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Abstract  

    In a world with continuously evolving technologies and hardened competitive markets, 

organisations need to continually be on guard to grasp cutting edge technology and tools that will help 

them to surpass any competition that arises. Modern data platforms that incorporate cloud technologies, 

support organisations to strive and get ahead of their competitors by providing solutions that help them 

capture and optimally use untapped data, and scalable storages to adapt to ever-growing data quantities. 

Also, adopt data processing and visualisation tools that help to improve the decision-making process.   

              With many cloud providers available in the market, from small players to major technology 

corporations, this offers much flexibility to organisations to choose the best cloud technology that will 

align with their use cases and overall products and services strategy. This internship came up at the time 

when one of Accenture’s significant client in the financial industry decided to migrate from legacy systems 

to a cloud-based data infrastructure that is Microsoft Azure cloud.   

              During this internship, development of the data lake, which is a core part of the MDP, was done 

to understand better the type of challenges that can be faced when migrating data from on-premise 

legacy systems to a cloud-based infrastructure.  

        Also, provided in this work, are the main recommendations and guidelines when it comes to 

performing a large scale data migration. 
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1. Introduction 

The 21st century saw the exponential growth of data generated with the development of new 

technologies necessary to deal with the challenge of storing and processing the increasing streams of 

data, a challenge that led to the popularization of the concept of Big Data. Big Data can be used to describe 

a range of different ideas, from collection and processing of large amounts of data to the advanced 

computational techniques often necessary to extract analytical value from the collected data [46]. 

However, there is no clear definition of the term big data, and researchers from different academic 

backgrounds often take different definitions for what it means. 

IBM, a global technology company, proposed the four dimensions of big data usually called the V’s of Big 

Data to ease the understanding of the phenomenon of big data. These V’s include volume, velocity, variety 

and veracity. Volume refers to the massive amounts of data generated every second which can include 

videos, photos, emails and sensor data produced and shared every second, which increased to Exabyte, 

zettabyte and brontobyte of data in terms of the total size. Velocity can be seen as the speed at which 

data is generated and the speed at which these data moves around, for example, the milliseconds taken 

by big data algorithmic trading systems to analyze stock market data and assisting traders to make 

decisions to buy and sell financial securities on the stock market. Variety refers to the different types of 

data available for use and veracity refers to the level of trustworthiness of the data [1].  

Traditional data storage solutions, such as relational databases adopted years ago, residing on old on-

premise legacy systems, cannot handle the complexity and the scalability needs that come with holding 

the variety of data types produced today in a single centralised location. It poses new dilem mas that 

organisations need to face in order to meet their business needs and regulatory policy constraints. 

In order to facilitate the storing of massive data sets, while minimizing the internal burden of having 

multiple teams or departments accessing data for different needs, organisations embraced new storage 

solutions commonly referred to as Data Lakes. With Data Lakes, storage is scalable according to the needs 

of an organization. It can reach volumes in the order of petabytes while allowing the storage of both 

structured and unstructured data formats. These overcome many of the limitations set by traditional 

storage solutions. 

Organisations adopting data lake solutions empower themselves to exploit better, explore, and analyse 

data to improve their value proposition towards clients. In that context, this report explores a project that 

was developed within the Applied Intelligence team of Accenture Portugal. The Applied Intelligence team 

focuses on helping Accenture clients to build a modern data platform(MDP) that leverages the cloud, 
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distributed system paradigms, big data technologies and best practices to improve their processes, 

products, and services.  

1.1. Company overview 

Accenture is a global professional services company, listed among the Fortune 500 Global companies and 

incorporated in Dublin (Ireland) since 2009, as of 2019, Accenture had more than 492,000 employees 

serving clients in more than 120 countries [2].  Ninety-one of the Fortune Global 100 are Accenture's 

current clients, and as for global fortune 500, more than three-quarters are also their clients [2]. 

Some of the industries Accenture has clients in include: Aerospace and Defence, Industrial Equipment, 

Insurance, Life Sciences, Automotive, Banking and Capital Markets, Chemicals, Communications, 

Consumer Goods and Services, Natural Resources, Public Service, Retail, Software, Energy, Health, Travel, 

and Utilities.  

Accenture has four primary service areas including:  

i. The strategy and consulting service arm of Accenture [3], helps organisations to design and 

implement programmes with technology at the centre. This arm supports organisations in 

planning and implementing their technology-driven transformations to improve all their business 

units. Accenture formulates strategies and identifies potential technological components such as 

AI, automation, data platforms, and digital marketing that will enable the rapid adoption and 

implementation of these strategies to make the organisation more competitive in its specific 

industry and generate wealth.  

ii. The interactive service arm of Accenture [4], helps businesses become more agile by responding 

to evolving business landscapes, higher employee and customer expectations, often sparked by 

digital technologies. Also, it supports businesses to maximise the value from new routes to 

market, deploying advanced analytics, enhancing digital trust with robust security and enhancing 

digital engagement. Some past work of this arm includes the design and implementation of a 

personalised customer experience system for carnival corporation cruise making use of IoT and 

stream analytics to enable the company to offer customised services to each of their customers 

while on board of ships.    

iii. The technology service arm of Accenture [5], provides core technical services, in-house and 

partner products to Accenture clients. Through the Accenture labs, this arm incubates new 

concepts and applies the latest technologies to deliver breakthrough solutions for businesses and 

society. The lab also has specialised R&D groups who investigate and use new technologies to 

help organisations provide breakthrough solutions to their current and future challenges. This 
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arm offers application services to organisations to help them reinvent their enterprise application 

portfolio, from the development of new applications leveraging on the cloud and blockchain, to 

the modernisation, management, and maintenance of existing applications. Accenture covers all 

stages of the application lifecycle. 

iv. The operations service arm of Accenture [6], offers Business Processing Outsourcing (BPO) 

services. Accenture operations through its human-machine operating engine – SynOps, combines 

the best people, processes, and technology to help clients reshape their organisations with a new 

and more connected operating model. Through this arm, Accenture works with some of the 

biggest social media networks in the world to provide digital content review services to help 

eradicate content that violates user policies or terms of services. 

1.2. The team and Activities 

During the internship at Accenture Portugal, the Applied Intelligence team handled the MDP project. The 

capabilities offered by this team include artificial intelligence, intelligent automation, data and analytics, 

enterprise data management, search, and content analytics.  

The Applied Intelligence team harnesses the power of cutting-edge technologies to help businesses shape 

a clear vision and develop new data supply chains by instilling greater trust in data and exploring improved 

ways to manage it. The applied intelligence team also helps clients to modernise their data platforms by 

supporting the building of data architectures to capture, curate, and store the correct data using a 

combination of cutting edge technologies.  

Additionally, the applied intelligence team also offers the Intelligent Data Suite (IDS)  [7], which helps 

businesses go beyond data silos. This suite helps clients discover and access data anywhere in their 

enterprise, then classify data by industry context, qualify data by verifying its trustworthiness and validity, 

and finally consolidate and prepare the data for analytics while comparing with industry standards. This 

team has strong alliances with technology providers including Microsoft, Amazon Web Services, Google 

Cloud, Informatica, IBM, SAP, Tableau, Adobe, Oracle, Salesforce, SAS, Qlik, Cloudera, and Snowflake [31]. 

The applied intelligence team did the MDP project for a major banking financial institution in Portugal. 

This project aimed to help the client build a new data platform that was going to leverage the Azure cloud, 

Databricks delta architecture, and other big data technologies to facilitate enterprise processes, 

operations, decision making, product, and services development.  

The member’s responsibilities within the team and project included:  
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 Gathering business requirements from the banking financial institution related to the MDP to 

understand the business needs, then translate these requirements into technical requirements 

and build a work plan to implement them. 

 Based on the technical requirements, build different zones of the organisation’s delta and data 

lake on Azure data lake Gen 2. 

 Develop streaming ETL scripts on databricks to extract and process data from the client’s legacy 

system and load on data lake Gen 2 zones and Azure Cosmos DB.  

 Refactor all the codebase of the entire MDP project, build Unit-test on databricks to test all the 

code and build pyTests to automate testing of code. 

 Research new workflows about databricks and other cloud services used in the project to ease 

the work of the team and solve technical issues faced within the project. 

1.3. Internship Goals 

With the increase in internet usage, customer needs have changed over time, in particular users among 

the middle and younger age groups who increasingly request more digitally inclined services. Such a shift 

towards digital products reflects in the popularity of digital banks such as N26, Revolut, Bunq.  

Traditional banking and financial institutions with little to no digital services face challenges to adapt to 

these new customers’ needs and trends. To develop competitive digital products and services, these 

financial institutions have to change or improve their technology and data infrastructure to enable the 

development of new digital services in an agile way. 

This internship took place in the applied intelligence team of Accenture Portugal at the time when one of 

their major clients was building and deploying a modern data platform, making use of Azure cloud and big 

data technologies. This new platform was going to enable this client to develop more digital products and 

services, support real-time stream analytics, and at the same time, let engineers monitor in real -time any 

activity on the MDP.  

The main intent of the internship was to participate actively in the development of modules to efficiently 

and effectively proceed with the extraction, transformation, and loading of data from legacy systems to 

the Azure cloud.  
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2.     Theoretical Framework 

This section provides a theoretical overview of the most relevant frameworks, tools, and concepts related 

to traditional and modern data infrastructures, distributed computing systems, and big data necessary for 

the understanding of the project reported in this document.  

2.1 Data Platform as a Data Storage Solution 

There are multiple definitions of data platforms. Looker, a leading global data visualization and business 

intelligence organizations owned by Google, defines a data platform as an integrated technology solution 

that enables the governance, access and delivery to users, data applications and other application of data 

located in databases for strategic business purposes [8]. Splunk Technology defined a data platform as a 

complete solution for ingesting, processing, analyzing and presenting the data generated by the systems, 

processes and infrastructures of the modern digital organization [9].  

A data platform can serve strategically modern organizations in the following ways:  

 Availability: A data platform that is connected directly to a database will ensure data teams within 

the organization can have access to the right data at the right time, without delays in processing 

large volumes of data or data request.  

 Security: data platforms can help enforce authentication across all storages or data, providing 

access to data only to the authorized individuals or groups.  Also, authentication tools on data 

platforms help to track those accessing data and keeping metadata or logs so that in the long run 

if there is an issue, it can be used to trace the cause(s).  

 Governance: A data platform can enable businesses to manage their data governance strategy 

better, including what data is collected, who can access it, and when data has expired according 

to the data protection and privacy regulations.  

 Delivery: A data platform can include scheduling reports, dashboards and proactive alerts for 

predetermined conditions. This functionality helps eliminate bottlenecks and deliver reliable and 

accurate data to authorized users at the moment of relevance. It also enables the use of APIs to 

deliver data to other tools for specialized or advanced forms of analysis, such as data science and 

AI/Machine learning workflows. 

 Centralization: Through a data platform, organizational silos can be dissolved to enhance 

collaboration and effective decision; this is achieved when the data platform combines data from 

different sources into one single database or location [8].  
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2.2 Traditional Data Storage Solutions 

Traditional data storage solutions here, refers to traditional databases, which do not make use of the 

distributed system and big data paradigms or concepts within their design. In the early days of data 

storage within organizations, data was organized within files. However, storing data within separate files 

adds unnecessary burdens and setbacks to organizations [10], which include, for instance:  

 Redundant data: Storing the data required by each application program resulted in duplicated 

data. Redundant data is dangerous because it occupies extra storage space and causes data 

inconsistency. 

 Isolated data: Data stored in separate files is very difficult to process altogether. Processing 

challenges increase when the data files are of different formats.  

 Program-data dependence: The physical structures of files and data records are defined in the 

program code, which will make it difficult to change existing structures. However, if data structure 

changes are necessary, all programs that have access to the changed file must be modified.  

 No Ad-hoc queries: To obtain new reports, new programs must be developed to generate these 

reports, as there are no possibilities for users to ask ad hoc queries.  

All the setbacks that are introduced by organizing and storing data into files, as described above, are 

caused by two main factors: The data definitions are embedded in the application programs instead of 

being stored together with the data, and there is no data access point and processing capabilities other 

than those provided by the application programs.  

To overcome and address the above-mentioned limitations, alternative storage solutions were developed 

and materialized in the form of databases based on a network or hierarchical data models. These 

databases still failed to provide an adequate solution to all the storage needs of organizations. In 

particular, running queries (that is, extracting data from these systems) was very complex because they 

were navigationally oriented and also due to the lack of sufficient data independence. [10]  

In the 1970s a new form of databases was introduced by Edgar Frank Codd. Following this innovation from 

Frank Codd, by the late 1970s and 1980s, database management systems specific to handle these 

databases were introduced and become known as Relational Database Management System (RDBMS).  

A relational database management system is a computer program that enables anyone to create, 

maintain, and manage a relational database. Nowadays, RDBMS are particularly well-known for their 

standard query language – Structured Query Language or SQL—that offers a simple and easy to learn 

interaction layer for users to access and manipulate data stored in databases.  
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Within organizations there are traditionally two storage solutions/roles implemented on top of RDBMS; 

OLTP also considered as operational database/system and OLAP also considered as a data warehouse. 

2.3 Operational database and Data Warehouse 

A database is said to be operational if used to store and manage daily transactions of organizations. In 

that sense, these databases are associated with OLTP (On-Line Transaction Processing) that are designed 

to operate as a real-time system that tracks daily operations or transactions that are small but can arrive 

in massive numbers, for example, in-store purchases, booking reservations, and order entry.  Within OLTP, 

one key aspect is the atomicity of database transactions. Atomicity indicates whether a transaction 

succeeds entirely or fails entirely, thus, cannot be in an intermediate state.  

Using OLTP for analytical processing can raise challenges as data models are not adapted for efficient 

analytical activities. In contrast, On-line Analytical Processing (OLAP) systems have been the main 

paradigm to set up and design Data Warehouses, databases built for a purely analytical purpose. Data 

warehouses have different definitions, for example, Turban [11] defines a data warehouse (DW) as a 

repository of current and historical data that is used to support decision making and structured in a way 

that it can be used for analytical processing activities. Other approaches proposed by Inmon [12] to 

describe a data warehouse makes use of its characteristics:  

 Subject Oriented: Data is organized by subjects or themes such as sales, manufacturing, 

marketing, etc. By providing subject-oriented data, the DW allows its users to have a more 

comprehensive view of the organization and not just an operational view. [12] 

 Integrated: Data in a data warehouse is usually collected from different sources to be placed 

together into a consistent format. To do so, naming conflicts, encoding structure, etc., need to be 

dealt with beforehand so similar data is scaled in the same way. The outcome is a totally 

integrated data warehouse. [12]  

 Time-Variant: Data that resides in a data warehouse deliver information from the historical 

perspective and aren't mainly needed to provide current states. Historical data present in the data 

warehouse allows trend or deviation detection along with forecasting, all depending on the 

business context. All data warehouses need to have a time dimension. [12]  

 Non-Volatile:  Once the data are entered into the DW, they can't be altered. Changes are recorded 

as new data. Meaning that data is read-only and updated at set intervals depending on the 

organization's needs. [12]  
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Data warehouse models 

Within data warehouses, multiple models and architectures have been proposed for storing information 

in a more efficient manner or to provide a better vertical synergy between the different layers of data 

storage in an organization. The two most popular data warehouse models/architectures are the Inmon 

and Kimball model.  

i. Inmon Model 

The Inmon model is considered as the enterprise data warehouse (EDW) and follows a Top-down design 

approach. The EDW and the top-down approach refers to the implementation of a data warehouse that 

covers the whole organization which is used to serve underlying departments within the organization. 

Within the Inmon model, all data marts are derived from the EDW to be used by individual departments 

independently from other departments. 

ii. Kimball Model  

The Kimball model focuses on designing a data warehouse around the idea of data-marts and is 

considered a Bottom-up approach. With this approach, data marts are created for individual departments 

within the organization and later merged to get a large data warehouse covering the organization. A data 

mart can be considered as a simple type of data warehouse that focuses on one subject or functional area 

for example sales, account management, marketing. There are three types of data marts namely, 

dependent, independent and hybrid data marts. Dependent data marts enable organizations to combine 

their data into one data warehouse. Independent data marts are created without making use of the 

central data warehouse within an organization and Hybrid Data marts enable the integration of data from 

different sources other than the data warehouse. 

Data warehouse schema 

A schema is a logical representation of an entire database, showcasing fact and dimension tables within 

the database. A fact table is a table that contains measures for example sales amounts totals, quantities 

and prices, while a dimension table, is a table that contains attributes describing the data in a fact table, 

for example, sales country locations and dates. There are four popular schema types in data warehouses 

including:  

 Star schema 

The star schema contains one or more dimension and fact tables. The entity-relationship between fact 

and dimension tables forms a star shape in which a fact table is connected to many dimension tables. In 
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this type of schema, dimensions only have one level. Data in this schema is denormalised which makes 

queries to run faster but at the same time causes the presence of redundant data.  

 Snowflake schema 

The snowflake is an extension of the star schema where dimensions have more than one level. Because 

the data in snowflake schema is normalized, the data is split into additional tables to avoid data 

redundancy. Processing of data with this type of schema might be slow due to complex joins needed to 

retrieve data.  

 Galaxy or Fact Constellation schema 

The galaxy schema has multiple fact tables that share dimension tables between each other. This schema 

is called galaxy because its shape forms a collection of stars. Shared dimensions are called conformed 

dimensions. Usually, this schema is built by splitting a star schema into multiple star schemas.  

Challenges associated to Traditional Data Storage Solutions  

The challenges associated with traditional data warehouses propounded by [13] are explored in the next 

paragraphs.    

I. Rigid structure: One of the most recurrent loop-hole of traditional data warehouses is their lack 

of data modelling flexibility. In today’s ever-changing business environment, with the constant 

development of new applications, high consumption of technology products and se rvices, 

organisations must-have information on demand to respond faster to any change and adapt to 

market changes or shifts. With rigid traditional data warehouses, any change in the data model 

might take several months to go through an approval and the intervention of technical experts, 

which is arguably an incompatible setting in light of the above-mentioned pressures. 

II. Complex architecture: To cope with constantly evolving requirements, organisations buy 

different technologies that lead to a more complex architecture with numerous data silos that 

generate new challenges. These challenges include the lack of integration caused by the 

unavailability of native integration across standard processes due to multiple technologies in the 

complicated infrastructure, which often leads to data governance problems and absence of 

agility. Additionally, complex infrastructures make it difficult to access a single source of truth, 

that leads to challenges in generating actionable insights. Besides, most of these tools have similar 

capabilities. Hence they appear as duplicate technologies that will not bring anything new to the 

infrastructure. 
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III. Slow performance: with the rapid rise in data volumes generated by organisations today, the 

performance of their platforms can be affected and cause delays in prompt reporting. Data 

preparation and consumption latency can portray the loopholes of a data warehouse. 

Unprecedented quantities of data can explain latency during data preparation, and that can halt 

traditional data warehouses. Additionally, the large volumes of data cause data migration 

challenges in traditional data warehouses. Also, duplicated but unused data in these traditional 

data warehouses hinder data preparation procedures. There is a hindrance of data consumption 

by longer running times of queries caused by increasing data quantities, data sets and complex 

analytical requirements. 

IV. Outdated technology: Traditional data warehouses are built on rigid platforms and with little or 

no update possibilities. With growing competition and the high need for on-time decision making, 

these data warehouses can turn into barriers due to their inability to store and process vast 

volumes of data with different data types. Also, due to the massive cost associated with upgrading 

the hardware on which they run, for example purchasing and installing expensive CPU’s and data 

centre level equipment. 

V. Lack of data governance: Moreover, data governance can be a big issue with traditional data 

warehouses. The Data Governance Institute defines data governance as the practice of decision 

making and authority for information-related matters [14]. Creating a bond between people, 

processes, and technology leads to better data governance. [13] Concerning data governance, 

traditional data warehouses can disrupt data delivery value chain in the following ways: 

 When looking at source systems, in case of organisations wanting to change them, traditional data 

warehouses can complicate impact analysis. In some instances, they might make it challenging to 

map and catalogue new systems without damaging data governance rules.  

 Within traditional data warehouses, ETL processes might fail to produce standard log details, 

which makes reviewing and querying them difficult. Also,  there might be a lack of consistent 

methods, tools and controls to ensure the correct processing of sensitive data in ETL processes. 

Note that loading data quickly into a traditional data warehouse can hinder data governance 

structures. Traditional data warehouses often lack standardised data models and extra metadata 

needed to facilitate semantics-based discovery and they might not support data segmentation 

based on standard rules. 
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2.4 Big Data 

In the past, most databases and applications were located on a single machine or framework with all their 

operations being performed on that single machine. With the growth of data and the need to make more 

complex operations, this infrastructure started showing limitations such as the lack of scalability 

capabilities.  

Scalability (Scale-Up and Scale-Out) 

According to Gartner [15], Scalability is the measure of a system’s ability to increase or decrease in 

performance and cost in response to changes in application and system processing demands. With the 

constant growth of data in this era, new challenges arise for organizations, necessitating the designing 

and implementation of new systems that will scale easily to adapt to data needs and workloads. There 

are two approaches to scalability: scale out or scale up.  

 

Figure 1. Scale Out and scale Up 

 

Scale-Up 

It is also known as vertical scaling. This scaling is all about the upgrading of hardware. Organizations scale 

up to increase their computing capacity by installing additional resources such as hardware or central 

processing unit (CPU). For example, an organization can buy a server with better processing capabilities 

and RAM when the hardware supporting its applications cannot sustain the growing workloads. Scale-up 

is easier to control since you decide on all hardware upgrades but it is also expensive since you have to 

buy more powerful hardware (central processing unit, disk, etc.). Note that scale up in relation to fault 
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tolerance presents more risk because in case of hardware failure there is the danger of losing data 

completely or facing hardware outages.  

Scale-Out 

It is also known as horizontal scaling. With horizontal scaling, machines with lower performance are added 

to a system to ameliorate its storage and computing capacity. For organisations, implementing scale-out 

will be cheaper because they will not be buying expensive high-performance machines, but instead 

machines with lower performance. Note that scale-out is better in terms of fault tolerance because it has 

mechanisms that put standby nodes or servers to specific services and perform data replication across 

different servers to ensure that in case of outage of some servers, data will not be lost and the services 

will still be available. Even though scale-out offers better fault tolerance, when it comes to debugging and 

finding the node(s) that cause problems in the system in case of failure, it will take more time to study 

logs and find the node(s) causing the problem due to the vastness of system. Apache Hadoop is a very 

successful scale-out open source project. Within Hadoop, the storage and computing capacity can be 

increased by simply adding new nodes/servers to the system in place . 

Towards the end of the ’90s, the constant adoption of mobile devices and new web technologies 

introduced novel challenges for both storage and processing of the large data quantities generated. This 

eventually leads to the rise of the concept called “Big data” [16]. Traditional data warehouses could not 

handle analytics on this huge data and more scaling-up computer hardware turned out to be very 

expensive. The solution comes in the form of a new distributed system paradigm [17].  

Distributed systems are simply networks of a large number of attached nodes or entities connected 

through a fast local network [18]. This new paradigm required the development of adequate software and 

techniques to process data. thus, giving rise to the concept of big data analytics [16]. Big data analytics 

can be viewed as a sub-process in the overall process of insight extraction from big data [19]. 

It is common to describe the challenges introduced by big data within the so-called “V’s of big data”: 

volume; velocity; variety; and veracity. Volume has to do with the ever-growing quantities of data which 

can go beyond terabytes and petabytes. Variety refers to the fact that data comes from different sources 

such as computers, websites, and Internet of Things devices but also can come in multiple formats. 

Velocity has to do with the speed at which data is produced and needs to be processed. Veracity refers to 

the level of trust we have in the data or the accuracy of the data, which often requires to be analyzed in 

real-time.  

The technology field of Big data is a fast-change ecosystem. New solutions are constantly in order to 

address and meet the, also, fast pacing evolving challenges associated with the V’s of big data.  Big data 
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up till now, does not have a unique universal definition, but different institutions and researchers provided 

different definitions to Big data. Some definitions of big data include:  

 Gartner defines big data as a “high volume, velocity and/or variety information assets that 

demand cost-effective, innovative forms of information processing that enables enhanced insight, 

decision making, and process automation”. [20] 

 Schroeck [21] defines big data as a combination of Volume, Variety, Velocity and Veracity that 

creates an opportunity for organizations to gain a competitive advantage in today’s digitized 

marketplace. 

 Microsoft [22], defines big data as the process of applying serious computing power, the latest in 

machine learning and artificial intelligence, to seriously massive and often highly complex sets of 

information.  

 Big data can also be considered as datasets whose size is beyond the ability of typical database 

software tools to capture, store, manage, and analyze. [23]  

 Big can also be seen as the data sets and analytical techniques in applications that are so large 

and complex that they require advanced and unique data storage, management, analysis, and 

visualization technologies. [24]  

 Big data is data that exceeds the processing capacity of conventional database systems. [25] 

 Another definition by [26], indicates Big Data represents the Information assets characterised by 

such a high volume, velocity and variety to require specific technology and Analytical Methods for 

its transformation into value. 

2.5 Distributed Computing Systems 

A distributed system has diverse components located on different machines that communicate together 

and coordinate operations to appear as a single system in front of the user [27]. Within a distributed 

system, a machine can be a computer, virtual machine, container, physical server and any other node that 

can connect to the network, have local memory and communicate by passing messages [28]. Nodes refer 

to distinct entities in a distributed system.  

For a system to qualify as a distributed system, it must have the following minimum characteristics: The 

components of distributed systems fail independently from each other; all components run concurrently 

and each component at its own clock, hence there is no global clock.  With the evolution of mobile devices, 
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social media and sensors, the quantity of data has considerably increased. Since the 1980s, Relational 

databases(RDBMS) have been one of the most successful database 

technologies. That notwithstanding, even with its solid technological growth, the relational database has 

failed to scale with the growth of data [16]. Even though there have been technological advancements 

over the years, relational databases still face challenges when it comes to scalability.  With relational 

databases developed to support tabular data which is more structured, they face a challenge when it 

comes to dealing with semi-structured and unstructured data. The applications built using RDBMS 

technologies either have failed to perform better with increased data or the cost of running and 

maintaining the infrastructure to keep the application performing has grown exponentially [16]. Luckily, 

a new generation of storages was developed using distributed computing concepts and paradigms to help 

solve the limitations of relational databases. In the next paragraphs, different storage solutions following 

the distributed system paradigm will be further explained.  

 

Distributed Storage 

Even though No-SQL came to solve the needs for storing and managing large quantities of data and varying 

structure, not every application actually needs a database for storing and managing their data.  

Previously, when data quantities of documents, images, videos were not large, they could be stored in the 

file system and processed with domain-specific tools such as text parser and image processing software. 

But as the size of data captured in these forms (i.e. documents, images, and videos) increased, it b ecame 

difficult to store and manage these data in a single node computing system [16].  

In the past, data stored within a local file system was processed using a computing system with a single 

node. But later on, better storage called RAID (redundant array of independent disks) storage, that was 

adapted for storage of large scale data in file systems. One advantage of RAID is that it had a failover 

mechanism, but only a single node could be used to process data. Even with this, data volumes still 

increased and processing data on a single node took longer times or was even impossible. This led to the 

introduction of distributed file systems, whereby data is distributed across multiple local hard disks with 

each being associated with a separate computing node [16]. With this approach, each node processes the 

data stored on its local disk which enables parallel processing in such a way that large quantities of data 

can be processed at the same time and shorten processing durations. Hence the more nodes are available 

within a system, parallel processing can be leveraged to accelerate data processing. This form of parallel 

storage and processing of data led to the development of different distributed file systems such as the 
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Google File System, Hadoop Distributed File System and other frameworks such as Map-Reduce and 

Apache Spark [16]. HDFS will be described better below.  

Hadoop Distributed File System (HDFS)   

 

Figure 2. HDFS Architecture [47] 

It is a type of distributed file system that spreads across multiple nodes, with each of them having their 

own local regular operating system for example Linux, on top of which HDFS is deployed. Within HDFS, 

the metadata and actual data files are stored separately, with actual/application data being stored on 

servers called DataNodes while metadata is stored on servers called NameNode [29]. The DataNode in 

HDFS does not have any individual failover mechanism such as RAID. Rather the file content is replicated 

on multiple DataNode for reliability. This has the advantage of data being local to the node, where the 

computation will be carried out, which in turn reduces the overhead associated with data transfers 

between the nodes for computational purposes [16]. Inodes are used to represent directories and files in 

the NameNode. Inodes record different things such as access and modification time, permissions, 

namespace and disks space quotas. The file content is split into blocks known as HDFS blocks. An HDFS 

block has a size of usually 128 MB, but maybe larger. Note that HDFS blocks are replicated on multiple 

DataNodes. The NameNode maintains the namespace tree and the mapping of the HDFS blocks to 

DataNodes (the physical location of the HDFS block) [29].  

HDFS has an API that provides the locations of a file block, which enables distributed programming like 

Map-Reduce framework to process data in a node local ly where the data is located [29]. 

 

Distributed Computation 

Traditionally, distributed and parallel computing relied on synchronization and locking. Nevertheless, 

locking data and synchronization across multiple processes raises huge overhead. More so, traditionally, 

parallel and distributed computing handled computation independently from the data. It was assumed 

that data resided in a database or other storage system that is also accessible by many computing nodes. 
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The data is locked and processed in these nodes through parallel processing. In addition to the overhead 

generated by locking, such an approach adds a lot of overhead in the transportation of data from the data 

node (where the data resides) to the processing node (the node processing the data). [16]. The Map-

Reduce framework is a parallel programming framework that provides solutions to the issues associated 

with parallel and distributed computing.  

Map-Reduce in Hadoop 

 

Figure 3. Map Reduce on HDFS [16] 

The figure above showcases the architecture of Map-Reduce on HDFS. The Job Tracker breaks down the 

job into multiple tasks and assigns them to various nodes. The task trackers are responsible for task 

completion. Likewise, the Job tracker and the Name Node of HDFS can coexist in the same node. This 

enables the task tracker to process local data without transmitting the data from one node to another 

node. Additionally, the job tracker distributes the jobs in such a way that the task tracker processes only 

the local data. In Hadoop 2.0, the job tracker was replaced with YARN, a separate software component to 

manage tasks. The programming framework of Map-Reduce is based on considering data not as a single 

unit, but as a collection of multiple units [16]. With Map-Reduce, collections are considered as Maps. Map-

Reduce performs data computation or processing in three steps including Map, followed by Shuffle & Sort 

and finally Reduce.  
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Figure 4. Map-Reduce word count example [30] 

Above is an example of Map-Reduce computation where the input is a set of files.  Each file is split as a 

collection of lines and the collection of all the lines is considered as a map, where the key is the location 

of the line and the value is the line. The map is the input of the Map step in the map-reduce program. 

map-reduce uses only the values in the input map.  

The map step initiates different programs and each of these programs is called mappers. Each entry of 

the input collection is input to each mapper. The mapper program splits the line into words and creates a 

map of (Word, 1), where 1 is the count of the word in that line.  The mapper program then sorts and 

shuffles this map. Likewise, with the help of sorts and shuffle, all the mapper programs s end the entries 

(i.e. the count) associated with the same key (i.e. same word) to the same reducer.  

When the reducer receives the values related to a key(word), it then sums up all the individual counts for 

each specific word and then writes the results to HDFS. Note that each reducer write is independent of 

other reducers and each write is kept as a separate file in HDFS. This results in multiple output files created 

by the map-reduce program, all running on top of HDFS. [16] 

Apache Spark 

Apache Spark was introduced shortly after the introduction of Hadoop. Apache Spark started as a research 

project by Matei Zaharia at the University of California, Berkeley AMPLab in 2009 and open-sourced in 

2010. Spark’s foundation came from Map-Reduce but got ameliorated, providing a robust, generalised 

framework for distributed computations on big data. Apache Spark as an open-source project was handed 

to the Apache Foundation in 2013 and since February 2014, Spark is a top-level Apache project. When it 

comes to big data, one map-reduce program is not enough to perform computation for analytic purposes. 

Most often a series of map-reduce programs will be needed to perform analytic computations, with the 

output of sequential map-reduce programs being the input to other map-reduce programs. Most often 
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the input to map-reduce programs is taken from distributed storages such as HDFS, No-SQL databases, 

etc. and the output from map-reduce programs are written to HDFS [16].  

This constant read and write to HDFS over the long term becomes inefficient, generates computation 

overhead and its time consuming which over the long run can cause more problems like slowing analytics 

and delaying data processing and reporting.  With the rise of machines with better memory and processing 

capabilities, Spark came in to make use of those to offer faster and more efficient in-memory processing 

capabilities. Unlike Hadoop, Spark makes use of memory to avoid constant read and write to the map-

reduce workflow. Spark makes use of RDD to store collections of data.  

RDD variables can be considered as collections of data that reside in memory and also span across 

different computers. This is advantageous because, the collection is distributed across multiple machines 

and processing of the collection can be done in parallel  on all these machines, where each machine does 

the computation on its local memory. In addition, the distributed map-reduce processing in the case of 

the spark is done on RDD (Resilient Distributed Datasets) which makes it faster than map-reduce on HDFS. 

[16] 

Apache Spark makes use of multithreading. Multithreading is the ability of a single core in a multi -core 

processor or central process unit (CPU) to execute multiple threads concurrently, appropriately supported 

by the operating system. [16] 

 

Figure 5. Spark multithreading model 
Source: Retrieved from spark.apache.org 

 
Spark applications run as an independent set of processes, coordinated by the SparkContext object in the 

Spark driver program within a cluster. In order for the Spark context to run on a cluster, it has to connect 

to different types of cluster managers. It can connect to the standalone cluster manager of Spark itself 

known as Mesos or another alternative known as YARN (Yet Another Resource Negotiator)) [31]. These 

cluster managers allocate resources across different application on the cluster.  Once connected, Spark 
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acquires executors on nodes in the cluster, which are processes that run computations and store data for 

applications. Next, Spark sends the application code to the executors. Then the SparkContext sends the 

tasks to the executors to run. Each application gets its own executor processes, which stays up for the 

duration of operation of the entire application and run tasks in different threads.  The advan tage of this 

is that it isolates applications from each other, on both the scheduling side (that is, each driver schedules 

its own tasks) and executor side (that is, tasks from different applications run in different Java Virtual 

Machines). [31] 

Apache spark rapidly became a go-to option for data enthusiasts and practitioners because it was easier 

to use, providing more functionalities that increased its utility and broadened its appeal, performed better 

on benchmark tests and supported streaming tasks. Spark’s accessible interactive mode enabled data 

practitioners to perform exploratory data analysis(EDA) on large data sets, going beyond traditional Map-

Reduce ETL jobs they had done before. Spark enabled training machine learning models at scale, querying 

large data sets using SQL, and real-time data processing much faster-using spark streaming. Additionally, 

since the early days of Spark, its popularity has grown, and it has become the go-to standard for big data 

processing, due to its sizable committed community members, dedicated and passionate open source 

contributors.  

Nowadays, many data lake architectures use Spark as the processing framework that e nables data teams 

to perform ETL, curate data and train machine learning models. In terms of speed, Spark runs an 

application in a Hadoop cluster up to 100x faster in memory and 10x more quickly when running on disk. 

Spark accomplishes this by reducing the number of reads and write operations to disk. Note that Spark 

stores the intermediate processed data in memory.  

Spark has built-in APIs in R, SQL, Scala, Python and Scala, enabling data teams to write applications in 

different languages. Spark has up to 80 high-level operators for interactive queries. Besides, beyond 

supporting ‘Map’ and ‘Reduce’, Spark also supports SQL queries, streaming data, Machine learning and 

Graph algorithms. 

The general execution engine for Apache Spark is called Spark Core. Spark core helps to reference data in 

external storage systems and provides in-memory computing. Additionally, Spark SQL introduces a data 

abstraction called Schema Resilient Distributed Datasets(SchemaRDD), that supports unstructured, semi-

structured and structured data. Spark SQL also allows interaction with data on data frames which 

organises data in a tabular format.  

Spark streaming leverages spark’s core fast scheduling feature to perform streaming analytics. Spark 

ingests data in mini-batches and performs resilient distributed dataset transformations on the mini-
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batches of data.  Also, MLlib stands for Machine Learning Library. It is a distributed machine learning 

framework that seats on top of spark and includes some libraries and algorithms such as clustering, 

classification, etc. Additionally, GraphX is a distributed graph-processing framework on top of Spark.  

 

Distributed Messaging Software 

There is nothing like a single node system within a big data system, each component is considered as a 

cluster (one or more node(s) that take care of data distribution and computation). In such a scenario, 

creating and managing one to one communication becomes a challenge [16]. In order to avoid this 

challenge, big data messaging software or frameworks were introduced over the years such as Kafka, Flink 

and RabbitMQ. RabbitMQ is a message-passing software used to manage streaming data since pre-big-

data days. From foundation, RabbitMQ had a single server system, but with the advent of big data, it has 

incorporated clustering in its architecture. The most popular message-passing system in RabbitMQ is the 

pub-sub(publication-subscription) system. Within the publication-subscription system, there are message 

publishers that form a group and publish messages with different subjects and on the other hand, there 

are message consumers that form a group and consume messages from the different subjects. RabbitMQ 

can process messages in a range of 20 to 30,000 per seconds and its strength is on routing [32].  

 

Figure 6. Kafka Cluster [33] 

Apache Kafka is a clustered stream data processing software. Due to its inbuilt clustering technology, a 

Kafka cluster can process one hundred thousand to a few million messages per seconds. A Kafka cluster 

consists of multiple partitions and multiple servers. Each partition has one  server which acts as the 

“leader” and zero or more servers which act as “followers.” The leaders handle all read and write requests 

for that partition while the followers passively replicate the leader. Whenever the leader partition fails, 

one of its followers automatically replaces it by becoming the new leader.  Each server acts as a leader for 
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some of its partitions and a follower for others, so the load is balanced across multiple servers.  The 

strength of Kafka is that; it can consume massive volumes of stream data [34]. 

2.6 Data Integration  

Regarding big data, as per Forrester Research’s Q1 2016 report, data preparation and data integration 

technologies are within the scope of intense survival and growth phases, respectively. The ultimate goal 

is to make data flow faster and seamlessly across multiple sources in data storages and provide strong 

bases to enable analytics or business intelligence.  

Besides, data integration requires evaluating data across many storages with different business needs to 

produce a centralised master data management system among other operational systems. Data 

warehouses or data lakes usually engage extraction, transformation and load processes to manipulate the 

transactional and functional structure of the data.  

Moreover, a normal ETL process might be useful in managing structured, batch-oriented data that is up 

to date and within scope for organisational insights and decision making. On the other hand, dealing with 

stream data necessitates a different model and significant tweaking to the ETL process [35] where low 

latency, high availability, and horizontal scalability are vital features that need to be addressed in real-

time or near real-time environments [36].  

Extraction, Transformation and Loading (ETL) 

The ETL process is a representation of data movement and transactional processes from the extraction of 

multiple data storages or sources, for example, transforming the data into a conformed format to send 

the data to target systems such as data warehouses or data lakes. The ETL process is usually applied in 

data integration, data migration, data staging and data management. The figure below illustrates the ETL 

process flow in a data lake environment. The flow involves accessing data from a source system, then ETL 

processing, that includes cleaning, integrating and staging the data before sending the transformed data 

to target systems. 
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Figure 7. ETL system in a data lake or data warehouse environment 

ETL systems or processes continuously need to support and evolve with the increase in data volumes, 

endless streaming, an increasing variety of data types and sources, requests for analytics and real -time 

user requirements, availability of new technologies and powerful tools [16].  

Features of near real-time environment  

The main features of the near real-time environment include its high availability of streaming data, 

horizontal scalability for performance improvement and low latency of intervals between transactions. 

Every operational system needs to address these features as it can limit the functionalities of the system 

if not appropriately handled.  

Concerning high availability, streaming data is always available in constant flow within seconds or 

milliseconds. Streaming data is sensitive by nature, and the slightest disruption will affect operations. 

Replication and distribution are vital considerations to guarantee fluidity of the data collection process, 

lost data can be recovered and always available when called, even when faced with outages, receiving 

overloads of throughput or data loss [36].    

Furthermore, on low latency, the speed requirement in delivering the most recent data to meet business 

demands is called data latency. Compared to the periodical requirement in batch data, the time between 

the events when data arrives and when data is made available to the user for near or real -time data is 

almost instant and has low latency [36]. The traditional ETL process was designed to satisfy batch 

processing where data refreshment occurs during non-peak hours, of which operational activities can halt 

temporarily. Hence could not produce accurate results for near or real -time analytics where stream data 

flows continuously.  

Moreover, horizontal scaling is the viable approach for improving performance and alleviating the risk of 

interruption of seamless data flow [36]. Horizontal scalability adds separate independent servers to a 

cluster of servers handing different tasks and needs only a little coordination between systems. Horizontal 
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scaling offers more potential for expansion and less risky measures compared to vertical scaling, in which 

boosting its performance is limited within the capacity of a single machine. In vertical scalin g, if the 

machine has outages, the data flow is disrupted, and the system can potentially lose pertinent data.   

Challenges within the ETL stages for near real-time environments 

With the constant flow of most recent data in large volumes and real -time reporting with near or real-

time environments, traditional ETL systems need major rework and remodelling to support the 

requirements [38]. Highlighted below are challenges of each ETL process step and possible solution 

approaches.  

Extraction 

This process involves identifying dimensional data attributes from different databases, capturing change 

data and getting data from the source location [38]. Streaming data like click streams, event logs, and 

sensors are regularly and continuously changing. Stream data chal lenges the way change data is captured 

for constant update and loaded without disrupting normal operational activities [ 39] [40]. The figure 

below identifies challenges associated with the extraction step in the ETL process within a near real -time 

environment and solutions approaches.  

Feature 

Extraction Stage 

Challenge Solution Approach 

High 

Availability 

a) Heterogeneous Data Source. 

b) Backup Data. 

c) OLAP Internal Inconsistency. 

a) Stream Processor, Semantic web 

technologies toolkits.                                        

b) Server for replication; Log-based Change Data 

Capture. 

c) Snapshot; RTDC (Real-Time Data Cache); 

Layer-based View; RODB(Real-Time Operational 

Database). 

Low 

Latency 

a) Multiple Data Source 

Integration. 

b) Data Source Overload. 

a) Combine change data capture, stream 

processor and data integration tools. 

b) Update significance and record changed 

method; Special format for Change Data Capture log. 

Horizontal 

Scalability - - 

Table 1. Challenges and solutions in the extraction stage for near real-time environment [38] 
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Transformation  

Transformation is the process whereby data is cleaned and conformed into a predetermined format, 

shared across different organisational platforms and needs [38]. Constant refreshment of transactional 

data occurs in near-real-time data, hence the frequency at which the master data updates is higher than 

that of batch data. Also, the quantity of data carried into the target system after transformation is 

smaller and constant, that makes the transformation process efficient by processing smaller amounts at 

a more frequent rate [41]. 

Feature 

Transformation Stage 

Challenge Solution Approach 

High 

Availability - - 

Low 

Latency 

a) Master Data Overhead.                                  

b) Intermediate Server For Aggregation. 

a) Master data cache and database queue.        

b) ELT (Extract Load Transform). 

Horizontal 

Scalability Separate Server For Aggregation  ELT (Extract Load Transform).  

Table 2. Challenges and solutions in the transformation stage for near real-time environment [38] 

 

Loading 

In this step, transformed data or metadata is sent to the target storage system, for example, a data 

warehouse or data lake. The biggest challenges are to maintain maximum performance during Online 

Analytical Processing(OLAP) or analytical process to avoid overlap while loading data [41] [40] and also, 

due to OLAP or analytics internal inconsistency. 

Feature 

Loading Stage 

Challenge Solution Approach 

High 

Availability 

OLAP Internal 

Inconsistency 

Snapshot; RTDC (Real-Time Data Cache); 

Layer-based View; 

RODB(Real-Time Operational Database); Dynamic mirror 

Low 

Latency Performance Degradation 

Staging Table;  

Multi-Stage Trickle & Flip 
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Horizontal 

Scalability 

OLAP Internal 

Inconsistency 

Staging OLAP outside data warehouse update period;  

CR-OLAP(Cloud-based Real-time OLAP system) 

Table 3. Challenges and solutions in the loading stage for near real-time environment [38] 

 

2.7 Delta Lake  

According to delta.io, Delta Lake is an open-source storage layer that brings atomicity, consistency, 

isolation and durability transactions to Apache Spark and big data workloads [48]. Databricks released 

delta lake in 2019 and it is presently open-sourced with the Linux Foundation project.  Delta lake came in 

to solve shortcomings of data lakes. There are two main challenges associated with data lakes, including 

data reliability and Query performance which delta lakes come in to solve.  

Data Lake data reliability issues and Delta Lake solutions 

In the absence of the right tools, data lakes can rapidly face data reliability problems. In the next 

paragraphs, the instigators of data reliability issues on a data lake and how delta lake comes in to solve 

the problem are better explained.  

Reprocessing data continuously due to broken pipelines or corrupted data in a traditional data lake are 

significant issues. Pipeline breaks mostly occur due to hardware or software failures during the data 

writing phase in a data lake when the job does not complete. When this happens, data teams spend lots 

of time and energy deleting corrupted data, verifying the correctness of the remaining data and setting a 

new write job to fill in any loopholes in the data. On the other hand, delta lake solves the reprocessing 

issue by making the data lake transactional, hence ensuring that every operation performed on the data 

lake is atomic. Atomicity will ensure that either the operation succeeds entirely or fails. Data teams, in 

turn, will not spend lots of time reprocessing data due to broken pipelines or failed writes.  

Quality enforcement and data validation are also issues in data lakes. Data validation is vital in data 

applications because, in its absence, there is no way to verify whether something is inaccurate or broken 

in the data, as opposed to traditional software applications where something wrong is easier to find, for 

example, a broken website which will display an error message. Data quality problems go unnoticed in 

data applications. Sometimes these corrupted data can only be identified after pipeline breaks, which 

becomes painful to solve depending on the critical level. On the other hand, delta lake’s features of 

schema enforcement and schema evolution help to manage data quality. Schema enforcement and 

schema evolution, allows data teams to specify a schema and enforce it, also change a table’s current 

schema to cope with changing data over time, respectively. 
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Bulk updates, merge, and deletes are also data reliability challenges in data lakes. Since data lakes can 

contain large amounts of data, organisations need to reliably perform an update, merge and delete 

operations on data stored in data lakes, make sure the data is up to date at every point in time.  With 

traditional data lakes, it can be extremely challenging to perform delete, merge and updates operations 

and confirm everything of each was successful since there is no mechanism to ensure data consistency.  

In recent years, not being able to perform delete, merge and update effectively has become a 

considerable burden for organisations since current regulations such as CCPA and GDPR require 

organisations to delete all of a customer’s information upon request. Traditional data lakes face two 

challenges, making this delete request. Organisations need to be able to query all the data in their data 

lake using SQL, also delete any data related to that customer on a row-by-row basis, that is something 

traditional analytics engines are not in-built to do. On the other hand, the delta lake solves this by enabling 

data teams to query the data in data lakes using SQL easily. Then perform updates, merge and delete on 

their data with a single command, thanks to delta lake’s ACID (atomicity, consistency, isolation, durability) 

transactions. Additionally, Delta lakes combine streaming and batch sources and sinks, that enables the 

creation of a single flow of data that allows users to focus on data quality [42] when implementing data 

movement processes, hence ensuring top data quality.  

Data Lake query performance issues and Delta Lake solutions 

The second major challenge associated with data lakes is query performance. Query performance is a 

significant driver of user satisfaction for data lake analytics tools. For data teams performing exploratory 

data analysis using SQL, rapid response to common queries is essential. Since data lakes hold a large 

number of files and tables, the data lake query engine should be optimised for performance at scale.  

Small files in large numbers within a data lake instead of larger files can slow down performance 

considerably due to limitations with Input/Output throughput. Delta lakes solve this by using small file 

compaction to group small files into larger files, optimised for reads.  

Furthermore, a slowdown in query performance can happen due to repeated access of data from storage. 

Delta lake solves this by using its caching feature, to selectively hold important tables in memory, to 

ensure the quicker recall of the tables. Delta lake also uses data skipping to boost read throughput by up 

to 15x, to avoid processing data that is not relevant in a given query.  

Moreover, on modern data lakes using cloud storage, files deleted from the data lakes can remain for up 

to 30 days, which creates overhead that slows query performance. Delta lake has a vacuum command to 

delete files that are no longer needed permanently.   
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Likewise, to facilitate query performance, the data lake has to be appropriately indexed and partitioned 

along the dimensions by which it is most likely to be grouped. Delta lake can create and maintain indexes 

and partitions, better optimised for analytics.  

Also, as the data lake size grows to petabytes or more, a bottleneck might not be the data itself, but the 

metadata that accompanies it. Delta uses Spark to offer scalable metadata management that distributes 

its processing, just like the data itself. 

The delta lake’s architecture is called the delta architecture, and it has three different stages of data 

enrichment including Bronze (raw zone), Silver (prepared zone), and Gold (curated zone).   

The bronze zone is where all raw data is dumped and stored there for the long term. The silver zone is 

where basic data cleaning and aggregation happen, and the gold zone contains curated data that is ready 

for consumption by stakeholders, applications, and machine learning models.  Also, this setup enables 

faster reprocessing of data because since data is available on all zones, in case data has to be reprocessed 

within a zone, tables are deleted on that zone and processing is run on the previous zone. Hence avoiding 

going through the entire data loading part again. 

2.8 Modern Data Storage Solution 

With the amount and variety of information growing exponentially due to digitisation, social media, and 

internet of things (IoT), organisations are in high need to develop a data-driven culture. Traditional data 

storage solutions are getting quickly outdated due to their inflexible nature and inabili ty to combine huge 

volumes of different data types. 

Nowadays organisations need to have a more proactive approach when it comes to decision support and 

decision making but face a significant challenge due to the lack of access to accurate, relevant, and re liable 

information on a timely basis [13]. Traditional organisations rely on data warehouses. However, data 

warehouses become a burden as they cannot cope with the market pressures suffering from deep 

limitations in adapting to new data formats requirements and technological developments. The above 

brings up a bigger question as to whether ‘Old data warehouse’ still meets the requirements of their users’ 

needs. 

A modern data platform is a future proof architecture for analytics with components supporting a modern 

data warehouse, machine learning and artificial intelligence development, real-time data ingesting and 

processing [43]. A modern data platform is vital to help organisations overcome the challenges linked to 

traditional data storage solutions. In this new decade, organisations require a data platform that will 

enable them to adapt to continually evolving business needs and manage data growth. Organisations 

must be agile and proactive, with standardised processes and a single source of truth to better support 
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decision making. Additionally, the MDP must run on state-of-the-art software supported by high-

performance hardware. 

Databricks as a Modern Data Processing and Storage solution 

Databricks enables organisations to bring their data warehouses or data platforms into a modern era. 

Note that, there are other data platforms available today such as Cloudera, but the focus in this work will 

be on Azure databricks. Azure Databricks is an analytics data platform enhanced for the Microsoft Azure 

cloud [44]. 

Azure Databricks offers collaboration across the full data and machine learning lifecycle with the Azure 

Databricks workspace. It has collaborative notebooks which enable data teams to access and explore data 

quickly. Additionally, it offers preconfigured machine learning environments with machine learning 

frameworks such as PyTorch, Tensorflow, Sci-kit Learn, Keras and XgBoost. Machine learning experiments 

can be tracked and shared, runs reproduced, and models can be managed collaboratively from a central 

repository, from experimentation to production. Azure Databricks also supports different business 

intelligence tools such as Qlik, Microsoft powerBI, Looker and Tableau.  

That notwithstanding, Azure Databricks includes delta lake, that brings data reliability and scalability to 

an existing data lake on the Azure cloud. Databricks offers simple batch and stream data processing on 

auto-scaling infrastructure powered by highly optimised apache spark. Also, databricks offers enterprise-

level security, which offers native protection to safeguard data where it lives and creates compliant, 

private and isolated analytics workspaces across thousands of users and datasets.  

Organisations can audit and analyse all the activity in their account and set policies to administer users, 

control their budget on Azure cloud. Besides, organisations can run and scale their most mission-critical 

data workloads on Azure cloud, with the ecosystem integrations for continuous integration and 

continuous development and monitoring. The modern data platform designed with Azure Databricks 

provides answers to the five challenges associated with traditional data warehouses/platforms including 

rigid structure, complex architecture, slow performance, outdated technology and lack of data 

governance, covered previously in this section.  

Azure Databricks, through delta lake, stores, and analyses data no matter its source, form and structure, 

enabling data teams to perform ETL or ELT process the data across their data platform. With ETL, data can 

be processed before loading on the delta lake area, while with ELT, the data is loaded directly in the delta 

lake area before it undergoes a transformation.  
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Besides, Azure Databricks offers an open and simplified architecture on the cloud to tackle data 

governance issues. Databricks combines data within a single system, enabling situational data analysis 

that reduces data movement and computation resources wastage.  

Furthermore, with the rapid rise in demand for speed in data preparation and consumption processes, 

Databricks offers advanced analytics and speedy transactions throughout the data processing life cycle. 

Spark’s in-memory architecture lowers disk bottlenecks and accelerates performance to provide a rapid, 

and accurate response. Azure Databricks also helps a lot to accelerate data integration from different 

sources and to load them on the target systems on and out of cloud environments.  

Moreover, traditional data platforms/warehouses have little or no ability to support big data and IoT 

workloads. But, Azure Databricks comes in to solve those challenges and boost performance. Azure 

Databricks is hosted on Microsoft Azure cloud, enabling a ‘pay as you go’ system for organisations. This 

helps to reduce capital expenditure with organisations not buying physical assets and reduces financial 

risk. Azure Databricks through delta lake brings ACID transactions to data lakes on Azure and enables 

organisations to better curate data available on their data lakes.  

Additionally, Azure Databricks provides comprehensive security and auditing functionalities. Also, 

solutions that provide access control to data within teams and organisations. Databricks provides data 

lineage and time travel that ameliorates traceability of actions performed by users.    

All the above put Databricks on Microsoft Azure cloud, a preferred solution to build a modern data 

platform on the cloud.  
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3.     Tools and Technology 

The MDP project had different technology components. The tools used during the internship to build the 

delta lake and ETL pipelines will be explored in this chapter, to give a more detailed overview as to why 

the financial institution chose these specific technologies.  

Azure Cloud 

Microsoft Azure cloud is a continually evolving set of cloud services to help organisations sol ve their 

business problems. The Azure cloud offers the freedom to build, manage, and deploy applications on a 

massive, global network using different tools and frameworks. The Azure cloud technologies used in MDP 

were Azure Data Lake Storage Gen2, Azure Cosmos DB, Azure Databricks with delta lakes. 

3.1 Azure Data Lake Storage Gen2 

Azure Data Lake Storage Gen2 is a group of capabilities focused on big data analytics, built on Microsoft 

Azure cloud blob storage. It is the result of combining the capabilities of Azure Data Lake Storage Gen1 

and Azure Blob storage. Its components include features from Azure Data Lake Storage Gen1, such as 

directories, file system semantics, file-level security and scale, combined with low-cost, tiered storage, 

high availability and disaster recovery capabilities from Azure Blob storage.  

Data Lake Storage Gen2 is built on top of blob storage and enhances performance, management, and 

security in the following ways:  

 It is optimised because data does not have to be copied or transformed as a requirement for 

analysis. The hierarchical namespace in Azure data lake gen 2 enhances directory management 

activities compared to the flat namespace present in blob storage. 

 It is easy to manage because files can be organised and manipulated through directories and 

subdirectories. 

 It is highly secured because POSIX permissions can be defined on directories or individual files. 

Security is paramount because the client is a financial institution, it entails stricter data protection 

rules. 

 Azure Storage is scalable by design, whether it is accessed via Data Lake Storage Gen2 or Blob 

storage interfaces. It can store and serve many Exabyte of data. This quantity of storage is 

available with its throughput measured in Gbps (gigabits per second) at high  levels of IOPS 

(input/output operations per second). This scalability component allows the storages of the 

financial institution to scale with increasing data quantities.  
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 Another benefit of building Data Lake Storage Gen2 on top of Azure Blob storage is the relatively 

low cost of storage capacity and transactions. Unlike other cloud storage services, data stored in 

Data Lake Storage Gen2 is not necessary to be moved or transformed before performing analysis.    

Other alternatives for data lake services provided by different cloud companies include: 

i. Amazon simple storage service (Amazon S3): It is a data lake solution developed by Amazon web 

services, a subsidiary of Amazon. Due to its virtually unlimited scalability, Amazon S3 can serve as 

a data lake. The storage can be increased seamlessly and non-disruptively from gigabytes to 

petabytes, and paying only for the storage used. Amazon S3 provides 99.999999999% durability.   

ii. Google cloud storage: Another alternative to azure data lake gen2 is google cloud storage. It is a 

RESTful online file storage web service for storing and accessing data on Google Cloud Platform. 

Google cloud storage combines the scalability and performance of Google's cloud with advanced 

sharing and security abilities.  

3.2 Azure Databricks  

Another Azure cloud technology used in the MDP project was Azure Databricks. Databricks is an Apache 

Spark-based analytics platform optimised for Azure cloud. Developed with the creators of Apache Spark, 

Databricks is unified with Azure cloud to provide streamlined workflows, one-click setup and an 

interactive workspace that enables collaboration between data scientists, data engineers, and business 

analysts.  

Azure Databricks is composed of the complete open-source Apache Spark cluster technologies and 

capabilities. Other alternatives to the azure data bricks services provided by different cloud companies 

include: 

i. Amazon EMR (Elastic Map Reduce): EMR is a managed cluster platform provided by AWS to help 

organizations run big data frameworks such as Hbase, Hive Hadoop, Spark, Hudi and Presto on 

the cloud to extract, transform and analyze large quantities of data. By using this framework, 

organisations can process data for analytics purposes and business intelligence workloads. 

Amazon EMR is used to extract, transform and load data into and out of AWS storages services, 

for example, Amazon Dynamo DB and Amazon S3 (Simple Storage Service).  

ii. AWS Databricks: It is a unified data analytics platform for accelerating innovation across data 

science, data engineering, and business analytics, integrated with the AWS infrastructure.  

iii. Cloud dataproc: Dataproc is a managed Hadoop and Spark service provided by Google cloud 

platform to enable data teams to process data both in batch and stream, query and run machine 

learning algorithms.   
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Dataproc automation helps to create clusters quickly, efficiently manage them and save money 

by turning off clusters when they are not in use. With less money and time spent on 

administration, data teams can focus on their jobs and data.  

3.3 Delta Lake 

Delta lake is a tool proposed by Databricks used in the MDP project. The promise by the creators of delta 

lake which is Databricks is that with delta lakes there is no more malformed data ingestion, difficulty 

deleting data for compliance, or issues in modifying data for change data capture. It accelerates the 

velocity that high-quality data can get into a data lake and the rate that teams can leverage that data, with 

a secure and scalable cloud service.  

 

Figure 8. Delta Lake Layout 

Source: Retrieved from delta.io 

Below are the features of the delta lake that made it the go-to solution to resolve issues associated with 

typical data lakes for the financial institution: 

 Numerous data pipelines can read and write data simultaneously to a delta lake. A data lake’s 

ACID Transactions ensure data integrity with serializability, the most substantial level of isolation. 

 Delta Lake provides data manipulation APIs to merge, update, and delete datasets. It allows the 

organisation to easily comply with the General Data Protection Regul ation(GDPR)/California 

Consumer Privacy Act(CCPA) and simplify change data capture. 

 It enables data lake schema specification and enforcement, ensuring that the data types are 

correct and required columns are present, and preventing corrupted data from causing data 

corruption.  
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 Delta lake enables time travel (Data Versioning). Data snapshots allow the organisation’s data 

teams to access and revert to earlier versions of data to audit data changes, reproduce 

experiments or rollback bad updates. 

 All the data in the Delta Lake is stored in Parquet format. The parquet format enables Delta Lake 

to leverage the efficient compression and encoding schemes that are native to Parquet.  

 A table in a Delta Lake is a streaming source and sink, but also a batch table. Delta Lake enables 

the organisation to make changes to a table schema that can be applied automatically, without 

the need for cumbersome Data Definition Language. 

 The delta lake transaction log records every detail about any change made to the data, providing 

a complete history of changes, for audit, compliance, and reproduction purposes.  

So far, the delta architecture or delta lake has no direct competitor providing similar or more competitive 

features. 

3.4 Azure Cosmos DB 

Another Azure cloud tool used in the MDP project was Azure Cosmos DB. Cosmos DB is a globally 

distributed and multi-model database service created by Microsoft. Cosmos DB enables developers with 

a click of a button, to elastically and independently scale storage and throughput across any number of 

Azure regions worldwide. Developers can elastically scale storage and throughput, and take advantage of 

fast, single-digit-millisecond data access using their favorite API, including MongoDB, SQL, Gremlin and 

Cassandra.  

Cosmos DB guarantees single-digit millisecond response times and 99.999% availability. The most 

significant advantage of Cosmos DB over all its competitors is that it provides four storage API’s all at once 

within one database.   

Other alternatives azure cosmos DB services provided by different cloud companies include: 

i. Amazon DynamoDB: It is a document and key-value database created by Amazon web services 

that deliver single-digit millisecond performance at any scale. DynamoDB has the capacity to 

handle more than 10 trillion requests per day and can support peak request which reaches 20 

million per second.   

DynamoDB supports ACID transactions to enable data teams to build business-critical applications 

that can quickly scale. Additionally, DynamoDB encrypts every data by default and provides fine-

grained access and identity control on all the tables within the database. Developers can easily 

create full backups of terabytes of data instantly without any performance impact to tables on 

the database and recover at any point in time in the preceding 35 days with no downtime.  
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ii. MongoDB Atlas: It is another alternative to Azure cosmos DB. The centre of MongoDB Cloud is 

called MongoDB Atlas. It is a fully managed cloud database for modern applications. MongoDB’s 

document model brings flexibility and ease of use to databases.  Atlas is available in more than 70 

regions across Amazon Web Services, Azure Cloud, and Google Cloud Platform.  

3.5 Confluent - Schema registry   

This tool enforces schemas and handles schema evolution. With the potential change of schema 

happening in the future and for the data pipelines not to break, the schema registry will inte rvene to 

ensure that does not occur. 

Furthermore, Schema Registry provides a serving layer for metadata. It provides a RESTful interface for 

keeping and retrieving Avro schemas. It keeps a versioned history of all schemas, provides multiple 

compatibility settings and enables the schema evolution according to pre-configured compatibility 

settings.  Confluent Schema registry has serializers that connect to Kafka clients to handle schema storage 

and retrieval for Kafka messages that have an Avro format [45]. 

An alternative to the confluent schema registry service is the Red Hat Integration service registry. It is a 

datastore for standard event schemas and API designs. It enables developers to decouple the structure of 

their data from their applications and to share and manage their data structure using a REST interface. 

The Apicurio Registry open source community project supports the development of a red Hat service 

registry. 

Also, the service registry handles the Apache Avro JSON Schema, Protobuf (protocol buffers), OpenAPI 

and AsyncAPI data formats. Developers can configure rules for each artefact added to the registry to 

govern content evolution. Before sending a new version to the registry, all commands configured for an 

artefact must pass. The objective of these rules is to prevent invalid content from being added to the 

registry. An alternative to Confluent schema registry is Red Hat’s Integration service registry. This registry 

from Red Hat provides a Kafka schema registry that helps to store Avro schemas. 
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4.     Projects 

At the beginning of the MDP project, every team member signed an NDA document with Accenture and 

their client (banking financial institution) which limits the sharing of information about the project, code 

or details of technology configurations done within the project. Examples of diagrams, code and 

configurations throughout this work, will be similar to those done during the MDP project.   

The MDP project consisted of building a modern data platform for the banking financial institution on the 

Microsoft Azure cloud. The new data platform was going to be a set of integrated storages that will 

consume data from the company’s legacy system, aggregate the data, structure it, and store it on azure 

cloud storage resources.   

Within the MDP project, the Accenture team focused on the project section to migrate and transform 

data from the mainframe storage to azure data lake gen 2, which will serve as the data lake for the 

organisation. In addition to this, extract data from the data lake to load it on azure cosmos DB, which was 

going to be used to serve mobile applications developed by the banking financial institution.   

Besides, we also performed code refactoring, unit tests, and pyTest on the MDP code within Databricks 

and locally on computers. 

Timeline  

Before starting the MDP project at the client site, between November and December 2019, the project 

team worked at the Accenture office where we received hands-on practical and technical knowledge on 

big data technologies related to the project, leadership, and communication skills to better prepare for 

the client work. This training had workshops, group projects, and presentations.  

From January to June 2020, we worked directly with the client on their MDP project. From January to 

March, the team worked at the client site, but due to COVID-19, we had to work remotely from home 

after March.  

The project structure followed the agile methodology, and Scrum framework was adopted. The Scrum 

framework helps teams work better together. The project had a product owner who served as the face of 

the client within the project and a scrum master who helped the team adopt the scrum methodology’s 

best practices.  

Furthermore, a product backlog helped to prioritise the project work. A product backlog is a list of work, 

prioritised for the development team, derived from the project roadmap and its requirements. The 

product backlog’s priorities were defined by the team’s product owner.  Any work done by the team, was 

conducted within a sprint. Sprints are short, time-boxed periods when a scrum team works to complete a 

predefined amount of work. Sprints are at the centre of the scrum and agile methodologies, and getting 
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sprints right, helped the team deliver software with fewer headaches. Each sprint had a duration of two 

weeks.   

In line with the above, to plan for each upcoming sprint, the team had sprint plannings. During the 

planning meeting, the team decided what work to focus on and how to accomplish it. The product owner 

and the team defined work based on the backlog items still left to do. Note that the backlog serves as the 

connection between the product owner and the development team. It is during this planning that each 

team member’s work was defined based on his or her accomplishments of the previous sprint in 

completing tasks and future tasks that were left to do. 

Once the sprint had started, the team had daily stand-ups, during which we all reported work progress. 

During this meeting, the team members highlighted the current challenges that were going to impact the 

team’s ability to deliver the sprint’s goal. Once a sprint was over, there was a sprint review. During the 

sprint review, each team member had the opportunity to present their work to stakeholders and 

teammates before sending to production.   

Also, the team had sprint retrospectives that were done at the end of sprint cycles to spot areas of 

improvement for the next sprint. Note that all highly concurrent spark clusters on Databricks for this 

project were configured by the client’s technology team, to ensure monitoring of resources and to enable 

team members to share computing resources of the same cluster. All team members wrote and organised 

their code in interactive Databricks notebooks.   

4.1 Project 1 - Building Data pipelines to move data from mainframe storages, transform and load on 

the delta/data lake and cosmos DB.   

 

  Figure 9. Modern data platform of the financial institution 

The MDP of the banking financial institution had different areas including ingestion, store, preparation 

and serving layer.  

The ingestion section focuses on the extraction of data from on-premise databases of the financial 

institution in streams with the help of Azure Databricks, then sending the data to Azure data lake Gen 2. 

Azure Databricks was chosen as an ingestion tool because it is an Apache Spark-based analytics platform 
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optimised for the Microsoft Azure cloud services platform. It supports both stream and batch data 

ingestions, hence can easily consume stream data from Apache Kafka.   

Furthermore, the store layer helps with the storage of data on the data lake. The data lake used by the 

financial institution is Azure data lake gen 2 due to its capabilities dedicated to big data analytics such as 

file system semantics, directory, file-level security, also, due to its scalability combined with low-cost, 

tiered storage and high availability/disaster recovery capabilities.  

Data preparation was done using Azure Databricks because it will help the financial institution to unlock 

insights from all their data and build artificial intelligence (AI) solutions. Azure Databricks provides 

interactive workspace and on-demand scalable clusters that enable collaboration between all members 

of a data team. Besides, Databricks brings in delta lake, to allow ACID transactions on top of the data lake. 

Additionally, Databricks has fully scalable, secured and managed clusters which teams can use flexibly to 

process massive amounts of data.  

The serving layer used ComosDB because it is a globally distributed, multi -model database service for 

operational and analytics workloads. Additionally, it provides 4 APIs, namely, SQL, MongoDB, Cassandra, 

and Gremlin. 

Project phase 1 - Data Migration from On-premise database to Delta lake raw(bronze) zone   

 

Figure 10. Data migration resources lay out 

The objective of this phase was to ingest the data from the company’s databases and send it to the delta 

lake raw zone.    

The data extraction from the clients’ storages happened in streaming mode. The data centre team of the 

client had to capture data in real-time from the databases as events. Apache Kafka was used as an event 

streaming platform by the financial institution and all the data from the databases were converted to Avro 

format and published to Kafka topics progressively during the project implementation.  

Apache Avro is an Apache Foundation open-source project that offers data serialisation and exchange 

services for Apache Hadoop. Apache Avro eases the exchange of big data between programs written in 

any language. With the serialisation service, programs can efficiently serialise data into files or messages. 

The data storage is compact and efficient. Apache Avro stores the data definition and the data together 

in one message or file. 
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Furthermore, Apache Avro stores data definitions in JSON format and data is kept in binary form. An 

important point to note about Avro is that it provides strong support for data schemas changing over time 

— often called schema evolution. Avro can handle schema changes such as missing, added and changed 

fields; this enables old programs to read new data and new programs to read old data.  Avro includes APIs 

for Java, Python, Ruby, C, C++, and more.  

Additionally, data stored in Avro format can be exchanged between programs written in different 

programming languages such as C, Java, etc.  The extraction of data from the databases occurred at 

different intervals during the project, and new fields were added to the Avro files with their schemas 

continually changing. The team had to ensure that the Avro files schema could change over time with the 

addition of new fields, without rebuilding the entire Kafka platform and avoiding break ing data pipelines.  

Additionally, Confluent’s confluence schema registry came in as the perfect tool to help the data centre 

team implement schema evolution in the Kafka platform. To ensure that as new fields were added to the 

Avro files extracted at different intervals and sent to Kafka, the Avro schema registered in Kafka could 

evolve seamlessly without breaking the Kafka platform, taking into account new fields added.  

Moreover, once the data was available in Kafka, we then used Azure Databricks to read Kafka streams, 

using built-in PySpark Kafka consumer configurations, that were re-adapted for the project use case. The 

subscription is on only one Kafka topic at a time.  

Below is an example of PySpark code to read Kafka streams;  

  

 

Figure 11. Kafka streams consumption layout  

 

Figure 12. PySpark Kafka read stream 
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From the above code, the variable kafka_stream_df contains data from the Kafka stream.  Its variables 

include: 

 Format(“Kafka”): indicates the file format. It is Kafka because we are reading data from the Kafka 

stream.  

 kafka.boostrap.servers: The Kafka “bootstrap.servers” configuration is a comma-separated list of 

host and port pairs that are the addresses of the Kafka brokers in a Kafka cluster that a Kafka client 

connects to initially bootstrap itself. The brokers_list is a predefined variable that contains the 

name(s) of a broker(s).  

 Subscribe: The topic list to subscribe. Only one of “assign”, “subscribe” or “subscribe pattern” 

options is the Kafka source. The topic part is a predefined variable containing a topic name.    

 startingOffsets: The start point of a query. It is either “earliest” which indicates to start from the 

earliest offsets or “latest” which indicates starting from the latest offsets, or a JSON string 

specifying a starting offset for each topic partition.  

 from_avro: This helps to transform Avro data into a column. Apache Avro is a commonly used 

data serialisation system in the streaming data pipelines.  

 Key_avro: Key of the Kafka message.  

 value_avro: Value of the Kafka message. 

 SCHEMA_REGISTRY_URL: variable with URL of the Schema Registry to define schemas to the 

topics. 

The next part of the code above selects some elements from the Kafka stream and turns them to columns, 

stored in a spark dataframe. Then the spark dataframe is written as a delta table to the raw zone of the 

data lake. Below is an example of code. 

 

Figure 13. Writing data to the raw delta table on the data lake raw zone 
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Figure 14. PySpark write data stream to raw zone 

The components include: 

 format(“delta”): The file format. The format is delta because it’s a delta table.  

 outputMode: mode in which data adds to the table. Structured streaming runs by default in 

append mode, but can also run in an update or complete mode.    

 checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed, 

developers specify the location where the system will write all the checkpoint information. In the 

case of stream write failure, the ending location is stored so that once the stream starts, it will 

begin from the point it previously ended. The checkpoint location is a directory in an HDFS -

compatible fault-tolerant file system. Checkpoint_location is a predefined variable which contains 

the checkpoint path on HDFS.  

 table_location: the path to the location where the table will be stored. The path is the raw zone 

location on azure data lake Gen 2.  

During this project phase, there were excessive waiting times for the client’s team to write data to Kafka 

topics due to security scrutiny and the amount of data extracted that needed administrative approval. 

Additionally, for some of the data to be extracted from the client’s legacy database, new API’s had to be 

developed by the client’s team. To ensure proper conversion of data to Avro format, that took some 

development time and increased waiting time for data to be available in Kafka. The delay sometimes 

affected the delivery of project work on time.  

Project phase 2 - ETL processes to move data from delta lake to Cosmos DB  

This phase of the project consisted of building the prepared and curated zone on the delta/data lake and 

sending data from the curated area to Cosmos DB.   

Building the prepared(silver) zone  

 

Figure 15. Raw zone to prepared zone data movement layout 
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The data on the raw zone was extracted using databricks, parsed and basic transformations were done 

following the client’s business requirements only to send the required columns to the prepared area. 

Streams of data from the raw zone were read and stored in a spark data frame in delta format, using the 

code below. 

 

Figure 16. Read data streams from the raw zone 

 

Figure 17. PySpark read the data stream from raw zone 

The components above include:   

 format(“delta”): The file format. The format is delta because it’s a delta table.  

 load(target_table): contains the location where data was stored. target_table is a predefined 

variable that included a path to the data found on the raw zone.   

Then the delta table column with Avro data was parsed to fetch only the required elements to turn them 

into columns, making use of the spark SQL functions “col”. Example of  code is as below. 

  

 

Figure 18. Converting JSON data to columns 

  

 

Figure 19. PySpark parse data from raw zone 
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Then basic transformations or joins were done to obtain a delta table that was going to reflect the business 

requirements given by the client.   

 

Figure 20. Performing transformations on spark dataframe 

The components of the above include: 

 createOrReplaceTempView: creates a view of the spark dataframe. 

 sql_query: variable containing the SQL query. 

 spark.sql(): runs the predefined SQL query to obtain a new dataframe stored in a variable. 

df_transaction_moditified is the variable containing the obtained spark dataframe.  

Once the data transformation was over, the spark dataframe was then written to the prepared(silver) 

delta table on the data lake prepared zone. 

 

Figure 21. Sending data to the prepared delta table on the prepared data lake  zone 

 

Figure 22. Writing data to the prepared zone  

The components of the above include: 

 format(“delta”): Format is delta because it’s a delta table  

 outputMode: mode in which data adds to the prepared delta table. Structured streaming runs by 

default in append mode, but can also run in an update or complete mode.  

 checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed, 

developers specify the location where the system will write all the checkpoint information. In the 

case of stream write failure, the ending location is stored so that once the stream starts, it will 



43 
 

begin from the point it previously ended. The checkpoint location is a directory in an HDFS -

compatible fault-tolerant file system. Checkpoint_transaction is a predefined variable which 

contains the checkpoint path on HDFS. 

 start(): has the path where data writes send data. table_location is a predefined variable that held 

the path of the prepared delta table on the prepared data lake zone.   

 

Building the Curated zone  

This section focused on performing more complex transformations or aggregations on the data from the 

data lake prepared zone and sending the data to the curated delta table on the data lake curated zone.   

  

 

Figure 23. Prepared zone to curated zone data movement lay out 

Data streams from the prepared zone delta table were read and stored in a spark dataframe within 

Databricks.  

 

Figure 24. Read data streams from prepared delta table  

 

Figure 25. Read data stream from prepared zone 

The components above include:   

 format(“delta”): The file format. File formats on delta lakes are delta.  

 load(): contains the location where data will be gotten; target_table is a predefined variable that 

includes a path to the data found on the prepared delta table in the data lake prepared zone.    
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Once the data was available in a spark dataframe, more complex transformations and aggregations were 

done on the dataframe to produce new columns to satisfy the business requirements given by the client. 

 

Figure 26. Perform transformations or aggregations on a spark data frame 

The components of the above include:   

 createOrReplaceTempView: creates a view of the spark data frame  

 sql_query: variable containing SQL query 

 spark.sql(): runs the predefined SQL query to obtain a new data frame stored in a variable.    

Once the final data frame was available, it was then written on the curated(gol d) delta table on the data 

lake curated zone. 

 

Figure 27. Writing data to the curated delta table on the curated data lake zone 

  

 

Figure 28. Writing data to the curated zone 

The components of the above include: 

 format(“delta”): Format is delta because it’s a delta table. 

 outputMode: mode in which data adds to the curated table. 

 checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed, 

developers specify the location where the system will write all the checkpoint information. In the 

case of stream write failure, the ending location is stored so that once the stream starts, it will 

begin from the point it previously ended. The checkpoint location is a directory in an HDFS -
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compatible fault-tolerant file system. Checkpoint_transaction is a predefined variable which 

contains the checkpoint path on HDFS. 

 start(): Has the path where data writes send data. table_location is a predefined variable that 

held the path of the curated delta table on the curated data lake zone.   

Sending data to Cosmos DB   

In this section, the data present on the curated delta table on the curated data lake zone was extracted 

using Databricks and sent to Cosmos DB. 

 

Figure 29. Curated zone to cosmosDB data movement layout 

For this part, data streams from the curated zone were obtained and stored within a Spark dataframe.   

 

Figure 30. data extraction from the data lake curated zone 

 

Figure 31. Read the data stream from the curated zone 

The components above include: 

 format(“delta”): The file format. The format is delta because it’s a delta table. 

 load(): contains the location where data was stored. target_table is a predefined variable that 

includes a path to data found on the curated delta table on the curated data lake zone.   

  

Cosmos DB is the final location of the information processed across the data pipeline, where business 

applications will consume the data from there to provide it to end-users who are internal or external 

clients. Additionally, we made Cosmos DB configurations in Databricks before sending data to Cosmos DB. 

The Cosmos DB where data will be written and its parameters were configured as of below.  
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Figure 32. Cosmos DB configuration 

The components of the above configuration include: 

 Endpoint: this is the URI of the Microsoft Azure Cosmos DB account. COSMOS_KEY_URI is a 

predefined variable containing the URI. 

 Masterkey: the master key serves to access the account. COSMOS_KEY is a predefined variable 

containing the key. 

 Database: contains the database name. 

 Collection: contains the collection name. 

 Upsert: indicates inserting data if it does not exist and update if it already exists. True indicates 

upsert will occur. 

 WritingBatchSize: number of files with each writes’ batch.   

After the Cosmos DB configuration step, the data from the spark dataframe was written to Cosmos DB.  

 

Figure 33. sending data to Cosmos DB 

 

Figure 34. Writing data streams to Cosmos DB 

The components of the above include: 

 format (“”): indicates the file format. 

 outputMode: mode in which data adds to cosmos DB database collection. Structured streaming 

runs by default in append mode, but can also run in an update or complete mode. 

 checkpointLocation: Output sink where the end-to-end fault-tolerance can be guaranteed, 

developers specify the location where the system will write all the checkpoint information. In the 

case of stream write failure, the ending location is stored so that once the stream starts, it will 
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begin from the point it previously ended. The checkpoint location is a directory in an HDFS -

compatible fault-tolerant file system. Checkpoint_location is a predefined variable that contains 

the path to the checkpoint. 

 Cosmosdb_write_configuration: cosmos DB configuration defined above. 

 

During this project phase, there were two main challenges. When writing streams of data to delta lake 

tables, on some occasions, the data from the client’s databases was massive (terabytes), hence the file 

sizes were also large. The file sizes created a problem because in case the spark cluster had few nodes to 

process the task, it was going to break or become very slow in performing write tasks. The solution 

identified was to implement “MaxFilePerTrigger” in structured streaming within Databricks. The solution 

helped to limit the maximum number of files within each micro-batch of data processed. With this 

solution, even if a spark cluster had few nodes, it could still process data efficiently. The solution was going 

to be implemented in a later stage of the project towards the end of 2020.  

Additionally, on some occasions, late data was coming from the raw zone of the data lake, especially 

during stream data transformation or aggregations. As a solution, the team decided to implement 

windowing within structured streaming in Databricks, to ensure that even if stream data were late within 

data pipelines, it would still be captured within micro-batches of data processed. The solution was going 

to be implemented in a later stage of the project towards the end of 2020.  

4.2 Project 2 -  Code Refactoring and Unit Testing  

This project focused on refactoring all the ETL pipeline code on Databricks for the MDP project. The code 

refactored included those written by all Accenture team members. In addition to this, schema and value 

unit tests were performed on all python functions.  

Project Phase 1 - Identifying code smells and refactoring code   

Due to NDA agreements the project team signed at Accenture, the detailed reports of SonarQube for the 

MDP project cannot be disclosed. The screenshots below are examples obtained online that reflect similar 

steps made by the team during the MDP project.   

This first phase focused on identifying code smells and refactoring. Code smells occur when code does not 

follow fundamental standards of the language in which it is written. Code smells are not bugs or errors; 

they are absolute violations of the fundamentals of developing software that decrease the quality of code. 

Refactoring is the activity during which the structure of code is changed to alter its internal structure only 

and not changing its external behaviour. 
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Furthermore, to identify this code smells, we used SonarQube, which is an open-source tool created by 

SonarSource to enable the continuous inspection of code quality to execute automatic reviews with static 

analysis of code to identify bugs, code smells, and security vulnerabilities. The project team ch ose 

SonarQube because it was open source and could easily integrate with Azure workflows.  

Moreover, we started by downloading all the code of the MDP project on Databricks to our local 

computers. Then using SonarQube, we ran code smell analysis to identify bad quality code. To go through 

the code lines and proceed with correcting the errors, we accessed the code lines in an area within 

SonarQube similar to the one below, reserved for code modifications. 

 

Figure 35. SonarQube code update area 

Source: Retrieved from Sonarqube.org  

  

Within this area, we made corrections to the code and refactored following PEP-8 standards, which is a 

style guide for Python code. After completing all modifications on the code, we then reran the SonarQube 

analysis to ensure there were no code smells, no bugs vulnerabilities, and zero duplications. After this 

step, we proceeded to give an update of this project phase during code review sessions.  

Project Phase 2 - Unit tests  

Once the first phase was completed, we then proceeded to conduct the Unit test in two steps. The first 

step was to upload the refactored code on Databricks to run the unit tests. Since the MDP project code 

was in python, the unit test framework within python came up as the best tool to test the project code 

on Databricks.  

Unit testing  

A unit test is in-built into the Python standard library. The unit test contains both a testing framework and 

a test runner. The unit test has essential requirements for wri ting and executing tests, they include: 

 Classes as methods containing all tests.  
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 Use a series of unique assertion methods in the unit test—use TestCase class instead of the built-

in assert statement.  

We used the following Unit test general steps:  

 Import unit test from the standard library.   

 Created a class called, for example, TestName that inherits from the TestCase class. 

 Then we converted the test functions into methods by adding ‘self’ as their first argument.  

 Then the assertions were changed to use the self.assertEqual() method on the TestCase class.  

 Change the command-line entry point to call unittest.main()  

We did the schema and value test on all MDP project code functions. Below is an example of a value test. 

 

Figure 36. Value unit test 

The value test aimed at making sure the values of the output data frame from applying the function we 

were testing on the input data frame was as expected. To ensure that, when we send code to production, 

the output will always reflect our predefined expected output.  Below is an example of the schema test.  
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Figure 37. Schema unit test 

This schema test aimed at making sure the schema of the output data frame from applying the function 

we were testing on the input data frame was as expected. To ensure that, when we send code to 

production, the output schema will always reflect our predefined expected output schema.   

Once the unit test completed on Databricks, we downloaded all the notebooks to rerun the tests locally 

this time using PyTest. Note that since the tests were already created on Databricks using the unit test, 

we just had to re-use those tests to run pyTest locally on computers.  

At the end of this, we provided a coverage report to the client's technology team to show the percentage 

of the MDP project code lines tested.  

During this project, since it was the first time we were doing unit test and code refactoring for the MDP, 

we had to take more time to learn about the PEP-8 standards, Unit test framework best practices and 

SonarQube. Overall we were able to accomplish the above project in due time. 
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5.     Conclusions 

The objective of the MDP project was to migrate the data of the client from their legacy systems to the 

cloud and build the ETL pipelines on Databricks to process this data across different zones on the data 

lake.  

The MDP project had three development environments, including pre-development, test and production 

environment. The pre-development environment is the initial environment where developed code got 

tested to identify loopholes within the MDP project cloud and analytics resources. Once significant checks 

passed the verification by the project team, and the client’s technology and security team approved, all 

the MDP project code on Databricks got transferred to the test environment which had similar 

configurations to the production environment.  

Furthermore, the production environment is the final area where all MDP project code goes into 

operation for their final use across the client’s infrastructure, to enable the client to run all their daily 

activities with the new data platform.  

All the migration and ETL pipeline code done by the Accenture team passed verification within the pre-

development and test development environments. The movement to the production environment was 

going to occur later on at the end of the year 2020. The work done by the Accenture team handled a large 

part of the client’s infrastructure related to clients (individual and corporate) transactions.  

5.1 Connection to the master program  

The master in information management with specialisation in knowledge management and business 

intelligence with its theory and hands-on components empowered the NOVA Information management 

school student with foundational knowledge in areas of data management, data warehousing, data 

visualisation, business intelligence, data engineering, and knowledge management. Also, equipped him 

with foundational knowledge in tools such as python, SQL, Spark, Hadoop, Flume, Databricks, Sqoop, 

Microsoft SQL Server, and PowerBI.  

Likewise, learning about python, SQL, spark, and Databricks before joining the Accenture team helped 

him to understand faster the project technologies used within the company context and learn more 

quickly, more complex techniques to manipulate the different tools.   

5.2 Internship evaluation  

When the NOVA Information management school student joined the applied intelligence team of 

Accenture to work on the MDP project, the goals of his work were to develop experience in business 

requirement gathering and translating into a technical requirement. Additionally, make use of big data 
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and cloud tools such as Azure Databricks to build robust ETL pipelines to extract data, transform and load 

on cloud data lakes. Also, learn code refactoring and testing.   

Likewise, at the end of the student's involvement in the MDP project, all the objectives stated above were 

attained.  He had the chance to work on topics highlighted in the goals above under the guidance of 

talented professionals who had extensive experience using the technologies and frameworks used in the 

MDP project.  

 5.3 Limitations  

During the execution of the MDP project, we encountered some challenges detailed below. 

The migration of data from legacy systems often took long periods because of new API creation to convert 

data on the legacy storages to Avro format before pushing to Kafka. This development of new APIs took 

long periods due to technical challenges, administrative authorisations and getting security clearance 

validation for the data moved.   

Besides, often, decision making within the project to change some tools or business requirements 

provided by the client due to challenges encountered during the project execution took very long periods. 

Any change which was going to affect the MDP project had to be validated by the client’s technical team 

and administration in charge of platform development, which took time.  

Furthermore, some core components of the project, which were part of the Accenture team’s work, went 

through the client’s team for approvals or execution. For example, spark cluster creation and adjustment 

on Databricks. Still, because the client’s team handled this component, there was a constant back, and 

forth movement in case changes had to be made rapidly because of authorisation approvals, cluster 

budget restrictions and security clearance which often took much time. 

5.4 Lessons Learned  

During the MDP project, the NOVA Information Management School student had the opportunity to learn 

how to use better Databricks, Azure cloud resources such as data lake Gen 2 and Azure Cosmos DB—also 

test-driven development methodologies by implementing code refactoring and testing.   

More so, he learned how to work in diverse teams following the agile methodology and adapting to 

delivering quality work on time within short sprints. 
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