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Multi-objective scheduling for real-time data warehouses

Maik Thiele · Andreas Bader · Wolfgang Lehner

Abstract The issue of write-read contention is one of the
most prevalent problems when deploying real-time data
warehouses. With increasing load, updates are increasingly
delayed and previously fast queries tend to be slowed down
considerably. However, depending on the user requirements,
we can improve the response time or the data quality by
scheduling the queries and updates appropriately. If both
criteria are to be considered simultaneously, we are faced
with a so-called multi-objective optimization problem. We
transformed this problem into a knapsack problem with ad-
ditional inequalities and solved it efficiently. Based on our
solution, we developed a scheduling approach that provides
the optimal schedule with regard to the user requirements at
any given point in time. We evaluated our scheduling in an
extensive experimental study, where we compared our ap-
proach with the respective optimal schedule policies of each
single optimization objective.

Keywords Real-time data warehouse · Scheduling ·
Resource allocation · Multicriterial optimization

1 Introduction

Today’s enterprises increasingly have to make real-time
decisions concerning their daily operations in response to
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the fast changes in their business domains. As a result,
enterprises switch to real-time data warehouses, where in-
formation is automatically captured and pushed into the
data warehouse. This approach represents a clear con-
trast to traditional data warehouses, where modifications
are loaded at defined points on a nightly or weekly ba-
sis. The data in real-time data warehouses, however, are
subject to permanent modifications (trickle feed), which
induces two options from the user’s point of view: 1) out-
dated or slightly outdated data may be used in order to
get faster query results, or 2) only the most current data
shall be used, i.e., all modifications are committed be-
fore the next query is executed. In abstract terms, the
first criterion refers to Quality of Service (QoS), the lat-
ter criterion denotes the Quality of Data (QoD). Both
abstract criteria can be implemented with various met-
rics, e.g., response time or throughput for the QoS ob-
jective and time-based or lag-based metrics for the QoD
objective.

The push-based data propagation leads to a continuous
stream of updates, which compete for system resources
with queries from the user side. The decision on which
stream to favor depends on the users. For each query
submitted to the data warehouse, the users define the re-
quired quality-of-data and quality-of-service degree. The
data quality is improved by the execution of updates, but
this slows down the processing of queries. If only queries
are executed, this improves the response time but the data
quality deteriorates. Hence, both requirements are in con-
flict with one another and cannot be optimized indepen-
dently. An improvement of one objective inevitably leads
to a decrease of the other objective. Optimizations with
regard to competing objectives, such as QoS and QoD,
are called multi-objective optimizations. This paper ad-
dresses the problem of how to schedule two conflicting
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Contributions. In detail, our main contributions comprise
the following:

• We propose the push-based update propagation in order
to build a real-time data warehouse, where the term
“real-time” is defined as a user-specified freshness
limit.

• We mathematically define the trade-off between the ab-
stract quality-of-service (QoS) and quality-of-data (QoD)
criteria and treat it as a multi-objective optimization
problem.

• We formulate this optimization problem as a special
variant of the knapsack problem and solve it with the
help of dynamic programming in pseudo-polynomial
time.

• We use this algorithm as a foundation to develop a non-
preemptive single-machine scheduling approach in order
to minimize the response time and to maximize the data
currency.

• We evaluate our approach in various experiments.

Our focus in this paper does not lie on the query schedul-
ing. Instead, we assume a fixed query order, which is pre-
scribed, for example, by query generators or other schedul-
ing policies.
Structure of the paper. The paper is organized as follows.
Our system model is outlined in Sect. 2. We introduce the
concept of Pareto-efficient schedules in Sect. 3, and we pro-
vide a dynamic programming algorithm in order to find such
schedules. In Sect. 4, we outline some dynamic aspects re-
garding the computation of Pareto-efficient schedules. Next,
in Sect. 5, we describe the experimental setup and present

types of transactions (queries and updates) in order to as-
sure a user-specified data quality constraint and to keep 
the contention between queries and updates as low as 
possible.
Motivating example. We will sketch our main principles 
with an example. For this purpose, we use a workload that 
consists of 7 transactions: 5 queries, q1 to q5, with increas-
ing execution times, and 2 updates, u1 and u2. To visu-
alize the solution space for this workload (see Fig. 1), we 
enumerated all possible schedules and evaluated them in 
terms of two objectives: QoS (e.g., response time) and QoD 
(e.g., number of unapplied updates). Depending on the ex-
ecution order of queries and updates, this results in dif-
ferent QoS and QoD values for each schedule. With the 
focus on one objective, the optimal response time can be 
achieved by prioritizing the queries based on shortest-job-
first (SJF [18, 19]) and executing the updates subsequently, 
i.e., based on queries-first (QF). The optimal schedule in 
terms of data quality is acquired by executing updates be-
fore queries. If the queries are additionally sorted by the 
shortest job first, this results in schedule UF+ SJF, as shown 
in Fig. 1. Scheduling based on the FIFO principle leads to 
an arbitrarily good or bad scheduling, depending on the ar-
rival times of the transactions, i.e., it does not provide any 
guarantees.

The simultaneous consideration of both optimization 
goals, QoS and QoD, results in a front of Pareto-efficient 
schedules (see Fig. 1), which connects QF + SJF and UF + 
SJF. The goal is to find the one schedule from the Pareto-
efficient front that best meets the given user requirements for 
QoS and QoD.

Fig. 1 All 7! schedules for
a workload with 5 queries and
2 updates
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our experimental results. Section 6 surveys related work. Fi-
nally, we conclude in Sect. 7.

2 System model

Our scenario setup consists of the following three com-
ponents: 1) a central data warehouse, 2) a staging area to 
provide a permanent stream of updates trickling into the data 
warehouse, and 3) some application on top that feeds the 
data warehouse with user-defined queries. The structure and 
the elements of the workload as well as the scheduling ob-
jectives will be considered in more detail in the subsequent 
sections.

2.1 Workload model

The workload W consists of two kinds of transactions: read-
only user queries, qi ∈ Wq , and write-only updates, u j ∈ Wu ; 
the latter include insert, delete, or update operations but will 
be simply referred to as updates in the following sections. It 
holds that W = Wq ∪ Wu . Mixed transactions do not occur, 
since the push-based approach implies that both queries and 
updates are submitted independently to the system.

In order to apply the scheduling algorithm proposed in 
this paper, queries and updates are associated with a set 
of parameters that are derived in a pre-processing step, as 
illustrated in Fig. 2. Each query qi is annotated by a pair 
〈qosqi , qodqi 〉 , which specifies the preferences of the user 
who issued the query (with qosqi ∈ [0, 1] and qosqi + 
qodqi = 1). A higher value for qosqi denotes a higher de-
mand for QoS (e.g., low response times), whereas a higher
value for qodj signifies a higher QoD demand (e.g., few 
unapplied updates). Each update u j disposes of a profit pa-
rameter pu j , which specifies the user benefit if the update 
is applied (see Sect. 2.2.1 for further details). The profit de-
pends on the respective application, and often it is quite easy 
to calculate (e.g., the age of an update or the number of lines 
to be inserted, etc.). At this point, we have to differentiate 
between updates on fact tables and updates on dimension 
tables. Both types result in different effects on the data qual-
ity and profit, respectively. In terms of these effects, the 
modification of a fact may be considered as insignificant, 
depending on the delta between the old and the new value.

Fig. 2 Workload model

However, the modification of the instance of a dimension
often has considerable consequences for the query results
or the data quality, respectively. Appropriate cost models
that consider these cases will have to be developed for the
respective application.

In order to estimate the execution time of queries and
updates, both need to be compiled, which results in a pa-
rameter execution time eqi for each query and a parameter
cost cuj for each update. The compiled query plans are di-
rectly used for their later execution. Updates are assumed to
be independent from each other to keep the scenario simple.
However, our approach can be easily extended by update
execution orders.

In order to determine if a query profits from an update,
the dependencies between queries and updates will have to
be derived. Therefore, we assume that the data warehouse is
divided into a set of partitions. The set of partitions that are
accessed by a query or an update can be determined via an
efficient lookup. There exists a dependency between a query
qi and an update uj if the partition sets of both overlap with
one another (Pqi ∩ Puj �= ∅). A closer look at different par-
titioning models and their impact on the scheduling quality
can be found in [23, 24].

In this paper, we build on the parameters described above
and focus on the issue of multi-objective scheduling.

2.2 Scheduling performance objectives

Scheduling in the context of real-time data warehouses re-
quires optimization with regard to two criteria. On the one
hand, the term real-time represents the demand for updated
data. On the other hand, the use of data warehouses for an-
alysis purposes implies the desire for fast response times.
Both objectives will be defined in more detail and raised to
a more abstract level in the following sections.

2.2.1 Quality-of-service objective

A lot of research efforts attempt to find good metrics that
represent the user experience. In [4, 30], the authors found
that users accept higher mean response times under the con-
dition that the individual response times show less variance,
i.e., the maximum response time is to be minimized. An-
other widely used objective is the stretch metric, where the
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response time of a query is additionally normalized with its
execution time, which often leads to more adequate results
from a user perspective.

In order to measure the QoS, we use the response time,
which is typically the primary goal for most computer appli-
cations. The response time rtqi of query qi is composed of
its execution time eqi , the waiting time caused by the execu-
tion of preceding queries, and the waiting time caused by the
execution of preceding updates (whose cost cuj is added to
the next query to be executed). Thus, the QoS objective for
a given workload W is defined as follows:

QoS(W ) =
∑

i=0..|Wq |
(|Wq|− i) · (eqi + cuj ) . (1)

objective of a workload is then computed as follows:

QoD(W ) =
∑

qi∈Wq ,uj∈Wu ,Pq∩Pj �=∅
puj . (2)

We use the example of the lag-based metric for a more de-
tailed explanation: Here, the profit of each update is encoded
by the value 1 (∀pj = 1) and the set of non-inserted updates
is represented by a negative number. The execution of an
update before a query would then contribute to the maxi-
mization of the data quality (QoD increases by 1). Similar to
the QoS objective, the minimization problem can be turned
into a maximization problem.

3 Multi-objective scheduling

In the previous section, we outlined the QoS and QoD
objectives individually. In this section, we now focus on
the optimization of both objectives at the same time. For
this purpose, we first define the concept of Pareto-efficient
schedules and then develop an efficient algorithm for the
computation of such schedules.

3.1 Pareto-efficient schedules

In Sect. 1, we already identified QF+SJF and UF+SJF as
Pareto-efficient schedules, whose characteristics shall be de-
fined in the following. The basis for our considerations is
given by selected schedules from Fig. 3; our example work-
load consists of three queries and three updates. All three
updates are described by a cost-profit pair, which can be il-
lustrated with the help of two vectors: the cost vector on
the x-axis and the profit vector on the y-axis (see Fig. 3).
To clearly illustrate this, we assume that each of the three
queries profits from all updates. Later on, we will also con-
sider the more general case. The fixed order of the queries
shall be defined by an arbitrary scheduling scheme or by
user prioritization [3, 13, 20, 23, 24].

The position of an update ui
j in a schedule S is denoted by

i. The value of i is limited by the number of queries in the
system |Q|, i.e., an update cannot be moved further than by
the number of queries present in the workload.

Definition 1. (Schedule S) A schedule S is defined as the
set of all existing updates in the system, uj ∈ U, with their
positions i in the query queue. S = {ui

j | ∀ j, 0 ≤ i ≤ |Q|}.
An update with i = 0 is executed after all queries, while an
update with i = |Q| is executed before all queries. For ex-
ample, the schedule QF+SJF is given by S1 = (u0

1, u0
2, u0

3)

(Fig. 3).
The set of all schedules for a given set of queries Q and

a given set of updates U , and thus, the possible solution
space for our optimization problem, should be denoted as P.

As can be seen, both queries and updates affect the response 
time and hence the QoS objective. In order to avoid oppos-
ing optimizations with regard to different criteria, the QoS 
objective for the updates should consider the schedule pol-
icy of the queries, i.e., if queries are prioritized with regard 
to the response time, the resulting QoS objective for the up-
dates should be the response time as well.

Other objectives, for example, the throughput that is to be 
maximized, have to be transformed accordingly, so that the 
maximization problem is turned into a minimization prob-
lem. Without loss of generality, all metrics outlined above 
would be suitable QoS objectives. However, in the remain-
der of this paper, we focus on the response time, which 
provides a very good indication of the end-user experience, 
together with the QoD objective to be discussed in the next 
section.

2.2.2 Quality-of-data objective

A variety of metrics exist for the evaluation of the fresh-
ness (QoD) of query results: (1) lag-based metrics define 
the freshness based on the number of non-inserted updates.
(2) Divergence-based or value distance metrics quantify the 
difference in values for the current and the most up-to-date 
version. (3) Time-differential metrics reflect the delay be-
tween a certain query result and the most current change 
in the real world. Whenever an update to a partition is re-
ceived, all query results derived from that partition become 
and remain stale until the update is executed.

For the approach outlined here, any of the presented met-
rics as well as any other arbitrary metrics may be used. We
only need to make sure that the profit pu j of an update u j can 
be expressed with a positive integer number, where a higher 
value for the profit corresponds to an increase in the data 
quality. Thus, if an update u j is executed before a query 
qi that depends on this very update (both access the same
partitions: Pqi ∩ Pu j �= ∅), the data quality of the query qi 
is improved by the value specified by the profit. The QoD
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Fig. 3 Workload
q1, q2, q3, u1, u2, u3. (a) The
first 8 schedules for the given
workload, (b) vector
representation of the given
updates

In order to determine the Pareto-efficient schedules, we
need the concept of dominance, which is defined as follows:

Definition 2. (Dominance 
) If a schedule S is better than
another schedule S′ (with S, S′ ∈ P) in at least one crite-
rion (minimization of cost, maximization of profit), while the
second criterion is still at least as good as before, S′ is domi-
nated by S. We write S′ 
 S if c(S) ≤ c(S′), p(S′) ≥ p(S) and
c(S) �= c(S′) or p(S) �= p(S′).

For example, S5 is dominated by S2 in both criteria, and S8

is dominated by S4 with regard to the QoD criterion (Fig. 3).
From the dominance relation, we derive the definition of

Pareto-efficiency:

Definition 3. (Pareto Efficiency) Let S and S′ ∈ P; then, S is
called Pareto-efficient if there is no S′ with S
 S′. P∗ = {S ∈
P|�S′ ∈ P, S 
 S′}.
Thus, a Pareto-efficient schedule guarantees that the only
way to further improve a certain criterion is to decrease the
result quality for another criterion. For our example, this
condition is met for schedules S1, S2, S3 and S4.

3.2 Computation of Pareto-efficient schedules
using a knapsack formulation

The task to select those updates that maximize the data
quality while keeping the increase in the response time to
a minimum can be stated as a 0–1 knapsack problem (each
knapsack item occurs zero or one times): We have to choose
a subset of n updates uj , each with a positive integer profit
pj and positive integer cost cj , such that the corresponding
profit sum is maximized without having the sum of the cost
exceed a bound B:

maximize
∑

j∈|U |
pjuj (3)

subject to
∑

j∈|U |
cjuj ≤ B (4)

uj ∈ {0, 1} , j = 1, . . . , |U| . (5)

Maximizing the profit corresponds to the maximization of
the data quality by prioritizing updates instead of queries but
without exceeding a given response time.

3.2.1 Specification of bound B

To calculate bound B, which is the available time slot for
the execution of updates, we need to know the minimal
and maximal response time of a workload. The minimal
response time is given by the execution of the queries be-
fore the updates, i.e., by the queries-first principle (QF)
(see Fig. 4). In analogy, the maximum response time is given
by the execution of the updates before the queries, i.e.,
by the updates-first principle (UF). The difference of both
values then delivers the maximum time slot BT that would
be necessary to execute all updates first:

BT (W ) = QoS(WUF)−QoS(WQF) . (6)

In order to compute the size of the knapsack regarding the
user requirements, we use the mean QoS weights qosqi of all
queries and multiply them by BT from (6) (see Fig. 4):

B(W ) = BT

|Wq|
∑

qi∈Wq

1 −qosqi , qosqi ∈ [0, 1] . (7)

Thus, B is the constraint for the knapsack problem stated
in (3)–(5). The intuition is that a large bound B allows to put
many updates into the knapsack, which increases the QoD
and decreases the QoS, whereas a small bound only allows
a small number of updates in the knapsack, which improves
the QoS but degrades the QoD.

However, we cannot guarantee that a Pareto-efficient
schedule with a QoS value of exactly the size as the de-
fined knapsack parameter B exists at all. This is shown
in Fig. 4. Bound B lies between two schedules Si and Si +
1, with Si being the result of the knapsack algorithm. The
difference between B and the response time of Si de-
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Fig. 4 Definition of the
maximum knapsack size B

is a dependency in the matrix:

cost
(
uk

j

) = cj · k (8)

profit
(
uk

j

) = pj ·
k∑

i=1

ui
j . (9)

An example for the costs and the profits of an update with
the values c1 = 5 and p1 = 10 for different schedule pos-
itions is given in Fig. 5. Update positions i with ui

j = 0 do
not have to be considered, since Definition 2 states that they
are dominated by other updates uk

j (k < i) that have the same
profit but lower costs. In the worst case, i.e., if every query
profits from every update, this results in |Q| · |U| input items
for the knapsack algorithm. However, our experiments have
shown that, in practical scenarios, only very few queries
profit from a specific update, which means the number of
input items will be significantly smaller.

Thus, every update uj defines a class Nj , whose elem-
ents are given by update uj and their possible positions in
the query schedule. In order to ensure that a maximum of
one update from class Nj is included in the result set of the
knapsack, the knapsack problem is extended by the follow-
ing condition:
∑

i∈Nj

ui
j ≤ 1, i ∈ Nj . (10)

Fig. 5 Update-query dependency
matrix – example

pends on the density of the Pareto front, i.e., the number 
of Pareto-efficient schedules |P∗|, which is between n + 1 
and 2n . In the former case, the profit and cost of all up-
dates are identical (pu j = puk ∧ cu j = cuk , ∀u j , uk ∈ Wu ); in 
the latter case, the profit and cost of the affected updates
are identical (pu j = cu j , ∀u j ∈ Wu ). In practice, the num-
ber of Pareto-efficient schedules lies between these two 
values, but in any case, it is sufficiently large to ensure 
that the determined schedule is very close to the specified 
bound B.

3.2.2 Generation of input items

The knapsack items are derived from the updates u j that 
are to be inserted into the query schedule at a certain pos-
ition. Therefore, we create a dependency matrix D of size 
|Q|× |U| that specifies which query profits from which up-
date (see Fig. 5). If such a dependency exists, the respective 
value ui

j is set to 1. According to the position i of an update 
ui

j , the profit and cost associated with this update change. 
An update ui

j that is to be executed after all queries (i = 0) 
does not incur any cost but neither does it create any profit, 
since there is no query left to use the updated data. If we 
move the update accordingly by incrementing i, the cost in-
creases with every move but the profit only increases if 
there
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The problem defined here does not correspond to the 
Multiple-Choice Knapsack Problem (MCKP) [16], where 
the requirement is to choose exactly one item per class for 
the result set.

3.2.3 Dynamic programming solution

As is known, the knapsack problem belongs to Karp’s list 
of 21 NP-complete problems [12]. However, there are also 
pseudo-polynomial algorithms for the knapsack problem, 
which, according to Garey and Johnson [6], “[..] will dis-
play “exponential behavior” only when confronted with in-
stances containing “exponentially large” numbers.” Hence, 
in many applications, pseudo-polynomial algorithms behave 
like polynomial algorithms, as our experiments in Sect. 5.3 
confirm.

To solve our variant of the 0-1 knapsack problem, we 
make use of a dynamic programming algorithm [27] and  
extend it accordingly to meet the requirement given in For-
mula (10) (see algorithm UpdatePrioritizing in Table 1). As 
input, our algorithm expects the number of items N (the up-
dates combined with their potential positions in the sched-
ule; see Sect. 3.2.2), the bound B (the time slot available for 
updates; see Sect. 3.2.1), as well as the profit and cost values 
for each input item. In addition, we assume that all update 
items ui

j are sorted by profit within their class Nj and that 
the respective order within a class is given through an array 
classpos[N + 1].

We assume that all data are scaled to be integers 
(see Sect. 3.2.2 again). To store the partial solutions, we

Table 1

created an N + 1 × B + 1-matrix P, whose elements are
initially set to 0. Let 1 ≤ n ≤ N and 1 ≤ c ≤ B; then the
value P[n][c] returns the optimal solution for the (partial)
knapsack problem. For P[n][c], the following holds: Either
the n-th item contributes to the maximal profit of the par-
tial problem or it does not (line 3). In case of the former,
we get P[n][c] = profit[n]+ P[n −classpos[n]][c−cost[n]]
(line 4); in case of the latter, we get P[n][c] = P[n −1][c].
That is to say, we set P[n][c] = max(P[n −1][c], p) in the
algorithm (line 6). A hint on whether or not an item has con-
tributed to a respective partial solution P[n][c] is stored in
a second matrix R (line 7).

In the original solution for the 0-1 knapsack problem,
only the respective last item per step was considered, i.e.,
update item n − 1. However, since we also have to meet
the requirement from Formula (10), we thus consider the re-
spective update item with the highest profit from the last
class (n − classpos[n]; line 4). Thereby, we guarantee that
no update is represented more than once in the result set.

After both loops have been passed completely, the con-
tent of the knapsack can be reconstructed with the maxi-
mal profit value by backtracking the calculation of P (lines
10–20). Thus, the algorithm described above returns all up-
dates uj and their positions i where they contribute most to
the solution of the knapsack problem. For all other updates
that do not appear in the result set, we set i = 0 and add them
to the output, that is to say, they would be executed after all
queries have been processed. Hence, the result is a Pareto-
efficient schedule S that delivers the maximum data quality
gain for a given response time B.
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Formula (10) that demands that a maximum of one update
item will become an element of the result set. Furthermore,
all update items are indexed in ascending order. The result-
ing data structure, as illustrated in Fig. 6c, constitutes the
input for the UpdatePrioritizing algorithm, which is out-
lined in the following.

To store the partial results, we need a matrix P of size
N +1 × B +1, which is illustrated in Fig. 6d. Assume that
bound B is set to the value 5 for this example. A bold
entry denotes that the respective update item is an element
of the partial result (corresponds to matrix R in algorithm,
see Table 1). Element 0 is necessary for the comparison of
the first element with its predecessor.

The algorithm begins with update item u1
1 ∈ N1 (costs

costs(u1
1) = 1), which fits into every knapsack size between

1 and 5. That is to say, it constitutes an element of each of
the partial results in line n = 1. Update item u2

1 of the same
class fits into a knapsack of size 2 and above. Since the profit
of u2

1 is higher than the profit of u1
1 (i.e., 4 > 2), update item

u2
1 will become an element of the partial results 2 to 5. The

next update item, u1
2 from class N2, constitutes a partial re-

sult together with u1
1 ∈ N1 for knapsack size 3; for knapsack

sizes 4 and 5, it forms a partial result together with u2
1 ∈ N1.

The following update item, u2
2 ∈ N2 with the costs 4, repre-

sents a partial solution together with u1
1 from class N1 for

knapsack size 5. The entry P[n − classpos[n]] in line 4 of
algorithm (Table 1) ensures that new partial results will only
be created with update items of the predecessor class but not
with update items of their own class. The last update item,
u2

3 ∈ N3, is not represented in any of the partial results.
After all partial results have been created, the last step of

the process consists of the generation of the final result from
these partial results. The backtracking algorithm required for

Fig. 6 Update-Prioritizing
example. (a) Three updates u1,
u2 and u3 with their profit and
costs. (b) Query-update
dependency matrix D. (c) Update
item data structure. (d)
Update-Prioritizing Matrix P;
circles mark the backtracked
items; black circles mark
solution items

Due to the nested for-loops, which iterate over N and B, 
the algorithm requires a runtime of O(N · B), and due to ma-
trix P, it demands O(N · B) of space. For brevity reasons, 
we omit any further details on the complexity with regard to 
parameter B, but we state that it is bounded by a polynomial 
in our application.

The features of the UpdatePrioritizing algorithm guaran-
tee that each computed schedule constitutes one point on the 
Pareto front. Starting from knapsack size 0, the set of update 
items is derived that generate the maximum profit for the 
given B. Even if the set of update items do not fully exploit 
the knapsack size as specified by B, no additional updates 
that only increase the cost but not the profit will be included 
in the result set.
Example. After having given a formal description of the al-
gorithm for update prioritization, we will illustrate its func-
tionality with an example: Assume we have the updates u1, 
u2 and u3, as presented in Fig. 6a, together with their re-
spective profit and cost values. Furthermore, there are two 
queries, q1 and q2, in the system. The dependencies be-
tween the queries and updates that exist in our example 
are given in the dependency matrix D of Fig. 6b. As can 
be seen, all queries depend on all updates except for the 
pair q1 and u3. These dependencies result in the five up-
date items that are shown in the last column in Fig. 6b. In 
order to derive the elements for the knapsack algorithm from 
these update items, the cost and profit values for the up-
date items are calculated with the help of Formulas (8)  and  
(9)  (see Fig. 6c). Additionally, the update items are catego-
rized in classes and, within these classes, they are sorted by 
their profit values in ascending order. This results in a value 
classPos, which stores the position within a class. This is 
necessary in order to meet the additional requirement from
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this works as follows: It starts with the last update item u2
3 and 

the largest knapsack size, which is 5 in our example (grey cir-
cle in Fig. 6d). Since this update item does not constitute an 
element of a partial result, it will not be added to the result 
set either. The next update item to be considered is the prede-
cessor u2

2 (n = n − 1), also with a knapsack size of 5. This is 
marked as an element of the partial result and will therefore
be added to the result set. The knapsack size is reduced by the
costs of this element, i.e., it is reduced to 1 by costs(u2

2) = 4. 
The next update item to be considered is not the predecessor
u1

2 but the update item u2
1 of the predecessor class N1 (n = n − 

classpos[n]). Since this was no element of the partial result
for knapsack size 1, the algorithm will jump to the predeces-
sor u1

1. This is an element of the partial result for the respective 
knapsack size and will thus be added to the result set.

Since each update has to be represented in the result set,
the update item u0

3 will be added for update u3. That is to say,
this update is inserted at the end of the queue after all queries.
Therefore, the result set for our example is: u1

1, u2
2 and u3

0.

3.3 Static scheduling process

Having presented the individual scheduling components, we
will summarize them in one comprehensive process model,
as illustrated in Fig. 7. The continuous streams of queries
and updates, respectively, will initially be considered in-
dependent from each other. In step (1), the queries are
scheduled based on a policy that is optimal for the respec-
tive application scenario. In our case, we use an extended
shortest-job-first approach (SJF), which increases the prior-
ity of queries in dependence on the time they spend waiting
in the system to avoid starvation. In step (2), we use the
dependency matrix D to extract those input items from the
updates and queries existing in the system that shall be used
for the solution of the knapsack problem. In order to calcu-
late bound B, i.e., the size of the knapsack, step (3) evaluates
the user requirements associated with the queries as well as
the maximal and minimal response times. During step (4),
we execute the UpdatePrioritizing algorithm, which then re-

Fig. 7 Static scheduling process

turns the positions of the updates in the query queue that will
lead to the maximum quality gain with regard to the user
criteria while keeping the response time below the specified
bound B. Let us point out again that the objective with re-
gard to the QoS cannot be chosen independently from the
scheduling policy from (1), but it should match this policy
instead. That is to say, if the queries are scheduled in such
a way that the response time is minimized (e.g., SJF), this
should also be the QoS objective for the knapsack algorithm.
According to the positions determined in step (4), we then
use step (5) to insert the updates into the query schedule.

So far, we have assumed that the workload is already
fully known at the time of the scheduling, that is to say, we
have only considered the static case. Thus, we will now take
a closer look at various dynamic aspects, i.e., a rescheduling
if new jobs arrive or old jobs are executed.

4 Dynamic scheduling

In contrast to static scheduling, the set of queries and up-
dates as well as their processing information are not known
a priori in the dynamic scheduling case. Instead, they are
added continuously to the data warehouse. For this reason,
Pareto efficiency can only be said to exist during the actual
processing times, e.g., a Pareto-efficient schedule S1 at time
t1 is very likely to be dominated by other schedules at a later
time t2 (see Definition 3). Dynamic factors include the ar-
rival of new queries and updates as well as the processing
of existing ones. After each occurrence of such an event, it
is necessary to recompute the schedule to a certain extent.
In detail, we can differentiate between four cases, each of
which will have different effects on the recomputation of the
schedule:

1. Execution of a query qi : The execution of a query leads
to a recomputation of the dependency matrix D (step (2)
in Fig. 7) if ∃u j

i = 1, for 1 ≤ j ≤ |U|. When the respective
QoS value is taken away, bound B will have to be updated
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(step (3)) and subsequently, the update items will have to
be recomputed (step (4)).

2. Execution of an update uj : When executing an update uj ,
the respective values ui

j , for 1 ≤ i ≤ |Q|, must be deleted
in the dependency matrix D and as a consequence, the
update items have to be recomputed.

3. New query qi: A new query qi results in the recompu-
tation of the dependency matrix if ∃u j

i , for 1 ≤ j ≤ |U|.
Additionally, bound B must be updated and the update
positions need to be recomputed.

4. New update uj : If a new update uj arrives, matrix D
must be updated and the update positions have to be re-
computed if ∃ui

j , for 1 ≤ i ≤ |Q|; otherwise, the current
schedule can still be used.

For some cases above, it is possible, at time i, to re-use
the previous result Si−1 or the previous matrix Pi−1, respec-
tively: If an update is executed in case (2), update items
or rows of the old result matrix Pi−1, respectively, will be
deleted. If none of these update items uk

j was an element of
a partial result, i.e., R[ j][c] = false ∀c, k, the predecessor
result Si−1 can be re-used. In case (4), where a new update
is added, the respective update items have to be added to
matrix P. The UpdatePrioritizing algorithm will then have
to be executed only for this ∆P. For cases (1) and (3), ma-
trix P will always have to be computed from scratch, since
changes to the query set result in a different bound B and,
hence, in a different matrix.
Stability measure. So far, we have shown that we can calcu-
late the Pareto-efficient schedule for a given set of queries
and updates. Now, we will analyze the stability of these
schedules when faced with modifications. In dynamic sys-
tems, the degree of difference between a solution at time t1
and a solution at a later time t2 is referred to as severity of
change [1]. If the severity of change for two solutions, i.e.,
for two schedules in our case, is considerably high, an in-
stance of the problem is completely unrelated to the next.
In order to compare two schedules, we use Definition 3.1 to
introduce the following distance function:

d(S1, S2) = 1

|S1 ∩ S2|
∑

u
p1
i ∈S1,u

p2
j ∈S2,i= j

|p1 − p2| ,

5 Experiments

We conducted an experimental study to evaluate 1) the per-
formance with respect to the QoS and QoD objectives and
compared to other baseline algorithms, 2) the runtime be-
havior of the scheduling algorithm under various workloads,
and 3) the severity of change of consecutive Pareto-efficient
schedules.

5.1 Experimental setup

Our experimental setup consists of a scheduling component,
which implements various scheduling policies, and a work-
load generator. Both are located on the same machine: an
Intel Pentium D 2.2 GHz system running Windows XP with
2 GB of main memory. The queries and updates generated
with the workload generator can be varied with regard to the
different parameters: number of queries and updates, time
distance between the addition of transactions, user require-
ments regarding QoS and QoD, query execution time eqi ,
update profit puj , and update cost cuj (the last three alter-
natively follow a Gaussian or a Zipf distribution). We do
not use a database on which queries and updates would be
executed. Instead, we assume that the costs and profits re-
turned by the workload generator indeed correspond to the
actual execution times and profits (or data quality, respec-
tively). In this paper, we do not intend to evaluate the quality
of cost-based estimations, nor will we estimate the profit.
It is obvious, though, that the quality of the scheduling can
only be as good as the estimated parameters allow it to be.

Furthermore, we can modify the degree of dependency
between queries and updates. Thereby, we may create dif-
ferent query types: large range queries that depend on many
updates or point queries that depend only on a few updates
or on no updates at all.

5.2 Performance comparison and adaptivity

In the first set of experiments, we investigated the QoS and
QoD objectives for different workload types and varying
user requirements. Further, we compared the results to two
baseline algorithms, QF and UF. QF always favors queries
over updates and thus minimizes the QoS objective. UH fa-
vors updates over queries and thereby maximizes the QoD
objective. Thus, both are optimal with regard to the respec-
tive objectives. The specific objectives we applied in our
experiments include the response time for QoS and the num-
ber of unapplied rows for QoD, normalized to the value 1
(i.e., 1/(1 +unapplied_rows)).

First of all, we want to illustrate that Pareto-efficient
scheduling adapts quickly to changing trends in user behav-
ior. Therefore, we used two kinds of workloads, WGAUSS and
WZIPF. Both consist of 5000 queries and 5000 updates; the

i.e., the distance is defined as the mean position difference 
of all updates that exist in both schedules. An example il-
lustrates this: Take schedule S1 = (u6

1, u
2
2, u

4
3) and another 

schedule S2 = (u1
2, u

5
3) that exists after the execution of up-

date u1. Thus, the distance d between both schedules is 
(|2 − 1|+ |4 − 5|)/2 = 1.

In Sect. 5.4, we will analyze the severity of change for 
different factors and evaluate the extent to which the indi-
vidual Pareto-efficient schedules for a workload change over 
the course of the simulation period.
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Fig. 8 QoS and QoD performance under changing user requirements. (a) Gaussian distribution of eq , cu , pu . (b) Zipf distribution of eq , cu , pu

Fig. 9 Mean execution time and space consumption for the scheduling. (a) Increasing load, (b) increasing query-update dependency

values for execution time, profit and cost are drawn from
a Gaussian distribution for WGAUSS (with µeq = 5000 ms,
µcu = 500 ms, µpu = 50 rows and σ = 1) and from a Zipf-
like distribution for WZIPF (with eq = 10–20 000 ms, cu =
5–500 ms and pu = 1–500 rows).

For both workloads, we changed the user behavior six
times during the workload execution, i.e., we switched qosqi

for all queries from 0 to 1, and vice versa. Figure 8a and
b plot the QoS and QoD values of the queries that were
executed at the respective measurement points. In order to
smoothen the data, we applied a moving average with a win-
dow size of 30 queries. It can be seen that every change in
the user behavior from one extreme (e.g., high data quality)
to the other (e.g., fast queries) also results in a scheduling
adjustment. High demand for data quality results in a large
knapsack size, which leads to stronger prioritization of more
updates (QoD = 1). The demand for fast query results leads
to a smaller knapsack, which means that fewer or no updates
at all are executed before queries.

Furthermore, it can be seen that the Pareto-efficient
scheduling is as good as the respective optimal scheduling,
QF or UF, in the respective phase (see the green and blue
lines in Fig. 8a and b).

5.3 Time and space consumption

The second set of experiments investigate the time and
space consumption that is required for the scheduling. The
rate of dependencies between queries and updates was set
to a fixed value of 10% – a rather large value for re-
alistic scenarios. The load was decreased by a step-wise
shortening of the time span between the addition of 1000
queries and 1000 updates (see Fig. 9a). For the smallest
load, the number of queries and updates added in each
step equals the number the DWH is able to process until
the next step (balanced). For the highest load, all queries
and updates were added at once (a priori), i.e., there were
2000 transactions in the system at the same time. Fig-
ure 9a shows the average runtime and the average space
consumption, both of which show an identical increase with
increasing load. For realistic scenarios with a few dozens
up to a few hundreds of transactions, we determined run-
times of 2.5 to 150 ms and a memory consumption of 0.1
to 15 MB. For 2000 transactions, the scheduling required
16 s and 1400 MB of memory, which can be neglected in
comparison to the runtime of several hours for all 2000
transactions.
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In a second step, we increased the dependency rate be-
tween 1000 queries and 1000 updates from 0% to 100%
(see Fig. 9b) and chose a balanced load. It can be seen that
a rising number of dependencies leads to a steady increase
in both the runtime and the space consumption.

The majority of the computation efforts are directed at
the solution of the knapsack problem. This becomes even
more complex the more input items are generated. The num-
ber of input items depends on both the load and the de-
pendency rate between queries and updates (see Sect. 3.2.2).
However, for realistic workloads of a few hundred trans-
actions at the same time and dependency rates of 10% on
average, the computation overhead can be neglected.

A transaction in our model contains only one query or up-
date. However, in order to be able to map batch processes
that compute pre-defined reports as well, we have to ex-
tend this model. The order of queries and updates should
be preserved in these cases. Given this constraint, a pos-
sible implementation would additionally reduce the number
of update items, which in turn would reduce the runtime and
space complexity.

5.4 Evaluation of the severity of change

Finally, we examined the severity of change (stability)
of Pareto-efficient schedules during workload execution.
Therefore, we applied the distance measure introduced
in Sect. 4 to all consecutive schedule pairs. We used 5000
queries and 5000 updates and switched the user require-
ments 1, 50, 500 and 1000 times between qosqi = 0 and
qosqi = 1 for all queries qi . Figure 10a shows the develop-
ment of the distances for the different workloads over the
course of the whole simulation time. It can be seen that sta-
ble workloads result in very small values for the distances.
For frequently changing user requirements, however, the
distances between consecutive schedules are significantly
larger.

Fig. 10 Severity of change under different workloads (qosqi = 0 ↔ 1). (a) Distances over simulation time, (b) distance occurrences

The number of occurrences of distinct integer distances
allows us to draw conclusions on the stability of the in-
dividual solutions (see Fig. 10b). For stable user require-
ments, the expected result is that a Pareto-efficient schedule
at time t1 will still (or almost) be Pareto-efficient after the
subsequent optimization step at time t2. For continuously
changing requirements, the consecutive schedules are ex-
pected to differ. This is confirmed by the results in Fig. 10b,
which shows the occurring rounded distance values and
their frequencies (in logarithmic scale). For stable require-
ments (1 change), the schedules barely change at all during
the workload execution, i.e., the rounded distance value is
usually 0 or 1. However, if the requirements change more of-
ten (50, 500 or 1000 changes), the distance values and their
occurrence frequencies increase considerably.

Thus, the expected behavior has been confirmed: As
long as the user requirements remain the same, consecutive
schedules and the solutions for the knapsack problem, re-
spectively, also remain stable. Heavy changes in the user
requirements, however, result in very different schedules.
Thus, the Pareto-efficient scheduling is applicable for the
online case as well (see Sect. 4).

6 Related work

The problems addressed in this paper can be grouped into
three larger categories: 1) the consideration of the quality-
of-service and quality-of-data criteria as prerequisites for
the definition of suitable metrics and objectives, 2) the defin-
ition of so-called multi-objective optimization problems and
their potential solutions, and 3) the need for optimization of
real-time databases and data warehouses regarding various
objectives.
Quality of service/data. There exists a variety of work on
the definition of suitable QoS metrics in diverse application
scenarios, such as multimedia applications, wireless data
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networks and data stream management. From the field of 
distributed data management, we particularly mention the 
Mariposa project [22] and the work of [2]. The necessity to 
integrate service quality guarantees in information systems 
is addressed by [29]. Similarly, there is a lot of work on QoD 
aspects of databases. Various proposals for data quality met-
rics can be found in [5, 15] and  in  [28] with a special focus 
on data warehouses.

In our paper, we made use of existing metrics and pro-
posed methods on how to map them to our optimization 
problem (see Sects. 2.2.1 and 2.2.2).
Multi-objective optimizations. The requirement to consider 
two or more criteria during scheduling processes is widely 
recognized in the scientific community. [21] was the first 
to address this problem, focusing on the job completion 
time and the number of tardy jobs as objectives. Various ap-
proaches dealing with multi-objective optimization simplify 
the problem by tracing it back to a single-objective problem, 
i.e., they assign weights to the individual objectives and map 
them to a common scale [9]. However, this only succeeds if 
two objectives can be compared with each other, which is 
not the case in our scenario with the mean response time and 
the data quality as our objectives. Instead, we either have 
to compute all Pareto-efficient schedules [17] and  leave  it  
to the user to select the appropriate schedule, or we allow 
the user to restrict a certain objective to compute the Pareto-
efficient schedule closest to that user-given bound, which is 
true for our scenario.

Most publications deal exclusively with the compution of 
Pareto-efficient solutions for the static scheduling problem, 
where all jobs and their processing information are known 
a priori. A very good theoretical survey given by [26]. To the 
best of our knowledge, there is no work on Pareto-efficient 
scheduling in the dynamic case. The evolution of individual 
Pareto-efficient schedules over the course of the simulation 
time was analyzed in this paper (see Sects. 4 and 5.4). 
Real-time databases and data warehouses. In order to re-
solve the conflict between many writing and long-running 
reading transactions in real-time data warehouses, the ap-
proach of isolated external caches or real-time partitions 
is used rather often [25]. Updates write their modifica-
tions into the external cache to avoid the update-query con-
tention problem in the data warehouse. Queries that require 
the real-time information are partially or completely redi-
rected to the external cache. However, since the majority 
of the queries increasingly tend to exhibit certain real-time 
requirements, it is very likely that the real-time partition 
quickly shows the same query-update contention like the 
data warehouse.

The subject of scheduling algorithms focusing on one op-
timization criterion has been discussed extensively in the re-
search community and thus, a variety of works exist; a rep-
resentative paper is [14]. Scheduling algorithms are often

classified as online or offline and as preemptive or non-
preemptive algorithms. In this paper, we focused on online
and non-preemptive scheduling.

Our update prioritization shares some similarities with
the transaction scheduling techniques in real-time database
systems [7, 8, 10, 11]. Such approaches often work with
deadline or utility semantics, where a transaction only adds
value to the system if it finishes before its deadline expires.
Real-time, in our context, refers to the insertion of updates
that happens as quickly as possible (close to the change in
the real world) or as quickly as needed, respectively, de-
pending on the user requirements.

The data warehouse maintenance process, i.e., the propa-
gation of updates, can be split into two phases: 1) The ex-
ternal maintenance phase denotes the maintenance process
between the information sources and the data warehouse or
its base tables. 2) The internal maintenance phase refers to the
process of maintaining materialized views with the base ta-
bles used as foundation. In this paper, we focused on phase 1)
and we assumed a model with a sinqle queue and a single
thread. That is to say, updates are inserted sequentially and
in order of their importance for the query side. The mainte-
nance of materialized views and the various aspects of this
discipline, such as incremental maintenance or concurrent
updates, are not in the center of attention of this paper.

7 Summary and future work

Real-time data warehouses have to manage continuous
flows of updates and queries and must comply with conflict-
ing requirements, such as short response times versus high
data quality. In this paper, we proposed a new approach for
the combination of both objectives under given user prefer-
ences. First, we raised the objectives to a more abstract level
and formulated separate maximization and minimization
problems. Based on that, we developed a multi-objective
scheduling algorithm that provides the optimal schedule
with regard to the user requirements. We evaluated the
stability of Pareto-efficient schedules under dynamic as-
pects. The results demonstrated the usability of our ap-
proach for online scheduling. Furthermore, we confirmed
the time and memory efficiency as well as the adaptabil-
ity of the proposed scheduling with regard to changing user
requirements.

In order to initially keep the model simple, the schedul-
ing proposed in this paper only focused on updating the
base tables of the data warehouse. The typical multi-step
data refinement as mapped by ETL processes has been ex-
cluded for the moment. In the general case, the inclusion
of the ETL process is not feasible, since the operators in
the ETL process modify the data schema (e.g., concatena-
tion of attributes into a key attribute), which makes it hard
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to find query-update correlations. As a consequence, it is not
possible to schedule updates in an ETL-process-spanning
manner. In many cases, however, the primary key of a fact is
already known at the beginning of an ETL process or it can
be assigned with defined probability. A multi-step schedul-
ing of updates, covering several levels of a data warehouse
landscape, will be part of our future work.

To summarize, we believe that the real-time aspect, re-
cently introduced for data warehouses, implicates an ex-
tended user model that describes the varying user demands.
Facing a multitude of queries with different or even conflict-
ing demands, we proposed a new approach to schedule the
appropriate transactions according to the user requirements.
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1. Branke J, Salihoğlu E, Uyar Ş (2005) Towards an analysis of dy-
namic environments. In: GECCO, ACM, New York, NY, USA,
pp 1433–1440

2. Braumandl R, Kemper A, Kossmann D (2003) Quality of ser-
vice in an information economy. ACM Trans Interet Technol
3(4):291–333

3. Davison DL, Graefe G (1995) Dynamic resource brokering for
multi-user query execution. SIGMOD Rec 24(2):281–292

4. Dellaert BGC, Kahn BE (1999) How tolerable is delay? con-
sumers evaluations of internet web sites after waiting. J Interact
Market 13:41–54

5. Francalanci C, Pernici B (2004) Data quality assessment from the
user’s perspective. In: IQIS, ACM, New York, NY, USA, pp 68–
73, doi:http://doi.acm.org/10.1145/1012453.1012465

6. Garey MR, Johnson DS (1979) Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman, New
York, NY

7. Haritsa JR, Carey MJ, Livny M (1993) Value-Based Scheduling
in Real-Time Database Systems. VLDB J 2(2):117–152

8. Hong D, Johnson T, Chakravarthy S (1993) Real-time transaction
scheduling: A cost conscious approach. In: Proceedings of the
1993 ACM SIGMOD international conference on Management of
data, May 25–28, 1993, Washington, D.C., pp 197–206

9. Hughes EJ (2005) Evolutionary many-objective optimisation:
many once or one many? In: Congress on Evolutionary Compu-
tation, Institute of Electrical and Electronics Engineers (IEEE),
March, 2008, Witten-Bommerholz, pp 222–227

10. Kang KD (2004) Managing deadline miss ratio and sensor data
freshness in real-time databases. TKDE 16(10):1200–1216, se-
nior member Sang H. Son and fellow John A. Stankovic

11. Kang KD, Son SH, Stankovic JA, Abdelzaher TF (2002) A qos-
sensitive approach for timeliness and freshness guarantees in real-
time databases. In: ECRTS, pp 203–212

12. Karp RM (1972) Reducibility among combinatorial problems. In:
Complexity of Computer Computations. Plenum, New York

13. Krompass S, Dayal U, Kuno HA, Kemper A (2007) Dynamic
workload management for very large data warehouses: Juggling
feathers and bowling balls. In: VLDB, pp 1105–1115

14. Leung J, Kelly L, Anderson JH (2004) Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. CRC Press, Inc.,
Boca Raton, FL, USA

15. Motro A, Rakov I (1996) Estimating the quality of data in rela-
tional databases. In: In Proceedings of the 1996 Conference on
Information Quality, MIT, pp 94–106

16. Nauss RM (1978) The 0-1 knapsack problem with multiple
choice constraints. Eur J Oper Res 2(2):125–131

17. Nemhauser G, Ullmann Z (1969) Discrete dynamic programming
and capital allocation. Manag Sci 15:494–505

18. Schrage LE (1968) A proof of the optimality of the shortest re-
maining processing time discipline. Oper Res 16:678–690

19. Schrage LE, Miller LW (1966) The queue m/g/1 with the shortest
remaining processing time discipline. Oper Res 14:670–684

20. Schroeder B, Harchol-Balter M, Iyengar A, Nahum E (2006)
Achieving class-based qos for transactional workloads. In: ICDE,
IEEE Computer Society, Washington, DC, USA, p 153

21. Smith WE (1956) Various optimizers for single-stage production.
Naval Res Logist Quart 3:59–66

22. Stonebraker M, Aoki PM, Litwin W, Pfeffer A, Sah A, Sidell
J, Staelin C, Yu A (1996) Mariposa: a wide-area distributed
database system. The VLDB J 5(1):048–063

23. Thiele M, Fischer U, Lehner W (2007) Partition-based workload
scheduling in living data warehouse environments. In: DOLAP,
ACM, New York, NY, USA, pp 57–64

24. Thiele M, Fischer U, Lehner W (2008) Partition-based workload
scheduling in living data warehouse environments. Inform Syst
34:1–5

25. Thomsen C, Pedersen TB, Lehner W (2008) Rite: Providing on-
demanddata for right-timedatawarehousing. In: ICDE, pp456–465

26. T’Kindt V, Billaut JC (2006) Multicriteria Scheduling – Theory,
Models and Algorithms. Springer Verlag, Berlin

27. Toth P (1980) Dynamic programming algorithms for the zero-one
knapsack problem. Computing 25:29–45

28. Vassiliadis P, Bouzeghoub M, Quix C (1999) Towards quality-
oriented data warehouse usage and evolution. In: CAiSE,
Springer, Heidelberg, pp 164–179

29. Weikum G (1999) Towards guaranteed quality and dependabil-
ity of information systems. In: Proceedings of the Conference
Datenbanksysteme in Buro, Technik und Wissenschaft, Springer
Verlag, pp 379–409

30. Zhou M, Zhou L (1996) How does waiting duration information
influence customers’ reactions to waiting for services. J Appl Soc
Psychol 26:1702–1717

Final edited form was published in "Computer Science – Research and Development" 24 (2009), S. 137–151. ISSN: 1865-2042 
https://doi.org/10.1007/s00450-009-0062-z  

14 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://doi.acm.org/10.1145/1012453.1012465


Maik Thiele received his Master
in Computer Science from the
Technische Universität Dresden.
Since 2005, he works as a research
assistant at the Database Technol-
ogy Group at TU Dresden. His
research focuses on the real-time
aspects of data warehouses. Aside
from that, he contributes to several
industrial projects, including one
with GfK Nuremberg and with
UBS Zurich.

Andreas Bader studies Informa-
tion Systems Technology at the
Technische Universität Dresden
and currently finishes his diploma
thesis at SAP Research, Walldorf.

Wolfgang Lehner received his
Master, Ph.D., and habilitation in
Computer Science from the Uni-
versity of Erlangen-Nuremberg.
Since 2002, Wolfgang Lehner
is full professor and head of the
Database Technology Group at
TU Dresden. He was a visiting
scientist at IBM Almaden, Mi-
crosoft Research Redmond, and
SAP Walldorf. His major research
focuses on the efficient processing
of empirically collected mass
data with advanced database
technology.

Final edited form was published in "Computer Science – Research and Development" 24 (2009), S. 137–151. ISSN: 1865-2042 
https://doi.org/10.1007/s00450-009-0062-z  

15 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden


	1 Introduction
	2 System model
	2.1 Workload model
	2.2 Scheduling performance objectives
	2.2.1 Quality-of-service objective
	2.2.2 Quality-of-data objective


	3 Multi-objective scheduling
	3.1 Pareto-efficient schedules
	3.2 Computation of Pareto-efficient schedules using aknapsack formulation
	3.2.1 Specification of bound B
	3.2.2 Generation of input items
	3.2.3 Dynamic programming solution

	3.3 Static scheduling process

	4 Dynamic scheduling
	5 Experiments
	5.1 Experimental setup
	5.2 Performance comparison and adaptivity
	5.3 Time and space consumption
	5.4 Evaluation of the severity of change

	6 Related work
	7 Summary and future work
	References
	ADP354B.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Maik Thiele, Andreas Bader, Wolfgang Lehner



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




