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Abstract

The design, development and deployment of a data warehouse (DW)
is a complex, time consuming and prone to fail task. This is mainly due
to the different aspects taking part in a DW architecture such as data
sources, processes responsible for Extracting, Transforming and Loading
(ETL) data into the DW, the modeling of the DW itself, specifying data
marts from the data warehouse or designing end user tools. In the last
years, different models, methods and techniques have been proposed to
provide partial solutions to cover the different aspects of a data ware-
house. Nevertheless, none of these proposals addresses the whole develop-
ment process of a data warehouse in an integrated and coherent manner
providing the same notation for the modeling of the different parts of a
DW.

In this paper, we propose a data warehouse development method,
based on the Unified Modeling Language (UML) and the Unified Pro-
cess (UP), which addresses the design and development of both the data
warehouse back-stage and front-end. We use the extension mechanisms
(stereotypes, tagged values and constraints) provided by the UML and we
properly extend it in order to accurately model the different parts of a
data warehouse (such as the modeling of the data sources, ETL processes
or the modeling of the DW itself) by using the same notation . To the best
of our knowledge, our proposal provides a seamless method for developing
data warehouses. Finally, we apply our approach to a case study to show
its benefit.

Keywords: data warehouse, design, UML, Unified Process

1 Introduction
In the early nineties, W. Inmon provided his famous definition of data ware-
houses (DW): “A data warehouse is a subject-oriented, integrated, time-variant,
nonvolatile collection of data in support of management’s decisions” [24]. A DW
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is subject oriented because it is focused on decision support instead of transac-
tional processes and it is designed in order to speed up complex queries (normally
using the multidimensional modeling or paradigm). It is “integrated” because
data are gathered into the DW from a variety of sources (legacy systems, rela-
tional databases, COBOL files, etc.) and merged into a coherent whole. ETL
(Extraction-Transformation-Loading) processes are responsible for the extrac-
tion of data from heterogeneous operational data sources, their transformation
(conversion, cleaning, normalization, etc.) and their loading into DWs. Data
are always loaded in a data warehouse together with a time reference as the final
aim is to track history. Finally, a DW is normally considered a nonvolatile data
repository because ETL processes are the responsible for inserting or updating
data into the DW.

Most of the the research effort for designing data warehouses has been de-
voted to the multidimensional (MD) modeling or paradigm since it is widely
accepted that data warehouses, multidimensional databases and On-Line Ana-
lytical Applications (OLAP) are based on the multidimensional modeling. The
benefit of using this MD modeling is two-fold. On the one hand, the MD model
is close to the way of thinking of data analyzers and, therefore, helps users1
understand data. On the other hand, the MD model supports performance
improvement as its simple structure allows us to predict end users intentions.
MD modeling structures information into facts and dimensions. A fact contains
interesting measures of a business process (sales, deliveries, etc.), whereas a di-
mension represents the context for analyzing a fact (product, customer, time,
etc.).

Nevertheless, a data warehouse is much more than just multidimensional
modeling. Building a data warehouse is normally a challenging and complex
task because a data warehouse concerns many organizational units and often
involves many people from database administrators or designers to non-expert
end users. In the last years, there have been several proposals (see related
work) to cover different aspects of a data warehouse such as the modeling of
ETL processes or the design of the DW repository itself. However, although
various methods and approaches have been presented for designing different
parts of data warehouses, no general and standard method exists to date for
dealing with the whole design of data warehouses considering all their main
parts.

In the light of this situation, the goal of our work is to develop a data ware-
house engineering process2 to make the developing process of data warehouses
more efficient. Our proposal is an object-oriented (OO) method, based on the
Unified Modeling Language (UML) [5, 48, 44] and the Unified Process (UP) [26],
which allows us to tackle all data warehouse design stages, from the operational
data sources to the final implementation of the data warehouse and including

1We distinguish between DW developers (technical users, users who design and build the
DW) and DW end users (users who are only interested in the business content or users who
query the DW).

2We use the terms “method” and “process” as synonyms: “A software development process
is the set of activities needed to transform a user’s requirements into a software system” [26].
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the definition of the Extraction, Transformation, and Loading (ETL) processes
and the end users’ requirements.

The rest of the paper is structured as follows. In Section 2, we briefly present
some of the most important related work and point out the main shortcomings.
In Section 3, we summarize our data warehouse engineering process and in
Section 3.1, we present the diagrams we propose to model the different parts
of a data warehouse. In Section 4, we describe the different workflows that
make up our process, and we provide short examples in order to make easier
the understanding and application of our proposal. In Section 5 we present a
more detail case study to show the benefit of our approach. Finally, we present
the main conclusions and future work in Section 6.

2 Related Work
During the last few years, different approaches have been proposed for the design
of DWs. It is out of the scope of this paper to make a reference to works related
to the materialization of views, query processing or partitioning techniques,
instead we will make a brief discussion about some of the well-known data
warehouse models and methods. Some other methods that we cannot discuss
due to the lack of space are [17, 13, 12].

To start with, it is highly recognized that the design and maintenance of
these ETL processes is a key factor of success in DW projects for several rea-
sons [52, 53]. Due to the high difficulty in designing and managing these ETL
processes, there has lately been a proliferation in the number of available ETL
tools that try to simplify this task [16, 29]. During 2001, the ETL market grew
to about $667 million [3], although it is widely recognized that the design and
maintenance of these ETL processes has not yet been solved [3]. To the best
of our knowledge, the best advance in this research line has been accomplished
by the Knowledge and Database Systems Laboratory from NTUA [42]. In par-
ticular, they have proposed a conceptual model that provides its own graphical
notation that allows the designer to formally define most of the usual technical
problems regarding ETL processes [58, 57]. Furthermore, this approach is ac-
companied by an ETL tool called ARKTOS as an easy framework for the design
and maintenance of these ETL processes [59].

Lately, differen data models [20, 7, 56, 22, 55, 2, 28, 18, 9, 40], both concep-
tual and logical, have been proposed. These approaches are based on their own
visual modeling languages or make use of a well-known graphical notation, such
as the Entity-Relationship (ER) model or the UML. However, none of these
approaches has been widely accepted as a standard DW model, because they
present some important lacks (e.g. they do not address the whole DW process,
they do not include a visual modeling language, they do not propose a clear set
of steps or phases, or they are based on a specific logical model, such as ROLAP
or MOLAP). Due to space constraints, we refer the reader to [1] for a detailed
comparison and discussion about most of these models.

Regarding methods for building data warehouses, in [28], different case stud-
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ies of data marts (DM) are presented. The MD modeling is based in the use of
the star schema and its different variations (snowflake and fact constellation).
Moreover, the BUS matrix architecture is proposed to build a corporate DW
from integrating the design of several DMs. Although we consider this work as
a fundamental reference in the MD field (R. Kimball provides a very sound dis-
cussion of star schema design), we miss a formal method for the design of DWs.
Furthermore, the conceptual and logical models coincide in this proposal, and
the concepts on the BUS matrix architecture are a compilation of the personal
experiences of the authors and the problems they have faced building enterprise
DWs from DMs.

In [19], the authors propose the Dimensional-Fact Model (DFM), a partic-
ular notation for the DW conceptual design. Moreover, they also propose how
to derive a DW schema from the data sources described by Entity-Relationship
(ER) schemas. From our point of view, this proposal is only oriented to the
conceptual and logical design of DWs, because it does not consider important
aspects such as the design of ETL processes. Furthermore, the authors assume
a relational implementation of the DWs and the existence of all the ER schemas
of the data sources, which unfortunately occurs in few occasions. Finally, we
consider that the use of a particular notation makes difficult the application of
this proposal.

In [7], the authors present the Multidimensional Model (MD), a logical model
for OLAP systems, and show how it can be used in the design of MD databases.
The authors also propose a general design method, aimed at building an MD
schema starting from an operational database described by an ER schema. Al-
though the design steps are described in a logic and coherent way, the DW
design is only based on the operational data sources, what we consider insuffi-
cient because the end users’ requirements are very important in the DW design.

In [40], the building of star schemas (and its different variations) from the
conceptual schemas of the operational data sources is proposed. Once again, it
is highly supposed that the data sources are defined by means of ER schemas.
This approach differs from the above-presented ones in that it does not propose
a particular graphical notation for the conceptual design of the DWs, instead it
uses the ER graphical notation.

Most recently, in [9] another method for the DW design is proposed. This
method is based on a MD model called IDEA and it proposes a set of steps
to address the conceptual, logical, and physical design of a DW. One of the
most important advantages, with respect to the previous proposals, is that the
conceptual schema of the DW is built taking into consideration both the opera-
tional data sources and the end users’ requirements. Nevertheless, this method
only considers the data modeling and does not address other relevant aspects,
such as the ETL processes.

In [8], different DW development methods are analysed and a new method
is proposed. This method stands out because it integrates the management of
metadata. However, it lacks a model that can be used to reflect and document
the DW design.

Regarding the UML, some proposals to extend the UML for database design
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have been presented [46, 38, 41], since the UML does not explicitly include a
data model. However, these proposals do not reflect the peculiarities of MD
modeling. There have been some approaches that uses UML for the MD mod-
eling up to date (again, and due to space constrains, we refer the reader to [1]
for a comprehensive comparison). However, none of these approaches propose
a comprehensive method to cover all main DW design phases.

Both W. Inmon and R. Kimball refer to two widely techniques used in real
world projects for building a data warehouse: bottom-up or top-down. The
former refers to the building of the DW from the data sources that will be used
for populating the DW. The latter refers to designing the DW repository from
the requirement analysis of end users and then, populate the DW from the data
stored in data sources.

On the other hand, the Model Driven Architecture (MDA) [45] is an Object
Management Group (OMG) standard that addresses the complete life cycle of
designing, deploying, integrating, and managing applications. MDA separates
the specification of system functionality from the specification of the imple-
mentation of that functionality on a specific technology platform. Thus, MDA
encourages specifying a Platform Independent Model (PIM) by using any spec-
ification language -typically the Unified Modeling Language (UML). Then, this
PIM can be transformed into multiple Platform Specific Models (PSM) in or-
der to be executed on a concrete platform by transforming this PSM into the
corresponding Code.

Following these MDA considerations, one incipient proposal of the OMG for
aligning the design of DWs with the general MDA paradigm is called Model-
Driven Data Warehouse (MDDW) [25]. This approach is based on the Common
Warehouse Metamodel (CWM) [43], which is a platform-independent meta-
model definition for interchanging DW specifications between different platforms
and tools. Basically, the CWM - based on the standards UML, XMI (extensible
Markup Interchange) and MOF (Meta Object Facility) - provides a set of meta-
models that are comprehensive enough to model an entire DW including data
sources, ETL processes, multidimensional modeling, relational implementation
of a DW and so on. These metamodels are intended to be generic, external rep-
resentations of shared metadata. The proposed MDDW is based on the CWM
as the PIM for the DW design is accomplished by using the corresponding CWM
metamodel (depending on the part of the DW to be modeled). Then, this PIM
can be transformed into any PSM metamodel, and then, into the corresponding
Code metamodel for a specific implementation. All of these transformations are
metamodel transformations.

However, we differ in both the CWM and the MDDW approaches in which
CWM metamodels are (i) too generic to represent all peculiarities of MD mod-
eling [39] and (ii) too complex to be handled by both end users and designers.
We deeply believe that it is more reliable to design a PIM by using an enriched
conceptual modeling approach easy to be handled (e.g. our UML profile for mul-
tidimensional modeling) that can be totally represented by using the extended
CWM metamodels, and then, any metamodel transformation is feasible, thus
assuring the interchange of DW metadata between different tools and platforms.
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In conclusion, no general and standard method exists to date for dealing with
the whole design of a DW taking into consideration all different parts from data
sources to the final implementation. Furthermore, we argue that this standard
method should provide the same notation (a standard as possible) to deal with
the design of the different parts.

3 Data Warehouse Development
The goal of our work is to develop a data warehouse engineering process [30]
to make the developing process of data warehouses more efficient. In order to
achieve this goal, we consider the following premises:

• Our method should be based on a standard visual modeling language.

• Our method should provide a clear and seamless method for developing a
data warehouse.

• Our method should tackle all data warehouse design stages in an inte-
grated manner, from the operational data sources to the final implemen-
tation and including the definition of the ETL processes and the end users’
requirements.

• Our method should provide different levels of detail.

Therefore, we have selected the UML as the visual modeling language, our
method is based on the well-accepted UP, we have extended the UML in order to
accurately represent the different parts of a data warehouse, and we extensively
use the UML packages with the aim of providing different levels of detail.

Although the UML and the UP unify many years of effort in object oriented
analysis and design, the UML and the UP present some issues and shortcomings.
For example, some critics argue UML is complex and difficult to learn and it
lacks a method to guide its users. Moreover, “There are different views about
how to use UML to develop software systems” [49]. The UML is a complex
modeling language and it lacks a systematic way of guiding the users through
the development of systems. For example, with respect to packages, the UML
defines them as a mechanism to simplify complex UML diagrams. However, no
formal design guidelines regarding how to properly use them are clearly stated.
In this context, many text books and authors have provided guidelines to apply
packages in general or in a specific domain. For example, Fowler states [15]: “I
use the term package diagram for a diagram that shows packages of classes and
the dependencies among them”. In a specific domain such as web applications,
Conallen states [11] that “A package is merely a mechanism to divide the model
into more manageable pieces” and “Try to avoid making the package hierarchy
match the semantics of the business, and instead use packages as a means of
managing the model”. The author proposes to make packages “comprehensible,
cohesive, loosely coupled and hierarchically shallow ”.
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Despite these drawbacks, our proposal is based on the UML and the UP
because:

• UML can address many dimensional modeling issues that were impossible
to solve with the entity relationship diagram (ERD) [13].

• The theoretical complexity of the UML does not necessarily relate to its
practical complexity [50].

• UML provides advanced visualization and modeling capabilities.

• UML allows us to describe the interactions of the data warehouse project
team.

• UML provides extensibility and specialization mechanisms to extend it.

• UP integrates current “software development best practices”.

In the next sub-section, we present the set of diagramas (based on the UML)
that can be used within our method to design data warehouses.

3.1 Data Warehouse Diagrams
The architecture of a data warehouse is usually depicted as various layers of
data in which data from one layer is derived from data of the previous layer
[27]. Following this consideration, we consider that the development of a data
warehouse can be structured into an integrated framework with five stages and
three levels that define different diagrams for the data warehouse model, as
shown in Figure 1:

• Stages: we distinguish five stages in the definition of a data warehouse:

– Source, which defines the structure of the operational data sources of
the data warehouse, such as On-Line Transaction Processing (OLTP)
systems, external data sources (syndicated data, census data), etc.

– Integration, which defines the mapping between the data sources and
the data warehouse.

– Data Warehouse, which defines the structure of the data warehouse.

– Customization, which defines the mapping between the data ware-
house and the clients’ structures.

– Client, which defines special structures that are used by the clients to
access the data warehouse, such as data marts or On-Line Analytical
Processing (OLAP) applications.

• Levels: each stage can be analyzed at three levels or perspectives:

– Conceptual: it defines the data warehouse from a conceptual point of
view.
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Figure 1: Data warehouse design framework

– Logical: it addresses logical aspects of the data warehouse design,
such as the definition of the ETL processes.

– Physical: it defines physical aspects of the DW, such as the storage
of the logical structures in different disks, or the configuration of the
database servers that support the DW.

• Diagrams: each stage or level require different modeling formalisms.
Therefore, our approach is composed of 15 diagrams, but the DW designer
does not need to define all the diagrams in each DW project: for exam-
ple, if there is a straightforward mapping between the Source Conceptual
Schema (SCS) and the Data Warehouse Conceptual Schema (DWCS), the
designer may not need to define the corresponding Data Mapping (DM). In
our approach, we use the UML [44] as the modeling language, because it
provides enough expressiveness power to address all the diagrams. As the
UML is a general modeling language, we can use the UML extension mech-
anisms (stereotypes, tag definitions, and constraints) to adapt the UML
to specific domains. In Figure 1, we provide the following information for
each diagram:

– Name (in bold face): the name we have coined for this diagram.

– UML diagram: the UML diagram we use to model this data ware-
house diagram. Currently, we use class, deployment, and component
diagrams.

– Profile (in italic face): we show the diagrams where we propose a
new profile; in the other cases, we use a standard UML diagram or a
profile from other authors.

The best advantage of our global approach is that we always use the same
notation (based on UML) for designing the different data warehouse schemas
and the corresponding transformations in an integrated manner. Moreover,
the different diagrams of the same data warehouse are not independent but
overlapping: they depend on each other in many ways. For example, changes in
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Figure 2: From the conceptual to the physical level

one diagram may imply changes in another, and a large portion of one diagram
may be created on the basis of another diagram. For example, the DM is created
by importing elements from the SCS and the DWCS.

In previous works, we have presented the different diagrams and the corre-
sponding profiles we propose as follows:

• Multidimensional Profile, for the Data Warehouse Conceptual Schema
(DWCS) and the Client Conceptual Schema (CCS), in [34, 35].

• Data Mapping Profile, for the Data Mapping (DM) between the Source
Conceptual Schema (SCS) and the DWCS, and between the DWCS and the
CCS, in [36].

• ETL Profile, for the ETL Process between the Source Logical Schema (SLS)
and the Data Warehouse Logical Schema (DWLS), and the Exporting Process
between the DWLS and the Client Logical Schema (CLS), in [54].

• Database Deployment Profile, for the Source Physical Schema (SPS), the
Transportation Diagram, the Data Warehouse Physical Schema (DWPS), and
the Client Physical Schema (CPS), in [31, 32].

Figure 2 shows a symbolic diagram to summarize our approach and the
relationships between the different diagrams (DWCS, DWLS, and DWPS):

• On the left hand side of this figure we have represented the DWCS, which
is structured into three levels: Level 1 or Model definition, Level 2 or Star
schema definition, and Level 3 or Dimension/fact definition. The different
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elements drawn in this diagram are stereotyped packages and classes3 that
represent MD concepts.

• From the DWCS, we develop4 the logical model (DWLS, represented in the
middle of Figure 2) according to different options, such as ROLAP5 (Re-
lational OLAP) or MOLAP6 (Multidimensional OLAP). In this example,
we have chosen a ROLAP representation and each element corresponds to
a table in the relational model.

• Finally, from the DWLS we derive the DWPS, which is represented on the
right hand side of Figure 2. The DWPS shows the physical aspects of the
implementation of the DW. This diagram is divided up into two parts: the
component diagram, which shows the configuration of the logical struc-
tures used to store the DW, and the deployment diagram, which specifies
different aspects relative to the hardware and software configuration.

Figure 2 shows how our approach allows the designer to trace the design
of an element from the conceptual to the physical level. For example, in this
figure, we have drawn a cloud around different elements that represent the same
entity in different diagrams.

4 Data Warehouse Engineering Process
Our method, called Data Warehouse Engineering Process (DWEP), is based on
the Unified Software Development Process, also known as UP [26]. The UP is an
industry standard Software Engineering Process (SEP) from the authors of the
UML. Whereas the UML defines a visual modeling language, the UP specifies
how to develop software using the UML.

The UP is a generic SEP that has to be instantiated7 for an organization,
project or domain8. DWEP is our instantiation of the UP for the development
of data warehouses. Some characteristics of our DWEP inherited from UP are:
use case (requirement) driven, architecture centric, iterative and incremental.
These three key words make the UP unique, therefore it is important to provide
a brief overview of them:

• Use case (requirement) driven: means that use cases are used for specifying
the requirements of a system, but they also drive its design, implementa-
tion, and test.

3An icon, a new graphical representation, can be associated to a stereotype in UML.
4The transformation process from the DWCS to the DWLS is outside the scope of this

paper.
5ROLAP is a storage model that uses tables in a relational database to store multidimen-

sional data.
6MOLAP is a storage mode that uses a proprietary multidimensional structure to store

multidimensional data.
7Instantiate means add in-house standards, define a lifecycle strategy, select what diagrams

to use, define activities and workers, etc.
8Some popular instantiations of UP are Rational Unified Process [23] and Enterprise Uni-

fied Process [47].
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• Architecture centric: the software architecture embodies the most sig-
nificant static and dynamic aspects of the system and it is described as
different views of the system being built.

• Iterative and incremental: the develop of the software products is divided
into smaller slices called iterations that results in an increment that refers
to growth in the product. Moreover, the diagrams will not stay intact
but should be expected to evolve as time passes, as new requirements are
uncovered, and as the schedules changes, causing feature changes.

According to the UP, the project lifecycle is divided into four phases (In-
ception, Elaboration, Construction, and Transition) and five core workflows
(Requirements, Analysis, Design, Implementation, and Test). Each phase ends
with the delivery of a product to the customer:

• Inception ends with commitment to go ahead with the project and a
timetable to develop and deploy the DW. This phase involves capturing es-
sential end users needs and outline the architecture of the DW. Therefore,
the emphasis is on requirements.

• Elaboration ends with the basic architecture of the system, a timetable to
construct the DW, a plan of work, a list of risks, and a first version of the
DW.

• Construction ends with a first operating version of the DW. Therefore,
the emphasis is on the implementation.

• Transition ends with end users using the DW. The goals of this phase are:
correct defects, prepare the user site for the new DW, create user manuals
and other documentation.

The meaning of the five core workflows is [4]:

• Requirements: capturing what the system should do.

• Analysis: refining and structuring the requirements.

• Design: realizing the requirements in system architecture.

• Implementation: building the software.

• Test: verifying that the implementation works as desired.

Moreover, we have added two more workflows to the five core workflows:
Maintenance and Post-development review. During the developing of a project,
the emphasis shifts over the iterations, from requirements and analysis towards
design, implementation, testing, and finally, maintenance and post-development
review, but different workflows can coexist in the same iteration.

In Figure 3 (adapted from [26]), we show that the seven workflows (listed in
the left-hand column) take place over the four phases. For each workflow, the
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Figure 3: DWEP workflows

curve represents approximately the extent to which the workflow is carried out
in each phase. Moreover, each phase is usually subdivided into iterations, and
an iteration goes through all the seven workflows.

The development of a DW is divided into a number of small steps (mile-
stones) which are easier to understand, to manage and to complete successfully.
Each of these steps is an iteration.

For each one of the workflows, we use different UML diagrams (techniques)
to model and document the development process, but a model can be modi-
fied in different phases because models evolve over time. In Table 1, we show
a summary of all the diagrams introduced in Section 3.1 and their usages in
different workflows. In the following sections, we present the main details of the
workflows and highlight the diagrams we use in each workflow.

4.1 Requirements
A key factor in the success of a DW are the needs of end users, because DWs are
very unique to an organization. During the Requirements workflow, what the
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DWEP workflow Diagram
Requirements Use cases

Activity
Statechart

Analysis Source Conceptual Schema
Source Logical Schema
Source Physical Schema

Design Date Warehouse Conceptual Schema
Client Conceptual Schema

Data Mapping
Implementation Data Warehouse Logical Schema

Data Warehouse Physical Schema
Client Logical Schema
Client Physical Schema

ETL Process
Exportation Process

Transportation
Test None

Maintenance None
Post-development None

review

Table 1: Summary of all the diagrams and their usages in different workflows
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end users expect to do with the data warehouse is captured: the end users should
specify the most interesting measures and aggregations, the analysis dimensions,
the queries used to generate periodical reports, the update frequency of the data,
etc. As proposed in [6], we model the requirements with use cases. The rationale
of use cases is that focusing “on what the users need to do with the system is
much more powerful than other traditional elicitation approaches of asking users
what they want the system to do” [6]. Once the requirements have been defined,
the data warehouse project is established and the different roles are designated.

Use case modeling is a simple way to [37]:

• Understand the system’s existing functions.

• Elicit the desired requirements and functions for the new system is being
created.

• Establish who will be interacting with the system and how.

The UML provides the use case diagram for visual modeling of uses cases.
Use case diagrams identify the functionality provided by a system, the users
who interact with the system, and the association between the users and the
functionality. Nevertheless, there is no UML standard for a use case specifica-
tion. However, we follow the common template defined in [4], which specifies
for every use case a name, a unique identifier, the actor involved in the use case,
the system state before the use can begin (preconditions), the actual steps of
the use case (flow of events), and the system state when the use case is over
(postconditions). In [10, 41], different use case description templates with a
great variety of styles can be found.

For example, the use case in Figure 4 is about sales managers making a
query about the quarterly sales of the products in the computer category.

Moreover, we also apply UML statechart and activity diagrams to show
the states and the flow of a use case. Both diagrams allow us to understand
more deeply how use cases are accomplished. A statechart diagram represents
the behavior of entities of a system by specifying its response to the receipt of
events; an activity diagram shows a sequence of activities, their ordering, and
decisions that are made to indicate which activity performs next.

4.2 Analysis
The goal of this workflow is to refine and structure the requirements output
in the previous workflow. Moreover, the pre-existing operational systems that
will feed the data warehouse are also documented: the different candidate data
sources are identified, the data content is revised, etc.

We use the Source Conceptual Schema, Source Logical Schema, and the Source
Physical Schema (SCS, SLC, and SPS) (Figure 1) to model the data sources at
different levels of detail. To get quality data in the data warehouse, the different
data sources must be well identified.
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Figure 4: UML use case template

For example, in Figure 5 we show the Source Logical Schema (SLS) of a
transactional system that manages the sales of a company. This system will feed
with data the data warehouse that will be defined in the following workflow. For
the SLS we make use of the UML Profile for Database Design [41] that defines
a series of stereotypes like «Database», «Schema», «Tablespace», or «Table».
In the diagram shown in Figure 5, each element represents a class with the
stereotype «Table» that represents a table in a relational database9; we have
hidden the attributes (fields or columns) for the sake of simplicity.

4.3 Design
At the end of this workflow, the structure of the data warehouse is defined. The
main output of this workflow is the conceptual schema of the data warehouse.
Moreover, the source to target data map is also developed at a conceptual level.

In this workflow, the main diagrams are the Data Warehouse Conceptual
Schema (DWCS), the Client Conceptual Schema (CCS), and the Data Mapping
(DM). The DM shows the relationships between the SCS and the DWCS and
between the DWCS and the CCS.

For the DWCS and the CCS, we have presented in [34, 35] an extension of the
UML by means of a UML profile. This profile is defined by a set of stereotypes
and tagged values to elegantly represent main multidimensional properties at

9A class symbol with a stereotype icon may be “collapsed” to show just the stereotype icon,
with the name of the class either inside the class or below the icon. Other contents of the
class may be suppressed.
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Figure 5: Source Logical Schema

the conceptual level. We make use of the Object Constraint Language (OCL) to
specify the constraints attached to the defined stereotypes, thereby avoiding an
arbitrary use of these stereotypes. The main advantage of our proposal is that it
is based on a well-known standard modeling language (UML), thereby designers
can avoid learning a new specific notation or language for multidimensional
systems.

For example, in Figure 6 we show level 1 of a Data Warehouse Conceptual
Schema, composed of three schemas (Production schema, Sales schema, and Sales-
men schema). The dashed arrows that connect the different schemas indicate
that the schemas share some dimensions (common dimensions) that have been
firstly defined in the Sales schema.

In Figure 7 we show level 2 of the Sales schema from level 1, composed of
one fact (Sales fact) and four dimensions (Stores dimension, Times dimension,
Products dimension, and Customers dimension). In Figure 8, the definition of the
Customers dimension with the different hierarchy levels is showed and finally,
in Figure 9 the whole star schema with the fact Sales and the four dimensions
is shown. We do not represent the hierarchy levels of the dimensions Stores
dimension and Times dimension for the sake of simplicity.

For the DM, we have presented [36] the Data Mapping Profile that intro-
duces the data mapping diagram. In this new diagram, we treat attributes as
first-class modeling elements of the model. In this way, attributes can partici-
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Figure 6: Data Warehouse Conceptual Schema (level 1)

Figure 7: Data Warehouse Conceptual Schema (level 2)

pate in associations that determine the inter-attribute mapping, along with any
necessary transformation and constraints. Since a data mapping diagram can
be very complex, our approach offers the possibility to organize it in different
levels thanks to the use of UML packages.

In the DW context, when two design elements (e.g., two tables, or two
attributes) share the same piece of information, possibly through some kind
of filtering or transformation, this constitutes a semantic relationship between
them. This relationship, involves three logical parties: (a) the provider entity
(schema, table, or attribute), responsible for generating the data to be further
propagated, (b) the consumer, that receives the data from the provider and (c)
their intermediate matching that involves the way the mapping is done, along
with any transformation and filtering.

In Figure 10, we show a data mapping between Products from Data sources
and Products dim. In this data mapping, we have defined a transformation be-
tween the Products.Price attribute and the ProdDescription.Price attribute; this
transformation converts the price of products from dollars to euros. The trans-
formation is defined inside a UML note attached to the mapping relationship.

4.4 Implementation
During this workflow, the data warehouse is built: the physical data warehouse
structures are built, the data warehouse is populated with data from heteroge-
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Figure 8: Data Warehouse Conceptual Schema (level 3, Customers dimension)
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Figure 9: Data Warehouse Conceptual Schema (level 3, Sales fact)
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Figure 10: Data Mapping between Products and Products dim
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nous data sources, the data warehouse is tuned for an optimized running, etc.
Different implementation diagrams can be created to help this workflow.

The main diagrams in this workflow are the Data Warehouse Logical Schema,
the Data Warehouse Physical Schema, the Client Logical Schema, the Client Phys-
ical Schema, the ETL Process, the Exportation Process, and the Transportation
Diagram.

In the ETL Process, the cleansing and quality control activities are modelled.
We provide the necessary mechanisms for an easy and quick specification of the
common operations defined in these ETL processes such as, the integration of
different data sources, the transformation between source and target attributes,
the generation of surrogate keys and so on. The design of an ETL process is
usually composed of six tasks [54]:

1. Select the sources for extraction: the data sources to be used in the ETL
process are defined. It is very common in an ETL process to access dif-
ferent heterogeneous data sources.

2. Transform the sources: once the data have been extracted from the data
sources, they can be transformed or new data can be derived. Some of the
common tasks of this step are: filtering data, converting codes, performing
table lookups, calculating derived values, transforming between different
data formats, automatic generation of sequence numbers (surrogate keys),
etc.

3. Join the sources: different sources can be joined in order to load together
the data in a unique target.

4. Select the target to load: the target (or targets) to be loaded is selected.

5. Map source attributes to target attributes: the attributes (fields) to be
extracted from the data sources are mapped to the corresponding target
attributes.

6. Load the data: the target is populated with the transformed data from
the sources.

For example, in Figure 11 we show the ETL process that loads Customers
dimension. We use three Join mechanisms (Cus-Cities, Cus-Cities-Counties, Com-
pleteCustomers) to join the different data sources and we apply two Conversion
mechanisms (CleanCustomers, CleanStates) to change data types and formats or
to calculate and derive new data from existing data.

Regarding our proposal for the modeling of the physical design of DWs, we
use the component and deployment diagrams of the UML. Our approach allows
the designer to anticipate important physical design decisions that may reduce
the overall development time of a DW such as replicating dimension tables,
vertical and horizontal partitioning of a fact table, the use of particular servers
for certain ETL processes, the estimation of the workload needed and the time
boundaries to accomplish it, and so on.
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Figure 11: ETL Process

22



Figure 12: Data Warehouse Physical Schema

For example, in Figure 12 we show part of a Data Warehouse Physical Schema.
For this diagram, we have presented the Database Deployment Profile [32, 33].
In this example, both the components and the nodes are stereotyped: the com-
ponents are adorned with the «Database» and «Tablespace» stereotypes, and
the nodes with the «Server» and «Disk» stereotypes.

4.5 Test
The goal of this workflow is to verify that the implementation works as desired.
More specifically, the purposes of testing are to:

• Plan the tests required. Different tests can be used: unit tests, system
tests, integration tests, acceptance tests, and scenario tests.

• Design and implement the tests by creating test cases.

• Perform the tests and analyze the results of each test.

No new diagrams are created, but previous diagrams (mainly design and
implementation diagrams) may be modified according the corrective actions
that are taken.

4.6 Maintenance
Unlike most systems, the data warehouse is never done. The goal of this work-
flow is to define the refresh and loading processes needed for keeping the data
warehouse up to date. This workflow starts when the data warehouse is built
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and delivered to the end users, but it does not have an end date (it lasts during
the life of the data warehouse).

During this workflow, the end users can state new requirements, such as
new queries, which triggers the beginning of a new iteration (UP is an iterative
process) with the Requirements workflow.

4.7 Post-development Review
This is not a workflow of the development effort, but a review process for improv-
ing future projects. We look back at the development of the data warehouse,
revise the documentation created, and try to identify both opportunities for
improvement and major successes that should be taken into account. If we keep
track of the time and effort spent on each phase, this information can be useful
in estimating time and staff requirements for future projects.

4.8 Top-down or Bottom-up?
Nowadays, there are two basic strategies in the building of a data warehouse:
the top-down and bottom-up approaches [21, 14, 60]. The top-down approach
recommends the construction of a data warehouse first and then the construc-
tion of data marts from the parent data warehouse. The bottom-up approach
uses a series of incremental data marts that are finally integrated to build the
goal of the data warehouse. Each approach has its own set of strengths and
weaknesses. However, in almost all projects, the data marts are built rather
independently without the construction of an integrated data warehouse, which
is indeed viewed no more as a monolithic repository but rather as a collection
of data marts.

In the early years, the top-down approach was favored and it is consid-
ered the most elegant design approach [21]. However, high rates of failure for
initial data warehouse projects have led the majority of current projects to
the bottom-up approach. With the bottom-up approach, the results are seen
considerable sooner than implementing the data warehouse using a top-down
approach. Moreover, risk is minimized and it is more feasible to successfully
deploy the data mart in time.

Our method also allows both approaches. In the top-down approach (see
Figure 13), the data warehouse is built first and the data sources are the trans-
actional systems; then, each data mart is built independently by using our
method, and the data warehouse becomes the only data source for all of them.
Nevertheless, in the bottom-up approach (see Figure 14), the data marts are
built first from the transactional systems; then, the data warehouse is built and
the data sources are the data marts.
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Figure 13: Top-down approach

Figure 14: Bottom-up approach
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5 A Case Study
Throughout the rest of this paper, we use a case study to show how to apply our
Data Warehouse Engineering Process (DWEP) and how the different diagrams
we proposed can be applied to real world projects. This case study is partly
based on the enterprise DW sample database schema from [51]. In this example,
end users need a DW in order to analyze the main operations of the company.
Thus, the DW contains information about customers, customer invoices, budget
details, products, and suppliers. Moreover, data about the employees, such as
salaries, positions, and categories are also stored in the DW.

The operational data sources are stored in three servers:

1. The sales server, which contains the data about transactions and sales.

2. The CRM (Customer Relationship Management) server, which contains
the data about the customers who buy products.

3. The HRM (Human Resource Management) server, which contains the data
about employees, positions, salaries, etc.

5.1 Requirements
The first step is to define the scope of the DW. Basically, end users indicate
reports and queries they may need and the DW administrators define all the
tasks necessary to manage the DW.

Requirements can be basically classified into functional and nonfunctional
requirements. Following [26], we use UML use cases, activity diagrams, and
statechart diagrams to represent functional requirements, whereas nonfunctional
requirements, that are common for many use cases, are defined in a separate
document. The overall requirements definition of a DW is essential to ensure
we understand the need of end users.

In this section, we model some examples of functional and nonfunctional
requirements for our case study. From interviews to the end users, we have
detected two functional requirements related to sales managers, so the resulting
DW will be able to achieve these requirements:

• A sales manager needs to analyze the top sales rates through a time period
regarding the category of the products.

• A sales manager needs to display sales per customer, per region, per lo-
cation, per product, per time period, or any combination of the above;
optionally, a report may be generated

These two functional requirements influence how sales managers query the
DW and they are useful to define the dimension hierarchies of the DW.

Regarding the first functional requirement, we show the corresponding use
case in Figure 15, following the use case description template we have introduced
in Section 4.1. This use case defines the actor (Sales manager), the preconditions
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Figure 15: Use case definition for the first requirement

(none), the flow of events (sales managers making a query about the top sale
products in a time period), and the postconditions after performing this use
case.

Use cases can not be used to show the inside small processes in modeling.
For this activity diagrams and statechart diagrams are used. Activity diagrams
are useful for analyzing a use case by describing what actions need to take place
and when they should occur. In Figure 16, we show an activity diagram for the
use case shown in Figure 15.

Regarding the second functional requirement, we show the corresponding use
case diagram in Figure 17. This use case diagram shows the different criteria
that sales managers will use when consulting the DW.

The nonfunctional requirements can not be associated with any particular
use case, but these requirements have impact on different use cases or none
at all. Examples are performance and physical requirements or design and
implementation constraints. They are usually captured as a list of requirements
without the help of any visual artifact.

Regarding our case study, we have detected two nonfunctional requirements.
The first requirement specifies that products and customers invoices have to
be partitioned into two different partitions, once for products in year 2004,
and another one for new products in 2005. This requirement will be used in
Section 5.4 in the definition of the tablespaces and partitions of the DW.

The second requirement specifies what the users have defined about the
hardware and software requirements for the DW server and the computers that
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Figure 16: Activity diagram of the use case definition
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Figure 17: Use case diagram for the second requirement

29



end users will use to access the DW:

Server
------
Hardware: PC Pentium IV 3 GHz, 4 GB
Software: Linux, Oracle 9i

Clients
-------
** Macintosh
Hardware: PowerPC G4 800 MHz, 256 MB
Software: MacOS, Safari

** Windows (web)
Hardware: PIII 1,25 GHz, 256 MB
Software: Windows, Internet Explorer

** Windows (desktop)
Hardware: PIV 2 GHz, 512 MB
Software: Windows, MicroStrategy

This second nonfunctional requirement will be used in Section 5.4 in the
definition of the CTD.

5.2 Analysis
The goal of the SCS is to know what data is available for the DW. For the SCS,
we apply UML in a plain style by simply using classes, attributes and their
associations to other entities.

The operational data sources are stored in three servers: the sales server,
the CRM server, and the HRM server. From now on, we will focus on the sales
saver, which contains the data about transactions and sales.

In Figure 18, we show the SCS of the sales server. In this diagram, we
capture the most important concepts in the context of the system that we are
modeling. For the sake of clearness, we have omitted some attributes.

To achieve the logical modeling of the data sources (SLS), we apply the
UML Profile for Database Design [41]. In Figure 19, we show the logical model
of the relational database of the sales server. The attributes of the tables of
the database schema are not shown in order to clarify this diagram. This
database schema is composed of six tables (Product, Catalog, Category, Family,
SalesLines, and Sales) and two views (Customers and Salesperson). The views
indicate data stored in other servers (Customers in CRM server and Salesperson
in HRM Server).

Finally, the SPS describes the origins of data of the DW from a physical
point of view. Figure 20 shows the SPS of our example, which is formed by
three servers called SalesServer, CRMServer, and HRMServer; for each one of
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Figure 18: Source Conceptual Schema

Figure 19: Source Logical Schema
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Figure 20: Source Physical Schema: deployment diagram

them, the hardware and software configuration is displayed by means of tagged
values. The first server hosts a database called Sales, whereas the second server
hosts a database called Customers.

5.3 Design
Following our approach [35], we structure the conceptual model into three levels:

Level 1 : Model definition. A package represents a star schema of a conceptual
MD model. A dependency between two packages at this level indicates
that the star schemas share at least one dimension, allowing us to consider
conformed dimensions.

Level 2 : Star schema definition. A package represents a fact or a dimension
of a star schema. A dependency between two dimension packages at this
level indicates that the packages share at least one level of a dimension
hierarchy.

Level 3 : Dimension/fact definition. A package is exploded into a set of classes
that represent the hierarchy levels defined in a dimension package, or the
whole star schema in the case of the fact package.

Figure 21 shows the first level of the DWCS, which represents the conceptual
model of the DW. In our example, the first level is formed by three packages
called Customer_Invoices Star, Positions Star, and Purchase_Invoices Star. A
dashed arrow from one package to another one denotes a dependency between
packages, i.e., the packages have some dimensions in common. The direction
of the dependency indicates that the common dimensions shared by the two
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Figure 21: Data Warehouse Conceptual Schema: Level 1

packages were first defined in the package pointed to by the arrow (to start
with, we have to choose a star schema to define the dimensions, and then, the
other schemas can use them with no need to define them again). If the common
dimensions had been first defined in another package, the direction of the arrow
would have been different. In any case, it is better to group together the defini-
tion of the common dimensions in order to reduce the number of dependencies.
From now on, we will focus our discussion on the Customer_Invoices Star. This
star schema represents the invoices belonging to customers.

Figure 22 shows the second level of the DWCS. The fact package Cus-
tomer_Invoices is represented in the middle of the figure, while the dimension
packages are placed around the fact package. As seen in Figure 22, a dependency
is drawn from the fact package Customer_Invoices to each one of the dimension
packages (Customers, Internal_Org, Products, and Time), because the fact pack-
age comprises the whole definition of the star schema, and therefore, uses the
definitions of dimensions related to the fact. At level 2, it is possible to create a
dependency from a fact package to a dimension package or between dimension
packages, but we do not allow a dependency from a dimension package to a fact
package, since it is not semantically correct in our technique.

The content of the dimension and fact packages is represented at level 3. The
diagrams at this level are only comprised of classes and associations among them.
Figure 23 shows the level 3 of the Customers dimension package (Figure 22),
which contains the definition of the dimension (Customers) and the different
hierarchy levels (Customer_Addresses, Customer_SED, GB_City, Postal_Code,
GB_City10, etc.). The hierarchy of a dimension defines how the different OLAP
operations (roll up, drill down, etc.) can be applied. In a UML note we high-
light that Customer_SED (SED means socioeconomic data) is a Slowly Changing
Dimension (SCD) and some kind of solution has to be selected during the im-
plementation [28].

Figure 24 shows the level 3 of the Products dimension. This dimension
contains two alternative hierarchies: the category of the product (Category) and

10GB means geographic boundaries.
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Figure 22: Data Warehouse Conceptual Schema: Level 2 of Customer_Invoices
Star)

the supplier of the product (Products_Supplier, City, State, and Country). In
Products_Supplier hierarchy level, msrp means manufacturer’s suggested retail
price and uom is the standard unit of measure used for the product.

Figure 25 shows the level 3 of the Customer_Invoices fact package. In this
package, the whole star schema is displayed: the fact class is defined in this
package and the dimensions with their corresponding hierarchy levels are im-
ported from the dimension packages. Because of this, the name of the package
where they have been previously defined appears below the package name, e.g.,
(from Products), (from Internal_Org). In order to avoid a cluttered diagram, we
only show the attributes of the fact class (Customer_Invoices) and we hide the
attributes and the hierarchy levels of the dimensions.

Figure 26 shows the Data Warehouse Logical Schema (DWLS), which repre-
sents the logical model of the DW. In this example, a ROLAP system has been
selected for the implementation of the DW, which means the use of the rela-
tional model in the logical design of the DW. In Figure 26, seven classes adorned
with the stereotype �Table� are shown: customers, customer_addresses, cus-
tomer_invoices, internal_org_addresses, geographic_boundaries, product_snapshots,
and products.

In the customer_invoices table, the attributes customer_id, bill-to-address,
organization_id, org_address_id, and product_code are the foreign keys that
connect the fact table with the dimension tables, whereas the attributes quantity,
unit_price, amount, and product_cost represent the measures of the fact table.
The attribute invoice_date represents a degenerate dimension11, whereas the

11[28] coined the term degenerate dimensions for data items that perform much the same
function as dimensions but they are stored in the fact table, but they are not foreign key links
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Figure 23: Data Warehouse Conceptual Schema: Customers dimension
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Figure 24: Data Warehouse Conceptual Schema: Products dimension

Figure 25: Data Warehouse Conceptual Schema: Customer_Invoices fact
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Figure 26: Logical model (ROLAP) of the data warehouse
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Figure 27: Data Warehouse Physical Schema: component diagram (part 1)

attribute load_date is the date the record was loaded into the DW and it is is
used in the refresh process.

In the products and product_snapshots tables, these tables contain all the at-
tributes of the different dimension levels (Figure 24) following the star schema
approach [28]; some attributes have changed their names in order to avoid re-
peated names and some design decisions have been made. Moreover, we observe
that we use UML notes to provide additional information to the diagram.

5.4 Implementation
The DWPS shows the physical aspects of the implementation of the DW. This
diagram is divided into two parts: the component diagram and the deploy-
ment diagram. In the first diagram, the configuration of the logical structures
used to store the DW is shown. For example, in Figure 27, the DW is im-
plemented by means of a database called DWEnt, which is formed by three
tablespaces called FACTS, DIMENSIONS, and INDX. The datafiles that the ta-
blespaces use are given as well: FACTS.ORA, FACTS2.ORA, DIMENSIONS.ORA,
DIM-PART2.ORA, and INDX01.DBF.

Figure 28 shows a part of the definition of the tablespaces: the tablespace
FACTS hosts the table customer_invoices and the tablespace DIMENSIONS hosts
the dimension tables customers, products, product_snapshots, and the rest of the
tables (not shown in the diagram for the sake of simplicity). Below the name
of each table, the text (from ROLAP1) is included, which indicates that the
tables have been previously defined in a package called ROLAP1 (Figure 26).
It is important to highlight that the logical structure defined in the DWLS are
reused in this diagram and, therefore, we avoid any possibility of ambiguity or

through to dimension tables.
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Figure 28: Data Warehouse Physical Schema: component diagram (part 2)

Figure 29: Data Warehouse Physical Schema: deployment diagram

incoherence.
In the second diagram, the deployment diagram, different aspects relative

to the hardware and software configuration are specified. Moreover, the phys-
ical distribution of the logical structures previously defined in the component
diagrams is also represented. For example, in Figure 29, we can observe the
configuration of the server that hosts the DW: the server is composed of two
disks, one for the operating system (Linux) and the applications (Oracle) and
another one for the different datafiles (FACTS.ORA, FACTS2.ORA, etc.) that
are used by the database (Figure 27).

The ITD defines the physical structure of the ETL processes used in the
loading of data in the DW from the data sources. On the one hand, the data
sources are represented by means of the SPS and, on the other hand, the DW
is represented by means of the DWPS. Since the SPS and the DWPS have been
defined previously, in this diagram they are imported.

For example, the ITD for our running example is shown in Figure 30. On
the left hand side of this diagram, different data source servers are represented:
SalesServer, CRMServer, and HRMServer, which have been previously defined
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Figure 30: Integration Transportation Diagram: deployment diagram

in Figure 20; on the right hand side, the DWServerP, previously defined in
Figure 29, is shown. Moreover, the DWServerS, a physical standby database12

is also included in the design.
In Figure 30, the ETLServer is introduced, an additional server that is used

to execute the ETL processes. This server communicates with the rest of the
servers by means of a series of specific protocols: OLEDB to communicate
with SalesServer because it uses Microsoft SQLServer13 and OCI (Oracle Call
Interface) to communicate with CRMServer, HRMServer, and DWServer because
they use Oracle.

Finally, the CTD defines the exportation processes from the DW towards the
specific structures used by the clients. In this diagram, the DW is represented
by means of the DWPS and clients are represented by means of the CPS. Since
the DWPS and the CPS have been previously defined, in this diagram we do not
have to define them again, but they are directly imported.

For example, in Figure 31, the CTD of our running example is shown. This
diagram is based on the list of needs that users defined during the requirements
workflow of our DWEP (see Section sec:cs-Requirements). On the left hand
side of this diagram, part of the DWPS, which has been previously defined in
Figure 29, is shown; on the right hand side, three types of clients who will use
the DW are shown: a Web client with operating system Apple Macintosh, a
Web client with operating system Microsoft Windows and, finally, a client with

12A physical standby database is a byte by byte exact copy of the primary database. The
primary database records all changes and sends them to the standby database. A standby
database environment is meant for disastrous failures.

13The configuration of a server is defined by means of tagged values: OS, SW, CPU, etc.
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Figure 31: Customization Transportation Diagram: deployment diagram

a specific desktop application (MicroStrategy) with operating system Microsoft
Windows. Whereas both Web clients communicate with the server by means of
HTTP, the desktop client uses ODBC (the Open Database Connectivity).

In the following section, we explain how to use our component and deploy-
ment diagrams to implement a DW on an Oracle database server.

5.5 Implementation in Oracle
In Oracle, creating a database consists basically of the following steps:

• Creating the database’s datafiles14, its control files15 and its redo log
files16.

• Creating the system tablespaces.

• Creating the data dictionary (tables, views, etc.).

5.5.1 Creating the Database

Before proceeding, we should point out that the information about the database
repository to be created (Figure 27) was passed to our database administrator,
who created the database. Following Oracle recommendations, the database
creation is an operation that should only be executed by the administrator,
who is also responsible for granting database permissions to users. Then, if

14Files where the database server will host the data in the database structures, such as
tables, materialized views, etc.

15The control files of a database store the status of the physical structure of the database.
It contains (but is not limited to) the following types of information: database name and
creation date, tablespace and datafile records, etc.

16The redo log files record all changes made in datafiles. If something happens to one
of the datafiles of a database, a backed up datafile can be restored and the redo, that was
written since, which brings the datafile to the state it had before it became unavailable (crash
recovery).
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users need to create several databases or wish to organize a big database con-
sisting of a considerable amount of tables, the DW administrator should orga-
nize them by specifying tablespaces and decide which tables to locate in each
created tablespace. Therefore, the concept of database for Oracle is at a high
administrative level, avoiding programmers and even database designers to cre-
ate databases. For this reason, we do not do a deep study on the create database
statement in this section, instead, we will concentrate on the statements and
stages that the DW designer has accomplished from our UML component and
deployment diagrams described in previous sections. In the following subsec-
tions, we will show some SQL sentences automatically generated by the Oracle
Enterprise Manager Console tool to implement the DW and some snapshots
from the same tool to see the created tablespaces, tables, indexes, etc.

5.5.2 Creating the Tablespaces

The created database is called DWEnt. Then, the first accomplished task has
been to specify the tablespaces where allocating the tables. As seen in Figure 27,
we need to create three tablespaces, one for the facts (FACTS), another one
for the dimensions (DIMENSIONS), and the last one for the indexes (INDX);
furthermore, according to the same component diagram, the tablespaces for the
facts and the dimensions need to be defined in two datafiles. Datafiles are the
logical structure in which Oracle structures a database, i.e., the place where
allocating the structures (e.g., tables, indices, etc.) defined within a tablespace.
Due to amount of data to be stored in the tablespaces for facts and dimensions,
the designer decided to specify two datafiles for each tablespace (Figure 27). In
the following, we can see the SQL statements for defining the two tablespaces.
We can also notice the datafiles that will be used for the DW to store fact tables,
dimension tables, views, and so on.

CREATE TABLESPACE "FACTS"
LOGGING
DATAFILE ’E:\ORACLE\ORADATA\DWENT\FACTS.ora’ SIZE 30M,
’E:\ORACLE\ORADATA\DWENT\FACTS2.ORA’ SIZE 5M
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO

CREATE TABLESPACE "DIMENSIONS"
LOGGING
DATAFILE ’E:\ORACLE\ORADATA\DWENT\DIMENSIONS.ora’ SIZE 20M,
’E:\ORACLE\ORADATA\DWENT\DIM-PART2.ORA’ SIZE 20M
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO

5.5.3 Creating the Data Dictionary

Once both tablespaces and datafiles have been created within a database, the
next step is to define fact and dimension tables. First of all, in the following
SQL sentences, we can see how we have specified the product dimension table.
Apart from the columns, we should point out the fact that the table has been
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created partitioning it into two different partitions, once for products in year
2004, and another one for new products in 2005. Furthermore, due to the
fact that a partitioning has been defined, an index for the column in which we
define the partitioning (i.e. date), has automatically been created. The SQL
statements for the customers and customer_addresses tables are more simple as
no partitioning was defined for these tables in Figure 28. Besides, all dimension
tables are defined in the dimension tablespace.

CREATE TABLE "SYSTEM"."PRODUCTS" (
"PRODUCT_ID" NUMBER(10) NOT NULL,
"PRODUCT_DESC" VARCHAR2(40) NOT NULL,
"CATEGORY_CODE" VARCHAR2(10) NOT NULL,
"CATEGORY_DESC" VARCHAR2(40) NOT NULL,
"DATE" DATE NOT NULL,
CONSTRAINT "PRODUCT_PK" PRIMARY KEY("PRODUCT_ID"))
TABLESPACE "DIMENSIONS"
PARTITION BY RANGE ("DATE") (PARTITION "PRODUCT=2004"
VALUES LESS THAN (TO_DATE(’2004-1-1’,’YYYY-MM-DD’))
TABLESPACE "DIMENSIONS" ,
PARTITION "PRODUCT=2005"
VALUES LESS THAN (TO_DATE(’2005-1-1’,’YYYY-MM-DD’))
TABLESPACE "DIMENSIONS" );
CREATE INDEX SYSTEM.IDX_PRODUCTS ON SYSTEM.PRODUCTS ("DATE") LOCAL

CREATE TABLE "SYSTEM"."CUSTOMERS" (
"CUSTOMERS_ID" NUMBER(8) NOT NULL,
"SNAPSHOT" DATE NOT NULL,
"CUSTOMER_NAME" VARCHAR2(40) NOT NULL,
"AGE" NUMBER(2) NOT NULL,
"MARITAL_STATUS" VARCHAR2(1) NOT NULL,
"CREDIT_RATING" VARCHAR2(10) NOT NULL,
CONSTRAINT "CUSTOMER_PK" PRIMARY KEY("CUSTOMERS_ID"))
TABLESPACE "DIMENSIONS"

CREATE TABLE "SYSTEM"."CUSTOMER_ADDRESSES" (
"CUSTOMER_ID" NUMBER(8) NOT NULL,
"ADDRESS_ID" NUMBER(8) NOT NULL,
"ADDRESS_LINE1" VARCHAR2(35) NOT NULL,
"ADDRESS_LINE2" VARCHAR2(35) NOT NULL,
"POSTAL_CODE" VARCHAR2(9) NOT NULL,
CONSTRAINT "CUST_ADDRESS_PK" PRIMARY KEY("CUSTOMER_ID", "ADDRESS_ID"),
CONSTRAINT "CUST_ADDRESS_FK" FOREIGN KEY("CUSTOMER_ID")
REFERENCES "SYSTEM"."CUSTOMERS"("CUSTOMERS_ID")
TABLESPACE "DIMENSIONS"

Figure 32 shows the definition of the columns of the fact table customer_invoices
in Oracle. Another partitioning has been created in this table. Again, our DW
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Figure 32: Defintion of customer_invoices table in Oracle

is intended to locate data for every year in each different partition (Figure 28),
and therefore, the column in which we base our partition is load_date. Instead
of the previous dimension tables, this fact table is defined in the fact tablespace.
Moreover, the index creation SQL statement has been slightly changed, because
the following SQL statement has been automatically generated by the Oracle
Enterprise Manager Console, and thus, the index name was automatically spec-
ified based on the database and table names. Then, this index name exceeded
the longest index name allowed by Oracle. Therefore, the index name was
manually shortened.

CREATE TABLE "SYSTEM"."CUSTOMER_INVOICES" (
"INVOICE_ID" NUMBER(8) NOT NULL,
"LINE_ITEM_SEQ" NUMBER(4) NOT NULL,
"INVOICE_DATE" DATE NOT NULL,
"CUSTOMER_ID" NUMBER(8) NOT NULL,
"BILL-TO-ADDRESS" NUMBER(8) NOT NULL,
"ORGANIZATION_ID" NUMBER(8) NOT NULL,
"ORG_ADDRESS_ID" VARCHAR2(35) NOT NULL,
"PRODUCT_CODE" NUMBER(10) NOT NULL,
"QUANTITY" NUMBER(10, 3) NOT NULL,
"UNIT_PRICE" NUMBER(10, 3) NOT NULL,
"AMOUNT" NUMBER(9, 2) NOT NULL,
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"PRODUCT_COST" NUMBER(9, 2) NOT NULL,
"LOAD_DATE" DATE NOT NULL,
CONSTRAINT "CUST_INVO_PK" PRIMARY KEY("INVOICE_ID",
"LINE_ITEM_SEQ"),
CONSTRAINT "CUST_INVO_FK" FOREIGN KEY("CUSTOMER_ID",
"BILL-TO-ADDRESS")
REFERENCES "SYSTEM"."CUSTOMER_ADDRESSES"("CUSTOMER_ID",
"ADDRESS_ID"),
CONSTRAINT "CUST_INVO_FK2" FOREIGN KEY("PRODUCT_CODE")
REFERENCES "SYSTEM"."PRODUCTS"("PRODUCT_ID"),
CONSTRAINT "CUST_INVO_FK3" FOREIGN KEY("ORGANIZATION_ID",
"ORG_ADDRESS_ID")
REFERENCES "SYSTEM"."INTERNAL_ORG_ADDRESSES"("ORGANIZATION_ID",
"ADDRESS_ID"))
TABLESPACE "FACTS"
PARTITION BY RANGE ("LOAD_DATE") (PARTITION
"CUSTOMER_INVOICES=2004"
VALUES LESS THAN (TO_DATE(’2004-1-1’,’YYYY-MM-DD’))
TABLESPACE "FACTS" ,
PARTITION "CUSTOMER_INVOICES=2005"
VALUES LESS THAN (TO_DATE(’2005-1-1’,’YYYY-MM-DD’))
TABLESPACE "FACTS" );
CREATE INDEX SYSTEM.IDX_CUST_INVO_LOAD_DATE ON
SYSTEM.CUSTOMER_INVOICES ("LOAD_DATE") LOCAL

In this subsection we have shown how to accomplish the implementation of a
DW from our component and deployment diagrams. We believe that the imple-
mentation issues considered in our techniques are useful for the final implemen-
tation, even more, the DW administrator has implemented the DW according
to our physical modeling schema.

6 Conclusions and Future Work
In this chapter, we have presented our Data Warehouse Engineering Process
(DWEP), a DW development process based on the UML and the UP. To the best
of our knowledge, our method is the only one that addresses the full life cycle
of DW development, from the operational data sources to the multidimensional
model to the final implementation of the DW.

UML is an standard of the OMG [44] that unifies many years of effort in
object oriented analysis and design. UML is the visual modeling language of
choice for building object-oriented and component-based systems. On the other
hand, UP [26] is a generic and stable process that we have instantiated to cover
the development of data warehouses. We have based our proposal in UML and
UP for three main reasons: (i) UML is a well-known standard modeling language
known by most database designers, thereby designers can avoid learning a new
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notation, (ii) UML can be easily extended so that it can be tailored for a specific
domain with concrete peculiarities such as the multidimensional modeling for
data warehouses, and (iii) UML is highly scalable as a new tailored UML profile
can further be enriched by adding new properties to adapt it to new situations.

Our main contribution is the definition of several diagrams (techniques) and
UML profiles [34, 35, 54, 36, 31] in order to model data warehouses more prop-
erly. Whereas the different diagrams provide different views or perspectives
of a data warehouse, the engineering process specifies how to develop a data
warehouse and ties up all the diagrams together. The main advantages of our
approach are:

• The use of a development process, the UP, which is the outcome of more
than 20 years of experience.

• The use of the UML, a widely accepted visual modeling language, for
designing the different data warehouse diagrams and the corresponding
transformations.

• The use of the UML as the modeling language provides much better tool
support than using an own modeling language.

• The proposal of a data warehouse development process that addresses
both the back-end and the front-end of data warehouses in an integrated
manner.
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