49 research outputs found

    An MDA approach for developing Secure OLAP applications: metamodels and transformations

    Get PDF
    Decision makers query enterprise information stored in Data Warehouses (DW) by using tools (such as On-Line Analytical Processing (OLAP) tools) which employ specific views or cubes from the corporate DW or Data Marts, based on multidimensional modelling. Since the information managed is critical, security constraints have to be correctly established in order to avoid unauthorized access. In previous work we defined a Model-Driven based approach for developing a secure DW repository by following a relational approach. Nevertheless, it is also important to define security constraints in the metadata layer that connects the DW repository with the OLAP tools; that is, over the same multidimensional structures that end users manage. This paper incorporates a proposal for developing secure OLAP applications within our previous approach: it improves a UML profile for conceptual modelling; it defines a logical metamodel for OLAP applications; and it defines and implements transformations from conceptual to logical models, as well as from logical models to secure implementation in a specific OLAP tool (SQL Server Analysis Services).This research is part of the following projects: SIGMA-CC (TIN2012-36904), GEODAS-BC (TIN2012-37493-C01) and GEODAS-BI (TIN2012-37493-C03) funded by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER. SERENIDAD (PEII11-037-7035) and MOTERO (PEII11- 0399-9449) funded by the Consejería de Educación, Ciencia y Cultura de la Junta de Comunidades de Castilla La Mancha, and Fondo Europeo de Desarrollo Regional FEDER

    An MDA approach for developing secure OLAP applications: Metamodels and transformations

    Get PDF
    Decision makers query enterprise information stored in DataWarehouses (DW) by using tools (such as On-Line Analytical Processing (OLAP) tools) which employ specific views or cubes from the corporate DW or Data Marts, based on multidimensional modelling. Since the information managed is critical, security constraints have to be correctly established in order to avoid unauthorized access. In previous work we defined a Model-Driven based approach for developing a secure DW repository by following a relational approach. Nevertheless, it is also important to define security constraints in the metadata layer that connects the DW repository with the OLAP tools; that is, over the same multidimensional structures that end users manage. This paper incorporates a proposal for developing secure OLAP applications within our previous approach: it improves a UML profile for conceptual modelling; it defines a logical metamodel for OLAP applications; and it defines and implements transformations from conceptual to logical models, as well as from logical models to secure implementation in a specific OLAP tool (SQL Server Analysis Services). © 2015 ComSIS Consortium. All rights reserved.This research is part of the following projects: SIGMA-CC (TIN2012-36904), GEODAS-BC (TIN2012-37493-C01) and GEODAS-BI (TIN2012-37493-C03) funded by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER

    Showing the Benefits of Applying a Model Driven Architecture for Developing Secure OLAP Applications

    Get PDF
    Data Warehouses (DW) manage enterprise information that is queried for decision making purposes by using On-Line Analytical Processing (OLAP) tools. The establishment of security constraints in all development stages and operations of the DW is highly important since otherwise, unauthorized users may discover vital business information. The final users of OLAP tools access and analyze the information from the corporate DW by using specific views or cubes based on the multidimensional modelling containing the facts and dimensions (with the corresponding classification hierarchies) that a decision maker or group of decision makers are interested in. Thus, it is important that security constraints will be also established over this metadata layer that connects the DW's repository with the decision makers, that is, directly over the multidimensional structures that final users manage. In doing so, we will not have to define specific security constraints for every particular user, thereby reducing the developing time and costs for secure OLAP applications. In order to achieve this goal, a model driven architecture to automatically develop secure OLAP applications from models has been defined. This paper shows the benefits of this architecture by applying it to a case study in which an OLAP application for an airport DW is automatically developed from models. The architecture is composed of: (1) the secure conceptual modelling by using a UML profile; (2) the secure logical modelling for OLAP applications by using an extension of CWM; (3) the secure implementation into a specific OLAP tool, SQL Server Analysis Services (SSAS); and (4) the transformations needed to automatically generate logical models from conceptual models and the final secure implementation.This research is part of the following projects: SERENIDAD (PEII11- 037-7035) financed by the ”Viceconsejería de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha” (Spain) and FEDER, and SIGMA-CC (TIN2012-36904) and GEODAS (TIN2012-37493-C03-01) financed by the ”Ministerio de Economía y Competitividad” (Spain)

    Designing data warehouses for geographic OLAP querying by using MDA

    Get PDF
    Data aggregation in Geographic Information Systems (GIS) is a desirable feature, spatial data are integrated in OLAP engines for this purpose. However, the development and operation of those systems is still a complex task due to methodologies followed. There are some ad hoc solutions that deal only with isolated aspects and do not provide developer and analyst with an intuitive, integrated and standard framework for designing all relevant parts. To overcome these problems, we have defined a model driven approach to accomplish Geographic Data Warehouse (GDW) development. Then, we have defined a data model required to implement and query spatial data. Its modeling is defined and implemented by using an extension of UML metamodel and it is also formalized by using OCL language. In addition, the proposal has been verified against a example scenario with sample data sets. For this purpose, we have accomplished a developing tool based on Eclipse platform and MDA standard. The great advantage of this solution is that developers can directly include spatial data at conceptual level, while decision makers can also conceptually make geographic queries without being aware of logical details.This work has been partially supported by the ESPIA project (TIN2007-67078) from the Spanish Ministry of Education and Science and by the QUASIMODO project (PAC08-0157-0668) from the Castilla-La Mancha Ministry of Education and Science (Spain). Octavio Glorio is funded by the University of Alicante under the 11th Latin American grant program

    An architecture for automatically developing secure OLAP applications from models

    Get PDF
    Context: Decision makers query enterprise information stored in Data Warehouses (DW) by using tools (such as On-Line Analytical Processing (OLAP) tools) which use specific views or cubes from the corporate DW or Data Marts, based on the multidimensional modeling. Since the information managed is critical, security constraints have to be correctly established in order to avoid unauthorized accesses. Objective: In previous work we have defined a Model-Driven based approach for developing a secure DWs repository by following a relational approach. Nevertheless, is also important to define security constraints in the metadata layer that connects the DWs repository with the OLAP tools, that is, over the same multidimensional structures that final users manage. This paper defines a proposal to develop secure OLAP applications and incorporates it into our previous approach. Method: Our proposal is composed of models and transformations. Our models have been defined using the extension capabilities from UML (conceptual model) and extending the OLAP package of CWM with security (logical model). Transformations have been defined by using a graphical notation and implemented into QVT and MOFScript. Finally, this proposal has been evaluated through case studies. Results: A complete MDA architecture for developing secure OLAP applications. The main contributions of this paper are: improvement of a UML profile for conceptual modeling; definition of a logical metamodel for OLAP applications; and definition and implementation of transformations from conceptual to logical models, and from logical models to the secure implementation into a specific OLAP tool (SSAS). Conclusion: Our proposal allows us to develop secure OLAP applications, providing a complete MDA architecture composed of several security models and automatic transformations towards the final secure implementation. Security aspects are early identified and fitted into a most robust solution that provides us a better information assurance and a saving of time in maintenance.This research is part of the following Projects: SIGMA-CC (TIN2012-36904), GEODAS-BC (TIN2012-37493-C01) and GEODAS-BI (TIN2012-37493-C03) funded by the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER. SERENIDAD (PEII11-037-7035) and MOTERO (PEII11- 0399-9449) funded by the Consejería de Educación, Ciencia y Cultura de la Junta de Comunidades de Castilla La Mancha, and Fondo Europeo de Desarrollo Regional FEDER

    A case study on model driven data integration for data centric software development.

    Get PDF
    Model Driven Data Integration is a data integration approach that proactively incorporates and utilizes metadata across the data integration process. By decoupling data and metadata, MDDI drastically reduces complexity of data integration; whilst also providing an integrated standard development method, which is associated with Model Driven Architecture. This paper introduces a case study to adopt MDA technology as an MDDI framework for data centric software development; including data merging and data customization for data mining. A data merging model is also proposed to define relationships between different models at a conceptual level which is then transformed into a physical model. In this case study we collect and integrate historical data from various universities into the Data Warehouse system in order to develop student intervention services through data mining

    Applying the UML and the Unified Process to the Design of Data Warehouses

    Get PDF
    The design, development and deployment of a data warehouse (DW) is a complex, time consuming and prone to fail task. This is mainly due to the different aspects taking part in a DW architecture such as data sources, processes responsible for Extracting, Transforming and Loading (ETL) data into the DW, the modeling of the DW itself, specifying data marts from the data warehouse or designing end user tools. In the last years, different models, methods and techniques have been proposed to provide partial solutions to cover the different aspects of a data warehouse. Nevertheless, none of these proposals addresses the whole development process of a data warehouse in an integrated and coherent manner providing the same notation for the modeling of the different parts of a DW. In this paper, we propose a data warehouse development method, based on the Unified Modeling Language (UML) and the Unified Process (UP), which addresses the design and development of both the data warehouse back-stage and front-end. We use the extension mechanisms (stereotypes, tagged values and constraints) provided by the UML and we properly extend it in order to accurately model the different parts of a data warehouse (such as the modeling of the data sources, ETL processes or the modeling of the DW itself) by using the same notation. To the best of our knowledge, our proposal provides a seamless method for developing data warehouses. Finally, we apply our approach to a case study to show its benefit.This work has been partially supported by the METASIGN project (TIN2004-OO779) from the Spanish Ministry of Education and Science, by the DADASMECA project (GV05/220) from the Valencia Government, and by the DADS (PBC-05-QI 2-2) project from the Regional Science arid Technology Ministry of CastiIla-La Mancha (Spain)

    Showing the Benefits of Applying a Model Driven Architecture for

    Get PDF
    Data Warehouses (DW) manage enterprise information that is queried for decision making purposes by using On-Line Analytical Processing (OLAP) tools. The establishment of security constraints in all development stages and operations of the DW is highly important since otherwise, unauthorized users may discover vital business information. The final users of OLAP tools access and analyze the information from the corporate DW by using specific views or cubes based on the multidimensional modelling containing the facts and dimensions (with the corresponding classification hierarchies) that a decision maker or group of decision makers are interested in. Thus, it is important that security constraints will be also established over this metadata layer that connects the DW's repository with the decision makers, that is, directly over the multidimensional structures that final users manage. In doing so, we will not have to define specific security constraints for every particular user, thereby reducing the developing time and costs for secure OLAP applications. In order to achieve this goal, a model driven architecture to automatically develop secure OLAP applications from models has been defined. This paper shows the benefits of this architecture by applying it to a case study in which an OLAP application for an airport DW is automatically developed from models. The architecture is composed of: (1) the secure conceptual modelling by using a UML profile; (2) the secure logical modelling for OLAP applications by using an extension of CWM; (3) the secure implementation into a specific OLAP tool, SQL Server Analysis Services (SSAS); and (4) the transformations needed to automatically generate logical models from conceptual models and the final secure implementation.This research is part of the following projects: SERENIDAD (PEII11- 037-7035) financed by the ”Viceconsejería de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha” (Spain) and FEDER, and SIGMA-CC (TIN2012-36904) and GEODAS (TIN2012-37493-C03-01) financed by the ”Ministerio de Economía y Competitividad” (Spain)
    corecore