2,249 research outputs found

    Multi-objective scheduling for real-time data warehouses

    Get PDF
    The issue of write-read contention is one of the most prevalent problems when deploying real-time data warehouses. With increasing load, updates are increasingly delayed and previously fast queries tend to be slowed down considerably. However, depending on the user requirements, we can improve the response time or the data quality by scheduling the queries and updates appropriately. If both criteria are to be considered simultaneously, we are faced with a so-called multi-objective optimization problem. We transformed this problem into a knapsack problem with additional inequalities and solved it efficiently. Based on our solution, we developed a scheduling approach that provides the optimal schedule with regard to the user requirements at any given point in time. We evaluated our scheduling in an extensive experimental study, where we compared our approach with the respective optimal schedule policies of each single optimization objective

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Extract, Transform, and Load data from Legacy Systems to Azure Cloud

    Get PDF
    Internship report presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceIn a world with continuously evolving technologies and hardened competitive markets, organisations need to continually be on guard to grasp cutting edge technology and tools that will help them to surpass any competition that arises. Modern data platforms that incorporate cloud technologies, support organisations to strive and get ahead of their competitors by providing solutions that help them capture and optimally use untapped data, and scalable storages to adapt to ever-growing data quantities. Also, adopt data processing and visualisation tools that help to improve the decision-making process. With many cloud providers available in the market, from small players to major technology corporations, this offers much flexibility to organisations to choose the best cloud technology that will align with their use cases and overall products and services strategy. This internship came up at the time when one of Accenture’s significant client in the financial industry decided to migrate from legacy systems to a cloud-based data infrastructure that is Microsoft Azure cloud. During this internship, development of the data lake, which is a core part of the MDP, was done to understand better the type of challenges that can be faced when migrating data from on-premise legacy systems to a cloud-based infrastructure. Also, provided in this work, are the main recommendations and guidelines when it comes to performing a large scale data migration

    Quality measures for ETL processes: from goals to implementation

    Get PDF
    Extraction transformation loading (ETL) processes play an increasingly important role for the support of modern business operations. These business processes are centred around artifacts with high variability and diverse lifecycles, which correspond to key business entities. The apparent complexity of these activities has been examined through the prism of business process management, mainly focusing on functional requirements and performance optimization. However, the quality dimension has not yet been thoroughly investigated, and there is a need for a more human-centric approach to bring them closer to business-users requirements. In this paper, we take a first step towards this direction by defining a sound model for ETL process quality characteristics and quantitative measures for each characteristic, based on existing literature. Our model shows dependencies among quality characteristics and can provide the basis for subsequent analysis using goal modeling techniques. We showcase the use of goal modeling for ETL process design through a use case, where we employ the use of a goal model that includes quantitative components (i.e., indicators) for evaluation and analysis of alternative design decisions.Peer ReviewedPostprint (author's final draft

    Data Warehousing Modernization: Big Data Technology Implementation

    Get PDF
    Considering the challenges posed by Big Data, the cost to scale traditional data warehouses is high and the performances would be inadequate to meet the growing needs of the volume, variety and velocity of data. The Hadoop ecosystem answers both of the shortcomings. Hadoop has the ability to store and analyze large data sets in parallel on a distributed environment but cannot replace the existing data warehouses and RDBMS systems due to its own limitations explained in this paper. In this paper, I identify the reasons why many enterprises fail and struggle to adapt to Big Data technologies. A brief outline of two different technologies to handle Big Data will be presented in this paper: Using IBM’s Pure Data system for analytics (Netezza) usually used in reporting, and Hadoop with Hive which is used in analytics. Also, this paper covers the Enterprise architecture consisting of Hadoop that successful companies are adapting to analyze, filter, process, and store the data running along a massively parallel processing data warehouse. Despite, having the technology to support and process Big Data, industries are still struggling to meet their goals due to the lack of skilled personnel to study and analyze the data, in short data scientists and data statisticians

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Adaptive Big Data Pipeline

    Get PDF
    Over the past three decades, data has exponentially evolved from being a simple software by-product to one of the most important companies’ assets used to understand their customers and foresee trends. Deep learning has demonstrated that big volumes of clean data generally provide more flexibility and accuracy when modeling a phenomenon. However, handling ever-increasing data volumes entail new challenges: the lack of expertise to select the appropriate big data tools for the processing pipelines, as well as the speed at which engineers can take such pipelines into production reliably, leveraging the cloud. We introduce a system called Adaptive Big Data Pipelines: a platform to automate data pipelines creation. It provides an interface to capture the data sources, transformations, destinations and execution schedule. The system builds up the cloud infrastructure, schedules and fine-tunes the transformations, and creates the data lineage graph. This system has been tested on data sets of 50 gigabytes, processing them in just a few minutes without user intervention.ITESO, A. C

    Empowering a Relational Database with LSD: Lazy State Determination

    Get PDF
    Computer systems are a part of today’s most common activities and, more often than not, involve some type of interaction with a database. In this scheme, databases play a big role, where even small operational delays could cost millions to big tech companies. It is then, of utmost importance that such systems are responsive and adapt automatically to different types of workload. To this date, Relational Database Management System remain the most popular database type, which allows the executing of concurrent transactions with Atomicity, Consistency, Isolation and Durability guarantees. Enforcing such properties requires strict control over the execution of transactions. However, maintaining such properties and controlling the transactions’ concurrency may hamper performance of the system, being this specially the case when database contention is high. Motivated by such behavior, we propose the lazy evaluation of database SQL queries — using Futures/Promises and Java Database Connectivity (JDBC) — by empowering a relational database with Lazy State Determination (LSD). This novel Application Programming Interface (API) allows delaying operations to the commit time, which in the end reduces the transaction window where conflicts may occur. We observed that, by introducing our implementation of a JDBC-LSD driver, in high contention scenarios the throughput increased by 50% and latency reduced by 40%.Os sistemas informáticos são parte das atividades mais comuns na atualidade e, na maioria das vezes, envolvem algum tipo de interação com uma base de dados. Neste cenário, as bases de dados têm um grande papel, sendo que pequenos atrasos operacionais podem custar milhões às grandes empresas tecnológicas. Até os dias de hoje, os Sistemas de Gestão de Bases de Dados Relacionais continuam a ser o tipo de bases de dados mais popular, permitindo a execução concorrente de transações garantindo as propriedades de Atomicidade, Consistência, Isolamento e Durabilidade. A aplicação de tais propriedades requer um controlo rigoroso sobre a execução de transações. No entanto, manter tais propriedades e controlar a concorrência das transacções pode diminuir o desempenho do sistema, sendo especialmente o caso em bases onde a contenção é elevada. Assim, propomos o atraso na execução de queries SQL na base de dados através da introdução do protocolo de controlo de concorrência Lazy State Determination (LSD), com a utilização de Futuros/Promessas e Java Database Connectivity (JDBC). Esta nova Interface de Programação de Aplicações (API) permite adiar as operações para o momento do commit, o que acaba por reduzir a janela da transação onde conflitos podem ocorrer. Observamos que, ao utilizar LSD em um cliente JDBC, nós conseguimos aumentar a taxa de execução de transações em 50% e reduzir a latência em 40% num ambiente de contenção elevada
    corecore