Information

Management
School

Mestrado em Gestao de Informacéo

- £ Hon Manaadamaent
viaster rrogram in Information E‘;!:ﬁz‘.-ky:il’.dJ.-a.

Extract, Transform, and Load data from Legacy
Systems to Azure Cloud

loudom Foubi Jephte

Internship Report presented as the partial requirement for
obtaining a Master's degree in Information Management

NOVA Information Management School
Instituto Superior de Estatistica e Gestao de Informacao

Universidade Nova de Lisboa



NOVA Information Management School

Instituto Superior de Estatistica e Gestdao de Informagao

Universidade Novade Lisboa

Extract, Transform, and Load data from Legacy Systems to Azure

Cloud

by

loudom Foubi Jephte

Internship report presented as partial requirement for obtaining the Master’s degree in Information

Management, with a specializationin Knowledge Management and Business Intelligence

Advisor: professor Doutor Flavio Luis Portas Pinheiro

February 2021






Acknowledgments

To Accenture Portugal, for seeing the potential in me and accepting me tojoin their consulting team;

More so, the warm welcome from consultants and the constant support during the internship.

To my supervisor, Professor Doutor Flavio Luis Portas Pinheiro, who providedanswers to my questions,
| am grateful. Thank you for the fantastic class experience and for inspiring me to undertake this pathin

data engineering.

To my father Foubi, my mother Nguemdjo, my brothers Nwatchou and Pouomegne, thank you for the

enormous sacrifice, constant support,and motivation whenever | need them. You are all a blessing to me.

To Mr Olufemi, thank you forthe helpinmyjourneytocome to Portugal and foryour mentorship.To
Mrs Singum, thank you for believing in me and supporting me in making my dream possible. To Zommi,
thank you for your unconditional support whenever | needed it and your amazing heart. Thank you for
your true friendship and supportive words, the MAJAG family. To Felipe, thank you for your professional

advice and support. To God, almighty, for guiding me every day.

Finally, I say thanks to all those who helped me in one way or the other during this journey.



Abstract

In a world with continuously evolving technologies and hardened competitive markets,
organisations need to continually be on guard to grasp cutting edge technology and tools that will help
themto surpassany competition that arises. Modern data platformsthatincorporate cloud technologies,
supportorganisationsto strive and get ahead of their competitors by providing solutions that help them
capture and optimally use untapped data, and scalable storages to adapt to ever-growing data quantities.
Also, adopt data processing and visualisation tools that help toimprove the decision-making process.

With many cloud providers available in the market, from small players to major technology
corporations, this offers much flexibility to organisations to choose the best cloud technology that will
align withtheiruse cases and overall products and services strategy. This internship came up at the time
when one of Accenture’s significant clientin the financialindustry decided to migrate from legacy systems
to a cloud-based datainfrastructure thatis Microsoft Azure cloud.

During this internship, development of the data lake, whichis a core part of the MDP, was done
to understand better the type of challenges that can be faced when migrating data from on-premise
legacy systems to a cloud-based infrastructure.

Also, provided in this work, are the main recommendations and guidelines when it comes to

performingalarge scale data migration.
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1. Introduction

The 21st century saw the exponential growth of data generated with the development of new
technologies necessary to deal with the challenge of storing and processing the increasing streams of
data, a challenge thatled to the popularization of the concept of Big Data. Big Data can be used to describe
a range of differentideas, from collection and processing of large amounts of data to the advanced
computational techniques often necessary to extract analytical value from the collected data [46].
However, there is no clear definition of the term big data, and researchers from different academic
backgrounds often take different definitions for whatit means.

IBM, a global technology company, proposed the four dimensions of big data usually called the V’s of Big
Data to ease the understanding of the phenomenon of big data. These V’s include volume, velocity, variety
and veracity. Volume refers to the massive amounts of data generated every second which can include
videos, photos, emails and sensor data produced and shared every second, which increased to Exabyte,
zettabyte and brontobyte of datain terms of the total size. Velocity can be seen as the speed at which
datais generated and the speed at which these data moves around, for example, the milliseconds taken
by big data algorithmic trading systems to analyze stock market data and assisting traders to make
decisions to buy and sell financial securities on the stock market. Variety refers to the different types of
data available for use and veracity refers to the level of trustworthiness of the data[1].

Traditional data storage solutions, such as relational databases adopted years ago, residing on old on-
premise legacy systems, cannot handle the complexity and the scalability needs that come with holding
the variety of data types produced today in a single centralised location. It poses new dilem mas that
organisations need toface in orderto meettheirbusiness needs and regulatory policy constraints.

In order to facilitate the storing of massive data sets, while minimizing the internal burden of having
multiple teams or departments accessing data for different needs, organisations embraced new storage
solutions commonly referred to as Data Lakes. With Data Lakes, storage is scalable according to the needs
of an organization. It can reach volumes in the order of petabytes while allowing the storage of both
structured and unstructured data formats. These overcome many of the limitations set by traditional
storage solutions.

Organisations adopting data lake solutions empower themselves to exploit better, explore, and analyse
data toimprove theirvalue proposition towards clients. In that context, thisreport explores a project that
was developed withinthe AppliedIntelligence team of Accenture Portugal. The Applied Intelligence team

focuses on helping Accenture clients to build a modern data platform(MDP) that leverages the cloud,



distributed system paradigms, big data technologies and best practices to improve their processes,

products, and services.

1.1. Company overview

Accenture isaglobal professional servicescompany, listed among the Fortune 500 Global companies and

incorporated in Dublin (Ireland) since 2009, as of 2019, Accenture had more than 492,000 employees

serving clients in more than 120 countries [2]. Ninety-one of the Fortune Global 100 are Accenture's

currentclients, and as for global fortune 500, more thanthree-quarters are also theirclients [2].

Some of the industries Accenture has clients in include: Aerospace and Defence, Industrial Equipment,

Insurance, Life Sciences, Automotive, Banking and Capital Markets, Chemicals, Communications,

Consumer Goods and Services, Natural Resources, PublicService, Retail, Software, Energy, Health, Travel,

and Utilities.

Accenture hasfour primary service areas including:

The strategy and consulting service arm of Accenture [3], helps organisations to design and
implement programmes with technology at the centre. This arm supports organisations in
planning and implementing theirtechnology-driventransformations toimproveall their business
units. Accenture formulates strategies and identifies potential technological components such as
Al, automation, data platforms, and digital marketing that will enable the rapid adoption and
implementation of these strategies to make the organisation more competitive in its specific
industry and generate wealth.

The interactive service arm of Accenture [4], helps businesses become more agile by responding
to evolving business landscapes, higher employee and customer expectations, often sparked by
digital technologies. Also, it supports businesses to maximise the value from new routes to
market, deploying advanced analytics, enhancing digital trust with robust security and enhancing
digital engagement. Some past work of this arm includes the design and implementation of a
personalised customer experience system for carnival corporation cruise making use of loT and
stream analytics to enable the company to offer customised services to each of their customers
while on board of ships.

The technology service arm of Accenture [5], provides core technical services, in-house and
partner products to Accenture clients. Through the Accenture labs, this arm incubates new
concepts and appliesthe latest technologiesto deliver breakthroughsolutionsforbusinesses and
society. The lab also has specialised R&D groups who investigate and use new technologies to

help organisations provide breakthrough solutions to their current and future challenges. This



arm offers application services to organisationsto help themreinventtheir enterprise application
portfolio, from the development of new applications leveraging on the cloud and blockchain, to
the modernisation, management, and maintenance of existing applications. Accenture covers all
stages of the application lifecycle.

iv.  The operations service arm of Accenture [6], offers Business Processing Outsourcing (BPO)
services. Accenture operationsthrough its human-machine operating engine —SynOps, combines
the best people, processes, and technologyto help clients reshape their organisations with a new
and more connected operating model. Through this arm, Accenture works with some of the
biggest social media networks in the world to provide digital content review services to help
eradicate contentthatviolates userpolicies orterms of services.

1.2. The team and Activities

Duringthe internship at Accenture Portugal, the Applied Intelligence team handled the MDP project. The
capabilities offered by this teaminclude artificial intelligence, intelligent automation, data and analytics,
enterprise datamanagement, search, and content analytics.

The Applied Intelligence teamharnesses the power of cutting-edge technologies to help businesses shape
a clearvision and developnew datasupply chains by instillinggreater trustin dataand exploringimproved
ways to manage it. The appliedintelligence teamalso helps clients to modernise their data platforms by
supporting the building of data architectures to capture, curate, and store the correct data using a
combination of cutting edge technologies.

Additionally, the applied intelligence team also offers the Intelligent Data Suite (IDS) [7], which helps
businesses go beyond data silos. This suite helps clients discover and access data anywhere in their
enterprise,then classify data by industry context, qualify data by verifyingitstrustworthinessand validity,
and finally consolidate and prepare the data for analytics while comparing with industry standards. This
team has strong alliances with technology providers including Microsoft, Amazon Web Services, Google
Cloud, Informatica, IBM, SAP, Tableau, Adobe, Oracle, Salesforce, SAS, Qlik, Cloudera, and Snowflake [31].
The applied intelligence team did the MDP project for a major banking financial institution in Portugal.
This projectaimedto helptheclient build a new data platform that was goingto leveragethe Azurecloud,
Databricks delta architecture, and other big data technologies to facilitate enterprise processes,
operations, decision making, product, and services development.

The member’s responsibilities within the team and projectincluded:



e Gathering business requirements from the banking financial institution related to the MDP to
understand the business needs, then translate these requirements into technical requirements
and buildawork planto implementthem.

e Based on the technical requirements, build different zones of the organisation’s delta and data
lake on Azure data lake Gen 2.

e Developstreaming ETL scripts on databricks to extract and process data from the client’s legacy
system and load on data lake Gen 2 zones and Azure Cosmos DB.

e Refactor all the codebase of the entire MDP project, build Unit-test on databricks to test all the
code and build pyTests to automate testing of code.

e Research new workflows about databricks and other cloud services used in the project to ease
the work of the team and solve technical issues faced within the project.

1.3. Internship Goals

With the increase ininternet usage, customer needs have changed over time, in particular users among
the middle and youngerage groups who increasingly request more digitally inclined services. Such a shift
towards digital products reflectsin the popularity of digital banks such as N26, Revolut, Bung.
Traditional banking and financial institutions with little to no digital services face challenges to adapt to
these new customers’ needs and trends. To develop competitive digital products and services, these
financial institutions have to change or improve their technology and data infrastructure to enable the
development of new digital servicesinan agile way.

Thisinternship took place in the applied intelligence team of Accenture Portugal at the time when one of
theirmajorclients was building and deploying a modern data platform, making use of Azure cloud and big
data technologies.This new platform was going to enablethis client to develop more digital products and
services, support real-time stream analytics, and at the same time, let engineers monitorin real-time any
activity on the MDP.

The mainintent of the internship was to participate actively in the development of modules to efficiently
and effectively proceed with the extraction, transformation, and loading of data from legacy systems to

the Azure cloud.



2. Theoretical Framework

This section provides atheoretical overview of the most relevant frameworks, tools, and concepts related
totraditional and modern data infrastructures, distributed computing systems, and big data necessary for
the understanding of the projectreportedin this document.

2.1 Data Platform as a Data Storage Solution

There are multiple definitions of data platforms. Looker, a leading global data visualization and business
intelligence organizations owned by Google, definesa data platform as an integrated technology solution
that enablesthe governance, access and delivery to users, data applications and other applicationof data
located in databases for strategic business purposes [8]. Splunk Technology defined adata platformas a
complete solution foringesting, processing, analyzing and presenting the datagenerated by the systems,
processes and infrastructures of the modern digital organization [9].

A data platform can serve strategically modern organizations in the following ways:

e Availability: A data platformthatis connected directly to a database will ensure data teams within
the organization can have access to the right data at the right time, without delaysin processing

large volumes of data or data request.

e Security: data platforms can help enforce authentication across all storages or data, providing
access to data only to the authorized individuals or groups. Also, authentication tools on data
platforms help totrack those accessing dataand keeping metadataorlogssothatin thelongrun

ifthereisan issue, itcan be used to trace the cause(s).

e Governance: A data platform can enable businesses to manage their data governance strategy
better, includingwhat datais collected, who can access it, and when data has expired according

to the data protection and privacy regulations.

e Delivery: A data platform can include scheduling reports, dashboards and proactive alerts for
predetermined conditions. This functionality helps eliminate bottlenecks and deliver reliable and
accurate data to authorized users at the moment of relevance. Italso enables the use of APIs to
deliverdatato othertoolsforspecialized oradvanced forms of analysis, such as data science and

Al/Machine learning workflows.

e Centralization: Through a data platform, organizational silos can be dissolved to enhance
collaboration and effective decision; thisis achievedwhen the data platform combinesdata from

different sourcesinto one singledatabase orlocation [8].
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2.2 Traditional Data Storage Solutions

Traditional data storage solutions here, refers to traditional databases, which do not make use of the
distributed system and big data paradigms or concepts within their design. In the early days of data
storage within organizations, data was organized within files. However, storing data within separate files
adds unnecessary burdens and setbacks to organizations [10], which include, forinstance:

e Redundant data: Storing the data required by each application program resulted in duplicated
data. Redundant data is dangerous because it occupies extra storage space and causes data
inconsistency.

e Isolated data: Data stored in separate files is very difficult to process altogether. Processing
challengesincrease when the datafiles are of different formats.

e Program-data dependence: The physical structures of files and data records are defined in the
program code, which will make itdifficult to change existing structures. However, if data structure
changes are necessary, all programs that have access to the changed file must be modified.

e No Ad-hoc queries: To obtain new reports, new programs must be developed to generate these
reports, as there are no possibilities for users to ask ad hoc queries.

All the setbacks that are introduced by organizing and storing data into files, as described above, are
caused by two main factors: The data definitions are embedded in the application programs instead of
being stored together with the data, and there is no data access point and processing capabilities other
than those provided by the application programs.

To overcome and address the above-mentioned limitations, alternative storage solutions were developed
and materialized in the form of databases based on a network or hierarchical data models. These
databases still failed to provide an adequate solution to all the storage needs of organizations. In
particular, running queries (that is, extracting data from these systems) was very complex because they
were navigationally oriented and also due to the lack of sufficient dataindependence. [10]

Inthe 1970s a new form of databases was introduced by Edgar Frank Codd. Followingthis innovation from
Frank Codd, by the late 1970s and 1980s, database management systems specific to handle these
databaseswere introduced and become known as Relational Database Management System (RDBMS).
A relational database management system is a computer program that enables anyone to create,
maintain, and manage a relational database. Nowadays, RDBMS are particularly well-known for their
standard query language — Structured Query Language or SQL—that offers a simple and easy to leam

interaction layerfor usersto access and manipulate data stored in databases.



Within organizations there are traditionally two storage solutions/rolesimplemented on top of RDBMS;
OLTP also considered as operational database/system and OLAP also considered as a data warehouse.
2.3 Operational database and Data Warehouse

A database is said to be operational if used to store and manage daily transactions of organizations. In
that sense, these databases are associated with OLTP (On-Line Transaction Processing) that are designed
to operate as a real-time system that tracks daily operations ortransactions that are small but can arrive
inmassive numbers, forexample,in-store purchases, bookingreservations,and orderentry. Within OLTP,
one key aspect is the atomicity of database transactions. Atomicity indicates whether a transaction
succeeds entirely orfails entirely, thus, cannot be in an intermediate state.

Using OLTP for analytical processing can raise challenges as data models are not adapted for effidcient
analytical activities. In contrast, On-line Analytical Processing (OLAP) systems have been the main
paradigm to set up and design Data Warehouses, databases built for a purely analytical purpose. Data
warehouses have different definitions, for example, Turban [11] defines a data warehouse (DW) as a
repository of current and historical datathat is used to support decision makingand structuredina way
that it can be used for analytical processing activities. Other approaches proposed by Inmon [12] to

describe adata warehouse makes use of its characteristics:

e Subject Oriented: Data is organized by subjects or themes such as sales, manufacturing,
marketing, etc. By providing subject-oriented data, the DW allows its users to have a more

comprehensive view of the organization and not justan operational view. [12]

e Integrated: Data in a data warehouse is usually collected from different sources to be placed
togetherinto aconsistentformat. To do so, naming conflicts, encoding structure, etc., need to be
dealt with beforehand so similar data is scaled in the same way. The outcome is a totally

integrated datawarehouse. [12]

e Time-Variant: Data that resides in a data warehouse deliver information from the historical
perspectiveand aren't mainly neededto provide current states. Historical data presentinthe data
warehouse allows trend or deviation detection along with forecasting, all depending on the
business context. All datawarehouses need to have atime dimension. [12]

¢ Non-Volatile: Once thedataare entered intothe DW, they can't be altered. Changes are recorded
as new data. Meaning that data is read-only and updated at set intervals depending on the

organization'sneeds. [12]



Data warehouse models

Within data warehouses, multiple models and architectures have been proposed for storinginformation
in a more efficient manner or to provide a better vertical synergy between the different layers of data
storage in an organization. The two most popular data warehouse models/architectures are the Inmon

and Kimball model.

i.  Inmon Model
The Inmon modelis considered asthe enterprise datawarehouse (EDW) and follows a Top -down design
approach. The EDW and the top-down approach refers to the implementation of a data warehouse that
covers the whole organization which is used to serve underlying departments within the organization.
Within the Inmon model, all data marts are derived from the EDW to be used by individual departments

independently from other departments.

ii.  Kimball Model

The Kimball model focuses on designing a data warehouse around the idea of data-marts and is
considered aBottom-up approach. With this approach, data marts are created forindividual departments
within the organizationandlatermergedto getalarge data warehouse covering the organization. A data
mart can be consideredas asimple type of data warehouse that focuses on one subject or functional area
for example sales, account management, marketing. There are three types of data marts namely,
dependent, independentand hybrid data marts. Dependent data marts enable organizations to combine
their data into one data warehouse. Independent data marts are created without making use of the
central data warehouse withinan organization and Hybrid Data marts enable the integration of data from
different sources otherthan the data warehouse.

Data warehouse schema

A schemais a logical representation of an entire database, showcasing fact and dimension tables within
the database. A fact table is a table that contains measures for example sales amounts totals, quantities
and prices, while adimensiontable, is a table that contains attributes describing the datain a fact table,
for example, sales country locations and dates. There are four popularschematypesin data warehouses

including:

e Star schema
The star schema contains one or more dimension and fact tables. The entity-relationship between fact

and dimension tables forms a star shape in which a fact table is connected to many dimension tables.In



this type of schema, dimensions only have one level. Data in this schema is denormalised which makes

queriestorunfasterbut at the same time causes the presence of redundantdata.

e Snowflake schema
The snowflake is an extension of the star schema where dimensions have more than one level. Because
the data in snowflake schema is normalized, the data is split into additional tables to avoid data
redundancy. Processing of data with this type of schema might be slow due to complex joins needed to

retrieve data.

e Galaxyor Fact Constellationschema
The galaxy schema has multiple fact tables that share dimension tables betweeneach other. This schema
is called galaxy because its shape forms a collection of stars. Shared dimensions are called conformed
dimensions. Usually, thisschemais built by splitting astar schemainto multiple star schemas.
Challenges associated to Traditional Data Storage Solutions
The challenges associated with traditional data warehouses propounded by [13] are exploredinthe next

paragraphs.

I.  Rigid structure: One of the most recurrentloop-hole of traditional datawarehousesis theirlack
of data modelling flexibility. In today’s ever-changing business environment, with the constant
development of new applications, high consumption of technology products and services,
organisations must-have information on demand to respond faster to any change and adapt to
market changes or shifts. With rigid traditional data warehouses, any change in the data model
might take several monthsto go through an approval and the intervention of technical experts,

whichisarguablyan incompatible settingin light of the above-mentioned pressures.

.  Complex architecture: To cope with constantly evolving requirements, organisations buy
different technologies that lead to a more complex architecture with numerous data silos that
generate new challenges. These challenges include the lack of integration caused by the
unavailability of native integration across standard processes due to multiple technologies in the
complicated infrastructure, which often leads to data governance problems and absence of
agility. Additionally, complex infrastructures make it difficult to access a single source of truth,
thatleadsto challengesingenerating actionableinsights. Besides, most of these tools hav e similar
capabilities. Hence they appearas duplicate technologies that will not bring anything new to the

infrastructure.



Slow performance: with the rapid rise in data volumes generated by organisations today, the
performance of their platforms can be affected and cause delays in prompt reporting. Data
preparation and consumption latency can portray the loopholes of a data warehouse.
Unprecedented quantities of datacan explainlatency during data preparation, and that can halt
traditional data warehouses. Additionally, the large volumes of data cause data migration
challenges in traditional data warehouses. Also, duplicated but unused data in these traditional
data warehouses hinder data preparation procedures. There is a hindrance of data consumption
by longer running times of queries caused by increasing data quantities, data sets and complex

analytical requirements.

Outdated technology: Traditional data warehouses are builton rigid platforms and with little or
no update possibilities. Withgrowingcompetition and the highneedforon-time decision making,
these data warehouses can turn into barriers due to their inability to store and process vast
volumes of data with different data types. Also, due to the massive cost associated withupgrading
the hardware on which they run, forexample purchasingandinstalling expensive CPU’s and data

centre level equipment.

Lack of data governance: Moreover, data governance can be a big issue with traditional data
warehouses. The Data Governance Institute defines data governance as the practice of decision
making and authority for information-related matters [14]. Creating a bond between people,
processes, and technology leads to better data governance. [13] Concerning data governance,

traditional datawarehouses can disrupt data delivery value chaininthe following ways:

When looking at source systems, in case of organisations wanting to change them, traditional data
warehouses can complicate impactanalysis.In some instances, they might makeit challengingto

map and catalogue new systems without damaging datagovernance rules.

Within traditional data warehouses, ETL processes might fail to produce standard log details,
which makes reviewing and querying them difficult. Also, there might be a lack of consistent
methods, tools and controls to ensure the correct processing of sensitive data in ETL processes.
Note that loading data quickly into a traditional data warehouse can hinder data governance
structures. Traditional data warehouses often lack standardised data models and extra metadata
needed to facilitate semantics-based discovery and they might not support data segmentation

based on standard rules.
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2.4 Big Data

Inthe past, most databases and applications were located on a single machine or framework withall their
operations being performed on that single machine. With the growth of dataand the need to make more
complex operations, this infrastructure started showing limitations such as the lack of scalability
capabilities.

Scalability (Scale-Up and Scale-Out)

According to Gartner [15], Scalability is the measure of a system’s ability to increase or decrease in
performance and cost in response to changes in application and system processing demands. With the
constant growth of data in this era, new challenges arise for organizations, necessitating the designing
and implementation of new systems that will scale easily to adapt to data needs and workloads. There

are two approachesto scalability: scale out orscale up.

Scale Out

Figure 1. Scale Out and scale Up

Scale Up

Scale-Up

It isalsoknown as vertical scaling. This scalingis all about the upgrading of hardware. Organizations scale
up to increase their computing capacity by installing additional resources such as hardware or central
processing unit (CPU). For example, an organization can buy a server with better processing capabilities
and RAM whenthe hardware supportingits applications cannot sustain the growing workloads. Scale-up
is easier to control since you decide on all hardware upgrades but it is also expensive since you have to

buy more powerful hardware (central processing unit, disk, etc.). Note that scale up in relation to fault
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tolerance presents more risk because in case of hardware failure there is the danger of losing data
completely orfacing hardware outages.

Scale-Out

Itisalsoknown as horizontalscaling. With horizontal scaling, machines withlower performance are added
to a systemto ameliorate its storage and computing capacity. For organisations, implementing scale-out
will be cheaper because they will not be buying expensive high-performance machines, but instead
machines with lower performance. Note that scale-outis betterin terms of faulttolerance becauseit has
mechanisms that put standby nodes or servers to specific services and perform data replication across
different servers to ensure that in case of outage of some servers, data will not be lost and the services
will stillbe available. Eventhoughscale-out offers betterfaulttolerance, when it comes to debugging and
finding the node(s) that cause problems in the system in case of failure, it will take more time to study
logs and find the node(s) causing the problem due to the vastness of system. Apache Hadoop is a very
successful scale-out open source project. Within Hadoop, the storage and computing capacity can be
increased by simply adding new nodes/servers to the systemin place.

Towards the end of the '90s, the constant adoption of mobile devices and new web technologies
introduced novel challenges for both storage and processing of the large data quantities generated. This
eventually leads to the rise of the concept called “Big data” [16]. Traditional data warehouses could not
handle analytics on this huge data and more scaling-up computer hardware turned out to be very
expensive. The solution comesinthe form of a new distributed system paradigm [17].

Distributed systems are simply networks of a large number of attached nodes or entities connected
through afastlocal network [18]. This new paradigmrequiredthe development of adequate softwareand
techniques to process data. thus, giving rise to the concept of big data analytics [16]. Big data analytics
can be viewed asasub-processinthe overall process of insight extraction from big data[19].

It is common to describe the challengesintroduced by big data within the so-called “V’s of big data”:
volume; velocity; variety; and veracity. Volume has to do with the ever-growing quantities of data which
can go beyond terabytes and petabytes. Variety refers to the fact that data comes from different sources
such as computers, websites, and Internet of Things devices but also can come in multiple formats.
Velocity has to do with the speed at which datais produced and needs to be processed. Veracity refers to
the level of trust we have inthe data or the accuracy of the data, which often requiresto be analyzedin
real-time.

The technology field of Big data is a fast-change ecosystem. New solutions are constantly in order to

addressand meetthe, also, fast pacing evolving challenges associated with the V’s of big data. Big data
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up till now, does not have a unique universal definition, but different institutionsand research ers provided

different definitions to Big data. Some definitions of bigdatainclude:

e Gartner defines big data as a “high volume, velocity and/or variety information assets that
demand cost-effective,innovative forms of information processing that enables enhancedinsight,

decision making, and process automation”. [20]

e Schroeck [21] defines big data as a combination of Volume, Variety, Velocity and Veracity that
creates an opportunity for organizations to gain a competitive advantage in today’s digitized

marketplace.

e Microsoft [22], defines big dataas the process of applying serious computing power, the latestin
machine learning and artificial intelligence, to seriously massive and often highly complex sets of

information.

e Bigdata can also be considered as datasets whose size is beyond the ability of typical database

software tools to capture, store, manage, and analyze. [23]

e Bigcan also be seen as the data sets and analytical techniques in applications that are so large
and complex that they require advanced and unique data storage, management, analysis, and

visualization technologies. [24]

e Bigdataisdatathat exceedsthe processing capacity of conventional database systems. [25]

® Anotherdefinition by [26], indicates Big Data represents the Information assets characterised by
such a high volume, velocity and variety to require specifictechnologyand Analytical Methods for
itstransformationinto value.
2.5 Distributed Computing Systems
A distributed system has diverse components located on different machines that communicate together
and coordinate operations to appear as a single system in front of the user [27]. Within a distributed
system, amachine can be acomputer, virtual machine, container, physical server and any other node that
can connectto the network, have local memory and communicate by passing messages [28]. Nodes refer
to distinctentitiesinadistributed system.
For a systemto qualify as a distributed system, it must have the following minimum characteristics: The
components of distributed systems failindependently from each other; all components run concurrently

and each component atits own clock, hence thereis no global clock. With the evolution of mobile devices,
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social media and sensors, the quantity of data has considerably increased. Since the 1980s, Relational
databases(RDBMS) have been one of the most successful database

technologies. That notwithstanding, even with its solid technological growth, the relational database has
failed to scale with the growth of data [16]. Even though there have been technological advancements
over the years, relational databases still face challenges when it comes to scalability. With relational
databases developed to support tabular data which is more structured, they face a challenge when it
comes to dealing with semi-structured and unstructured data. The applications built using RDBMS
technologies either have failed to perform better with increased data or the cost of running and
maintaining the infrastructure to keep the application performing has grown exponentially [16]. Luckily,
a new generationof storages was developedusing distributed computing conceptsand paradigms to help
solve the limitations of relational databases. Inthe next paragraphs, different storage solutions following

the distributed system paradigm will be further explained.

Distributed Storage

Even though No-SQL came to solvethe needs for storing and managing large quantities of data and varying
structure, notevery application actually needs a database for storing and managing their data.
Previously, when data quantities of documents,images, videos were not large, they couldbe stored in the
file system and processed with domain-specifictools such as text parser and image processing software.
But as the size of data capturedin these forms (i.e. documents, images, and videos) increased, it b ecame
difficult to store and manage these datain a single node computing system [16].

In the past, data stored withina local file system was processed using a computing system with a single
node. But later on, better storage called RAID (redundant array of independent disks) storage, that was
adapted for storage of large scale data in file systems. One advantage of RAID is that it had a failover
mechanism, but only a single node could be used to process data. Even with this, data volumes still
increased and processing dataon a single node took longertimes orwas evenimpossible. Thisled to the
introduction of distributed file systems, whereby datais distributed across multiplelocal hard disks with
each beingassociated withaseparate computing node [16]. With this approach, each node processesthe
data stored on its local disk which enables parallel processingin such a way that large quantities of data
can be processed atthe same time and shorten processing durations. Hence the more nodesare available
within a system, parallel processing can be leveraged to accelerate data processing. This form of parallel

storage and processing of data led to the development of different distributed file systems such as the
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Google File System, Hadoop Distributed File System and other frameworks such as Map-Reduce and
Apache Spark [16]. HDFS will be described better below.
Hadoop Distributed File System (HDFS)

HDFS Architecture

- - | Metadata (Name, replicas, ...):

Metadata ops "| Namenode ‘ | Ihomefioo/data, 3, ...

0 Block ops
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Figure 2. HDFS Architecture [47]

It is a type of distributed file system that spreads across multiple nodes, with each of them having their
own local regular operating system for example Linux, on top of which HDFS is deployed. Within HDFS,
the metadata and actual data files are stored separately, with actual/application data being stored on
servers called DataNodes while metadata is stored on servers called NameNode [29]. The DataNode in
HDFS does not have any individual failover mechanism such as RAID. Ratherthe file contentisreplicated
on multiple DataNode for reliability. This has the advantage of data being local to the node, where the
computation will be carried out, which in turn reduces the overhead associated with data transfers
betweenthe nodesforcomputational purposes [16]. Inodes are used to represent directories and files in
the NameNode. Inodes record different things such as access and modification time, permissions,
namespace and disks space quotas. The file content is split into blocks known as HDFS blocks. An HDFS
block has a size of usually 128 MB, but maybe larger. Note that HDFS blocks are replicated on multiple
DataNodes. The NameNode maintains the namespace tree and the mapping of the HDFS blocks to
DataNodes (the physical location of the HDFS block) [29].

HDFS has an API that provides the locations of a file block, which enables distributed programming like

Map-Reduce framework to process dataina node locally where the dataislocated [29].

Distributed Computation

Traditionally, distributed and parallel computing relied on synchronization and locking. Nevertheless,
locking data and synchronization across multiple processes raises huge overhead. More so, traditionally,
parallel and distributed computing handled computation independently from the data. It was assumed

that data resided in adatabase or otherstorage systemthatis also accessible by many computing nodes.
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The data islocked and processedinthese nodesthrough parallel processing. In addition to the over head
generated by locking, such an approach adds alot of overhead in the transportation of datafrom the data
node (where the data resides) to the processing node (the node processing the data). [16]. The Map-
Reduce frameworkis a parallel programming framework that provides solutions to the issues associated

with parallel and distributed computing.

S S

Map-Reduce in Hadoop

Map Reduce Job Tracker Task Tracker Task Tracker Task Tracker
Admin Node Data Node - Data Node Data Node
HDFS Name Node

i i i

Figure 3. Map Reduce on HDFS [16]

The figure above showcases the architecture of Map-Reduce on HDFS. The Job Tracker breaks down the
job into multiple tasks and assigns them to various nodes. The task trackers are responsible for task
completion. Likewise, the Job tracker and the Name Node of HDFS can coexist in the same node. This
enables the task tracker to process local data without transmitting the data from one node to another
node. Additionally, the job tracker distributes the jobsin such a way that the task tracker processes only
the local data. In Hadoop 2.0, the job tracker was replaced with YARN, a separate software component to
manage tasks. The programming framework of Map-Reduce is based on considering datanot as a single
unit, butas a collection of multiple units [16]. With Map-Reduce, collections are consideredas Maps. Map-
Reduce performs datacomputation or processingin threestepsincludingMap, followed by Shuffle & Sort

and finally Reduce.
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Figure 4. Map-Reduce word count example [30]

Above is an example of Map-Reduce computation where the input is a set of files. Each file is split as a
collection of linesand the collection of all the linesis considered as a map, where the key is the location
of the line and the value is the line. The map is the input of the Map step in the map-reduce program.
map-reduce uses only the valuesinthe input map.

The map step initiates different programs and each of these programs is called mappers. Each entry of
theinputcollectionisinputto each mapper. The mapper programsplitsthe lineinto words and creates a
map of (Word, 1), where 1 is the count of the word in that line. The mapper program then sorts and
shuffles this map. Likewise, with the help of sorts and shuffle, all the mapper programs send the entries
(i.e.the count) associated with the same key (i.e. same word) to the same reducer.

When the reducerreceivesthe values related to akey(word),itthen sums up all the individual counts for
each specific word and then writes the results to HDFS. Note that each reducer write is independent of
otherreducersand each writeis keptas aseparate filein HDFS. This results in multiple output files created
by the map-reduce program, all running on top of HDFS. [16]

Apache Spark

Apache Spark was introducedshortly after the introduction of Hadoop. Apache Spark started as aresearch
project by Matei Zaharia at the University of California, Berkeley AMPLab in 2009 and open-sourced in
2010. Spark’s foundation came from Map-Reduce but got ameliorated, providing a robust, generalised
framework for distributed computationson big data. Apache Spark as an open-source project was handed
to the Apache Foundationin 2013 and since February 2014, Spark is a top-level Apache project. When it
comes to bigdata, one map-reduce programis notenoughto perform computation foranalytic purposes.
Most often a series of map-reduce programs will be needed to perform analytic computations, with the

output of sequential map-reduce programs being the input to other map-reduce programs. Most often
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the input to map-reduce programs is taken from distributed storages such as HDFS, No-SQL databases,
etc. and the output from map-reduce programs are written to HDFS [16].

This constant read and write to HDFS over the long term becomes inefficient, generates computation
overheadand its time consuming which overthe long run can cause more problems like slowing analytics
and delaying data processing and reporting. With the rise of machines with better memoryand processing
capabilities, Spark came into make use of those to offerfasterand more efficientin-memory processing
capabilities. Unlike Hadoop, Spark makes use of memory to avoid constant read and write to the map-
reduce workflow. Spark makes use of RDD to store collections of data.

RDD variables can be considered as collections of data that reside in memory and also span across
different computers. Thisis advantageous because, the collectionis distributed across multiple machines
and processing of the collection can be done in parallel on all these machines, where each machine does
the computation on its local memory. In addition, the distributed map-reduce processing in the case of
the sparkisdone on RDD (Resilient Distributed Datasets) which makes it faster than map-reduce on HDFS.
[16]

Apache Spark makes use of multithreading. Multithreading is the ability of a single core in a multi-core
processor or central process unit (CPU) to execute multiple threads concurrently, appropriately supported

by the operating system. [16]
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Figure 5. Spark multithreading model
Source: Retrieved from spark.apache.org
Spark applications runas an independent set of processes, coordinated by the SparkContext objectin the
Spark driver program withinacluster. In order forthe Spark contextto run ona cluster, it has to connect
to different types of cluster managers. It can connect to the standalone cluster manager of Spark itself
known as Mesos or another alternative known as YARN (Yet Another Resource Negotiator)) [31]. These

cluster managers allocate resources across different application on the cluster. Once connected, Spark
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acquires executors on nodesinthe cluster, which are processesthat run computations and store datafor
applications. Next, Spark sends the application code to the executors. Then the SparkContext sends the
tasks to the executors to run. Each application gets its own executor processes, which stays up for the
duration of operation of the entire application and run tasks in differentthreads. The advantage of this
isthat it isolates applications from each other, on both the scheduling side (thatis, each driver schedules
its own tasks) and executor side (that is, tasks from different applications run in different Java Virtual
Machines). [31]

Apache spark rapidly became a go-to option for data enthusiasts and practitioners because it was easier
touse, providing more functionalities thatincreased its utilityand broadened its appeal, performedbetter
on benchmark tests and supported streaming tasks. Spark’s accessible interactive mode enabled data
practitioners to perform exploratory dataanalysis(EDA) on large data sets, going beyond traditional Map-
Reduce ETL jobs they had done before. Spark enabled training machinelearning models at scale, querying
large data sets using SQL, and real-time data processing much faster-using spark streaming. Additionally,
since the early days of Spark, its popularity has grown, and it has become the go-to standard for big data
processing, due to its sizable committed community members, dedicated and passionate open source
contributors.

Nowadays, many data lake architectures use Spark as the processing framework that e nables datateams
to perform ETL, curate data and train machine learning models. In terms of speed, Spark runs an
applicationinaHadoop clusterupto 100x fasterin memory and 10x more quickly whenrunning on disk.
Spark accomplishes this by reducing the number of reads and write operations to disk. Note that Spark
storesthe intermediate processed datain memory.

Spark has built-in APIsin R, SQL, Scala, Python and Scala, enabling data teams to write applications in
different languages. Spark has up to 80 high-level operators for interactive queries. Besides, beyond
supporting ‘Map’ and ‘Reduce’, Spark also supports SQL queries, streaming data, Machine learning and
Graph algorithms.

The general execution engine for Apache Sparkis called Spark Core. Spark core helps toreferencedatain
external storage systems and provides in-memory computing. Additionally, Spark SQL introduces a data
abstraction called Schema Resilient Distributed Datasets(SchemaRDD), that supports unstructured, semi-
structured and structured data. Spark SQL also allows interaction with data on data frames which
organisesdataina tabularformat.

Spark streaming leverages spark’s core fast scheduling feature to perform streaming analytics. Spark

ingests data in mini-batches and performs resilient distributed dataset transformations on the mini-
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batches of data. Also, MLlib stands for Machine Learning Library. It is a distributed machine leaming
framework that seats on top of spark and includes some libraries and algorithms such as clustering,

classification, etc. Additionally, GraphXis a distributed graph-processing framework on top of Spark.

Distributed Messaging Software

There is nothing like a single node system within a big data system, each component is considered as a
cluster (one or more node(s) that take care of data distribution and computation). In such a scenario,
creating and managing one to one communication becomes a challenge [16]. In order to avoid this
challenge, big data messaging software or frameworks wereintroduced over the years such as Kafka, Flink
and RabbitMQ. RabbitMQ is a message-passing software used to manage streaming data since pre-big-
data days. From foundation, RabbitMQ had a single server system, but with the advent of big data, it has
incorporated clusteringinits architecture. The most popular message-passing systemin RabbitMQis the
pub-sub(publication-subscription) system. Within the publication-subscription system, there are message
publishersthatforma group and publish messages with different subjects and on the otherhand, there
are message consumers thatform a group and consume messages from the different subjects. RabbitMQ

can process messagesin a range of 20 to 30,000 perseconds and its strengthis on routing [32].
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Figure 6. Kafka Cluster[33]

Apache Kafka is a clustered stream data processing software. Due to its inbuilt clustering technology, a
Kafka clustercan process one hundred thousand to a few million messages perseconds. A Kafka cluster
consists of multiple partitions and multiple servers. Each partition has one server which acts as the
“leader” and zero or more servers which act as “followers.” The leaders handle all read and write requests
for that partition while the followers passively replicate the leader. Whenever the leader partition fails,

one of its followers automatically replaces it by becoming the new leader. Each serveracts as a leader for
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some of its partitions and a follower for others, so the load is balanced across multiple servers. The
strength of Kafka is that; it can consume massive volumes of stream data [34].

2.6 Data Integration

Regarding big data, as per Forrester Research’s Q1 2016 report, data preparation and data integration
technologies are within the scope of intense survival and growth phases, respectively. The ultimate goal
is to make data flow faster and seamlessly across multiple sources in data storages and provide strong
basesto enable analytics or business intelligence.

Besides, dataintegration requires evaluating dataacross many storages with different business needs to
produce a centralised master data management system among other operational systems. Data
warehouses or data lakes usuallyengage extraction, transformationand load processes to manipulate the
transactional and functional structure of the data.

Moreover, a normal ETL process might be useful in managing structured, batch-oriented data that is up
to date and within scope for organisationalinsights and decision making. On the other hand, dealing with
stream data necessitates a different model and significant tweaking to the ETL process [35] where low
latency, high availability, and horizontal scalability are vital features that need to be addressed in real -
time or nearreal-time environments [36].

Extraction, Transformation and Loading (ETL)

The ETL processis a representation of data movement and transactional processes from the extraction of
multiple data storages or sources, for example, transforming the data into a conformed format to send
the data to target systems such as data warehouses or data lakes. The ETL process is usually applied in
data integration, data migration, data stagingand datamanagement. The figure below illustrates the ETL
process flow in adata lake environment. The flowinvolves accessing datafrom asource system, then ETL
processing, thatincludes cleaning, integrating and staging the data before sendingthe transformed data

to target systems.
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Figure 7. ETL systemin a data lake or data warehouse environment
ETL systems or processes continuously need to support and evolve with the increase in data volumes,
endless streaming, an increasing variety of data types and sources, requests for analytics and real -time
userrequirements, availability of new technologies and powerful tools [16].
Features of near real-time environment
The main features of the near real-time environment include its high availability of streaming data,
horizontal scalability for performance improvement and low latency of intervals between transactions.
Every operational system needs to address these features asitcan limit the functionalities of the system
if not appropriately handled.
Concerning high availability, streaming data is always available in constant flow within seconds or
milliseconds. Streaming data is sensitive by nature, and the slightest disruption will affect operations.
Replication and distribution are vital considerations to guarantee fluidity of the data collection process,
lost data can be recovered and always available when called, even when faced with outages, receiving
overloads of throughput or data loss [36].
Furthermore, onlow latency, the speed requirementin delivering the most recent datato meet business
demandsis called datalatency. Compared to the periodical requirementin batch data, the time between
the events when data arrives and when data is made available to the user for near or real-time data is
almost instant and has low latency [36]. The traditional ETL process was designed to satisfy batch
processing where datarefreshment occurs during non-peakhours, of which operational activities can halt
temporarily. Hence could not produce accurate results for near or real -time analytics where stream data
flows continuously.
Moreover, horizontal scalingis the viable approach forimproving performance and alleviating the risk of
interruption of seamless data flow [36]. Horizontal scalability adds separate independent servers to a

cluster of servers handing different tasks and needs onlyallittle coordination betweensystems. Horizontal
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scaling offers more potential for expansion and less risky measures comparedto vertical scaling, in which
boosting its performance is limited within the capacity of a single machine. In vertical scaling, if the
machine has outages, the data flow is disrupted, and the system can potentially lose pertinent data.
Challenges within the ETL stages for near real-time environments

With the constant flow of most recent data in large volumes and real-time reporting with near or real-
time environments, traditional ETL systems need major rework and remodelling to support the
requirements [38]. Highlighted below are challenges of each ETL process step and possible solution
approaches.

Extraction

This processinvolvesidentifying dimensional data attributes from different databases, capturing change
data and getting data from the source location [38]. Streaming data like click streams, event logs, and
sensors are regularly and continuouslychanging. Streamdata challenges the way change datais captured
for constant update and loaded without disrupting normal operational activities [ 39] [40]. The figure
below identifies challenges associated with the extraction stepinthe ETL process within anear real -time

environmentand solutions approaches.

Extraction Stage

Feature Challenge Solution Approach

a) Stream Processor, Semanticweb
technologies toolkits.

b) Serverfor replication; Log-based Change Data

Capture.
a) Heterogeneous Data Source. ¢) Snapshot; RTDC (Real-Time Data Cache);
High b) Backup Data. Layer-based View; RODB(Real-Time Operational
Availability| c) OLAP Internal Inconsistency. Database).

a) Combine change data capture, stream

a) Multiple Data Source processorand data integrationtools.
Low Integration. b) Update significance and record changed
Latency |b)Data Source Overload. method; Special formatfor Change Data Capture log.
Horizontal
Scalability - -

Table 1. Challenges and solutions in the extraction stage for near real-time environment [38]

23



Transformation

Transformationis the process whereby datais cleaned and conformed into a predetermined format,
shared across different organisational platforms and needs [38]. Constant refreshment of transactional
data occurs in near-real-time data, hence the frequency at which the master data updatesis higherthan
that of batch data. Also, the quantity of data carried into the target system aftertransformationis
smallerand constant, that makes the transformation process efficient by processing smalleramounts at

a more frequentrate [41].

Transformation Stage

Feature Challenge Solution Approach
High
Availability - -
Low a) Master Data Overhead. a) Master data cache and database queue.

Latency |b)Intermediate Server For Aggregation.|b) ELT (Extract Load Transform).

Horizontal

Scalability |Separate Server For Aggregation ELT (Extract Load Transform).

Table 2. Challenges and solutions in the transformation stage for near real-time environment [38]

Loading

In this step, transformed data or metadata is sent to the target storage system, for example, a data
warehouse or data lake. The biggest challenges are to maintain maximum performance during Online
Analytical Processing(OLAP) or analytical process to avoid overlap while loading data [41] [40] and also,

due to OLAP or analyticsinternal inconsistency.

Loading Stage

Feature Challenge Solution Approach

Snapshot; RTDC (Real-Time Data Cache);

High OLAP Internal Layer-based View;
Availability| Inconsistency RODB(Real-Time Operational Database); Dynamic mirror
Low Staging Table;

Latency |Performance Degradation|Multi-Stage Trickle & Flip
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Horizontal | OLAP Internal Staging OLAP outside data warehouse update period;
Scalability [Inconsistency CR-OLAP(Cloud-based Real-time OLAP system)

Table 3. Challenges and solutions in the loading stage for near real-time environment [38]

2.7 Delta Lake

According to delta.io, Delta Lake is an open-source storage layer that brings atomicity, consistency,
isolation and durability transactions to Apache Spark and big data workloads [48]. Databricks released
deltalakein 2019 andit is presently open-sourced with the Linux Foundation project. Deltalake came in
to solve shortcomings of data lakes. There are two main challenges associated with datalakes, including
data reliability and Query performance which delta lakes come into solve.

Data Lake data reliability issues and Delta Lake solutions

In the absence of the right tools, data lakes can rapidly face data reliability problems. In the next
paragraphs, the instigators of data reliability issues on a data lake and how delta lake comes in to solve
the problem are betterexplained.

Reprocessing data continuously due to broken pipelines or corrupted data in a traditional data lake are
significant issues. Pipeline breaks mostly occur due to hardware or software failures during the data
writing phase in a data lake when the job does not complete. When this happens, datateams spend lots
of time and energy deleting corrupted data, verifying the correctness of the remaining dataand settinga
new write job to fill in any loopholes in the data. On the other hand, delta lake solves the reprocessing
issue by making the data lake transactional, hence ensuring that every operation performed onthe data
lake is atomic. Atomicity will ensure that either the operation succeeds entirely or fails. Data teams, in
turn, will not spend lots of time reprocessing data due to broken pipelines or failed writes.

Quality enforcement and data validation are also issuesin data lakes. Data validation is vital in data
applications because, inits absence, there is noway to verify whether somethingisinaccurate or broken
in the data, as opposed to traditional software applications where something wrongis easiertofind, for
example, a broken website which will display an error message. Data quality problems go unnoticed in
data applications. Sometimes these corrupted data can only be identified after pipeline breaks, which
becomes painful to solve depending on the critical level. On the other hand, delta lake’s features of
schema enforcement and schema evolution help to manage data quality. Schema enforcement and
schema evolution, allows data teams to specify a schema and enforce it, also change a table’s current

schemato cope with changing data overtime, respectively.
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Bulk updates, merge, and deletes are also data reliability challenges in data lakes. Since data lakes can
contain large amounts of data, organisations need to reliably perform an update, merge and delete
operations on data stored in data lakes, make sure the data is up to date at every pointin time. With
traditional data lakes, itcan be extremely challengingto perform delete, merge and updates operations
and confirm everything of each was successful since there is no mechanismto ensure data consistency.
In recent years, not being able to perform delete, merge and update effectively has become a
considerable burden for organisations since current regulations such as CCPA and GDPR require
organisations to delete all of a customer’s information upon request. Traditional data lakes face two
challenges, making this delete request. Organisations need to be able to query all the data in their data
lake using SQL, also delete any data related to that customer on a row-by-row basis, that is something
traditional analytics engines are notin-built to do. On the other hand, the delta lake solves this by enabling
data teamsto querythe datain data lakes using SQL easily. Then perform updates, merge and deleteon
theirdatawith asingle command, thanks to deltalake’s ACID (atomicity, consistency, isolation, durability)
transactions. Additionally, Delta lakes combine streaming and batch sources and sinks, that enables the
creation of a single flow of data that allows usersto focus on data quality [42] whenimplementing data
movement processes, hence ensuring top data quality.

Data Lake query performance issues and Delta Lake solutions

The second major challenge associated with data lakes is query performance. Query performance is a
significantdriver of usersatisfaction for data lake analytics tools. For data teams performing exploratory
data analysis using SQL, rapid response to common queries is essential. Since data lakes hold a large
numberoffilesandtables, the datalake query engine should be optimised for performance atscale.
Small files in large numbers within a data lake instead of larger files can slow down performance
considerably due to limitations with Input/Output throughput. Delta lakes solve this by using small file
compactionto group small files into largerfiles, optimised for reads.

Furthermore, aslowdown in query performance can happen due to repeatedaccess of datafrom storage.
Delta lake solves this by using its caching feature, to selectively hold important tables in memory, to
ensure the quickerrecall of the tables. Delta lake also uses data skipping to boost read throughput by up
to 15x, to avoid processing datathat is not relevantinagiven query.

Moreover, on modern data lakes using cloud storage, files deleted from the datalakes can remainforup
to 30 days, which creates overhead that slows query performance. Delta lake has avacuum command to

delete filesthatare nolongerneeded permanently.
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Likewise, to facilitate query performance, the data lake has to be appropriatelyindexed and partitioned
alongthe dimensionsby whichitis mostlikely to be grouped. Deltalake can create and maintain indexes
and partitions, better optimised foranalytics.

Also, as the data lake size grows to petabytes ormore, a bottleneck might notbe the data itself, but the
metadatathat accompaniesit. Delta uses Spark to offerscalable metadata managementthat distributes
its processing, just like the dataitself.

The delta lake’s architecture is called the delta architecture, and it has three different stages of data
enrichmentincluding Bronze (raw zone), Silver (prepared zone), and Gold (curated zone).

The bronze zone is where all raw data is dumped and stored there for the long term. The silver zone is
where basicdatacleaningand aggregation happen, and the gold zone containscurated data that is ready
for consumption by stakeholders, applications, and machine learning models. Also, this setup enables
fasterreprocessing of databecause since dataisavailable on all zones, in case data has to be reprocessed
withinazone, tables are deletedonthat zone and processingis run onthe previous zone. Hence avoiding
goingthrough the entire dataloading part again.

2.8 Modern Data Storage Solution

With the amount and variety of information growing exponentially due to digitisation, social media, and
internet of things (loT), organisations are in high need to develop adata-driven culture. Traditional data
storage solutions are getting quickly outdated due to theirinflexible nature and inabilityto combine huge
volumes of different data types.

Nowadays organisations need to have a more proactive approach when it comes to decision support and
decision making but face asignificant challenge due to the lack of access to accurate, relevant, and re liable
information on a timely basis [13]. Traditional organisations rely on data warehouses. However, data
warehouses become a burden as they cannot cope with the market pressures suffering from deep
limitations in adapting to new data formats requirements and technological developments. The above
brings up abigger question as to whether ‘Old data warehouse’still meetsthe requirements of their users’
needs.

A moderndataplatformisafuture proof architecture foranalytics with components supportinga modem
data warehouse, machine learning and artificial intelligence development, real-time data ingestingand
processing [43]. A modern data platformisvital to help organisations overcome the challenges linked to
traditional data storage solutions. In this new decade, organisations require a data platform that will
enable them to adapt to continually evolving business needs and manage data growth. Organisations

must be agile and proactive, with standardised processes and a single source of truth to better support
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decision making. Additionally, the MDP must run on state-of-the-art software supported by high-
performance hardware.

Databricks as a Modern Data Processing and Storage solution

Databricks enables organisations to bring their data warehouses or data platforms into a modern era.
Note that, there are other data platforms availabletoday such as Cloudera, but the focus in this work will
be on Azure databricks. Azure Databricks is an analytics data platform enhanced forthe Microsoft Azure
cloud [44].

Azure Databricks offers collaboration across the full data and machine learning lifecycle with the Azure
Databricks workspace. It has collaborative notebooks which enable datateams to access and explore data
quickly. Additionally, it offers preconfigured machine learning environments with machine learning
frameworks such as PyTorch, Tensorflow, Sci-kit Learn, Keras and XgBoost. Machinelearning experiments
can be tracked and shared, runs reproduced, and models can be managed collaboratively from a central
repository, from experimentation to production. Azure Databricks also supports different business
intelligence tools such as Qlik, Microsoft powerBl, Lookerand Tableau.

That notwithstanding, Azure Databricks includes delta lake, that brings data reliability and scalability to
an existing data lake on the Azure cloud. Databricks offers simple batch and stream data processing on
auto-scalinginfrastructure powered by highly optimised apache spark. Also, databricks offers enterprise-
level security, which offers native protection to safeguard data where it lives and creates compliant,
private and isolated analytics workspaces across thousands of users and datasets.

Organisations can audit and analyse all the activity in their account and set policies to administer users,
control their budget on Azure cloud. Besides, organisations can run and scale their most mission-critical
data workloads on Azure cloud, with the ecosystem integrations for continuous integration and
continuous development and monitoring. The modern data platform designed with Azure Databricks
provides answers to the five challenges associated with traditional data warehouses/platforms including
rigid structure, complex architecture, slow performance, outdated technology and lack of data
governance, covered previously in this section.

Azure Databricks, through deltalake, stores, and analyses datano matter its source, form and structure,
enablingdatateamsto perform ETLor ELT process the dataacross their data platform. With ETL, datacan
be processed before loading on the deltalakearea, while with ELT, the dataisloaded directly in the delta

lake areabefore itundergoes atransformation.

28



Besides, Azure Databricks offers an open and simplified architecture on the cloud to tackle data
governance issues. Databricks combines data within a single system, enabling situational data analysis
that reduces datamovement and computation resources wastage.

Furthermore, with the rapid rise in demand for speed in data preparation and consumption processes,
Databricks offers advanced analytics and speedy transactions throughout the data processing life cyde.
Spark’sin-memory architecture lowers disk bottlenecks and accelerates performance to provide arapid,
and accurate response. Azure Databricks also helps a lot to accelerate data integration from different
sources and to load them on the target systems on and out of cloud environments.

Moreover, traditional data platforms/warehouses have little or no ability to support big data and loT
workloads. But, Azure Databricks comes in to solve those challenges and boost performance. Azure
Databricks is hosted on Microsoft Azure cloud, enabling a ‘pay as you go’ system for organisations. This
helps to reduce capital expenditure with organisations not buying physical assets and reduces finandal
risk. Azure Databricks through delta lake brings ACID transactions to data lakes on Azure and enables
organisations to better curate data available on their datalakes.

Additionally, Azure Databricks provides comprehensive security and auditing functionalities. Also,
solutions that provide access control to data within teams and organisations. Databricks provides data
lineage and time travel that ameliorates traceability of actions performed by users.

All the above put Databricks on Microsoft Azure cloud, a preferred solution to build a modern data

platformonthe cloud.
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3. Tools and Technology

The MDP project had different technology components. The tools used during the internship to build the
delta lake and ETL pipelines will be exploredin this chapter, to give a more detailed overview as to why
the financial institution chose these specifictechnologies.

Azure Cloud

Microsoft Azure cloud is a continually evolving set of cloud services to help organisations sol ve their
business problems. The Azure cloud offers the freedom to build, manage, and deploy applicationson a
massive, globalnetwork using different tools and frameworks. The Azure cloud technologies used in MDP
were Azure Data Lake Storage Gen2, Azure Cosmos DB, Azure Databricks with deltalakes.

3.1 Azure Data Lake Storage Gen2

Azure Data Lake Storage Gen2 is a group of capabilitiesfocused on big data analytics, built on Microsoft
Azure cloud blob storage. It is the result of combining the capabilities of Azure Data Lake Storage Genl
and Azure Blob storage. Its components include features from Azure Data Lake Storage Genl, such as
directories, file system semantics, file-level security and scale, combined with low-cost, tiered storage,
high availability and disaster recovery capabilities from Azure Blob storage.

Data Lake Storage Gen2 is built on top of blob storage and enhances performance, management, and
security inthe following ways:

e |t is optimised because data does not have to be copied or transformed as a requirement for
analysis. The hierarchical namespace in Azure data lake gen 2 enhances directory management
activities comparedto the flat namespace presentin blob storage.

e It is easy to manage because files can be organised and manipulated through directories and
subdirectories.

e Itishighly secured because POSIX permissions can be defined on directories or individual files.
Security is paramountbecausethe client is afinancialinstitution, it entails stricter data protection
rules.

e Azure Storage is scalable by design, whether it is accessed via Data Lake Storage Gen2 or Blob
storage interfaces. It can store and serve many Exabyte of data. This quantity of storage is
available with its throughput measured in Gbps (gigabits per second) at high levels of IOPS
(input/output operations per second). This scalability component allows the storages of the

financial institution to scale with increasing data quantities.
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e Anotherbenefit of building Data Lake Storage Gen2 on top of Azure Blob storage is the relatively
low cost of storage capacity and transactions. Unlike other cloud storage services, datastoredin
Data Lake Storage Gen2is not necessary to be movedortransformed before performing analysis.
Otheralternativesfor datalake services provided by different cloud companiesinclude:

i.  Amazon simple storage service (Amazon S3): Itis a data lake solution developed by Amazon web
services, asubsidiary of Amazon. Due toits virtually unlimited scalability, Amazon S3 can serve as
a data lake. The storage can be increased seamlessly and non-disruptively from gigabytes to
petabytes, and payingonly forthe storage used. Amazon S3 provides 99.999999999% durability.

ii.  Google cloudstorage: Anotheralternative toazure data lake gen2is google cloud storage. Itisa
RESTful online file storage web service forstoringand accessing data on Google Cloud Platform.
Google cloud storage combines the scalability and performance of Google's cloud with advanced
sharingand security abilities.

3.2 Azure Databricks

AnotherAzure cloud technology used inthe MDP project was Azure Databricks. Databricks isan Apache
Spark-based analytics platform optimised for Azure cloud. Developed with the creators of Apache Spark,
Databricks is unified with Azure cloud to provide streamlined workflows, one-click setup and an
interactive workspace that enables collaboration between data scientists, data engineers, and business
analysts.

Azure Databricks is composed of the complete open-source Apache Spark cluster technologies and
capabilities. Other alternatives to the azure data bricks services provided by different cloud companies
include:

i.  Amazon EMR (Elastic Map Reduce): EMR isa managed cluster platform provided by AWS to help
organizations run big data frameworks such as Hbase, Hive Hadoop, Spark, Hudi and Presto on
the cloud to extract, transform and analyze large quantities of data. By using this framework,
organisations can process data for analytics purposes and business intelligence workloads.
Amazon EMR is used to extract, transform and load data into and out of AWS storages services,
for example, Amazon Dynamo DB and Amazon S3 (Simple Storage Service).

ii. ~ AWS Databricks: It is a unified data analytics platform for accelerating innovation across data
science, dataengineering,and business analytics, integrated with the AWS infrastructure.

iii.  Cloud dataproc: Dataproc is a managed Hadoop and Spark service provided by Google cloud
platformtoenable datateamsto process data both in batch and stream, query and run machine

learning algorithms.
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Dataproc automation helps to create clusters quickly, efficiently manage them and save money
by turning off clusters when they are not in use. With less money and time spent on
administration, datateams can focus on theirjobs and data.
3.3 Delta Lake
Deltalakeisatool proposed by Databricks usedinthe MDP project. The promise by the creators of delta
lake which is Databricks is that with delta lakes there is no more malformed data ingestion, difficulty
deleting data for compliance, or issues in modifying data for change data capture. It accelerates the
velocity that high-qualitydata can getinto adatalake and the rate that teams can leverage that data, with

a secure and scalable cloud service.
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Figure 8. Delta Lake Layout
Source: Retrieved fromdelta.io
Below are the features of the delta lake that made it the go-to solution to resolve issues associated with
typical data lakes forthe financial institution:
e Numerous data pipelines can read and write data simultaneously to a delta lake. A data lake’s
ACID Transactions ensure dataintegrity with serializability, the most substantial level of isolation.
e Deltalake providesdata manipulation APlsto merge, update, and delete datasets. It allows the
organisation to easily comply with the General Data Protection Regulation(GDPR)/Califomia
Consumer Privacy Act(CCPA) and simplify change data capture.
e It enables data lake schema specification and enforcement, ensuring that the data types are
correct and required columns are present, and preventing corrupted data from causing data

corruption.
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e Deltalake enables time travel (Data Versioning). Data snapshots allow the organisation’s data
teams to access and revert to earlier versions of data to audit data changes, reproduce
experiments or rollback bad updates.

e Allthe datain the Deltalake isstoredin Parquetformat. The parquet format enables Delta Lake
to leverage the efficient compression and encoding schemes that are native to Parquet.

e Atableina Deltalake is a streamingsource and sink, but also a batch table. Delta Lake enables
the organisation to make changes to a table schema that can be applied automatically, without
the need forcumbersome Data Definition Language.

e Thedeltalake transactionlogrecords every detail about any change made to the data, providing
a complete history of changes, for audit, compliance, and reproduction purposes.

So far, the deltaarchitecture ordeltalake has no direct competitor providing similar or more competitive

features.

3.4 Azure Cosmos DB

Another Azure cloud tool used in the MDP project was Azure Cosmos DB. Cosmos DB is a globally

distributed and multi-model database service created by Microsoft. Cosmos DB enables developers with

a click of a button, to elastically and independently scale storage and throughput across any number of

Azure regions worldwide. Developers can elastically scale storage and throughput, and take advantage of

fast, single-digit-millisecond data access using their favorite API, including MongoDB, SQL, Gremlin and

Cassandra.

Cosmos DB guarantees single-digit millisecond response times and 99.999% availability. The most

significant advantage of CosmosDB overall its competitorsis thatit providesfourstorage API’s all at once

within one database.

Otheralternatives azure cosmos DB services provided by different cloud companies include:

i.  Amazon DynamoDB: It is a document and key-value database created by Amazon web services

that deliver single-digit millisecond performance at any scale. DynamoDB has the capacity to
handle more than 10 trillion requests per day and can support peak request which reaches 20
million persecond.
DynamoDB supports ACID transactionsto enable datateamsto build business-critical applications
that can quickly scale. Additionally, DynamoDB encrypts every data by default and provides fine-
grained access and identity control on all the tables within the database. Developers can easily
create full backups of terabytes of data instantly without any performance impact to tables on

the database and recoverat any pointin time inthe preceding 35 days with no downtime.
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ii.  MongoDB Atlas: It is another alternative to Azure cosmos DB. The centre of MongoDB Cloud is
called MongoDB Atlas. It isa fully managed cloud database for modern applications. MongoDB's
document model brings flexibility and ease of use to databases. Atlasis available in more than 70
regions across Amazon Web Services, Azure Cloud, and Google Cloud Platform.

3.5 Confluent - Schema registry

This tool enforces schemas and handles schema evolution. With the potential change of schema
happeningin the future and for the data pipelines not to break, the schema registry will inte rvene to
ensure that does not occur.

Furthermore, Schema Registry provides a serving layer for metadata. It provides a RESTful interface for
keeping and retrieving Avro schemas. It keeps a versioned history of all schemas, provides multiple
compatibility settings and enables the schema evolution according to pre-configured compatibility
settings. Confluent Schemaregistryhas serializers that connect to Kafka clients to handle schema storage
and retrieval for Kafka messagesthat have an Avro format [45].

An alternative to the confluent schema registry service is the Red Hat Integration service registry. ltis a
datastore for standard event schemas and APl designs. It enables developers to decouple the structure of
their data from their applications and to share and manage their data structure using a REST interface.
The Apicurio Registry open source community project supports the development of a red Hat service
registry.

Also, the service registry handles the Apache Avro JSON Schema, Protobuf (protocol buffers), OpenAPI
and AsyncAPI data formats. Developers can configure rules for each artefact added to the registry to
govern content evolution. Before sendinganew version to the registry, all commands configured for an
artefact must pass. The objective of these rules is to preventinvalid content from being added to the
registry. An alternativeto Confluent schemaregistry is Red Hat’s Integrationserviceregistry. This registry

from Red Hat provides a Kafkaschemaregistry that helpsto store Avro schemas.
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4. Projects

At the beginning of the MDP project, every team membersigned an NDA document with Accenture and
theirclient (bankingfinancial institution) which limits the sharing of information about the project, code
or details of technology configurations done within the project. Examples of diagrams, code and
configurations throughout this work, will be similar to those done during the MDP project.

The MDP project consisted of buildinga modern data platform for the banking financial institution on the
Microsoft Azure cloud. The new data platform was going to be a set of integrated storages that will
consume data from the company’s legacy system, aggregate the data, structure it, and store it on azure
cloud storage resources.

Within the MDP project, the Accenture team focused on the project section to migrate and transform
data from the mainframe storage to azure data lake gen 2, which will serve as the data lake for the
organisation. Inadditionto this, extract datafromthe datalake to load it on azure cosmos DB, which was
goingto be usedto serve mobile applications developed by the banking financial institution.

Besides, we also performed code refactoring, unit tests, and pyTest on the MDP code within Databricks
and locally on computers.

Timeline

Before starting the MDP project at the client site, between November and December 2019, the project
team worked at the Accenture office where we received hands-on practical and technical knowledge on
big data technologies related to the project, leadership, and communication skills to better prepare for
the clientwork. This training had workshops, group projects, and presentations.

From January to June 2020, we worked directly with the client on their MDP project. From January to
March, the team worked at the client site, but due to COVID-19, we had to work remotely from home
after March.

The project structure followed the agile methodology, and Scrum framework was adopted. The Scrum
framework helpsteamswork better together. The project had a product ownerwho served as the face of
the client within the project and a scrum master who helped the team adopt the scrum methodology’s
best practices.

Furthermore, a product backlog helped to prioritise the project work. A product backlogis a list of work,
prioritised for the development team, derived from the project roadmap and its requirements. The
product backlog’s priorities were defined by the team’s product owner. Any work done by the team, was
conducted withinasprint. Sprintsare short, time-boxed periods whena scrumteam works to complete a

predefined amount of work. Sprints are at the centre of the scrum and agile methodologies, and getting
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sprintsright, helped the team deliver software with fewer headaches. Each sprint had a duration of two
weeks.

In line with the above, to plan for each upcoming sprint, the team had sprint plannings. During the
planning meeting, the team decided what work to focus on and how to accomplishit. The product owner
and the team defined work based on the backlogitemsstill left to do. Note that the backlog serves as the
connection between the product owner and the development team. It is during this planning that each
team member’s work was defined based on his or her accomplishments of the previous sprint in
completingtasks and future tasks that were left to do.

Once the sprint had started, the team had daily stand-ups, during which we all reported work progress.
Duringthis meeting, the team members highlighted the current challengesthat were going to impact the
team’s ability to deliver the sprint’s goal. Once a sprint was over, there was a sprint review. During the
sprint review, each team member had the opportunity to present their work to stakeholders and
teammates before sending to production.

Also, the team had sprint retrospectives that were done at the end of sprint cycles to spot areas of
improvement for the next sprint. Note that all highly concurrent spark clusters on Databricks for this
project were configured by the client’stechnologyteam, to ensure monitoring of resources and to enable
team membersto share computing resources of the same cluster. Allteam members wrote and organised
theircode ininteractive Databricks notebooks.

4.1 Project 1 - Building Data pipelines to move data from mainframe storages, transform and load on

the delta/data lake and cosmos DB.

Ingest Store Preparation Serve
AzZlre ? » » 6‘2
Databricks Azure Data Azure
Lake Gen 2 Databricks Cosmos DB

On-premise
Database ‘[ J‘

Figure 9. Modern data platform of the financial institution

The MDP of the banking financial institution had different areas including ingestion, store, preparation
and servinglayer.

The ingestion section focuses on the extraction of data from on-premise databases of the finandal
institution in streams with the help of Azure Databricks, then sendingthe data to Azure data lake Gen 2.

Azure Databricks was chosen as an ingestion tool because itis an Apache Spark-based analytics platform
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optimised for the Microsoft Azure cloud services platform. It supports both stream and batch data
ingestions, hence can easily consume stream data from Apache Kafka.

Furthermore, the store layer helps with the storage of data on the data lake. The data lake used by the
financial institutionis Azure datalake gen 2 due to its capabilities dedicated to big data analytics such as
file system semantics, directory, file-level security, also, due to its scalability combined with low-cost,
tiered storage and high availability/disaster recovery capabilities.

Data preparation was done using Azure Databricks because it will help the financial institution to unlock
insights from all their data and build artificial intelligence (Al) solutions. Azure Databricks provides
interactive workspace and on-demand scalable clusters that enable collaboration between all members
of a data team. Besides, Databricks bringsin deltalake, to allow ACID transactions on top of the datalake.
Additionally, Databricks has fully scalable, secured and managed clusters which teams can use flexiblyto
process massive amounts of data.

The serving layer used ComosDB because it is a globally distributed, multi-model database service for
operational and analytics workloads. Additionally, it provides 4 APls, namely, SQL, MongoDB, Cassandra,
and Gremlin.

Project phase 1 - Data Migration from On-premise database to Delta lake raw(bronze) zone

Raw delta table
kafka

N (%) CONFLUENT Databricks .

On-premise ~ Confluence

Database Schema
e e

Figure 10. Data migration resources lay out

The objective of this phase wastoingestthe datafrom the company’s databasesand send it to the delta
lake raw zone.

The data extraction fromthe clients’ storages happened in streaming mode. The data centre team of the
clienthadto capture datain real-time fromthe databases as events. Apache Kafkawas used as an event
streaming platform by the financialinstitutionand all the data from the databases were convertedto Avro
formatand published to Kafka topics progressively during the projectimplementation.

Apache Avro is an Apache Foundation open-source project that offers data serialisation and exchange
services for Apache Hadoop. Apache Avro eases the exchange of big data between programs written in
any language. With the serialisation service, programs can efficiently serialise datainto files or messages.
The data storage is compact and efficient. Apache Avro stores the data definition and the data together

inone message or file.
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Furthermore, Apache Avro stores data definitions in JSON format and data is kept in binary form. An
important pointto note about Avroisthatit provides strong support for data schemas changing over time
— often called schemaevolution. Avro can handle schema changes such as missing, added and changed
fields; this enables old programs to read new dataand new programs to read old data. Avro includes APls
for Java, Python, Ruby, C, C++, and more.

Additionally, data stored in Avro format can be exchanged between programs written in different
programming languages such as C, Java, etc. The extraction of data from the databases occurred at
different intervals during the project, and new fields were added to the Avro files with their schemas
continually changing. The team had to ensure that the Avro files sche ma could change overtime withthe
addition of new fields, without rebuilding the entire Kafka platform and avoiding break ing data pipelines.
Additionally, Confluent’s confluence schema registry came in as the perfect tool to help the data centre
teamimplement schema evolution in the Kafka platform. To ensure thatas new fields were added to the
Avro files extracted at different intervals and sent to Kafka, the Avro schema registered in Kafka could
evolve seamlessly without breaking the Kafka platform, takinginto account new fields added.
Moreover, once the data was available in Kafka, we then used Azure Databricks to read Kafka streams,
using built-in PySpark Kafka consumer configurations, that were re-adapted for the project use case. The
subscriptionis ononly one Kafkatopicat a time.

Below is an example of PySpark code to read Kafka streams;
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Figure 11. Kafka streams consumption layout

kafka_strean_df = spark.readStream.format("kafka"

option("kafka.bootstrap.servers”, brokers_list

option("subscribe”, topic).option(“startinglffsers”, “earliest"”
.load().select
A.from_avro(“key", key_avro, SCHEMA_REGISTRY_URL).altas("key”
A.from_avro("value™, value_avro, SCHEMA_REGISTRY_URL).alias{"value"), "topic", "partition™, "offset", "timestomp"
dataframe = kafka_stream_df.select(F.col e F.col("value").alias alue
F A F.col{"partition \v ast
F.col(“offset").cast("long"),F.col("timestamp"))

Figure 12. PySpark Kafka read stream
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From the above code, the variable kafka_stream_dfcontains data from the Kafka stream. Itsvariables

include:

Format(“Kafka”):indicates the fileformat. Itis Kafka because weare reading data from the Kafka
stream.

kafka.boostrap.servers: The Kafka “bootstrap.servers” configuration is a comma-separated list of
host and port pairs that are the addresses of the Kafka brokers in a Kafka cluster that a Kafka client
connects to initially bootstrap itself. The brokers_list is a predefined variable that contains the
name(s) of a broker(s).

Subscribe: The topic list to subscribe. Only one of “assign”, “subscribe” or “subscribe pattem”
optionsisthe Kafkasource. The topic part is a predefined variable containing atopicname.
startingOffsets: The start pointof a query. Itis either “earliest” which indicates to start fromthe
earliest offsets or “latest” which indicates starting from the latest offsets, or a JSON string
specifying a starting offset for each topic partition.

from_avro: This helps to transform Avro data into a column. Apache Avro is a commonly used
data serialisation systemin the streaming data pipelines.

Key_avro: Key of the Kafka message.

value_avro: Value of the Kafka message.

SCHEMA_REGISTRY_URL: variable with URL of the Schema Registry to define schemas to the

topics.

The next part of the code above selects some elements from the Kafka stream and turns themto columns,

storedin a spark dataframe. Then the spark dataframe is written as a deltatable to the raw zone of the

data lake. Below isan example of code.

‘ | Raw delta table
4’:

'

;
Databricks H .

H
H
i Data Lake
;

Figure 13. Writing data to the raw deltatable on the data lake raw zone
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dataframe.writeStream

.format{"delta")

.outputMode("append")

n

.option{"checkpointLocation", checkpoint_location}
.start{table_location)

Figure 14. PySpark write data streamto raw zone
The componentsinclude:

o format(“delta”): The file format. The formatis deltabecause it’'sadeltatable.

e outputMode: mode in which data adds to the table. Structured streaming runs by defaultin
append mode, butcan alsorun inan update or complete mode.

e checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed,
developers specify the location where the system willwrite all the checkpointinformation. In the
case of stream write failure, the ending location is stored so that once the stream starts, it will
begin from the point it previously ended. The checkpoint location is a directory in an HDFS-
compatible fault-tolerant file system. Checkpoint_location is a predefined variable which contains
the checkpoint path on HDFS.

e table_location:the path to the location where the table will be stored. The pathis the raw zone
location on azure data lake Gen 2.

Duringthis project phase, there were excessive waiting times forthe client’steam to write datato Kafka
topics due to security scrutiny and the amount of data extracted that needed administrative approval.
Additionally, forsome of the data to be extracted fromthe client’s legacy database, new API’s had to be
developed by the client’s team. To ensure proper conversion of data to Avro format, that took some
development time and increased waiting time for data to be available in Kafka. The delay sometimes
affected the delivery of project work ontime.

Project phase 2 - ETL processes to move data from deltalake to Cosmos DB

This phase of the project consisted of building the prepared and curated zone on the delta/datalake and
sending datafrom the curated areato Cosmos DB.

Building the prepared(silver) zone

Raw delta table l Prepared delta table

Databricks
Data Lake Data Lake

Raw Fone Prepared Zone

Figure 15. Raw zone to prepared zone data movement layout
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The data on the raw zone was extracted using databricks, parsed and basic transformations were done
following the client’s business requirements only to send the required columns to the prepared area.
Streams of data from the raw zone were read and stored in a spark data frame in deltaformat, using the

code below.

Databricks

Raw delta table |
!

ll :

!

!

!

!

!

.

Data Lake

Figure 16. Read data streamsfromthe raw zone

dataframe_rawzone = spark.readStream
.format("delta")
.load(target_table)

Figure 17. PySpark read the data stream from raw zone
The componentsabove include:
o format(“delta”): The file format. The formatis deltabecause it’sadeltatable.
o load(target_table): contains the location where data was stored. target_table is a predefined
variable thatincluded a path to the data found on the raw zone.
Thenthe deltatable column with Avro data was parsed to fetch only the required elements to turn them

into columns, making use of the spark SQL functions “col”. Example of code is as below.

organization | accountnum | description

JSON ‘

Databricks

Avro data

Figure 18. Converting JSON datato columns

datafrase_transactions = datafrane_rawzone.sslect(col("value.afterinage, ").al3as("org

col("value.afterinage. .alias("accountn

col("value.afterinage.HX_3") . alias("

col("value.afterinage. ias

col(“value.afterinage, Lias ("t

EE X
I3
o o o U o9

col("value.afterinage.HX Vias(™

Figure 19. PySpark parse data from raw zone
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Then basictransformations or joins were done to obtain adelta tablethat was going to reflect the business

requirements given by the client.

dataframe_transactions.createOrReplaceTempView("TransactionView"

sql_query = '''SELECT organization, accountnum, description,
processdate,transactionoccurencedate,money
FROM TransactionView t
LEFT JOIN platform.refrencedata plt ON plt.truetransact = tv.accountnum''

df_transactions_modified = spark.sql(sql_qgquery)
Figure 20. Performing transformations on spark dataframe

The components of the above include:

e createOrReplaceTempView: creates aview of the spark dataframe.

e sgl_query:variable containingthe SQLquery.

e spark.sql(): runs the predefined SQL query to obtain a new dataframe stored in a variable.

df_transaction_moditified is the variable containing the obtained spark dataframe.

Once the data transformation was over, the spark dataframe was then written to the prepared(silver)

deltatable onthe data lake prepared zone.

|
|

|

i

Prepared delta table |

‘ — :
—_— !

. :

|

'

|

|

|

|

|

|

Databricks

Data Lake
Prepared Zone

Figure 21. Sending datato the prepared deltatable on the prepared datalake zone
df_transactions_modified.writeStream. format({"delta").}
outputMode ("append” ) .option("checkpointLocation”, checkpoint_transaction) .’
start(table_location)
Figure 22. Writing data to the prepared zone
The components of the above include:
o format(“delta”): Formatisdeltabecauseit’sadeltatable
e outputMode: mode in which dataaddsto the prepared deltatable. Structured streaming runs by
defaultinappend mode, butcanalsorun in an update or complete mode.
e checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed,
developers specify the location where the system willwrite all the checkpointinformation. In the

case of stream write failure, the ending location is stored so that once the stream starts, it will
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begin from the point it previously ended. The checkpoint location is a directory in an HDFS-
compatible fault-tolerant file system. Checkpoint_transaction is a predefined variable which
containsthe checkpoint path on HDFS.

e start(): hasthe path where datawrites senddata. table_locationis a predefined variable that held

the path of the prepared deltatable onthe prepared datalake zone.

Building the Curated zone
Thissectionfocused on performing more complex transformations or aggregations on the data from the

data lake prepared zone and sending the datato the curated deltatable on the data lake curated zone.

A A

Prepared delta table

l Curated delia table

Databricks

Data Lake Data Lake
Prepared zone Curated zone

Figure 23. Prepared zone to curated zone data movementlay out
Data streams from the prepared zone deltatable were read and stored in a spark dataframe within

Databricks.

Prepared delta table !

I
'
' [
>
. I
'
I
'
I
'
I
'
I
'

Databricks

Data Lake
Prepared zone

Figure 24. Read data streams from prepared deltatable

dataframe_preparedzone = spark.readStream
.format({"delta")
.load(target_table}
Figure 25. Read data stream from prepared zone
The components above include:
o format(“delta”): The file format. File formats on deltalakes are delta.
e load(): contains the location where datawill be gotten; target_table is a predefined variable that

includes apathto the data found onthe prepared deltatable in the data lake prepared zone.
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Once the data was available in aspark dataframe, more complex transformations and aggregations were

done on the dataframe to produce new columns to satisfy the business requirements given by the client.

dataframe_preparedzone.createlrReplaceTempView("TransactionsView"

sql_query = '''SELECT organization, accountnum, description,

ate,transactionoccurencedate,

CASE WHEN (unix_timestanp

THEN (31556926 - (unix_timestamp(current_timesta
from TransactionsView trans '
dataframe_curated = spark.sql(sqgl_query
Figure 26. Perform transformations or aggregations on aspark data frame

The components of the above include:

o createOrReplaceTempView: createsaview of the spark data frame

e sgl_query:variable containingSQLquery

e spark.sql(): runsthe predefined SQL query to obtain a new data frame storedina variable.
Once the final data frame was available, it was then written on the curated(gol d) deltatable onthe data

lake curated zone.

Databricks

Data Lake
Curated zone

! Curated delta table
‘—vl . |

Figure 27. Writing data to the curated deltatable onthe curated data lake zone

dataframe_curated.writeStream. format("delta”
outputMode (" append™) .qpt'i on{"checkpointlocation”,checkpoi nt_transaction).
start(table_location)
Figure 28. Writing data to the curated zone
The components of the above include:
o format(“delta”): Formatis deltabecause it’sadeltatable.
e outputMode: mode in which data adds to the curatedtable.
¢ checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed,
developers specify the location where the system willwrite all the checkpointinformation. In the
case of stream write failure, the ending location is stored so that once the stream starts, it will

begin from the point it previously ended. The checkpoint location is a directory in an HDFS-
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compatible fault-tolerant file system. Checkpoint_transaction is a predefined variable which
contains the checkpoint path on HDFS.
o start(): Has the path where data writes send data. table_location is a predefined variable that
held the path of the curated deltatable on the curated data lake zone.
Sending data to Cosmos DB
In this section, the data present onthe curated deltatable onthe curated data lake zone was extracted

using Databricks and sentto Cosmos DB.

! Curated defta table ! l C}

Databricks
Data Lake ' Cosmos DB
Curated Zone :

Figure 29. Curated zone to cosmosDB data movement layout

For this part, data streams from the curated zone were obtained and stored within a Spark dataframe.

Curated delta table ! l

Databricks

Data Lake
Curated Zone

Figure 30. data extraction from the data lake curated zone

dataframe_curatedzone = spark.readStream
.fTormat("delta")
. Lload(target_table)

Figure 31. Read the data stream fromthe curated zone
The components above include:
o format(“delta”): The file format. The formatis deltabecause it’sadeltatable.
¢ load(): contains the location where data was stored. target_table is a predefined variable that

includes a path to data found on the curated deltatable on the curated data lake zone.

Cosmos DB is the final location of the information processed across the data pipeline, where business
applications will consume the data from there to provide it to end-users who are internal or extemal
clients. Additionally, we made Cosmos DB configurations in Databricks before sendingdatato Cosmos DB.

The Cosmos DB where datawill be written and its parameters were configured as of below.
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cosmosdb_write_configuration = {
"Endpoint": COSMOS_KEY_URI,
"Masterkey": COSMOS_KEY,

"Database": "AllTransactions",
"Collection": "AllTransactionContainer",
"Upsert": "true",

"WritingBatchSize": "408"
}

Figure 32. Cosmos DB configuration
The components of the above configuration include:

e Endpoint: this is the URI of the Microsoft Azure Cosmos DB account. COSMOS_KEY_URI is a
predefined variable containing the URI.

¢ Masterkey: the master key serves to access the account. COSMOS_KEY is a predefined variable
containingthe key.

e Database: contains the database name.

e Collection: containsthe collection name.

e Upsert: indicates inserting data if it does not exist and update if it already exists. True indicates
upsert will occur.

¢  WritingBatchSize: number of files with each writes’ batch.

Afterthe Cosmos DB configuration step, the datafromthe spark dataframe was written to Cosmos DB.

g C}
+

Cosmos DB

Databricks

Figure 33. sending datato Cosmos DB

dataframe_curatedzone.writeStream
.format("com.microsoft.azure.cosmosdb, spark.streanming.CosmosDBSinkProvider”
.outputMode ("append") .option{"checkpointLocation”, checkpoint_location)

.options(**cosmosdb_write_configuration).start

Figure 34. Writing data streams to Cosmos DB
The components of the above include:
e format (“”):indicatesthe fileformat.
e outputMode: mode in which data adds to cosmos DB database collection. Structured streaming
runs by defaultinappend mode, butcanalso runin an update or complete mode.
¢ checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed,
developers specify the location where the system willwrite all the checkpointinformation. In the

case of stream write failure, the ending location is stored so that once the stream starts, it will
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begin from the point it previously ended. The checkpoint location is a directory in an HDFS-
compatible fault-tolerant file system. Checkpoint_locationisa predefined variable that contains
the path to the checkpoint.

e Cosmosdb_write_configuration: cosmos DB configuration defined above.

During this project phase, there were two main challenges. When writing streams of data to delta lake
tables, on some occasions, the data from the client’s databases was massive (terabytes), hence the file
sizeswere alsolarge. The file sizes created a problem because in case the spark cluster had few nodes to
process the task, it was going to break or become very slow in performing write tasks. The solution
identified was toimplement “MaxFilePerTrigger” in structured streaming within Databricks. The solution
helped to limit the maximum number of files within each micro-batch of data processed. With this
solution, evenifaspark cluster had few nodes, it could still processdata efficiently. The solution was going
to beimplementedinalaterstage of the projecttowards the end of 2020.

Additionally, on some occasions, late data was coming from the raw zone of the data lake, especially
during stream data transformation or aggregations. As a solution, the team decided to implement
windowing withinstructured streamingin Databricks, to ensure thateven if stream data were late within
data pipelines, it would still be captured within micro-batches of data processed. The solution was going
to beimplementedinalaterstage of the project towards the end of 2020.

4.2 Project 2- Code Refactoring and UnitTesting

This projectfocused on refactoringall the ETL pipeline code on Databricks for the MDP project. The code
refactoredincluded those written by all Accenture team members. In addition to this, schemaand value
unittestswere performed onall python functions.

Project Phase 1 - Identifying code smells and refactoring code

Due to NDA agreementsthe projectteam signed at Accenture, the detailed reports of SonarQube for the
MDP project cannot be disclosed. The screenshotsbelow are examples obtained online that reflect similar
steps made by the team during the MDP project.

Thisfirst phase focusedonidentifying code smells and refactoring. Code smells occur when code does not
follow fundamental standards of the language in which it is written. Code smells are not bugs or errors;
they are absolute violations of the fundamentals of developing software that decrease the quality of code.
Refactoringisthe activity during which the structure of code is changed to alterits internal structure only

and not changingits external behaviour.
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Furthermore, to identify this code smells, we used SonarQube, which is an open-source tool created by
SonarSource to enable the continuousinspection of code quality to execute automatic reviews with static
analysis of code to identify bugs, code smells, and security vulnerabilities. The project team chose
SonarQube because it was open source and could easily integrate with Azure workflows.

Moreover, we started by downloading all the code of the MDP project on Databricks to our local
computers. Then using SonarQube, we ran code smellanalysis to identify bad qualitycode. To go through
the code lines and proceed with correcting the errors, we accessed the code linesin an area within

SonarQube similarto the one below, reserved for code modifications.

o
Refactor this code 1o not comtruct

this LOAP name or fier from taksted,

unar-contralied data.

B Vusrsmabany d

FELETTERE #PILEROr

dap_connect lon. search_s("doscos™, ldap, SC0PE_SUNTREE, search_filter}

| Relncter this code bo not construct this LDAP name or filter from iainted, user-conirolied data. o LN %

—
E s2ar
try
& Furgite o oaalions
L snce

1 tssp.errorhs

def page_rat_foundlel;

Figure 35. SonarQube code update area

Source: Retrieved from Sonarqube.org

Within this area, we made corrections to the code and refactored following PEP-8 standards, which is a
style guide for Pythoncode. After completing all modifications on the code, we thenreran the SonarQube
analysis to ensure there were no code smells, no bugs vulnerabilities, and zero duplications. After this
step, we proceeded to give an update of this project phase during code review sessions.

Project Phase 2 - Unittests

Once the first phase was completed, we then proceeded to conduct the Unit test in two steps. The first
step was to upload the refactored code on Databricks to run the unit tests. Since the MDP project code
was in python, the unit test framework within python came up as the best tool to test the project code
on Databricks.

Unittesting

Aunittestisin-builtintothe Pythonstandard library.The unittest containsboth atesting framework and
atest runner. The unittest has essentialrequirements for writing and executing tests, they include:

e Classesas methods containingall tests.
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e Use aseriesofunique assertionmethodsinthe unittest—use TestCase class instead of the built-
inassert statement.
We used the following Unit test general steps:
e Importunittestfrom the standard library.
e Createdaclasscalled, forexample, TestName thatinherits from the TestCase class.
e Thenwe convertedthe testfunctionsinto methods by adding ‘self’ astheirfirstargument.
e Thenthe assertions were changed to use the self.assertEqual() method on the TestCase class.
e Change the command-lineentry pointto call unittest.main()

We did the schemaand value teston all MDP project code functions. Below isan example of avalue test.

import unittest
import pandas as pd

class TestFunctionH(unittest.TestCase):

pdf_output

dataframe_test » functionh(input_dataframe) # ap

pdf_test = dataframe_test.toPandas

assert pdf_test.equals{pdf_output

suite = unittest,Testloader().loadTestsFromTestCase(TestFunctionH

TextTestRunner (verbosity=2

Figure 36. Value unittest
The value test aimed at making sure the values of the output data frame from applying the function we
were testingonthe input dataframe was as expected. To ensure that, when we send code to production,

the output will always reflect our predefined expected output. Below is an example of the schematest.

49



import unittest
from pyspark.sql.types import =

class TestFunctionHSchema(unittest.TestCase):

def test_run(self):

Field('organization’
ield(’'a
jeld('d
Seld(’
setFielda(’ 3

tField( 'mon

df_test = functionh(df_snput

assert df_test.schema == expected_schema

suite = unittest.Testloader .loadTestsFromTestCase (TestFunctionHSchema

xtTestRunner (verbossty=2

Figure 37. Schemaunittest
This schematest aimed at making sure the schema of the output data frame from applyingthe function
we were testing on the input data frame was as expected. To ensure that, when we send code to
production, the output schema will always reflect our predefined expected output schema.
Once the unit test completed on Databricks, we downloaded all the notebooks to rerun the tests locally
this time using PyTest. Note that since the tests were already created on Databricks using the unit test,
we just had to re-use those teststorun pyTestlocally on computers.
At the end of this, we provided a coverage report tothe client's technology team to show the percentage
of the MDP project code lines tested.
Duringthis project, since it was the firsttime we were doing unit test and code refactoring for the MDP,
we had to take more time to learn about the PEP-8 standards, Unit test framework best practices and

SonarQube. Overall we wereable toaccomplish the above projectindue time.
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5. Conclusions

The objective of the MDP project was to migrate the data of the clientfrom their legacy systems to the
cloud and build the ETL pipelines on Databricks to process this data across different zones on the data
lake.

The MDP project had three development environments, including pre -development, test and production
environment. The pre-development environment is the initial environment where developed code got
tested toidentify loopholes within the MDP project cloud and analytics resources. Once significant checks
passed the verification by the project team, and the client’s technology and security team approved, all
the MDP project code on Databricks got transferred to the test environment which had similar
configurations to the production environment.

Furthermore, the production environment is the final area where all MDP project code goes into
operation for their final use across the client’s infrastructure, to enable the client to run all their daily
activities with the new data platform.

All the migration and ETL pipeline code done by the Accenture team passed verification within the pre-
development and test development environments. The movement to the production environment was
goingtooccur lateron at the end of the year 2020. The work done by the Accenture team handled alarge
part of the client’s infrastructure related to clients (individual and corporate) transactions.

5.1 Connection to the master program

The master in information management with specialisation in knowledge management and business
intelligence withits theory and hands-on components empowered the NOVA Information management
school student with foundational knowledge in areas of data management, data warehousing, data
visualisation, business intelligence, data engineering, and knowledge management. Also, equipped him
with foundational knowledge in tools such as python, SQL, Spark, Hadoop, Flume, Databricks, Sqoop,
Microsoft SQL Server, and PowerBI.

Likewise, learning about python, SQL, spark, and Databricks before joining the Accenture team helped
him to understand faster the project technologies used within the company context and learn more
quickly, more complex techniques to manipulate the different tools.

5.2 Internship evaluation

When the NOVA Information management school student joined the applied intelligence team of
Accenture to work on the MDP project, the goals of his work were to develop experience in business

requirement gathering and translating into a technical requirement. Additionally, make use of big data
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and cloud tools such as Azure Databricks to build robust ETL pipelines to extract data, transform and load
on cloud data lakes. Also, learn code refactoring and testing.

Likewise, at the end of the student's involvementin the MDP project, all the objectivesstated above were
attained. He had the chance to work on topics highlighted in the goals above under the guidance of
talented professionals who had extensive experience using the technologies and frameworks used in the
MDP project.

5.3 Limitations

Duringthe execution of the MDP project, we encountered some challenges detailed below.

The migration of data from legacy systems often took long periods because of new APIcreationto convert
data on the legacy storages to Avro format before pushingto Kafka. This development of new APIs took
long periods due to technical challenges, administrative authorisations and getting security clearance
validation forthe data moved.

Besides, often, decision making within the project to change some tools or business requirements
provided by the client due to challenges encountered duringthe project execution took verylong periods.
Any change which was going to affectthe MDP project had to be validated by the client’s technical team
and administration in charge of platform development, which took time.

Furthermore, some core componentsof the project, which were part of the Accenture team’swork, went
throughthe client’s team for approvals or execution. Forexample, spark cluster creation and adjustment
on Databricks. Still, because the client's team handled this component, there was a constant back, and
forth movementin case changes had to be made rapidly because of authorisation approvals, cluster
budgetrestrictions and security clearance which often took much time.

5.4 Lessons Learned

Duringthe MDP project, the NOVA Information Management School student had the opportunityto leam
how to use better Databricks, Azure cloud resources such as data lake Gen 2 and Azure Cosmos DB—also
test-driven development methodologies by implementing code refactoring and testing.

More so, he learned how to work in diverse teams following the agile methodology and adapting to

delivering quality work on time within short sprints.
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