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Abstra
t

Des
ription logi
 (DL) ABoxes are a tool for des
ribing the state of

a�airs in an appli
ation domain. In this paper, we 
onsider the problem

of updating ABoxes when the state 
hanges. We assume that 
hanges

are des
ribed at an atomi
 level, i.e., in terms of possibly negated ABox

assertions that involve only atomi
 
on
epts and roles. We analyze su
h

basi
 ABox updates in several standard DLs by investigating whether the

updated ABox 
an be expressed in these DLs and, if so, whether it is


omputable and what is its size. It turns out that DLs have to in
lude

nominals and the \�" 
onstru
tor of hybrid logi
 (or, equivalently, admit

Boolean ABoxes) for updated ABoxes to be expressible. We devise algo-

rithms to 
ompute updated ABoxes in several expressive DLs and show

that an exponential blowup in the size of the whole input (original ABox

+ update information) 
annot be avoided unless every PTime problem

is LogTime-parallelizable. We also exhibit ways to avoid an exponential

blowup in the size of the original ABox, whi
h is usually large 
ompared

to the update information.

1 Introdu
tion

Des
ription logi
s (DLs) are a prominent family of logi
-based formalisms for

the representation of and reasoning about 
on
eptual knowledge [4℄. In DLs,


on
epts are used to des
ribe 
lasses of individuals sharing 
ommon properties.

For example, the following 
on
ept des
ribes the 
lass of all parents with only

happy 
hildren:

Person u 9has-
hild:Person u 8has-
hild:(Person u Happy)

This 
on
ept is formulated in ALC, the basi
 DL that 
ontains all Boolean

operators [21℄. Con
epts are the most important ingredient of des
ription logi
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ABoxes, whose purpose is to des
ribe a snapshot of the world. For example, the

following ABox, whi
h is also formulated in ALC, says that John is a parent

with only happy 
hildren, that Peter is his 
hild, and that Mary is a person:

john:Person u 9has-
hild:Person u 8has-
hild:(Person u Happy)

has-
hild(john; peter)

mary:Person

In many appli
ations of DLs, an ABox is used to represent the 
urrent state

of a�airs in the appli
ation domain [4℄. In su
h appli
ations, it is ne
essary to

update the ABox in the 
ase that the world has 
hanged. Su
h an update should

in
orporate the information about the new state while retaining all knowledge

that is not a�e
ted by the 
hange (as demanded by the prin
iple of inertia,

see e.g. [14℄). For example, if Mary is not happy any longer, we should up-

date the above ABox to the following one. This updated ABox is formulated

in ALCO, the extension of ALC with nominals (i.e., individual names inside


on
ept des
riptions):

john:Person u 9has-
hild:Person u 8has-
hild:(Person u (Happy t fmaryg))

has-
hild(john; peter)

mary:Person u :Happy

Observe that new information 
on
erning Mary also resulted in an update of the

information 
on
erning John be
ause the semanti
s for ABoxes adopts the open

world assumption and 
an therefore represent the domain in an in
omplete way

[4℄, Page 68. In the example above, we have no information about whether or

not Mary is a 
hild of John.

Surprisingly, formal theories of ABox updates have never been developed. In

appli
ations, ABoxes are usually updated in an ad-ho
 way, and e�e
ts su
h as

the information 
hange for John above are simply ignored. The 
urrent paper

aims at 
uring this de�
ien
y. Its purpose is to provide a �rst formal analysis

of ABox updates in many 
ommon des
ription logi
s, 
on
entrating on the most

basi
 kind of updates. These basi
 updates are as follows: the new informa-

tion to be in
orporated into the ABox is a set of possibly negated assertions

a:A and r(a; b), where A is an atomi
 
on
ept. The motivation for 
onsidering

this restri
ted form of updates is three-fold: �rst, there is a single, un
ontro-

versial semanti
s for updates of this restri
ted form, whereas several di�erent

and equally natural semanti
s are available in the 
ase of updates with 
om-

plex 
on
epts, see e.g. [26, 8, 11, 22℄. Se
ond, it follows from the results in [3℄

that, under Winslett-style PMA semanti
s [26℄, unrestri
ted ABox updates in

relatively simple DLs su
h as ALCFI and its extensions are not 
omputable.

It seems very likely that the other available semanti
s su�er from similar 
om-

putational problems. Finally, we believe that the massive non-determinism of
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ABox updates with 
omplex 
on
epts, in parti
ular those involving quanti�ers

nested in a 
omplex way, leads to unintuitive results under all of the available

semanti
s.

We 
onsider restri
ted ABox updates in the expressive DL ALCQIO and its

fragments. It turns out that, in many natural DLs su
h as ALC, the updated

ABox 
annot be expressed. As an example, 
onsider the ALC ABox given above.

To express the ABox obtained by the (restri
ted) update with mary::Happy, we

had to resort to the more expressive DL ALCO. But even the introdu
tion of

nominals does not suÆ
e to guarantee that updated ABoxes are expressible.

Only if we further add the \�" 
on
ept 
onstru
tor from hybrid logi
 [1, 2℄

or Boolean ABoxes (we show that these two are equivalent in the presen
e of

nominals), updated ABoxes 
an be expressed. Here, the � 
onstru
tor allows

the formation of 
on
epts of the form �

a

C expressing that the individual a

satis�es C, and Boolean ABoxes are a generalization of standard ABoxes: while

the latter 
an be thought of as a 
onjun
tion of ABox assertions of the form a:C

and r(a; b), Boolean ABoxes are a Boolean 
ombination of su
h ABox assertions.

Our expressiveness results do not only 
on
ern ALC: similar proofs as those

given in this paper 
an be used to show that, in any standard DL in whi
h

nominals and the \�" 
onstru
tor are not expressible, updated ABoxes 
annot

be expressed.

We show that updated ABoxes exist and are 
omputable in ALCQIO

�

,

the extension of ALCQIO (whi
h in
ludes nominals) with the � 
onstru
tor.

The proposed algorithm 
an easily be adapted to the fragments ALCIO

�

and

ALCQO

�

. An important issue is the size of updated ABoxes: the updated

ABoxes 
omputed by our algorithm may be of size exponential both in the size

of the original ABox and in the size of the new information (hen
eforth 
alled

the update). We show that an exponential blowup 
annot be 
ompletely avoided

by proving that, even in the 
ase of propositional logi
, updated theories are not

polynomial in the size of the (
ombined) input unless every PTime-algorithm is

LogTime-parallelizable (the \P vs. NP" question of parallel 
omputation).

1

In

the update literature, an exponential blowup in the size of the update is viewed

as mu
h more tolerable than an exponential blowup in the size of the original

ABox sin
e the former tend to be very small 
ompared to the latter. We believe

that, in the 
ase of ALCQIO

�

and its two fragments mentioned above, the

exponential blowup in the size of the original ABox 
annot be avoided. While

we leave a proof as an open problem, we exhibit two ways around the blowup:

the �rst is to allow the introdu
tion of new 
on
ept de�nitions in an a
y
li
 TBox

1

In 
ontrast to the results by Cadoli et al. [7℄, our result even applies to the restri
ted form

of updates, i.e., updates in propositional logi
 where the update is a 
onjun
tion of literals.

Thus, our argument provides further eviden
e for the 
laims in [7℄, where it is shown that,

with unrestri
ted updates, an exponential blowup in the size of the update 
annot be avoided

unless the �rst levels of the polynomial hierar
hy 
ollapse.
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Name Syntax Semanti
s

inverse role r

�

(r

I

)

�1

nominal fag fa

I

g

negation :C �

I

n C

I


onjun
tion C uD C

I

\D

I

disjun
tion C tD C

I

[D

I

at-least restri
tion (> n r C) fx 2 �

I

j #fy 2 C

I

j (x; y) 2 r

I

g � ng

at-most restri
tion (6 n r C) fx 2 �

I

j #fy 2 C

I

j (x; y) 2 r

I

g � ng

� 
onstru
tor �

a

C �

I

if a

I

2 C

I

, and ; otherwise

Figure 1: Syntax and semanti
s of ALCQIO.

when 
omputing the update. The se
ond is to move to extensions of ALCQIO

�

that allow Boolean operators on roles, thus eliminating the asymmetry between


on
epts and roles found in standard DLs. In both 
ases, we show how to


ompute updated ABoxes that are polynomial in the size of the original ABox

(and exponential in the size of the update). Thus, the blowup indu
ed by

updates in these expressive DLs is not worse than in propositional logi
. We

also show that the blowup produ
ed by iterated updates is not worse than the

blowup produ
ed by a single update.

This paper is organized as follows. In Se
tion 2, we introdu
e the relevant

DLs, formally de�ne ABox updates, and establish the result on the exponential

blowup indu
ed by restri
ted updates in propositional logi
. We then prove in

Se
tion 3 that updated ABoxes 
annot be expressed in ALC, in ALCO, ALC

�

,

and ALC with Boolean ABoxes. In Se
tion 4, we show how to 
ompute ABox

updates in ALCQIO

�

and analyze the size of the 
omputed ABoxes. Finally,

Se
tion 5 is 
on
erned with the 
omputation of updated ABoxes whose size is

only polynomial in the size of the original ABox. We 
on
lude in Se
tion 6,

whi
h is also used to dis
uss potential further work.

2 Preliminaries

2.1 Des
ription Logi
s

In DLs, 
on
epts are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names, and

(possibly) a set N

I

of individual names. In this se
tion, we introdu
e the DL

ALCQIO

�

, whose 
on
epts are formed using the 
onstru
tors shown in Figure 1.

There, the inverse 
onstru
tor is the only role 
onstru
tor, whereas the remain-
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Symbol Constru
tor ALC ALCO ALCQ ALCI ALCQO ALCIO ALCQI

Q (6 n r C) x x x

(> n r C)

I r

�

x x x

O fag x x x

Figure 2: Fragments of ALCQIO.

ing seven 
onstru
tors are 
on
ept 
onstru
tors. In Figure 1 and throughout this

paper, we use #S to denote the 
ardinality of a set S, a and b to denote individ-

ual names, r and s to denote roles (i.e., role names and inverses thereof), A;B

to denote 
on
ept names, and C;D to denote (possibly 
omplex) 
on
epts. As

usual, we use > as abbreviation for an arbitrary (but �xed) propositional tautol-

ogy, ? for :>, ! and $ for the usual Boolean abbreviations, 9r:C (existential

restri
tion) for (> 1 r C), and 8r:C (universal restri
tion) for (6 0 r :C).

The DL that allows only for negation, 
onjun
tion, disjun
tion, and uni-

versal and existential restri
tions is 
alled ALC. The availability of additional


onstru
tors is indi
ated by 
on
atenation of a 
orresponding letter: Q stands

for number restri
tions; I stands for inverse roles, O for nominals and super-

s
ript � for the � 
onstru
tor. This explains the name ALCQIO

�

for our DL,

and also allows us to refer to sublanguages as indi
ated in Figure 2. For ea
h

language L listed in Figure 2, we have an analogue L

�

obtained by adding the

� 
onstru
tor.

The semanti
s of ALCQIO

�

-
on
epts is de�ned in terms of an interpreta-

tion I = (�

I

; �

I

). The domain �

I

is a non-empty set of individuals and the

interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset A

I

of

�

I

, ea
h role name r 2 N

R

to a binary relation r

I

on �

I

, and ea
h individual

name a 2 N

I

to an individual a

I

2 �

I

. The extension of �

I

to inverse roles

and arbitrary 
on
epts is indu
tively de�ned as shown in the third 
olumn of

Figure 1.

An ALCQIO

�

assertional box (ABox) is a �nite set of 
on
ept assertions

C(a) and role assertions r(a; b) and :r(a; b) (where r may be an inverse role).

For readability, we sometimes write 
on
ept assertions as a:C. Observe that

there is no need for expli
itly introdu
ing negated 
on
ept assertions as negation

is available as a 
on
ept 
onstru
tor in ALCQIO

�

. An ABox A is simple if

C(a) 2 A implies that C is a 
on
ept literal, i.e., a 
on
ept name or a negated


on
ept name.

An interpretation I satis�es a 
on
ept assertion C(a) i� a

I

2 C

I

, a role

assertion r(a; b) i� (a

I

; b

I

) 2 r

I

, and a role assertion :r(a; b) i� (a

I

; b

I

) =2 r

I

.

We denote satisfa
tion of an ABox assertion  by an intepretation I with I j=  .

An interpretation I is a model of an ABox A (written I j= A) if it satis�es all

assertions in A. An ABox is 
onsistent i� it has a model. Two ABoxes A and

5



A

0

are equivalent (written A � A

0

) i� they have the same models.

The length of a 
on
ept C, denoted by jCj, is the number of symbols needed

to write C. The size of an ABox assertion C(a) is jCj, the size of r(a; b) and

:r(a; b) is 1. Finally, the size of an ABox A, denoted by jAj, is the sum of the

sizes of all assertions in A.

2.2 ABox Updates

We introdu
e a simple form of ABox update where 
omplex 
on
epts are not

allowed in the update information.

De�nition 1 (Interpretation Update). An update U is a simple ABox that

is 
onsistent. Let U be an update and I, I

0

interpretations su
h that �

I

= �

I

0

and I and I

0

agree on the interpretation of individual names. Then I

0

is the

result of updating I with U , written I =)

U

I

0

, if the following hold:

� for all 
on
ept names A, A

I

0

= (A

I

[fa

I

j A(a) 2 Ug)nfa

I

j :A(a) 2 Ug;

� for all role names r,

r

I

0

= (r

I

[ f(a

I

; b

I

) j r(a; b) 2 Ug) n f(a

I

; b

I

) j :r(a; b) 2 Ug:

4

Now let A be an ABox and U an update. Then, up to equivalen
e, there exists

at most one ABox A

0

satisfying the 
onditions

(U1) 8I; I

0

:

�

( I j= A ^ I =)

U

I

0

) ! I

0

j= A

0

�

and

(U2) 8I

0

:

�

I

0

j= A

0

! 9I : ( I j= A ^ I =)

U

I

0

)

�

.

In other words, whenever ABoxes A

0

and A

00

satisfy (U1) and (U2), then A

0

�

A

00

. This observation justi�es the following de�nition.

De�nition 2 (ABox Update). Let A be an ABox and U an update. An ABox

A

0

is the result of updating A with U , in symbols A � U � A

0

, if A

0

satis�es

the 
onditions (U1) and (U2). We then 
all A the original ABox and A

0

the

updated ABox. 4

As mentioned in the introdu
tion, there are two te
hni
al reasons for restri
ting

ourselves to updates of this simple form. First, it allows us to use the un
ontro-

versial semanti
s given above, whi
h 
oin
ides with all standard semanti
s for

updates 
onsidered in the literature, see e.g., [23, 20, 26, 18℄. In 
ontrast, for

unrestri
ted updates involving 
omplex 
on
epts there exist several 
ompeting

semanti
s su
h as the ones proposed by Winslett [25℄ and Forbus [8℄. Semanti
s

for theory revision are 
losely related as well, but yield di�erent results even

6



in our restri
ted setting [5, 19℄. Se
ond, we 
onsider it quite likely that, under

many of these semanti
s and for many DLs, unrestri
ted ABox updates are not


omputable even if the updated ABoxes exist. Some eviden
e is given by the

results in [3℄, whi
h imply that this is the 
ase under Winslett-style semanti
s

for the DL ALCFI and all of its extensions.

2

Pra
ti
ally, our restri
tion means that the user has to des
ribe updates at an

atomi
 level. It is 
lear that more 
omplex updates su
h as Boolean 
ombinations

of 
on
ept names 
an be useful in appli
ations. On the other hand, we believe

that the utility of arbitrarily 
omplex 
on
epts in updates is limited sin
e using

su
h 
on
epts together with a standard update semanti
s introdu
es massive

non-determinism into updates. For example, the very simply update f8r:A(a)g

applied to an interpretation I under most standard semanti
s for updates means

that for ea
h individual x 2 A

I

with (a

I

; x) 2 r

I

, we have to de
ide whether

to 
hange (a

I

; x) 2 r

I

to (a

I

; x) =2 r

I

or x 2 A

I

to x =2 A

I

(but we are

not allowed apply both 
hanges). With 
omplex nested 
on
epts, this non-

determinism qui
kly grows out of bounds.

We now give another example of updating ABoxes. The following ALCO

ABox expresses that John and Mary are married. We also know that one of

them is happy, and the other is not. However, we do not know whi
h of the two

is unhappy. Moreover, Peter and Sarah both have happy parents:

spouse(john;mary)

peter:9parent:Happy

sarah:9parent:Happy

john:

�

Happy u 9spouse:(fmaryg u :Happy)

�

t

�

:Happy u 9spouse:(fmaryg u Happy)

�

Suppose that, be
ause one of them is unhappy, John and Mary have an argu-

ment. This results in both John and Mary being unhappy. Hen
e, we should

apply the following update to the above ABox:

:Happy(john); :Happy(mary):

Then, the updated ABox 
an be expressed in ALCO

�

as follows:

3

:Happy(john)

:Happy(mary)

spouse(john;mary)

john:

�

�

peter

9parent:(Happy t fjohng) u �

sarah

9parent:(Happy t fjohng)

�

t

�

�

peter

9parent:(Happy t fmaryg) u�

sarah

9parent:(Happy t fmaryg)

�

2

ALCFI is the extension of ALCI with at-least and at-most restri
tions that admit only

the number 1.

3

To save bra
kets, we assume that the � 
onstru
tor has higher pre
eden
e than 
onjun
-

tion.
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The only surprising assertion in the updated ABox is the last one. Intuitively,

it represents the update of the last two assertions of the original ABox: the �rst

disjun
t 
aptures the 
ase where John was the unhappy person, and the se
ond

disjun
t 
aptures the 
ase when Mary was the unhappy person. There is no

update of the se
ond line of the original ABox as this assertion is 
ompletely

invalidated by the update. We shall later prove that the updated ABox 
an-

not be expressed in ALCO. This illustrates that, as was already noted in the

introdu
tion, the presen
e of nominals alone does not suÆ
e to guarantee the

existen
e of updates.

2.3 A Lower Bound on the Size of Updates

Later on, we will see that the existen
e and size of updated ABoxes strongly

depends on the underlying des
ription logi
. In this se
tion, we establish a

general lower bound on the size of the updated ABox: even in propositional

logi
, updated ABoxes 
an be
ome exponential in the size of the whole input,

whi
h 
onsists of the original ABox and the update. At least, this holds unless

every PTime algorithm is LogTime-parallelizable, i.e., unless the 
omplexity


lasses PTime and NC are identi
al. As dis
ussed by Papadimitriou in [16℄, this

is believed to be similarly unlikely as PTime = NP. This lower bound on the

size of updated ABoxes transfers to all DLs 
onsidered in this paper. Note that

our result 
omplements the one from [7℄, where it is shown that an exponential

blowup of propositional updates 
annot be avoided if arbitrary formulas are

allowed as updates unless the �rst levels of the polynomial hierar
hy 
ollapses.

Our argument uses a mu
h more restri
ted form of updates (
onjun
tions of

literals) and refers to a di�erent 
omplexity-theoreti
 assumption.

For the following de�nitions, we �x an individual name a. A propositional

ABox A is of the form fC(a)g with C a propositional 
on
ept, i.e., a 
on
ept

that uses only the 
on
ept 
onstru
tors :, u, and t. A propositional update U


ontains only assertions of the form A(a) and :A(a). Observe that propositional

ABoxes and propositional updates are only allowed to refer to the single, �xed

individual name a.

For the semanti
s, we �x a single individual x. Sin
e we are dealing with

propositional ABoxes and updates, we assume that interpretations do not in-

teprete role names, and that interpretation domains have only a single element x

with a

I

= x. We introdu
e a 
ouple of notions. For a 
on
ept C, let C(C) denote

the set of 
on
ept names used in C. For an interpretation I and a set of 
on
ept

names �, let Ij

�

denote the restri
tion of I that interpretes only the 
on
ept

names in �. Let C be a 
on
ept and � � C(C). Then a 
on
ept D is 
alled a

uniform �-interpolant of C i� C(D) � � and fIj

�

j x 2 C

I

g = fIj

�

j x 2 D

I

g.

It is easily seen that, for any propositional 
on
ept C and subset � � C(C),

the uniform �-interpolant of C exists and is unique up to equivalen
e. The fol-

8



lowing lemma establishes a tight 
onne
tion between uniform interpolants and

propositional updates.

Lemma 3. Let A = fC(a)g be a propositional ABox, U a propositional update,

� the set of 
on
ept names in C not o

urring in U ,

b

C the shortest uniform

�-interpolant of C, and

A

0

= fa : (

b

C u

l

A(a)2U

A)g:

Then we have the following:

(i) A � U � A

0

;

(ii) if A � U � A

00

, then jA

0

j � jUj+ jA

00

j.

Proof. Let A = fC(a)g, U , �,

b

C, and A

0

be as in the lemma. To prove (i), we

have to show that A

0

satis�es Conditions (U1) and (U2) from De�nition 2:

(U1) Let I, I

0

be interpretations su
h that I j= A and I =)

U

I

0

. We have to

show that I

0

j= U and I

0

j=

b

C(a). By de�nition of \=)

U

" and sin
e the


on
ept names in � do not appear in U , we have I

0

j= U and Ij

�

= I

0

j

�

.

The latter together with I j= C(a) and the fa
t that

b

C is the uniform

�-interpolant of C yields that I

0

j=

b

C(a) as required.

(U2) Let I

0

be an interpretation su
h that I j= A

0

. In parti
ular, I

0

j=

b

C(a).

Sin
e

b

C is the uniform �-interpolant of C, there is thus an interpretation

I su
h that a

I

2 C

I

and Ij

�

= I

0

j

�

. We have to show that I =)

U

I

0

and

I j= A. The latter is 
lear sin
e a

I

2 C

I

. For the former, we have to show

that (i) a

I

2 A

I

0

n A

I

implies A(a) 2 U , and (ii) a

I

2 A

I

n A

I

0

implies

:A(a) 2 U . For (i), let a

I

2 A

I

0

n A

I

. As Ij

�

= I

0

j

�

, we have A =2 �.

Therefore, A appears in U . This 
an be either in the form A(a) or :A(a).

As the se
ond yields a 
ontradi
tion to a

I

2 A

I

0

and I

0

j= U , we are done.

Case (ii) is symmetri
.

Now for Point (ii). Suppose A � U � A

00

. Then A

00

= fa : Dg for 
ome 
on
ept

D. We may assume that all 
on
ept names o

uring in D o

ur in A [ U as

well. Now, for all 
on
ept names A su
h that a : A 2 U repla
e every o

uren
e

of A in D by >. For a : :A 2 U , repla
e every o

uren
e of A in D by ?.

Denote the resulting 
on
ept by D

0

. Then A � U � fa : D

0

g [ U . Moreover, as

D

0

and U do not have any 
on
ept names in 
ommon and A

0

� fa : D

0

g[U , we

have fa :

b

Cg � fa : Dg. It follows that D

0

is a �-interpolant for C. We derive

j

b

Cj � jD

0

j be
ause

b

C is the shortest �-interpolant for C. But then

jA

0

j � j

b

Cj+ jUj � jD

0

j+ jUj � jDj+ jUj � jA

00

j+ jUj:

❏
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It thus remains to show that the size of (smallest) uniform interpolants of propo-

sitional 
on
epts is not bounded polynomially in the size of the interpolated


on
ept unless PTime = NC.

The size of uniform interpolants of propositional 
on
epts is 
losely related

to the relative su

in
tness of propositional logi
 (PL) formulas and Boolean 
ir-


uits. We remind that both PL formulas and Boolean 
ir
uits 
ompute Boolean

fun
tions and refer, e.g., to [16℄ for exa
t de�nitions. We use j
j to denote the

number of gates in the Boolean 
ir
uit 
, and j'j to denote the length of the PL

formula '. It is known that, unless PTime = NC, there exists no polynomial

p su
h that every Boolean 
ir
uit 
 
an be 
onverted into a PL formula ' that


omputes the same fun
tion as 


i

and satis�es j'j � p(j


i

j), see e.g. Exer
ise

15.5.4 of [16℄.

We show that non-existen
e of su
h a polynomial p implies that uniform

interpolants are not bounded polynomially in the size of the interpolated 
on-


ept. Take a Boolean 
ir
uit 
 with k inputs. Then 
 
an be translated into a

propositional 
on
ept D




by introdu
ing 
on
ept names I

1

; : : : ; I

k

for the inputs

and, additionally, one auxiliary 
on
ept name for the output of every gate. Let

G be the set of 
on
ept names introdu
ed for gate outputs, and let O 2 G be

the 
on
ept name for the output of the gate 
omputing the �nal output of 
. It

is not diÆ
ult to see that this translation 
an be done su
h that there exists a

polynomial q su
h that, for all Boolean 
ir
uits 
,

(i) jD




j � p(j
j) and

(ii) for all interpretations I and all x 2 D

I




, x 2 O

I

i� 
 outputs \true" on

input b

1

; : : : ; b

k

, where b

j

= 1 if x 2 I

I

j

and b

j

= 0 otherwise.

Now, set � := G n fOg. Then the uniform �-interpolant

b

D




of D




also satis�es

(ii). Thus,

b

D




is a (notational variant of a) propositional logi
 formula 
omput-

ing the same Boolean fun
tion as 
. If the size of (smallest) �-interpolants of

propositional 
on
epts was bounded polynomially in the size of the interpolated


on
ept, we thus had obtained a 
ontradi
tion to our assumption on the non-

existen
e of the polynomial p. Together with Lemma 3, we obtain the following

theorem.

Theorem 4. Unless PTime = NC, there exists no polynomial p su
h that, for

all propositional ABoxes A and propositional updates U , there exists a proposi-

tional ABox A

0

su
h that

� A � U � A

0

and

� jA

0

j � p(jAj+ jUj).

10
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0

In the terminology of Cadoli et al. [7℄, this result states that the 
ommon

update operators for propositional theories are not logi
ally 
ompa
table even

for updates with 
onjun
tions of literals (unless PTime = NC). Sin
e the

additional 
onstru
tors do not add to Boolean expressivity, it is not diÆ
ult to

prove that Theorem 4 
arries over to all des
ription logi
s 
onsidered in this

paper.

3 Des
ription Logi
s without Updates

We say that a des
ription logi
 L has ABox updates i�, for every ABox A

formulated in L and every update U , there exists an ABox A

0

formulated in L

su
h that A�U � A

0

. In this se
tion, we show that a lot of basi
 DLs are la
king

ABox updates.

3.1 Updates in ALC

We analyze the basi
 des
ription logi
 ALC and show that it does not have

ABox updates. In parti
ular, we 
onsider the following 
ombination of original

ABox A, update U , and updated ABox A

0

. Note that A is formulated in ALC,

and A

0

is formulated in ALCO.

Lemma 5. Let A = f8r:A(a)g, U := f:A(b)g, and

A

0

= f:A(b); 8r:(A t fbg)(a)g:

Then A � U � A

0

.

Lemma 5 is readily 
he
ked by verifying that Conditions (U1) and (U2) of Def-

inition 2 are satis�ed.

To show thatALC does not have ABox updates, it suÆ
es to prove that there

is noALC-ABox equivalent to the ALCO-ABoxA

0

. Consider the interpretations

I and I

0

displayed in Figure 3. We assume that the individual names a and b are

11



mapped to the individuals of the same name as shown in the �gure. Moreover,

all other individual names are mapped to the individual y, and every 
on
ept

name is interpreted as the empty set. Clearly, I j= A

0

and I

0

6j= A

0

. To show

that noALC-ABox is equivalent toA

0

, it thus suÆ
es to prove thatALC-ABoxes


annot distinguish I and I

0

: for every ALC ABox, we have I j= A

0

i� I

0

j= A

0

.

We �rst establish the following lemma.

Lemma 6. For all ALC-
on
epts C and all individual names �, we have I j=

C(�) i� I

0

j= C(�).

Proof. The truth of an assertion C(�), C an ALC-
on
ept, in a model J only

depends on the set of points rea
hable from �

J

using paths along the relations

r

J

, where r o

urs in C. Therefore, the lemma is 
lear for � 6= a. For � = a, the

lemma 
an be proved by observing that the submodel of I indu
ed by fa

I

; b

I

g is

bisimilar to the submodel of I

0

indu
ed by fa

I

0

; b

I

0

; xg, see [10℄ for a dis
ussion of

the notion of bisimulation for ALC. Thus, for � = a, the lemma is an immediate


onsequen
e of the fa
t that the extension C

I

of ALC 
on
epts C is preserved

under bisimulations. ❏

Lemma 7. There exists no ALC-ABox that is equivalent to the ALCO-ABox

A

0

= f:A(b); 8r:(A t fbg)(a)g.

Proof. Assume to the 
ontrary of what is to be shown that there exists an

ALC-ABox B that is equivalent to A

0

. Then I j= B and I

0

6j= B. We show

that, for all assertions ' 2 B, we have I

0

j= ', thus obtaining a 
ontradi
tion to

I

0

6j= B. First, let ' be a (positive or negative) role assertion. Then I

0

j= ' is a


onsequen
e of I j= ' and the fa
t that I and I

0

satisfy exa
tly the same role

assertions. Now, let ' be a 
on
ept assertion. Then, I

0

j= ' is a 
onsequen
e of

I j= ' and Lemma 6. ❏

We have thus established the following result:

Theorem 8. ALC does not have ABox updates.

Note that Theorem 8 even applies to the 
ase where the update 
ontains only


on
ept assertions, but no role assertions. The fa
t that the updated ABox A

0

used in this se
tion is a
tually an ALCO-ABox may give rise to the 
onje
ture

that adding nominals to ALC re
overs the existen
e of updates. Unfortunately,

as shown in the following se
tion, this is not the 
ase.

3.2 Updates in ALCO

We 
onsider the DL ALCO, whi
h is obtained by extending ALC with nominals,

and show that ALCO does not have ABox updates. More pre
isely, we pro
eed

12
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in two steps: we �rst give a relatively straightforward proof of the non-existen
e

of updated ABoxes in ALCO that relies on the use of role assertions in updates.

This proof raises the question whether the restri
tion of updates to only 
on
ept

assertions re
overs the existen
e of updates. In the se
ond step, we answer this

question to the negative by using a slightly more 
omplex 
onstru
tion.

For presenting the 
ounterexample to the existen
e of ABox updates in

ALCO, it is 
onvenient to des
ribe the updated ABox in ALCO

�

, the exten-

sion of ALCO with the � 
onstru
tor. Note that the original ABox is even

formulated in ALC.

Lemma 9. Let A = f9r:A(a)g, U := f:r(a; b)g, and

A

0

= f(9r:(A u :fbg) t�

b

A)(a);:r(a; b)g:

Then A � U � A

0

.

It is not hard to see that A

0

satis�es Conditions (U1) and (U2) of De�nition 2.

We now show that there exists noALCO-ABox that is equivalent to theALCO

�

-

ABox A

0

. As in the previous se
tion, it follows that ALCO does not have ABox

updates.

Consider the interpretations I, I

0

and I

00

depi
ted in Figure 4. We assume

that the individual names a, b, and 
 are mapped to the individuals of the

same name, and that all other individual names are mapped to the individual 
.

Moreover, the 
on
ept name A is interpreted as shown in the �gure and all other


on
ept names are interpreted as the empty set in all three interpretations. It


an easily be 
he
ked that I j= A

0

, I

0

j= A

0

and I

00

6j= A

0

. We will show that, if

an ALCO-ABox B is equivalent to A

0

, then I

00

j= B, whi
h is a 
ontradi
tion.

First, we prove the following lemma:

Lemma 10. For all ALCO-
on
epts C and all individual names � 6= b, we have

I j= C(�) i� I

00

j= C(�), and I

0

j= C(b) i� I

00

j= C(b).

Proof. The truth of an assertion C(�), C an ALCO-
on
ept, in a model J

only depends on the set of points rea
hable from �

J

by paths along relations

r

J

, where r o

urs in C. The lemma follows immediately from this observation.

❏
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The next lemma shows that A

0

in Lemma 9 
annot be formulated in ALCO.

Lemma 11. There is no ALCO-ABox that is equivalent to the ALCO

�

-ABox

A

0

= f(9r:(A u :fbg) t �

b

A)(a);:r(a; b)g.

Proof. Assume there is an ALCO-ABox B that is equivalent to A

0

. Then

I j= B, I

0

j= B, and I

00

6j= B. We show that, for all assertions ' 2 B, we have

I

00

j= ', thus obtaining a 
ontradi
tion to I

00

6j= B. First, B does not 
ontain

any positive role assertion sin
e I j= B and I does not satisfy any positive

role assertions. Se
ond, if ' is a negative role assertion, then I

00

j= ' sin
e I

00

satis�es all negative role assertions. Finally, let ' be a 
on
ept assertion. Then,

I

00

j= ' is a 
onsequen
e of I j= ', I

0

j= ', and Lemma 10. ❏

The proof also shows that ALC does not have ABox updates even if we

restri
t ourselves to updates 
ontaining only role assertions, thus 
omplementing

the result from Se
tion 3.1 where ALC updates with only 
on
ept assertions are


onsidered.

As stated initially, the above proof raises the question whether or not restri
t-

ing updates to 
on
ept assertions regains the existen
e of updated ABoxes in

ALCO. We answer this question to the negative. The following 
ounterexample

is quite similar to the example for ABox updates given in Se
tion 2.2:

Lemma 12. Let A = f9r:A(a); 9r:A(a

0

); r(b; 
);:A t 8r:(f
g ! :A)(b)g, U :=

f:A(b);:A(
)g, and A

0

= fC

0

(a); r(b; 
);:A(b);:A(
)g with

C

0

=

�

�

a

9r:(A t fbg) u�

a

0

9r:(A t fbg)

�

t

�

�

a

9r:(A t f
g) u �

a

0

9r:(A t f
g)

�

:

Then A � U � A

0

.

By verifying Conditions (U1) and (U2) in De�nition 2, one 
an 
he
k that A

0

is

indeed the result of updating A with U . Intuitively, the ABox assertions r(b; 
)

and :A t 8r:(f
g ! :A)(b) in A enfor
e that, in every model I of A, b

I

=2 A

I

or 


I

=2 A

I

. The assertion C

0

(a) represents the update of the assertions 9r:A(a)

and 9r:A(a

0

) in A. The �rst disjun
t 
aptures the 
ase where b 2 A

I

and 
 =2 A

I

,

and the se
ond disjun
t 
aptures the 
ase where b =2 A

I

and 
 2 A

I

. In the

remaining 
ase b =2 A

I

and 
 =2 A

I

, the update of the mentioned assertions is

�

a

9r:A u�

a

0

9r:A. A 
orresponding disjun
t is not needed sin
e it would imply

the �rst two disjun
ts. The assertion 8r:(f
g ! :A)(b) 
an simply be dropped

sin
e all the information it provides is invalidated by the update.

In order to show thatALCO does not have ABox updates even if only 
on
ept

assertions are allowed in updates, we prove that there is no ALCO-ABox that

is equivalent to A

0

.
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and I
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Consider the interpretations I, I

0

and I

00

depi
ted in Figure 5. We assume

that the individual names a, a

0

, b, 
, and d are mapped to the individuals of the

same name, and that all other individual names are mapped to the individual d.

Moreover, A

I

= A

I

0

= A

I

00

= fdg and all other 
on
ept names are interpreted

as the empty set. Clearly, I j= A

0

, I

0

j= A

0

, but I

00

6j= A

0

.

Lemma 13. For all ALCO-
on
epts C and all individuals � 6= a

0

, we have

I j= C(�) i� I

00

j= C(�), and I

0

j= C(a

0

) i� I

00

j= C(a

0

).

Proof. Re
all from the proof of Lemma 10 that the truth of an assertion C(�),

C an ALCO-
on
ept, in a model J only depends on the set of points rea
hable

from �

J

by paths along relations r

J

, where r o

urs in C. Again, the lemma

follows immediately from this observation. ❏

Thus, we are ready to prove that A

0

is not expressible in ALCO.

Lemma 14. There is no ALCO-ABox that is equivalent to the ALCO

�

-ABox

A

0

from Lemma 12.

Proof. Assume there is some ALCO-ABox B with A

0

� B. Then I j= A

0

,

I

0

j= A

0

and A

0

� B implies that I j= B and I

0

j= B. We show that I

00

satis�es

every assertion in B, 
ontradi
ting the fa
ts that I

00

6j= A

0

and A

0

� B. We make

a 
ase distin
tion a

ording to the type of assertion:

� ' is a 
on
ept assertion. Sin
e ' 2 B, we have I j= ' and I

0

j= '. Thus,

Lemma 13 implies I

00

j= '.

� ' is a positive role assertion. Then ' = r(b; 
) sin
e, otherwise, we have

I 6j= ' or I

0

6j= ' 
ontradi
ting I j= B and I

0

j= B. Clearly, ' = r(b; 
)

implies I

00

j= '.

� ' is a negative role assertion. Sin
e ' 2 B, we have I j= ' and I

0

j= '.

Assume to the 
ontrary of what is to be shown that I

00

6j= '. Then

' 2 f:r(a; b);:r(a

0

; 
);:r(b; 
)g. However, in ea
h of the three 
ases we

obtain a 
ontradi
tion to I j= ' or I

0

j= '. Hen
e, I

00

j= '.

❏
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Summing up, we obtain the following result:

Theorem 15. ALCO is la
king ABox updates, even if updates 
ontain only


on
ept assertions or only role assertions.

3.3 Updates in ALC

�

and Boolean ABoxes in ALC

Due to the fa
t that, in the previous se
tion, the ABoxes A

0

are expressed in

ALCO

�

, one may 
onje
ture that the existen
e of updated ABoxes in ALCO

is re
overed by adding the � 
onstru
tor. We will later see that this is indeed

the 
ase. However, one may even re
kon that adding only the � 
onstru
tor to

ALC does suÆ
e to guarantee the existen
e of updated ABoxes. In this se
tion,

we show that this is not the 
ase. Indeed, we even show a stronger result related

to Boolean ABoxes.

A Boolean ABox is a �nite set of Boolean ABox assertions, i.e., Boolean


ombinations of ABox assertions expressed in terms of the 
onne
tives ^ and

_. We do not need to expli
itly introdu
e negation sin
e we admit negated

role assertions and 
on
ept negation is 
ontained in every DL 
onsidered in this

paper. For example, the following is a Boolean ABox:

fB(a); (A(a) ^ r(a; b)) _ :9s:A(b)g:

An interpretation I satis�es a Boolean ABox A if every Boolean ABox assertion

in A evaluates to true. There exists a rather 
lose 
onne
tion between the �


onstru
tor and Boolean ABoxes:

Lemma 16.

1. For every non-Boolean ALC

�

-ABox, there exists an equivalent Boolean

ALC-ABox;

2. for every Boolean ALCO-ABox, there exists an equivalent non-Boolean

ALCO

�

-ABox.

Proof. Con
erning Point 1, let A be a non-Boolean ALC

�

-ABox, and let C(a)

be an assertion from A su
h that �

b

D is a sub
on
ept of C. Then the ABox A

0

is obtained from A by repla
ing the assertion C(a) with (D(b) ^ C[>=�

b

D℄) _

(:D(b) ^ C[?=�

b

D℄), where C[X=�

b

D℄ denotes the 
on
ept obtained from C

by repla
ing all o

urren
es of �

b

D with X. It is readily 
he
ked that A

0

is

equivalent to A. By repeating this repla
ement, we will eventually obtain a

Boolean ALC-ABox.
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Con
erning Point 2, de�ne a mapping �

�

from ABox assertions to ALCO

�

-


on
epts as follows:

C(a)

�

:= �

a

C

r(a; b)

�

:= �

a

9r:fbg

:r(a; b)

�

:= �

a

8r::fbg

Now every Boolean ABox assertion � 
an be 
onverted into an ALCO

�

-
on
ept

�

�

by repla
ing ^ with u, _ with t, and every assertion  with  

�

. Now, let

A = f�

1

; : : : ; �

n

g be a Boolean ALCO-ABox. De�ne a non-Boolean ALCO

�

-

ABox A

0

:= f(�

�

1

u � � � u �

�

n

)(a)g, where a is an arbitrary individual name. It is

readily 
he
ked that A

0

is equivalent to A. ❏

Thus, non-Boolean ALCO

�

-ABoxes have exa
tly the same expressive power as

BooleanALCO-ABoxes. Note that the same does not hold forALC: while every

non-Boolean ALC

�

-ABox 
an be translated into an equivalent Boolean ALC-

ABox, there are Boolean ALC-ABoxes for whi
h no equivalent non-Boolean

ALC

�

-ABox exists. For example, it is relatively easy to prove that the Boolean

ALC-ABox fA(a) _ r(a; b)g has this property.

Sin
e, for ALC, Boolean ABoxes are more expressive than the � 
onstru
tor,

we prove that ALC does not have ABox updates, even if we allow Boolean

ABoxes for the updated ABox.

Theorem 17. There exists an ALC-ABox A and an update U su
h that there

exists no Boolean ALC-ABox A

0

with A � U � A

0

.

Proof. Consider the ALC-ABox A, the update U , and the ALCO-ABox A

0

given in Lemma 5. To prove Theorem 17, it is enough to show that there is no

Boolean ALC-ABox that is equivalent to A

0

.

Assume that there exists a Boolean ALC-ABox B with A

0

� B. We 
an

assume w.l.o.g. that B is in disjun
tive normal form, i.e., that

B =

^

B

0

_ � � � _

^

B

n�1

;

where B

1

; : : : ;B

n

are ALC-ABoxes. Now take the interpretations I and I

0

dis-

played in Figure 3. Re
all that I j= A

0

and I

0

6j= A

0

. Then, A

0

� B and I j= A

0

imply that there is an i < n su
h that I j= B

i

. Sin
e I

0

6j= A

0

, we have I

0

6j= B

i

.

We 
an pro
eed as in the proof of Lemma 7 to show that I

0

j= ' for every

' 2 B

i

, thus obtaining a 
ontradi
tion to I

0

6j= B

i

. ❏

By Lemma 16, we obtain the following 
orollary.

Corollary 18. ALC

�

does not have ABox updates.
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Observe that both Theorem 17 and Corollary 18 remain true if we restri
t up-

dates to only 
on
ept assertions.

4 Computing Updates in ALCQIO

�

The results obtained in the previous se
tion imply that, if an extension of ALC

does not allow to express nominals and the � 
onstru
tor, then we 
annot hope

that it has ABox updates. In this se
tion, we show that, for the 
ommon exten-

sions of ALC introdu
ed in Se
tion 2.1, adding nominals and the � 
onstru
tor

suÆ
es to have ABox updates. More presi
ely, we prove that the expressive DL

ALCQIO

�

has ABox updates, and show that the proof is easily adapted to

the fragments of ALCQIO

�

obtained by dropping number restri
tions, inverse

roles, or both.

Our 
onstru
tion of updated ABoxes is an extension of the 
orresponding


onstru
tion for propositional logi
 des
ribed in [26℄, and pro
eeds as follows.

First, we 
onsider updates of 
on
epts on the level of interpretations. More

pre
isely, we show how to 
onvert a 
on
ept C and an update U into a 
on
ept C

U

su
h that the following holds: for all interpretations I and I

0

su
h that I satis�es

no assertion in U and I =)

U

I

0

, we have C

I

= (C

U

)

I

0

(�). The limitation that

C

U

satis�es (�) only if I satis�es no assertion in U 
an be over
ome by repla
ing

C

U

with C

U

0

, where U

0

is the set of those assertions in U that are violated

in I. Obviously, the translation C

U

will be used to update 
on
ept assertions in

ABoxes (role assertions are very easy to deal with). However, we are 
onfronted

with the problem that ABoxes have many di�erent models, and these models


an violate di�erent subsets of the update U . Hen
e, there is no unique way

of moving from C

U

to C

U

0

as des
ribed above. The solution is to produ
e an

updated ABox for ea
h subset U

0

� U separately, and then simply take the

disjun
tion.

We �rst introdu
e a bit of notation. For an ABox A, we use Obj(A) to denote

the set of individual names in A, and sub(A) to denote the set of sub
on
epts of

the 
on
epts o

urring in A. For an update U , we use I

U

to denote the (unique)

interpretation satisfying I =)

U

I

U

. We use U

:

to denote f:' j ' 2 Ug. The

indu
tive translation that takes a 
on
ept C and an update U to a 
on
ept C

U

as explained above is given in Figure 6.

Lemma 19. Let U be an update and C a ALCQIO

�

-
on
ept. For every inter-

pretation I with I j= U

:

and every individual name a, we have I j= C(a) i�

I

U

j= C

U

(a)

Proof. The following is an immediate 
onsequen
e of the de�nition of I

U

:

Claim. If I j= U

:

, then, for all x; y 2 �

I

and role names r, we have (x; y) 2 r

I

i� one of the following holds:

18



A

U

=

�

A t t

:A(a)2U

fag

�

u :( t

A(a)2U

fag)

fag

U

= fag

(�

a

C)

U

= �

a

C

U

(:C)

U

= :C

U

(C uD)

U

= C

U

uD

U

(C tD)

U

= C

U

tD

U

(> m r C)

U

= (

l

a2Obj(U)

:fag u (� m r C

U

))

t t

a2Obj(U)

�

fag u t

m

1

+m

2

+m

3

=m

�

(� m

1

r

l

b2Obj(U)

:fbg u C

U

)

u(� m

2

r t

b2Obj(U);r(a;b)62U

fbg u C

U

)

u t

S�fbj:r(a;b)2Ug;#S=m

3

l

b2S

�

b

C

U

�

�

(6 m r C)

U

= (

l

a2Obj(U)

:fag u (� m r C

U

))

t t

a2Obj(U)

�

fag u t

m

1

+m

2

+m

3

=m

�

(� m

1

r

l

b2Obj(U)

:fbg u C

U

)

u(� m

2

r t

b2Obj(U);r(a;b)62U

fbg u C

U

)

u

l

S�fbj:r(a;b)2Ug;#S=m

3

+1

t

b2S

:�

b

C

U

�

�

Figure 6: Constru
ting C

U

� x 6= a

I

for all a 2 Obj(U) and (x; y) 2 r

I

U

;

� x = a

I

for an a 2 Obj(U) and

{ y 6= b

I

for all b 2 Obj(U) and (x; y) 2 r

I

U

,

{ or y = b

I

for a b 2 Obj(U) su
h that r(a; b) 62 U and (x; y) 2 r

I

U

,

{ or y = b

I

for a b 2 Obj(U) su
h that :r(a; b) 2 U .

Let I be an interpretation su
h that I j= U

:

and let E 2 sub(A). By stru
tural

indu
tion on E, we show that (E

U

)

I

U

= E

I

. As I and I

U

interpret individuals

in the same way, this implies Lemma 19.
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� E = fag: this 
ase is trivial sin
e I and I

U

interpret individuals in the

same way.

� E = A, for A a 
on
ept name: then

(A

U

)

I

U

= A

I

U

[

[

:A(a)2U

fa

I

U

g n

[

A(a)2U

fa

I

U

g

=

�

A

I

[

[

A(a)2U

fa

I

U

g n

[

:A(a)2U

fa

I

U

g

�

[

[

:A(a)2U

fa

I

g n

[

A(a)2U

fa

I

g

= A

I

:

sin
e A

I

\

S

A(a)2U

fa

I

g = ; and

S

:A(a)2U

fa

I

g � A

I

due to I j= U

:

.

� E = �

a

C: ((�

a

C)

U

)

I

U

= (�

a

C

U

)

I

U

= (�

a

C)

I

sin
e (C

U

)

I

U

= C

I

and I

and I

U

interpret individuals in the same way.

� The 
ases E = :C, E = C tD and E = C u D are straightforward and

left to the reader.

� E = (� m r C): we have x 2 ((� m r C)

U

)

I

U

i� one of the following holds:

x 2

�

: t

a2Obj(U)

fag

�

I

U

and #fy j (x; y) 2 r

I

U

^ y 2 (C

U

)

I

U

g � m

or

x = a

I

U

, for an a 2 Obj(U) and there are m

1

; m

2

; m

3

� 0 su
h that

m

1

+m

2

+m

3

= m and

{ #fy j (x; y) 2 r

I

U

^ y 2

�

: t

b2Obj(U)

fbg

�

I

U

\ (C

U

)

I

U

g � m

1

,

{ #fy j (x; y) 2 r

I

U

^ y 2

S

b2Obj(U);r(a;b)62U

fbg

I

U

\ (C

U

)

I

U

g � m

2

and

{ #fb j :r(a; b) 2 U ^ b

I

U

2 (C

U

)

I

U

g � m

3

.

By indu
tion, we have that (C

U

)

I

U

= C

I

. Thus, using the 
laim above,

we obtain that x 2 ((� m r C)

U

)

I

U

i�

x 2

�

: t

a2Obj(U)

fag

�

I

and #fy j (x; y) 2 r

I

^ y 2 C

I

g � m

or

x = a

I

, for an a 2 Obj(U) and there are m

1

; m

2

; m

3

� 0 su
h that m

1

+

m

2

+m

3

= m and
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{ #fy j (x; y) 2 r

I

^ y 2

�

: t

b2Obj(U)

fbg

�

I

\ C

I

g � m

1

,

{ #fy j (x; y) 2 r

I

^ y 2

S

b2Obj(U);r(a;b)62U

fbg

I

\ C

I

g � m

2

and

{ #fy j (x; y) 2 r

I

^ y 2

S

:r(a;b)2U

fbg

I

\ C

I

g � m

3

.

Further, by the 
laim above, this is equivalent to

x 2

�

: t

a2Obj(U)

fag

�

I

and #fy j (x; y) 2 r

I

^ y 2 C

I

g � m

or

x 2

�

t

a2Obj(U)

fag

�

I

and #fy j (x; y) 2 r

I

^ y 2 C

I

g � m:

But this is equivalent to x 2 (� m r C)

I

.

� The 
ase E = (� m r C) is proved similarly to the previous 
ase.

❏

We now extend the update of 
on
epts to the update of ABoxes, while still

remaining on the level of interpretations. Let A be an ABox and U an update.

Then de�ne the ABox A

U

by setting

A

U

:= fC

U

(a) j C(a) 2 Ag [

fr(a; b) j r(a; b) 2 A ^ :r(a; b) =2 Ug [

f:r(a; b) j :r(a; b) 2 A ^ r(a; b) =2 Ug:

Lemma 20. Let A be an ABox and U an update. For every interpretation I

with I j= U

:

, we have I j= A i� I

U

j= A

U

.

Proof. \)" Let I j= A. We show that I

U

j= A

U

. Let ' 2 A

U

. If ' = r(a; b)

or ' = :r(a; b), then, by the de�nition of I

U

and A

U

, I

U

j= '. If ' = E

U

(a)

for E(a) 2 A, it follows from Lemma 19 that I

U

j= E

U

(a).

\(" Let I

U

j= A

U

. We show that I j= A. Let ' 2 A. If ' = r(a; b), there are

two 
ases to 
onsider:

1. :r(a; b) 2 U . Then r(a; b) 2 U

:

, and sin
e I j= U

:

, we obtain that

I j= r(a; b).

2. :r(a; b) 62 U . Then r(a; b) 2 A

U

, and thus I

U

j= r(a; b). By de�nition of

I

U

we obtain I j= r(a; b).

The 
ase ' = :r(a; b) is analogous to the previous one, and the 
ase ' = E(a)

follows from Lemma 19. ❏
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We are in the position now to lift updates from the level of interpretations to the

level of ABoxes. Let A be an ABox and U an update. The set of literals over

U is de�ned as L

U

:= f ;: j  2 Ug. A simple ABox D is 
alled a diagram

for U if it is a maximal 
onsistent subset of L

U

. Intuitively, a diagram gives

a 
omplete des
ription of the part of a model of A that is \relevant" for the

update U . Let D be the set of all diagrams for U and let D 2 D. Then de�ne

the update D

U

as

D

U

:= f j : 2 D and  2 Ug:

Considering D

U

means taking a subset of U as des
ribed at the beginning of

this se
tion: we retain only those parts of U that are violated by interpretations

whose relevant part is des
ribed by D. We now de�ne the updated ABox A

0

as

A

0

:=

_

D2D

^

A

D

U

[ D

U

[ D

D

U

: (1)

Intuitively, the 
omponent A

D

U

is the update of the original ABox, D

U

asserts

that the 
hanges e�e
ted by the update hold, and D

D

U

denotes the result of


hanging the diagram D under 
onsideration as des
ribed by U . The Boolean

ABox operators are used only as an abbreviation for the \�" 
onstru
tor. This


an be safely done sin
e the translation from Boolean ABoxes to non-Boolean

ones des
ribed in the proof of Lemma 16 is linear. To a
hieve a less redundant

ABox, it is possible to drop from A

0

those disjun
ts for whi
h the diagram D is

not 
onsistent w.r.t. A. This is, however, not stri
tly ne
essary sin
e the ABox

D

D

U

ensures that these disjun
ts are in
onsistent.

Lemma 21. A � U � A

0

.

Proof. We have to prove that A

0

satis�es Points (U1) and (U2) from De�ni-

tion 2.

(U1) Let I and I

0

be two interpretations su
h that I j= A and I =)

U

I

0

. We

have to show that I j= A

0

. We de�ne D 2 D as D = fl 2 L

U

j I j= lg: Then,

�

D

=

^

D

D

U

[ A

D

U

[ D

U

is a disjun
t in A

0

and it suÆ
es to show that I

0

j= �

D

. Sin
e I j= D, by the

de�nition of D

U

and =)

U

it easily follows that I

0

= I

D

U

. Thus, I

0

j= D

U

. Sin
e

I j= A [ D, by Lemma 20 we obtain that

I

0

j= D

D

U

[ A

D

U

[ D

U

:

(U2) Let I

0

j= A

0

. We need to show that there exists an interpretation I su
h

that I j= A and I =)

U

I

0

. Sin
e I

0

j= A

0

and A

0

=

W

D2D

V

D

D

U

[A

D

U

[D

U

,

there exists a D 2 D su
h that I

0

j= D

D

U

[ A

D

U

[ D

U

.
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(9r:C)

B

= (

l

a2Obj(B)

:fag u 9r:C

B

) t 9r:(

l

a2Obj(B)

:fag u C

B

)

t t

a;b2Obj(B);r(a;b)62B

(fag u 9r:(fbg u C

B

)) t t

:r(a;b)2B

(fag u�

b

C

B

)

(8r:C)

B

= (

l

a2Obj(B)

:fag ! 8r:C

B

) u 8r:(

l

a2Obj(B)

:fag ! C

B

)

u

l
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(fag ! 8r:(fbg ! C

B

)) u

l
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Figure 7: Constru
ting C

B

for existential and universal restri
tions

Let I = (I

0

)

D

:

U

. Then we have that I

0

= I

D

U

. Thus, by Lemma 20 and sin
e

I

0

j= A

D

U

, we obtain that I j= A. Similarly, we obtain that I j= D.

It remains to show that I =)

U

I

0

. Let A be a 
on
ept name. Sin
e I

0

= I

D

U

,

we have that

A

I

0

= A

I

[ fa

I

j A(a) 2 D

U

g n fa

I

j :A(a) 2 D

U

g:

Moreover, by the de�nition of D

U

and sin
e I j= D, we obtain that

fa

I

j A(a) 2 D

U

g = fa

I

j A(a) 2 Ug n A

I

and

fa

I

j :A(a) 2 D

U

g = fa

I

j :A(a) 2 Ug \ A

I

:

Having A

I

U

= A

I

[fa

I

j A(a) 2 Ugnfa

I

j :A(a) 2 Ug, and U being 
onsistent,

we obtain that A

I

0

= A

I

U

. Similarly, we obtain r

I

0

= r

I

U

for ea
h role name r.

Thus, I

0

= I

U

and I =)

U

I

0

.

❏

It is easy to adapt the 
onstru
tion of updated ABoxes to the DLs ALCO

�

,

ALCIO

�

, ALCQO

�

. For the former two, we have to treat existential and

universal restri
tions in the C

U

translation rather than number restri
tions.

The 
orresponding 
lauses are shown in Figure 7. The lemmas proved above for

ALCQIO

�

are then easily easily adapted.

Theorem 22. All of the following DLs have ABox updates: ALCO

�

, ALCIO

�

,

ALCQO

�

, and ALCQIO

�

.
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A 
lose inspe
tion of the updated ABox A

0


omputed above reveals that, �rst,

the size the 
on
epts C

U

is exponential in the size of A and the update U ; and

se
ond, the number of disjun
ts in A

0

is exponential in U , but polynomial in

A. This is independent of whether the numbers inside number restri
tions are


oded in unary or in binary. Therefore, we obtain the following.

Theorem 23. Let L 2 fALCO

�

;ALCIO

�

;ALCQO

�

;ALCQIO

�

g. Then

there exist polynomials p

1

, p

2

, and q su
h that, for every L-ABox A and ev-

ery update U , there exists an L-ABox A

0

su
h that the following hold:

� A � U � A

0

;

� jA

0

j � 2

p

1

(jAj)

� 2

p

2

(jUj)

;

� A

0


an be 
omputed in time q(jA

0

j).

By the arguments given in Se
tion 2.3, an exponential blowup 
annot be entirely

avoided unless PTime = NC. However, we should pay attention to whether

the blowup o

urs in the size of the original ABox A or in the size of the

update U . As the update will usually be rather small 
ompared to the original

ABox, an exponential blowup in the size of U is mu
h more a

eptable than

an exponential blowup in the size of A. The algorithm given in this se
tion

produ
es an exponential in both A and U . In the 
ase of propositional logi
,

Winslett [26℄ gives an algorithm that blows up exponentially only in the size of

U , but not in the size of (the equivalent of) A. We believe that, for the languages

mentioned in Theorem 23, the exponential blowup in jAj 
an not be avoided.

For example, 
onsider the family of ABoxes (A

i

)

i2N

de�ned as follows:

A

i

:= fa : 9r:(A

1

u 9r:(A

2

u � � � 9r:(A

i

u 9r:A

i+1

) � � � ))g:

Clearly, for U = f:r(b; b

0

)g the size of the ABox A

0

i

� A

i

� U when 
omputing

it using the algorithm above is exponential in the size of A

i

. We suspe
t that

there exists no polynomial p su
h that, for all i � 0, there is an ABox A

0

i

su
h

that A

i

�f:r(b; b

0

)g = A

0

i

and jA

0

i

j � p(jA

i

j). While we leave a proof as an open

problem, in Se
tion 5 we exhibit several ways around an exponential blowup in

the size A. Before that, however, we take a look at several variations of our

result.

Iterated Updates

There are appli
ations in whi
h the domain of interest evolves 
ontinuously. In

su
h an environment, it is ne
essary to update an ABox over and over again.

Then, it is 
learly important that the exponential blowups of the individual

updates do not add up. The following theorem shows that this is indeed not the


ase.
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Theorem 24. There exist polynomials p

1

; p

2

su
h that the following holds: for

all ABoxes A

0

; : : : ;A

n

and updates U

1

; : : : ;U

n

, if A

i

is the ABox 
omputed by

our algorithm when A

i�1

is updated with U

i

, for 0 < i � n, then

jA

n

j � 2

p

1

(jA

0

j)

� 2

p

2

(jU

1

j+���+jU

n

j)

:

Proof. For a 
on
ept C, denote by n

C

the maximal number o

urring in a

quali�ed number restri
tion in C. Furthermore, denote by d(C) the maximal

nesting depth of quali�ed number restri
tions in C. We �nd polynomials q

1

and

q

2

su
h that, for every 
on
ept C and every update U ,

jC

U

j � jCj � (q

1

(n

C

)� 2

q

2

(jUj)

)

d(C)

:

The 
ru
ial observation now is that, for every 
on
ept C and update U , n

C

= n

C

U

and d(C) = d(C

U

): neither the maximal number nor the maximal nesting depth

of quali�ed numbers restri
tions in
reases when forming C

U

. It follows that

there exist polynomials q

1

and q

2

su
h that for every 
on
ept C and sequen
e of

updates U

1

; : : : ;U

i

,

j(C

U

1

)

U

2

���U

i

j � 2

q

1

(jCj)�q

2

(jU

1

j+���+jU

i

j)

:

A 
lose inspe
tion of the 
onstru
tion of A

i

from A

i�1

using the 
on
epts

(C

U

1

)

U

2

���U

i�1

shows that there exists an additional polynomial q

0

2

su
h that, for

all i,

jA

i

j � 2

q

0

2

(jU

1

j+���+jU

i

j)

�

X

a:C2A

0

2

q

1

(jCj)�q

2

(jU

1

j+���+jU

i

j)

The upper bound 
laimed in the theorem follows immediately. ❏

Conditional Updates

For the sake of simpli
ity, we have de�ned ABox updates to be un
onditional:

the assertions in the update U are true after the update, no matter to whi
h

interpretation U is applied. In some appli
ations su
h as reasoning about a
tions

with DLs [3℄, it is more useful to have 
onditional updates, where the initial

interpretation determines the 
hanges that are triggered.

A 
onditional update U

�

is a �nite set of expressions '= , where ' is an

ABox assertion (possibly involving non-atomi
 
on
epts) and  is an assertion

of the form

A(a);:A(a); r(a; b);:r(a; b)

with A a 
on
ept name. Intuitively, an expression '= means that if ' holds

in the initial interpretation, then  holds after the update. As in the 
ase of

un
ondition updates, we require a 
onsisten
y 
ondition: if '= and '

0

=: are

both in U

�

, then the ABox f'; '

0

g has to be in
onsistent.
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The de�nition of interpretation updates 
an straightforwardly be adapted to

the 
ase of 
onditional updates: an interpretation I

0

is the result of updating an

interpretation I with a 
onditional update U

�

if the following hold:

� for all 
on
ept names A,

A

I

0

= A

I

[ fa

I

j '=A(a) 2 U

�

^ I j= 'g n fa

I

j '=:A(a) 2 U

�

^ I j= 'g

� for all role names r,

r

I

0

= (r

I

[ f(a

I

; b

I

) j '=r(a; b) 2 U

�

^ I j= 'g)

nf(a

I

; b

I

) j '=:r(a; b) 2 U

�

^ I j= 'g:

Conditions (U1) and (U2) are as in the 
ase of un
onditional updates. Clearly,


onditional updates generalize un
onditional on
e sin
e assertions  of un
on-

ditional updates 
an be expressed as >(a)= , with a an arbitrary individual

name.

We now show how to adapt our 
onstru
tion of updated ABoxes to 
ondi-

tional updates. For U

�

a 
onditional update, we use rhs(U

�

) to denote f j

'= 2 U

�

g, and lhs(U

�

) for f' j '= 2 U

�

g. In the original algorithm, the

updated ABox A

0

is assembled by taking one disjun
t for every diagram for U .

The intuition is that su
h a diagram D gives 
omplete information about the

assertions in U

�

that a
tually 
ause a 
hange when U is applied to models whose

relevant part is des
ribed by D (assertions in U do not 
ause a 
hange if they

were already satis�ed before the update). We generalize this idea to 
onditional

updates by taking one disjun
t for ea
h pair (D;U

0

), where D is a diagram for

rhs(U

�

), and U

0

is a subset of U

�

. Intuitively, U

0

determines the set of assertions

from U whose pre
onditions are satis�ed in the initial model, and D determines

the post-
onditions that 
an a
tually 
ause a 
hange.

Let D

�

be the set of all diagrams for rhs(U

�

). Let D 2 D

�

and U

0

� U

�

. As

before, we de�ne the simple ABox D

U

0

as

D

U

0

:= f j : 2 D and '= 2 U

0

g:

Then we 
an assemble the updated ABox A

�

as follows:

A

�

=

_

D2D

�

_

U

0

�U

�

^

f' j '= 2 U

0

g

D

U

0

[ f:' j '= 2 U n U

0

g

D

U

0

[ A

D

U

0

[ D

U

0

[ D

D

U

0

By slightly modifying the proof of Lemma 21, it is not diÆ
ult to show that A

�

is indeed the result of updating A with the 
onditional update U

�

. The notion of

a des
ription logi
 L having 
onditional ABox updates is de�ned in the obvious

way.

Theorem 25. All of the following DLs have 
onditional ABox updates: ALCO

�

,

ALCIO

�

, ALCQO

�

, and ALCQIO

�

.
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Con
erning the size and 
omputability of updated ABoxes, we obtain a result

analogous to Theorem 23.

Boolean ABox Updates

In Se
tion 3.3, Boolean ABoxes were introdu
ed as a generalization of standard

ABoxes, and a 
lose 
onne
tion between Boolean ABoxes and the � 
onstru
tor

was established. In fa
t, using the arguments of Lemma 16, it is easy to see

that the expressive power of Boolean L-ABoxes is identi
al to the expressive

power of non-Boolean L

�

-ABoxes, for L any of ALCO, ALCIO, ALCQO, and

ALCQIO. Hen
e, Theorems 22 and 23 
an also be understood in terms of

Boolean ABoxes.

We say that a des
ription logi
 L has Boolean ABox updates if, for every

Boolean L-ABox A and update U , there exists a Boolean L-ABox A

0

satisfying

Conditions (U1) and (U2) of De�nition 2. Due to the generalization of Lemma 16

to the relevant languages, the 
onstru
tion presented in this se
tion 
an also be

used to 
ompute Boolean ABox updates: �rst 
onvert the Boolean L-ABox into

a non-Boolean L

�

-ABox, apply the des
ribed 
onstru
tion, and then 
onvert

the resulting non-Boolean L

�

-ABox ba
k into a Boolean L-ABox.

Theorem 26. All of the following DLs have Boolean ABox updates: ALCO,

ALCIO, ALCQO, ALCQIO, and their extensions with the � 
onstru
tor.

What is the size of updated Boolean ABoxes 
omputed by the above approa
h?

The main observation is that, while the translation of Boolean L-ABoxes into

non-Boolean L

�

-ABoxes is polynomial, the reverse translation indu
es an expo-

nential blowup. More pre
isely, this blowup is exponential in the nesting depth

of the � 
onstru
tor. Sin
e our translation introdu
es nestings of the � 
on-

stru
tor whose depth is linear in the size of the original ABox, our algorithm

now produ
es a double exponential blowup in the size of the original ABox.

Theorem 27. Let L 2 fALCO;ALCIO;ALCQO;ALCQIOg. Then there

exist polynomials p

1

, p

2

, and q su
h that, for every L-ABox A and every update

U , there exists an L-ABox A

0

su
h that the following hold:

� A � U = A

0

;

� jA

0

j � 2

2

p

1

(jAj)

� 2

p

2

(jUj)

;

� A

0


an be 
omputed in time q(jA

0

j).
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Note that, for the languages L

�

, with L as in Theorem 27, we have Boolean

updates whose size is as des
ribed in Theorem 23, i.e., only single exponential

in the original ABox: the �nal 
onversion step of non-Boolean L

�

-ABoxes into

Boolean L-ABoxes 
an simply be omitted. We 
urrently don't know whether

the upper bounds given in Theorem 27 
an be improved.

5 Small(er) Updated ABoxes

The size of the updated ABoxes 
omputed in the previous se
tions is exponential

in the size of the original ABox. When repla
ing the �-operator with Boolean

ABoxes, it is even 2-exponential in the size of the original ABox. In this se
tion,

we explore two di�erent ways to extend ALCQIO

�

and its fragments su
h that

it be
omes possible to 
ompute updated ABoxes that are only polynomial in the

size of the original ABox.

A �rst, rather restri
tive solution is to admit only 
on
ept assertions in

updates. Then, in all DLs 
aptured by Theorem 22, 
omputing the 
on
epts C

U

be
omes a lot simpler: just repla
e every 
on
ept name A in C with

A t t

:A(a)2B

fag u :( t

A(a)2B

fag):

If modi�ed in this way, our original 
onstru
tion 
learly yields updated ABoxes

that are only polynomial in the size of the original ABox (but still exponential

in U). The bound is independent of the 
oding of numbers and also applies to

iterated updates.

5.1 ALCQIO

�

Updates with TBoxes

We show how to produ
e \small"a updated ABoxes by allowing the introdu
tion

of additional 
on
ept names via an a
y
li
 TBox. In the propositional 
ase, this


orresponds to admitting additional variables for de�ning abbreviations. In the

terminology of Cadoli et al. [7℄, we thus move from logi
al equivalen
e to query

equivalen
e. It will turn out that, in this way, we obtain updates that are only

polynomial in the size of the original ABox. It is interesting to note that, in the

propositional 
ase, the admission of additional variables does not lead to more

su

in
t updated formulas: in the worst 
ase, they are still exponential in the

size of the update [7℄.

A 
on
ept de�nition is of the form A � C; where A is a 
on
ept name and

C is a 
on
ept. A TBox T is a �nite set of 
on
ept de�nitions with unique

left-hand sides. A TBox T is 
alled a
y
li
 if no 
on
ept is de�ned (dire
tly or

indire
tly) in terms of itself. We 
all a 
on
ept name A de�ned in a TBox T and

write A 2 def(T ) if A o

urs on the left-hand side of a 
on
ept de�nition in T .
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Otherwise, we 
all A primitive and write A 2 prim(T ). A knowledge base (KB)

is a pair (T ;A) 
onsisting of a TBox T and an ABox A. An interpretation I

satis�es a 
on
ept de�nition A � C if A

I

= C

I

. I is a model of a TBox T ,

written I j= T , if I satis�es all 
on
ept de�nitions in T ; I is a model of a KB

K = (T ;A), written I j= K, if I is a model of T and A.

Let T be a TBox. An update U for T is a simple and 
onsistent ABox

that does not use 
on
ept names from def(T ). We do not allow de�ned 
on
ept

names in updates be
ause this is obviously equivalent to admitting updates with


omplex 
on
epts and thus violates our poli
y of 
onsidering only updates on

an atomi
 level.

De�nition 28 (Interpretation update). Let T be an a
y
li
 TBox, U an

update for T , and I, I

0

models of T su
h that �

I

= �

I

0

and I and I

0

agree on

the interpretation of individual names. Then I

0

is the result of updating I with

U relative to T , written I =)

T

U

I

0

, if the following hold:

� for all 
on
ept names A 2 prim(T ):

A

I

0

= (A

I

[ fa

I

j A(a) 2 Ug) n fa

I

j :A(a) 2 Ug;

� for all role names r,

r

I

0

= (r

I

[ f(a

I

; b

I

) j r(a; b) 2 Ug) n f(a

I

; b

I

) j :r(a; b) 2 Ug:

4

The di�eren
e between De�nitions 1 and 28 is that the latter talks only about


on
ept names that are primitive w.r.t. T . Observe that the relation =)

T

U

is

still deterministi
: in models of a
y
li
 TBoxes, the interpretation of primitive


on
ept names and role names determines the interpretation of de�ned 
on
ept

names in a unique way.

De�nition 29 (Knowledge Base Update). Let K

1

and K

2

be knowledge

bases, K

i

= (T

i

;A

i

), su
h that prim(T

1

) = prim(T

2

) and T

1

� T

2

, and let U be

an update for T

1

. Then K

2

is a result of updating K

1

with U if the following


onditions hold:

(U1

0

) 8I; I

0

:

�

( I j= K

1

^ I =)

T

1

U

I

0

^ I

0

j= T

2

)! I

0

j= A

2

)

�

;

(U2

0

) 8I

0

:

�

I

0

j= K

2

! 9I (I j= K

1

^ I =)

T

1

U

I

0

)

�

.

In this 
ase, we write K

1

� U �

P

K

2

. 4

In 
ontrast to ABox updates, the result K

2

of updating a knowledge base is not

unique up to logi
al equivalen
e. This is due to the fa
t that we have more than

one 
hoi
e for introdu
ing new 
on
ept de�nitions in T

2

. However, we have the
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following, weaker form of equivalen
e. A primitive interpretation for a TBox T

is an interpretation that interprets only the primitive 
on
ept names in T and

the role names, but not the de�ned 
on
ept names. A primitive interpretation

is a primitive model of a knowledge base K if it 
an be extended to a model of

K by additionally interpreting the de�ned 
on
ept names. Then, it is an easy


onsequen
e of De�nition 29 that K

1

� U �

P

K

2

and K

1

� U �

P

K

0

2

implies that

K

2

and K

0

2

have the same primitive models.

We now use the notion of unfolding to establish a relationship between up-

dates of ABoxes and updates of knowledge bases. Let T be an a
y
li
 TBox,

and C a 
on
ept. The 
on
ept C

T

obtained from C by exhaustively repla
ing

de�ned 
on
ept names in C with their de�nitions from T is 
alled the unfolding

of C w.r.t. T . Clearly, all 
on
ept names o

urring in C

T

are primitive w.r.t.

T . If A is an ABox, then the unfolding of A w.r.t. T is the ABox

A

T

:= (A n fC(a) j C(a) 2 Ag) [ fC

T

(a) j C(a) 2 Ag:

I.e., we keep role assertions and repla
e 
on
ept assertions by their unfolded

variants.

The following lemma shows that updated ABoxes for a
y
li
 TBoxes en
ode

updated ABoxes without a
y
li
 TBoxes. In the following, we use prim

T

(I) to

denote the (unique) primitive interpretation w.r.t. T that 
an be extended to

the full interpretation I.

Lemma 30. Let K

1

and K

2

be knowledge bases, K

i

= (T

i

;A

i

), su
h that T

1

� T

2

and prim(T

1

) = prim(T

2

), and let U be an update for T

1

. Then

K

1

� U �

P

K

2

i� A

T

1

1

� U � A

T

2

2

:

Proof. \(" Let A

T

1

1

� U � A

T

2

2

. In order to prove that K

1

� U �

P

K

2

, we need

to show that (U1

0

) and (U2

0

) from De�nition 29 are satisifed:

(U1

0

) Let I and I

0

be interpretations su
h that I j= K

1

, I =)

T

1

U

I

0

, and I

0

j=

T

2

. We need to show that then I

0

j= A

2

. Sin
e I j= A

1

; T

1

, we have

that prim

T

1

(I) j= A

T

1

1

. Moreover, sin
e prim

T

1

(I) =)

U

prim

T

1

(I

0

) and

A

T

1

1

� U � A

T

2

2

, by (U1) of De�nition 2 we obtain that prim

T

1

(I

0

) j= A

T

2

2

.

Thus, having prim(T

1

) = prim(T

2

) and I

0

j= T

2

, we obtain that I

0

j= A

2

.

(U2

0

) Let I

0

be an interpretation su
h that I

0

j= K

2

. We need to show that

there is an I su
h that I =)

T

1

U

I

0

and I j= K

1

. Sin
e I

0

j= A

2

; T

2

and prim(T

1

) = prim(T

2

), we have that prim

T

1

(I

0

) j= A

T

2

2

, and by (U2) of

De�nition 2, there exists an

^

I su
h that

^

I =)

U

prim

T

1

(I

0

) and

^

I j= A

T

1

1

.

Take an I su
h that prim

T

1

(I) =

^

I and I j= T

1

. Then, by de�nition of

unfolding we have that I j= A

1

. Thus I j= K

1

. Finally, sin
e T

2

� T

1

, it

also holds that I =)

T

1

U

I

0

.
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\)" Let K

1

� U �

P

K

2

. In order to prove that A

T

1

1

� U � A

T

2

2

, we need to

show that (U1) and (U2) from De�nition 2 are satis�ed:

(U1) Let I and I

0

be interpretations su
h that I j= A

T

1

1

and I =)

U

I

0

. Take

an

^

I su
h that prim

T

1

(

^

I) = I and

^

I j= T

1

. By de�nition of unfolding,

we have that

^

I j= A

1

. Now take an

^

I

0

su
h that prim

T

2

(

^

I

0

) = I

0

. and

^

I

0

j= T

2

. Sin
e prim(T

1

) = prim(T

2

) and T

2

� T

1

, we easily obtain that

^

I =)

T

1

U

^

I

0

, and by (U1

0

) of De�nition 29 that

^

I

0

j= A

2

. But then we have

that I

0

j= A

T

2

2

.

(U2) Let I

0

be an interpretation su
h that I

0

j= A

T

2

2

. We need to show that

there is an I su
h that I =)

U

I

0

and I j= A

T

1

1

. Take an

^

I

0

su
h that

prim

T

2

(

^

I

0

) = I

0

and

^

I

0

j= T

2

. By de�nition of unfolding we have that

^

I

0

j=

A

2

. Thus

^

I

0

j= K

2

and, by (U2

0

) of De�nition 29, there is an interpretation

^

I, su
h that

^

I =)

T

1

U

^

I

0

and

^

I j= K

1

. Take I = prim

T

1

(

^

I). Then I j= A

T

1

1

.

Finally, by de�nition of =)

T

1

U

and sin
e prim(T

2

) = prim(T

1

), we have that

I =)

U

I

0

.

❏

We now show how to 
onstru
t updated knowledge bases in ALCQIO

�

and

its fragments. Let K = (T ;A) be a knowledge base, and let U be an update for

T . As in Se
tion 4, we use D to denote the set of all diagrams for U and set,

for every D 2 D,

D

U

:= f j  2 U and : 2 Dg:

Additionally, we use sub(K) to denote the set of all sub
on
epts of 
on
epts

o

urring in K. To 
onstru
t the result of updating K with U , we introdu
e a

new 
on
ept name A

D

C

for every diagram D 2 D and every C 2 sub(K). For a


on
ept E, let trans(E;D) denote the 
on
ept on the right-hand side of the 
lause

for E

D

U

in Figure 6 without indu
tively expanding the o

urring sub
on
epts

C

D

U

, but with ea
h su
h 
on
ept C

D

U

repla
ed with the 
on
ept name A

D

C

. For

example, trans(C u D;D) = A

D

C

u A

D

D

also if C and D are 
omplex. For ea
h

diagram D 2 D, de�ne a TBox

T

D

sub

:= fA

D

C

� trans(C;D) j C 2 sub(K) n def(T )g:

Then, we de�ne the TBox updated TBox as the union of the original TBox T

and, for ea
h diagram D, the TBox T

D

sub

and a version of T adapted to D:

T

0

:= T [

[

D2D

(T

D

sub

[ fA

D

A

� A

D

C

j A � C 2 T g):

For every D 2 D, we de�ne

A

D

U

:= fA

D

C

(a) j C(a) 2 Ag [

fr(a; b) j r(a; b) 2 A ^ :r(a; b) =2 D

U

g [

f:r(a; b) j :r(a; b) 2 A ^ r(a; b) =2 D

U

g
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Now we 
an de�ne the updated ABox A

0

by setting

A

0

=

_

D2D

^

A

D

U

[ D

U

[ (D n D

:

U

)

and �nally assemble the updated knowledge base by setting K

0

:= (T

0

;A

0

).

Note that the 
on
ept de�nitions from T appear in T

0

without being referred

to by A

0

. Intuitively, this is hardly surprising: the de�nitions in T were used

to des
ribe the previous state of the world. Sin
e this state has 
hanged, the

de�nitions in T are not appropriate any longer. We nevertheless keep T in the

updated knowledge base sin
e 
on
ept de�nitions are usually not only (te
hni-


al) abbreviations, but rather re
e
t the terminology of the appli
ation domain.

Therefore, they should not simply be dis
arded. One may even 
onsider produ
-

ing an updated knowledge base that reuses as many 
on
ept de�nitions from T

as possible. This is outside the s
ope of the 
urrent paper.

Lemma 31. K � U �

P

K

0

Proof. By the 
onstru
tion of T

0

, it is obviously the 
ase that T

0

� T and

prim(T ) = prim(T

0

). Then, by Lemma 30 it suÆ
es to show that (A

0

)

T

0

is the

result of updating A

T

with U . Let us use (A

T

)

0

to refer to the update of A

T

with U , as 
onstru
ted in (1) in Se
tion 4. Sin
e the ABox update without

TBoxes is unique up to equivalen
e, we just need to show that (A

0

)

T

0

� (A

T

)

0

.

Sin
e the updates, and thus also their diagrams 
ontain no 
on
ept names from

def(T ), we have that

(A

0

)

T

0

=

_

D2D

^

(A

D

U

)

T

0

[ D

U

[ (D n D

:

U

)

and

(A

T

)

0

=

_

D2D

^

(A

T

)

D

U

[ D

U

[ D

D

U

:

Thus, sin
e it is easy to see that D

D

U

� D n D

:

U

for all D 2 D, it remains to

show that (A

D

U

)

T

0

� (A

T

)

D

U

for all D 2 D. But this is true due to

(A

D

C

)

T

0

� (C

T

)

D

U

for all C 2 sub(K);

whi
h is a 
onsequen
e of the de�nition of T

0

and 
an easily be shown by stru
-

tural indu
tion on C. ❏

We formulate the main result on updates with a
y
li
 TBoxes. In 
onstrast to

updates without TBoxes, updated knowledge bases are now polynomial in the

size of the original KB. Thus, Lemma 30 implies that we 
an use a
y
li
 TBoxes

to obtain a more su

in
t presentation of updated ABoxes. In the following,

the size jT j of a TBox T is

P

A�C2T

jCj, and the size jKj of a knowledge base

K = (A; T ) is the sum of jT j and jAj.
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Theorem 32. Let L 2 fALCO

�

;ALCIO

�

;ALCQO

�

;ALCQIO

�

g. Then

there exist polynomials p

1

, p

2

, and q su
h that, for every L-knowledge base

K = (T ;A) and every update U for T , there exists an L-knowledge base K

0

su
h that

� K � U �

P

K

0

;

� jK

0

j � p

1

(jKj) � 2

p

2

(jUj)

;

� K

0


an be 
omputed in time q(jK

0

j).

Iterated Updates

As in Se
tion 4, we show that iterated updates do not produ
e a blowup of

the size of updated ABoxes that is worse than the blowup produ
ed by a single

update.

Theorem 33. There exist polynomials p

1

; p

2

su
h that the following holds: for

all knowledge bases K

0

; : : : ;K

n

and updates U

1

; : : : ;U

n

, if K

i

is the ABox 
om-

puted by our algorithm when K

i�1

is updated with U

i

, for 0 < i � n, then

jK

n

j � p

1

(jK

0

j) � 2

p

2

(jU

1

j+���+jU

n

j)

:

Proof. Let K

n

= (T

n

;A

n

) and jK

0

j = m. We analyze the sizes of T

n

and A

n

separately:

(a) It is easily seen that jA

i

j � (2�jU

i

j+ jA

i�1

j)�2

jU

i

j

� jA

i�1

j�2

3jU

i

j

: Sin
e

jA

0

j is bounded by m, it follows that jA

i

j � m � 2

3(jU

1

j+���+jU

i

j)

.

(b) For a TBox T , let jjT jj denote the number of 
on
ept de�nitions in T .

Moreover, let D

i

be the set of diagrams for U

i

. It is not diÆ
ult to 
he
k

that we have

jjT

1

jj = jjT

0

jj+ (jjT

0

jj+m)� jD

1

j:

and, for i > 1,

jjT

i

jj = jjT

i�1

jj+ (jjT

i�1

jj+ jT

i�1

j)� jD

i

j:

This equation uses jT

i�1

j instead if jK

i�1

j sin
e A

i�1


ontains only de�ned


on
ept names and no 
omplex 
on
epts. Therefore, the 
ardinality of the

T

D

sub


omponent of T

i

is bounded by jT

i�1

j.

Sin
e jjT

i�1

jj is bounded by jT

i�1

j and the size of ea
h 
on
ept equation in

T

i

, i > 0, is bounded by a 
onstant, there is a 
onstant 
 su
h that

jT

1

j � 3
m� 2

jU

1

j

� m� 2

3
jU

1

j

jT

i

j � 3
� jT

i�1

j � 2

jU

i

j

� jT

i�1

j � 2

3
jU

i

j

for i > 1:

It follows that jT

i

j � m� 2

3
(jU

1

j+���+jU

i

j)

.

The polynomials p

1

and p

2

are now easily derived. ❏
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5.2 Updates in ALCQIO

[;n;O

As argued at the beginning of Se
tion 5, updated ALCQIO

�

ABoxes are only

polynomial in the size of the original ABox if the update 
ontains no role as-

sertions. Intuitively, updates with only 
on
ept assertions do not lead to an

exponential blowup be
ause we have available the Boolean operators on 
on-


epts, nominals, and the �-operator. In standard DLs, none of these operators

is available for roles: we 
an neither 
onstru
t the union of roles, nor their 
om-

plement, nor a \nominal role" f(a; b)g with a and b nominals. In this se
tion, we

explore the possibility of 
onstru
ting updated ABoxes in a language in whi
h

su
h 
onstru
tors are available. The language we 
onsider is 
losely related to

those introdu
ed and investigated in [6, 12, 13℄, and is of almost the same ex-

pressive power as C

2

, the two-variable fragment of �rst-order logi
 with 
ounting

quanti�ers [9℄.

Denote by ALCQIO

+

the des
ription logi
 extending ALCQIO

�

by means

of the role 
onstru
tors \ (role interse
tion), � (set-theoreti
 di�eren
e of roles),

and f(a; b)g (nominal roles). In this language, 
omplex roles are 
onstru
ted

starting from role names and nominal roles, and then applying \, �, and the

inverse role operator �

�

. The interpretation of 
omplex roles is as expe
ted:

� f(a; b)g

I

= f(a

I

; b

I

)g, for all a; b 2 N

I

;

� (r

1

\ r

2

)

I

= r

I

1

\ r

I

2

;

� (r

1

� r

2

)

I

= r

I

1

� r

I

2

.

We note that reasoning in ALCQIO

+

is de
idable: this DL 
an easily be em-

bedded into C

2

and, therefore, ABox 
onsisten
y is de
idable in NExpTime

even if the numbers inside number restri
tions are 
oded in binary [9, 15, 17℄.

This bound is tight as, already in ALCQIO, reasoning is NExpTime-hard [24℄.

We now formulate the main result of this se
tion:

Theorem 34.

There exist polynomials p

1

, p

2

, and q su
h that, for every ALCQIO

+

-ABox A

and every update U , there is an ALCQIO

+

-ABox A

0

su
h that

� A � U � A

0

;

� jA

0

j � p

1

(jAj) � 2

p

2

(jUj)

;

� A

0


an be 
omputed in time q(jA

0

j).
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Proof. We modify the proof of Theorem 23. For ALCQIO

+

, the 
onstru
tion

of the 
on
epts C

U

is mu
h simpler: it suÆ
es to repla
e every 
on
ept name A

in C with

A t t

:A(a)2U

fag u :( t

A(a)2U

fag)

and every role name r in C with

r [

[

:r(a;b)2U

f(a; b)g n (

[

r(a;b)2U

f(a; b)g):

The 
on
epts C

U

are therefore of size polynomial in the size of C and U . The

ABox A

0


an then be 
onstru
ted in the same way as in the proof of Theorem 23

and is polynomial in the size of A, but exponential in the size of the update U .

❏

Clearly, Theorem 34 is independent of the 
oding of numbers, and, also with

iterated updates, updated ABoxes remain polynomial in the size of the original

ABox. An alternative to working with a des
ription logi
 su
h as ALCQIO

+

, is

to work dire
tly in the two-variable fragment with 
ounting C

2

. Then, a result

analogous to Theorem 34 is easily obtained.

6 Con
lusion

We have analyzed ABox updates in several 
ommon des
ription logi
s. The

main out
ome of our analysis is as follows: �rst, in the 
ase of the DLs under


onsideration, a des
ription logi
 has updates if and only if it is able to express

nominals and the � 
onstru
tor (or, equivalently, admits Boolean ABoxes). Se
-

ond, an exponential blowup 
annot by avoided unless NC = PTime. And third,

an exponential blowup in the size of the original ABox 
an be avoided if (i) we

allow the introdu
tion of new 
on
ept de�nitions in a
y
li
 TBoxes or (ii) move

to DLs that in
lude Boolean operators on roles and a 
ertain nominal 
onstru
-

tor for roles, thus eliminating the synta
ti
 disbalan
e between 
on
epts and

roles observed in most DLs. We have also shown that, in the 
ase of repeated

updates, there are no repeated exponential blowups.

There are two obvious dire
tions for future work. The �rst dire
tion is to

alleviate the synta
ti
 restri
tion posed on 
on
epts appearing in updates. This


an be done either fully or in a 
ontrolled way. In the �rst 
ase, it is very

likely that updated ABoxes 
annot be 
omputed even if they exist. However,

this has not been proved for some basi
 DLs su
h as ALCO

�

, and not for all

available types of semanti
s. In the se
ond 
ase, one may for example admit

Boolean 
ombinations of 
on
ept names in updates. It seems likely that this

generalization does not destroy 
omputability of updates.
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The se
ond dire
tion for future work is to in
orporate 
y
li
 TBoxes or GCIs

into our framework. As dis
ussed in [3℄, it is not at all straightforward to �nd a

semanti
s for this 
ase that addresses the frame problem (posed by the prin
iple

of inertia) in a 
onvin
ing way. One possible way around this problem is to

provide the user with expressive means that allow her to state, in the formulation

of the update, the fa
ts that 
hange and the fa
ts that don't. Note that this


annot be done with the updates used in the 
urrent paper sin
e they 
an only

talk about domain elements that are assigned a name by some individual name.

A
knowledgements

We are grateful to Franz Baader and Mi
hael Thiels
her for stimulating dis
us-

sions.

Referen
es

[1℄ C. Are
es, P. Bla
kburn, and M. Marx. A road-map on 
omplexity for

hybrid logi
s. In J. Flum and M. Rodr��guez-Artalejo, editors, Computer

S
ien
e Logi
, number 1683 in Le
ture Notes in Computer S
ien
e, pages

307{321. Springer-Verlag, 1999.

[2℄ C. Are
es and M. de Rijke. From des
ription logi
s to hybrid logi
s, and

ba
k. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyas
hev,

editors, Advan
es in Modal Logi
s Volume 3. CSLI Publi
ations, Stanford,

CA, USA, 2001.

[3℄ F. Baader, C. Lutz, M. Mili
i
, U. Sattler, and F. Wolter. Integrating

des
ription logi
s and a
tion formalisms: First results. In Pro
eedings of

the Twentieth National Conferen
e on Arti�
ial Intelligen
e (AAAI-05),

Pittsburgh, PA, USA, 2005.

[4℄ F. Baader, D. L. M
Guiness, D. Nardi, and P. Patel-S
hneider. The De-

s
ription Logi
 Handbook: Theory, implementation and appli
ations. Cam-

bridge University Press, 2003.

[5℄ A. Borgida. Language features for 
exible handling of ex
eptions in infor-

mation systems. ACM Transa
tions on Database Systems, 10(4):565{603,

1985.

[6℄ A. Borgida. On the relative expressiveness of des
ription logi
s and predi-


ate logi
s. Arti�
ial Intelligen
e, 82(1 - 2):353{367, 1996.

[7℄ M. Cadoli, F. M. Donini, P. Liberatore, and M. S
haerf. The size of a

revised knowledge base. Arti�
ial Intelligen
e, 115(1):25{64, 1999.

36



[8℄ K. D. Forbus. Introdu
ing a
tions into qualitative simulations. In In-

ternational Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI-89), pages

1273{1279. Morgan Kaufman, 1989.

[9℄ E. Gr�adel, M. Otto, and E. Rosen. Two-Variable Logi
 with Counting is De-


idable. In Pro
eedings of Twelfth IEEE Symposium on Logi
 in Computer

S
ien
e (LICS'97), 1997.

[10℄ N. Kurtonina and M. de Rijke. Expressiveness of 
on
ept expressions in

�rst-order des
ription logi
s. Arti�
ial Intelligen
e, 107(2):303{333, 1999.

[11℄ F. Lin. Embra
ing 
ausality in spe
ifying the indeterminate e�e
ts of a
-

tions. In B. Clan
ey and D. Weld, editors, Pro
eedings of the 14th National

Conferen
e on Arti�
ial Intelligen
e (AAAI-96), pages 670{676, Portland,

OR, Aug. 1996. MIT Press.

[12℄ C. Lutz and U. Sattler. The 
omplexity of reasoning with boolean modal

logi
s. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyas
hev,

editors, Advan
es in Modal Logi
s Volume 3. CSLI Publi
ations, Stanford,

CA, USA, 2001.

[13℄ C. Lutz, U. Sattler, and F. Wolter. Modal logi
s and the two-variable

fragment. In Annual Conferen
e of the European Asso
iation for Computer

S
ien
e Logi
 CSL'01, LNCS, Paris, Fran
e, 2001. Springer Verlag.

[14℄ M.P.Shanahan. Solving the Frame Problem. MIT Press, 1997.

[15℄ L. Pa
holski, W. Szwast, and L. Tendera. Complexity results for �rst-order

two-variable logi
 with 
ounting. SIAM Journal on Computing, 29(4):1083{

1117, Aug. 2000.

[16℄ C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[17℄ I. Pratt-Hartmann. Complexity of the two-variable fragment with 
ounting

quanti�ers. Journal of Logi
, Language, and Information, 14(3):369{395,

2005.

[18℄ R. Reiter. Knowledge in A
tion. MIT Press, 2001.

[19℄ K. Satoh. Nonmonotoni
 reasoning by minimal belief revision. In Pro
eed-

ings of the International Conferen
e on Fifth Generation Computer Sys-

tems. Volume 2, pages 455{462. Springer Verlag, 1988.

[20℄ R. S
herl and H. Levesque. Knowledge, a
tion, and the frame problem.

AIJ, 144(1):1{39, 2003.

37



[21℄ M. S
hmidt-S
hau� and G. Smolka. Attributive 
on
ept des
riptions with


omplements. Arti�
ial Intelligen
e, 48(1):1{26, 1991.

[22℄ M. Thiels
her. Nondeterministi
 a
tions in the 
uent 
al
ulus: Disjun
tive

state update axioms. In S. H�olldobler, editor, Intelle
ti
s and Computa-

tional Logi
, pages 327{345. Kluwer A
ademi
, 2000.

[23℄ M. Thiels
her. Representing the knowledge of a robot. In A. Cohn,

F. Giun
higlia, and B. Selman, editors, KR, pages 109{120, Bre
kenridge,

CO, Apr. 2000. Morgan Kaufmann.

[24℄ S. Tobies. The 
omplexity of reasoning with 
ardinality restri
tions and

nominals in expressive des
ription logi
s. Journal of Arti�
ial Intelligen
e

Resear
h, 12:199{217, 2000.

[25℄ M. Winslett. Reasoning about a
tion using a possible models approa
h. In

Pro
eedings of the 7th National Conferen
e on Arti�
ial Intelligen
e (AAAI-

88), pages 89{93, 1988.

[26℄ M. Winslett. Updating Logi
al Databases. Cambridge University Press,

Cambridge, England, 1990.

38


