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Abstract 

According to the United Nations, the world population is expected to grow from its 

current 7 billion to 9.7 billion by the year 2050. During this time, global food demand is 

also expected to increase by between 59% and 98% due to the population increase, 

accompanied by an increasing demand for protein due to a rising standard of living 

throughout developing countries.  [1] Meeting this increase in required food production 

using present agricultural practices would necessitate a similar increase in farmland; a 

resource which does not exist in abundance.  Therefore, in order to meet growing food 

demands, new methods will need to be developed to increase the efficiency of farming, 

thereby increasing yield from the present land.   

One way in which this problem can be solved is through the usage of autonomous 

aerial systems to scout for problems which could potentially affect the crop yield – such as 

nutrient deficiency, water stress, or diseases.  Once located, this data can be used to 

determine the proper treatment for the field to alleviate the problem.  Through this process, 

resources can be reduced to the required minimum, while problems affecting the crop yield 

will still be corrected, allowing greater production with a lower amount of resources. 

This project on the application of Unmanned Aerial Vehicles (UAV’s) to the field 

of agriculture consisted of two phases.  First, a study was conducted on the required 

background to define the problem statement and what solutions were available for this 

application.  This consisted of first defining the operations within agriculture where UAV’s 

could be used to increase efficiency, and then the sensors, hardware, and software these 

operations would require.  The remainder of the project consisted of evaluating the tools 

which could be utilized to develop such a solution.  Primarily, the project focused on 

software tools – programming software, simulation environments, and machine learning 

algorithms – which could be utilized by future students to develop a functional hardware 

and software toolchain for the research of autonomous systems for agricultural 

applications.   

After analyzing these development solutions, a set of tools was selected which 

showed promise in the creation of a functional solution.  It was demonstrated that the core 

functions required for a UAV-based agricultural solution – navigation, perception, and 

feature detection – could be implemented within these systems, implying that they could 

be integrated into a full solution.  As the tools were selected to ensure the developed 

algorithms would be transferable to physical platforms, this additionally supports a 

physical system could also be developed. The present work is part of the Autonomous 

Systems Lab which belongs to the WKU Center for Energy Systems.  The author hopes 

that this project contributes to the advancement of the curriculum within the engineering 

department and serves as a foundation for future students developing autonomous systems, 

perception, and applied artificial intelligence at WKU. 
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Chapter 1: Introduction to Precision Agriculture with UAV’s 

One method to increase the efficiency of farmland and reduce resources such as 

fertilizer, pesticide, herbicide, and water, is through the application of precision farming 

techniques.  These techniques are fundamentally concerned with applying resources 

strategically where required rather than uniformly across an entire field.  [1] This process 

is carried out in three distinct stages.  First using sensors to monitor the field and report on 

various metrics which might affect the yield on the crops in regions of the field.  After 

which, these metrics are inspected by professional analysts who can recommend a plan for 

an efficient application of resources to maximize yield without expending unnecessary 

materials which might cause environmental or commercial damage.  For example, by 

analyzing the soil at specific points throughout a field, a map can be made of the field to 

strategically apply fertilizer in appropriate amounts over the field.  This ensures that the 

varied sections of the field get the fertilizer they need while not placing more fertilizer than 

is required on already fertile sections; reducing costs and environmental impacts.  This 

variable application plan is then carried out using intelligent machinery in conjunction with 

positioning equipment. 

These three stages can be implemented with a multitude of systems, from 

measuring hand-extracted soil samples to purchasing satellite images of the field.  The 

application which will be explored in this paper is the use of UAV’s in this process, 

specifically the data acquisition and treatment application stages.  Many commercially 

available UAV’s are designed to carry some form of camera or payload while in flight.  

While this camera is often one intended to operate over the visible light spectrum, it is 

possible to substitute a different sensor intended to observe a different frequency (such as 

an infrared sensor) or to more accurately observe a designated color (such as the red-green 

spectrum).  This enables the UAV’s to be deployed over a defined area, over which they 

will capture images of the field which can be used to assess a variety of metrics to 

determine crops health and predict yield. 

Why UAV’s? 

 During the image acquisition phase, there are two broad categories from which data 

is collected, sampling and remote sensing.  Sampling, covering methods where samples of 

the material to be measured are collected and tested, is both labor and time intensive and 

could potentially affect the crop if samples must be taken directly from the plants.  The 

alternative method, remote data acquisition, has been around for multiple years but some 

of the more common methods – manned aircraft and satellite imaging – are rarely used 

outside of government locations and the largest of farms.  Due to these systems’ operating 

height, the detail with which they can photograph is limited by image resolution.  On the 

contrary, UAV’s operate at a far lower height than manned aircraft and satellites, leading 
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to shorter sensing distances, which provides numerous advantages in data acquisition 

frequency and quality.  Due to the lower flight altitude and distances, the UAV’s are less 

sensitive to the effects of cloud cover as opposed to manned aircraft and satellites, which 

enables more frequent covering of the field as well as faster turnaround times and higher 

image quality.  This higher image quality allows greater accuracy in differentiating 

elements of the image during analysis, which in turn enables a level of detail about the field 

closer to that of sampling which can be used for a variety of metrics about the crop.  The 

benefit to this being that the data collection was non-invasive and nondestructive [2].   

Scouting for Problems 

Three of the most significant factors which limit the growth of crops are weeds, 

pests, and diseases.  Early detection of these factors so that appropriate action can be taken 

can improve the health, and thereby yield, of the crop.  Through routine monitoring and 

identification of these issues, the problems can be handled faster and more efficiently.  This 

increases yield through reducing the total damage done by these limiting factors, while also 

saving costs by enabling herbicides and pesticides to be applied locally, rather than sprayed 

uniformly. 

Weed Detection 

 Weeds can be classified as any plant which grows in the field other than the crop 

which was intentionally planted there.  These plants consume resources which could have 

been used by the intended crop, thereby restricting the growth and development of these 

plants; reducing the final yield.  Monitoring the field allows these invasive plants to be 

identified and handled before significant resources are consumed, which serves to increase 

yield.  Since weeds are often found in sparse clumps, at least during the beginnings of their 

growth, short sample distances are needed to obtain the necessary data for detection and 

differentiation [2].  As previously mentioned, UAV’s are a system which can facilitate 

these lower sample distances, allowing weeds to be located during the analysis phase.  This 

increased detail also allows differentiation between plant species, both between crops and 

weeds as well as between different species of weed.  This rapid detection and classification 

enable specialized management methods to be utilized, such as local application of a 

targeted herbicide [3].  By decreasing the total amount of herbicide needing to be used for 

weed-management both costs for herbicide and the environmental impact from runoff and 

contamination can be lessened [2]. 

Pest and Disease Detection 

 The most common method of treating for pests and diseases is to uniformly spray 

pesticide across the entire crop [3].  Much like with the application of herbicide to limit the 

spread of weeds within the field, precision agriculture techniques can also be applied to the 

spraying of pesticides to strategically locate and eradicate pests when infestations occur.  

Psirofonia, Samaritakis, Eliopoulos, and Potamitis outline such a method through a case 



 Page 3 12/9/2019 

 

study on the use of UAV-based observation of palm trees infested with red palm weevils.  

These insects lay their eggs in the crowns of palm trees after which the larvae begin to 

work their way down the tree, consuming it.  Infested palms show a steady loss of leaves 

which can be noticed within 3 months of infestation.  Through the use of UAV-collected 

images, the crowns of trees can be inspected to locate suspicious trees which can then be 

investigated more closely. If an infestation is found, pesticide can be applied, or the tree 

removed to limit the spread of the weevils [4].  Through this process, environmental impact 

and financial costs can be mitigated. 

 A similar methodology can be applied to the detection and management of diseased 

plants.  Another case study summarized by Psirofonia, et. Al detailed the usage in UAV 

imaging to detect the presence of the Xylella fastidiosa in olive trees.  By flying over the 

olive grove and taking images, trees were located which had discolored and dried leaves; 

marking them as suspicious and potential candidates for infestation.  Analysts were then 

able to bring the UAV back through to the suspicious trees to obtain better data.  Ultimately, 

the discoloration was determined to be the result of a recent fire, however the process for 

detecting abnormalities in the canopy was found to be successful; indicating there is 

promise with the process [4].  In a similar application, digital cameras were utilized with 

Google’s Tensorflow system to detect diseases within the cassava plant in Swahili (fig. 1). 

 

Figure 1: Nuru, a phone-based app which uses similar technology to detect diseases in the cassava plant created using 

Google Tensorflow. https://www.blog.google/technology/ai/ai-takes-root-helping-farmers-identity-diseased-plants/ 

Nutrient Stress 

 While not an invasive external factor, the lack of nutrients, such as nitrogen, in the 

soil can be just as significant in reducing yields.  By utilizing UAV-based sensors, it is 

possible to assess the chemical composition of the plant and determine these deficiencies 

so that management practices can be used to correct them [2].  Conversely, the same 

sensing algorithm can detect areas where sufficient quantities of this nutrient exist, and no 

action needs to be taken (fig. 2).  Using these techniques, fertilizers can be selectively 

applied to the areas where they would be beneficial while refraining from fertilizing the 
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areas which are abundant in these elements. The process saves cost and provides 

environmental benefit; as excess nitrogen in the soil can be converted into the greenhouse 

gas nitrous oxide by soil dwelling bacteria [2]. 

 

Figure 2: Map of field which has been analyzed for water stress. https://event38.com/news/color-nir-and-ndvi-imagery-

according-to-iowa-state/ 

Monitoring to Prevent Yield loss 

 While performing scouting missions to determine potential issues can assist in 

preventing and managing threats to crop yield, another factor is to frequently check 

throughout the growing cycle to ensure proper management.  This continual monitoring 

allows for the effects of management techniques to observed so that further management 

can be optimized.  To facilitate this, the field is organized into management zones, areas of 

the field which have similar soil properties, which receive treatment tailored to their 

specific needs.  Such management could also factor in other needs of the plants such as the 

irrigation.  Using thermal sensors, the rate of transpiration in plants can be determined, 

which is proportional to the water the plants are receiving. This allows water stress or 

abundance to be calculated throughout the field, allowing irrigation to be improved [2]. 

Pantazi, Moshou, Alexadridis, Whetton, and Mouazen provide an example which shows 

the combination of these two measures, where one section of a field had high water content 

due to poor drainage, water logging the section and thereby decreasing the yield [5].  

Through continual management, the irrigation pattern within the field could be determined 

over multiple planting cycles; allowing these areas to be either untended or the local 

irrigation improved in order to make the land conducive to growing crops. 



 Page 5 12/9/2019 

 

Crop Management 

 After data is gathered and analyzed to determine management zones and the overall 

management plan, the next step is to implement the strategic applications determined by 

the analysis.  Using positioning equipment, properly equipped UAV’s, and a treatment 

plan, it is possible to automate this process; applying the appropriate treatment when and 

where it is needed to efficiently manage the detected problems.  As discussed earlier, these 

treatments can involve the local application of specified chemicals such as pesticides, 

herbicides, and fertilizers. 

 A case study which outlines this functionality was covered by Psirofonia, et. Al 

concerning the operation of UAV’s in conjunction with e-traps.  The e-trap simulates a 

smart insect capturing device which monitored the number of insects it had captured over 

a period; sending a notification if it passed a defined threshold.  This triggered a UAV to 

deploy and spray pesticides within the area surrounding the trap [4].  This process could 

be implemented with other requirements for crop management, such as the application of 

herbicides or fertilizers.   Since the UAV’s payload can be changed as required, the same 

UAV’s could be used for all necessary treatment applications.  Additionally, changing 

payloads could enable the same UAV’s which performed the image-collection to apply the 

treatment; further raising the value of an investment in UAV-based crop management. 

Chapter 2: UAV’s and Required Technologies 

Types of UAV’s 

 Multiple styles of UAV exist on the market today, including fixed wing aircraft, 

multirotor UAV’s, and single-rotor helicopters.  Depending on the location where the UAV 

needs to operate and the function which it needs to complete, different systems might be 

more beneficial than other systems.  The flight characteristics, maximum mission duration, 

maneuverability, and payload limit all need to be considered to select the optimal UAV for 

an application.  The two primary distinctions in UAV systems are between fixed-wing 

aircraft and rotorcraft, as these distinctions most fundamentally affect the flight 

characteristics and maneuvers the UAV can perform. 

Fixed-Wing Aircraft 

 Fixed-wing aircraft produce lift through the pressure difference caused by the flow 

of air over the wings of the aircraft.  Due to this, as long as the aircraft remains moving at 

a specific minimum velocity, the system will remain in the air.  This greatly increases the 

efficiency of powering the system, as power can be concentrated on horizontal propulsion 

as opposed to split between thrust and lift.  Consequently, these systems can perform longer 

and faster flights than rotorcraft systems, allowing significantly more ground to be covered 

per flight.  Such efficiency comes at drawbacks to its maneuverability and sensor detail 

however, as these systems must continue moving at a defined speed to remain aloft.  This 
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restricts them from being able to hover and mandates the UAV fly above the canopy level 

to prevent crashes.  Therefore, close inspections of a limited area cannot be carried out with 

this system, nor can it be used to apply treatment to a limited area.  Additionally, many of 

these systems require a significant area for take-off or landing, much like an airplane 

requires a runway.  In recent years however, some systems have been developed which 

enable vertical take-off and landing while maintaining the fixed-wing flight mechanism.  

While this provides the flexibility of landing in a smaller area, design changes to enable 

vertical take-off can reduce the efficiency of forward flight [6].  

Rotorcraft 

 The lift for rotorcraft is derived from the moving air generated from the movement 

of the rotors (fig. 3).  While this requires more power to stay aloft and move than fixed-

wing systems, this source of lift independent of the thrust enables rotorcraft to hover in a 

single place for data collection and treatment operations.  The other key benefit from this 

is their capacity to take-off, operate, and then land in a confined area.  These capabilities 

allow the system to be used for more precise data collection and treatment operations than 

their fixed-wing counterparts.  These capabilities come at the cost of shorter flight times 

and slower flight speeds, which restrict the operating range of these systems.  In addition, 

these systems are often lighter than fixed-wing UAV’s, giving them lower weight limits 

for their payloads and more sensitivity to weather.  The magnitude of this sensitivity varies 

depending on the exact nature of the rotorcraft.  Multi-rotor UAV’s are most sensitive but 

are also capable of operating in a much smaller area than single rotor helicopters, which 

trade precision in movement for increased endurance and less weather sensitivity.  

Additionally, helicopters require more care to ensure safe operation as the larger rotors 

have the potential to inflict more severe injuries when rotating [6]. 

 

Figure 3: Worker using a UAV for pesticide application http://www.chinadaily.com.cn/business/tech/2016-

11/25/content_27481877.htm 

Data Collection and Interpretation Technologies 

 While the use of UAV’s as a platform for image capture and data acquisition is a 

critical portion of applying precision agriculture techniques, it is not a monolithic solution.  
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Other technologies are required to facilitate the process of collecting data, processing the 

data, and generating a treatment plan.  These include the requisite cameras to collect the 

variety data from the aerial platform as well as software to convert the acquired data into a 

usable form.  These include such technologies as image meshing software which 

coordinates images with the positions they were taken and combine the captured images 

into a cohesive whole, allowing for analysis and location to be interfaced [7]. The final 

category of these auxiliary technologies is machine learning algorithms, software which 

while not strictly required for data analysis, can improve the process. 

Computer vision systems 

 For the UAV to collect the required data about a field, a variety of image acquisition 

equipment must be utilized.  The most basic of these sensors are digital cameras affixed to 

the UAV’s, which provide similar data as visually inspecting the field.  In precision 

agriculture, however, these systems often are insufficient to provide the detail needed to 

make decisions about the health of crops.  For this reason, an alternative to cameras, the 

spectrometer, can be used.  Unlike cameras which record only three spectral bands (Red, 

Green, and Blue), spectrometers record additional spectral bands; allowing them to 

differentiate between colors which might appear identical with only 3 bands [2].  Two 

primary versions of the spectrometer are used: hyperspectral sensors which feature 

numerous overlapping bands over a 10-20 nm range and multispectral sensors which can 

feature bands in ranges of 50-100 nm (fig. 4).  By examining specific frequencies, it is 

possible to visually determine parameters about the crop, including chlorophyll content [2] 

and grain properties [8], allowing the health and yield of a crop to be assessed.   Plant 

health can also be assessed through the use of thermal imaging to estimate the transpiration 

rates of vegetation within the scanning area.  As transpiration rises, the temperature of the 

canopy falls due to the energy leaving the plant as water vapor.  Thus, by indirectly locating 

areas of lower transpiration, these systems can determine which areas of the field are 

experiencing water stress [2].  By analyzing this data, treatment plans can be generated to 

provide areas of the field with the exact chemicals the crops require and to effectively 

irrigate the field. 

 

Figure 4: Graph of the color bands in an example spectrometer. [9] 
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Machine Learning 

 In precision agriculture practices, for gathered data to be used to develop 

management plans it must be interpreted; a service generally performed by specialized 

users [4].  Much like how the process of scouting the field and gathering data was 

automated using UAV’s, this process can also be automated through the use of machine 

learning algorithms.  These algorithms seek to enable a machine to accept a defined form 

of input (for example a picture of a field taken by a UAV) and then perform a desired 

function; either classifying the images into defined categories (such as infected or non-

infected plants) or clustering the data into sets based on patterns found in the images (for 

instance, images of vegetation versus soil).  By providing the machine with a large set of 

data and instructing the machine to classify or cluster the data repeatedly, then providing 

feedback on the successfulness of the endeavor, the process can be steadily improved [3].  

These trained systems can then be used to analyze new data, allowing them to be applied 

to multiple operations in agriculture. 

 The application for these systems which most closely follows from the UAV 

applications discussed in this paper is utilizing these systems to detect problems scouted 

by UAV’s.  For instance, Liakos, Patrizia, Busato, Moshou, and Pearson cite a study where 

multispectral images were captured in a field and then given to a machine learning 

algorithm which detected weeds within the crop with 53-94% accuracy [3].  Similarly, 

these same processes were used for disease detection by differentiating between healthy 

wheat plants and those infested with Yellow Rust and Septoria tritici with accuracies of 

99.83% and 98.7% respectively [3].  These detection methods could be used in conjunction 

with the automated scouting and treatment application techniques to apply herbicide and 

pesticide strategically; effectively automating most of the problem management. 

 Additionally, these systems can be applied to yield prediction and quality; enabling 

the system to classify and quantify the product which can be expected from a given field.  

For instance, Patrício and Rieder outlined the benefits of using a machine learning 

algorithm for the process of classifying wheat grains.  Wheat grain classification is often 

fraught with misclassifications due to human error and fatigue, as well as the process being 

dependent on human opinion and thus varies between analysts.  For these reasons, the use 

of machine learning algorithms can improve this industry, allowing the grains to be judged 

by a standard set of parameters and performed without the effect of fatigue [8]. Patrício 

and Rieder also outlined examples where this process is applied to rice grains, detecting 

fungus and variation within the harvested crop in order to ensure that quality product is 

delivered to consumers [8].  Before the product is harvested, similar systems can also be 

employed to predict the yield of the crop as outlined by Pantazi, Et. Al.  in an experiment 

to predict the yield of wheat crop with soil parameters.  These systems achieved close to 

92% accuracy in predicting areas of low yield, 70.5-85% for medium yield areas, and 75-

83% accuracy for areas of high yield [5].  This can be utilized to provide better focus for 

crop management techniques throughout the growing cycle and estimate the results of these 

techniques when applied. 
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Commercial UAV Solutions 

 As a result of the previously established benefits of UAV assisted farming, several 

manufacturers have capitalized on the technology.  They have created commercial 

platforms tailored for usage in agricultural data collection; ranging from add-ons for other 

UAV’s to entire systems designed from the ground up for the farming application.  These 

systems include both fixed-wing and rotor-based platforms from a variety of 

manufacturers, ranging in cost from $2000 to $25000. [10] 

Fixed Wing Solutions 

 As mentioned previously, the main advantages for fixed-wing packages are their 

relatively larger coverage ranges, being able to cover 500-600 acres in a single run [11,12].  

Sensefly, a subsidiary of Parrot, has released a line of commercial mapping UAV’s called 

the eBee series; with the eBee SQ (fig. 5) being developed specifically for agricultural use.  

This system enables the user to survey approximately 500 acres per flight, while mapping 

with a precision of up to 1.5in/pixel with the included Parrot Sequoia multispectral camera. 

This is further supported by the eMotion Ag flight planning software, which facilitates 3-

dimensional flight plans alongside hand launching and automatic landing [11]. 

 

Figure 5: eBee SQ Platform, https://www.sensefly.com/drone/ebee-sq-agriculture-drone/ 

  

 For users who require more customizable sensor another fixed-wing platform, the 

FireFLY6 PRO (fig. 6), is available for agricultural use through PrecisionHawk.  This UAV 

produced by BirdsEyeView Aerobotics is capable of vertical takeoff and surveying 600 

acres in a single flight.  In addition to the digital camera included with the product by the 

manufacturer, the PrecisionHawk package allows the user to select additional sensors – 

including thermal, multispectral, and LIDAR – as well as their PrecisionAnalytics 

Agriculture package.  This gives users the ability to customize the UAV to fit their needs, 

as well as access to a robust analysis framework to extract data from the collected images 

[12]. 
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Figure 6: FireFLY6 Platform, https://www.precisionhawk.com/drones/birdseyeview-firefly6-pro 

Rotorcraft Solutions 

 In addition to their fixed-wing packages, PrecisionHawk also provides 

modifications for DJI’s Matrice 200 and 210 rotorcraft (fig. 7).  These platforms, like all 

rotorcraft, have shorter flight times and coverages than fixed-wing systems, but add the 

ability to hover and allow for closer scouting ranges.  The 200 series UAV’s allow for 30 

minutes of flight time, with protection against rain and dust, while also permitting flight 

during high winds and sub-zero temperatures.  The platform also features obstacle 

avoidance and cooperative UAV sensing systems to assist with flight safety and permit the 

simultaneous operation of multiple UAV’s [12]. 

 

Figure 7: DJI Matrice 200 Platform, https://www.dji.com/matrice-200-series 

 In addition to data acquisition, similar commercial platforms can be applied to 

automate treatment operations.  DJI’s Agras MG-1 (fig. 8) provides a platform for variable 

application of pesticides, herbicides, and fertilizer allowing a single system to deliver the 

necessary treatment to the appropriate areas of the field.  Without any payload, the UAV 

can fly for 24 minutes, with the 10-liter payload, this UAV has only 10 minutes of flight 

time in which to perform the spraying operation, spraying approximately 2 hectares per 

deployment [13].  
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Figure 8: DJI Agras MG-1, https://www.amazon.com/DJI-Intelligent-Scorpion-Drones-Dealer/dp/B074CJCJ2Y 

Chapter 3: Introduction to UAV Control 

According to a 2018 study, over three-quarters of farmers in the United States use 

UAV’s on a daily or weekly basis [14].  This, combined with the urgent need to begin 

increasing food production in tandem with the growing world population, reinforces the 

importance of developments within this industry.  In order to achieve the desired increase 

in production, more than an increased adoption of precision agriculture techniques will be 

required.  An increase in the overall efficiency in these practices will be required as well 

to unilaterally raise productivity.  Additionally, approximately fifty percent of these 

farmers who utilized UAV technologies contracted with an outside agency in order to 

perform the analyses [14].  This reinforces the need for smarter systems to increase the 

efficiency of the data interpretation to inform users on what actions to take to improve crop 

productivity.   

The process of developing an autonomous aerial system which could, after several 

iterations of development, be deployed to improve agricultural efficiency was comprised 

of several stages.  First, the requisite tools for UAV development – platform, sensors, and 

development environment – were specified, evaluated, and selected for future 

development.  From this point, work moved to the implementation of these tools to 

demonstrate their application in navigation methods and object perception.  Once this was 

completed, the final stage was the development of machine learning algorithms to interpret 

this data to provide usable information.  These subsystems could then be combined to form 

a single deployable system. 

UAV Tools 

 To utilize autonomous UAV’s in agricultural functions, several interconnected 

technologies will be required.  First and foremost, the operation of the physical UAV will 
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need to be considered during development.  The way in which the UAV can move and the 

operations the motors must undertake to do so will be a deciding factor in how the 

monitoring algorithm would be programmed.  This will be further informed by the 

navigational and data collection sensors which are deployed on the UAV, as these 

subsystems will determine the methods which can be used for navigation as well as the 

requirements to collect data.  Once these systems are determined, the method of 

programming the UAV can be determined; alongside an environment to simulate the UAV 

to allow for more expedient search pattern development. 

Governing Equations 

 The process of navigating with a given quadcopter begins with the equations which 

describe the motion of the system in 3-dimensional space [15].  These equations describe 

how changes to the orientation and position of the system can be generated by the thrust 

from the four rotors; allowing commands to move the quadcopter to be expressed in terms 

of these four actuators.  In the present thesis, the author is not concerned with the 

development of control systems.  However, a brief overview of the dynamic system is 

included for completeness.  These equations can be divided into two basic categories: 

angular and linear motion. 

Angular Motion 

The most fundamental motion for a quadcopter is rotation about its x, y, and z axes.  

This allows the UAV to change the orientation of the rotors, enabling lateral and 

longitudinal motion.  The absolute angular position of the system is described by the vector 

η, listing the angles about the x, y, and z axes in that order.  These define the differences 

in orientation between the absolute axes (motion and forces relative to the world) and the 

body reference frame (motion and forces relative to the body of the UAV).  The 

corresponding velocities relative to the body reference frame are also recorded by the 

vector v. 

  𝜂 = [

𝜑
𝜃
𝜓

]   𝑣 =  [
𝑝
𝑞
𝑟
] 

These three angular positions in η can be used to create the rotational frame between 

these two reference frames. 

𝑅 = [

𝐶𝜓𝐶𝜃 𝐶𝜓𝑆𝜃𝑆𝜑 − 𝑆𝜓𝐶𝜑 𝐶𝜓𝑆𝜃𝐶𝜑 + 𝑆𝜓𝑆𝜑

𝑆𝜓𝐶𝜃 𝑆𝜓𝑆𝜃𝑆𝜑 + 𝐶𝜓𝐶𝜑 𝑆𝜓𝑆𝜃𝐶𝜑 − 𝐶𝜓𝑆𝜑

−𝑆𝜃 𝐶𝜃𝑆𝜑 𝐶𝜃𝐶𝜑

] 

Like all rotational matrices, this can be used to form the transformation matrices 

between the body and absolute frames. 
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𝜂̇ =  𝑊𝜂
−1𝑣, [

𝜑̇

𝜃̇
𝜓̇

] =

[
 
 
 
 
1 𝑇𝜃𝑆𝜑 𝑇𝜃𝐶𝜑

0 𝐶𝜑 −𝑆𝜑

0
𝑆𝜑

𝐶𝜃

𝐶𝜑

𝐶𝜃 ]
 
 
 
 

[
𝑝
𝑞
𝑟
] 

𝑣 = 𝑊𝜂𝜂,̇   [
𝑝
𝑞
𝑟
] = [

1 0 −𝑆𝜃

0 𝐶𝜑 𝐶𝜃𝑆𝜑

0 −𝑆𝜃 𝐶𝜃𝐶𝜑

] [

𝜑̇

𝜃̇
𝜓̇

] 

The angular velocity each rotor i which can be denoted ωi create both an upward 

force fi as well as a torque τi about its axis of rotation.  This can be modelled: 

𝑓𝑖 = 𝑘𝜔𝑖
2,     𝜏𝑖 = 𝑏𝜔𝑖

2 + 𝐼𝑖𝜔 ̇𝑖
2 

In which k, b, and Ii represent the lift coefficient, drag coefficient, and moment of 

inertia respectively.  Together, these rotor forces generate a thrust T in the direction of the 

body frame’s z-axis and torques τφ, τθ, and τψ about their respective axes.  This can be 

written: 

𝑇 = ∑𝑓𝑖

4

𝑖=1

= 𝑘 ∑𝜔𝑖
2

4

𝑖=1

 

𝜏𝐵 = [

𝜏𝜙

𝜏𝜃

𝜏𝜓

] =

[
 
 
 
 
𝑙𝑘(𝜔4

2 − 𝜔2
2)

𝑙𝑘(𝜔3
2 − 𝜔1

2)

∑𝜏𝑖

4

𝑖=1 ]
 
 
 
 

 

Where l is the distance between the rotor and the centroid of the quadcopter. 

Linear Motion 

 Once the orientation of the quadcopter is known, these angles can be used to convert 

the rotor thrusts into the absolute reference frame. This can be combined with the angular 

position vector η into the vector q, which contains all 6 positions in the universal reference 

frame.   

 𝜉 = [
𝑥
𝑦
𝑧
]    𝑞 = [

𝜉
𝜂
]    

 Using the previous rotation matrix, the body and inertial frame equations can be 

related and converted.  In the inertial reference frame, the total force 𝑚𝜉̈ is equal to the 

gravity force G and the total thrust of the rotors RT. 
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𝑚𝜉̈ = 𝐺 + 𝑅𝑇 

[
𝑥̈
𝑦̈
𝑧̈
] = −𝑔 [

0
0
1
] +

𝑇

𝑚
[

𝐶𝜓𝑆𝜃𝐶𝜑 + 𝑆𝜓𝑆𝜑

𝑆𝜓𝑆𝜃𝐶𝜑 − 𝐶𝜓𝑆𝜑

𝐶𝜃𝐶𝜑

] 

 When combined, these equations define the dynamic model of the control system 

for the quadcopter.  By controlling the commands send to the four motors, the rotor 

velocities can be adjusted to affect the desired linear and angular response (fig. 9).   

 

Figure 9: UAV Control System Diagram.  UAV model from: [15] 

Required Sensors for Agriculture 

 In order to enable a quadcopter to navigate autonomously and collect the needed 

information during a mission, several sensors must be integrated into the system.  To begin, 

the UAV must have a method of determining its position, orientation, and the relative 

direction it is moving. A common method for establishing this information, and the one 

utilized during development, is using accelerometers and gyroscopes mounted within the 

quadcopter.  With just these sensors, navigation will be performed relative to the origin 

point of the system, with the sensors being used to calculate changes from this point.  The 

internal gyroscopes will allow the system to measure orientation changes from the starting 

position, usually parallel to the ground.  As described above, this is used to control the 

necessary thrust to keep the UAV aloft and to control the direction of travel.  From the 

accelerometers, it is possible to derive an object’s velocity and relative position from its 

point of origin; enabling navigation using this reference frame.  If the UAV is in an area 

open to the air, GPS signals can be used to align this reference frame with the global 

latitude-longitude system, providing an additional method of specifying movement and 

position.  These two systems can be utilized in conjunction to provide a more accurate 

navigation algorithm; estimating position with the accelerometers and checking with GPS 

readings periodically.  This allows the UAV to continue operating while unable to 



 Page 15 12/9/2019 

 

communicate with satellites, but to navigate more precisely when this information is 

available. 

Vision Sensors  

Once navigation is successfully implemented, the other key system to enable data 

acquisition using a UAV is the onboard vision system.  These sensors can be differentiated 

by the number of “spectral bands” the system captures; values which represent the 

magnitude of the radiation in a specified wavelength.  These sensors range from relatively 

cheap, consumer grade cameras to professional grade cameras with fine control over the 

image.  The simplest sensor which can be used for gathering information is a simple digital 

camera.  Though simple, providing only 3 spectral bands, this information is sufficient for 

some applications with proper filtering systems.  For other applications, more precise 

spectral measurements or systems which can look at wavelengths not read by a digital 

camera may be necessary.  In these cases, a spectrometer can be utilized.   

Spectrometers, specifically multispectral and hyperspectral sensors, capture more 

range bands than are acquired with an RGB camera.  This enables the sensors to be utilized 

in two broad uses.  The first is to capture additional wavelengths than are possible with just 

the RGB ranges of a camera (fig. 10).  This enables the system to consider ranges such as 

the near-infrared (NIR) range, in which reflectance can be correlated to chlorophyll 

content.  Alternatively, these bands can be concentrated in a smaller wavelength range, 

facilitating the differentiation of colors which would appear identical in the wider spectral 

bands.  This functionality can be used to focus the wavelength analysis on the specific 

wavelengths around which the chlorophyll will reflect, allowing slight changes to be 

detected and used to determine the foliage density and chlorophyll content of the crops [9].   

 

Figure 10: IDK Spectral band graph for example spectrometers [9] 

Another significant set of sensors which can be utilized within UAV-based data 

acquisition are thermal sensors.  Unlike previous sensors which use colors of the foliage to 

determine crop health, thermal sensors can be utilized to estimate water stress in regions 
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of a field.  One way in which plants remove heat from themselves is through transpiration, 

the evaporating of water from within the plant, much like how human sweat works.  In 

order for this process to occur, sufficient water must exist within the plant to be evaporated.  

Therefore, plants which are experiencing water stress will have higher foliage 

temperatures, enabling these areas to be located using thermal imaging. 

 

Tools for System Programming and Simulation 

 Using both vision and positioning sensors, it is possible for a UAV to collect 

extensive data whilst coordinating that acquisition with the physical location where it was 

collected.  In order to perform this task, however, functions are needed to pilot the UAV 

along a planned path and to control the acquisition of information during this flight.  To 

eliminate the necessity for a licensed operator to provide this control, the MATLAB and 

ROS platforms were explored to provide this control autonomously.  Within these systems, 

the processes of flight control and image acquisition were implemented using simulated 

environments; eliminating the cost of failed runs and thereby accelerating the pace of 

algorithm development.  Once this implementation was finished, the two systems were 

compared and the tool which would be used for future developments was selected. 

MATLAB and Simulink 

The first system which was utilized for algorithm development was Mathworks’ 

MATLAB and Simulink software.  MATLAB is a text-based system built specifically for 

usage in engineering applications ranging from linear algebra to frequency analysis.  Its 

sister product Simulink is designed to mimic the block diagrams used for control systems, 

being designed for usage in data acquisition, signal processing, and system control 

applications.  Both products come with a wide variety of available add-ons to facilitate the 

program’s usage in specific applications.  In this application, the Aerospace Blockset, 

Simulink 3D simulator, and image processing toolbox were utilized extensively. 

Each of these three toolboxes was instrumental in one of the core requirements for 

the development of the system.  The Aerospace toolbox provided systems to simulate the 

dynamics of an aerial vehicle, allowing both the UAV to internally estimate its position but 

also facilitating motion within the Simulink 3D simulation.  This simulation allows the 

UAV to be flown within software, and facilitates the viewing of this flight, thereby 

enabling the development of control systems.  This includes modelling a realistic 

environment with gravity, air pressure, and collision detection; ensuring the programs 

developed within the simulation are transferable to a physical UAV.  In addition to the 

system dynamics, the simulation allows the views from the UAV to be utilized within the 

Simulink model, modelling the on-board camera and providing data for image analysis 

(fig. 11). 
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Figure 11: Parrot UAV within Simulink 3D 

The final subsystem which is central to this application is the image processing 

toolbox, which facilitates the development of processes to extract information from 

simulated images and video feeds.  These include the location and number of items within 

the image, such as furrows in a field or the location of cows in an example image (fig. 12). 

 

Figure 12: Feature recognition from images using MATLAB for cows (a) and furrows (b) 

World Creation in Simulink 3D 

 Development of a UAV flight algorithm began with the creation of the world in 

which the UAV would operate.  For the project, the original demonstration world was 

modified from a small set of buildings to a large field with high-contrast furrows.  This 

was performed through the Simulink 3D world editor, where the building models were 
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deleted, and the ground was changed to an image of farmland in which the furrows had 

been enhanced through the application of dark lines to the image using Microsoft Paint.  

Finally, the UAV model was positioned within the world to fly over the field capturing 

data.  This setup eliminated unnecessary information from the world and provided a clear 

area in which to begin developing feature detection systems (fig. 13). 

 

Figure 13: World Creation and Deployment in MATLAB 

Flight and Process 

 Once the world and tools were set up, the process of developing algorithms to 

control the UAV, acquire data, and process the data commenced.  The initial objective was 

to create a flight path and program the UAV to follow this path while collecting data.  After 

this functionality was established, work began on developing a system which would take 

the input from the lower camera and detect the furrows the UAV passes over.  Finally, a 

separate algorithm was developed to analyze images of cattle in a field, determining the 

number of cattle within the image while ignoring any fake cattle. 

Olympe and Sphinx 

 Partway through algorithm development, the Parrot minidrone used by the 

MATALB support package was discontinued by the manufacturer.  As one of the goals for 

this project was to pave the way for later students to develop systems to control these 

UAV’s, the process of finding another system to develop these algorithms began.  A new 

drone was selected for the next stage of development which utilized a combination of 

Parrot’s Sphinx and Olympe software.  These systems use python commands to control the 

robot while allowing the system to interface with the Gazebo simulator, a physics simulator 

available on Linux machines.  With these, similar projects were carried out, with the 

potential for future students to continue the development. 
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 Olympe is a python-based system designed to enable the development of control 

algorithms for Parrot UAV’s.  This system permits connecting to these UAV’s, after which 

the critical functions of the UAV: position, orientation, camera movement, and video 

streaming can be controlled programmatically.  Though the Olympe control program can 

be used to control physical UAV through the use of a ground-based control station, the 

system is intended to be used with the Sphinx simulation package.  Sphinx facilitates the 

simulation of Parrot UAV’s within the Gazebo environment, and the visualization of 

system parameters during the run.  This combination allows the user to simulate a Parrot 

UAV within a custom environment which imitates physical interactions such as gravity, 

air movement, and global coordinates (fig. 14). 

 

Figure 14: Diagram of Information Flow within Olympe Implementation 

World Creation in Gazebo 

 World creation within Gazebo is carried out in a modular form; adding different 

pieces to the world until the world has all components which are required.  These pieces 

take the form of models, files which define the three-dimensional objects which are to be 

placed in the world and all the relevant parameters which affect these items.  Such 

parameters can include whether the object can move, if it is affected by environmental 

factors such as wind and gravity, and the texture of the object.  For this project, worlds 

were generated in two ways.  A simple world depicting cows in a field was developed by 

hand by introducing items into the world until all desired features had been included (fig. 

15). Beginning with an empty world, a grass plane was added and then models of cows 

downloaded from 3dwarehouse.sketchup.com were inserted into the world and moved into 

their current positions (fig. 17).   

https://3dwarehouse.sketchup.com/
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Figure 15: Image of World Populated with Cow Models 

 For the model depicting the WKU campus, a different method was used.  Using a 

program called Open Street Viewer, a three-dimensional map was downloaded onto the 

computer.  Here, unnecessary features such as sidewalks, side-streets, and features close to 

the edge of the map (beyond where the UAV was to be operated) were removed.  This 

simplified the world file, enabling the simulation to be operated more smoothly on the 

machine while having minimal impact on the overall results (fig. 17).  What remained after 

this process were models of all buildings on the WKU campus (fig. 16) in their proper 

locations and orientations without them needing to be input manually. 

 

Figure 16: Section of Gazebo World of WKU Campus 
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Figure 17: Diagram of World Creation in Gazebo 

GPS Integration 

 One additional feature the Gazebo worlds implemented as opposed to the Simulink 

3D worlds was the inclusion of the GPS coordinates for the world.  This allowed for an 

additional level of path planning for the simulated UAV, navigation by GPS.  Through the 

use of online maps, the coordinates for WKU were found and utilized, enabling the 

simulation of not just the buildings and layout, but also a potential form of navigation.  In 

addition to the world, the online Sphinx Dashboard provided a map tool which utilized the 

UAV’s simulated position to display the UAV and its flight path in their equivalent real-

world location. 

Flight and Process 

 Once the worlds were generated, the work progressed in two ways; creation of an 

algorithm to detect cows within the simulated world and navigation of the simulated WKU 

campus by GPS.  The beginning for both outcomes was simple navigation using distance 

commands and determining how to control the camera on the UAV.  After determining 

these controls and creating the WKU world, work began on developing a method to move 

to a specified GPS coordinate without the robot timing out.  Soon afterwards, the video 

stream from the onboard UAV camera was analyzed and work began on the best parameters 

to detect the cows.  This culminated in a system which could count the cattle from a 

predetermined height by finding the area of objects detected in the images. 

Tool Selection 

 Once a working program was developed in both the Simulink and Olympe systems, 

the two systems were compared to assess which would be most beneficial to future 

development. The MATLAB implementation was noted to have a more transparent 

implementation of the control system.  All subfunctions within the simulation can be 

opened, permitting the user to view any section of the model and modify the parameters if 

they wish.  Additionally, MATLAB features a window where any variable involved with 

the simulation can be viewed, granting the user in-depth insight into the model of the 

system.  This additionally permits efficient troubleshooting should the system behave in an 
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unexpected manner as by monitoring intermediate variables the location of the error can 

be swiftly determined and corrected.  These benefits, however, came with the significant 

drawback that Mathworks had discontinued support for the Parrot UAV.  Therefore, the 

hardware support package would not be updated for new product releases and no support 

would be given for connecting physical UAV’s to the system, which would limit the range 

of applications for the system. 

 Conversely, the Olympe implementation was developed by Parrot, and planned to 

continue supporting their UAV’s.  Additionally, this system utilized the Gazebo simulation 

environment, a far more robust physics simulator than the Simulink 3D environment used 

by MATLAB.  Though the effects of factors such as wind, air pressure, and gravity could 

be modelled in the MATLAB environment, the user would be required to manually include 

these as inputs to the airframe. In Gazebo on the other hand, these factors could be included 

in the world, and the simulator would account for these forces on any object (such as the 

UAV) which the user defined as being affected by them.  This added functionality comes 

at the expense of additional complexity, as the Sphinx implementation involves multiple 

interacting systems, and errors in one subsystem may be caused by another program, 

increasing the complexity of troubleshooting. 

Table 1: Comparison between MATLAB and Olympe 

 MATLAB Olympe 

Pros 

• Can view all system 

variables 

• All functions within the 

control system and 

dynamic model are 

readily accessible 

• More experience with the 

system 

• More robust simulation 

system (Gazebo) which can 

simulate physical interactions 

• Open source 

• Has active support for the 

hardware 

Cons 

• The supported drone has 

been discontinued 

• Simulink 3D is a 

visualization platform, not 

a physics simulator 

• Error handling occasionally 

lacking 

• Less experience with the 

program in the organization. 

After evaluating the advantages of both implementations, the decision was made to 

continue with the Olympe implementation in future iterations of the project.  The 

discontinuing of the drone utilized by the MATLAB system, though not an insurmountable 

obstacle, would have required extensive work to circumvent.  As one of the primary goals 

of the project was to develop a system which future students could use for development, a 

supported platform was deemed as a critical component which could not be negotiated.   
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Navigation 

 One of the core subsystems which is required for the UAV to operate autonomously 

is the navigation system.  Without this system, the UAV must be controlled by a human 

operator, necessitating an experienced user and thereby limiting the customer base who can 

utilize the system.  With this system however, it might be possible for this system to be 

utilized to increase agricultural productivity across a larger percentage of the farming 

industry.  Two primary methods have been explored to perform this navigation: navigation 

using predefined distances from the UAV’s current location and GPS navigation. 

Navigation by Predetermined Distances 

 The simplest manner of navigating with autonomous systems is by instructing the 

system to move a specific distance and direction from its present location.  Though the 

principle remains the same, this is implemented in different ways between the two systems 

utilized with this navigation method.  Within the Olympe system, this form of navigation 

is performed with the command: 

moveBy(dX, dY, dZ, dPsi) 

which moves the UAV to a location which is distances dX, dY, dZ relative to the UAV’s 

front, right, and bottom respectively.  Additionally, it allows the heading of the UAV to be 

rotated dPsi radians by the time it reaches the specified location.   

 Alternatively, the MATLAB system implemented this control not in the form of 

motion from the UAV’s position at the beginning of the command, but from the initial 

launch point.  Throughout the flight, the UAV determines its current position relative to 

the point it launched from and accepts movement commands in the form of a position 

vector relative to the original starting point (fig. 18).   

 

Figure 18: Signal editor for UAV path planning in MATLAB 



 Page 24 12/9/2019 

 

This carries the benefit that unlike the Olympe version, this control scheme allows 

the user to define waypoints the UAV should visit rather than needing to define a list of 

directional movements.  This is significant as in many remote scouting applications, this is 

how the operator is likely to conceptualize the path, as moving between points in the field 

(fig. 19). 

 

Figure 19: Example UAV path https://bestdroneforthejob.com/drone-buying-guides/agriculture-drone-buyers-guide/ 

While this control scheme is relatively simple, both conceptually and in the sensors 

required to carry out the commands, it comes with a significant disadvantage.  Due to the 

location of the UAV being determined internally from its motion, the UAV has no ability 

to correct itself should the prediction be inaccurate.  This requires the UAV to be placed at 

the exact orientation and position for which it was programmed each time it is run, 

otherwise the positions will be shifted and turned by the offset from the expected value.  

For smaller applications, this might be within acceptable limits, for larger applications 

however, a more precise method might be required. 

GPS Navigation 

 An alternative to determining position internally is to use the Global Positioning 

System (GPS) coordinates to define the waypoint locations.  The process of defining how 

the UAV needs to move would be much like the MATLAB implementation described 

previously, except that the locations would be relative to the Earth as opposed to the UAV’s 

launch point.  This ensures the UAV’s path will not be as significantly influenced by errors 

in location or orientation during placement at the beginning of the mission. 
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What is GPS? 

 The Global Positioning System is a network of satellites which allow a system with 

the proper receiver to determine its location on Earth.  By connecting to these satellites, 

the GPS device will receive transmissions detailing the satellites’ locations and the time 

they sent their transmissions.  Using this information, the device can determine its 

displacement from these known points in space.  After connecting to three or more of these 

satellites, these displacements are sufficient to define a singular location where the device 

must be located as illustrated in figure 20. This location can then be converted into the 

global latitude-longitude system; permitting navigation by this system if periodic updates 

are calculated during operation. 

 

Figure 20: GPS location triangulation https://satmo.co.uk/latest/what-is-gps-tracking/ 

GPS Emulation 

 Within the Gazebo worlds used by the Sphinx and Olympe system to simulate the 

Parrot UAV, a latitude-longitude location can be specified for the center of the world.  

Using this process, navigation by GPS commands can be emulated within the world with 

the command: 

moveTo(latitude, longitude, altitude, orientation_mode, heading) 

which moves the UAV to the specified latitude-longitude location at the given altitude and 

heading.  Initially, this line was sufficient, however it was eventually discovered that there 

was an upper limit to the timespan the UAV could move before the command timed out.  

This would trigger the virtual “ground base” to immediately send the next command to the 

UAV, believing the UAV was unable to execute the movement.  This required additional 

work to keep the UAV moving to the given location without the system believing the UAV 

was unable to complete the task and therefore timing out.  To accomplish this, a loop was 

implemented: 

drone( moveTo(36.985924,-86.455330, 10, 0, 0)).wait() 
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while(drone.get_state(FlyingStateChanged)["state"]is not FlyingStateChanged_State.hovering): 

   drone.get_state(FlyingStateChanged) 

This loop instructs the program to continue checking the state of the UAV until it has 

reached its destination, keeping the system from timing out before the UAV has reached 

its final location.  This allowed later demos, such as the UAV flight from the Center for 

Energy Systems to the Houchen’s Stadium to be completed without the system crashing. 

 

Sphinx Dashboard Map 

 In addition to Gazebo worlds, Sphinx provides another method to simulate the 

motion of the UAV in the world; as well as provide critical information to the user during 

the virtual flight.  By logging onto a system port during the simulation which was specified 

during the launch, a webpage will open, allowing the user to view graphs of system data – 

such as three-dimensional acceleration, velocity, and the UAV’s current battery life.  

Additionally, a map widget can be opened, showing a street map with the UAV’s present 

location marked (fig. 21).  As the UAV moves, its path is drawn behind it.  This facilitated 

GPS navigation development while the WKU campus map was being constructed. 

 

Figure 21: Map of the simulated GPS motion of the UAV in Sphinx 

Chapter 4: Perception 

 The other critical subsystem for UAV sensing applications is the data acquisition 

and interpretation system.  The process of extracting information from images is focused 

around finding patterns within the image which can be interpreted.  Therefore, a key action 

in this process is in developing algorithms to eliminate unnecessary information and 
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interpret the remaining information.  Broadly speaking, there are two methods to 

accomplish this task. Traditional methods which consist of defining rules for the computer 

to impose in the decision-making process and machine learning algorithms which 

determine the rules from pre-existing data. 

What is Perception? 

 According to the Oxford English Dictionary, perception is “the ability to see, hear, 

or become aware of something through the senses.”  The ability for a system to receive 

information from its environment is only the first part of this process.  After receiving the 

information, the system must be able to interpret the signals such that it can understand 

what was detected.  The human brain is optimized for this process, being able to distinguish 

between a variety of objects without regard for orientation.  For machines, however, the 

issue of perception is far from trivial; requiring extensive rules to be defined to perform 

the simplest of classification problems. 

 One of the first instances of machine perception was the robot Shakey developed 

by Stanford professor Charles Rosen.  This system utilized a rule-based algorithm to 

interpret information obtained from its camera; permitting it to operate within a simple 

environment.  Every image the robot sees is processed, simplifying the image into basic 

shapes, after which the resulting, simplified, image is classified using a set of rules 

determined by the designer before operation.  While this rule-based system permits the 

efficient functioning of a real-time detection system, slight changes to the input conditions 

can result in incorrect classifications.  One method of alleviating these rule-based detection 

issues is through the use of machine learning algorithms for feature detection.  By training 

the network on images in all orientations and conditions, the system can attain a more 

general ruleset for object classification. 

 Two approaches were implemented to detect objects within a captured image.  First, 

systems utilizing traditional, rule-based methods were implemented for both furrow and 

cattle detection and counting. These algorithms utilized a series of filters and intensity 

threshold functions to separate the desired objects from the background; enabling the 

detection of these objects. Additionally, machine learning techniques were implemented 

for image classification and cattle detection.  These systems utilized a set of images to 

develop a set of parameters which could be used to classify images, permitting more 

complex classification systems to be developed, permitting these system to correctly 

operate on images with higher variability than traditional methods. 

Image Processing 

 Traditional image processing methods consist of the programmer determining rules 

which can be used for analyzing the image and then writing a system to apply them.  Such 

techniques include applying filters to the image to highlight specific features – such as 

vertical lines or edges between contrasting colors – and developing new images focused 
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on a single quality – such as the brightness of the pixels. Assuming well defined rules can 

be determined for this process, these methods can be applied to a variety of applications.  

In this project, these processes were applied to the detection of furrows between stands of 

crops and cattle in simulated fields. 

 Two programs were employed to perform image processing throughout this project.  

Within the MATLAB UAV algorithm, the Image Processing Toolbox was utilized to 

perform filtering, thresholding, and image transformation processes to detect features 

within the images.  For the Olympe implementation, the OpenCV (Open Computer Vision) 

program was used.  This is an open-source image processing system developed for use with 

computer vision and machine learning systems which includes algorithms for image 

preprocessing and object detection.  Both performed comparably during testing, with the 

selection of the Olympe system for UAV development, however, it was decided to continue 

with image processing development using the OpenCV system due to it being an open-

source program; making it more accessible to other students. 

Furrow Detection and Counting 

 To assist with crop irrigation, furrows are often utilized within farmland.  These 

channels between crop rows assist with guiding the flow of water through the field, as well 

as for flow control on sloped land.  Due to the size of these features – in addition to their 

stark contrast with the crop rows – furrows were selected for the development of an initial 

feature detection and counting system within MATLAB.  While the primary purpose of 

this application was to demonstrate the feature recognition process; practical applications 

for this information exist as well.  After locating and counting furrows, this information 

could be matched with data on water stress within the crops to determine if the density and 

direction of the furrows are impacting crop growth.  From this, decisions can be made on 

field management from this knowledge on water flow and saturation.  For example, if the 

plants in one section of a field are water stressed, while another section downhill along the 

furrows is water-logged, it might indicate run-off is a significant problem.  This could 

influence how treatment is applied to these sections of the field, and if severe enough, 

might suggest a change is needed to improve water flow within the field. 

 
Figure 22: Diagram of furrows within a field , http://www.fao.org/3/S8684E/s8684e04.htm 
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Within the MATLAB simulation, this process is executed by the UAV as it flies 

over the simulated farmland.  As the UAV traverses the field, furrows between stands of 

crops can be detected by searching for areas which form straight lines across the image.  

The methodology to detect these lines is through the application of a high-pass filter. This 

will result in an output image in which areas of dramatic change between pixels will be 

shown clearly while areas of gradual change will not appear.  This filter was implemented 

through the process of 2-dimensional convolution between the image taken from the UAV 

and the filter matrix:  

𝑓𝑖𝑙𝑡𝑒𝑟 =  [
1 1 1
0 0 0
1 1 1

] 

This process is accomplished through applying the convolutional filter matrix to sections 

of the input matrix and performing a two-step operation within the bounds of the input 

matrix.  First, elementwise multiplication is performed over the relevant locations within 

the input matrix and the filter followed by summing the results of this multiplication.  This 

value is then placed into the appropriate location of the output matrix and the process 

repeats for a new section of the input (fig. 22). 

 

Figure 23: Example of convolutional filter, https://insuranalytics.ai/general/different-kinds-convolutional-filters/ 

By utilizing this filter, vertical lines within the image are emphasized; the direction the 

furrows will be oriented within the video stream when the UAV is flying perpendicular to 

them.  This permits more focused algorithms to be developed for feature detection.  After 

using this filter, the image was gray-scaled and had its contrast enhanced, highlighting the 

detected rows.  The center columns of this image were then analyzed, with the average 

value of the area being taken.  If the average was beyond a certain threshold, it could be 

assumed the UAV had passed over a furrow, which was subsequently counted (fig. 23).  

The total values for each pass were recorded and their median taken to produce an estimate 

of the final number of rows the UAV surveyed. The explored tools included libraries to 

perform these operations behind the scenes; freeing users to focus on tuning filters to solve 

detection problems rather than implementing matrix multiplication. 
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Figure 24: Diagram of Furrow Detection in MATLAB 

Bovine Inventory System 

Within both the MATLAB and OpenCV systems, processes for determining the 

number of cows contained in a simulated field were implemented.  Both utilized a method 

of comparing the pixels of a gray-scaled image against a threshold to differentiate between 

areas which contained cows and those which did not.  Once these regions were generated, 

a second algorithm calculated the properties of these regions: centers, areas, and circularity.  

This enabled the regions to be categorized as to whether they met the standards which 

identified the area as a cow. 

Threshold Math 

Thresholding describes a group of algorithms which compare pixel magnitudes 

with a given value and then change the pixel’s magnitude depending on its relationship to 

that value.  For the Bovine Inventory Algorithms, the method used is referred to as a 

Threshold Binary method (fig. 24).  As shown below, if the magnitude of a pixels is above 

the given threshold, the system sets that pixel to the maximum value whereas all pixels 

below are set to 0. 
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Figure 25: Example of Binary Thresholding https://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html 

This method produces an image whose only features are the locations of regions 

above the threshold.  To eliminate every region except for the cows within the image, filters 

were applied to remove noise.  For the MATLAB system, the filtering occurs after the 

thresholding. The filter fills in regions with areas below a certain value, removing 

extraneous details and leaving only the regions representing cows in the final image (fig. 

25).   

 

Figure 26: Filtering of binary image in MATLAB 

The OpenCV algorithm is instead filtered ahead of time; blurring all items within 

the image and leaving only the cows as recognizable objects (fig. 26).  Therefore, when the 

image has thresholds applied, only the cows remain visible. 

threshold 
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Figure 27: Binary threshold of filtered image in OpenCV 

Blob Detection 

After the image has had a threshold applied and been filtered, the system begins the 

process of detecting blobs within the image.  Blob detection is the process of finding areas 

of the image, in these cases white pixels, which are connected into a contiguous region.  

These shapes can then be screened by a variety of factors (fig. 27) such as area, circularity 

(how close the shape is to being a circle), and inertia (the ratio between the minor and major 

axes).   

 

Figure 28: Examples of blob parameters https://www.learnopencv.com/blob-detection-using-opencv-python-c/ 

After repeated trials with changing the blob detection parameters, the correct set of 

rules can be determined which allows the system to correctly locate and count the number 

of cows in the image.  In both the OpenCV and the MATLAB implementations (fig. 28) 

the system can correctly identify the realistic cows within the image while ignoring the 

fake cow. 

Very fake cow 
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Figure 29: Diagram of Blob Detection Methods in OpenCV and MATLAB 

Within the Olympe implementation, this functionality was extending to performing 

real-time object detection during simulated fights.  During the flight, the video stream from 

the UAV was routed to the OpenCV analysis script before being displayed.  This permitted 

the system to perform the previously detailed processing functions – such as applying 

filters, thresholding operations, and blob detection – as the UAV was flying.  This 

processed data was then displayed onscreen to the user, indicating the locations of cows 

within the frame.  In a production system, on the other hand, this could be utilized to 

determine if another function should be performed – spraying crops, incrementing an 

animal inventory count, or applying pesticides for instance. 

This success, however, is limited.  The rules to detect these objects are specific to 

the images they have been designed for; any change to the situation would result in 

unsuccessful results.  If during the in-flight detection system, for example, the height of 

the UAV was to change or either the cows or background were to be a different color, the 

system might not produce accurate results.  For this reason, a more robust method would 

be required in an actual application, leading to the decision to investigate machine learning 

algorithms. 

Machine Learning 

 In order to remove the necessity for a user to determine the appropriate parameters 

for each image taken by a UAV; development began on a machine learning algorithm to 

perform this detection.  Unlike previously discussed method of identifying objects in an 

image, the system is not given a set of properties to filter by and functions to perform in 

order to detect objects within an image.  Instead, the machine determines these features 

itself from a series of training images with the appropriate classifications given.  This 

method was utilized through multiple stages of development to create a system able to 

Very fake cow 
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differentiate between bovines and other objects; eventually culminating in a system which 

could differentiate between images of cattle, cars, and airplanes. 

Fundamentals 

 The core objective of a machine learning algorithm is for the computer to discern 

underlying patterns within a set of data; thereby allowing it to correctly interpret future, 

similar, data.  This process is motivated by two core reasons.  Once the algorithm’s 

structure and set of underlying data classification rules, the model, have been developed, 

the finished product can be deployed as-built on other machines for similar applications 

with comparably less time and cost.  Additionally, this method can discern patterns within 

data which might be tedious, conceptually complex or computationally intensive to 

implement in a traditional manner.   

 Within machine learning algorithms, there are a variety of common methods which 

can be leveraged to develop these models; including clustering, Bayesian models, decision 

trees, and artificial neural networks [3].  Within the scope of this project, the development 

was focused on the use of neural networks.  These systems are designed to mimic the 

behavior of a brain; with an architecture made of layers of “neurons”, called nodes, each 

of which sends a signal to the next layer based on a function of its inputs.  Within a neural 

network, these layers fit into three broad categories: the input layer which feeds the initial 

data into the network, the output layer which gives the result determined by the network, 

and any number of hidden layers which perform operations on the data (fig. 29). 

 

Figure 30: Example of a Simple Neural Network [16] 

The size and number of these layers depend on the application for which the system has 

been developed, ranging from a single layer in some simpler applications to several layers 

for more complex operations.  For input and output layers, the requirements are well 

defined according to the application.  Input layers are required to have a number of nodes 

equal to the datapoints which will be entered for analysis (e.g. the number of pixels in an 

image) while the output nodes must be equivalent to the number of labels into which the 

data is being classified.  
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For the implementation of the machine learning algorithm, a more complex form 

of neural network, the convolutional neural network (CNN), was utilized. In addition to 

the layers described previously, CNN’s utilize additional functions to assist in processing 

the data prior to analysis.  The first of these functions is the titular convolution, which 

applies a filtering matrix to the input by performing element-wise multiplication to a 

section of the input matrix and summing the results into one element of an output matrix.  

This function transforms the input matrix into a smaller matrix, lowering the amount of 

required input nodes, and thereby the complexity of the required model.   

After the convolution function is applied to the data, the result processed through 

the second function, a pooling layer.  This function analyzes a section of the input matrix 

and outputs a value based upon the inspected area into the output matrix.  In the application 

developed for this project, a maximum pooling algorithm was utilized, outputting the 

maximum of the analyzed region (fig. 30).  This combination of functions, convolution and 

max-pooling, serves to reduce the number of weights which must be fitted to the data, while 

preserving the key features of the data, permitting classification of a variety of data with 

reasonable accuracy. 

 

Figure 31: Maximum Pooling Example, https://computersciencewiki.org/index.php/Max-pooling_/_Pooling  

 

These additional processes in CNN’s result in increased performance compared to 

other neural networks.  While non-convolutional neural networks experience a 

performance ceiling after they have been trained on a certain amount of data, for CNN’s 

this value is much higher; permitting better performance to be constructed from the wealth 

of data available today.  For this reason, this project will focus on CNN’s. 

 

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
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Figure 32:Performance graph of deep learning versus other learning algorithms, 

https://machinelearningmastery.com/what-is-deep-learning/ 

Operation of Machine Learning System 

This system was implemented through the program Tensorflow with a Keras front 

end.  Tensorflow is a neural network development system created by Google which 

consists of a set of   functions, libraries, and resources enabling the construction of neural 

networks.  Through these functions, the process of setting up the neural network is 

accelerated as the system can define neurons programmatically using inputs from the user 

about layers which need to be created.   This permits the system to be developed at the 

layer level, drastically improving the speed at which these programs can be developed.  

Additionally, these functions were accessed through the Keras API, a high-level interface 

which further simplifies the design by using common parameter settings.  Tensorflow is an 

adaptable interface, within which custom activation functions and complex systems 

distributed across multiple processors can be developed. The Keras API removes this 

complexity using common design parameters, lowering the skill floor required to develop 

these systems. Though this removed some of the customizability of the system, the time 

required to build the network was lowered to a manageable level, allowing development to 

move into the training phase. 

Training of the neural network is performed using large, labelled, datasets which 

are fed to the network and classified (fig. 31).  After each classification is performed, the 

result is compared to the correct label, and the weights within the network are changed 

according to the success of the system. Once all training data has been analyzed, a second, 

smaller set of data is utilized to test the success of the system at categorizing novel data.  

This process is carried out iteratively until the system has completed a specified number of 

training periods or has achieved a desired accuracy.  The selection of this desired number 

of iterations or target accuracy is crucial to maintain a balance between accuracy and 

generalized results.  If the system is not trained long enough, the system will be underfitted 

and the results may not be at the accuracy level required by the application it has been 

designed for.  Alternatively, if the system is trained for too long the training can result in 

overfitting.  In this case the model achieves incredible accuracy in predicting the training 
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set, at the cost of noticeably lower accuracy for data outside this training set.  Since in the 

majority of applications the system is intended to be used on novel data, overfitting is 

generally undesirable. 

 

Figure 33: Image Classification with Convolutional Neural Network 

Binary Detection 

 The process of developing an image classifying neural network began with the 

exploration of existing demonstrations and systems.  The first explored were Tensorflow 

demonstrations and tutorials created by Google, the owners of the system.  These 

demonstrations provided a platform to learn about the process of training a neural network, 

how increased training cycles increase the accuracy of the system, and the system behavior 

of an overfitted model.  In the Google tutorials, however, the model creation and utilized 

dataset were pre-generated by the software architects; ensuring the tutorials functioned but 

providing little to no experience in designing a working model or dataset.  For this, another 

demonstration was found on www.geeksforgeeks.org/python-image-classification-using-

keras/ which ran on the local machine and permitted the user to explore the model 

architecture and structure of the dataset.  Using this, experience was obtained in designing 

the system and reshaping data to be evaluated by the system (e.g. resizing images to the 

expected dimensions).  

Real and Fake Bovine Classifier 

 From this experience, the first classification system to be implemented was a 

system to distinguish between images of real and fake bovines.  For this application, 115 

images of cattle models, both realistic models and clearly unrealistic models, were 

collected from 3dwarehouse.com, a repository for three-dimensional simulation models. 

For each of these objects, images were captured of the object from various orientations.  

Images of these models were chosen for testing in lieu of images of actual cows in the 

interest of creating a network which could be applied to the simulated UAV flights to 

classify models detected by the UAV’s camera.  Once collected, the images were 

http://www.geeksforgeeks.org/python-image-classification-using-keras/
http://www.geeksforgeeks.org/python-image-classification-using-keras/


 Page 38 12/9/2019 

 

categorized into “real” and “fake” training subsets and a percentage of the images were 

separated to be used for validation (fig. 32).  

 

Figure 34: Image Storage Hierarchy 

From here, training commenced on the dataset and the results were analyzed 

through multiple training operation with increasing numbers of training periods.  

Throughout the process, the system was unable to correctly identify the training images 

when requested (fig. 33), even when the training indicated accuracies in excess of 98%.  

After reconsidering the conditions of the dataset, it was concluded that the subsets of data 

were too similar, leaving the system unable to derive a clear set of rules to distinguish 

between the data subsets.   

 

Figure 35: Example of Incorrectly Labelled Images 
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Bovine Image Detector 

In order to provide the system with a set of categories which were clearly 

differentiable, the “real” and “fake” cattle images were combined into a single set of images 

and placed into the dataset from the www.geeksforgeeks.org CNN demo.  As before, 

training was performed using the created dataset with the intention that the machine could 

distinguish between the three categories of images.  After training, the system was 

unsuccessful at image classification in both training – achieving only 35% accuracy – and 

in manual tests (fig. 34).  Upon inspection of the network, it was determined that the output 

layer of the system was a single node with a binary output. Therefore, the system could 

only determine if an image belonged to the first class of images within the dataset, allowing 

it to function for a two-class problem, but not for three.  To avoid this issue and verify the 

bovine dataset was sufficient for training, the subset of data featuring planes was removed 

and the model was re-trained to distinguish automobiles from cows.  In this 

implementation, the system was able to perform the classification successfully (fig. 35).  

 

Figure 36: Incorrectly Labelled Images from Initial Binary Classification 

  

 

Figure 37: Correctly Classified Images from Binary Network 

Multi-output classification 

After confirming the system could successfully distinguish between bovines and 

automobiles, the CNN was changed to accommodate multiple categories.  This entailed 

changing the output layer of the network to having three nodes, one for each category, and 

http://www.geeksforgeeks.org/
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changing the function in the final layer from a sigmoid activation function (binary output) 

to a softmax function (fig. 36).  This generates a decimal probability for each class 

proportional to the value of the node, then sends the number of the node with the highest 

probability as an output. This allows the system to distinguish between multiple classes, 

permitting the plane subset to be included before the network was trained and tested. 

 

Figure 38: Change in the Architecture to Facilitate Multiple Classifications 

 

Figure 39: Correctly Classified Images from Multi-Category Classifier 

After training, the accuracy of the system was confirmed; reaching 98% during 

training.   To fully affirm the accuracy of the network, truly novel images were given to 

the network to classify, and similar accuracy was observed (fig. 37).   

Functional Diagram for Full System Integration 

 Once all these systems were developed, they could be combined to form a single, 

composite, system capable of scouting over a field, and locating a desired feature (e.g. 

cattle, areas needing irrigation, etc.) within the images captured (fig. 38). The system would 

then perform some operation should the feature be detected (e.g. inventory of the cattle, 

designating that the area required water, etc.) performing no operation should the feature 

not be detected.  The operation begins by training the neural network to distinguish between 
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images containing these features and those which do not.  This process would be carried 

out iteratively, repeated as more images are gathered to increase the accuracy of the 

detection algorithm.  Simultaneously, the mission would be defined, specifying the area 

the UAV would traverse, the data it would be required to collect, and if any operation 

should be carried out should a specified feature be identified within the data.  These 

parameters would then serve as the guidelines for constructing the path the UAV will 

traverse and what hardware (sensors, additional storage or processors, chemical 

applicators, etc.) will be required by the system. Once this system has been developed, it 

can be deployed on the UAV. 

 

Figure 40: Block Diagram Representation of the mission execution process. 

 With the system deployed, the UAV will proceed to carry out its mission.  This 

entails the operation of two parallel processes, the flight of the UAV over the field, and the 

acquisition of data.  As the UAV traverses the field, the onboard sensors collect data about 

the UAV’s location and the conditions of the section of field over which the UAV is 

located.  This allows the UAV to accurately follow the path defined for the mission, 

ensuring the collected field data is referenced to the proper location or treatments are 

applied in the correct regions.  Throughout this flight, limited processing of the data can be 

carried out to select between operations to perform, including counting features within the 

field or applying a treatment to a section of field.  Once the flight is completed, further, 

more intensive, processing can be performed on the collected data; using processes which 

are not feasible for real-time analysis (e.g. resource intensive operations which require 

more time, processing power, or on-hand data than is available during operation).  This 

analysis can then be used to refine the neural networks and guide the definition of future 

missions. 

Future Work 

From this work, future development can continue through several avenues.  To 

begin, the current machine learning algorithm will be further refined to improve the 

performance of its current functions and add new functions to the system.  The projected 



 Page 42 12/9/2019 

 

next development for this system is a process to implement the detection, locating, and 

summation of objects detected using the current algorithms.  As with the system using 

traditional image processing, this would enable inventory and feature detection systems 

using the image of a field.  The system could then be expanded with improved data to 

provide more detailed information of the detected objects.  For instance, the bovine 

detection system could be adapted to provide information on the breeds of cows or if any 

of them were showing signs of poor health.  Though this function would require more data 

than is presently available to the system to differentiate between similar objects; the benefit 

to the user would be greatly increased.  With sufficient information, a combination of these 

systems could be generated, permitting the location, number, and status of a herd of cattle 

to be evaluated. 

In addition to further development in the classification algorithm, the system will 

be implemented on a physical UAV.  Due to the existing models within simulation, the 

current algorithms can be transferred with only minor changes to account for variation in 

the physical motors.  Implementing the system on a physical UAV will confirm its 

functionality and allow the system to be tested under real flight conditions.  As the system 

matures, it can be applied to an increasing number of operations, potentially through 

cooperative projects with other departments.  A functional classification system and aerial 

platform could be utilized for an array of potential projects, enabling the work to be 

efficiently utilized through its multi-faceted application. 

The penultimate goal, however, is to create a smart agriculture system which can 

increase the productivity of arable land.  Ideally, this system could be utilized to provide 

value to the state of Kentucky.  Though agriculture comprises only a small percentage of 

the state gross domestic product (GDP) – 1.1% according to a 2018 study by the University 

of Kentucky – it is critical to local and regional economies [17].  For this reason, an increase 

in the efficiency of production would be beneficial both to local and broader markets.  

Conclusion 

Through the use of UAV’s and related technologies in the processes of crop 

monitoring, data analysis, and crop management; the agricultural process can be made 

more efficient.  By continually monitoring crops with UAV mounted cameras and 

spectrometers, problems such as weeds, pests, and nutrient stress on the plants can be 

observed, located, and treatment prescribed.  These treatments can then be carried out by 

the same UAV’s which performed the scouting, applying herbicides, pesticides, and 

fertilizers in the specific area of the detected issue; reducing resource usage and 

environmental impact.  The effects of these treatments can then be monitored to gauge 

whether treatments should continue, new treatments prescribed, or if the issue has been 

resolved.  This data can then be applied to make such treatments more efficient in the 

future, allowing the output from a single field to be increased while the resources required 

to implement this increase in production decrease, or at minimum, experience a slower rate 

of increase.  
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To this end, evaluation of tools which could be used develop a system to perform 

these functions proceeded in three sectors.  Initially, the potential use of MATLAB and 

Olympe for development of the navigation subsystem was explored using UAV models 

within simulated environments.  These simulations were then expanded to facilitate the use 

of image analysis with collected images.  For this application, the MATLAB Image 

Processing Toolbox and OpenCV programs were evaluated for their ability to implement 

feature detection.  To further increase the feature detection potential of these systems, 

machine learning algorithms were developed with Keras and Tensorflow.  This facilitated 

the classification of items within an image set into both 2 and 3 categories.  From this 

analysis, the Olympe system using OpenCV and Tensorflow for image processing and 

feature detection was selected for use in the development of future autonomous agricultural 

solutions. 

These systems stand to be a potential revolution in agriculture, with an impact much 

like the Industrial Revolution.  A 2013 study predicted “Every year that [UAV] integration 

is delayed, the United States loses more than $10 billion in potential economic impact.” 

[18] Those willing to implement this technology, and improve upon it, could potentially 

increase their efficiency and output, potentially overtaking competitors who do not.  As 

there are significant initial costs in implementing these systems, and management 

techniques increase in efficiency as more data is gathered on the field, the barrier to be 

competitive will only grow.  An economic report published by the University of Kentucky 

stated, “The family farm has become a quaint ghost of Kentucky’s past…. roughly one-

third as many farms exist today as there were in 1950, while the average size of Kentucky’s 

farms has doubled.” [17] At the same time, the employment in farm work has dropped from 

11 to 4 percent [17].  If we assume this is the common trend, successful farms today are 

large, industrialized operations, so to the farms in the future might be smart, automated 

ones.  In order to remain competitive, this change needs to be embraced. 
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Appendix I: Software Utilized within Development 
 

Mathworks Products 
MATLAB   Version 9.6 

Simulink   Version 9.3 

Aerospace Blockset  Version 4.1 

Aerospace Toolbox  Version 3.1 

Simulink 3D Animation Version 8.2 

Image Processing Toolbox Version 10.4 

Control System Toolbox Version 10.6 

Signal Processing Toolbox Version 8.2 

Optimization Toolbox  Version 8.3 

 

Ubuntu System 
Python 3 

Gazebo 3 

Olympe 

Sphinx 

OpenCV 

Keras 

Tensorflow 
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Appendix II: Select Code Utilized within the Project 
 

Drone Movement 

 
 

Cow Detection from Images 
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Machine Training 
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Machine Learning Classification 

 
 

MATLAB UAV Control Model 
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MATLAB Bovine Detection 
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