15 research outputs found

    Reasoning about actions meets strategic logics (LORI 2013)

    Get PDF
    International audienceWe introduce ATLEA, a novel extension of Alternating-time Temporal Logic with explicit actions in the object language. ATLEA allows to reason about abilities of agents under commitments to play certain actions. Pre- and postconditions as well as availability and unavailability of actions can be expressed. We show that the multiagent extension of Reiter’s solution to the frame problem can be encoded into ATLEA. We also consider an epistemic extension of ATLEA. We demonstrate that the resulting logic is sufficiently expressive to reason about uniform choices of actions. Complexity results for the satisfiability problem of ATLEA and its epistemic extension are given in the paper

    Cognitive Robotics

    Get PDF
    This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here

    h-approximation: History-Based Approximation of Possible World Semantics as ASP

    Full text link
    We propose an approximation of the Possible Worlds Semantics (PWS) for action planning. A corresponding planning system is implemented by a transformation of the action specification to an Answer-Set Program. A novelty is support for postdiction wrt. (a) the plan existence problem in our framework can be solved in NP, as compared to Σ2P\Sigma_2^P for non-approximated PWS of Baral(2000); and (b) the planner generates optimal plans wrt. a minimal number of actions in Δ2P\Delta_2^P. We demo the planning system with standard problems, and illustrate its integration in a larger software framework for robot control in a smart home.Comment: 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013

    Updating Description Logic ABoxes

    Get PDF
    Aus dem Abstract: Description logic (DL) ABoxes are a tool for describing the state of affairs in an application domain. In this paper, we consider the problem of updating ABoxes when the state changes. We assume that changes are described at an atomic level, i.e., in terms of possibly negated ABox assertions that involve only atomic concepts and roles. We analyze such basic ABox updates in several standard DLs by investigating whether the updated ABox can be expressed in these DLs and, if so, whether it is computable and what is its size

    Knowledge, action, and the frame problem

    Get PDF
    AbstractThis paper proposes a method for handling the frame problem for knowledge-producing actions. An example of a knowledge-producing action is a sensing operation performed by a robot to determine whether or not there is an object of a particular shape within its grasp. The work is an extension of Reiter's approach to the frame problem for ordinary actions and Moore's work on knowledge and action. The properties of our specification are that knowledge-producing actions do not affect fluents other than the knowledge fluent, and actions that are not knowledge-producing only affect the knowledge fluent as appropriate. In addition, memory emerges as a side-effect: if something is known in a certain situation, it remains known at successor situations, unless something relevant has changed. Also, it will be shown that a form of regression examined by Reiter for reducing reasoning about future situations to reasoning about the initial situation now also applies to knowledge-producing actions

    The Qualification Problem: A solution to the problem of anomalous models

    Get PDF
    AbstractIntelligent agents in open environments inevitably face the Qualification Problem: The executability of an action can never be predicted with absolute certainty; unexpected circumstances, albeit unlikely, may at any time prevent the successful performance of an action. Reasoning agents in real-world environments rely on a solution to the Qualification Problem in order to make useful predictions but also to explain and recover from unexpected action failures. Yet the main theoretical result known today in this context is a negative one: While a solution to the Qualification Problem requires to assume away by default abnormal qualifications of actions, straightforward minimization of abnormality falls prey to the production of anomalous models. We present an approach to the Qualification Problem which resolves this anomaly. Anomalous models are shown to arise from ignoring causality, and they are avoided by appealing to just this concept. Our theory builds on the established predicate logic formalism of the Fluent Calculus as a solution to the Frame Problem and to the Ramification Problem in reasoning about actions. The monotonic Fluent Calculus is enhanced by a default theory in order to obtain the nonmonotonic approach called for by the Qualification Problem. The approach has been implemented in an action programming language based on the Fluent Calculus and successfully applied to the high-level control of robots

    Belief Change in Reasoning Agents: Axiomatizations, Semantics and Computations

    Get PDF
    The capability of changing beliefs upon new information in a rational and efficient way is crucial for an intelligent agent. Belief change therefore is one of the central research fields in Artificial Intelligence (AI) for over two decades. In the AI literature, two different kinds of belief change operations have been intensively investigated: belief update, which deal with situations where the new information describes changes of the world; and belief revision, which assumes the world is static. As another important research area in AI, reasoning about actions mainly studies the problem of representing and reasoning about effects of actions. These two research fields are closely related and apply a common underlying principle, that is, an agent should change its beliefs (knowledge) as little as possible whenever an adjustment is necessary. This lays down the possibility of reusing the ideas and results of one field in the other, and vice verse. This thesis aims to develop a general framework and devise computational models that are applicable in reasoning about actions. Firstly, I shall propose a new framework for iterated belief revision by introducing a new postulate to the existing AGM/DP postulates, which provides general criteria for the design of iterated revision operators. Secondly, based on the new framework, a concrete iterated revision operator is devised. The semantic model of the operator gives nice intuitions and helps to show its satisfiability of desirable postulates. I also show that the computational model of the operator is almost optimal in time and space-complexity. In order to deal with the belief change problem in multi-agent systems, I introduce a concept of mutual belief revision which is concerned with information exchange among agents. A concrete mutual revision operator is devised by generalizing the iterated revision operator. Likewise, a semantic model is used to show the intuition and many nice properties of the mutual revision operator, and the complexity of its computational model is formally analyzed. Finally, I present a belief update operator, which takes into account two important problems of reasoning about action, i.e., disjunctive updates and domain constraints. Again, the updated operator is presented with both a semantic model and a computational model
    corecore