Available at
www.ComputerScienceWeb.com Artificial

Intelligence

ELSEVIER Artificial Intelligence 144 (2003) 1-39

www.elsevier.com/locate/artint

Knowledge, action, and the frame problem

Richard B. Scherl *, Hector J. Levesgue®

@ Computer Science Department, Monmouth University, West Long Branch, NJ 07764, USA
b Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3A6

Received 11 January 1994; received in revised form 19 April 2002

Abstract

This paper proposes a method for handling the frame problem for knowledge-producing actions.
An example of a knowledge-producing action is a sensing operation performed by a robot to
determine whether or not there is an object of a particular shape within its grasp. The work is an
extension of Reiter's approach to the frame problem for ordinary actions and Moore’'s work on
knowledge and action. The properties of our specification are that knowledge-producing actions do
not affect fluents other than the knowledge fluent, and actions that are not knowledge-producing
only affect the knowledge fluent as appropriate. In addition, memory emerges as a side-effect: if
something isknown in acertain situation, it remains known at successor situations, unless something
relevant has changed. Also, it will be shown that a form of regression examined by Reiter for
reducing reasoning about future situations to reasoning about the initial situation now also appliesto
knowledge-producing actions.

0 2002 Elsevier Science B.V. All rights reserved.

Keywords: Knowledge; Action; Situation calculus; Frame problem

1. Introduction

The situation calculus [24] provides a formalism for reasoning about actions and their
effects on the world. Axioms are used to specify the prerequisites of actions as well as
their effects, that is, the fluents that they change. In general [23], it is aso necessary to
provide frame axioms to specify which fluents remain unchanged by the actions. In the
worst case this might require an axiom for every combination of action and fluent. Reiter
[32] (generalizing the work of Haas [11], Schubert [41] and Pednault [29]) has given a

* Corresponding author.
E-mail addresses: rscherl@monmouth.edu (R.B. Scherl), hector@cs.toronto.edu (H.J. Levesque).

0004-3702/02/$ — see front matter [2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0004-3702(02)00365-X

2 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

set of conditions under which the explicit specification of frame axioms can be avoided.
This approach to dealing with the frame problem and the resulting style of axiomatization
has proven useful as the foundation for the high-level robot programming language Golog
[19].

In this paper, we extend Reiter’s approach to the frame problem to cover knowledge-
producing actions, that is, actions whose effects are to change a state of knowledge. The
extension preserves Reiter’s solution for actions that change the state of the world and
also handles actions that change the knowledge of an agent. The result is a uniform style
of axiomatization for both types of actions. We show that our solution has the desired
properties with respect to changes in knowledge.

A standard example of a knowledge-producing action is that of reading a number on a
piece of paper. Consider the problem of dialing the combination of a safe [23,27,28]. If an
agent is at the same place as the safe, and knows the combination of the safe, then he can
open the safe by performing the action of dialing that combination. If an agent is at the
same place as both the safe and a piece of paper and he knows that the combination of the
safeiswritten on the paper, he can open the safe by first reading the piece of paper, and then
dialing that combination. The effect of the read action, then, is to change the knowledge
state of the agent, typically to satisfy the prerequisite of alater action. Another example of
a knowledge-producing action is performing an experiment to determine whether or not a
solution is an acid [28]. Still other examples are a sensing operation performed by a robot
to determine the shapes of objects within its grasp [16,18] and the execution of UNIX
commands such asls[5].

To incorporate knowledge-producing actions like these into the situation calculus, it is
necessary to treat knowledge as a fluent that can be affected by actions. Thisis precisely
the approach taken by Moore [27]. What is new here is that the knowledge fluent and
knowledge-producing actions are handled in a way that avoids the frame problem: we
will be able to prove as a consequence of our specification that knowledge-producing
actions do not affect fluents other than the knowledge fluent, and that actions that are not
knowledge-producing only affect the knowledge fluent as appropriate. In addition, we will
show that memory emerges as a side-effect: if something is known in a certain situation,
it remains known at successor situations, unless something relevant has changed. We will
also show that aformof regression examined by Reiter for reducing reasoning about future
situations to reasoning about theinitial situation now also appliesto knowledge-producing
actions. This has the desirable effect of allowing us to reduce reasoning about knowledge
and action to reasoning about knowledge in the initial situation, where standard theorem-
proving techniques for modal logics may be used. Finally, we show that if certain useful
properties of knowledge (such as positive introspection) are specified to hold in the initial
state, they will continue to hold automatically at al successor situations.

In Section 2, we briefly review the situation calculus and Reiter’s approach to the
frame problem. Then in Section 3, we introduce an epistemic fluent into the situation
calculus as an accessibility relation over situations, as was done by Moore [27,28]. Our
method of handling the frame problem for knowledge-producing actions, based on the
epistemic fluent, is developed and illustrated over the next three sections. Section 4 shows
how this epistemic fluent can form the foundation for an integrated theory of knowledge
and action. Section 5 illustrates the approach with a simple example. The correctness

R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39 3

of the formulation is demonstrated in Section 6. Then in Section 7, we consider the
issue of knowledge about knowledge. Section 8 develops a method of regression for the
situation calculus with knowledge-producing actions. This forms the basis for a method
for automating reasoning with theories involving knowledge and knowledge-producing
actions. An extended exampleis given in Section 9. Finally in the conclusion, Section 10,
related work is discussed.

2. Thesdituation calculusand the frame problem

The situation calculus (following the presentation in [32]) is a first-order language for
representing dynamically changing worlds in which al of the changes are the result of
named actions performed by some agent. Terms are used to represent states of the world,
i.e., situations. If « is an action and s a situation, the result of performing « in s is
represented by DO(«, s). The constant s, is used to denote the initial situation. Relations
whosetruth valuesvary from situation to situation, called fluents, are denoted by apredicate
symbol taking a situation term as the last argument. For example, BROKEN(x, s) means
that object x is broken in situation s. Functions whose denotations vary from situation to
situation are called functional fluents. They are denoted by a function symbol with an extra
argument taking a situation term, asin PHONE-NUMBER(BILL, s).

It is assumed that the axiomatizer has provided for each action «(x), an action
precondition axiom of the form! given in (1), where n, (%, 5) is the formula for «(¥)’s
action preconditions.

Action Precondition Axiom.
Poss(a(X), 5) = ma(X, 5) (1)
An action precondition axiom for the action drop is given below.
Poss(DROP(x), s) = HOLDING(x, 5) 2
Furthermore, the axiomatizer has provided for each fluent F, two general effect axioms
of theform givenin (3) and (4).
General Positive Effect Axiom for Fluent F.

yF+(a, s) —> F(Do(a, s)) (3)
General Negative Effect Axiom for Fluent F.

Ve (a,s) > —-F(Do(a, s)) (4

1 By convention, variables areindicated by lower-case lettersin italic font. When quantifiers are not indicated,
the variables are implicitly universally quantified.

4 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

Here yFJr(a, s) is a formula describing under what conditions doing the action a in
situation s leads the fluent F to become true in the successor situation bo(a, s) and
similarly y¢ (a, s) isaformuladescribing the conditions under which performing action a
in situation s resultsin the fluent F becoming false in situation bo(a, s).

For example, (5) is apositive effect axiom for the fluent BROKEN.

[(a = DROP(y) A FRAGILE(y))
v
(3ba = EXPLODE(b) A NEXTO(b, y, 5))]
— BROKEN(y, DO(4, 5)) (5)

Sentence (6) is a negative effect axiom for BROKEN.
a = REPAIR(y) — —-BROKEN(y, DO(a, s)) (6)

It is also necessary to add frame axioms that specify when fluents remain unchanged.
The frame problem arises because the number of these frame axiomsin the general caseis
2 x A x F, where A isthe number of actionsand F is the number of fluents.

The approach to handling the frame problem [29,32,41] rests on a completeness
assumption. Thisassumptionisthat axioms(3) and (4) characterizeall the conditionsunder
which action a can lead to afluent F's becoming true (respectively, false) in the successor
situation. Therefore, if action a is possible and F's truth value changes from false to true
as aresult of doing a, then yFJr(a, s) must be true and similarly for a change from true to
false (yg (a, s) must be true). Additionally, unigue name axioms are added for actions and
situations.

Reiter [32] shows how to derive a set of successor state axioms of the form givenin (7)
from the axioms (positive effect, negative effect and unique name) and the completeness
assumption.

Successor State Axiom.
F(DO(a, s)) = y,:+(a, s)V (F(s) A—vg (a, s)) (7

Similar successor state axioms may be written for functional fluents. A successor state
axiom is needed for each fluent F, and an action precondition axiom is needed for each
action a. The unigue name axioms need not be explicitly represented as their effects can
be compiled. Therefore only F + A axioms are needed.

From (5) and (6), the following successor state axiom for BROKEN is obtained.

BROKEN(y, DO(a, 5)) =
(a =DROP(y) A FRAGILE(Y)) V
(3b a = EXPLODE(b) A NEXTO(b, y, 5)) V
(BROKEN(y, 5) A a # REPAIR(Y)) (8
Now note for example that if ~BROKEN(OBJ1,) holds, then it also follows (given the
unique name axioms) that ~BROKEN(OBJ;, DO(DROP(OBJy), S)) holds as well.

This discussion has assumed that there are no ramifications, i.e., indirect effects of
actions. This can be ensured by prohibiting state constraints, i.e., sentences that specify

R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39 5

an interaction between fluents. An example of such a sentence is Vs P(s) = Q(s). The
assumption that there are no state constraints in the axiomatization of the domain will be
made throughout this paper. In [21,26], the approach discussed in this section is extended
to work with state constraints by compiling the effects of the state constraints into the
successor state axioms.

3. An epistemic fluent

The approach we take to formalizing knowledge is to adapt the standard possible-world
model of knowledge to the situation calculus, as first done by Moore [27]. Informally, we
think of there being a binary accessibility relation over situations, where a situation s’ is
understood as being accessible from a situation s if as far as the agent knows in situation
s, hemight bein situation s’. So something isknownin s if itistruein every s’ accessible
from s, and conversely something is not known if it is false in some accessible situation.

To treat knowledge as a fluent, we introduce a binary relation K(s’, s), read as “s’ is
accessible from s’ and treat it the same way we would any other fluent. In other words,
from the point of view of the situation calculus, the last argument to K is the official
situation argument (expressing what is known in situation s), and the first argument is just
an auxiliary likethe y in BROKEN(y, 5).2

It is also necessary to axiomatize further properties of the K fluent. This issue will be
discussed in more detail in Section 7. But for now it is sufficient to mention that since we
want a logic of knowledge, it is necessary that the K relation be reflexive. Therefore, we
need to ensure that our axiomatization entails Vs K(s, s). Details on how this is done will
be givenin Section 7.

We can now introduce the notation Knows(P, s) (read as P is known in situation s) as
an abbreviation for aformulathat uses K. For example

Knows(BROKEN(y), s) 4 v K(s', s) = BROKEN(y, s")

Note that this notation supplies the appropriate situation argument to the fluent on
expansion (and other conventions are certainly possible). For the case of equality literals,
the convention is to supply the situation argument to each non-variable argument of the
equality predicate. For example:

def
Knows(NUMBER(BILL) = NUMBER(MARY), s) =

Vs’ K(s’,s) — NUMBER(BILL, s") = NUMBER(MARY, s’)
This notation can be generalized inductively to arbitrary formulas so that, for example
3x Knows(Iy[NEXTO(x, y) A =BROKEN(y)]. s) &
Ax Vs' K(s',5) — Iy[NEXTO(x, y, s") A “BROKEN(y, s")]

We will however restrict our attention to knowledge about atomic formulasin both thisand
the next section. In Section 6.3, we discuss the generalization of the resultsto knowledge of

2 Note that usi ng this convention means that the arguments to K are reversed from their normal modal logic
use.

6 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

non-atomic formula. Finally, in Section 7, we explore issues raised by arbitrary formulas,
in particular those expressing knowledge about knowledge.

Turning now to knowledge-producing actions, there are two sorts of actionsto consider:
actions whose effect is to make known the truth value of some formula, and actions that
make known the value of some term. In the first case, we might imagine a SENSEp action
for afluent P, such that after doing a SENSEp, the truth value of P is known. We introduce
the notation Kwhether (P, s) asan abbreviation for aformulaindicating that the truth value
of afluent P is known.

Kwhether (P, s) & Knows(P, s) v K nows(=P, s)

It will follow from our specification in the next section that Kwhether (P, DO(SENSEp, s))
holds. In the second case, we might imagine an action READ, for aterm t, such that after
doing a READ., the denotation of 7 is known. For this case, we introduce the notation
Kref(z, s) defined asfollows:

Kref(z, s) d:efax Knows(t = x,s) wherex doesnot appearin .

It will follow from the specification developed in the next section that Kref (z, DO(READ<,
s)) holds.

4. Integrating knowledge and action

The approach being devel oped here rests on the specification of a successor state axiom
for the K relation. This successor state axiom will ensure that for al situations bo(a, s),
the K relation will be completely determined by the K relation at s and the action a.

The successor state axiom for K will be developed in several steps through a
diagrammatic illustration of possible models for an axiomatization. First, we illustrate the
initial picture, without any actions. Then, we add a successor state axiom for K that works
with ordinary non-knowledge-producing actions. Finaly, we add knowledge-producing
actions.

P, —Q P,Q P,Q

K

Fig. 1. Initial situation.

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 7

v 1 \ i \ Q
\ / \ / \)
\ | \ | \ I

\ / A I
\ / pickup | \ |
\ !

!
\ / \ i \
i
/

\

\\ /I \\ |

()" ()
-—

P, —-Q P,Q /K P, Q

)

Fig. 2. Multiple actions.

4.1. Theinitial picture: Without actions

For illustration, consider Fig. 1, which depicts a representation® of a model for an
axiomatization of theinitial situation (without any actions). We can imaginethat theterm s,
denotes the situation S1 in the figure. Three situations (S1, S2 and S3) are accessible via
the K relation from S1. Proposition P istruein all of these situations,* while proposition
Qistruein S1 and S3, butisfalsein S2. Thereforethe agent in S1 knows P, but does not
know Q. In other words, the picture depicts a model of the sentences Knows(P, s5) and
—Knows(Q, s).

4.2. Adding ordinary actions

Asillustrated in Fig. 2, from this model of an axiomatization of s, and the bo function
along with the presence of actions in the language, we have additional situations present
in the model. The function denoted by Do maps the initial set of situations to these other
situations. (These in turn are mapped to yet other situations, and so on.) These situations
intuitively represent the occurrence of actions. The situations S1, S2, and S3 are mapped
by Do and the action terms MOVE, PICKUP, Or DROP to various other situations. The
guestion is what is the K relation between these situations. Our axiomatization of the K
relation places constraints on the K relation in the models. We first cover the smpler case
of non-knowledge-producing actions and then discuss knowledge-producing actions.

3 Forsi mplicity, we omit some of the edges representing the K relation. For example, the edges indicating that
the relation is reflexive are omitted from S2 and S3.

4 For expository purposes we speak informally of aproposition being truein asituation rather than saying that
the situation isin the relation denoted by the predicate symbol P.

8 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

do(drop,S2) do(drop,S1) do(drop,S3)

—|P, —-Q K _|P, Q K —|P, Q
>
DL

| | [
| | |
| |
| E |
drop E drop ! drop |
|
: | |
| ! l
|
| : |

(" ()
- K
P,-Q K P.Q

Fig. 3. TheK relation.

P,Q

For non-knowledge-producing actions (e.g., DROP(x)), the specification (based on
Moore[27,28]) isasfollows:

K(s”, DO(DROP(x),s)) =
3s’ (Poss(DROP(x), s') AK(s',s) As” = DO(DROP(x), 5')) ©)

Theideahereisthat asfar asthe agent at world s knows, he could be in any of the worlds
s’ such that K(s’, s). At DO(DROP(x), s) as far as the agent knows, he can be in any of
the worlds bo(DROP(x), s”) for any s’ such that both K(s’,s) and PosS(DROP(x), s)
hold. So the only change in knowledge (required by (9)) that occurs in moving from s
to DO(DROP(x), s) is the knowledge that the action DROP has been performed. (Other
changes may be required by the successor state axioms of the various fluents. This issue
will be discussed later.)

To continue our illustration, consider Fig. 3, which extends the initial arrangement
depicted in Fig. 1 to include situations resulting from the DO function applied to DROP
and the K relation between these situations. Here we see the situation do(dr op, S1),
denoted by DO(DROP,), which represents the result of performing a drop action in the
situation denoted by s,. Our axiomatization requiresthat this situation be K related only to
thesituationsdo(dr op, S1) ,do(dr op, S2) anddo(dr op, S3) . Therefore, the agent
in effect is modeled as knowing that the drop action has occurred since every situation K
related to do(dr op, S1) isonethat resultsfrom the bo function and the action DROP.

We suppose for purposes of the running example that the successor state axioms for P
and Q are asfollows:

P(DO(a, 5)) =a # DROP(y) A P(s) (10)
Q(po(a, s)) = Q(s) (11)

The DRoOP action does not affect the truth of Q, but makes P false. So, we see that
proposition P is false in each of do(dr op, S1), do(dr op, S2) and do(dr op, S3),
while proposition Q is true in do(drop, S1) and do(drop, S3), but is false in

R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39 9

|
| |
ove | ! | ,
\ i drop 1 | move
\ sense \ ! /
\ ":J: \ senge sense
\ I \ ! I /
\ ! \ | | /
\ ! \ | | /
\ I \ | | Vi
vl N [
v AN (4
v L i/
\ v !
: ()
-+
P, —Q P,Q /K P,Q

Fig. 4. Sensing actions.

do(drop, S2) . Therefore the agent in do(dr op, S1) knows —P, but till does not
know Q. The following two sentences hold in this model: Knows(—P, bO(DROP, &)) and
—Knows(Q, DO(DROP, &)). The agent’s knowledge of Q has remained the same, and the
knowledge of P is aresult of the knowledge of P in the previous situation along with the
knowledge of the effect of the action DROP.

4.3. Adding knowledge-producing actions

Now consider the simple case of aknowledge-producing action SENSEq that determines
whether or not thefluent Q istrue (following Moore[27,28]). Fig. 4 extendsthe sameinitial
picture of Fig. 1. But now we now have the possibility of sensing actions occurring as well
asordinary actions.

We imagine that the action has an associated sensing result function.® This result is
“YeES” if “Q" istrueand “NO” otherwise. The symbols are given in quotesto indicate that
they are not fluents. We axiomatize the sensing result as follows:

SR(SENSEQ, s) =r =
(r="YES"AQ(5)) V (r="NO" A=Q(s)) (2

The question that we need to consider is what situations are K accessible from
DO(SENSEQ, 50)-

K(s”, DO(SENSEQ, 5)) =
35’ (POSS(SENSEQ, s') A K (s, 5) A
s” = DO(SENSEQ, s) A SR(SENSEQ, 5) = SR(SENSEQ, 5”)) (13)

51n [38], wedid not use the sensing result function (SR) in our axiomatization of sensing actions. Thisresulted
inareatively complex successor-state axiom for the K fluent. The current presentation is an improvement upon
the approach first used in [20], and then extended in [44]. By using the sensing result function (SR), it is no longer
necessary to distinguish between knowledge-producing actions of the read type (actions that make known the
denotation of afunctional fluent) and of the sense type (actions that make known arelational fluent). They are all
handled in a uniform fashion.

10 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

do(sense,S2) do(sense,S1) do(sense(S3)
P, =
,—Q P,Q K P, Q
|
sense sense sense

v
o

P, « « P.Q
K

Fig. 5. Producing knowledge.

Again, as far as the agent at world s knows, he could be in any of the worlds s” such
that K(s’, s) holds. At DO(SENSEQ, s) as far as the agent knows, he can be in any of the
worlds DO(SENSEq, s”) such that K(s’, s) and POSS(SENSEQ, s) hold (by (13)), and also
Q(s) = Q(s”) (by the combination of (12) and (13)) holds. The idea hereis that in moving
from s to DO(SENSEQ, s), the agent not only knows that the action SENSEq has been
performed (since every accessible situation results from the bo function and the SENSEq
action), but also the truth value of the predicate Q. Observe that the successor state axiom
for Q (sentence (11)) guaranteesthat Q is true at DO(SENSEQ, s) if and only if Q is true
at s, and similarly for s’ and DO(SENSEQ, s’). Therefore, Q has the same truth value in all
worlds s” such that K (s”, DO(SENSEQ, s)), and so Kwhether (Q, DO(SENSEQ, s)) istrue.

To return to our running example, consider Fig. 5, which is the illustration of
the result of a SENSEq action. Note that the only situations accessible via the K
relation from do(sense, S1) (denoted by DO(SENSEgQ, so)) are do(sense, S1)
and do(sense, S3) . The situation do(sense, S2) is not K accessible. Therefore
Knows(P, DO(SENSEQ, S)) is true as it was before the action was executed, but also
now Knows(Q, DO(SENSEQ, S)) is true. The knowledge of the agent being modeled has
increased.

In general, there may be many knowledge-producing actions, as well as many ordinary
actions. To characterize al of these, we have a function SR (for sensing result), and for
each action «, a sensing-result axiom of the form:

SR(a(X), s) =r = pa(X, 1, 5) (14)

For ordinary actions, the result is always the same, with the specific result not being
significant. For example, we could have:

SR(PICKUP(x), s) =r =r ="“0K” (15)

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 11

In the case of aREAD, action that makes the denotation of the term = known, we would
have:

SR(READ:,s)=r =r=1(5) (16)

Therefore, T has the same denotation in all worlds s” such that K (s”, DO(READ., s)), and
0 Kref(r, DO(READ;, s)) istrue.
Consider as another example the following:

SR(SENSE_WEATHER, 5) =1 =
(r =“SUNNY” Vr ="“RAINY” Vr =“SNOW") A WEATHER(s) =r (17)

In this case the sensing result function has three possible values.
The successor state axiom for K is asfollows:

Successor State Axiom for K.

K(s”, DO(a, s)) =
(Els’ s =D0O(a, s")
A K(s',s) APOSS(a, s)
A SR(a, s) = SR(a, s/)) (18)

Therelation K at a particular situation DO(«a, s) is completely determined by the relation
at s and the action a.

Two additional issues need to be addressed. The first is that we adopt the following
axiomatization policy to simplify the presentation of our system, enhance our ability to
prove properties of the system, and simplify the development of regression for reasoning
with the resulting axiomatizations:

Axiomatization Policy. All actions are to be axiomatized as affecting only either the K
fluent or other fluents.

The policy ensures a sharp division between knowledge-producing actions and ordinary
actions. Without this policy there is nothing to prevent us from having an action such as
open the bag which causes the bag to be open and makes the agent aware of the content of
the bag.® But this policy does not restrict the capabilities of the agents that we model aswe
can always follow an open action (which only causes the bag to be open) by a sense action
(which causes the agent to know what the contents of the bag are). We can now speak of
knowledge-producing actions and ordinary actions as two digjoint classes of actions.

The second issue is that even though our examples so far have involved knowledge of
fluents, our approach correctly handlesknowledge of sentencesand open formulacorrectly.
We can write formula such as

Knows(Vx BLUE(x) A OBJECT(x) — BIG(x), 5)

6 Example suggested by an anonymous reviewer of the paper.

12 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

or
3x Knows(BLUE(x) A OBJECT(x) A BIG(x), 5)

Here we are talking about sentences and formulathat do not involvethe K fluent. Theissue
of knowledge about knowledge will be covered in Section 7.

5. Example

Consider the example of opening a safe whose combination is written on a piece of
paper (adapted from Moore[27], but without the frame axioms). The preconditionsfor the
action DIAL-cOMB(x) (dialing the combination of the safe x and also pulling the handle)
are:

POss(DIAL-COMB(x), 5) =
SAFE(x, s) A AT(x, s) A Kref(COMB(x), s) (19)

The fluent AT(x, s) holds when the agent is located at the location of object x in situation
s. Theideain sentence (19) is that for the dialing action to be possible, the object being
dialed needs to be a safe, the agent needs to be at the safe, and the agent needs to know
the combination of the safe. In this paper, we do not discuss the details of the connection
between the agent’s ability to open the safe by dialing the combination and the agent’s
knowledge of the combination of the safe.”

The successor state axioms for the fluents OPEN (i.e., something is open), SAFE, AT,
and the functional fluents INFO and comB are as follows:

OPEN(x, DO(a, 5)) =
a =DIAL-COMB(x) V (OPEN(x, s) A a # LOCK(x))

SAFE(x, DO(a, 5)) = SAFE(x, 5) (21)
AT(x, DO(a, s)) =

(20)

a =MOVETO(x) V (AT(x, s) A =y a = MOVETO(y)) (22)
INFO(x, DO(a, 5)) = y = INFO(x, §) = y (23)
COMB(x, DO(a, 5)) = y = COMB(x, 5) = y (24)

The functional fluent INFO(x, s) is used to denote what is written on paper x.

The axiomatization of the initial state includes SAFE(SF, &), AT(SF, &), AT(PPR, &),
and Knows(INFO(PPR) = COMB(SF), Sg). Note that the axiomatization does not entail
POSS(DIAL-COMB(SF), S).

There is a knowledge-producing action READ(x), with the following action precondi-
tion axiom:

POsSs(READ(x), s) = AT(x, 5) (25)

7 Indeed, a more refined axiomatization would allow the safe to be opened without knowing its combination,
namely by dialing a number that (magically or luckily) happens to be the combination.

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 13

The sr axioms are as follows:
SR(DIAL-COMB(x), s) =r =r = “OK” (26)
SR(READ(x),5) =r =r = INFO(x, 5) (27)

In other words, the effect of READ(x) isto make INFO(x) known.
Note that sentence (18), along with sentence (23), and sentence (27), and also the fact
that the READ action ispossible in s, ensure that the axiomatization entails

3x Knows(INFO(PPR) = x, DO(READ(PPR), S)) (28)

Since the axiomatization of s, includes Knows(INFO(PPR) = COMB(SF), &), Sentences
(23), (24), (27), and (18) ensure that

Knows(INFO(PPR) = COMB(SF), DO(READ(PFR), %)) (29)
aso holds. Therefore, the axiomatization entails
Kref(COMB(SF), DO(READ(PPR), S)) (30)

by (28), (29) and the properties of equality.
Since the successor state axioms ensure that a READ action does not change AT and
SAFE, it is the case that the axiomatization entails

POSs(DIAL-COMB(SF), DO(READ(PPR), So)).

Therefore, the sequence of actionsis a possible sequence. Furthermore, the successor state
axiom for OPEN (sentence (20)) ensures that

OPEN(SF, DO(DIAL-COMB(SF), DO(READ(PPR), S)))

holds. In other words, after reading what is on the paper, the safe can be opened by dialing
its combination.

6. Correctnessof the solution

Once knowledgeis introduced and the axiomatization of the effects of actionsincludes
both actions that change the world and actions that change knowledge, we must address
the analogue of the ordinary frame problem as discussed in Section 2. This amounts to
demonstrating that our approach to the frame problem developed in the previous sections
ensures that knowledge only changes as appropriate.

We prove five theorems demonstrating that our axiomatization does in fact ensure that
knowledge only changes as appropriate. Next an example is given illustrating some of
the subtlety in these results. Finaly, we point out that our results readily generalize to
knowledge of complex formulas.

6.1. Theorems
We now state and prove five theorems concerning change in knowledge. In the

following, P will be used to represent an arbitrary litera, i.e., a fluent (including equality)
or its negation.

14 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

The first theorem shows that knowledge-producing actions do not change the state of
the world. The only fluent whose truth value is altered by a knowledge-producing action
isk.

Theorem 1 (Knowledge-producing effects). For all situations s, all fluents P (other
than K) and knowledge-producing action terms «, if P(s) then P(DO(«, s)).

Proof. Immediate from having successor state axiomsfor each fluent and the axiomatiza-
tionpolicy. O

It is aso necessary to show that actions only affect knowledge in the appropriate
way. The truth of the following theorem ensures that there are no unwanted increases in
knowledge. Informally, nothing is learned about a fluent P by doing action «, as long as
a does not affect P and in case « is a knowledge-producing action, o does not provide
information about something known to be related to P. More formally, we have:

Theorem 2 (Default persistence of ignorance). For an action « and a situation s, if
=K nows(P, s) holds and the axiomatization entails

Vs P(s) = P(Do(a, s))
and

vy —Knows((Poss(a) A SR(x) = y) — P, s)
then

=K nows(P, bo(e, s))
holds aswell.

Proof. We are given

vy —=Knows((Poss(a) A SR(a) = y) — P, s).
Thisis an abbreviation for

Vy 3s" K(s", s) A POSS(«, s") A SR(at, s') = y A —P(s").
Therefore

3s’ K(s', s) A POss(e, s') A SR(at, s”) = SR(et, s) A =P(s")

holds. By sentence (18), and the fact that SR(«, s) = SR(a, s’), and Poss(«, s”) hold,
K(DO(«, s'), DO(«r, s)) must hold as well. The sentence —P(DO(«, s’)) must hold since
Vs P(s) = P(DO(«, s)) holds. So, there is an s” such that K(s”, bo(«, s)) and —=P(s”)
hold. Therefore =K nows(P, bO(«a, s)) holds. 0O

The next theorem shows that agents know the consequences of knowledge acquired
through knowledge-producing actions. Informally, if « is a knowledge-producing action
that determines whether or not afluent F istrue, and F istruein s, and

Knows(F — P, s)

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 15

holds then
Knows(P, Do(a, 5))
holds aswell even though
=K nows(P, s)
istrue.
Theorem 3 (Knowledge incorporation). For a knowledge-producing action «, a fluent or

the negation of a fluent F, a fluent or the negation of a fluent P, and a situation s, if the
axiomatization entails

Iy Knows(F = sR(a) =y, 5)
and also

F(s), Poss(a,s),
and

Knows(F — P, s)
hold, then

Knows(P, Do(a, 5))

holds as well.

Proof. We are given that

Iy Knows(F = sR(a) =y, 5)
isentailed. Thisis an abbreviation for

3y Vs’ K(s', s) = F(s') = SR(a, s") =y

Since K is reflexive (i.e., the axiomatization entails Vs K(s, s)), and F(s) holds, we
conclude that SR(«, s) is equal to the very same y. Then by sentence (18), the fact that
Poss(«, s) holds, and since our axiomatization policy ensures that

Vs F(DO(a, 5)) = F(s)

holds, we conclude that for every po(a,s’) such that K(Do(«,s’), DO(a, s)) holds,
F(DO(e, s7)) holds and also both F(s") and K (s’, s) hold as well.
Furthermore, since Knows(F — P, s) holds, and is an abbreviation for

Vs K(s', s) A F(s") — P(s)

we concludethat in every s such that both K (s’, s) and F(s”) hold, P(s") must hold aswell.
Since by the axiomatization policy

Vs P(DO(a, 5)) = P(s)

16 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

must be true, it is also the case that in every Do(a, s”) such that K(Do(a, s’), DO(«, s))
holds, P(DO(«, s’) holds as well. Therefore, the sentence Knows(P, DO(a, s)) must
hold. O

Additionally, it is a property of this specification that agents never forget. Informally
speaking, if the agent knows P at s, then P isaso known at DO(«, s) aslong as the effect
of « isnot to make P false. We have the following theorem:

Theorem 4 (Memory). For all fluents P and situations s, if Knows(P, s) holds then
Knows(P, bO(«, s)) holds aslong as the axiomatization entails

Vs P(s) = P(Do(a, s))
Proof. For Knows(P, s) to be true, it must be the case by definition that Vs K(s', s) —
P(s") holds. By sentence (18), for all states s” such that K(s”, bo(a, s)) holds, it is the

case that s” = DO(«, s”) for some s’ such that K(s’, s) istrue. Since P(s’) is true for each
of these s’, and since the axioms entail

Vs P(s) = P(DO(a, 5))
we have that P(DO(«, s)) is true. Thus for any situation s” such that K (s”, DO(«, s))
holds, P(s”) istrue. Therefore Knows(P, DO(«, s)) istrue. O
Finally, agents know the effects of actions.
Theorem 5 (Knowledge of effects of actions). If « is an ordinary (not a knowledge-
producing) action, and if the axiomatization entails
Vs ¢[s] — P(DO(O[, s))

where ¢ is an arbitrary formula with situation terms suppressed® and P is a fluent or its
negation, then the following is also entailed:

Knows((Poss(a) A ¢), s) = Knows(P, DO(a, 5))

Proof. The sentence
Knows(P, Do(a, 5))
is an abbreviation for
Vs K(s”, DO(«, s)) — P(s")

Sentence (18) requires that each s be equal to DO(«, s”) for an s’ such that both K(s’, s)
and Poss(«a, s) hold. If

Knows((Poss(a) A ¢), 5)

8 When ¢ isan arbitrary sentence and s a situation term, then ¢[s] is the sentence that results from adding an
extraargument to every fluent of ¢ and inserting s into that argument position.

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 17

holds, then certainly ¢[s'] and Poss(«, s”) must hold for each s’ such that K (s, s). Since
the situation variablein

Vs ¢[s] — P(DO(O[, s))
is universally quantified, P(s”) must hold for each s” such that K(s”, DO(«, s)). Therefore
Knows((Poss(a) A ¢), s) — Knows(P, Do(a, s))
holds. O
Consider again the successor state axiom for BROKEN given in sentence (8). If
Knows(—BROKEN(OBJ1), S) istrue, then
K nows(—BROKEN(OBJ1), DO(DROP(OBJ), So))
must also be true. Also, note that if
Knows(FRAGILE(OBJ;),S) and Knows(Poss(DROP(0BJ)), So)
aretrue, then
Knows(BROKEN(OBJ2), DO(DROP(OBJ), So))

must also be true.
6.2. Example

We give an example® below to illustrate some of the possibly surprising subtlety
involved in our axiomatization; in particular Theorem 3. Agents know the consequences of
what they sense given their total body of knowledge prior to the sensing.

Consider the case of a sensing action that enables the agent to determine which of two
objectsislarger. The name of the action is COMPARE. We haveafluent LG_THAN(x, y, s)
to represent’® x being larger than y in situation s.

We assume that there are no actions that change LG_THAN. So, the successor state
axiom isasfollows:

LG_THAN(x, y,DO(a, 5)) = LG_THAN(x, y, 5)

The sr axiom for COMPARE is given below:

SR(COMPARE(x,), s) =r =
(r="YES" ALG_THAN(x, y,5)) V (r="“NO" A—=LG_THAN(x,y,s)) (31

It specifies that after doing the COMPARE(x, y) action, the agent knows whether or not x
islarger than y.
The axiomatization of the initial situation is asfollows:

9 The example was kindly suggested by Zenon Pylyshyn.
10 An aternative approach would be to define LG_THAN in terms of a functional fluent sizEg, sorted to take
numerical values.

18 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

Knows(LG_THAN(OBJ;, OBJ), So)
LG _THAN(OBJ2, OBJ3, &)
Knows(LG_THAN(x, y) A LG_THAN(y, z) = LG_THAN(x, 2), So)

The agent knows that 0BJ; is larger than oBJ,. Additionaly, it is the case that 0BJ; is
larger than 0BJz, but the agent need not know that thisis the case. Furthermore, the agent
knowsthat LG_THAN istransitive.

For simplicity, we aso ensure that the agent knows that no two objects are the same
size.

Knows(LG_THAN(x, y) = —=LG_THAN(y, x), So)

So, the following LG_THAN relations are compatible with the agent’s knowledge:

1. LG_THAN(OBJ1, OBJ2, &), LG_THAN(OBJ1, OBJ3, &), LG_THAN(OBJ2, OBJ3, S)
2. LG_THAN(OBJ1, OBJ2, &), LG_THAN(OBJ3, OBJ2, &), LG_THAN(OBJ1, OBJ3,)
3. LG_THAN(OBJ1, OBJ2, &), LG_THAN(OBJ3, OBJ2, &), LG_THAN(OBJ3, OBJ1, o)

Now note that the axiomatization entails:
Knows(LG_THAN(OBJ1, OBJ3), DO(COMPARE(OBJ2, OBJ3), S0))

After doing the action COMPARE(OBJ,, OBJ3), the agent now not only knowsthat oBJ, is
larger than oBJ3, but also that oBJ; islarger than 0BJ3. Only possibility 1 remains. Both 2
and 3 have been eliminated.

6.3. Generalization of the effects of knowledge-producing actions

In the discussion so far and in Theorems 1-5, we have assumed that the effect of sense
type actionsis to make true aformula consisting of Kwhether with the argument being a
single fluent. But nothing hinged on this restriction.

The effect of a sense type action may be axiomatized to determine the truth value of
a complex formula. For example, the effect of a SENSE-COMPLEX action performed by a
robot [16,18] may be specified asfollows:

Kwhether (3x (OBJECT(x) A HOLDING(x)
A OFSHAPE(x, SHAPEl)), DO(SENSE-COMPLEX, so)) (32

We can readily define a SR axiom as follows:

SR(SENSE-COMPLEX, §) =7 =
(r="YES" A (3x OBJECT(x, s) A HOLDING(x, s)
A OFSHAPE(x, SHAPEL, 5)))
(r =“NO" A —=(3x OBJECT(x, s) A HOLDING(x, s)
A OFSHAPE(x, SHAPEL, 5))) (33)

Additionally, our demonstration that knowledge only changes as appropriate holds for
knowledge of formulas as well. By simply replacing the literal P (and aso F in the
case of Theorem 3) with an arbitrary formula, Theorems 1-5 and their proofs generalize

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 19

immediately to formulas as well. So, the approach to the frame problem for knowledge-
producing actionsis correct for knowledge understood as the knowledge of formulas.

7. Knowledge of arbitrary formulas

Previoudly, we argued that allowing complex formulas as arguments to the Knows
operator does not affect our theory at al as long as the formulas do not include the K
fluent. Now, we relax this restriction and consider the case where the arguments to the
K nows operator may be arbitrary formulas, in particular those that include the K fluent.

In other words, now we are considering the case of nested Knows operators. The
situation argument of the operator is then understood contextually. If it is not the outermost
operator, the situation argument is understood to be the first argument of the immediately
dominating K atom. For example, (34) is understood as an abbreviation for (35).

K nows(K nows(P), s) (34)
Vs1 K(s1, S) = (Vs2 K(s2, 51) = P(s2)) (35)

The only remaining issue concerns requiring that the K nows operator conforms to the
properties of a particular modal logic. For example, if thelogic chosenis S4, then we want
positive introspection (sentence (36)) to be a property of the logic.

Knows(¢, s) — Knows(Knows(¢), s) (36)

Restrictions need to be placed on the K relation so that it correctly models the
accessibility relation of a particular modal logic. The problem is to do thisin a way that
does not interfere with the successor state axioms for K, which must completely specify
the K relation for non-initial situations. The solution is to axiomatize the restrictions for
theinitial situation and then verify that the restrictions are then obeyed at all situations.

The sort INIT is used to restrict variables to range only over s, and those situations
accessible from s,. It is necessary to stipulate that:

INIT(Sp)

Vs, s1 INIT(s1) = (K(s, 51) = INIT(s))

Vs, 51 —INIT(s1) = (K(s, 51) > =INIT(s))

INIT(s) = —3s’ (s =DO(a, s’))
We want to require that the situation Sp is a member of the sort INIT, everything K-
accessible from an INIT situation is also INIT, and that everything K-accessible from a
asituation that isnot INIT isalso not INIT. Also it is necessary to require that none of the
situations that result from the occurrence of an action are INIT.

Given the decision that we are to use a particular modal logic of knowledge, it is

necessary to axiomatize the corresponding restrictions that need to be placed on the
K relation. These are listed below!! and are merely first-order representations of the

11 vs: INIT ¢ isan abbreviation for Vs INIT(s) — ¢.

20 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

conditions on the accessibility relations for the standard modal logics of knowledge
discussed in the literature [3,4,12,13]. The reflexive restriction is aways added as we
want a modal logic of knowledge. Some subset of the other restrictions are then added
to semantically define a particular modal logic.

Reflexive Vs1: INIT K(s1, s1)

Euclidian Vs1: INIT, s2:INIT, s3:INIT
K(s2, s1) A K(s3, 51) = K(s3, 52)

Symmetric Vsi: INIT, s2:INIT K(s2, s1) — K(s1, 52)

Transitive Vs1: INIT, s2:INIT, s3:INIT
K(s2, s1) A K(s3, 52) = K(s3, 51)

To model the logic S4, for example, one would need to include the axioms for both
reflexivity and transitivity.

The next step is to prove that if the K relation over the initial situations satisfies a
particular restriction R, that restriction R will also hold over the other situations as well.

Theorem 6. If the K relation on the set of initial situations is restricted to conform to
the reflexive condition along with some subset of the symmetric, transitive and Euclidean
properties, thenthe K relation at every situation, resulting from the execution of a sequence
of possible actions (as defined by Poss), will satisfy the same set of properties.

Proof. For each of the restrictions,!? it is only necessary to prove that if the restriction
holds at s then it must also hold a DO(«, s) for any action « as long as POSS(«, s) is
true. Since every ground situation term is constructed out of s, and afinite number of DO
function symbols and action terms, and since the restriction holds at s,, the restriction must
hold at every situation that results form a possible sequence of actions.'3

o Reflexive. Assume that K(s,s) holds for situation s. Then we need to show that
K(DO(«, 5), DO(er, s)) must hold for al actions @ such that POsS(«, s) is true. By
the form of the successor state axiom for K (sentence (18)), and the fact that for al
s SR(a, s) = SR(w, s) holds, and aso that POSS(«, s) = POSS(«, s) holds, and the
assumption K (s, s), K(DO(, s), DO(x, 5)) must be true.

e Symmetric. Assume that Vs’ K(s’,s) — K(s,s") holds for s. Then we must show
that Vs” K(s”, Do(w, s)) — K(DO(«, s), s”) holds for bo(a, s) for al o such that
Poss(«, s) is true. For Vs” K(s”, DO(e, s)) — K(DO(«, 5), s”) to be fase it must

12 ps an example of arestriction that is not guaranteed to hold at every level, even if it does hold over the set
of initial situations, consider the condition of being serial:

Vs 35’ K(s', 5)

Note that assuming the restriction holds at s, it is not guaranteed to hold a DO(a, s), since it is possible that
SR(a, s) # SR(a, s').
13 Alternatively, we can appeal to the induction principle for the situation calculus described in [21,34].

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 21

be the case that for some s”, and o, K(s”, DO(, 5)) is true, but K(Do(w, 5), s”)
is false. Note that by the successor state axiom for K (sentence (18)), the only
way for K(s”, DO(a, s)) to be true is for s” to be equal to DO(«, s") for some s’,
for K(s’,s) to be true, and for sR(«, s) = SR(c, s') to be true. Also note that both
Poss(a, s) and Poss(a, s”) must hold. By assumption, if K(s’, s) istrue, then K (s, s”)
must hold as well. Then by the successor state axiom for K (sentence (18)) and
the symmetry of =, it must also be the case that K(DO(a, s), s”) is true. Therefore
Vs” K(s”,DO(e, 5)) — K(DO(c, 5), s”) must hold.

Transitive. Assume that

Vs1, 52 K(s1,8) A K(s2,51) = K(s2,5)
holds at s. Then we must show that
Vs3, 54 K(sg, DO(c, s)) A K(sa, s3) —> K(S4, DO(«, s))

holdsat DO(«, s) for every « such that POSS(«, s) istrue. For Vs3 s4 K(s3, DO(«, 5)) A
K(sa, s3) — K(s4, DO(c, 5)) to be fase, it must be the case that for some s3 and
s4, K(s3, DO(«r, 5)) A K(sa, s3) istrue, but K(s4, DO(c, 5)) is false. Note that by the
successor state axiom for K (sentence (18)), the only way for K(s3, DO(¢, s)) A
K(s4, s3) to betrueisfor s3 to be equal to DO(«, s3) for some s3 and for K(s3, s) to be
true, andfor s4 to be equal to DO(«, s;) for some s, and for K (s}, s3) tobetrue, and for
SR(a, s) = SR(a, 53) and SR(a, 53) = SR(«, 5,) to betrue. Also note that Poss(a, s),
Poss(a, 53), and Poss(a, s;) must hold. Then it must also, be the case that K (s,)
is true by assumption. Note that (since = is transitive) if sR(a, s) = SR(a, s3) and
SR(a, 53) = SR(«, s3), then SR(«, s) = SR(«, s3). Then by the successor state axiom
for K (sentence (18)), it must also be the case that K(DO(«, 5), DO(a, 5)) iS true.
Therefore Vsszs4 K(s3, DO(a, s)) A K(s4, s3) = K(s4, DO(cx, 5)) must hold.
Euclidean. Assume that

Vs1, 52 (K(sl, s) A K(sz, s)) — K(s2, s1)
holdsat s. Thenit is necessary to show that
Vs3, 54 (K(sg, DO(«, s)) A K(S4, DO(«, s))) — K(sa, 53)

holdsat DO(«, s) for each o such that Poss(«, s) istrue.

For Vs3sa K(s3, DO(a, s)) A K(sa, DO(a, s)) — K(s4, s3) to be false, it must be the
casethat for some«, s3 and s4, K(s3, DO(«t, 5)) A K(s4, DO(a, 5)) istrue, but K (s4, s3)
isfalse. Note that by the successor state axiom for K (sentence (18)), the only way for
K(s3, DO(e, 5)) A K(s4, DO(a, 5)) to be true is for s3 to be equal to DO(«, s3) for
some s3 and for K(s3, s) to be true, and for s4 to be equal to DO(«, s3) for some s,
and for K(s;, s) to be true, and for sR(«, s) = SR(a, s3) and SR(a, s) = SR(«, 5) t0
be true. Also note that POSS(«, 5), POSS(«, 53), and POsS(a, s;) must hold. Then it
must aso be the case that K(sy, s3) is true by assumption. Note that (since = isin
effect Euclidean) if sR(a, s) = SR(a, s3) and SR(a, s) = SR(«, s}), then sR(a, s3) =
SR(a, s37). Then by sentence (18), it must al'so be the case that K(DO(, s), DO(«, 53))
is true. Therefore the sentence Vs3 s4 K(s3, DO(a, s)) A K(s4, DO(«, 5)) — K(s4, 53)
must hold. O

22 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

The significance of thistheoremisthat if the K relation at the initial situation is defined
as satisfying certain conditions, thenthe K relation at all situationsreachable by “ executing
actions’ starting in the initial situation, also satisfy those properties. So, if we decide to
use, for example, the logic S4 to model knowledge, we can go ahead and stipulate that the
K relation at the initial situation is reflexive and transitive. Then we are guaranteed that
the relation at all reachable situations will also satisfy those properties and our model of
knowledge will remain S4, without danger of conflicting with the successor state axioms.

8. Reasoning

Given the representation of actions and their effects, we would like to have amethod for
addressing the projection problem[33]. Thisis the question of determining whether or not
some sentence G istrue in the situation resulting from the execution of an action sequence
ai, ..., a, of ground action terms. This question is represented as the query

F =G (po(lat, ..., anl, %)),

where F is the axiomatization of actions and their effects, and the initial situation. The
expression DO([azy, ..., a,], s) isSacompact notation for the situation term

Do(an, DO(an_l, ...,DO(a1,s)..))

which denotes the state resulting from performing the action a1, followed by ay, ..
followed by a,, beginning in situation s.

One method of answering the query is to trandate the axiomatization of the initial
situation and the query G (both of which contain the modal operator K nows) into first-
order logic using the well known method implicit in much of the discussion here and
used by Moore [27,28]. Then any first-order theorem proving method can be used to
query a particular axiomatization. It would be much more efficient to use a method
designed for performing automated deduction in modal logics, but sentence (18) has no
such representation in a modal logic of knowledge.l* Note that the equivalences in the
successor state axioms would expand into a very large number of clausesyielding a large
search space if resolution theorem proving were used to reason about the effects of actions.
Therefore, the utilization of a specialized method for reasoning with the successor-state
axioms is important from an efficiency standpoint whether or not knowledge-producing
actions areinvolved.

Here, regression operators are utilized to address the projection problem. Regression is
also used to determine whether or not the sequence of actions ey, .. ., o, IS an executable
sequence of actions resulting in alegal situation. Then a modal theorem proving method
can be used to determine whether or not the result of regression is entailed by the axioms
of theinitial state.

.

14 |nfact, the results reported in [7,40] indicate that even modal deduction methods that can be understood as
reasoning with the K literals representing the accessibility relation, cannot be easily modified to handle asentence
like (18).

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 23

We first develop afull set of regression steps, building upon the work of Reiter. Next,
we illustrate the use of regression to address the projection problem. Finally, we illustrate
the use of regression to determinethe legality of a sequence of actions.

8.1. Regression

Reiter [32] develops aform of regression to reduce reasoning about future situations to
reasoning about theinitial situation. The basic idea of regressionisthat aformula G’ isthe
regression of G over action a if and only if G’ is the weakest condition such that if G’ is
true before a, then G will be true after a.

In this section, aregression operator is devel oped for knowledge-producing actions and
applied to the problem of determining whether or not a particular plan satisfies a particular
property. So given aplan, expressed as aground situation term (i.e., aterm built on s, with
the function do and ground action terms) sgr , the question is whether the axiomati zation of
the domain F entails G (sgr) where G is an arbitrary sentence including modal operators.
Under these circumstances, the successor state axioms (including (18)) are used only to
regress the formula G (sgr). The result of the regression is a formula in ordinary modal
logic, i.e., aformulawithout action terms and where the only situation termis s,. Then an
ordinary modal theorem proving method (e.g., those discussed in [7,40]) may be used to
determine whether or not the regressed formula holds. In what follows, it is assumed that
the formulas do not use the fluent K except as abbreviated by K nows.

Theregression operator R is defined relative to a set of successor state axioms @ . Parts
(), (iha, b, ¢, (iii), and (iv) of the definition of the regression operator R concern ordinary
(i.e., not knowledge-producing) actions [29,32]. Note that step (ii)d is concerned with the
regression of SR. It is assumed that the function symbol sr will only be found initially in
the srR axioms and in the successor state axiom for K, but it is introduced by part (vi) (to
be discussed shortly) of the regression definition. Also, note that we require that functional
fluents only occur as argumentsto the equality literal. Thisrestriction does not lead to any
loss in generality as a functional fluent as an argument to some other predicate symbol
can be eliminated by introducing an existentially quantified variable in that position and
an equality symbol setting the functional fluent equal to the variable. Thefirst four parts of
the definition of the regression operator are given below:

(i) When A is a non-fluent atom, including equality atoms without functional fluents as
arguments; or when A is afluent atom, or K nows operator, whose situation argument
isthe situation constant sp, Re[A] = A.

(ii) Therearefour cases here. Case (a) coversordinary (non-functional) fluents. Case (b)
covers equality literals with at least one functional fluent as an argument. Case (c)
covers the regression of Poss literals, and case (d) covers the regression of equality
literals involving the sr functional fluent.

(8 When F isafluent (other than K) whose successor state axiomin @ is

[F(x1,...,x4,D0(a,s5)) = PF]
then
Ro[F(r1. ..., 1, D0(, 0)) | = PEll s

24

(b)

(©

(d)

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

In other words, the atom F(z1, ..., t,, DO(«, o)) is replaced by the appropriate
instance of the right-hand side of the equivalence in F's successor state axiom.
Thisinstance is created by substituting z1, .. ., t,, @, o for x1, ..., x,,a,s inthe
right-hand side of the equivalence.

When the item to be regressed is an equality literal with an argument being the
functional fluent F whose successor state axiomin @ is

[F(x1,.... x4, DO(et, 5)) = y = PF|

then

Xn,d,S,y

Ro[F(11. ..., tn, DO(, 0)) = tar1] = PRl 0 a0
and

X1yees Xn,a,8,y
Reo [t,,.:,_l = F(tl, .o, 1y, DO(a, O’))] = (DF|t11,...,t,,’,1a,a,t,1+1

In other words, the equality atom with F(z4, ..., #,, DO(x, o)) as an argument
is replaced by the appropriate instance of the right-hand side of the equiv-
alence in F's successor state axiom. This instance is created by substituting
H,....th, a0, thy1 fOr x1,...,x,,a,s,y in the right-hand side of the equiva-
lence.

When theitem to be regressedisa Poss(a, s) literal with the action precondition
axiom of theform

POSS(O:()_E), s) =Ty (Xx1,...,%pn,5) (37
then
Ro[Poss(a(t, ..., 1),0)] = Re[Mu(x1, ..., xn,)[F270]

In other words, the atom Poss(a (1, ..., t,), o) isreplaced by the regression of
the appropriate instance of the right-hand side of the equivalence in «’s action
precondition axiom. This instance is created by substituting 71, ...,#,,0 for
X1, ..., Xxn, s intheright-hand side of the equivalence.

When the item to be regressed is an equality literal with an argument being an
SR function with a sensing result axiom of the form:

SR(a(X), s) =r = Pa(X, 1, 5) (38)
then

Ro[SR(t1. ... 1. 0) =ty1] = Ro[duli o 1]
and

Ro[tat1=SR(1. ... 1. 0) | =R [uli o]

In other words, an equality atom with SR(«(t1,...,t,),0) a an argument is
replaced by the regression of the appropriateinstance of theright-hand side of the
equivalence in o’s sensing result axiom. This instance is created by substituting
11, ... 1y, 0, tyy1 fOr x1, ..., xp, s, r in theright-hand side of the equivalence.

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 25

(iii) Whenever W is a formula, Rg[-W] = “Re[W], Rel[(Vv)W] = (Yv)Re[W],
Rel@v)yW1] = Fv)Re[W1].

(iv) Whenever W1 and W areformulas, R [W1 A W] = Re[W1] ARe[W1], Re[W1V
Wal=Re[W1lV Re[Wil, Re[W1— W2]=Re[Wi] — Re[Wil.

Additional steps are needed to extend the regression operator to knowledge-producing
actions. An additional definition is needed for the specification to follow. The result of the
operation®® o~ is ¢, but with the removal of the last argument position from all the fluents
ing.

Step (v) covers the case of regressing the Knows operator through a non-knowledge-
producing action. Step (vi) covers the case of regressing the Knows operator through a
knowledge producing action. In the definitions below, s’ is a new situation variable.

(v) Whenever a is not a knowledge-producing action,
Re[Knows(W, Do(a, 5))] = Knows(Poss(a) — Re[W[Do(a, s)1] . s).
(vi)
Re[Knows(W, DO(SENSE;, 5)) | =
dy SR(SENSE;, s) =y A
Knows((Poss(a) A SR(SENSE;) = y) — R@[W[DO(SENSE,»)]]_I, 5)

In the following theorem,1® F is the axiomatization of the domain including F;, the
successor state axioms. The notation Ry, (¢) is used to indicate that the regression operator
is applied repeatedly until further applicationsleave the formulaunchanged.

Theorem 7. For any ground situation term sgr
Fl Glsg) iff F—Fo ERH[Glsgn)]

Proof. It sufficesto show that the process of regression preserveslogical equival encegiven
the axiomatization F.

FE Glsgr) = RH[Gsqr)]

This is done by showing that each step preserves logical equivalence. The process must
terminate as every step removes the outer DO from the situation terms and the number
of Do function symbols making up any such term is finite. As each step preserves
equivalence, the whole process results in an equivalent formula. Since after regression
terminates the sentence G does not contain any action terms (i.e., the only situation

15 Recdll thereverse operation. When ¢ isan arbitrary sentence and s asituation term, then ¢[s] isthe sentence
that results from adding an extra argument to every fluent of ¢ and inserting s into that argument position.

16 \We assume along with [31,35] that the functional fluent consistency property holds. This property ensures
that the conditions defining a functiona fluent's value in the next situation DO(«, s) define aunique value for the
fluent. If this condition did not hold, there would be a source of inconsistency in the successor state axioms and
we could not remove the axioms without making the theory consistent.

26 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

term is), the successor state axioms are no longer needed to determine whether or not
F E Ry[G(sgr)]. Therefore F = RE[G(sgr)] if and only if F — Fys = RE [G(sgr)].
To provethat each step preserveslogical equivalence, it suffices to show the following:

F|= Va,s G(DO(a, 5)) = Re[G(DO(a,))].

The proof is by induction on the size of the sentence G.
The proofs of eguivalence for the first four steps of the regression operator Ro are
relatively simple.

(i) Immediate.
(if) By the form of the successor state axioms.
(iii) Follows from the definition of negation and the quantifiers, and the inductive
hypothesis.
(iv) From the definition of the connectives and the inductive hypothesis.

The proofs of equivalence for steps (v), and (vi) are asfollows:

(V) Knows(W, DO(a, 5))
by the definition of Knows
vs” K(s”, po(a, s)) = WI[s"]

by the successor state axiom for K (sentence (18)), and the fact that the
axiomatization entails Vs, s’ SR(a, s) = SR(a, s’) and also the inductive hypothesis

vs' (K(s', s) A POsS(a, s")) = Re[W[DO(a, s"]]
by the definition of Knows
Knows(Poss(a) — Re[W[DO(a, s)1] ™, 5)
(vi) Knows(W, DO(SENSE;, 5))
by the definition of Knows
Vs” K(s”, DO(SENSE;, 5)) — W[s"]

by the successor state axiom for K (sentence (18)), and also and the inductive
hypothesis

Vs’ (K(s’, s) A
POSS(SENSE;, s') A SR(SENSE;, s) = SR(SENSE;, s’)) —
Re[W[DO(SENSE;, s')]]

by the definition of equality and the existential quantifier

Vs (K(s',5) A
POSS(SENSE;, s") A Iy SR(SENSE;, s) =y
A SR(SENSE;, s') = y) = Re[W[DO(SENSE;, s")]]

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 27

by the definition of the connectives and quantifiers

Vy SR(SENSE;,s) =y —
Vs’ (K(s',5) A POSS(SENSE;, 5) A SR(SENSE;, s') = y) —
Reo[W[DO(SENSE;, 5)]]
by the definition of the connectives, quantifiers, and the fact that there can only be one
denotation of SR(SENSE;, s)
Jy SR(SENSE;, s) =y A Vs’ (K(s',5) —>
POSS(SENSE;, s') A SR(SENSE;,s') =y) —
Reo[W[DO(SENSE;, 5')]]
by the definitions of Knows
Jy SR(SENSE;, s) =y A
K nows((POSS(SENSE;) A SR(SENSE;) = y)
— Re | W[DO(SENSE;, s’)]]_l, 5) O

The result means that to test if some sentence G is true after executing a plan, it is
only necessary to first regress G (sgr), where sq is the plan expressed as a situation term,
using the successor state axioms. Thisisaccomplished by repeatedly passing theregression
operator through the formula until the only situation term is s,. Then the successor state
axioms (including (18)) are no longer needed. At that point an ordinary modal logic
theorem proving method can be utilized to perform the test to determine whether or not
F-FsE R)E)[G(Sgr)]-

8.2. Example: Litmus paper test

Consider the following example adapted from [28] (but without the frame axioms).
The task is to show that after an agent performs a litmus paper test on an acidic solution,
the agent will know that the solution is acidic. The litmus paper turns red if and only if
the solution is acidic. The axiomatization includes ACiD(s). The actions are TEST1 and
SENSER. As the action preconditions are all TRUE, the predicate Poss is ignored in the
presentation here. The successor state axiomsfor RED and ACID are given below:

RED(DO(a, 5)) = (ACID(s) Aa =TEST1) V (RED(s) A a # TEST1) (39)
Acip(DO(a, s)) = ACID(s) (40)
The SR axiom for SENSER is given below:

SR(SENSER, §) =r = (r =“YES” A RED(s))
V (r=“NO" A =RED(s)) (41)

Theformulato beinitially regressed is
Knows(AcID, DO(SENSER, DO(TEST1, S))) (42)
Step (vi) of the definition of R isused with (42) to yield (43).

3y SR(SENSER, DO(TEST1, %)) =y A
Knows(SR(SENSER) = y — ACID, DO(TEST1, %)) (43)

28 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

Next steps (v) and (ii) yield:

3y (y =“YES" AACID(Sy)) V (y =“NO" A =ACID(S)) A
Knows(((y =“YES” A ACID)
V (y =“NO" A —ACID))
— ACID, %) (44)

Note that by step (ii)d SR(SENSER, DO(TEST1, S)) = y first expandsinto

(y="YES" A RED(DO(TEST1, %))) V (y = “NO" A =ACID(DO(TEST1. &)))

and then is regressed again. The atom RED(DO(TEST1, &)) regresses to ACID(Sy)
and —RED(DO(TEST1, &) regresses to —ACID(S), by step (ii) with sentence (39).
Additionally, Knows(SR(SENSER) = y — ACID, DO(TEST1, S)) IS regressed by steps
(i), (iii), (iv), and (v) with sentences (39), (40), and (41).

Given that ACID(sy) holds, ssimplification of (44) then yields (45).

Knows((y =“YES” AACID) — ACID,) (45)

Sentence (45) is clearly valid and so (42) is entailed by the original theory. Note that (45)
can be rewritten as a sentence in an ordinary modal logic because the only situation term
IS Sp.

Now, consider the safe opening example given earlier. We wish to prove that

OPEN(SF, DO(DIAL-COMB(SF), DO(READ(PPR), S))) (46)

is entailed by the axiomatization given in Section 5. Sentence (46) is regressed to (47) by
step (i) with sentence (20).

DIAL-COMB(SF) = DIAL-COMB(SF)
Vv (OPEN(SF, DO(READ(PPR), Sp)) A DIAL-COMB(SF) # LOCK(SF)) (47)

At this point it can be seen that the regressed formulais entailed by the axioms since one
of the diguncts DIAL-COMB(SF) = DIAL-COMB(SF) is clearly entailed by the theory. The
crucial part of this particular problem lies in determining that the DIAL-COMB action is
possible in DO(READ(PPR),). Thisisthe topic of the next section.

8.3. Legality testing

In order to determine whether or not a particular sequence of actions results in a state
in which a particular sentence is true, it is also necessary to show that each step in the
sequence of actions is executable or possible. Following Reiter [35], we define a legal
action sequence. Consider a sequence of ground actionterms s, . . ., o, This sequenceis
legal if and only if, beginning in the initial situation s, each action «; in the sequenceis
possiblein the state resulting from performing the actions a1, . . ., @;—1. The situation term

Do(am, DO(oty—1, ..., DO(01, S) - - .))

isalegal situation if and only if [«1, ..., a),] iSalega action sequence.

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 29

We need a method of testing the legality of action sequences. Suppose that there are n
actions and the action precondition axioms are as follows:

(Vx1) POSS(A]_()?]_), S) = I1p, (X1, 5),

(Vx,)POSS(A (7). s) = I, (Xn, 5)

We are using the notation I7a,(x;, s) to represent the right-hand sides of the action
precondition axioms as introduced in sentence (1). Given a particular ground action term
a; () from the sequence, we need to pick out the proper instance of the corresponding
ITp;. The notation 1y, is used to indicate the /T, [X > 7] such that ; = A ; (X)[X > 7].
Then the sequence [a1, . .., o], Where each «; is a ground action term, is alegal action
sequenceif and only if

F = Hgpls > Sol A Mgy [s > DO(a1, S0)| A~
A H(am)[s — DO([a1, ..., 0m—1], So)] (48)
by the definition of alegal action sequence.
By the correctness of regression, we can conclude that the sequence [a1, ..., a,] iSa
legal action sequenceif and only if
F = Fys E Hapls = Sl ARE[Mayls = DO(a1, S| A+
A R)E) [H(Otm)[s = DO([ala MR] am—l]7 &J)]]
Returning to the safe opening example, consider testing the legality of the following
situation:
DO(DIAL-COMB(SF), DO(READ(PPR), %)) (49)
This is answered by determining whether or not the axiomatization entails sentence (50),

which is formed on the basis of (48), with the preconditions of DIAL-COMB and READ as
axiomatized with sentences (19) and (25).

AT(PPR, So) A
SAFE(SF, DO(READ(PPR), So)) A ATSSF, DO(READ(PPR), S)) A

Kref(COMB(SF), DO(READ(PPR), So) (50)

Note that SAFE(SF, DO(READ(PPR), S)) regresses to SAFE(SF, &) by step (ii) of the
regression operator and sentence (21). Also, AT(SF, DO(READ(PPR), &)) regressesto

(READ(PPR) = MOVETO(SF) V (AT(SF, S) A READ(PPR) # MOVETO(SF)))

by step (ii) and sentence (22). Furthermore, Kref(COMB(SF), DO(READ(PPR), &)) iS an
abbreviation for 3x Knows(COMB(SF) = x, DO(READ(PPR), &)), Which regressesto

3x 3y SR(READ(PPR), So) =y A
Knows((AT(PPR) A SR(READ(PPR)) = y — COMB(SF) = x, so) (51)

by step (vi), and then to

dx Jy y = INFO(PPR, S) A
Knows((AT(PPR) Ay = INFO(PPR)) — COMB(SF) = x, so) (52)

30 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

by step (ii)d with sentence (27). Therefore sentence (50) regresses to the following
sentence:

AT(PPR, S) A SAFE(SF, &) A
(READ(PPR) = MOVETO(SF) V (AT(SF, S) A READ(PPR) # MOVETO(SF))) A
dx 3y y = INFO(PPR, S) A
Knows((AT(PPR) A y = INFO(PPR)) — COMB(SF) = x,) (53)

It can be readily determined that the axiomatization of the initial Situation entails this
sentence. The axiomatization includes AT(PPR, S), SAFE(SF, &), and AT(SF, &). Since
the axiomatization also includes K nows(INFO(PPR) = COMB(SF), &),

dx Jy y = INFO(PPR, S) A
Knows((AT(PPR) A y = INFO(PPR)) — COMB(SF) = x,) (54)

isentailed aswell. Informally, if

3y Knows(AT(PPR) A y = INFO(PPR), S)
holds, then certainly

3y Knows(y = INFO(PPR), S)
holds aswell. Since

K nows(INFO(PPR) = COMB(SF), S)
holds,

Ax KNows(COMB(SF) = x,)

must hold too.

9. An extended example: The Omelet problem

We illustrate the approach with a problem that initially appeared in [37] and has been
recently popularized in a somewhat altered form as a problem for Al planning by David
Poole.

Imagine that we have arobot working as a chef. Itstask isto make a 3 egg omelet from
aset of eggs some of which may be bad. None of the eggs in the omelet should be bad.
The robot has two bowls. It can only see if an egg is bad if it has been broken into a
bowl. It can throw out the contents of a bowl and also pour the contents of one bowl
into another.

A limited number of eggs may be assumed. Additionally we can add the statement
that there are at least three good eggs.

In this section, we first provide a basic axiomatization of the problem. Next, we
introduce the constructs of the Golog agent programming language. Finally, a Golog
programis given for the Omelet problem.

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 31

9.1. The axiomatization

Our agent will have at its disposal both a SMALL_BOowL and a LARGE_BOWL.
Furthermore it is assumed that another container BASKET is available and contains some
number of eggs.

The agent needsto be ableto break an egg into abowl. After breaking the egg, the agent
will no longer be holding the egg, the egg will be broken, and in the bowl. The agent must
a so have the capability of pouring the contents of one bowl into another. After the pouring
action, the eggswill no longer bein thefirst bowl, but will bein the second. Also available
is the action of throwing out the contents of a bowl. The contents will then no longer be
in the bowl. The agent needs to be able to fetch an egg from the basket. Finally, we must
endow the agent with the capability of inspecting abowl to seeif there are any bad eggsin
it. The goal of the agent isto have three eggsin the large bowl that are not bad.

We provide the following terms denoting actions:

BREAK_INTO(bowl)
POUR(bowl 1, bowl2)
THROW_ouT(bowl)
INSPECT (bowl)

FETCH(e, container)

ghrwdhpE

The following fluents are needed:

IN(egg, bowl, s)
BROKEN(egg, s)
HOLDING(egg, s)
NUMBER_EGGS(bowl, s)

BAD(egg, s)

ghrwNpE

and the following Non-Fluents:
1. EGG(x)

Note that BAD needs to be a fluent even though there are no actions that change whether
or not an egg is bad, because we specifically do not want our agent to know whether or not
every egg is bad. On the other, EGG(x) is a non-fluent since we both do not have actions
that change whether an object into an egg or a nhon-egg, and we are willing to allow the
agent to know whether or not an object is an egg without sensing.

Our robot has only one arm. It is therefore, for example, not capable of pouring the
contents of one bowl into another if it is aready holding an egg. The robot can only
determineif an egg is bad if it is broken and in a container. These restrictions are captured
in our axiomatization of Poss for the robot’s repertoire of actions as given below:

POss(BREAK_INTO(bowl), 5) =
Jegg ~BROKEN(egg, s) A HOLDING(egg, s) (55)

32 R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39

POSS(FETCH(e, con), s) = IN(e, con, s) A —=3e1 HOLDING(e, s)

Poss(POUR(b1, b2), s) =
—3Jde HOLDING(e, s) ANUMBER_EGGS(b1,s5) >0

POSS(INSPECT(b), 5) =
de EGG(e) A IN(e, b, s) A BROKEN(e)

Thefollowing are the successor-state axioms!’ for the fluents:

BROKEN(e, do(a, 5)) =
(HOLDING(e, 5) A 3b a = BREAK_INTO(b)) V BROKEN(e, 5)

NUMBER_EGGS(b, do(a, s)) =n =
(NUMBER_EGGS(b, 5) =n — 1 A a = BREAK_INTO(b)) V
(NUMBER_EGGS(b, 5) =i A b1 a = POUR(b1, b) A
NUMBER_EGGS(b1,5) = j An=i+j)V
(n=0A (a =THROW_OUT(b) V 3b1 a = POUR(D, b1))) V
(NUMBER_EGGS(b, 5) = n A =(a = BREAK_INTO(b) V
(3b1 a = POUR(b1, b) V a = POUR(b, b1))
V a = THROW_OUT(b)))

IN(e, b1, do(a, s)) =
(HOLDING(e, 5) A a = BREAK_INTO(b1)) V
(3b2 a = POUR(b2, b) A IN(e, b2, 5)) V
(IN(e, b1, s) A =(a = THROW_OUT(b1) V
3bo a = POUR(b1, bz)))

HOLDING(e, do(a, 5)) =
dc a = FETCH(b1,¢) V
HOLDING(e, s) A —=3b a = BREAK_INTO(D)

BAD(e, do(a, 5)) = BAD(e, s)
Thefollowing is the SR axiom for INSPECT.

SR(INSPECT, 5) = r =
(r ="BAD" ABAD(s)) v (r="GOOD" A =BAD(s))

We also need:
SR(BREAK_INTO,s) =r=r ="0K"
SR(POUR, s) =r =r ="“0K"
SR(THROW_OUT,s) =r=r = “0OK”

SR(FETCH, s) =r=r ="“0K"

(56)

(57)

(58)

(59)

(60)

(61)

(62)
(63)

(64)

(65)
(66)
(67)
(68)

17 We assume that the integers and the various arithmetic operations used here have either been axiomatized or

built in as interpreted symbols in the fashion of constraint logic programming.

R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39 33

9.2. Golog

Golog [19] is a high-level agent programming language built on the situation calculus
along with the approach to the frame problem due to Reiter. It utilizes a notation for
complex actions or programs. The construct Do is a macro defined in terms of the more
primitive situation calculus constructs. The formula Do(8, s, s”) holds if the situation s’ is
aterminating situation for the complex action § starting in situation s.

The following constructs are available:

81; So—sequences;

81|82—nondeterministic choice of actions;

if ¢ then §1 else §,—conditionals;

while ¢ do §—while loops;
(ITx)8—nondeterministic choice of parameters;
recursive procedures.

The Do macro is defined to properly expand these various constructs. For example
consider:

Do([A: Bl s.s") & 3% Do(A. s, s) A Do(B, s*, 5')

Full details are given in [19]. After Do(8, s, s) is executed by the Golog interpreter, s’
is bound to a situation term which represents a possible sequence of primitive situation
calculus actions which can result from a particular run of §.

In the process of expanding the program §, the Golog interpreter utilizes regression
to determine the truth of fluents at various points. In the presentation here, we are
assuming that the interpreter of [19] has been modified to both incorporate the appropriate
mechanisms to regress Knows as discussed in this paper, and so that it calls a modal
theorem prover to test whether or not the axiomatization of the initial situation entails
the regressed formula.

9.3. Theomelet program
Consider the candidate Golog encoding of the omelet problem given below:

While -=NUMBER_EGGS(LARGE_BOWL) =3
(ITe) FETCH(e, BASKET);
BREAK_INTO(SMALL_BOWL);
if BAD(SMALL_BOWL)
then THROW_OUT(SMALL_BOWL)
else POUR(SMALL_BOWL, LARGE_BOWL);

Inline 2 of the program, the agent (or interpreter) picks up an arbitrary egg and then breaks
it into the small bowl. The conditional statement (line 4) requires the agent to determine
whether the egg in the bowl is bad or not. If the egg in the bowl is bad, the agent must throw
out the contents of the bowl (line5). Otherwise, it must pour the contentsinto the large bowl

34 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

(line 6). How isit possible for the agent to know whether or not any particular egg is bad?
Without such information, the conditional statement simply can not be executed. If this
informationis giveninitialy (somehow the agent knowsfor each particular egg whether or
not it is bad), the problem would be very unrealistic. In addition to having to know whether
or not each egg is bad, the agent would have to have some way to identify each particular
€gg.

The type of program we need is a knowledge-based program in the sense of [6,35]
since the code must make use of Knows. Therefore, we adopt he following Golog omel et
program.

While =K nows(NUMBER_EGGS(LARGE_BOWL) = 3)
(ITe) FETCH(e, BASKET);
BREAK_INTO(SMALL_BOWL);
INSPECT(SMALL_BOWL);
if Knows(BAD(SMALL_BOWL))
then THROW_OUT(SMALL_BOWL)
€lse POUR(SMALL _BOWL, LARGE_BOWL);

Now, the presence of theinspect action (line 4) guaranteesthat when the agent executesthe
condition (line 5), it will know whether or not the egg is bad. The conditional can then be
executed. Sinceit isthe knowledge of the agent that isimportant, all conditions (line 1 and
line 5) are within the K nows operator. For a condition to be executable, what isimportant
is not whether or not it istrue, but rather that the agent either knowsthat it istrue or knows
that it isfalse.

We can simulate runs of such a program by specifying an initia state of the world. For
example:

EGG(EGG1) EGG(EGG2) EGG(EGG3) EGG(EGG4)

EGG(EGG5) EGG(EGG6) EGG(EGG7) EGG(EGGS)

—BROKEN(EGG1, Sg) "BROKEN(EGG2,)

—BROKEN(EGG3, Sg) "BROKEN(EGG4, Sp)

—BROKEN(EGG5, Sg) "BROKEN(EGG6, Sp)

—BROKEN(EGG7, Sg) "BROKEN(EGG8, Sp)

—BAD(EGG1, Sp) BAD(EGG2, Sg) =BAD(EGG3, Sp) BAD(EGG4, Sp)
BAD(EGG5, Sg) BAD(EGG6, Sg) "BAD(EGG7, Sg) "BAD(EGGS8, Sp)
—3Je HOLDING(e, S)

IN(EGGL, BASKET, Sg) IN(EGG2, BASKET, Sp) IN(EGG3, BASKET, Sp)
IN(EGG4, BASKET, Sg) IN(EGG5, BASKET, Sp) IN(EGG6, BASKET, Sp)
IN(EGG7, BASKET, Sg) IN(EGG8, BASKET, &)

—3Je IN(e, SMALL_BOWL, Sg) —3e IN(e, LARGE_BOWL, Sp)
NUMBER_EGGS(LARGE_BOWL, Sp) =0
NUMBER_EGGS(SMALL_BOWL, Sp) =0

NUMBER_EGGS(BASKET, Sg) =8

R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39 35

We have specified that eight eggs are available. They are al in the basket and none of them
are broken. We have also specified which of the eggs are bad and which are not. There are
atotal of 4 bad eggs. The agent is not holding anything and both of the bowls are empty.

Note that the result of the execution of the Golog program is a situation term at
which it is true that the large bowl contains three good eggs. In other words our
axiomatization entails Knows(NUMBER_EGGS(LARGE_BOWL) = 3,s’) where the s’
satisfies Do(8, S, 7). The sequence of steps encoded in the situation term s” represents
a possible sequence of actions that will result in the goal. We are in effect simulating a
run of the program given a particular initial situation in which there are a certain number
of eggs and it is specified which ones are good and which ones are bad. For example, the
following sequence of actionsis the result of a possible run of the program:

[FETCH(EGG3, BASKET), BREAK_INTO(SMALL_BOWL),
INSPECT(SMALL_BOWL), POUR(SMALL_BOWL, LARGE_BOWL),
FETCH(EGG2, BASKET), BREAK_INTO(SMALL_BOWL),
INSPECT(SMALL_BOWL), THROW_OUT(SMALL_BOWL),
FETCH(EGGS, BASKET), BREAK_INTO(SMALL_BOWL),
INSPECT(SMALL_BOWL), POUR(SMALL_BOWL, LARGE_BOWL),
FETCH(EGG7, BASKET), BREAK_INTO(SMALL_BOWL),
INSPECT(SMALL_BOWL), POUR(SMALL_BOWL, LARGE_BOWL)]

The same Golog program works with other initial states of the world aslong as we have at
least three good eggs.

Here, we have just taken the simplest view of combining Golog with knowledge and
knowledge-producing actions. There are many issues to be dealt with and referencesto the
literature on the topic are given in the next section.

10. Conclusion
10.1. Summary

This paper has proposed a method for handling the frame problem for knowledge-
producing actions. Since the work builds upon Reiter’s approach to the frame problem, the
results can be incorporated into the agent programming languages Golog and ConGolog.

A number of properties of the specification were established. These properties are in
effect analogues of the frame problem for changes in knowledge. The properties are that
knowledge-producing actions do not affect fluents other than the knowledge fluent, actions
that are not knowledge-producing only affect the knowledge fluent as appropriate, and
agents know the effects of their actions. In addition, memory emerges as a side-effect: if
something is known in a certain situation, it remains known at successor situations, unless
something relevant has changed.

Also, the issue of automatically reasoning with such an axiomatization was addressed.
In particular, a form of regression examined by Reiter for reducing reasoning about
future situations to reasoning about the initial situation has been extended to now cover

36 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

knowledge-producing actions. Additionally, the result of regression can be used with an
ordinary modal theorem proving method to address the projection problem.

10.2. Related work

In [39], the approach developed here is extended in a preliminary fashion to cover the
case where the knowledge prerequisites and effects of actions can be indexical knowledge
rather than objective knowledge (the case considered here). Following [16,18], this was
done by making situations a composite of agents, times and worlds. In [44], the indexical
knowledge of time is addressed in the context of allowing concurrent actions. In [25], the
framework developed in this paper is utilized as the basis for aformal theory of testing.

In [42], the issue of belief rather than knowledge is addressed. The results presented
in this paper required that the accessibility relation be reflexive. Note that in the case of
a knowledge-producing action a that causes P to be known at DO(a, s), there must be a
situation s” such that K (s’, s), and P(s’). But in the case of a belief-producing action, there
is no guarantee that such asituation s’ exist. Infact, if the agent falsely believes P and then
does an accurate sensing of the truth of P, there will then be no accessible situations. What
isneeded isaform of belief revision. Thisiswhy theresults do not directly extend to modal
logicswithout areflexive accessibility relation. Thework reportedin [42], incorporatesinto
a framework similar to that developed here, the machinery to handle belief revision. But
the issue of the analogue of the frame problem in the context of belief, i.e., ensuring that
belief only changes as appropriate, remains an open question. Another important topic for
further work is extending regression to the case of belief.

A probabilistic notion of belief designed to handle noisy signals from multiple sensors
is developed in [1]. The topic of only-knowing is considered within the situation calculus
in [14]. An account of the ability of an agent to execute a Golog program is givenin [17].
In al of this work, the automation of reasoning, possibly through adapting regression, is
an important area for future research.

There has been some work on incorporating knowledge and knowledge-producing
actions into other action logics, in particular the language A [2,22]. Here the approach
to the frame problem underlying the language A (essentially equivalent to a propositional
version of the successor state axioms used in this paper) is extended to handle changesin
knowledge given the presence of sensing. Implementationis handled in[22] by translating
the axiomatization into epistemic logic programs, while in [2] a form of regression is
considered. Additionally, knowledge and knowledge-producing actions have been added
to the fluent calculus [43].

A number of authors have proposed alternatives to the notion of possible worlds for
the representation of knowledge within the situation calculus. Petrick and Levesque [30]
consider knowledge fluents and Funge [8] utilizes interval valued epistemic fluents. In a
related effort, Reiter [36] investigates the circumstances under which knowledge can be
reduced to provability.

There has also been work on the integration of Golog/Congolog with sensing and
knowledge [9,10,15,35], with the goa of controlling a robot or software agent. An
important issue is how to combine the off-line reasoning about the effects of actions with

R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39 37

the necessity that sensing be on-line since the result of sensing can only be determined by
executing the action.

Acknowledgements

Our work on the situation calculus and the frame problem has been carried out in
collaboration with Yves Lespérance, Fangzhen Lin, and Ray Reiter. We thank them
for many useful discussions, and for comments on earlier versions of this paper.
Additionally, we thank Leo Bertossi, Joe Halpern, Neelakantan Kartha, Sheila Mcllraith,
Bill Millar, Steven Shapiro, Stephen Zimmerbaum, and the anonymous reviewers for
helpful comments on earlier versions of this paper. This research was funded in part by
the National Sciences and Engineering Research Council of Canada (NSERC), and the
Institutefor Roboticsand Intelligent Systems. Thefirst author was an NSERC | nternational
Postdoctoral Fellow from 1992 through 1994 during which a large portion of this work
was completed. The first author also acknowledges support from the New Jersey Ingtitute
of Technology under SBR grant 421250, the National Science Foundation (NSF) under
grants SES-9819116 and CISE-9818309, and also from the New Jersey Commission on
Science and Technology.

References

[1] F. Bacchus, J. Halpern, H.J. Levesque, Reasoning about noisy sensors and effectors in the situation calculus,
Artificia Intelligence 111 (1999) 171-208.

[2] C. Bardl, T. Son, Formalizing sensing actions—A transition function based approach, Artificia Intelli-
gence 125 (2001) 19-91.

[3] R. Bull, K. Segerberg, Basic modal logic, in: D. Gabbay, F. Guenther (Eds.), Handbook of Philosophical
Logic, Vol. II, Chapter 1, D. Reidel, Dordrecht, 1984, pp. 1-88.

[4] B.F. Chellas, Modal Logic: An Introduction, Cambridge University Press, Cambridge, 1980.

[5] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, M. Williamson, An approach to planning with incomplete
information, in: B. Nebel, C. Rich, W. Swartout (Eds.), Principles of Knowledge Representation and
Reasoning: Proceedings of the Third International Conference, Cambridge, MA, 1992, pp. 115-125.

[6] R. Fagin, J.Y. Halpern, Y.O. Moses, M.Y. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, MA,
1995.

[7] A. Frisch, R. Scherl, A general framework for modal deduction, in: JA. Allen, R. Fikes, E. Sandewall
(Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Second International
Conference, Morgan Kaufmann, San Mateo, CA, 1991, pp. 196-207.

[8] J. Funge, Representing knowledge within the situation calculus using interval-valued epistemic fluents,
J. Reliable Compuit. 5 (1) (1999).

[9] G. De Giacomo, H.J. Levesque, Projecting using regression and sensors, in: Proc. [JCAI-99, Stockholm,
Sweden, 1999, pp. 160-165.

[10] G. DeGiacomo, H.J. Levesque, Anincremental interpreter for high-level programs with sensing, in: Logical
Foundations for Cognitive Agents: Contributions in honor of Ray Reiter, Springer, Berlin, 1999, pp. 86-102.

[11] A.R. Haas, The case for domain-specific frame axioms, in: EM. Brown (Ed.), The Frame Problem in
Artificia Intelligence. Proceedings of the 1987 Workshop, Morgan Kaufmann, San Mateo, CA, 1987,
pp. 343-348.

[12] G.E. Hughes, M.J. Cresswell, An Introduction to Modal Logic, Methuen, London, 1968.

[13] S. Kripke, Semantical considerations on moda logic, Acta Philos. Fenn. 16 (1963) 83-94.

38 R.B. Scherl, H.J. Levesgue/ Artificial Intelligence 144 (2003) 1-39

[14] G. Lakemeyer, H.J. Levesgue, AOL: A logic of acting, sensing, knowing and only-knowing, in: Principles
of Knowledge Representation and Reasoning: Proceedings of the Sixth International Conference (KR-98),
Morgan Kaufmann, San Mateo, CA, 1998, pp. 316-327.

[15] G. Lakemeyer, On sensing and off-line interpreting in GOLOG, in: Logical Foundations for Cognitive
Agents: Contributions in honor of Ray Reiter, Springer, Berlin, 1999, pp. 173-189.

[16] Y. Lespérance, H.J. Levesque, Indexical knowledge in robot plans, in: Proc. AAAI-90, Boston, MA, 1990,
pp. 1030-1037.

[17] Y. Lespérance, H.J. Levesque, F. Lin, R.B. Scherl, Ability and knowing how in the situation calculus, Studia
Logica 66 (1) (2000) 165-186.

[18] Y. Lespérance, A forma theory of indexical knowledge and action, PhD Thesis, University of Toronto,
January 1991.

[19] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, R.B. Scherl, GOLOG: A logic programming language for
dynamic domains, J. Logic Programming 31 (1997) 59-83.

[20] H. Levesque, What is planning in the presence of sensing?, in: Proc. AAAI-96, Portland, OR, 1996,
pp. 1139-1146.

[21] F. Lin, R. Reiter, State constraints revisited, J. Logic Comput. 4 (5) (1994) 655-678.

[22] J. Lobo, G. Mendez, S. Taylor, Knowledge and the action description language A, J. Logic Program-
ming 1 (2) (2001) 129-184.

[23] J. McCarthy, P. Hayes, Some philosophical problems from the standpoint of artificia intelligence, in:
B. Méltzer, D. Michie (Eds.), Machine Intelligence 4, Edinburgh University Press, Edinburgh, UK, 1969,
pp. 463-502.

[24] J. McCarthy, Programs with common sense, in: M. Minsky (Ed.), Semantic Information Processing, MIT
Press, Cambridge, MA, 1968, pp. 403418 [Chapter 7].

[25] S. Mcllraith, R.B. Scherl, What sensing tells us: Towards aformal theory of testing for dynamical systems,
in: Proc. AAAI-00, Austin, TX, 2000, pp. 483-490.

[26] S. Mcllraith, Integrating actions and state constraints: A closed-form solution to the ramification problem
(sometimes), Artificial Intelligence 116 (2000) 87-121.

[27] R.C. Moore, Reasoning about knowledge and action, Technical Note 191, SRI International, Menlo Park,
CA, October 1980.

[28] R.C. Moore, A formal theory of knowledge and action, in: J.R. Hobbs, R.C. Moore (Eds.), Formal Theories
of the Commonsense World, Ablex, Norwood, NJ, 1985, pp. 319-358.

[29] E.P.D. Pednault, ADL: Exploring the middle ground between STRIPS and the situation calculus, in: R.J.
Brachman, H. Levesque, R. Reiter (Eds.), Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, CA, 1989, pp. 324-332.

[30] R. Petrick, H. Levesque, Knowledge equivalence in combined action theories, in: D. Fensel, F. Giunchiglia,
D. McGuinness, M. Williams (Eds.), Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR2002), Morgan Kaufmann, San Mateo, CA, 2002, pp. 303—
314.

[31] F. Pirri, R. Reiter, Some contributions to the metatheory of the situation calculus, J. ACM 46 (3) (1999)
261-325.

[32] R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goa regression, in: V. Lifschitz (Ed.), Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy, Academic Press, San Diego, CA, 1991, pp. 359-380.

[33] R. Reiter, The projection problem in the situation calculus: A soundness and completeness result, with
an agpplication to database updates, in: Proceedings of the First International Conference on Al Planning
Systems, College Park, MD, 1992, pp. 198-203.

[34] R. Reiter, Proving properties of states in the situation calculus, Artificial Intelligence 64 (1993) 337-351.

[35] R. Reiter, Knowledgein Action: Logical Foundations for Specifying and Implementing Dynamical Systems,
MIT Press, Cambridge, MA, 2001.

[36] R. Reiter, On knowledge-based programming with sensing in the situation calculus, ACM Trans. Comput.
Logic (TOCL) 2 (4) (2001) 433-457.

[37] L.J. Savage, The Foundations of Statistics, Wiley, New York, 1954.

[38] R.B. Scherl, H.J. Levesgue, The frame problem and knowledge producing actions, in: Proc. AAAI-93,
Washington, DC, 1993, pp. 689-695.

R.B. Scherl, H.J. Levesque / Artificial Intelligence 144 (2003) 1-39 39

[39] R. Scherl, H. Levesque, Y. Lespérance, The situation calculus with sensing and indexical knowledge, in:
Proceedings of BISFAI’ 95: The Fourth Bar-1lan Symposium on Foundations of Artificial Intelligence, Ramat
Gan and Jerusalem, Israel, 1995, pp. 86-95.

[40] R. Scherl, A constraint logic approach to automated modal deduction, PhD Thesis, University of Illinais,
1992.

[41] L.K. Schubert, Monotonic solution of the frame problem in the situation calculus: An efficient method
for worlds with fully specified actions, in: H.E. Kyberg, R.P. Loui, G.N. Carlson (Eds.), Knowledge
Representation and Defeasible Reasoning, Kluwer Academic, Boston, MA, 1990, pp. 23-67.

[42] S. Shapiro, M. Pagnucco, Y. Lespérance, H.J. Levesque, Iterated belief change in the situation calculus,
in: Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International
Conference (KR-2000), Morgan Kaufmann, San Mateo, CA, 2000, pp. 527-538.

[43] M. Thielscher, Representing the knowledge of a robot, in: A. Cohn, F. Giunchiglia, B. Selman (Eds.),
Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning
(KR-2000), Morgan Kaufmann, San Mateo, CA, 2000, pp. 109-120.

[44] S. Zimmerbaum, R. Scherl, Knowledge, time, and concurrency in the situation calculus, in: C. Castelfranchi,
Y. Lespérance (Eds.), Intelligent Agents VII: Proceedings of the 2000 Workshop on Agent Theories,
Architectures, and Languages (ATAL-2000), in: Lecture Notesin Artificial Intelligence, Vol. 1986, Springer,
Berlin, 2001, pp. 31-45.

