample and filter the input signal using a 

square root raised cosine FIR filter. 

Insert Frequency Offset 

 

Apply a frequency offset to the input signal 

with the purpose of simulating frequency offset 

caused by inaccuracies in the oscillator circuits 

in the RF end. 

Square of the signal Take the square of a signal, so the FFT of the 
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received signal will be shifted double of the 

frequency offset. 

Magnitude FFT 

 

Compute magnitude-squared FFT of the signal 

with offset after taking a square. 

Maximum 

 

Returns the value and index of the maximum 

elements of the input signal coming out from 

Magnitude FFT block. Indices are the locations 

of maximums, which should be equal to double 

of the offset in this system. 

Offset Display 

 

Numeric display of input value which is the 

estimated offset we calculate from the 

receiving side. 

 

Table 10: Simulink initialization parameters for the auto-frequency offset model 

Parameter Value 

Interpolation 500 

Oversampling 2 

Fs1 (Relevant sampling frequency) 10
8
/interpolation 

Fs2 (Symbol rate) Fs1/oversampling 

Bitrate Fs2/bitsPerSym 

Center frequency of USRP2 Tx/Rx Set to 2.42 GHz 

Frequency scaling factor (1024 point FFT) 2048/FS 

 

In addition to the initialization parameters, the key to the correct frequency representation 

was the conversion of the FFT indices into actual frequency units. To illustrate the issue, a plot 
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of the MagFFT block output is provided in Figure 33. As seen there is no link in the figure, 

relating the index to a frequency value as yet. Also the Max block output should start counting 

from 0, not 1; and the frequency scaling used for division in the last block, must be adjusted. 

Since a 1024 point FFT was used, the indices of the FFT vector represent increments of Fs 

/1024. Thus the constant used for frequency calculation was changed to 2048/ Fs. 

 

Figure 33: Example of MagFFT block output, not adjusted to actual values. 

Using siggen.mdl, various frequency offsets were simulated on the transmitter end. It must be 

noted that the transmitter offsets are the values input into the software to offset the transmitter 

center frequency from the receiver center frequency. The actual offset from the receiver must 

also be incorporated into these in the estimate. The AFOC was then manually observed to 

determining the frequency offset. This was recorded in addition to the displayed estimate. These 

are all plotted in Figure 34. 

 

A peak of the signal at 2.42GHz, which was detected by 

squaring its magnitude. 
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Figure 34: Auto-frequency offset error performance for various offsets  

4.2. Performing Frame Synchronization 

 Frame synchronization is the process in the telecommunications transmission system to 

align the digital channel (time slot) at the receiving end with the corresponding time slot at the 

transmission end as it occurs [55]. For example, one transmits a packet which contains numerous 

frames. At the receiver side, you want to know where a specific frame actually starts, and then 

one needs to implement frame synchronization. 

Frame synchronization involves the following steps: In the first step, the transmitter 

injects a fixed length symbol pattern, called a marker, into the beginning of each frame to form a 

marker and frame pair, which is known as a packet. Packets are then converted from symbols 

into a waveform and transmitted through the channel [55]. The receiver detects the arrival of 

packets by searching for the marker, removes the markers from the data stream, and recovers the 

transmitted messages. Marker detection is the most important step for frame synchronization. 

The USRP2 solution consists of two aspects: the transmitting node and the receiving 

node. Figure 35 illustrates the model for the transmitter. 

Automatic Frequency Offset Correction 

Manual Frequency Offset Correction 
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Figure 35: Simulink model for frame sync (transmitter) 

The system consisted of six blocks as shown. The Unipolar Barker Code subsystem 

generated the synchronization bits at a rate of 13 bits in the entire frame sampling period that is 

sent to the concatenation and padding block to the right. The sBit block accepted any messages 

which were to be sent. Since we wanted the input of the DBPSK modulator block to be a 179x1 

frame each sample time, the concatenation and padding block was coded to essentially generate 

the required frame. The code for this block is presented in the Appendix. The intent for this 

block is to expand it such that all required frame construction for the model is done here. Thus 

we also decided that in future work we would also consider implementing the other framing 

functions (e.g. adding addresses, framing and error detection/correction codes, additional 

synchronization information, as well as fragmentation and reassembly information if necessary). 

Table 11 presents a listing of the blocks and summarizes their functionality.  

Table 11: Functionality of blocks used in the Frame Sync model 

Main Blocks Function 

Unipolar Barker Code Generator Generate Barker code of length 13, used for 

frame synchronization. The sample rate was set 

to 1/13 samples per frame. Note that this is 

subsequently normalized based upon the 

USRP2 Tx sample rate. Note that this should 

not be confused with the digital sampling rate. 

In fact the rate specified here is the rate at 

which Simulink blocks’ states and outputs are 

updated. 
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DBPSK Modulator Baseband Modulate the input signal using the differential 

binary phase shift keying method. 

Raised Cosine Transmit Filter Upsample and filter the input signal using a 

square root raised cosine FIR filter. 

Signal from workspace This was used to generate the data required for 

transmission. 

Concatenation and Padding Add the 13bit Barker code to the start of the 

frame, and pad to the end of the frame with 

zeros if it is less than the frame samples frame-

size. 

 

The next aspect was the receiver. The receiver model is illustrated in Figure 36. The main 

blocks included the auto-frequency offset which compensated for frequency offset. This has been 

discussed previously. In this case, it was not known when the first piece of data received actually 

began in the frame. When the receiver code was initiated, it could pick up data starting in any 

part of the frame. Thus in our case we used the correlation against the barker code to determine 

the instants at which the synchronization sequences existed, and ignored the data before the first 

case. Model initialization parameters for both transmitter and receiver are given in Table 12. 

Table 12: Initialization parameters for the frame synchronization model 

Parameter Value 

Interpolation 500 

Oversampling 2 

Fs1 (Relevant sampling frequency) 10
8
/interpolation 

Fs2 (Symbol rate) Fs1/oversampling 

Bitrate Fs2/bitsPerSym 

Center frequency of USRP2 Tx/Rx Set to 2.42 GHz 

Frequency scaling factor (1024 point FFT) 2048/FS 

 

. 
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Figure 36: Frame Sync Simulink model (Receiver). 

4.2.1. Performance Evaluation 

According to our results of successfully decoding the message, the success rate was 

generally below 5% without frequency offset compensation. We thus thought we should examine 

the reasons behind the rates being achieved by our other class mates as well as ourselves. There 

was a 2-4% increase in the performance when we tried varying the various parameters from 

Table 12, with the exception of the data rate. 

4.2.1.1. Unexpected Frame Lengths 

 We decided to investigate this further since we were getting very low success rates. We 

realized that the max function only retrieves the first instance of the maximum occurring in the 

argument for the function. Since we buffered a few received frames and visualized them, we 

noted that the correlation was 13 at the frame start points, and this was repeated almost 

periodically, except in a few instances where perhaps there was noise and a barker code got 

garbled. We essentially detected all frame starts in our received sequence, and found the 

difference between successive start points. An example of this is presented in Figure 37. As seen 

in the figure, on average there were about 230 bit samples between each successive detected 

frame in the data stream. The higher spikes corresponded to instances where perhaps the frame 

synchronization was lost and a frame thus seemed longer than it really was. We expected the 

number of bits between frames to be about 179. We double-checked our models, and they did not 

suggest an alternate frame length was erroneously input. Thus we decided to try other USRP2 

devices with our code. We got different frame lengths, but the same result as with our own. 

Essentially, the frame lengths seemed to spread out at the receiver. We thought that perhaps we 

could resample, by low-pass filtering followed by sampling to obtain the required frame sizes, in 

case there was some sort of temporal spreading.  
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Figure 37: Number of samples between detected frame synchronization points 

We then thought that maybe that would not work because we were able to pick up the frame 

starts, and the values for the correlation were 13 which corresponded to what we expected for the 

13 bit barker code. Thus if the barker code was exactly 13 indicating that we were able to pick it 

up, then we assumed the remainder of the frame was also not spread temporally. Thus we 

wondered what could possibly cause the spacing between received frames to be more than 179. 

4.2.1.2. Adjusting Data Rates 

 To investigate this further, we looked at the transmitting data rates. What we observed 

was that we got better performance when we transmitted at slower data rates. To better 

understand this we referred to the transmitter and receiver models from Figures 27 and 28 to 

determine what was going on. The USRP2 DAC samples the data at 100Msamples/second. By 

adjusting the interpolation we can adjust the rate at which the USRP2 samples the data at the 

input of the USRP2 Transmitter block. It must be noted that the definition of sample time in 

Simulink refers to the times at which the block outputs and their states change. By looking at the 

sample times we realized that at the transmitter, the typical rate was around 0.00179s. This meant 

that the blocks changed their outputs at this rate.  

Locating the preamble 
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Now after passing through the Raised Cosine Transmit Filter block the system essentially 

increases the frame size from 179 to 358 elements. This is held at the USRP2 block input for 

0.00179s before it changes again. Since the USRP2 interpolation was set to 500, the sampling 

rate at the DAC essentially transmitted the data at 200,000 samples per second, where each 

sample was a frame of 179 bits. This means that the frame was transmitted roughly 200,000 

times in one second. Hence, in theory it may be possible to get a raw rate of 35.8Mbps ignoring 

the other practical issues. However, realistically we know that this is not the case, since details of 

the USRP implementation will determine the threshold for the rates. Furthermore, since the data 

at the input of the USRP block does not change for 0.00179 seconds, what we in fact get is that 

we can send the a maximum of around 200,000 frames for each change in the Simulink sample 

time. Since between Simulink sample times the data is latched at the USRP block input, this 

restricts the data transmission to the times at which the data changes.  

When we adjusted the rates via the block, we were able to get varying rates of success at 

the receiver. We were able to have a form of repeater coding inadvertently achieved due to the 

sampling rate of the USRP2 device sending multiple samples of the message between Simulink 

sample instants. It must be noted that this benefit would also depend upon the rate at which 

samples from the USRP2 receiver block are input into the receiver model in Figure 28. This 

depends upon the sample time for this block, which determines the rate at which samples were 

logged. Thus there is a pairing between the interpolation and decimation of the USRP2 blocks 

which in theory can be used to adjust the data rates. 

4.2.1.3. Bit Error Rate Results 
 We examined the typical performance of the system under different SNR values, in 5dB 

increments from 0 to 75dB. First we set the interleaver so that its output mirrored the input, using 

the statement y = u, where y was the output and u was the input. This was then done for the de-

interleaver. These were plotted for various repetition rates to compare, as shown in Figure 40. 

To change the SNR it was noted that the Bernoulli generator produced equally probable 

0’s and 1’s. Thus the input symbol power was calculated from (Wyglinski 2011) as 0.5 for 16-

QAM, when normalized for an amplitude of 1. Then the AWGN channel parameters were 

adjusted to change the SNR values. Since 16-QAM was used, the number of bits per symbol was 

let at 4. Also with no loss of generality the symbol period was left at 1. Note that Simulink would 

also determine the noise variance based upon our specification of the Eb/No ratio. An example of 
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the configuration is shown in Figure 38 below. Figure 39 shows the port properties when a 

repetition code rate of 2 was used. 

 

Figure 38: Example configuration of AWGN block to test repetition coder/decoder performance 

 
Figure 39: Simulink model showing port properties for a repetition rate, k = 2 
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Figure 40: Error performance of different code repetition rates in AWGN channel 

Observing Figure 40, there was not a significant improvement in the error performance 

(less than 1dB of error improvement) for a given SNR, by increasing the code repetition rate. 

Without code repetition (i.e. k = 1), for a given SNR, in general the performance was better than 

with code repetition. However for k > 1, it was seen that for SNR’s above 60dB increasing k 

improved the performance. However for lower SNRs (i.e. when better error performance would 

be desirable), the performance was comparable for the three cases examined. This did not fit well 

with the expected calculations, but can be explained by first noting that the performance would 

tend to increase for much larger code repetition rates. However, this would be impractical and a 

waste of channel bandwidth in transmitting so much redundancy. 

Additionally, the trend can be explained by noting that if there were noise bursts greater 

than the code repetition rate, it can affect the error performance gained by code repetition. Thus, 

again it seems that only by increasing k to impractical values can significantly improve the 

performance. In fact, if the noise burst durations could be characterized, then the value for k 

should be at least twice the expected duration of bursts, to counteract them by averaging out the 

corrupted bits. This is further supported by considering the minimum Hamming distance for a k-
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rate repetition code as discussed in [71]. Since there are two valid code-words (i.e. all ones and 

all zeros), then the minimum distance will be k, and the maximum number of bit errors which it 

can correct, will be approximately 1/2 r.  

Another thing to note would be that the performance of the coder may actually be 

different in different channel models. Intuitively, repetition coding may work better to counteract 

channel fading as opposed to the effect of AWGN. Clearly the extra redundancy can assist with 

errors of certain types (more on this in the next section). At the receiver end, the decoder 

essentially reduces the rate by a factor of k, removing the added redundancy. Compared to other 

approaches such as convolutional coding and block coding, this method is extremely simple, and 

its error performance is not as good. Thus it can be concluded that repetition coding presents a 

mediocre compromise between error performance and data rate compared to other coding 

schemes, and the main advantage over these alternatives, is its ease and simplicity of 

implementation. The above thus summarizes the tradeoffs in choosing a repetition rate, as well as 

repetition coding itself. 

As discussed previously the repetition coder does not provide great performance by itself, 

and in AWGN channels the presence of burst errors limits the error performance of simple code 

repetition. Errors usually occur in bursts and are not independent. As shown above, if the number 

of errors exceeds 1/2 the repetition rate, k, then the error-correcting capability is compromised 

and it may not be possible to recover the original code word. Interleaving permutes the bits, by 

some pre-determined form of systematic shuffling (i.e. depending on the interleaving algorithm) 

so if burst errors occur, the errors are more uniformly distributed and can thus improve the error 

performance. The interleaver and repetition coding effectively repeated each frame k times. For 

example 101 produces the 12-bit sequence 101101101101, for k = 4. Figure 41 presents a 

comparison of k=4 plus interleaving versus no interleaving for k = 4 and k = 8. 
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Figure 41: Error performance of different code repetition rates compared to interleaver addition in AWGN channel 

As seen from the graph, there was also no significant improvement in the error 

performance when the interleaver was added. Observing Figure 41, there was not a significant 

improvement in the error performance (less than 1dB of error improvement) for a given SNR, by 

increasing the code repetition rate to 8 or by adding interleaving to the k = 4 coding. It was seen 

that for SNR’s above 60dB increasing k improved the performance, while interestingly 

interleaving reduced it. However for lower SNRs (i.e. when better error performance would be 

desirable), the performance was comparable for the three cases examined. This did not fit well 

with the expected calculations, but can be explained by first noting that the interleaver used was 

very simple. More complex interleavers or decoders can capitalize upon knowledge of the error 

structure improving error performance. As before, it must be noted that in other non-AWGN 

channels interleaving may work better. These issues can be further examined, but due to the 

limited course time, are just noted as areas for further investigation, perhaps in the project. 

Because of the need to store the bits of a frame for interleaving and de-interleaving, it can be 

seen that these techniques can potentially improve error performance at the expense of added 
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latency. This represents a tradeoff of this technique. However this would hold for many other 

coding schemes which all rely upon some form of framing or are block-based (e.g. convolutional 

coding and block coding schemes). 

Another interesting observation was that whenever the simulation was run over, the 

results were generally the same unless the seed was changed. Thus for each run the seed was 

changed. When this was done, it was observed that successive runs for the same SNR value 

produced significantly different results. This hinted that perhaps the simulation cut-off was too 

short, or that the variation in the performance would change for different runs. Thus insight was 

actually incorporated into the process for data collected for each scenario at each SNR value. 

Hence, average values were used for several runs, and it was these that were plotted in the graphs 

in Figures 40 and 41 above. 

When the input was connected to both inputs of the BER calculator, the BER was always 

0, no matter how long the simulation was run. With reference to the MATLAB documentation 

persistent variables store data even after functions are exited. This provides a way to accumulate 

data and track states, at periodic function calls each sample instant or asynchronous function call. 

If one of the inputs is inverted, and the AWGN is removed, then the BER is 1 (i.e. all bits 

are in error). As seen in [71] and [72], different constellations correspond to different modulation 

schemes, and this may translate into different error performances. As seen in [73], 16-QAM 

outperforms 16-PSK, and 16-PAM for a given SNR in terms of Eb/No ratio. Thus if the 

constellation diagrams were changed (i.e. different modulation schemes) it is expected that the 

error performance would be different. 

4.3. Hardware Selection 

 After progress had been made in transmitting a text message from one computer to 

another via the Simulink-USRP2 interface, the actual hardware on which this system would be 

implemented needed to be selected. Work on the Simulink program and improving its resiliency 

would continue, but the team had to now also work on selecting, purchasing, and testing the 

equipment.  This was a vital part of the project because it is this hardware that would eventually 

be placed on the UAVs and run the overall communications system. 
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 First, the team had to decide upon which hardware components would be needed for the 

system. Because the team was only responsible for the communications, this included all 

equipment that would be involved with this process. Overall, the system would be required to 

transmit data from the drones to the mothership, have the mothership compile and prioritize the 

information, and then transmit it to the base station. This process would thus need hardware 

capable of a drone-mothership link, signal processing, and a mothership-base station link. The 

separate hardware components were selected to meet these specific needs. 

 To enable the drones to communicate with the mothership, a basic Wi-Fi link was used. 

Because Wi-Fi has a limited range, an amplifier and antenna was needed to increase the 

transmission distance. The Bullet M Wi-Fi radio amplifier was selected for this application. An 

example of the Bullet M can be seen below. 

 

Figure 42: The Ubiquiti Wi-Fi Bullet M [69] 

The Bullet M weighs a light 0.18 kg, which is important when trying to cut weight on a UAV. It 

consumes up to 600 mW of power, has a data rate of 100+ Mbps, and a range of several 

kilometers [69]. These specifications made the Bullet M unique among Wi-Fi amplifiers, 

enabling it to have a relatively large range with low power and weight requirements. The Bullet 

M was the ideal choice for the drone-mothership communications. However, due to budget 

constraints, the team was only able to purchase one unit for $80. It is sufficient for testing, but 

further funding will need to be acquired in order to purchase more units and install them on all 

the UAVs. 
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 The next important purchase item was the motherboard. This component was required for 

compiling all the incoming data from the other drones into one data stream that could be sent to 

the base station using software-defined radio. Specifically, the Simulink program the team wrote 

would carry out much of this task, which meant that the motherboard would need sufficient 

processing power to run MATLAB and Simulink and a gigabit Ethernet port to connect to the 

USRP2. After much searching, the team settled on the Axiomtek Pico820 motherboard, as seen 

below.  

 

Figure 43: Pico ITX Motherboard [66] 

The board was a small 100mm×72mm requiring a standard 5V power supply. It possessed a 1.6 

GHz Intel Atom Z-series processor and 2 GB of RAM. These specifications meant that it would 

be capable of adequately running Simulink for the desired application. In addition, it had 

numerous input and output ports, including 4 USB 2.0 slots and a gigabit Ethernet port [66]. This 

Ethernet port was an important requirement in order for it to interface with the USRP2. The 

board was purchased for $550, making it the largest expense. However, only one was needed to 

place on the mothership; separate computers would perform any required computation on the 

drones and base station.  Thus, this Pico ITX would meet all of the required processing needs for 

the communications system. 

 Two additional components were the solid state drive and the radio amplifier. The drive 

was needed as storage for the motherboard and to complete the fully-functioning computer that 
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would run Simulink. The team selected the ADATA 30 GB mSATA Internal Solid State Drive. 

It was chosen because of its large storage capacity, small 51mm×30mm×4mm footprint, high 

280 MB/s data transfer rate, minimal 1.5 W power consumption, and reasonable $65 price [68]. 

A picture of it can be seen below.  

 

Figure 44: ADATA 30 GB Solid State Drive [68] 

The other additional component, the radio amplifier, was needed to provide additional power to 

the USRP2 and increase its transmission range. The ECE Wireless Laboratory already possessed 

such an amplifier, the MiniCircuits ZX60-33LN Low Noise Amplifier, so that is the one the 

team selected. It had a bandwidth of 50 to 3000 MHz, a gain of 16.5 dB, and a required DC 

voltage of 5.5 V [67]. These specifications, along with its small size, made it ideal for increasing 

the USRP2 range. In addition, using the one already supplied by the ECE department saved the 

team the $80 on the price. The amplifier can be seen below. 

 

Figure 45: MiniCircuits ZX60-33LN Amplifier [67] 

 A table detailing all of these specifications for the different components can be seen in 

table 13. 
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Table 13: Hardware Specifications [66], [67], [68], [69] 

Ubiquiti Bullet M  Weight: 0.18 kg 

 Power: 600 mW 

 Data rate: 100+ Mbps 

 Range: several kilometers 

Axiomtek Pico820  Size: 100mm×72mm 

 Power supply: 5 V 

 Processor: 1.6 GHz Intel Atom 

 RAM: 2 GB 

 Ports: gigabit Ethernet, 4 USB 2.0 

ADATA mSATA Solid State Drive  Capacity: 30 GB 

 Size: 51mm×30mm×4mm 

 Transfer rate: 280 MB/s 

 Power: 1.5 W 

MiniCircuits zx60-33LN Amplifier  Bandwidth: 50 to 3000 MHz 

 Gain: 16.5 dB 

 Power supply: 5.5 V 

 

4.4. Issue with Conversion from UDP to UHD 

 A major issue was encountered at the beginning of C term with the progression of the 

project. By the end of B term, the team had begun to successfully transmit and receive basic 

string messages such as “hello world” from one USRP2 to the other. This was a significant step 

and signaled that the project was making good progress. However, with the start of C term, the 

class ECE 4305: Software Defined Radio began to use the USRP2s and upgraded all of the 

MATLAB copies from version 2010b to 2011a. Along with this change was a switch from the 

driver software for the USRP2s from UDP to UHD. This seemingly minor change actually 

caused several weeks of problems as the Simulink models ceased to work and the team had to 

make numerous changes to ensure that it functioned properly again. 

 UDP, or User Datagram Protocol, is the driver software that Simulink used to interface 

with the USRP2 in the 2010b and prior versions of MATLAB. UDP’s functioning is not visible 

to the user at all because it defines the lower level interactions between the radio and the 

computer, but it is for this very reason that it is important. With UDP, Simulink programs using 

the USRP2 interface block must run with the frame size set at 358 samples. This is a set 
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parameter that cannot change, making the user define their programs to meet this requirement. 

The team went through this process during B term, designing the text transmission program to fit 

the message within the 358 samples of the frame. In addition, the sample time of each program 

had to be tailored to match the frame size and message length. While this parameter limits how 

data may be transmitted, the user can modify the program to separate a larger message into 

separate frames. The team was planning on doing this very step at the beginning of C term to 

send larger and more complex messages over the USRP2s. 

 However, when C term started ECE 4305 updated all of the computers to run MATLAB 

2011a with the UHD driver software. UHD stands for Universal Software Radio Peripheral 

Hardware Driver, and operates very differently from UDP. It can have a variable frame length, 

letting the user decide to incorporate any number of samples ranging from, for example, 50 to 

over 10,000. The sample time could then be matched to this new frame length instead of a set 

length of 358. These two different parameters allow the user much greater flexibility in creating 

a program by not limiting how the radio transmits data.  Furthermore, there were even changes to 

the Simulink blocks themselves, requiring the USRP2 blocks from the original programs to be 

updated to the new USRP2 blocks. The different blocks can be seen in Figures 46 and 47. 

 

Figure 46: MATLAB Version 2010b USRP2 Transmitter Block 

 

Figure 47: MATLAB Version 2011a USRP2 Transmitter Block 

 While these updates may seem relatively inconsequential, they had a large impact on the 

progress of the project. Several weeks at the beginning of C term had to be devoted to including 

the changes and ensuring that the original Simulink transmit and receive programs were again 

working. Because all of the settings and blocks in Simulink are so closely intertwined and 
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dependent, changing one number such as the sample time in the setting for one block could 

create a cascade of errors in the following blocks. The only blocks that required visible 

modification were the USRP2 transmitter and receiver blocks; all the other changes were in the 

settings. As a result, there is no way to document the work done to update the models. 

Significant time was devoted in lab to sorting through the errors resulting from these updates and 

modifying the programs to work with UHD. After much troubleshooting to determine and fix the 

source of these errors, the team was able to modify the Simulink programs to work with UHD at 

any chosen frame length. 

4.5. Increasing Flexibility of Transmitter and Receiver 
Models 

After modifying the basic Simulink transmitter and receiver models to operate with 

UHD, the group continued on to improve the flexibility and resiliency of these models. This was 

an important next step because the radios needed to be able to transmit different messages under 

different scenarios. To account for this possibility, the team implemented the option to send 

variable length messages and different file types. 

4.5.1. Variable Length Messages 

First, the group needed to be able to modify the frame length as desired. This ability 

would enable messages of any length to be transmitted efficiently using as few frames as needed. 

Using UHD, this proved to be a relatively straightforward task. The first step was to select the 

message; in this example, the string “hello world” was chosen. The MATLAB m-file 

charToBitsAndBack.m (as seen in the appendix) was used to convert the string to a binary array 

where each character was represented by seven bits. Thus, this string would be 77 bits long. It 

was defined as the variable sBit and sent to the model mFindFrameStartTx.mdl, which then 

transmitted the message to the receiver through the USRP2. The model is shown below. 
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Figure 48: mFindFrameStartTx.mdl - Text Message Transmitter Model 

In addition to modifying the input string, the settings for the model had to also be modified to 

accommodate different frame lengths. Specifically, the sample time in the “Signal From 

Workspace” block had to be set to 1/77 with 77 samples per frame to match the length of the 

message, as seen below. These numbers would be different if the message was a different length. 

 

 

Figure 49: "Signal From Workspace" Block Settings 

The other blocks did not depend on the frame length, so their settings did not need to be changed. 

In this manner – selecting the message, entering it into charToBitsAndBack.m, and then 
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modifying the sample time and samples per frame in the “Signal From Workspace” block – the 

Simulink transmitter program was made to accommodate messages of any desired length. 

 To receive the message with its variable length, the receiver model required similarly 

straightforward modifications. The full model and its “FrameSync” subsystem, as seen in the two 

figures below, did not require any visible changes.  

 

 

Figure 50: FrameSyncFinalv2.mdl – Text Message Receiver Model 

 

 
Figure 51: FrameSync Subsystem 

Instead, parameters in the settings of the blocks had to be modified. Specifically, the MATLAB 

function in the subsystem had a variable mlength that needed to be set to the desired frame 

length of 77. In addition, the m-file that decoded the received message from bits into a string, 

CharToBitsAndBackRxv2.m, also had a variable mlength that needed to be set to the desired 

frame length. Both these functions can be seen in the appendix. Once these changes were made, 

the receiver model was able to work in unison to send and receive any message put into a frame 

of variable length, thus increasing the overall flexibility of the system. 
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4.5.2. XML to Bits Conversion 

 Although the system could now handle variable length messages and frames, it still had 

room for further improvement. The messages that it was sending were simple strings defined in a 

MATLAB script, which are not very challenging to decode and transmit. The next step needed to 

be the addition of a feature that allowed the system to take in a file of any type and convert it to a 

binary vector which could then be transmitted. This would be much more realistic for when the 

system is fully implemented on the mothership and taking in various types of files such as video.  

 In order to meet this need for interoperability with different file types, the m-file 

inputXML.m was created, which can be seen in the appendix. It began by calling any desired file 

of any type, in this case the XML document CommsAbstract.xml. It used the functions fopen() 

and fread() to take in the file and convert it into an array of bits that represent the ASCII values 

in the original file. The array was defined so that each column was one frame with the frame 

length being 987, resulting in 987 rows. The number of columns was determined by the size of 

the original file. 

 At this point, the transmitter program was able to transmit the frames in the array one at a 

time, allowing the entire file to be transmitted in separate packets. The receiver would then run 

the last several lines of code in inputXML.m, which used the functions fopen() and fwrite() to 

create a new blank file, convert the incoming binary frames into ASCII characters, and then 

write these characters into the file. This last step thus completed the process of transmitting and 

receiving the XML file. A flow diagram demonstrating this process can be seen below. 

 

Figure 52: XML Conversion Flow Diagram 

 This process using inputXML.m is fairly simple yet very important. The three main 

functions used in the script– fopen(), fread(), and fwrite() – are all predefined MATLAB 

functions designed for this type of file manipulation. When they are combined and applied in this 

manner, they make a script that is capable of taking in any file type of any size and successfully 

transmitting it with the USRP2s. This is an important step for the large video files that will need 

Input File 
Type to 

Program 

Covert 
File to 

Array of 
Binary 
Frames 

Transmit 
Frame 

Receive 
Frame 

Convert 
Received 

Bits to 
ASCII File 



68 

 

to be sent to the base station. The one problem encountered with this method was that the 

Simulink program could not switch quickly from sending one frame to the next. There was no 

clear way to address this problem using blocks in the transmitter model to switch between the 

columns of the array, so a separate test script was written that called the model repeatedly and 

sent a separate frame to it on each call. This method was slow and inefficient, but there was no 

better alternative. A more effective means of transmitting multiple frames in a row should be 

developed in further work. 

4.6. Testing USRP2 Transmission Range 

 Now that the system could handle transmitting messages with multiple frames originating 

from different file types, the next step was to determine the effective range of the USRP2s. Since 

the UAVs will be moving around while carrying out the search, they will be at varying distances 

from the user. The communications system will need to handle such a situation and ensure that 

contact is always maintained between the mothership and base station. Knowing the effective 

range of the radios is imperative while designing the communications system to ensure that this 

requirement is met. 

 To determine the range of the USRP2s, a field test needed to be carried out in a 

controlled environment. This test would require a large open space to provide the radios an 

unrestricted line of sight and thus maximize the likelihood of transmission. In addition, the site 

needed electrical outlets available to power the computers and radios. Lastly, Wi-Fi was required 

to connect the laptops to the WPI network and obtain the license for MATLAB, which would run 

with Simulink to control the USRP2s. These requirements logically led to doing the experiment 

in a large indoor space, which is why Harrington Auditorium was ultimately selected. 

 To conduct the test, the team set up a USRP2 connected to a laptop at either end of the 

basketball courts in Harrington, with each pair operated by a team member. There was a clear 

line of sight between both radios. A picture of this setup is seen below. 
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Figure 53: USRP2 Range Test Setup 

The frequency offset between the two radios was first determined to be 80 kHz by using the 

model observeFFT.mdl, which permitted the receiver to observe the spectrum of the transmitter. 

This is a very large number because the normal offset is no more than 20 kHz, leading to 

speculation that there was a problem with the radios. Nonetheless, the offset value was 

incorporated into the receiver’s frequency setting to ensure correct transmission. In addition, the 

transmitter used the Simulink model mFindFrameSyncTx.mdl to transmit the message and the 

m-file char2BitsAndBack.m to encode the message. The receiver used the model 

frameSyncFinalv2.mdl to receive and the m-file char2BitsAndBackRxv2.m to decode the 

message. These models are in figures 48, 50, and 51, and the m-files are in the appendix. 

Next, the range and transmitter power were selected to be the independent variables. 

Modifying the range between the radios would simulate the varying range between the 

mothership and the base station; modifying the transmit power would simulate cases of path loss 

due to atmospheric interference or larger distances. The ranges were set at approximately 40 

yards and 25 yards, and the power of the transmitting USRP2 was switched between 32 dB, 16 

dB, 8 dB, and 0 dB at each distance. A map of the setup of the radios in Harrington is shown in 

Figure 54. 
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Figure 54: Harrington Range Test Map 

Changing the receiving USRP2’s power was deemed unnecessary since it simulated the base 

station, which would be stationary and possess a constant gain. Thus, the receiver’s power was 

kept at a constant 32 dB, which was the maximum possible gain. The transmitted message was 

“Is it the Apocalypse… or is it just C term?” The results were recorded for each set of variables 

and are shown below. 

Table 14: USRP2 Range Test Results 

Transmitter Gain 40 Yards 25 Yards 

32 dB Successfully received Successfully received 

16 dB Successfully received Successfully received 

8 dB Received "?  ?   @? @P  ? @? 

? ? A? ? A  E@   ???" 

Received 

"?      ??         ??  @?     ?" 

0 dB Received nothing Received nothing 

  

As these results demonstrate, the USRP2s performed well at varying ranges. The received 

messages were nearly identical between 40 yards and 25 yards, which was not expected. Instead, 

the team anticipated that the message would be received better when the radios were closer. The 
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message was received at both ranges if the transmitter gain was above 16 dB but not if it was 

below 8 dB, indicating that the cutoff gain between successful and unsuccessful transmission 

was somewhere in between the two. This result indicates that provided there is a clear line of 

sight between the radios, then the likelihood of successful reception is high for a sufficiently high 

gain. Furthermore, the radios could likely still work at a much greater range – such as 50, 70, 100 

yards or more – since the message was received even at well under the transmitter’s maximum 

gain of 32 dB. Further testing at longer ranges would have been ideal to confirm this expectation. 

Unfortunately, the group was pressed for time and there was no way to increase the range of the 

test in Harrington.  

This USRP2 range test proved to be highly successful. It demonstrated the capability of 

the radios to successfully transmit and receive a message at ranges up to at least 40 yards, 

provided that the gain was sufficiently high. In addition, the results suggest that the radios could 

operate just as well at much greater ranges. The addition of an amplifier, such as the 

MiniCircuits ZX60-33LN, would increase the distance even more. These results bode well for 

the mothership, suggesting that it can operate well at a minimum of 40 yards and, with sufficient 

gain, probably at 100 yards or more. Thus, this field test provides proof-of-concept for the 

chosen architecture of a wireless UAV system. 

4.7. Implementation on Motherboard 

 At this point our complete communications protocol had to be implemented on the Pico 

ITX motherboard. This step is highly important and innovative because it is the first time that 

such an SDR system has been implemented on a small processor with the intent of placing it on a 

UAV. This section elaborates the steps that were followed in order to have a fully functional 

motherboard, capable of performing reliable communications while operating in the sky.  

4.7.1. Choosing the operating system 

 First of all, the appropriate operating system that would be loaded in the motherboard had 

to be chosen. The initial choice was the Debian operating system. Debian is a free and open 

source software. It is known for relatively strict adherence to the philosophies of UNIX and free 

software as well as using collaborative software development and testing processes [54]. In brief, 
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this software would have been the most suitable for our purpose since it has the least CPU 

consumption comparing to other similar operating systems. 

However, due to issues that were faced during the installation of Debian, we chose a 

similar operating system, the XUBUNTU. The installation error of Debian was caused by the 

graphics card that was installed in the motherboard. Since it was a built-in feature we could not 

fix it. Hence, XUBUNTU was installed in the motherboard. This operating system is based on 

the same concept as Debian and it also has a similar friendly Graphic User Interface to Debian. 

Figure 55 shows are successful installation of MATLAB/Simulink on the Pico ITX motherboard 

 

 

Figure 55: MATLAB running on the Pico ITX motherboard 

 

 

 Several tests regarding the CPU power consumption between the two operating systems 

were performed. The results can be summarized in Figures 56 and 57 for XUBUNTU and the 

Debian respectively.   

 

 

Figure 56: CPU power consumption using the XUBUNTU's system monitor 

15.2 % peak of the CPU performance 
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 Figure 56 shows that after 1 minute of monitoring the CPU power usage while installing 

MATLAB in XUBUNTU, 15.2 % of the total CPU was being used.  

 

 

Figure 57: CPU power consumption using the Debian system monitor 

 Figure 57 verifies the significant difference in CPU power usage while installing 

MATLAB in Debian. Looking at the CPU2, only 3.0 % was being used after 1 minute of 

monitoring. 

4.7.2. Power and Heat Issues 

 As mentioned in section 4.7.1 XUBUNTU consumed more CPU power while MATLAB 

was being installed. The CPU usage could go up to 85.7% that caused our processor to overheat 

(over 60
o
C) and therefore to get our motherboard “frozen”. We also realized that our initial 

assumption of the 1.5A current that was needed to power the motherboard was not sufficient; 

therefore we had to increase it to 3A.  

 In order to fix the overheating issues we had to install a fan on the top of the heat sink of 

the microprocessor. The result of this installation was that the temperature was stable at 35
o
C and 

hence the performance of the motherboard was significantly improved.  

 

 

 

 

3.0 % peak of the CPU performance 
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Figure 58: Final setup of the motherboard with the cooling fan installed and the USRP2 connected 

 Figure 58 shows the final setup of the motherboard. Notice that the USRP2 is also 

connected to it via the Ethernet interface. The cooling fan uses the 5V that was needed to power 

the Pico ITX. This picture was taken in AK 227 on March 2
nd

 2012 at 20:35 during the final 

successful transmission test of an XML file that can be found on Appendix E. 

 At this point all the components were successfully installed. Therefore we run several 

tests using a decimation of 512 while transmitting any message. As expected the transmission 

was successful since we were able to receive any message that was generated using the Pico ITX 

motherboard. 

5V, 5cm Cooling Fan 
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Figure 59: Successful transmission of the XML file using an interpolation of 512 at 2.42GHz. 

 Figure 59 and 60 shows the successful transmission of the XML file that can be found on 

Appendix E using a decimation of 512 at 2.42 GHz. 

 

 

 

 

 

 

 

 

 

Figure 60: Successful reception of the XML file using a decimation of 512 at 2.42GHz on the picoITX motherboard 
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4.8. Summary 

This project was able to achieve most of its final goals during the implementation phase. The 

team’s achievements were as follows: 

 Successfully created a functioning Simulink system using the USRP2s that 

could transmit a text message. 

 Improved system flexibility by modifying the length of the message and the 

frames. 

 Applied script that allowed the program to read in and transmit any file type of 

any length and then decode it at the receiver. 

 Carried out range test of USRP2s in Harrington Auditorium to determine that 

they can transmit a minimum of 40 yards and likely much further. 

 Loaded MATLAB and Simulink onto Pico ITX motherboard and used them to 

operate a USRP2. 

Several issues were encountered along the way, particularly the conversion from UDP to UHD, 

but they were eventually overcome. These accomplishments have successfully provided proof-

of-concept for the architecture of the desired wireless UAV search network and laid the 

groundwork for future work on the system. 
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Chapter 5 – Conclusion and Future Work 

5.1. Conclusions 

 Overall, this project was successful. The group’s goal was to lay the groundwork and 

provide proof-of-concept for an unmanned aerial vehicle communications system that would aid 

in search and rescue missions. The specific objectives for the end of C term were to perform a 

range test of the USRP2 radios in Harrington Auditorium and operate the radios using Simulink 

installed on the motherboard. These objectives were successfully met, and many conclusions can 

be drawn from the results. However, time and budget constraints meant that the team was unable 

to progress further and implement a fully functional communications system on the UAVs, 

leaving room for future work. 

5.1.1. USRP2 and Simulink Communications System 

 One of the main objectives of the project was to create a communications system using 

Simulink that would simulate the mothership-base station link. The team was able to successfully 

achieve this objective by sending text messages between two USRP2s in lab. The 

Communications Systems Toolbox in Simulink was used to design a system that would take in a 

predetermined message, encode it, transmit it with the radios, and decode it at the receiver. This 

process was accomplished using the mFindFrameSyncTx.mdl and frameSyncFinalv2.mdl 

models as the transmitter and receiver, respectively. However, transmitting video data was 

deemed too difficult with the limitations of a 200 kbit/s sampling rate and 512 decimation rate 
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for the radios. In addition, Simulink was not optimized to transmit video. Instead, the team 

focused on improving the flexibility of this system and testing the radio transmission range. 

 The team sought to improve the Simulink program’s flexibility by modifying the frame 

length and the file type that could be sent. Modifying the frame length proved to be fairly 

straightforward with UHD and was accomplished by changing a number of settings in the 

transmitter and receiver files. The frame length could thus be set to any desired number from 

about 50 to 10,000 samples, although a length of 77 was often used for testing. Transmitting 

different file types was accomplished by writing a script that used the fopen() fread(), and 

fwrite() functions. It converted any given file to bits at the transmitter and reconverted them to a 

file at the receiver. Although the script successfully accomplished this conversion, the team was 

unable to find a method to quickly transmit multiple frames, which led to a slower data rate. 

 Once the Simulink system was improved in this manner, the team then focused on testing 

the range of the USRP2s. A large open area was needed to provide a clear line of sight, and it 

needed both Wi-Fi and power outlets for the computer and radios.  Thus, Harrington Auditorium 

was chosen for the test. The radios were set at 40 then 25 yards apart, with the transmitter 

varying the gain between 32 dB, 16 dB, 8 dB, and 0 dB. Surprisingly, the results were largely the 

same for the two ranges, with the message being correctly received at 32 dB and 16 dB, a 

garbled message received at 16 dB, and nothing received at 0 dB. These results show that the 

USRP2s can function at a range of at least 40 yards, and likely much further, especially with 

amplification. This test proved that when the radios are mounted on the UAVs, they will be able 

to maintain connectivity over varying distances. 

5.1.2. Motherboard Implementation 

 The other main objective of this project was the implementation of the Simulink system 

on a Pico ITX motherboard. The purpose of this objective was to demonstrate that the 

communications system could operate on a small processor located on the UAV during flight, 

which is a requirement for the UAVs to be able to communicate with the user. The Axiomtek 

Pico820 was chosen for this application for its small size, sufficient 1.6 GHz processor, and 

sizable 2 GB of RAM. 

 To achieve this objective, the team first attempted to install Xubuntu onto the 

motherboard. However, the board overheated and the installation could not be completed. A fan 
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was fixed onto the heat sink to address the issue. With the fan, the overheating was dissipated 

and Xubuntu was successfully installed. MATLAB and Simulink were then installed without 

error. Lastly, the USRP2 was connected to the Pico ITX’s gigabit Ethernet port and the model 

mFindFrameSyncTx.mdl was run, which used the radio to transmit a basic text message. This 

test proved that a small motherboard could operate the USRP2, which is proof-of-concept that it 

could also function in this manner on the UAV to provide a link between the mothership and 

base station. 

5.2. Future Work 

 There is a large amount of future work that can be done on this project. Since the team 

was only able to lay the groundwork for an aerial wireless ad hoc network, future MQP groups 

can continue the progress and full implementation of the system on the UAVs. Specific areas of 

potential work include: 

 Further improving resiliency of Simulink programs – incorporate energy 

detection, bidirectional communications, and handshaking with USRP2s. 

 Increasing effective data rate of USRP2s – implement transmission of videos and 

dual-direction control commands over faster network. 

 Integrate Wi-Fi and USRP2 – will allow conversion of data between the drones to 

mothership Wi-Fi link and the mothership to base station USRP2 link. 

 Load motherboard onto mothership – test performance of Simulink system and 

ability to interface with Wi-Fi. 

The first two bullet points are the areas of work that are most feasible in the near term. 

They are the next logical steps from the products of this project and are required in order for the 

communications system to have the improved resiliency needed for actual implementation. The 

second two bullet points are longer term goals that will prove more difficult because they require 

the integration of the hardware, software, and communications aspect of the project. However, 

they are the important final steps for testing the full implementation of the system. All of these 

opportunities for future work will extend the capabilities of the products that the team created. In 

addition, they will bring the project further towards the final vision of a functional UAV search 

and rescue system.  
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Appendices 

Appendix A 

Characters to bits and back MATLAB file (Transmitter Side) 

The following MATLAB code was generated before running the transmitter for the 

framesync (sending hello world). The main purpose of this code is to transform a string to a 

binary stream and back again. All the characters from the ASCII table are defined in the variable 

ASCIITable. 
% Transform a string to a binary stream and back again. 
%MQP version 
s = 'Hello, world!'; 
ASCIITable = [32  ' ';... 
              33  '!';... 
              34  '"';... 
              35  '#';... 
              36  '$';... 
              37  '%';... 
              38  '&';...  
              39  '''';...  
              40  '(';...  
              41  ')';...  
              42  '*';...  
              43  '+';...  
              44  ',';...  
              45  '-';...  
              46  '.';...  
              47  '/';...  
              48  '0';...  
              49  '1';...  
              50  '2';...  
              51  '3';...  
              52  '4';...  
              53  '5';...  
              54  '6';...  
              55  '7';...  
              56  '8';...  
              57  '9';...  
              58  ':';...  
              59  ';';...  
              60  '<';...  
              61  '=';...  
              62  '>';...  
              63  '?';...  
              64  '@';...  
              65  'A';...  
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              66  'B';...  
              67  'C';...  
              68  'D';...  
              69  'E';...  
              70  'F';...  
              71  'G';...  
              72  'H';...  
              73  'I';...  
              74  'J';...  
              75  'K';...  
              76  'L';...  
              77  'M';...  
              78  'N';...  
              79  'O';...  
              80  'P';...  
              81  'Q';...  
              82  'R';...  
              83  'S';...  
              84  'T';...  
              85  'U';...  
              86  'V';...  
              87  'W';...  
              88  'X';...  
              89  'Y';...  
              90  'Z';...  
              91  '[';...  
              92  '\';...  
              93  ']';...  
              94  '^';...  
              95  '_';...  
              96  '`';...  
              97  'a';...  
              98  'b';...  
              99  'c';...  
              100 'd';...  
              101 'e';...  
              102 'f';...  
              103 'g';...  
              104 'h';...  
              105 'i';...  
              106 'j';...  
              107 'k';...  
              108 'l';...  
              109 'm';...  
              110 'n';...  
              111 'o';...  
              112 'p';...  
              113 'q';...  
              114 'r';...  
              115 's';...  
              116 't';...  
              117 'u';...  
              118 'v';...  
              119 'w';...  
              120 'x';...  
              121 'y';...  
              122 'z';...  
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              123 '{';...  
              124 '|';...  
              125 '}';...  
              126 '~']; 

  
% Cycle through the string and convert characters to integers 
lenS = length(s); 
sInt = zeros(lenS,1);  % Preallocate for speed 

  
% at the transmitter side (1st half) generates sBit for transmission 
% If you need this part, comment the 2nd half 
% Convert integers to bit stream 
for idx = 1 : lenS 
    ASCIIIdx = find(ASCIITable(:,2) == s(idx)); 
    sInt(idx) = ASCIITable(ASCIIIdx,1); 
end 

  
% Convert integers to 7-bit words and columnize 
sBit = de2bi(sInt, 7, 'left-msb')'; 
sBit = sBit(:); % This is the sBit for transmission [77*1] 

  
% % at the receiver side (2nd half) 
% % Convert bit stream back to integers 
% rx=received(1,:); % you only need the first 77 bits 
% sBit1 = reshape(rx, 7, lenS); 
% sBit2 = sBit1'; 
% sIntEst = bi2de(sBit2, 'left-msb'); 
%  
% % Convert integers back to characters 
% sEst = (char(sIntEst))'; 
%  
% % [EOF] 
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Appendix B. 

Characters to bits and back MATLAB file (Receiver Side) 

The following MATLAB code was generated before running the receiver for the framesync 

(receiving and decoding hello world). The main purpose of this code is to convert integers to 7-

bit words and columnize and then convert a bit stream back to integers. All the characters from 

the ASCII table are defined in the variable ASCIITable. 
mlength =245; %need to change in matlab function block, too 
lenS=mlength/7; 
sBit=[]; 
for index=1:mlength; 
    sBit=[sBit mode(simout(:,index))]; 
end 

  
% at the receiver side (2nd half) 
% Convert bit stream back to integers 
sBit = reshape(sBit, 7, lenS); 
sBit = sBit'; 
sIntEst = bi2de(sBit, 'left-msb'); 

  
% Convert integers back to characters 
message = (char(sIntEst))' 
%  for i=1:50 %200:301 works-ish 
%  sBit1 = reshape(sBit(i,:), 7, lenS); 
%  sBit2 = sBit1'; 
%  sIntEst = bi2de(sBit2, 'left-msb'); 
%  % Convert integers back to characters 
%  (char(sIntEst))' 
%  end 
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Appendix C 

Alternative FramSync – Receiver Side 

 The MATLAB script below takes care of the entire frame sync, without using the 

Simulink blocks as described in the Results Section. In general, we wrote a MATLAB script for 

frame synchronization on the receiver side. 
%% Tasos Code for frame sync 2nd attempt 
function [sEst_1 sEst_2] = fcn(u) 
s = 'Hello world'; 
lenS = length(s); 
length_of_ASC = 77; 

  
% Barker code 
barker = [0 0 0 0 0 1 1 0 0 1 0 1 0]'; 
barker_bipolar = strrep(barker,0,-1)'; 

  
% Correlation 
data_bipolar = strrep(u,0,-1)'; 
corr_temp = xcorr(data_bipolar,barker_bipolar); 
corr = corr_temp(length(data_origin)-length(barker_bipolar)+1:end,1); 

  
% Peak detection 
peak_pos = []; 
peak_val = []' 
valid_data = []; 
sBit1 = []; 
m = 1; 
valid_data_output = []; 

  
max_num = 20; 
corr_change = corr; 
peak_pos = find(corr > 12.5); 

  
% Find start and end of each frame 
start_frame = peak_pos+1; 
end_frame = peak_pos+77; 

  
% Difference between frame lengths 
diff = peak_pos(2:end)-peak_pos(1:end-1); 

  
% Extract frames 
for i=1:length(peak_pos) 
    valid_data(:,1) = data_origin(start_frame(i):end_frame(i)); 
end 

  
% Find the "correct data" (1 way) 
valid_data_output_1 = mode(valid_data,2); 

  
% Find the "correct data" (2 way) 
valid_data_output_2 = mean(valid_data,2) > 0.5; 
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% Extract data 
sBit1 = reshape(valid_data_output_1(14:90), 7, lenS); 
sBit1 = sBit1'; 
sIntEst_1 = bi2de(sBit1, 'left-msb'); 

  
sBit2 = reshape(valid_data_output_2(14:90), 7, lenS); 
sBit2 = sBit2'; 
sIntEst_2 = bi2de(sBit2, 'left-msb');  
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Appendix D 

Encoding an ASCII file into a binary file 

 This script converts ASCII text to Binary numbers 
function encode(File,File2) 
%ENCODE  Converting ASCII text to Binary numbers  
%   DECODE(FILE,FILE2) where FILE is an input text file consisting of ASCII 

text and 
%       FILE2 is the output file. 
%       The code key file (code.m) should be included in the same directory            

in order 
%       for this program to run. 

  
wpl=0; 
[spc_ent,C0]=textread('code.m','%s %s',2); 
[L,C]=textread('code.m','%s %s','headerlines',2); 
L=char(L); 
FID = fopen(File,'r'); 
OUT = fopen(File2,'w'); 
while 1 
    tline = fgetl(FID); 
    if ~ischar(tline), break, end 
    for i=1:size(tline,2) 
        x=find(L==tline(i));         
        if isempty(x)==1 
            fprintf(OUT,'%s',char(C0(1))); 
            wpl=wpl+1; 
        else 
            fprintf(OUT,'%s',char(C(x))); 
            wpl=wpl+1; 
        end 
        if wpl==10, fprintf(OUT,'\n');, wpl=0;, end 
    end 
    fprintf(OUT,char(C0(2))); 
    wpl=wpl+1; 
end 
fclose('all'); 

 

Decoding a *.txt file using ASCIITable 

 This script converts binary numbers to ASCII text 
function decode(File,File2) 
%DECODE  Converting Binary numbers to ASCII text  
%   DECODE(FILE,FILE2) where FILE is an input text file consisting of binary 

numbers 
%       and FILE2 is the output ASCII text file. 
%       The code key file (code.m) should be included in the same directory 

in order 
%       for this program to run. 
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t=0; 
[spc_ent,C0]=textread('code.m','%s %s',2); 
[L,C]=textread('code.m','%s %s','headerlines',2); 
L=char(L); 
bit = length(char(C(1))); 
FID = fopen('matlab.txt','r'); 
OUT = fopen('matlab1.txt','w'); 
while 1 
    tline = fgetl(FID); 
    if ~ischar(tline), break, end 
    for i=1:size(tline,2)/bit 
        for j=1:93 
            x=isequal(char(C(j,:)),tline(8*i-7:8*i)); 
            if x==1 
                t=j; 
            end 
        end 
        if t~=0 
            fprintf(OUT,'%s',L(t)); 
        elseif tline(8*i-7:8*i)==char(C0(2)) 
            fprintf(OUT,'\n');    
        elseif tline(8*i-7:8*i)==char(C0(1)) 
            fprintf(OUT,' '); 
        end 
        t=0; 
    end 
end 
fclose('all'); 
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Appendix E 

Input an XML file for transmission (multiple frames) 

 The following MATLAB script was generated prior to the start of the transmitter. This 

scripts takes in an XML file and converts it to a binary array so that Simulink can then transmit. 
statsXML=dir('CommsAbstract.xml'); %make a struct with info of file, 

including length 
numBits=statsXML.bytes*8; %total number of bits in file 
lenFrame=987; %define frame length - weird thing: later functions don't work 

well when lenFrame is over 57769 
numFrame=ceil(numBits/lenFrame); %number of frames required to fully transmit 

message 

  
idXML=fopen('CommsAbstract.xml', 'r+b'); %open the desired file and return 

the file identifier 
%charXML=fread(idXML, lenFrame, 'ubit2=>char'); %convert first N values to 
%a char vector - for some reason, the script DOES NOT write to the new xml 
%file properly when this line runs, so DON'T RUN IT 

  
bitsXML=zeros(ceil(numBits/lenFrame)*lenFrame, 1); %initialize bits vector 
bitsXML(1:numBits)=fread(idXML, numBits, 'ubit1'); %convert file to a bits 

vector 
TxXML=reshape(bitsXML, lenFrame, numFrame); %reshape bits vector into frames 

in transmission array 
%NOTE: there will probably be extra zeros padded on the end 

  
%now pretend that bitsXML was transmitted and received perfectly... 

  
blankXML=fopen('blankXML.xml', 'r+b'); %open XML document to write to 
printXML=fwrite(blankXML, bitsXML, 'ubit1'); %write bits to chars in document 
%fprintXML=fprintf(bitsXML, 'ubit1') 

 

CommsAbstract.xml file 

 Below, we provide the sample CommsAbstract.xml file that was used as an input for the 

statsXML variable in the previous code 

 

Comms group 

Abstract 

Wednesday, September 14, 2011 

The need for capable search and rescue (SAR) crews is an ever-present need in the modern 

world. To accomplish their mission, these crews need knowledge of a disaster area or the 

locations of missing people. Unmanned Aerial Vehicles (UAVs) possess the ability to acquire 

this knowledge safely from above the search area and relay it to a user. In order to increase 

efficiency, a group of UAVs equipped with cameras (drones) can be used and relay their data 

through a central UAV called a mothership. This presents a number of challenges about how the 

separate UAVs will communicate with each other and the user. For this project, we will propose 

creating a mobile ad hoc network that enables the separate UAVs to interact, coordinate SAR 
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efforts, and transmit information to the user. Two additional groups will work on the UAV 

platform and systems integration, thus dividing the work for the overall UAV system. Our 

wireless network will be designed to handle many of the problems encountered on multiple 

mobile platforms moving in various formations. As link quality will not be consistent between 

nodes, drones may suddenly drop out or join the network. These factors are based largely on the 

relative movement of each platform, and can thus be measured and accounted for. The primary 

goal of this project will be to address these problems by creating a resilient communications 

system in which the UAVs beam their data to the user through the mothership. The mothership 

will coordinate most user-UAV interaction and manage spectrum allocation and monitoring the 

other UAVs. This will increase overall network resiliency by centralizing system management. 

By utilizing concepts from cognitive radio and predictive models based on the motion of each 

node, our network will attempt to maintain connectivity at all costs and compensate in the event 

of a disruption. The network can be optimized based on current node states to preserve 

connectivity, and still recover from entry or exit events when they happen. Numerous lab and 

field tests will be conducted to achieve this goal. The end product will be a wireless system 

encoded in the onboard processors of each UAV that successfully enables the user to use the 

UAV system to carry of their mission of search and rescue. 
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APPENDIX F 

MATLAB/Simulink Installation and Testing 

 The final step after setting up the motherboard was to install MATLAB with Simulink in 

order to perform tests to check the capabilities of the motherboard. The steps for the installation 

are the following: 

1. sudo wget 
‘ece.wpi.edu/linux/MATLAB?action=AttachFile&do=get&target=matlab-

r2011b.desktop' -O /usr/share/applications/matlab.desktop 

However this command gave an error regarding an outdated version of the GNU 

Compiler Collection. The way to fix it is the following: 

1. Install The GNU Compiler Collection 4.3 and The GNU Standard C++ Library 

sudo apt-get install gcc-4.3-multilib libstdc++6-4.3-dev 

2. Make a MATLAB specific 'bin' directory for gcc symlink. 

mkdir ~/.matlab/bin 

3. Symlink gcc to gcc-4.3 via user MATLAB specific 'bin' directory. 

ln -s /usr/bin/gcc-4.3 ~/.matlab/bin/gcc 

4. Add MATLAB specific 'bin' directory to the front of your system $PATH within your local 

startup.m file. 

printf 

"setenv('PATH',sprintf('/home/%%s/.matlab/bin:%%s',getenv('USER'),getenv('

PATH')));\n" >> ~/Documents/MATLAB/startup.m 

 

5. Run MATLAB 

root@UAVMqp – Xubuntu:~$ matlab & 
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