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Abstract

Description logic (DL) ABoxes are a tool for describing the state of
affairs in an application domain. In this paper, we consider the problem
of updating ABoxes when the state changes. We assume that changes
are described at an atomic level, i.e., in terms of possibly negated ABox
assertions that involve only atomic concepts and roles. We analyze such
basic ABox updates in several standard DLs by investigating whether the
updated ABox can be expressed in these DLs and, if so, whether it is
computable and what is its size. It turns out that DLs have to include
nominals and the “@” constructor of hybrid logic (or, equivalently, admit
Boolean ABoxes) for updated ABoxes to be expressible. We devise algo-
rithms to compute updated ABoxes in several expressive DLs and show
that an exponential blowup in the size of the whole input (original ABox
+ update information) cannot be avoided unless every PTIME problem
is LocgTiMmE-parallelizable. We also exhibit ways to avoid an exponential
blowup in the size of the original ABox, which is usually large compared
to the update information.

1 Introduction

Description logics (DLs) are a prominent family of logic-based formalisms for
the representation of and reasoning about conceptual knowledge [4]. In DLs,
concepts are used to describe classes of individuals sharing common properties.
For example, the following concept describes the class of all parents with only
happy children:

Person M Jhas-child.Person M Yhas-child.(Person M Happy)

This concept is formulated in ALC, the basic DL that contains all Boolean
operators [21]. Concepts are the most important ingredient of description logic



ABozes, whose purpose is to describe a snapshot of the world. For example, the
following ABox, which is also formulated in ALC, says that John is a parent
with only happy children, that Peter is his child, and that Mary is a person:

john:Person 11 Jhas-child.Person M1 Vhas-child.(Person M Happy)
has-child(john, peter)
mary:Person

In many applications of DLs, an ABox is used to represent the current state
of affairs in the application domain [4]. In such applications, it is necessary to
update the ABox in the case that the world has changed. Such an update should
incorporate the information about the new state while retaining all knowledge
that is not affected by the change (as demanded by the principle of inertia,
see e.g. [14]). For example, if Mary is not happy any longer, we should up-
date the above ABox to the following one. This updated ABox is formulated
in ALCO, the extension of ALC with nominals (i.e., individual names inside
concept descriptions):

john:Person M Jhas-child.Person M Vhas-child.(Person M (Happy U {mary}))
has-child(john, peter)
mary:Person [ —=Happy

Observe that new information concerning Mary also resulted in an update of the
information concerning John because the semantics for ABoxes adopts the open
world assumption and can therefore represent the domain in an incomplete way
[4], Page 68. In the example above, we have no information about whether or
not Mary is a child of John.

Surprisingly, formal theories of ABox updates have never been developed. In
applications, ABoxes are usually updated in an ad-hoc way, and effects such as
the information change for John above are simply ignored. The current paper
aims at curing this deficiency. Its purpose is to provide a first formal analysis
of ABox updates in many common description logics, concentrating on the most
basic kind of updates. These basic updates are as follows: the new informa-
tion to be incorporated into the ABox is a set of possibly negated assertions
a:A and r(a,b), where A is an atomic concept. The motivation for considering
this restricted form of updates is three-fold: first, there is a single, uncontro-
versial semantics for updates of this restricted form, whereas several different
and equally natural semantics are available in the case of updates with com-
plex concepts, see e.g. [26, 8, 11, 22]. Second, it follows from the results in [3]
that, under Winslett-style PMA semantics [26], unrestricted ABox updates in
relatively simple DLs such as ALCFT and its extensions are not computable.
It seems very likely that the other available semantics suffer from similar com-
putational problems. Finally, we believe that the massive non-determinism of



ABox updates with complex concepts, in particular those involving quantifiers
nested in a complex way, leads to unintuitive results under all of the available
semantics.

We consider restricted ABox updates in the expressive DL ALCQOZO and its
fragments. It turns out that, in many natural DLs such as ALC, the updated
ABox cannot be expressed. As an example, consider the ALC ABox given above.
To express the ABox obtained by the (restricted) update with mary:—Happy, we
had to resort to the more expressive DL ALCO. But even the introduction of
nominals does not suffice to guarantee that updated ABoxes are expressible.
Only if we further add the “@” concept constructor from hybrid logic [1, 2]
or Boolean ABoxes (we show that these two are equivalent in the presence of
nominals), updated ABoxes can be expressed. Here, the @ constructor allows
the formation of concepts of the form @Q,C' expressing that the individual a
satisfies C', and Boolean ABoxes are a generalization of standard ABoxes: while
the latter can be thought of as a conjunction of ABox assertions of the form a:C'
and r(a,b), Boolean ABoxes are a Boolean combination of such ABox assertions.
Our expressiveness results do not only concern ALC: similar proofs as those
given in this paper can be used to show that, in any standard DL in which
nominals and the “@” constructor are not expressible, updated ABoxes cannot
be expressed.

We show that updated ABoxes exist and are computable in ALCQTO®,
the extension of ALCQZO (which includes nominals) with the @ constructor.
The proposed algorithm can easily be adapted to the fragments ALCZO® and
ALCQO®. An important issue is the size of updated ABoxes: the updated
ABoxes computed by our algorithm may be of size exponential both in the size
of the original ABox and in the size of the new information (henceforth called
the update). We show that an exponential blowup cannot be completely avoided
by proving that, even in the case of propositional logic, updated theories are not
polynomial in the size of the (combined) input unless every PT1ME-algorithm is
LoGTiME-parallelizable (the “P vs. NP” question of parallel computation).! In
the update literature, an exponential blowup in the size of the update is viewed
as much more tolerable than an exponential blowup in the size of the original
ABox since the former tend to be very small compared to the latter. We believe
that, in the case of ALCQTO® and its two fragments mentioned above, the
exponential blowup in the size of the original ABox cannot be avoided. While
we leave a proof as an open problem, we exhibit two ways around the blowup:
the first is to allow the introduction of new concept definitions in an acyclic TBox

'Tn contrast to the results by Cadoli et al. [7], our result even applies to the restricted form
of updates, i.e., updates in propositional logic where the update is a conjunction of literals.
Thus, our argument provides further evidence for the claims in [7], where it is shown that,
with unrestricted updates, an exponential blowup in the size of the update cannot be avoided
unless the first levels of the polynomial hierarchy collapse.



‘Name ‘ Syntax ‘Semantics ‘

‘ inverse role ‘ r- ‘ (rH)=! ‘
nominal {a} {a®}
negation -C AT\ C*
conjunction cnbD ctnD?
disjunction cubDp | ctubD?

at-least restriction | (= nr C) | {x € AT | #{y € CT | (z,y) € T} > n}
at-most restriction | (K nr C) | {x € AT | #{y € CT| (v,y) € r’} <n}
@ constructor @,C AT if o € CT, and B otherwise

Figure 1: Syntax and semantics of ALCQZO.

when computing the update. The second is to move to extensions of ALCQTO®
that allow Boolean operators on roles, thus eliminating the asymmetry between
concepts and roles found in standard DLs. In both cases, we show how to
compute updated ABoxes that are polynomial in the size of the original ABox
(and exponential in the size of the update). Thus, the blowup induced by
updates in these expressive DLs is not worse than in propositional logic. We
also show that the blowup produced by iterated updates is not worse than the
blowup produced by a single update.

This paper is organized as follows. In Section 2, we introduce the relevant
DLs, formally define ABox updates, and establish the result on the exponential
blowup induced by restricted updates in propositional logic. We then prove in
Section 3 that updated ABoxes cannot be expressed in ALC, in ALCO, ALC®,
and ALC with Boolean ABoxes. In Section 4, we show how to compute ABox
updates in ALCQTO® and analyze the size of the computed ABoxes. Finally,
Section 5 is concerned with the computation of updated ABoxes whose size is
only polynomial in the size of the original ABox. We conclude in Section 6,
which is also used to discuss potential further work.

2 Preliminaries

2.1 Description Logics

In DLs, concepts are inductively defined with the help of a set of construc-
tors, starting with a set N¢ of concept names and a set Ng of role names, and
(possibly) a set Ny of individual names. In this section, we introduce the DL
ALCQTO®, whose concepts are formed using the constructors shown in Figure 1.
There, the inverse constructor is the only role constructor, whereas the remain-



Symbol | Constructor | ALC | ALCO | ALCQ | ALCT | ALCQO | ALCTO | ALCQT
Q (<nrC) b'e b'e X
(znr0)
T r- X X X
O {a} X X X

Figure 2: Fragments of ALCQTZO.

ing seven constructors are concept constructors. In Figure 1 and throughout this
paper, we use #.S5 to denote the cardinality of a set S, a and b to denote individ-
ual names, r and s to denote roles (i.e., role names and inverses thereof), A, B
to denote concept names, and C, D to denote (possibly complex) concepts. As
usual, we use T as abbreviation for an arbitrary (but fixed) propositional tautol-
ogy, L for =T, — and <« for the usual Boolean abbreviations, 3r.C' (ezistential
restriction) for (= 1 r C), and Vr.C' (universal restriction) for (< 0 r =C).

The DL that allows only for negation, conjunction, disjunction, and uni-
versal and existential restrictions is called ALC. The availability of additional
constructors is indicated by concatenation of a corresponding letter: Q stands
for number restrictions; Z stands for inverse roles, O for nominals and super-
script @ for the @ constructor. This explains the name ALCQZO® for our DL,
and also allows us to refer to sublanguages as indicated in Figure 2. For each
language £ listed in Figure 2, we have an analogue £® obtained by adding the
@ constructor.

The semantics of ALCOTO®-concepts is defined in terms of an interpreta-
tion T = (AT,-T). The domain AT is a non-empty set of individuals and the
interpretation function X maps each concept name A € N¢ to a subset A% of
AT, each role name r € Ng to a binary relation 7* on AZ, and each individual
name a € N, to an individual a € AZ. The extension of -Z to inverse roles
and arbitrary concepts is inductively defined as shown in the third column of
Figure 1.

An ALCQTO® assertional box (ABoz) is a finite set of concept assertions
C(a) and role assertions r(a,b) and —r(a,b) (where r may be an inverse role).
For readability, we sometimes write concept assertions as a:C'. Observe that
there is no need for explicitly introducing negated concept assertions as negation
is available as a concept constructor in ALCQZO®. An ABox A is simple if
C(a) € A implies that C' is a concept literal, i.e., a concept name or a negated
concept name.

An interpretation Z satisfies a concept assertion C'(a) iff aZ € CZ, a role
assertion r(a,b) iff (aZ,0%) € rZ, and a role assertion —w(a,b) iff (af,b%) ¢ rZ.
We denote satisfaction of an ABox assertion ¢ by an intepretation Z with Z = .
An interpretation Z is a model of an ABox A (written Z = A) if it satisfies all
assertions in A. An ABox is consistent iff it has a model. Two ABoxes A and



A’ are equivalent (written A = A’) iff they have the same models.

The length of a concept C', denoted by |C], is the number of symbols needed
to write C'. The size of an ABox assertion C'(a) is |C|, the size of r(a,b) and
=r(a,b) is 1. Finally, the size of an ABox A, denoted by |A[, is the sum of the
sizes of all assertions in A.

2.2 ABox Updates

We introduce a simple form of ABox update where complex concepts are not
allowed in the update information.

Definition 1 (Interpretation Update). An update U is a simple ABox that
is consistent. Let I/ be an update and Z, 7' interpretations such that AT = AT
and Z and 7' agree on the interpretation of individual names. Then 7' is the
result of updating T with U, written T =, Z', if the following hold:

e for all concept names A, A7 = (AZU{a” | A(a) € U})\{a® | 7Ala) € U};
e for all role names r,

Pt = (rfu{(a®,b") | r(a,b) € U}) \ {(a®,b") | =r(a,b) € U}. N

Now let, A be an ABox and ¢/ an update. Then, up to equivalence, there exists
at most one ABox A’ satisfying the conditions

(U) VI, : ((ZEANT=yT ) - IT'=A) and
(U)VI': (A = IT:(IEAANIT=yT)).

In other words, whenever ABoxes A’ and A” satisfy (Ul) and (U2), then A’ =
A". This observation justifies the following definition.

Definition 2 (ABox Update). Let A be an ABox and ¢/ an update. An ABox
A’ is the result of updating A with U , in symbols A xU = A, if A’ satisfies
the conditions (Ul) and (U2). We then call A the original ABox and A’ the
updated ABox. A

As mentioned in the introduction, there are two technical reasons for restricting
ourselves to updates of this simple form. First, it allows us to use the uncontro-
versial semantics given above, which coincides with all standard semantics for
updates considered in the literature, see e.g., [23, 20, 26, 18]. In contrast, for
unrestricted updates involving complex concepts there exist several competing
semantics such as the ones proposed by Winslett [25] and Forbus [8]. Semantics
for theory revision are closely related as well, but yield different results even



in our restricted setting [5, 19]. Second, we consider it quite likely that, under
many of these semantics and for many DLs, unrestricted ABox updates are not
computable even if the updated ABoxes exist. Some evidence is given by the
results in [3], which imply that this is the case under Winslett-style semantics
for the DL ALCFT and all of its extensions.?

Practically, our restriction means that the user has to describe updates at an
atomic level. It is clear that more complex updates such as Boolean combinations
of concept names can be useful in applications. On the other hand, we believe
that the utility of arbitrarily complex concepts in updates is limited since using
such concepts together with a standard update semantics introduces massive
non-determinism into updates. For example, the very simply update {Vr.A(a)}
applied to an interpretation Z under most standard semantics for updates means
that for each individual z € A% with (a®,2) € r%, we have to decide whether
to change (a’,x) € r¥ to (a*,x) ¢ r* or v € AT to v ¢ AT (but we are
not allowed apply both changes). With complex nested concepts, this non-
determinism quickly grows out of bounds.

We now give another example of updating ABoxes. The following ALCO
ABox expresses that John and Mary are married. We also know that one of
them is happy, and the other is not. However, we do not know which of the two
is unhappy. Moreover, Peter and Sarah both have happy parents:

spouse(john, mary)

peter:dparent.Happy

sarah:Jparent.Happy

john:(Happy M Jspouse. ({mary} I —|Happy))|_l

(—|Happy M Jspouse. ({mary} I Happy))

Suppose that, because one of them is unhappy, John and Mary have an argu-
ment. This results in both John and Mary being unhappy. Hence, we should
apply the following update to the above ABox:

—Happy (john), —Happy(mary).
Then, the updated ABox can be expressed in ALCO® as follows:?

—Happy (john)

—Happy(mary)
spouse(john, mary)
john: (@perer Iparent.(Happy U {john}) M @g,anIparent.(Happy L {john}))U

(@peterﬂparent.(Happy LI {mary}) M Qg,,nIparent.(Happy L {mary}))

2ALCFT is the extension of ALCT with at-least and at-most restrictions that admit only
the number 1.

3To save brackets, we assume that the @ constructor has higher precedence than conjunc-
tion.



The only surprising assertion in the updated ABox is the last one. Intuitively,
it represents the update of the last two assertions of the original ABox: the first
disjunct captures the case where John was the unhappy person, and the second
disjunct captures the case when Mary was the unhappy person. There is no
update of the second line of the original ABox as this assertion is completely
invalidated by the update. We shall later prove that the updated ABox can-
not be expressed in ALCO. This illustrates that, as was already noted in the
introduction, the presence of nominals alone does not suffice to guarantee the
existence of updates.

2.3 A Lower Bound on the Size of Updates

Later on, we will see that the existence and size of updated ABoxes strongly
depends on the underlying description logic. In this section, we establish a
general lower bound on the size of the updated ABox: even in propositional
logic, updated ABoxes can become exponential in the size of the whole input,
which consists of the original ABox and the update. At least, this holds unless
every PTIME algorithm is LoGTiME-parallelizable, i.e., unless the complexity
classes PTIME and NC are identical. As discussed by Papadimitriou in [16], this
is believed to be similarly unlikely as PTiME = NP. This lower bound on the
size of updated ABoxes transfers to all DLs considered in this paper. Note that
our result complements the one from [7], where it is shown that an exponential
blowup of propositional updates cannot be avoided if arbitrary formulas are
allowed as updates unless the first levels of the polynomial hierarchy collapses.
Our argument uses a much more restricted form of updates (conjunctions of
literals) and refers to a different complexity-theoretic assumption.

For the following definitions, we fix an individual name a. A propositional
ABoz A is of the form {C(a)} with C' a propositional concept, i.e., a concept
that uses only the concept constructors —, M, and L. A propositional update U
contains only assertions of the form A(a) and ~A(a). Observe that propositional
ABoxes and propositional updates are only allowed to refer to the single, fixed
individual name a.

For the semantics, we fix a single individual z. Since we are dealing with
propositional ABoxes and updates, we assume that interpretations do not in-
teprete role names, and that interpretation domains have only a single element x
with aZ = 2. We introduce a couple of notions. For a concept C, let C(C) denote
the set of concept names used in C'. For an interpretation Z and a set of concept
names I', let Z|r denote the restriction of Z that interpretes only the concept
names in I'. Let C' be a concept and I' C C(C'). Then a concept D is called a
uniform T-interpolant of C' iff C(D) C T and {Z|r |z € C*} = {Z|r | x € D*}.
It is easily seen that, for any propositional concept C' and subset I' C C(C),
the uniform I'-interpolant of C' exists and is unique up to equivalence. The fol-



lowing lemma establishes a tight connection between uniform interpolants and
propositional updates.

Lemma 3. Let A= {C(a)} be a propositional ABox, U a propositional update,
[' the set of concept names in C' not occurring in U, C' the shortest uniform
[-interpolant of C', and

={a:(Cn [] 4}
A(a)el

Then we have the following:
(i) AxU=A';
(i) if AxU=A", then |A'| < U]+ |A"|.

Proof. Let A= {C(a)}, U, T, C, and A’ be as in the lemma. To prove (i), we
have to show that A’ satisfies Conditions (U1l) and (U2) from Definition 2:

(U1) Let Z, Z' be interpretations such that Z = A and Z =, Z'. We have to
show that Z' = U and T' = C(a). By definition of “=>,” and since the
concept names in I' do not appear in U, we have Z' = U and Z|r = Z'|.
The latter together with T = C(a) and the fact that C is the uniform
[-interpolant of C' yields that 7' |= a(a) as required.

(U2) Let 7’ be an interpretation such that Z = A’. In particular, 7/ = C(a).
Since C' is the uniform [-interpolant of C', there is thus an interpretation
7 such that a® € C7 and Z|r = Z'|r. We have to show that Z =, 7’ and
7 = A. The latter is clear since a* € CZ. For the former, we have to show
that (i) a¥ € AT \ A% implies A(a) € U, and (ii) a® € AT\ AT implies
—A(a) € U. For (i), let a € AT \ AZ. As T|p = T'|p, we have A ¢ T.
Therefore, A appears in ¢. This can be either in the form A(a) or —A(a).
As the second yields a contradiction to a* € AT and T' |= U, we are done.
Case (ii) is symmetric.
Now for Point (ii). Suppose AxU = A". Then A" = {a: D} for come concept
D. We may assume that all concept names occuring in D occur in AUU as
well. Now, for all concept names A such that a : A € U replace every occurence
of Ain D by T. For a : =A € U, replace every occurence of A in D by L.
Denote the resulting concept by D’. Then AxU = {a: D'} UU. Moreover, as
D’ and U do not have any concept names in common and A" = {a : D'} UU, we
have {a: C} = {a: Dj. It follows that D' is a I-interpolant for C'. We derive
IC| < |D'| because C' is the shortest T-interpolant for C. But then

A'| < |C| + U] < D) + U] < |D| + U] < |A"] + |U].



[t thus remains to show that the size of (smallest) uniform interpolants of propo-
sitional concepts is not bounded polynomially in the size of the interpolated
concept unless PTIME = NC.

The size of uniform interpolants of propositional concepts is closely related
to the relative succinctness of propositional logic (PL) formulas and Boolean cir-
cuits. We remind that both PL formulas and Boolean circuits compute Boolean
functions and refer, e.g., to [16] for exact definitions. We use |c| to denote the
number of gates in the Boolean circuit ¢, and |¢| to denote the length of the PL
formula . It is known that, unless PTIME = NC, there exists no polynomial
p such that every Boolean circuit ¢ can be converted into a PL formula ¢ that

computes the same function as ¢; and satisfies |¢| < p(|¢;|), see e.g. Exercise
15.5.4 of [16].

We show that non-existence of such a polynomial p implies that uniform
interpolants are not bounded polynomially in the size of the interpolated con-
cept. Take a Boolean circuit ¢ with £ inputs. Then ¢ can be translated into a
propositional concept D, by introducing concept names I, ..., I} for the inputs
and, additionally, one auxiliary concept name for the output of every gate. Let
G be the set of concept names introduced for gate outputs, and let O € G be
the concept name for the output of the gate computing the final output of c. It
is not difficult to see that this translation can be done such that there exists a
polynomial ¢ such that, for all Boolean circuits c,

(i) |De| < p(lef) and

(ii) for all interpretations Z and all z € DI, o € OF iff ¢ outputs “true” on

input by, ..., b, where b; =1if x € TjI and b; = 0 otherwise.

Now, set I' := G \ {O}. Then the uniform I-interpolant D. of D, also satisfies
(ii). Thus, D, is a (notational variant of a) propositional logic formula comput-
ing the same Boolean function as c. If the size of (smallest) I'-interpolants of
propositional concepts was bounded polynomially in the size of the interpolated
concept, we thus had obtained a contradiction to our assumption on the non-
existence of the polynomial p. Together with Lemma 3, we obtain the following
theorem.

Theorem 4. Unless PTIME = NC, there exists no polynomial p such that, for
all propositional ABozes A and propositional updates U, there exists a proposi-
tional ABox A’ such that

e AxU = A and
o |[A'| <p(JA[+[U|).

10
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Figure 3: Z and 7'

In the terminology of Cadoli et al. [7], this result states that the common
update operators for propositional theories are not logically compactable even
for updates with conjunctions of literals (unless PTIME = NC). Since the
additional constructors do not add to Boolean expressivity, it is not difficult to
prove that Theorem 4 carries over to all description logics considered in this

paper.

3 Description Logics without Updates

We say that a description logic £ has ABox updates iff, for every ABox A
formulated in £ and every update U, there exists an ABox A’ formulated in £
such that AxU = A’. In this section, we show that a lot of basic DLs are lacking
ABox updates.

3.1 Updates in ALC

We analyze the basic description logic ALC and show that it does not have
ABox updates. In particular, we consider the following combination of original
ABox A, update U, and updated ABox A’. Note that A is formulated in ALC,
and A’ is formulated in ALCO.

Lemma 5. Let A= {Vr.A(a)}, U := {-A(b)}, and
A" = {=A(b),Vr. (AU {b})(a)}.
Then AxU = A'.

Lemma 5 is readily checked by verifying that Conditions (U1l) and (U2) of Def-
inition 2 are satisfied.

To show that ALC does not have ABox updates, it suffices to prove that there
is no ALC-ABox equivalent to the ALCO-ABox A’. Consider the interpretations
7 and 7' displayed in Figure 3. We assume that the individual names a and b are

11



mapped to the individuals of the same name as shown in the figure. Moreover,
all other individual names are mapped to the individual y, and every concept
name is interpreted as the empty set. Clearly, Z = A’ and Z' £ A’. To show
that no ALC-ABox is equivalent to A’, it thus suffices to prove that ALC-ABoxes

cannot distinguish Z and Z': for every ALC ABox, we have 7 = A" it 7' = A
We first establish the following lemma.

Lemma 6. For all ALC-concepts C' and all individual names o, we have I =
Cla) iff T E C(«).

Proof. The truth of an assertion C'(a), C' an ALC-concept, in a model J only
depends on the set of points reachable from o using paths along the relations
77, where 7 occurs in C'. Therefore, the lemma is clear for a # a. For a = a, the
lemma can be proved by observing that the submodel of Z induced by {a”, b} is
bisimilar to the submodel of Z' induced by {a”', b, 2}, see [10] for a discussion of
the notion of bisimulation for ALC. Thus, for & = a, the lemma is an immediate
consequence of the fact that the extension CF of ALC concepts C' is preserved
under bisimulations. a

Lemma 7. There exists no ALC-ABox that is equivalent to the ALCO-ABox
A" = {=A),Vr. (AU {b})(a)}.

Proof. Assume to the contrary of what is to be shown that there exists an
ALC-ABox B that is equivalent to A'. Then Z = B and 7' = B. We show
that, for all assertions ¢ € BB, we have 7' = ¢, thus obtaining a contradiction to
7' = B. First, let ¢ be a (positive or negative) role assertion. Then 7' |= ¢ is a
consequence of 7 = ¢ and the fact that Z and 7’ satisfy exactly the same role
assertions. Now, let ¢ be a concept assertion. Then, 7' = ¢ is a consequence of
7 = ¢ and Lemma 6. EI

We have thus established the following result:
Theorem 8. ALC does not have ABox updates.

Note that Theorem 8 even applies to the case where the update contains only
concept assertions, but no role assertions. The fact that the updated ABox A’
used in this section is actually an ALCO-ABox may give rise to the conjecture
that adding nominals to ALC recovers the existence of updates. Unfortunately,
as shown in the following section, this is not the case.

3.2 Updates in ALCO

We consider the DL ALCQO, which is obtained by extending ALC with nominals,
and show that ALCO does not have ABox updates. More precisely, we proceed

12
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in two steps: we first give a relatively straightforward proof of the non-existence
of updated ABoxes in ALCO that relies on the use of role assertions in updates.
This proof raises the question whether the restriction of updates to only concept
assertions recovers the existence of updates. In the second step, we answer this
question to the negative by using a slightly more complex construction.

For presenting the counterexample to the existence of ABox updates in
ALCO, it is convenient to describe the updated ABox in ALCO®, the exten-
sion of ALCO with the @ constructor. Note that the original ABox is even
formulated in ALC.

Lemma 9. Let A= {3r.A(a)}, U :={-r(a,b)}, and
A ={(3r.(An—{b}) U@,A)(a),r(a,b)}.
Then AxU = A'.

It is not hard to see that A’ satisfies Conditions (U1l) and (U2) of Definition 2.
We now show that there exists no ALCO-ABox that is equivalent to the ALCO®-
ABox A’. As in the previous section, it follows that ALCO does not have ABox
updates.

Consider the interpretations Z, 7' and Z" depicted in Figure 4. We assume
that the individual names a, b, and ¢ are mapped to the individuals of the
same name, and that all other individual names are mapped to the individual c.
Moreover, the concept name A is interpreted as shown in the figure and all other
concept names are interpreted as the empty set in all three interpretations. It
can easily be checked that Z = A", ' = A" and 7" = A'. We will show that, if
an ALCO-ABox B is equivalent to A’, then Z” = B, which is a contradiction.
First, we prove the following lemma:

Lemma 10. For all ALCO-concepts C and all individual names o # b, we have
TEC) iff 7" = Cla), and T' |= C(b) iff " = C(b).
Proof. The truth of an assertion C'(«), C' an ALCO-concept, in a model J

only depends on the set of points reachable from o by paths along relations

r, where r occurs in C. The lemma follows immediately from this observation.
J
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The next lemma shows that A’ in Lemma 9 cannot be formulated in ALCO.

Lemma 11. There is no ALCO-ABozx that is equivalent to the ALCO®-ABox
A ={3r.(An-{b}) L Q@,A)(a), ~r(a,b)}.

Proof. Assume there is an ALCO-ABox B that is equivalent to A’. Then
T EB,T' E B, and 7" £ B. We show that, for all assertions ¢ € B, we have
" = ¢, thus obtaining a contradiction to Z"” = B. First, B does not contain
any positive role assertion since Z = B and Z does not satisfy any positive
role assertions. Second, if ¢ is a negative role assertion, then Z" = ¢ since Z"

satisfies all negative role assertions. Finally, let ¢ be a concept assertion. Then,
7" = ¢ is a consequence of Z = ¢, 7' = ¢, and Lemma 10. a

The proof also shows that ALC does not have ABox updates even if we
restrict ourselves to updates containing only role assertions, thus complementing
the result from Section 3.1 where ALC updates with only concept assertions are
considered.

As stated initially, the above proof raises the question whether or not restrict-
ing updates to concept assertions regains the existence of updated ABoxes in
ALCO. We answer this question to the negative. The following counterexample
is quite similar to the example for ABox updates given in Section 2.2:

Lemma 12. Let A= {3r.A(a),3Ir.A(d'),r(b,c),mAUVr.({c} - -A)(b)}, U :=
{—=A(b),~A(c)}, and A" = {C"(a),r(b,c),~A(b), ~A(c)} with

C' =(@,Ir.(Au{b}) NQyIr.(Au{b}))U
(@, Ir.(Au{c}) NQyIr.(AU{c})).

Then AxU = A'.

By verifying Conditions (U1) and (U2) in Definition 2, one can check that A’ is
indeed the result of updating A with . Intuitively, the ABox assertions r(b, ¢)
and =AU Vr.({c} = =A)(b) in A enforce that, in every model Z of A, b* ¢ A*
or c& ¢ AT. The assertion C'(a) represents the update of the assertions Jr.A(a)
and 3r.A(a’) in A. The first disjunct captures the case where b € AT and ¢ ¢ A%,
and the second disjunct captures the case where b ¢ A% and ¢ € AZ. In the
remaining case b ¢ AT and ¢ ¢ AT, the update of the mentioned assertions is
Q,Ir. AN @y, 3r.A. A corresponding disjunct is not needed since it would imply
the first two disjuncts. The assertion Vr.({c} — —A)(b) can simply be dropped
since all the information it provides is invalidated by the update.

In order to show that ALCO does not have ABox updates even if only concept
assertions are allowed in updates, we prove that there is no ALCO-ABox that
is equivalent to A’.
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Figure 5: Z, 7" and 7"

Consider the interpretations Z, Z' and Z" depicted in Figure 5. We assume
that the individual names a, @, b, ¢, and d are mapped to the individuals of the
same name, and that all other individual names are mapped to the individual d.
Moreover, AT = AT = A = {d} and all other concept names are interpreted
as the empty set. Clearly, Z = A", 7' = A’, but 7" = A'.

Lemma 13. For all ALCO-concepts C' and all individuals o« # a', we have
ITEC()if 7" = Cla), and T = C(d') iff " = C(d').

Proof. Recall from the proof of Lemma 10 that the truth of an assertion C'(«),
C an ALCO-concept, in a model J only depends on the set of points reachable
from o by paths along relations 7, where 7 occurs in C'. Again, the lemma
follows immediately from this observation. 4

Thus, we are ready to prove that A’ is not expressible in ALCO.

Lemma 14. There is no ALCO-ABoz that is equivalent to the ALCO®-ABox
A" from Lemma 12.

Proof. Assume there is some ALCO-ABox B with A" = B. Then 7 = A,
7' = A" and A" = B implies that Z = B and Z' = B. We show that Z" satisfies
every assertion in B, contradicting the facts that Z" = A" and A" = B. We make
a case distinction according to the type of assertion:

e  is a concept assertion. Since ¢ € B, we have 7 = ¢ and 7' |= . Thus,
Lemma 13 implies 7" = .

e ¢ is a positive role assertion. Then ¢ = r(b, ¢) since, otherwise, we have
T W porI' |~ ¢ contradicting Z = B and 7' = B. Clearly, ¢ = r(b,¢)
implies 7" = .

e  is a negative role assertion. Since ¢ € B, we have 7 = ¢ and 7' | ¢.
Assume to the contrary of what is to be shown that 7" & ¢. Then
¢ € {=r(a,b),—r(d,c),-r(bc)}. However, in each of the three cases we
obtain a contradiction to Z = ¢ or Z' = ¢. Hence, " | .

-
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Summing up, we obtain the following result:

Theorem 15. ALCO is lacking ABox updates, even if updates contain only
concept assertions or only role assertions.

3.3 Updates in ALC® and Boolean ABoxes in ALC

Due to the fact that, in the previous section, the ABoxes A" are expressed in
ALCO®, one may conjecture that the existence of updated ABoxes in ALCO
is recovered by adding the @ constructor. We will later see that this is indeed
the case. However, one may even reckon that adding only the @ constructor to
ALC does suffice to guarantee the existence of updated ABoxes. In this section,
we show that this is not the case. Indeed, we even show a stronger result related
to Boolean ABoxes.

A Boolean ABox is a finite set of Boolean ABox assertions, i.e., Boolean
combinations of ABox assertions expressed in terms of the connectives A and
V. We do not need to explicitly introduce negation since we admit negated
role assertions and concept negation is contained in every DL considered in this
paper. For example, the following is a Boolean ABox:

{B(a), (A(a) Ar(a,b)) vV —=3s.A(b)}.

An interpretation Z satisfies a Boolean ABox A if every Boolean ABox assertion
in A evaluates to true. There exists a rather close connection between the @
constructor and Boolean ABoxes:

Lemma 16.

1. For every non-Boolean ALC®-ABoz, there exists an equivalent Boolean

ALC-ABoz;

2. for every Boolean ALCO-ABozx, there exists an equivalent non-Boolean

ALCO®-ABoz.

Proof. Concerning Point 1, let A be a non-Boolean ALC®-ABox, and let C'(a)
be an assertion from A such that @,D is a subconcept of C'. Then the ABox A’
is obtained from A by replacing the assertion C'(a) with (D(b) A C[T/Q,D]) vV
(=D(b) A C[L/@Q,D]), where C[X/@Q,D] denotes the concept obtained from C
by replacing all occurrences of @,D with X. Tt is readily checked that A’ is
equivalent to A. By repeating this replacement, we will eventually obtain a
Boolean ALC-ABox.
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Concerning Point 2, define a mapping -* from ABox assertions to ALCO®-
concepts as follows:
Cla)* = Q,C
r(a,b)* = @,3r.{b}
-r(a,b)* = @Q,Yr.={b}

Now every Boolean ABox assertion ¢ can be converted into an ALCO®-concept
¢* by replacing A with M, V with U, and every assertion ¢ with *. Now, let
A = {61,...,0,} be a Boolean ALCO-ABox. Define a non-Boolean ALCO®-
ABox A" :={(¢f M ---M¢k)(a)}, where a is an arbitrary individual name. It is
readily checked that A’ is equivalent to A. a

Thus, non-Boolean ALCO®-ABoxes have exactly the same expressive power as
Boolean ALCO-ABoxes. Note that the same does not hold for ALC: while every
non-Boolean ALC®-ABox can be translated into an equivalent Boolean ALC-
ABox, there are Boolean ALC-ABoxes for which no equivalent non-Boolean
ALC®-ABox exists. For example, it is relatively easy to prove that the Boolean
ALC-ABox {A(a) V r(a,b)} has this property.

Since, for ALC, Boolean ABoxes are more expressive than the @ constructor,

we prove that ALC does not have ABox updates, even if we allow Boolean
ABoxes for the updated ABox.

Theorem 17. There exists an ALC-ABox A and an update U such that there
exists no Boolean ALC-ABox A" with AxU = A'.

Proof. Consider the ALC-ABox A, the update U, and the ALCO-ABox A’
given in Lemma 5. To prove Theorem 17, it is enough to show that there is no

Boolean ALC-ABox that is equivalent to A'.
Assume that there exists a Boolean ALC-ABox B with A" = B. We can
assume w.l.o.g. that B is in disjunctive normal form, i.e., that

B=A\Byv--v B,

where By,..., B, are ALC-ABoxes. Now take the interpretations Z and Z' dis-
played in Figure 3. Recall that 7 |= A" and 7' }= A". Then, A'=B and Z = A’
imply that there is an i < n such that Z |= B;. Since Z' (£ A’, we have 7' [~ B,;.
We can proceed as in the proof of Lemma 7 to show that Z' = ¢ for every

¢ € B;, thus obtaining a contradiction to Z' = B;. J

By Lemma 16, we obtain the following corollary.

Corollary 18. ALC® does not have ABox updates.
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Observe that both Theorem 17 and Corollary 18 remain true if we restrict up-
dates to only concept assertions.

4 Computing Updates in ALCQTO"

The results obtained in the previous section imply that, if an extension of ALC
does not allow to express nominals and the @ constructor, then we cannot hope
that it has ABox updates. In this section, we show that, for the common exten-
sions of ALC introduced in Section 2.1, adding nominals and the @ constructor
suffices to have ABox updates. More presicely, we prove that the expressive DL
ALCOTO® has ABox updates, and show that the proof is easily adapted to
the fragments of ALCQZO® obtained by dropping number restrictions, inverse
roles, or both.

Our construction of updated ABoxes is an extension of the corresponding
construction for propositional logic described in [26], and proceeds as follows.
First, we consider updates of concepts on the level of interpretations. More
precisely, we show how to convert a concept C' and an update I/ into a concept C%
such that the following holds: for all interpretations Z and Z' such that 7 satisfies
no assertion in U and Z == T', we have CT = (C*)*" (). The limitation that
CY satisfies (x) only if 7 satisfies no assertion in ¢/ can be overcome by replacing
CH with CY', where U’ is the set of those assertions in ¢/ that are violated
in Z. Obviously, the translation C* will be used to update concept assertions in
ABoxes (role assertions are very easy to deal with). However, we are confronted
with the problem that ABoxes have many different models, and these models
can violate different subsets of the update U. Hence, there is no unique way
of moving from C¥ to C* as described above. The solution is to produce an
updated ABox for each subset U’ C U separately, and then simply take the
disjunction.

We first introduce a bit of notation. For an ABox A, we use Obj(.A) to denote
the set of individual names in A, and sub(.A) to denote the set of subconcepts of
the concepts occurring in A. For an update U, we use Z% to denote the (unique)
interpretation satisfying Z == Z%. We use U~ to denote {—p | ¢ € U}. The
inductive translation that takes a concept C' and an update U to a concept CY
as explained above is given in Figure 6.

Lemma 19. Let U be an update and C a ALCQLO®-concept. For every inter-
pretation T with T = U™ and every individual name a, we have I = C(a) iff
T = Cl(a)

Proof. The following is an immediate consequence of the definition of Z9:

Claim. If Z = U™, then, for all #,y € AT and role names r, we have (x,y) € r*
iff one of the following holds:
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Figure 6: Constructing C%

o & #a” for all a € Obj(Uf) and (z,y) € r™";
e v = al for an a € Obj(U) and

— y # 0T for all b € Obj(U) and (z,y) € rT",
— or y = b” for a b € Obj(Ud) such that r(a,b) ¢ U and (x,y) € rZ",
— or y = b for a b € Obj(U) such that —r(a,b) € U.
Let Z be an interpretation such that Z = U™ and let E' € sub(.A). By structural

induction on E, we show that (E4)™ = FET. As 7 and 7" interpret individuals
in the same way, this implies Lemma 19.
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e I = {a}: this case is trivial since Z and 7" interpret individuals in the
same way.

e £ = A, for A a concept name: then

™ = amo U e U e

(a)eU Ala
- (Afu URGEA U W) o U e U e
A(a)eU —A(a)eU —A(a)eU A(a)eU
= A%
since AN J {a*f}=0and |J {a*} C AT duetoZ EU".
Aa)eU -A(a)eU

e E=@,C: ((@,C))™ = (@,c")™ = (@,C)T since (C*)T = CT and T
and ZY interpret individuals in the same way.

e The cases E = -C, E =CUD and E = C N D are straightforward and
left to the reader.

e E=(>mr(C): wehavez € ((>mr C)*)T" iff one of the following holds:

re (= LI o)™ and #{y | (r.9) €™ Ay e (G} > m

a€0bj(U)

or

r = ¥, for an a € Obj(U) and there are my,my, m3 > 0 such that

my -+ ms +msz = m and
S #l @) e aye () L onT ne™y zm,

- #{y | (my)er™ Aye UbeObj(u),r(a,b)eu{b}IM N (C*)F'} > my and
— #{b| ~r(a,b) € U NV € (O™} > my,.

By induction, we have that (C¥)T" = CZ. Thus, using the claim above,
we obtain that z € ((>m r O)4)T" iff

r € (_|a€(|)?| {a}) and #{y | (z,y) erf AyeCT} >m

or

x = a*, for an a € Obj(U) and there are mq,ms, ms > 0 such that m; +
ms + m3 = m and
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~ #Hyl(@y)ert Ay e (- be(%(u){b})I NCT} > my,

- #{y | (.9) € " Ay € Useoviariamgulbl’ N CT} 2 mo and
- #{y | (‘Ta y) ert A ye U—w’(a,b)eu{b}z N CI} > ms.

Further, by the claim above, this is equivalent to

T . .
x € (_lagcl)_bjl(u){a}) and #{y | (z,y) er* Ay Ct}>m

or

T € (aelo_bjl(u){a})I and #{y | (z,y) € r* Ay € C*} > m.

But this is equivalent to x € (> m r C)~.

e The case E = (< m r () is proved similarly to the previous case.
4

We now extend the update of concepts to the update of ABoxes, while still
remaining on the level of interpretations. Let A be an ABox and U/ an update.
Then define the ABox AY by setting

A4 = {CY(a) | C(a) € A} U
{r(a,b) | r(a,b) € AN —=r(a,b) ¢ U} U
{=r(a,b) | =r(a,b) € AANT(a,b) ¢ U}.
Lemma 20. Let A be an ABox and U an update. For every interpretation T
with T = U™, we have T | A iff TH E AY.

Proof. “=" Let Z = A. We show that 79 | AY. Let o € AY. If ¢ = r(a,b)
or ¢ = —r(a,b), then, by the definition of 7 and AY, T = ¢. If ¢ = EY(a)
for E(a) € A, it follows from Lemma 19 that 7% = E¥(a).

“=” Let U | AY. We show that Z = A. Let ¢ € A. If ¢ = r(a,b), there are
two cases to consider:

1. =r(a,b) € U. Then r(a,b) € U™, and since T |= U™, we obtain that
7 =r(a,b).

2. =w(a,b) ¢ U. Then r(a,b) € AY, and thus T = r(a,b). By definition of
T4 we obtain Z = r(a, b).

The case ¢ = —r(a,b) is analogous to the previous one, and the case p = E(a)
follows from Lemma 19. a
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We are in the position now to lift updates from the level of interpretations to the
level of ABoxes. Let A be an ABox and U/ an update. The set of literals over
U is defined as Ly := {¢, ) | » € U}. A simple ABox D is called a diagram
for U if it is a maximal consistent subset of Ly. Intuitively, a diagram gives
a complete description of the part of a model of A that is “relevant” for the
update U. Let ® be the set of all diagrams for ¢/ and let D € ®. Then define
the update D, as
Dy :={¢ | €D and € U}.

Considering Dy, means taking a subset of U as described at the beginning of
this section: we retain only those parts of I/ that are violated by interpretations
whose relevant part is described by D. We now define the updated ABox A’ as

A= \/ NAP uD, uD. (1)

DeD

Intuitively, the component AP“ is the update of the original ABox, D;, asserts
that the changes effected by the update hold, and DP“ denotes the result of
changing the diagram D under consideration as described by U. The Boolean
ABox operators are used only as an abbreviation for the “@Q” constructor. This
can be safely done since the translation from Boolean ABoxes to non-Boolean
ones described in the proof of Lemma 16 is linear. To achieve a less redundant
ABox, it is possible to drop from A’ those disjuncts for which the diagram D is
not, consistent w.r.t. A. This is, however, not strictly necessary since the ABox
DPu ensures that these disjuncts are inconsistent.

Lemma 21. AxUU = A'.

Proof. We have to prove that A’ satisfies Points (Ul) and (U2) from Defini-
tion 2.

(Ul) Let Z and Z' be two interpretations such that Z = A and 7 =, Z'. We
have to show that Z = A. We define D € ® as D ={l € Ly | Z [z 1}. Then,

Xp = /\DDM UADM UDU

is a disjunct in A’ and it suffices to show that Z' = yp. Since Z = D, by the
definition of Dy, and ==, it easily follows that Z' = ZP%. Thus, Z' = Dy,. Since
7 = AUD, by Lemma 20 we obtain that

7' &= DPv U AP U Dy,.

(U2) Let 7' = A’. We need to show that there exists an interpretation Z such

that Z = A and Z = 7. Since I' | A’ and A" = \/peo ADPHUAPYUDy,
there exists a D € D such that Z' | DPu U AP« U Dy,.
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Figure 7: Constructing C” for existential and universal restrictions

Let Z = (Z')Pu. Then we have that 7' = ZP. Thus, by Lemma 20 and since
7' = APu, we obtain that Z |= A. Similarly, we obtain that Z |= D.
It remains to show that Z ==, Z'. Let A be a concept name. Since 7' = ZP«,
we have that

AT = AT U {a® | A(a) € Dy} \ {a® | =A(a) € Dy}
Moreover, by the definition of Dy, and since Z |= D, we obtain that
{a® | A(a) € Dy} = {a* | A(a) € U} \ AT
and
{a” | =A(a) € Dy} = {a* | =A(a) € U} N AT,

Having AT = ATU{d? | A(a) € U}\{a” | ~A(a) € U}, and U being consistent,
we obtain that AT = AT, Similarly, we obtain 2 = X" for each role name r.
Thus, 7' = 7% and T =, T'.

d

It is easy to adapt the construction of updated ABoxes to the DLs ALCO®,
ALCIO®, ALCQO®. For the former two, we have to treat existential and
universal restrictions in the CY translation rather than number restrictions.

The corresponding clauses are shown in Figure 7. The lemmas proved above for
ALCQTO® are then easily easily adapted.

Theorem 22. All of the following DLs have ABoz updates: ALCO®, ALCTO®,
ALCQO®, and ALCQTO®.
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A close inspection of the updated ABox A’ computed above reveals that, first,
the size the concepts C¥ is exponential in the size of A and the update i/; and
second, the number of disjuncts in A’ is exponential in ¢/, but polynomial in
A. This is independent of whether the numbers inside number restrictions are
coded in unary or in binary. Therefore, we obtain the following.

Theorem 23. Let £L € {ALCO®, ALCTO®, ALCQO®, ALCQTO®}. Then
there exist polynomials py, pa, and q such that, for every L-ABox A and ev-
ery update U, there exists an L-ABox A’ such that the following hold:

o AxUU=A;
o | A < 20104 . gpa(id)
o A" can be computed in time q(|A’|).

By the arguments given in Section 2.3, an exponential blowup cannot be entirely
avoided unless PTiME = NC. However, we should pay attention to whether
the blowup occurs in the size of the original ABox A or in the size of the
update U. As the update will usually be rather small compared to the original
ABox, an exponential blowup in the size of I/ is much more acceptable than
an exponential blowup in the size of A. The algorithm given in this section
produces an exponential in both A and U. In the case of propositional logic,
Winslett [26] gives an algorithm that blows up exponentially only in the size of
U, but not in the size of (the equivalent of) A. We believe that, for the languages
mentioned in Theorem 23, the exponential blowup in |A| can not be avoided.
For example, consider the family of ABoxes (A;);en defined as follows:

A ={a:Ir(A NI (A2 1 I (4 3 Ai) ) ;-

Clearly, for U = {—r(b,b')} the size of the ABox A, = A; * U when computing
it using the algorithm above is exponential in the size of A;. We suspect that
there exists no polynomial p such that, for all i > 0, there is an ABox A} such
that A; x {-r(b,0')} = A, and | A}| < p(].A;]). While we leave a proof as an open
problem, in Section 5 we exhibit several ways around an exponential blowup in
the size A. Before that, however, we take a look at several variations of our
result.

Iterated Updates

There are applications in which the domain of interest evolves continuously. In
such an environment, it is necessary to update an ABox over and over again.
Then, it is clearly important that the exponential blowups of the individual
updates do not add up. The following theorem shows that this is indeed not the
case.
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Theorem 24. There exist polynomials py,po such that the following holds: for
all ABoxes Ay, ..., A, and updates U, ..., U,, if A; is the ABox computed by
our algorithm when A;_1 is updated with U;, for 0 < i < n, then

|A,| < o1 (o) , gpa([Uhy]++ltdn])

Proof. For a concept C, denote by ns the maximal number occurring in a
qualified number restriction in C. Furthermore, denote by d(C) the maximal
nesting depth of qualified number restrictions in C'. We find polynomials ¢; and
@2 such that, for every concept C' and every update U,

[CY] < [C] % (qa(ne) x 2D,

The crucial observation now is that, for every concept C' and update U, ne = ne,
and d(C) = d(CY): neither the maximal number nor the maximal nesting depth
of qualified numbers restrictions increases when forming C%. It follows that
there exist polynomials ¢; and ¢, such that for every concept C' and sequence of
updates Uy, ..., U;,

|(CU1)U2---Ui| < ch(\C'l)><Q2(\U1\+~~~+|Ui|).

A close inspection of the construction of A; from A; ; using the concepts
(CHv)H-Uiz1 shows that there exists an additional polynomial ¢, such that, for
all 4,
A;| < o (U |+ +hi]) Z 9q1 (IC) x gz ([t |+++[thi])
a:CEAp

The upper bound claimed in the theorem follows immediately. a

Conditional Updates

For the sake of simplicity, we have defined ABox updates to be unconditional:
the assertions in the update U are true after the update, no matter to which
interpretation / is applied. In some applications such as reasoning about actions
with DLs [3], it is more useful to have conditional updates, where the initial
interpretation determines the changes that are triggered.

A conditional update U* is a finite set of expressions ¢/1, where ¢ is an
ABox assertion (possibly involving non-atomic concepts) and v is an assertion

of the form
A(a),=A(a),r(a,b),=r(a,b)

with A a concept name. Intuitively, an expression ¢/1) means that if ¢ holds
in the initial interpretation, then ¢ holds after the update. As in the case of
uncondition updates, we require a consistency condition: if ¢/¢ and ¢'/—) are
both in U*, then the ABox {¢, ¢'} has to be inconsistent.
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The definition of interpretation updates can straightforwardly be adapted to
the case of conditional updates: an interpretation 7" is the result of updating an
interpretation I with a conditional update U* if the following hold:

e for all concept names A,
AT = ATUu{d® | p/Aa) e U AT | o} \{a” | ¢/~Ala) €U NT =}
e for all role names r,
ro= (T U{(h ) | o/r(a,b) €U AT [ ¢})
\{(a®,0%) [ o/r(a,b) € U NT = 0},

Conditions (Ul) and (U2) are as in the case of unconditional updates. Clearly,
conditional updates generalize unconditional once since assertions 1 of uncon-
ditional updates can be expressed as T(a)/1, with a an arbitrary individual
name.

We now show how to adapt our construction of updated ABoxes to condi-
tional updates. For U* a conditional update, we use rhs({/*) to denote {? |
o/ € U}, and lhs(U*) for {¢ | ¢/1p € U*}. In the original algorithm, the
updated ABox A’ is assembled by taking one disjunct for every diagram for /.
The intuition is that such a diagram D gives complete information about the
assertions in {* that actually cause a change when U/ is applied to models whose
relevant part is described by D (assertions in U do not cause a change if they
were already satisfied before the update). We generalize this idea to conditional
updates by taking one disjunct for each pair (D,U’), where D is a diagram for
rhs(U*), and U’ is a subset of U*. Intuitively, i’ determines the set of assertions
from U whose preconditions are satisfied in the initial model, and D determines
the post-conditions that can actually cause a change.

Let ©* be the set of all diagrams for rhs(U*). Let D € ©* and U’ C U*. As
before, we define the simple ABox Dy as

Dy :={Y | ¢ €D and p/t € U'}.

Then we can assemble the updated ABox A* as follows:

A=\ Nelofo ey ung | pfv e U\UP
DeED* U'CU* U ADM/ U Dy U DDM/
By slightly modifying the proof of Lemma 21, it is not difficult to show that A*
is indeed the result of updating A with the conditional update I/*. The notion of

a description logic £ having conditional ABox updates is defined in the obvious
way.

Theorem 25. All of the following DLs have conditional ABoz updates: ALCO®,
ALCIO®, ALCQO®, and ALCQTO®.
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Concerning the size and computability of updated ABoxes, we obtain a result
analogous to Theorem 23.

Boolean ABox Updates

In Section 3.3, Boolean ABoxes were introduced as a generalization of standard
ABoxes, and a close connection between Boolean ABoxes and the @ constructor
was established. In fact, using the arguments of Lemma 16, it is easy to see
that the expressive power of Boolean L£-ABoxes is identical to the expressive
power of non-Boolean £®-ABoxes, for £ any of ALCO, ALCTO, ALCQO, and
ALCQTO. Hence, Theorems 22 and 23 can also be understood in terms of
Boolean ABoxes.

We say that a description logic £ has Boolean ABox updates if, for every
Boolean £-ABox A and update U, there exists a Boolean £-ABox A’ satisfying
Conditions (U1) and (U2) of Definition 2. Due to the generalization of Lemma 16
to the relevant languages, the construction presented in this section can also be
used to compute Boolean ABox updates: first convert the Boolean £-ABox into
a non-Boolean £%-ABox, apply the described construction, and then convert
the resulting non-Boolean £®-ABox back into a Boolean £-ABox.

Theorem 26. All of the following DLs have Boolean ABox updates: ALCO,
ALCTO, ALCQO, ALCQIQO, and their extensions with the Q constructor.

What is the size of updated Boolean ABoxes computed by the above approach?
The main observation is that, while the translation of Boolean £-ABoxes into
non-Boolean £ ABoxes is polynomial, the reverse translation induces an expo-
nential blowup. More precisely, this blowup is exponential in the nesting depth
of the @ constructor. Since our translation introduces nestings of the @ con-
structor whose depth is linear in the size of the original ABox, our algorithm
now produces a double exponential blowup in the size of the original ABox.

Theorem 27. Let L € {ALCO, ALCTO, ALCQO, ALCQLO}. Then there
exist polynomials py, pa, and q such that, for every L-ABox A and every update
U, there exists an L-ABox A’ such that the following hold:

o AxU=A;
o 4] < 220 gmlu,

o A" can be computed in time q(|A’|).
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Note that, for the languages £¢, with £ as in Theorem 27, we have Boolean
updates whose size is as described in Theorem 23, i.e., only single exponential
in the original ABox: the final conversion step of non-Boolean £%-ABoxes into
Boolean £-ABoxes can simply be omitted. We currently don’t know whether
the upper bounds given in Theorem 27 can be improved.

5 Small(er) Updated ABoxes

The size of the updated ABoxes computed in the previous sections is exponential
in the size of the original ABox. When replacing the @-operator with Boolean
ABoxes, it is even 2-exponential in the size of the original ABox. In this section,
we explore two different ways to extend ALCQOTO® and its fragments such that
it becomes possible to compute updated ABoxes that are only polynomial in the
size of the original ABox.

A first, rather restrictive solution is to admit only concept assertions in
updates. Then, in all DLs captured by Theorem 22, computing the concepts C%
becomes a lot simpler: just replace every concept name A in C' with

Al |_| 1= |_| .
ﬁA(a)EB{a} (A(a)EB{a})
If modified in this way, our original construction clearly yields updated ABoxes
that are only polynomial in the size of the original ABox (but still exponential
in U). The bound is independent of the coding of numbers and also applies to
iterated updates.

51 ALCQIO® Updates with TBoxes

We show how to produce “small”a updated ABoxes by allowing the introduction
of additional concept names via an acyclic TBox. In the propositional case, this
corresponds to admitting additional variables for defining abbreviations. In the
terminology of Cadoli et al. [7], we thus move from logical equivalence to query
equivalence. It will turn out that, in this way, we obtain updates that are only
polynomial in the size of the original ABox. It is interesting to note that, in the
propositional case, the admission of additional variables does not lead to more
succinct updated formulas: in the worst case, they are still exponential in the
size of the update [7].

A concept definition is of the form A = C, where A is a concept name and
C is a concept. A TBox T is a finite set of concept definitions with unique
left-hand sides. A TBox 7T is called acyclic if no concept is defined (directly or
indirectly) in terms of itself. We call a concept name A defined in a TBox T and
write A € def(T) if A occurs on the left-hand side of a concept, definition in 7.
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Otherwise, we call A primitive and write A € prim(7T). A knowledge base (KB)
is a pair (7,.A) consisting of a TBox 7 and an ABox A. An interpretation 7
satisfies a concept definition A = C if AT = C%. T is a model of a TBox T,
written Z | T, if Z satisfies all concept definitions in 7; Z is a model of a KB
K= (T,A), written Z = K, if Z is a model of 7 and A.

Let 7 be a TBox. An update U for T is a simple and consistent ABox
that does not use concept names from def (7). We do not allow defined concept
names in updates because this is obviously equivalent to admitting updates with
complex concepts and thus violates our policy of considering only updates on
an atomic level.

Definition 28 (Interpretation update). Let 7 be an acyclic TBox, U an
update for 7, and Z, 7' models of 7 such that A” = A” and 7 and 7' agree on
the interpretation of individual names. Then Z' is the result of updating T with
U relative to T, written T =], T', if the following hold:

e for all concept names A € prim(7):

AT = (AT u{d” | A(a) € U} \ {a® | ~A(a) € U};

e for all role names r,

P = (rfu{(a*,b") | r(a,b) € U})\ {(a®,b") | =r(a,b) € U}. .

The difference between Definitions 1 and 28 is that the latter talks only about
concept names that are primitive w.r.t. 7. Observe that the relation =7, is
still deterministic: in models of acyclic TBoxes, the interpretation of primitive
concept names and role names determines the interpretation of defined concept
names in a unique way.

Definition 29 (Knowledge Base Update). Let K; and Ky be knowledge
bases, K; = (T;, A;), such that prim(7;) = prim(7;) and 7; C 75, and let U be
an update for 7;. Then Ky is a result of updating Ky with U if the following
conditions hold:

U) VLT : ((ZEKiANI=]JT AT ET)=>TEA));
U2YVT': (T' =Ky — T (TEK ANIT=[T)).
In this case, we write K1 x U =p K. AN

In contrast to ABox updates, the result Iy of updating a knowledge base is not
unique up to logical equivalence. This is due to the fact that we have more than
one choice for introducing new concept definitions in 75. However, we have the
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following, weaker form of equivalence. A primitive interpretation for a TBox T
is an interpretation that interprets only the primitive concept names in 7 and
the role names, but not the defined concept names. A primitive interpretation
is a primitive model of a knowledge base K if it can be extended to a model of
KC by additionally interpreting the defined concept names. Then, it is an easy
consequence of Definition 29 that Ky xU =p Ky and Ky x U =p K, implies that
Ko and K have the same primitive models.

We now use the notion of unfolding to establish a relationship between up-
dates of ABoxes and updates of knowledge bases. Let 7 be an acyclic TBox,
and C a concept. The concept C7 obtained from C' by exhaustively replacing
defined concept names in C' with their definitions from 7 is called the unfolding
of C w.r.t. T. Clearly, all concept names occurring in C7 are primitive w.r.t.

T. If Ais an ABox, then the unfolding of A w.r.t. T is the ABox
AT = (A\ {C(a) | C(a) € A})U{CT(a) | C(a) € A}.

I.e., we keep role assertions and replace concept assertions by their unfolded
variants.

The following lemma shows that updated ABoxes for acyclic TBoxes encode
updated ABoxes without acyclic TBoxes. In the following, we use prim,(Z) to
denote the (unique) primitive interpretation w.r.t. 7 that can be extended to
the full interpretation Z.

Lemma 30. Let Ky and Ky be knowledge bases, K; = (T;, A;), such that Ty C T
and prim(7Ty) = prim(73), and let U be an update for T;. Then

KixU=p Ky iff AT xU = AD.

Proof. “<” Let AF xU = .AZ?. In order to prove that Iy * U =p Ko, we need
to show that (U1") and (U2') from Definition 29 are satisifed:

(U1') Let 7 and 7' be interpretations such that Z = Ky, T =/} 7/, and T’ |=
T>. We need to show that then 7' = Ay. Since Z | Ay, Tq, we have
that primy (Z) | AJ'. Moreover, since primy (Z) == prims (Z') and
AT« U = AT, by (U1) of Definition 2 we obtain that primy (Z') = A22.
Thus, having prim(7;) = prim(7z) and Z' = T, we obtain that 7' = As.

(U2') Let Z' be an interpretation such that Z' = Ky. We need to show that
there is an Z such that Z :Z} 7' and T E K;. Since 7' E As, Tz
and prim(7;) = prim(75), we have that primy (Z') = AJ?, and by (U2) of
Definition 2, there exists an Z such that 7 =, prim (Z') and IEAD.
Take an Z such that prim (Z) = 7 and T = T;. Then, by definition of
unfolding we have that Z = A;. Thus Z | K;. Finally, since 75 D Ty, it
also holds that 7 =1 7.
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“=" Let K1 *U =p Ks. In order to prove that A xU = A , we need to
show that (U1) and (U2) from Definition 2 are satisfied:

(U1) Let Z and Z’ be interpretations such that Z = A" and Z =, 7. Take
an 7 such that prim.- (Z) = Z and Z = 7;. By definition of unfolding,
we have that Z = A;. Now take an Z’ such that primTQ(IA’) = 7'. and
7' = T5. Since prim(7;) = prim(73) and T3 O 7i, we easily obtain that
7 =] 7', and by (U1’) of Definition 29 that 7' = A,. But then we have
that Z' = AJ.

(U2) Let Z' be an interpretation such that 7' = AJ2. We need to show that
there is an Z such that T =y 7' and 7 = A]'. Take an 7' such that
primB(ZA’) 7' and 7' = T5. By definition of unfolding we have that 7' =
As. Thus 7 = Ky and, by (U2') of Definition 29, there is an interpretation
7, such that 7 =1 7’ and Z = K. Take T = primy (Z). Then Z |= A]".
Finally, by definition of =/ and since prim(73) = prim(7;), we have that
T =y A

a
We now show how to construct updated knowledge bases in ALCQTO® and
its fragments. Let K = (T,.4) be a knowledge base, and let ¢ be an update for

T. As in Section 4, we use ® to denote the set of all diagrams for ¢/ and set,

for every D € D,

Dy :={¢ | ¢ € U and - € D}.

Additionally, we use sub(K) to denote the set of all subconcepts of concepts

occurring in K. To construct the result of updating K with U, we introduce a

new concept name A2 for every diagram D € ® and every C' € sub(K). For a

concept F, let trans(F, D) denote the concept on the right-hand side of the clause

for EP« in Figure 6 without inductively expanding the occurring subconcepts

CPu, but with each such concept CP% replaced with the concept name AZ. For

example, trans(C' 11 D, D) = AR M AP also if C' and D are complex. For each

diagram D € ©, define a TBox

= {AD = trans(C, D) | C € sub(K) \ def(T)}.
Then, we define the TBox updated TBox as the union of the original TBox T
and, for each diagram D, the TBox 7.5 and a version of 7 adapted to D:
T =Tu |J(TRU{AR= AR |A=CeT))

DeD

For every D € ©, we define
Ap, = {AZ(a)|C(a) € A} U
{r(a,b) | r(a,b) € AN—r(a,b) ¢ Dy} U
{=r(a,b) | -r(a,b) € AAr(a,b) ¢ Dy}
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Now we can define the updated ABox A’ by setting
A =\/ \Ap, uDyU (D\Dy)

DeD

and finally assemble the updated knowledge base by setting K' := (77, A’).
Note that the concept definitions from 7 appear in 7’ without being referred
to by A’. Intuitively, this is hardly surprising: the definitions in 7 were used
to describe the previous state of the world. Since this state has changed, the
definitions in 7 are not appropriate any longer. We nevertheless keep 7 in the
updated knowledge base since concept definitions are usually not only (techni-
cal) abbreviations, but rather reflect the terminology of the application domain.
Therefore, they should not simply be discarded. One may even consider produc-
ing an updated knowledge base that reuses as many concept definitions from 7~
as possible. This is outside the scope of the current paper.

Lemma 31. L +«U =p K’

Proof. By the construction of 77, it is obviously the case that 77 O T and
prim(7) = prim(7”). Then, by Lemma 30 it suffices to show that (A")7" is the
result of updating A7 with U. Let us use (A7)’ to refer to the update of A7
with U, as constructed in (1) in Section 4. Since the ABox update without
TBoxes is unique up to equivalence, we just need to show that (A")7" = (A7)’
Since the updates, and thus also their diagrams contain no concept names from
def(7), we have that

(A" =\ \Ap,)" UDyU(D\ Dy)

DeD

and
(A7) =\ \AT)P“uD, UD.
DeD
Thus, since it is easy to see that Dp, = D\ Dj; for all D € D, it remains to
show that (Ap,)” = (A7)P« for all D € ©. But this is true due to

(AD)T = (CT)Pu for all C' € sub(K),

which is a consequence of the definition of 7' and can easily be shown by struc-
tural induction on C'. a

We formulate the main result on updates with acyclic TBoxes. In constrast to
updates without TBoxes, updated knowledge bases are now polynomial in the
size of the original KB. Thus, Lemma 30 implies that we can use acyclic TBoxes
to obtain a more succinct presentation of updated ABoxes. In the following,
the size |T| of a TBox T is ) ,_cc7 |C|, and the size |K| of a knowledge base
K = (A, T) is the sum of |T] and |.A|.
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Theorem 32. Let L € {ALCO®, ALCTO®, ALCQO®, ALCQTO®}. Then
there exist polynomials p1, p2, and q such that, for every L-knowledge base
K = (T,A) and every update U for T, there exists an L-knowledge base K’
such that

o LxU =p K';
o [K'| <pu(IK]) - 270MD;

e K can be computed in time q(|K']).

Iterated Updates

As in Section 4, we show that iterated updates do not produce a blowup of
the size of updated ABoxes that is worse than the blowup produced by a single
update.

Theorem 33. There exist polynomials py,p> such that the following holds: for
all knowledge bases Ky, ..., K, and updates Uy, ..., U,, if K; is the ABox com-
puted by our algorithm when IC;_y is updated with U;, for 0 < i < n, then

Kn| < p1(|Ko) - 272 (|4 thn])
Proof. Let K,, = (T, A,) and |Ky| = m. We analyze the sizes of T, and A,
separately:

(a) It is easily seen that |A;] < (2 x U]+ | A;_1]) x 241 < | A; 4| x 234, Since
| Ao| is bounded by m, it follows that |A;| < m - 23(l++hD),

(b) For a TBox T, let ||T|| denote the number of concept definitions in 7.
Moreover, let ©; be the set of diagrams for ;. It is not difficult to check
that we have

Tl = ol + (I To]] + m) x [D1].
and, for 7 > 1,
Tl = [ Tieall + (I Tia || + [ Tica]) > |Di].

This equation uses |7;_1| instead if |K;_;| since A;_; contains only defined
concept names and no complex concepts. Therefore, the cardinality of the
T.E component of 7; is bounded by |T; 1].

Since ||7;_1]| is bounded by |7; 1| and the size of each concept equation in
T;, © > 0, is bounded by a constant, there is a constant ¢ such that

|T| < 3em x 2Ml < m x 23]
Ui 3c|U;
= -1

It follows that |7Z| <m X 23C(|”1\+"'+\Ui\)_

The polynomials p; and p, are now easily derived. 4
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5.2 Updates in ALCQTOY\O

As argued at the beginning of Section 5, updated ALCQZO® ABoxes are only
polynomial in the size of the original ABox if the update contains no role as-
sertions. Intuitively, updates with only concept assertions do not lead to an
exponential blowup because we have available the Boolean operators on con-
cepts, nominals, and the @-operator. In standard DLs, none of these operators
is available for roles: we can neither construct the union of roles, nor their com-
plement, nor a “nominal role” {(a, b)} with a and b nominals. In this section, we
explore the possibility of constructing updated ABoxes in a language in which
such constructors are available. The language we consider is closely related to
those introduced and investigated in [6, 12, 13], and is of almost the same ex-
pressive power as C?, the two-variable fragment of first-order logic with counting
quantifiers [9].

Denote by ALCQZO™ the description logic extending ALCQZO® by means
of the role constructors N (role intersection), — (set-theoretic difference of roles),
and {(a,b)} (nominal roles). In this language, complex roles are constructed
starting from role names and nominal roles, and then applying N, —, and the
inverse role operator -~. The interpretation of complex roles is as expected:

o ((@.0))7 = {(a".17)}, for all a,b € N
o (mNr)t=rfnrd;
I_.,1_.T

o (ri—r)t =rf—r3.

We note that reasoning in ALCQZO™ is decidable: this DL can easily be em-
bedded into C? and, therefore, ABox consistency is decidable in NEXPTIME
even if the numbers inside number restrictions are coded in binary [9, 15, 17].
This bound is tight as, already in ALCQZO, reasoning is NExpPTIME-hard [24].
We now formulate the main result of this section:

Theorem 34.
There exist polynomials p1, ps, and q such that, for every ALCQIOT-ABox A
and every update U, there is an ALCQIOT-ABox A’ such that

e AxU=A;
o | A < pi(JAl)- 20D,

o A" can be computed in time q(|A’|).
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Proof. We modify the proof of Theorem 23. For ALCQZO™, the construction
of the concepts CY is much simpler: it suffices to replace every concept name A
in C' with

R G LR )

and every role name r in C' with

ruJ U {(a,b)}\ ( U{ab

—r(a,b)eUd r(a,b)eUd

The concepts CY are therefore of size polynomial in the size of C' and ¢. The
ABox A’ can then be constructed in the same way as in the proof of Theorem 23

and is polynomial in the size of A, but exponential in the size of the update .
a

Clearly, Theorem 34 is independent of the coding of numbers, and, also with
iterated updates, updated ABoxes remain polynomial in the size of the original
ABox. An alternative to working with a description logic such as ALCQZOT, is
to work directly in the two-variable fragment with counting C?. Then, a result
analogous to Theorem 34 is easily obtained.

6 Conclusion

We have analyzed ABox updates in several common description logics. The
main outcome of our analysis is as follows: first, in the case of the DLs under
consideration, a description logic has updates if and only if it is able to express
nominals and the @ constructor (or, equivalently, admits Boolean ABoxes). Sec-
ond, an exponential blowup cannot by avoided unless NC = PTIME. And third,
an exponential blowup in the size of the original ABox can be avoided if (i) we
allow the introduction of new concept definitions in acyclic TBoxes or (ii) move
to DLs that include Boolean operators on roles and a certain nominal construc-
tor for roles, thus eliminating the syntactic disbalance between concepts and
roles observed in most DLs. We have also shown that, in the case of repeated
updates, there are no repeated exponential blowups.

There are two obvious directions for future work. The first direction is to
alleviate the syntactic restriction posed on concepts appearing in updates. This
can be done either fully or in a controlled way. In the first case, it is very
likely that updated ABoxes cannot be computed even if they exist. However,
this has not been proved for some basic DLs such as ALCO®, and not for all
available types of semantics. In the second case, one may for example admit
Boolean combinations of concept names in updates. It seems likely that this
generalization does not destroy computability of updates.
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The second direction for future work is to incorporate cyclic TBoxes or GCIs
into our framework. As discussed in [3], it is not at all straightforward to find a
semantics for this case that addresses the frame problem (posed by the principle
of inertia) in a convincing way. One possible way around this problem is to
provide the user with expressive means that allow her to state, in the formulation
of the update, the facts that change and the facts that don’t. Note that this
cannot be done with the updates used in the current paper since they can only
talk about domain elements that are assigned a name by some individual name.
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