22 research outputs found

    A Framework for MPLS in Transport Networks

    Full text link

    An Overview of Operations, Administration, and Maintenance (OAM) Tools

    Full text link

    Performance evaluation of HIP-based network security solutions

    Get PDF
    Abstract. Host Identity Protocol (HIP) is a networking technology that systematically separates the identifier and locator roles of IP addresses and introduces a Host Identity (HI) name space based on a public key security infrastructure. This modification offers a series of benefits such as mobility, multi-homing, end-to-end security, signaling, control/data plane separation, firewall security, e.t.c. Although HIP has not yet been sufficiently applied in mainstream communication networks, industry experts foresee its potential as an integral part of next generation networks. HIP can be used in various HIP-aware applications as well as in traditional IP-address-based applications and networking technologies, taking middle boxes into account. One of such applications is in Virtual Private LAN Service (VPLS), VPLS is a widely used method of providing Ethernet-based Virtual Private Network that supports the connection of geographically separated sites into a single bridged domain over an IP/MPLS network. The popularity of VPLS among commercial and defense organizations underscores the need for robust security features to protect both data and control information. After investigating the different approaches to HIP, a real world testbed is implemented. Two experiment scenarios were evaluated, one is performed on two open source Linux-based HIP implementations (HIPL and OpenHIP) and the other on two sets of enterprise equipment from two different companies (Tempered Networks and Byres Security). To account for a heterogeneous mix of network types, the Open source HIP implementations were evaluated on different network environments, namely Local Area Network (LAN), Wireless LAN (WLAN), and Wide Area Network (WAN). Each scenario is tested and evaluated for performance in terms of throughput, latency, and jitter. The measurement results confirmed the assumption that no single solution is optimal in all considered aspects and scenarios. For instance, in the open source implementations, the performance penalty of security on TCP throughput for WLAN scenario is less in HIPL than in OpenHIP, while for WAN scenario the reverse is the case. A similar outcome is observed for the UDP throughput. However, on latency, HIPL showed lower latency for all three network test scenarios. For the legacy equipment experiment, the penalty of security on TCP throughput is about 19% compared with the non-secure scenario while latency is increased by about 87%. This work therefore provides viable information for researchers and decision makers on the optimal solution to securing their VPNs based on the application scenarios and the potential performance penalties that come with each approach.HIP-pohjaisten tietoliikenneverkkojen turvallisuusratkaisujen suorituskyvyn arviointi. Tiivistelmä. Koneen identiteettiprotokolla (HIP, Host Identity Protocol) on tietoliikenneverkkoteknologia, joka käyttää erillistä kerrosta kuljetusprotokollan ja Internet-protokollan (IP) välissä TCP/IP-protokollapinossa. HIP erottaa systemaattisesti IP-osoitteen verkko- ja laite-osat, sekä käyttää koneen identiteetti (HI) -osaa perustuen julkisen avainnuksen turvallisuusrakenteeseen. Tämän hyötyjä ovat esimerkiksi mobiliteetti, moniliittyminen, päästä päähän (end-to-end) turvallisuus, kontrolli-informaation ja datan erottelu, kohtaaminen, osoitteenmuutos sekä palomuurin turvallisuus. Teollisuudessa HIP-protokolla nähdään osana seuraavan sukupolven tietoliikenneverkkoja, vaikka se ei vielä olekaan yleistynyt laajaan kaupalliseen käyttöön. HIP–protokollaa voidaan käyttää paitsi erilaisissa HIP-tietoisissa, myös perinteisissä IP-osoitteeseen perustuvissa sovelluksissa ja verkkoteknologioissa. Eräs tällainen sovellus on virtuaalinen LAN-erillisverkko (VPLS), joka on laajasti käytössä oleva menetelmä Ethernet-pohjaisen, erillisten yksikköjen ja yhden sillan välistä yhteyttä tukevan, virtuaalisen erillisverkon luomiseen IP/MPLS-verkon yli. VPLS:n yleisyys sekä kaupallisissa- että puolustusorganisaatioissa korostaa vastustuskykyisten turvallisuusominaisuuksien tarpeellisuutta tiedon ja kontrolliinformaation suojauksessa. Tässä työssä tutkitaan aluksi HIP-protokollan erilaisia lähestymistapoja. Teoreettisen tarkastelun jälkeen käytännön testejä suoritetaan itse rakennetulla testipenkillä. Tarkasteltavat skenaariot ovat verrata Linux-pohjaisia avoimen lähdekoodin HIP-implementaatioita (HIPL ja OpenHIP) sekä verrata kahden eri valmistajan laitteita (Tempered Networks ja Byres Security). HIP-implementaatiot arvioidaan eri verkkoympäristöissä, jota ovat LAN, WLAN sekä WAN. Kaikki testatut tapaukset arvioidaan tiedonsiirtonopeuden, sen vaihtelun (jitter) sekä latenssin perusteella. Mittaustulokset osoittavat, että sama ratkaisu ei ole optimaalinen kaikissa tarkastelluissa tapauksissa. Esimerkiksi WLAN-verkkoa käytettäessä turvallisuuden aiheuttama häviö tiedonsiirtonopeudessa on HIPL:n tapauksessa OpenHIP:iä pirnempi, kun taas WAN-verkon tapauksessa tilanne on toisinpäin. Samanlaista käyttäytymistä havaitaan myös UDP-tiedonsiirtonopeudessa. HIPL antaa kuitenkin pienimmän latenssin kaikissa testiskenaarioissa. Eri valmistajien laitteita vertailtaessa huomataan, että TCP-tiedonsiirtonopeus huononee 19 ja latenssi 87 prosenttia verrattuna tapaukseen, jossa turvallisuusratkaisua ei käytetä. Näin ollen tämän työn tuottama tärkeä tieto voi auttaa alan toimijoita optimaalisen verkkoturvallisuusratkaisun löytämisessä VPN-pohjaisiin sovelluksiin

    Planning tools for MPLS networks

    Get PDF
    Verkot, joissa MPLS-tekniikkaa (Multi Protocol Label Switching) käytetään pakettien reitittämiseen, kasvavat jatkuvasti yhä suuremmiksi ja toiminnallisuus, jota verkoissa tarvitaan, monipuolistuu koko ajan. Tämän syyn vuoksi verkon suunnittelija tarvitsee yhä parempia apuvälineitä, jotta suunnittelu olisi onnistunutta, optimaalista ja tuottaisi halutun tuloksen. Tämän diplomityön tarkoitus on selvittää tärkeimmät toiminnallisuudet ja ominaisuudet, joita MPLS-verkkojen suunnitteluun laadittu työkalu vaatii. Diplomityö on jaettu kolmeen osaan. Ensimmäisessä osassa valotetaan MPLS-verkkojen käyttämää tekniikkaa. Tuossa osiossa käydään läpi tekniikat ja protokollat, joita MPLS-verkot käyttävät erinäisiin tehtäviin. Ensin käydään läpi yleisesti miksi MPLS-tekniikkaa ylipäätään tarvitaan ja miksi sitä käytetään verkkojen reitittämiseen. Tämän jälkeen tarkastellaan MPLS-protokollan otsikkokenttää ja sen osien käyttötarkoitukset selitetään. Sitten tarkastellaan MPLS-verkon rakennetta ja siihen kuuluvia laitteita. Seuraavaksi siirrytään osioon, joka selvittää kaikki yleisesti MPLS-polkujen rakentamiseen käytettävät protokollat ja miten ne eroavat toisistaan. Tämän jälkeen kerrotaan MPLS-vuonohjauksesta Differentiated Services-tekniikan avulla ja siitä miten se auttaa erilaisten liikenneluokkien erittelyssä MPLS-liikenteessä. Viimeinen kohta tässä osassa listaa erilaiset VPN-yhteydet, jotka ovat mahdollisia MPLS-tekniikkaa käytettäessä. Osio selventää näiden tekniikoiden eroavaisuudet ja mahdollisuudet, joita nämä MPLS-tekniikan avulla toteutettavat VPN-yhteydet suovat verrattuna aiempiin VPN-toteutuksiin. Toinen osa tässä diplomityössä kertoo verkon suunnittelusta. Ensin käydään läpi verkon suunnittelua yleisellä tasolla. Tämä osa sisältää verkon suunnittelun eri vaiheet pääosittain: erilaiset ennustusmallit esitellään ja selvitetään mitoituksen ja vuonohjauksen rooli verkkosuunnittelussa. Näiden jälkeen siirrytään yleisestä verkonsunnittelusta osioihin, joita käytetään MPLS-verkon suunnittelussa ja joiden yleisesti oletetaan tai halutaan löytyvän MPLS-verkkoihin tarkoitetusta suunnittelutyökalusta. Viimeinen kohta kertoo toiminnallisuus- ja skaalautuvuushaasteista, joihin MPLS:n on tekniikkana vastattava nykypäivänä. Kolmannessa osiossa tarkastellaan kahta eri suunnittelutyökalua, jotka on laadittu MPLS-verkkojen suunnitelua varten: WANDL-yhtiön julkaisemaa IP/MPLSView:ta ja Aria Networks Oy:n julkaisemaa iVNT:ta. Tässä osiossa käydään läpi näiden työkalujen toiminnallisuutta kertomalla erilaisista simulaatiomahdollisuuksista, joita kumpikin työkalu tarjoaa. Lisäksi kerrotaan mitä toimintoja ja protokollia näihin työkaluihin on mallinnettu, miten hyvin työkalut skaalautuvat kaupallisten MPLS-verkkojen tarpeisiin ja minkälaisita moduuleista työkalut on rakennettu. Työn lopussa on pohdittu näiden kolmen osion perusteella, että mitkä ominaisuudet tulisi ottaa huomioon MPLS-verkon suunnittelutyökalua laadittaessa ja millä tavalla nämä ominaisuudet tulisi toteuttaa työkalussa. Näiden jälkeen on työhön vielä tehty loppuyhteenveto, joka kertoo työ tuloksista ja mahdollisista jatkokehitysmahdollisuuksista. MPLS-verkon suunnittelu koostuu monesta eri vaiheesta, ja jokainen vaihe sisältää suuren määrän toiminnallisuusvaatimuksia. Nämä toiminnallisuusvaatimukset on mallinnettava MPLS-verkkojen suunnitteluun laaditussa työkalussa, jos halutaan että työkalu pystyy mallintamaan koko verkon suunnitteluprosessin alusta loppuun. Tärkeimmät toiminnallisuudet, jotka MPLS-verkon suunnittelutyökalun tulee omata ovat simulointimahdollisuudet MPLS-poluille (LSP:t), MPLS-TE:lle, eri VPN-tyypeille ja DiffServ-liikenteelle, sillä nämä ovat tärkeimmät toiminnallisuudet MPLS-verkoissa tänä päivänä. Jos edellä mainittu toiminnallisuus on toteutettu ja mallinnettu suunnittelutyökalussa ja työkalu osaa optimoida liikennettä hyvin saadaan verkon pääoma- ja operaationaaliset kulut laskemaan. MPLS-verkon suunnittelutyökalua laadittaessa on myös tärkeää ottaa huomioon työkalun skaalautuvuusominaisuudet. Runkoverkot voivat koostua tänä päivänä tuhansista solmuista ja sadoista tuhansista liikennevirroista, joten suunnitelutyökalun tulisi omata toiminnallisuutta joka automatisoi joitain vaiheita verkonsuunnittelussa, mikä mahdollistaa tämän kokoluokan verkkojen suunnittelun. Tällainen toiminnallisuus voisi esimerkiksi olla automatisoitu vuonohjaus ja verkkojen topologiakokonaisuuden vienti ja tuonti suunnittelutyökaluun ja siitä ulos. /Kir1

    MPLS AND ITS APPLICATION

    Get PDF
    Real-time and multimedia applications have grown enormously during the last few years. Such applications require guaranteed bandwidth in a packet switched networks. Moreover, these applications require that the guaranteed bandwidth remains available when a node or a link in the network fails. Multiprotocol Label Switching (MPLS) networks cater to these requirements without compromising scalability. Guaranteed service and protection against failures in an MPLS network requires backup paths to be present in the network. Such backup paths are computed and installed at the same time a primary is provisioned. This thesis explains the single-layer restoration routing by placing primary as well as backup paths in MPLS networks. Our focus will be on computing and establishing backup paths, and bandwidth sharing along such backup paths. We will start by providing a quick overview of MPLS routing. We will identify the elements and quantities that are significant to the understanding of MPLS restoration routing. To this end, we will introduce the information locally stored at MPLS nodes and information propagated through routing protocols, in order to assist in efficient restoration routing. L2VPNs and VPLS will also be covered in the end of this thesis. In the end SDN (software defined networks) will be introduced

    Next generation control of transport networks

    Get PDF
    It is widely understood by telecom operators and industry analysts that bandwidth demand is increasing dramatically, year on year, with typical growth figures of 50% for Internet-based traffic [5]. This trend means that the consumers will have both a wide variety of devices attaching to their networks and a range of high bandwidth service requirements. The corresponding impact is the effect on the traffic engineered network (often referred to as the “transport network”) to ensure that the current rate of growth of network traffic is supported and meets predicted future demands. As traffic demands increase and newer services continuously arise, novel network elements are needed to provide more flexibility, scalability, resilience, and adaptability to today’s transport network. The transport network provides transparent traffic engineered communication of user, application, and device traffic between attached clients (software and hardware) and establishing and maintaining point-to-point or point-to-multipoint connections. The research documented in this thesis was based on three initial research questions posed while performing research at British Telecom research labs and investigating control of transport networks of future transport networks: 1. How can we meet Internet bandwidth growth yet minimise network costs? 2. Which enabling network technologies might be leveraged to control network layers and functions cooperatively, instead of separated network layer and technology control? 3. Is it possible to utilise both centralised and distributed control mechanisms for automation and traffic optimisation? This thesis aims to provide the classification, motivation, invention, and evolution of a next generation control framework for transport networks, and special consideration of delivering broadcast video traffic to UK subscribers. The document outlines pertinent telecoms technology and current art, how requirements I gathered, and research I conducted, and by which the transport control framework functional components are identified and selected, and by which method the architecture was implemented and applied to key research projects requiring next generation control capabilities, both at British Telecom and the wider research community. Finally, in the closing chapters, the thesis outlines the next steps for ongoing research and development of the transport network framework and key areas for further study

    Management of Carrier Grade Intra-Domain Ethernet

    Get PDF
    Internet ei ole enää pelkkä tiedonlähde, vaan enenevässä määrin kriittisempi osa yhteiskunnan infrastruktuuria. Nykyiset Internet-palveluja tuottavat teknologiat - IPv4 osoitteistuksessa, MPLS siirtoalustana ja SDH fyysisenä välitysteknologiana - ovat alkaneet menettää valta-asemaansa samalla kun kaikille tuttu verkkoteknologia, Ethernet, on laajentunut lähiverkoista runkoverkkoihin. Maailmassa on miljoonia Ethernet-lähiverkkoja. Olisi kustannustehokaampaa toteuttaa myös näiden lähiverkkojen väliset siirtoyhteydet Ethernetillä. Halu kustannustehokkuuteen ja teknologian konsolidointiin on tuonut esille tarpeen ns. operaattorikestoisille Ethernet-palveluille. Koska Ethernetistä puuttuu määrättyjä ominaisuuksia joita ilman on mahdotonta toteuttaa siirtoverkkopalveluja, näitä operaattori-Ethernet-palveluja on tuotettu toistaiseksi olemassa olevilla tekniikoilla, kuten MPLS:llä. Tulevaisuudessa todellinen haaste on luoda operaattoritasoinen, Ethernet-pohjainen siirtoverkkoteknologia, joka kykenee tuottamaan Ethernet-palvelujen lisäksi mitä tahansa muita tietoliikennepalveluja. Tämä diplomityö käsittelee operaattoritasoisen Ethernetin hallintaa yhden runkoverkkoalueen sisällä. Työssä käydään läpi standardoidut operaattorikestoiset Ethernet-palvelut, teknologiat joilla palveluja tällä hetkellä tuotetaan, ehdokkaat tulevaisuuden Ethernet-siirtoverkkoteknologioiksi sekä keskeisimmät verkonhallintaan liittyvät standardit. Työn jälkimmäisessä puoliskossa esitellään Euroopan Unionin 7th Framework ETNA -projektia varten kehitetty verkonhallintajärjestelmä. Hallintajärjestelmä tarjoaa rajapinnan jonka kautta on mahdollista provisioida suojattuja Ethernet-palveluja kahden asiakasliityntäpisteen välillä, ja lisäksi lähetyspuita joissa kohteina on useampi asiakaspiste. Hallintajärjestelmältä tilatut palvelut viestitetään Ben Gurionin yliopiston toteuttaman, verkkoprosessoreilla toimivan välityskerroksen välitystauluihin.Internet is evolving from its role as a mere information provider to an ubiquitous infrastructure crucial to society. The current technologies running the majority of global Internet - IPv4 in addressing, MPLS as core transport and SDH as the physical transfer technology - have been long-lived. However, their dominance has started to diminish because a network technology common to all, Ethernet, has started to expand from local to metropolitan and wide area networks. Most enterprises and home users already use Ethernet in their LAN. Connecting these sites to MAN or WAN with the same technology is the logical next step in technology consolidation. This has raised the demand for Carrier Ethernet services. However, internally they are still mostly provided with non-Ethernet technologies such as MPLS or SDH, because currently Ethernet lacks the necessary service assurance components. The real challenge in future internetworking is creating a Carrier Ethernet Transport (CET). With CET, any imaginable telecommunication service is delivered with a purely Ethernet based technology. When we have Ethernet in transport networks, it is no more a long stretch to a global, routed end-to-end Ethernet. This thesis covers management of an intra-domain CET control plane. First, Carrier Ethernet services and technologies currently producing these services are analyzed. Second, requirements imposed to CET and current CET candidates are discussed. Third, network management standards and their alignment to carrier business is studied. After the background has been discussed, a control plane management system developed for the EU 7th framework ETNA project is introduced. The management system is capable of provisioning point-to-point and multipoint services and is controlled via a web-service -based northbound interface. The control plane is able to install the services as forwarding entries in a network processor -driven data plane developed at Ben Gurion University

    Concepção e implementação de experiências laboratoriais sobre MPLS

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesO Multiprotocol Label Switching (MPLS) é um mecanismo de transporte de dados, sob a forma de um protocolo agnóstico, com grande potencial de crescimento e adequação. Opera na “Camada 2.5” do modelo OSI e constitui um mecanismo de alto desempenho utilizado nas redes de núcleo para transportar dados de um nó da rede para outro. O sucesso do MPLS resulta do facto de permitir que a rede transporte todos os tipos de dados, desde tráfego IP a tráfego da camada de ligação de dados, devido ao encapsulamento dos pacotes dos diversos protocolos, permitindo a criação de “links virtuais” entre nós distantes. O MPLS pertence à família das “redes de comutação de pacotes”, sendo os pacotes de dados associados a “etiquetas” que determinam o seu encaminhamento, sem necessidade de examinar o conteúdo dos próprios pacotes. Isto permite a criação de circuitos “extremo-aextremo” através de qualquer tipo de rede de transporte e independentemente do protocolo de encaminhamento que é utilizado. O projecto do MPLS considera múltiplas tecnologias no sentido de prestar um serviço único de transporte de dados, tentando simultaneamente proporcionar capacidades de engenharia de tráfego e controlo “out-of-band”, uma característica muito atraente para uma implementação em grande escala. No fundo, o MPLS é uma forma de consolidar muitas redes IP dentro de uma única rede. Dada a importância desta tecnologia, é urgente desenvolver ferramentas que permitam entender melhor a sua complexidade. O MPLS corre normalmente nas redes de núcleo dos ISPs. No sentido de tornar o seu estudo viável, recorreu-se nesta dissertação à emulação para implementar cenários de complexidade adequada. Existem actualmente boas ferramentas disponíveis que permitem a recriação em laboratório de cenários bastante complicados. Contudo, a exigência computacional da emulação é proporcional à complexidade do projecto em questão, tornando-se rapidamente impossível de realizar numa única máquina. A computação distribuída ou a “Cloud Computing” são actualmente as abordagens mais adequadas e inovadoras apara a resolução deste problema. Esta dissertação tem como objectivo criar algumas experiências em laboratório que evidenciam aspectos relevantes da tecnologia MPLS, usando para esse efeito um emulador computacional, o Dynamips, impulsionado por generosas fontes computacionais disponibilizadas pela Amazon ec2. A utilização destas ferramentas de emulação permite testar cenários de rede e serviços reais em ambiente controlado, efectuando o debugging das suas configurações e optimizando o seu desempenho, antes de os colocar em funcionamento nas redes em operação.The Multiprotocol Label Switching (MPLS) is a highly scalable and agnostic protocol to carry network data. Operating at "Layer 2.5" of the OSI model, MPLS is an highperformance mechanism that is used at the network backbone for conveying data from one network node to the next. The success of MPLS results from the fact that it enables the network to carry all kinds of traffic, ranging from IP to layer 2 traffic, since it encapsulates the packets of the diverse network protocols, allowing the creation of "virtual links" between distant nodes. MPLS belongs to the family of packet switched networks, where labels are assigned to data packets that are forwarded based on decisions that rely only on the label contents, without the need to examine the packets contents. This allows the creation of end-to-end circuits across any type of transport medium, using any protocol. The MPLS design takes multiform transport technologies into account to provide a unified data-carrying service, attempting simultaneously to preserve traffic engineering and out-of-band control, a very attractive characteristic for large-scale deployment. MPLS is the way to consolidate many IP networks into a single one. Due to this obvious potential, it is urgent to develop means and tools to better understand its functioning and complexity. MPLS normally runs at the backbone of Service Providers networks, being deployed across an extensive set of expensive equipment. In order to turn the study of MPLS feasible, emulation was considered as the best solution. Currently, there are very good available tools to recreate, in a lab environment, quite complicated scenarios. However, the computational demand of the emulation is proportional to the complexity of the project, becoming quickly unfeasible in a single machine. Fortunately, distributed computing or Cloud computing are suitable and novel approaches to solve this computation problem. So, this work aims to create some lab experiments that can illustrate/demonstrate relevant aspects of the MPLS technology, using the Dynamips emulator driven by the computational resources that were made available by the Amazon ec2 cloud computing facilities. The utilization of these emulation tools allows testing real networks and service scenarios in a controlled environment, being able to debug their configurations and optimize their performance before deploying them in real operating networks

    Implementing Soak Testing for an Access Network Solution

    Get PDF
    Tietoliikennelaitteiden ohjelmistojen toiminnalle asetetaan erittäin kovat laatuvaatimukset. Operaattoreilla on yleensä asiakkaiden kanssa SLA sopimukset, joiden rikkomisesta operaattorit saattavat joutua maksamaan suuriakin korvauksia. Lisäksi jokainen hetki, jolloin laite ei ole toimintavalmis, tuottaa operaattorille kustannuksia menetettyjen tulojen muodossa. Tämän vuoksi on erittäin tärkeää, että laitteet ovat jatkuvasti toimintakunnossa eikä palvelukatkoksia tule. Tämän diplomityön tavoitteena oli kehittää automatisoitu pitkän ajan testausjärjestelmä IP/MPLS pohjaiselle Tellabs 8600 reititinperheelle. Testattava järjestelmä koostuu useista verkkoelementeistä sekä graafisesta Tellabs 8000 verkonhallintajärjestelmästä. Tämän testausympäristön tavoitteena on paljastaa ongelmia, jotka eivät tule esiin normaalissa toiminnallisessa tai regressiotestauksessa vaan vaativat ilmaantuakseen pidempää ajoaikaa tai useita toistoja. Työssä kehitettiin kehys sille, kuinka testausympäristössä voidaan suorittaa automaattisesti erilaisia operaatioita sekä voidaan ohjelmallisesti havaita mahdollisia ongelmatilanteita. Testausjärjestelmä toteutettiin onnistuneesti ja täyttää sille asetetut tavoitteet. Testausjärjestelmä on otettu käyttöön Tellabsin systeemitestauksessa ja on käyttöönoton jälkeen osoittautunut hyödylliseksi ja tehokkaaksi järjestelmäksi. Systeemitestauksen käyttöön toteutettiin myös toinen täysin identtinen ympäristö.The quality requirements are extremely demanding for telecommunications software. Operators usually have SLA agreements with their customers, and violations to that contract may lead to serious compensations. Furthermore, every moment that equipment or some service is not operating correctly means lost income for the operator. For these reasons, it is extremely important for a telecommunications equipment to continue functioning properly without service affecting breaks. The purpose of this thesis was to design and implement automated soak testing for the IP/MPLS-based Tellabs 8600 router series. The system under test is composed of several network elements and a graphical Tellabs 8000 Network Management System. The purpose of this testing environment is to reveal defects that do not show up immediately in functional or regression testing but may manifest when the system is used for longer periods or operations are executed many times. A framework for automatically operating the test network and detecting problems programmatically was implemented in this thesis. The testing environment was successfully implemented and satisfies the objectives initially set for it. Testing environment has been taken into use in system testing at Tellabs and after deployment has turned out to be useful and effective. Another identical environment was also implemented for the system testing group

    Teleprotection signalling over an IP/MPLS network

    Get PDF
    Protection of electricity networks have developed to incorporate communications, referred to as protection signalling. Due to the evolution of the electricity supply system, there are many developments pending within the scope of protection signalling and protection engineering in general. This project investigates the use of current and emerging communications technologies (i.e. packetised networks) being applied and incorporated into current protection signalling schemes and technologies. The purpose of the project is to provide a more cost-effective solution to protection schemes running obsolescent hardware. While the medium-term goal of the industry is to move entirely to IEC 61850 communications, legacy teleprotection relays using non-IP communications will still exist for many years to come. For companies to be ready for an IEC 61850 rollout a fully deployed IP/MPLS network will be necessary and it can be seen that various companies worldwide are readying themselves in this way. However, in the short-term for these companies, this means maintaining their existing TDM network (which runs current teleprotection schemes) and IP/MPLS network. This is a costly business outcome that can be minimised with the migration of services from and decommissioning of TDM networks. Network channel testing was the primary testing focus of the project. The testing proved that teleprotection traffic with correct QoS markings assured the system met latency and stability requirements. Furthermore, MPLS resiliency features (secondary LSPs & Fast-reroute) were tested and proved automatic path failover was possible under fault conditions at sub-30ms speeds
    corecore