
Accepted Manuscript

An architecture for automatically developing Secure OLAP applications from

models

Carlos Blanco, Ignacio García-Rodríguez de Guzmán, Eduardo Fernández-

Medina, Juan Trujillo

PII: S0950-5849(14)00219-5

DOI: http://dx.doi.org/10.1016/j.infsof.2014.10.008

Reference: INFSOF 5537

To appear in: Information and Software Technology

Received Date: 3 February 2014

Revised Date: 5 September 2014

Accepted Date: 26 October 2014

Please cite this article as: C. Blanco, I.G. de Guzmán, E. Fernández-Medina, J. Trujillo, An architecture for

automatically developing Secure OLAP applications from models, Information and Software Technology (2014),

doi: http://dx.doi.org/10.1016/j.infsof.2014.10.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2014.10.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2014.10.008

An architecture for automatically developing Secure

OLAP applications from models

Carlos Blancoa,∗, Ignacio Garćıa-Rodŕıguez de Guzmánb, Eduardo
Fernández-Medinac, Juan Trujillod

aGSyA Research Group. Dep. of Mathematics, Statistics and Computer Science. Faculty
of Sciences. University of Cantabria. Av. De los Castros s/n. 39071. Santander. Spain.
bAlarcos Research Group. Institute of Information Technologies and Systems. Dep. of
Information Technologies and Systems. Escuela Superior de Informática. University of

Castilla-La Mancha. Paseo de la Universidad, 4. 13071. Ciudad Real. Spain.
cGSyA Research Group. Institute of Information Technologies and Systems. Dep. of

Information Technologies and Systems. Escuela Superior de Informática. University of
Castilla-La Mancha. Paseo de la Universidad, 4. 13071. Ciudad Real. Spain.

dLucentia Research Group. Department of Information Languages and Systems. Facultad
de Informática. University of Alicante. San Vicente s/n. 03690. Alicante. Spain.

Abstract

Decision makers query enterprise information stored in Data Warehouses
(DW) by using tools (such as On-Line Analytical Processing (OLAP) tools)
which use specific views or cubes from the corporate DW or Data Marts,
based on the multidimensional modelling. Since the information managed
is critical, security constraints have to be correctly established in order to
avoid unauthorized accesses. In previous work we have defined a Model-
Driven based approach for developing a secure DWs repository by following
a relational approach. Nevertheless, is also important to define security con-
straints in the metadata layer that connects the DWs repository with the
OLAP tools, that is, over the same multidimensional structures that final
users manage. This paper incorporates a proposal to develop secure OLAP
applications into our previous approach: improves a UML profile for con-
ceptual modelling; defines a logical metamodel for OLAP applications; and

∗Corresponding author
Email addresses: Carlos.Blanco@unican.es (Carlos Blanco),

Ignacio.GRodriguez@uclm.es (Ignacio Garćıa-Rodŕıguez de Guzmán),
Eduardo.Fdezmedina@uclm.es (Eduardo Fernández-Medina), jtrujillo@dlsi.ua.es
(Juan Trujillo)

Preprint submitted to Information and Software Technology November 4, 2014

defines and implements transformations from conceptual to logical models,
and from logical models to the secure implementation into a specific OLAP
tool (SQL Server Analysis Services).

Keywords: Security, Confidentiality, Model driven development, Data
warehouse, OLAP, SQL Server Analysis Services

1. Introduction

A DW is a repository which manages a great amount of enterprise histor-
ical information integrated from different data sources [1]. This information
is usually organized following a multidimensional approach by using facts
(for instance, a product sale) and related dimensions with classifications by
subjects (for instance, departments, cities or product categories). The infor-
mation managed by DWs is very sensitive because involve critical business
information which is used to support strategic decision making processes and
furthermore, it usually involves personal data which are protected by legal
regulations in most countries. Therefore, establishing the necessary security
rules in design time and enforcing them when DWs are being queried by
users is crucial for protecting the information stored in DWs [2, 3, 4, 5].

DWs development is composed of several stages. Firstly, data from het-
erogeneous data sources is integrated into the DW in an acquisition stage.
The ETL (Extraction / Transformation / Loading) processes are responsi-
ble of extracting, transforming and loading these heterogeneous data. DWs
repository stores data and is developed by following all the databases devel-
opment stages: business, conceptual, logical and physical modeling. Finally,
DWs are queried by tools (such as the OLAP tools SSAS, Oracle or Pentaho)
which manages cubes or views of the corporative DW defined by using mul-
tidimensional models (facts, dimensions and classification hierarchies). The
most critical point of the DW life cycle in order to incorporate security is the
DW design, since security can be analyzed together with other requirements
and integrated within the DW models. This is positive, because security
is defined from an implementation independent approach and designers can
make better design decisions. Regarding with the security characteristics that
could be addressed in DWs’ development (confidentiality, integrity, availabil-
ity, etc.), confidentiality is the most important one since DWs mainly deal
with read operations.

On the other hand, the Model-Driven Development (MDD) offers a great

2

change in the way we develop software, and particularly in the way we design
data models. It is based on the definition of models at different abstraction
levels (from the system modelling towards specific technologies) and trans-
formations between models, by reducing as a consequence development times
and costs. OMG proposes Model Driven Architecture [6] for the MDD de-
velopment. MDA establishes three abstraction levels for models, that can be
aligned with the traditional DW design process: business models (CIM) with
system requirements; conceptual models (PIM) which do not include infor-
mation about specific platforms and technologies; and logical models (PSM)
with information about the specific technology used. Furthermore, it pro-
poses Query / Views / Transformations (QVT) [7] as an intuitive language
to implement the transformations between models and MOFScript for the
transformations from models to text.

Our research efforts are thus applied to the development of secure DWs by
following the model driven philosophy, defining models and transformations.
In our proposal, security requirements are not improvised and incorporated
once the system has been completely built. We early identify and include
them in all the stages of the development process, fitting them into a most
robust solution that provides us a better information assurance and a saving
of time in maintenance.

In our previous works, we have developed a model driven architecture for
secure DWs focused on a relational approach which leaded towards the final
implementation into a DBMS [8]. However, DWs are finally queried by using
tools which manage certain cubes or views of the corporative DW (multi-
dimensional models with certain cubes, dimensions and hierarchies). That
presents an intermediate metadata layer between decision makers and the
DWs repository, in which is necessary the establishment of security aspects
over. Therefore, we will be able to automatically check security constraints
over every particular OLAP query posed on the DW.

This paper therefore compliments our MDA architecture for secure DWs
with support for OLAP systems. In order to achieve this goal a new logical
(PSM) metamodel for secure OLAP applications has been defined and con-
nected to the architecture by developing the necessary transformations from
conceptual (PIM) models and towards the eventually secure implementation.
Furthermore, the previous UML profile for conceptual modeling (PIM) has
been improved to support the representation and the automatic transfor-
mation of more complex security rules which were defined by using OCL
expressions.

3

The rest of this paper is organized as follows: Section 2 will present related
work; Section 3 will provide an overview of the model driven architecture for
secure OLAP applications presented in this paper; the next three sections
(Section 4, 5 and 6) will present the three stages of our proposal: conceptual
modelling, transformation to logical models and transformation to OLAP
implementation; Section 7 will describe the application of our proposal to a
DW for a sales department; and Section 8 will finally present our conclusions
and future work.

2. Related work

Security in software engineering is considered as a critical issue to be
taken into account in the development of information systems. Several rel-
evant works concerning with a complete secure development of information
systems can be found, such as UMLsec [9, 10], MDS (Model Driven Secu-
rity) [11] or PSSS (Process to Support Software Security) [12]. Nevertheless,
although these are relevant contributions on secure information systems de-
velopment they do not are specifically focused on DWs and their specific
security problems.

Although research efforts in the development of secure DW and OLAP
applications have been traditionally carried out, the majority of them have
been focused on the final stage of development (logical modeling or imple-
mentation) [13, 14, 15, 2, 16]. Concerning with a complete secure DWs
development we solely found the methodology of Priebe and Pernul [17] in
which the authors analyze security requirements and their implementation
into commercial tools by hiding multidimensional elements such as cubes,
measures, slices and levels. They extend their proposal with a DWs repre-
sentation at conceptual level with ADAPTed UML, but do not establish the
connection between models in order to allow automatic transformations.

In our previous works, we have developed a model driven architecture for
secure DWs focused on a relational approach which leaded towards the final
implementation into a DBMS [8] (Figure 1). This approach was composed
of several secure metamodels at different abstraction levels and automatic
transformations from models to the final secure implementation in a specific
DBMS, Oracle Label Security.

At the business level, a computational independent metamodel (CIM)
supports an early definition of the security requirements. This metamodel
[18] defines both functional and non functional requirements for DWs by

4

using a UML profile based on the i* framework [19], which is an agent ori-
ented approach towards requirement engineering centering on the intentional
characteristics of the agents.

For DWs secure modeling at conceptual level a Platform Independent
Metamodel (PIM) called SECDW (Secure Data Warehouse) [20] has been
defined as a UML profile specifically created for DWs complemented with an
Access Control and Audit (ACA) model focused on DW confidentiality [21].
SECDW thus allows, on one hand, the specification of structural aspects of
DWs such as facts, dimensions, base classes, measures or hierarchies, and
on the other hand, the definition of security constraints by using the ACA
model. The transformation from secure CIM models has been also dealt in
[22] where the MDA methodology for secure DWs is described by using the
standard Software Process Engineering Metamodel Specification (SPEM).

Following a relational approach at logical level (ROLAP) a Specific Plat-
form Metamodel (PSM) called SECRDW (Secure Relational Data Ware-
house) [23] has been defined as an extension of the relational package from
Common Warehouse Metamodel [24]. SECRDW models secure relational el-
ements such as tables, columns or keys, and express security rules defined at
conceptual level. Moreover, the automatic transformation from conceptual
models to relational logical models has been implemented by using QVT and
also the eventual implementation into a DBMS, Oracle Label Security, has
been dealt [25].

Business Level
(CIM)

UML Profile
based on i*

Conceptual Level
(PIM)

UML Profile
SECDW

Transformation

Logical Level
(PSM)

UML Metamodel
for Relational
SECRDW

Transformation Transformation

Code Level

Implementation
for DBMS

Oracle Label Security

Figure 1: Model driven architecture for developing secure relational DWs

3. An Architecture for Automatically Developing Secure OLAP
Applications

This section presents an overview of the contribution of this paper, a
model driven architecture for developing secure OLAP applications (Figure
2).

5

Since most DW are queried by OLAP tools following a multidimen-
sional approach, this paper fulfills our previous architecture by including:
an improved conceptual model, called SECDW; a new logical model for se-
cure OLAP applications, called SECMDDW (Secure Multidimensional Data
Warehouse); the final implementation into an OLAP tool (SSAS); and the
transformations which are necessary to automatically obtain the secure OLAP
implementation from models.

As a guideline, the process to automatically obtain a secure OLAP im-
plementation from its conceptual model is composed of three steps that will
be further explained in next sections:

• Step 1: Conceptual modelling. This is a manual stage in which
designers have to model the DW according to our UML profile. Our
UML profile can be used by any UML diagramming tool that admits
profiles, this facilitates the creation of the conceptual model permitting
that designers include both structural and security aspects of the DWs
in an easy way.

• Step 2: Transformation to logical model for OLAP. Once the
conceptual model has been created, in this stage the transformations
created in our approach are applied to automatically obtain the corre-
sponding logical model for the OLAP technology. The resulting dia-
gram is bigger than the conceptual model and includes all the details
introduced by designers in the previous stage, but now converted to this
specific technology (OLAP). This stage is completely automated and
designers do not need to modify the logical model generated, although
they could do it. The main utility of this logical model is to serve as
an intermediate model with all the information expressed with OLAP
terminology that will be useful for generating the final implementation
for different OLAP tools.

• Step 3: Transformation to OLAP implementation. This is the
final stage and also is completely automated. It runs the transfor-
mations developed in this paper to generate the implementation for a
certain OLAP tool. In this paper we obtain the implementation for
SQL Server Analysis Services.

6

Conceptual Level
(PIM)

Improved
UML Profile
SECDW

Logical Level
(PSM)

UML Metamodel
for OLAP

SECMDDW

Transformation Transformation

Code Level

Implementation
for OLAP
SSAS

STEP 1

Conceptual Modelling
STEP 2

Transformation to logical model for OLAP
STEP 3

Transformation to OLAP implementation

Figure 2: Model driven architecture for developing secure OLAP applications

4. Step 1: Conceptual Modelling for Secure DWs

SECDW [20] is a UML profile which has been previously defined in order
to allow a secure conceptual modeling of the DW. It is based on a UML
profile specifically created for conceptual modeling of DWs complemented
with an Access Control and Audit (ACA) model [21] which includes security
capabilities in the conceptual design by considering several security poli-
cies (Discretional Access Control, DAC; Mandatory Access Control, MAC;
and Role-Based Access Control, RBAC). SECDW has been improved in this
paper in order to include support for the definition and transformation of
complex security rules.

Figure 3 shows SECDW. It permits the conceptual modeling of DWs
structural aspects by using packages (SecurePackage metaclass); classes (Se-
cureClass) for facts (SFact), dimensions (SDimension) and bases (SBase);
properties (SecureProperty). The security configuration of the system which
we want to model is defined by using three points of view: a hierarchical
structure of Security Roles (SRole); a list of Security Levels (SLevel) with
the clearance levels of the users; and a set of horizontal Security Compart-
ments or groups (SCompartment). Once this configuration has been estab-
lished, sets of certain security configurations composed of roles, levels and
compartments can be defined as instances of secure information (SecureInfor-
mation). Then, the security configuration for the elements of our conceptual
model (packages, classes, attributes, etc.) is established by associating them
with specific secure information instances. Furthermore, since the user profile
(UserProfile) defines all the properties that the systems manage from users,
it has also a security information associated.

7

+sLevels: SLevel [*]
+sRoles: SRole [*]
+sCompartments: SCompartment [*]
+privileges: Privilege [*]
+attempts: Attempt [*]
+logInfos: LogInfo [*]
+sInformations: SecureInformation [*]
+up: UserProfile

<<stereotype>>
SecurePackage

Package

Property

Class

+ownedSecInf: SecureInformation [0..1]

<<stereotype>>
SecureProperty

+ownedSCObjects: SecureClass [*]
+ownedSPObjects: SecureProperty [*]

<<stereotype>>
SConstraint

+condition: String
+thenSecInf: SecureInformation
+elseSecInf: SecureInformation [0..1]

<<stereotype>>
SecurityRule

+subjects: SecureInformation
+condition: String [0..1]
+sign: String
+privilege: Privilege

<<stereotype>>
AuthorizationRule

+logType: Attempt
+logInfos: LogInfo [*]

<<stereotype>>
AuditRuleConstraint

<<stereotype>>
SFact

<<stereotype>>
SDimension

<<stereotype>>
SBase

+properties: SecureProperty [*]
+ownedSecInf: SecureInformation [0..1]

<<stereotype>>
SecureClass

+sLevel: SLevel [0..1]
+sRoles: SRole [*]
+sCompartments: SCompartment [*]

<<stereotype>>
SecureInformation

+name: String

<<stereotype>>
SCompartment

+name: String

<<stereotype>>
SRole

+name: String

<<stereotype>>
SLevel

+infLevel+supLevel

+root

+child
*

*

* *

*

*

+ownedMember

+id: String
+name: String
+ownedSecInf:
SecureInformation
+ownedProperties:

Property [0..*]

<<stereotype>>
UserProfile

+involvedClasses: SecureClass [2..*]
+ownedSecInf: SecureInformation

<<stereotype>>
JointRule

+ownedSecureJoints

0..1

*

Primitive
Type

+name: String

<<stereotype>>
Privilege

+name: String

<<stereotype>>
Attempt

+name: String

<<stereotype>>
LogInfo

0..1
0..1

*

+rootBases

+childBases

+ownedSFacts
+ownedSBases

+ownedSDimensions+ownedSDimensions

*

Figure 3: Profile for conceptual modelling of Secure DWs (SECDW)

ACA model permits the definition of three kinds of security rules (SCon-
straint) over the different elements of the DW by using Object Constraint
Language (OCL) notes: the definition of sensitive information for multidi-
mensional elements by sensitive information assignment rules (SIAR); the
authorization or denegation of certain elements to specific subjects by au-
thorization rules (AUR); and the inclusion of audit rules (AR) to ensure that
authorized users do not misuse their privileges.

These rules could be complex, involving information about subjects, ob-

8

jects, conditions, security information, privileges, log types, etc. They were
represented in SECDW by using OCL notes associated with a certain mul-
tidimensional element, but these OCL expressions are difficult to analyze
and transform in an automatic way. Thus, in this paper SECDW has been
improved to provide a better representation and management of complex
security rules including the information necessary to support their transfor-
mation. This improvement does not affect our complete MDA architecture
and our previously defined transformations.

Security rules have been included as subclasses of SConstraint. Then,
SIAR security rules use a SecurityRule metaclass representing conditions
with boolean expressions and the secure information that will be assigned
whether the condition is satisfied or not. AUR rules use an AuthorizationRule
metaclass with information about the security information associated, the
sign of the authorization (positive or negative), the privilege (read, insert,
update, delete, all) and a boolean expression for conditions. Finally, AR
rules are specified by an AuditRule metaclass defining the access attempt
and the logged information (subject, object, action, time and response).

5. Step 2: Transformation to Logical Model for OLAP

This section firstly describes the logical metamodel that has been pro-
posed for the logical modeling of secure OLAP applications. Next, the
transformations developed for automatically transform conceptual into logi-
cal models are described.

5.1. Logical Metamodel for Secure OLAP Applications

This section presents a multidimensional logical metamodel (PSM), called
SECMDDW (Secure Multidimensional Data Warehouse), which allows the
specification of both structural and security aspects closer to OLAP appli-
cations. Previously to the construction of our metamodel, the security capa-
bilities provided by OLAP tools and how secure DWs could be implemented
into them were studied in [26]. The SECMDDW metamodel has been de-
veloped based on the CWM metamodel [24] which is the OMG proposal for
representing and interchanging metadata for data warehousing and business
intelligence. SECMDDW extends the OLAP package of CWM which is fo-
cused on data analysis and defines a metamodel of essential OLAP concepts
common to most OLAP applications.

9

Figure 4 shows the logical metamodel for secure OLAP applications de-
veloped. Three main parts can be identified: security configuration (upper
part of Figure 4), cubes (middle part) and dimensions (bottom part). The
security configuration of the system is represented by considering a role based
access control (RBAC) policy which is used by the most OLAP tools. Since,
conceptual models are more abstract than logical models, there is a semantic
loss when we move towards lower levels. At the conceptual level, SECDW
considers the definition of the security configuration by using roles, levels
and compartments, but at the logical level our metamodel is solely focused
on RBAC and security levels and compartments should be adapted as secu-
rity roles. That is, the security configuration is defined as a set of security
roles (Role metaclass) and the users who are members of each role (Member
metaclass).

S
c
h
e
m
a

C
u
b
e
s

Cube
+cubeID: String
+cubeName: String

SecurityPermission
+spID: String
+spName: String
+roleID: Role [1..*]
+allowedSet: String [0..1]
+deniedSet: String [0..1]

+ownedCubePermissions

CubeRegion
+crID: String
+crName: String

Dimension
+dimensionID: String
+dimensionName: String

Hierarchy
+hierarchyID: String
+hierarchyName: String

MemberPermission
+mpID: String
+mpName: String
+roleID: Role [1..*]
+allowedSet: String [0..1]
+deniedSet: String [0..1]

Schema
+ID: String
+name: String

+ownedCubes

+ownedDimensions

+ownedCubeRegions
+ownedMembers

+ownedHierarchies

*

*

*

*

*

*

1
*

Level
+levelID: String
+levelName: String

*
+ownedLevels

Role
+roleID: String
+roleName: String

+ownedRoles

*

D
im
e
n
s
io
n
s

CubeRegionMember

*

+ownedSchema

1

1 +ownedSchema

+ownedCube

1

+ownedCube

+ownedCubes

1..*

+ownedLevels+ownedHierarchies

*

1

1

1

+ownedDimension

+ownedDimension

*

1 +ownedDimension

+ownedCubeRegions

+ownedMembers

*

1

+ownedKeyMember

1

+ownedDimension

+ownedMember

1

+ownedDimensions

*

1

+ownedSchema

DimensionMember

Member
+memberID: String
+memberName: String

*

+ownedDimension

+ownedMemberPermissions

+ownedDimensionPermissions

*

CubePermission

DimensionPermission

* +ownedMembers

0..1 +ownedLevel

+root

+child*

0..1

Figure 4: Logical Metamodel for Secure OLAP applications (SECMDDW)

The remainder parts of our metamodel define both structural and security
aspects for cubes and dimensions. Fact classes from our conceptual model

10

are defined at the logical level as cubes (Cube metaclass) and their related
attributes as measures (MeasureGroup and Measure metaclasses). Further-
more, conceptual dimension classes are defined as dimensions (Dimension
metaclass) with a set of attributes (Attribute metaclass) and an identifier
(KeyAttribute metaclass). Base classes from conceptual model are specified
as attributes related with the corresponding dimension, creating therefore
the necessary hierarchies (Hierarchy and Level metaclasses).

Considering the abstraction gap between the conceptual and logical levels,
security rules (SIAR and AUR) from conceptual models (including complex
security rules defined with OCL expressions) have been represented at the
logical level by using sets of security permissions associated with cubes, cells,
dimensions and attributes. Nevertheless, since OLAP platforms provide spe-
cific auditing tools which are directly managed by administrators, audit rules
(AR) have not been transformed into the logical model.

The SIAR and AUR security rules specified in conceptual models related
with fact classes, are defined in logical models as permissions associated with
the corresponding cubes (CubePermission metaclass). Each cube permission
is related with a certain security role (RoleID attribute) and uses positive
and negative expressions (AllowedSet and DeniedSet attributes) in order to
establish the information which has to be shown or hidden for that role. This
metamodel also allows the establishment of fine grained permissions over cube
measures by using cell permissions associated with the corresponding cube
permission (CellPermission metaclass).

On the other hand, security constraints established in conceptual models
involving dimension and base classes are defined at the logical level as per-
missions associated with dimensions (DimensionPermission metaclass) by in-
cluding information about the security role (RoleID attribute) and conditions
with the information which can be accessed or not for that role (AllowedSet
and DeniedSet attributes). The definition of fine grained security constraints
is also permitted with the use of attribute permissions associated with the
corresponding dimension (AttributePermission metaclass).

5.2. Transformation from Conceptual Models

This section describes the transformation rules developed for generating
logical models for secure OLAP applications (according to SECMDDW) from
conceptual models (according to SECDW). Currently, it is possible to find
many languages to implement model to model transformations, but in this
work we have served from QVT [7], that is the standard proposed by the

11

OMG. These transformations uses the relational layer of QVT that supports
the specification of relationships that must hold between MOF models by
means of a relations language. Each QVT transformation is composed of a
top relation that starts the execution of several rules (relations).

The mapping between conceptual and logical models has been organized
in five main transformations:

• SECDW2Role which generates the security configuration for the OLAP
system by using a role based access control (RBAC) policy.

• SECDW2Cube and SECDW2Dimension which analyze both structural
aspects and security information associated with cubes and dimensions,
and create in the logical model measures, attributes, hierarchies, etc.
and security permissions attached to multidimensional elements (cubes,
dimensions, cells and attributes).

• SecurityRules2CubePermissions and SecurityRules2DimensionPermissions
transformations, which process more complex security rules defined in
the conceptual model by using the SecurityRule and AuthorizationRule
metaclasses, and creates in the logical model the necessary security
permissions which are associated to cubes and dimensions (or to cube
cells and dimension attributes if fine grained security permissions are
needed).

Next, each transformation is described, but only the graphical notation
for some rules are shown.

5.2.1. Processing Security Configuration

Firstly, SECDW2Role analyzes and transforms the security configuration
defined in the conceptual model into the logical level which is closer to OLAP
applications, which use to consider a RBAC security policy. Since our con-
ceptual model is richer than our logical model, allowing the definition of
security roles (SR), levels (SL) and compartments (SC), this information has
to be adapted to a RBAC policy. The transformation SECDW2Role explores
the security configuration and establishes an RBAC policy by inferring the
necessary security roles.

The top relation SecurePackage2RoleSchema explores the source model
(the conceptual model) looking for SecurePackage classes which contain the
structure of the DW linked with the security information (that is composed

12

of security levels, roles and compartments). For each SecurePackage found,
a Schema element is created in the target model (the logical model). Then,
the relations SCompartment2Role, SLevel2Role and SRole2Role generate the
roles considered in the RBAC policy. That is, each security compartment,
role and level defined in our source model is added to the Schema as a role.

SCompartment2Role
name = spName
sp: SecurePackage

ID = spName
name = spName

s: Schema
<<domain>>

<<domain>>

C E

name = scName
ownedMember: SCompartment

roleID = "SC" + scName
roleName = "SC" + scName

ownedRoles: Role

Figure 5: Relation SCompartment2Role

Figure 5 shows the graphical notation for the relation SCompartment2Role
which checks secure packages (sp: SecurePackage) and their associated se-
curity compartments (ownedMember: SCompartment). Then, if it does not
exist, a schema for the secure package is created (s: Schema) and new roles
are attached to the schema (ownedRoles: Role) for each secure compartment.
Role attributes, roleID and roleName, are set to SC concatenated with the
name of the security compartment.

5.2.2. Processing Facts

The secure fact classes defined in the conceptual model are represented in
the logical model as cubes. SECDW2Cube is the transformation in charge of
processing this information and as Figure 6 shows, it is composed of a top re-
lation SPackage2CubeSchema and several relations which have been grouped
in several categories: structural relations and security relations (for cube and
cell permissions). Structural relations generate in the logical model structural
elements such as cubes and measures, whereas security relations process secu-
rity information associated with secure fact classes and their attributes in or-
der to generate security permissions associated with cubes and their measures
in the logical model. More complex security rules defined over secure fact
classes, which evaluate expressions to assign different security permissions,
will be processed by the transformation SecurityRules2CubePermissions.

The top relation SPackage2CubeSchema is in charge of creating the schema
(if it has not been previously created) and after that, it creates the structural

13

SECDW2Cube
top relation SPackage2CubeSchema

- SFact2Cube

- CreateMeasureGroups

- SProperty2Measure

- SCompartmentClass2CubePermission

- DenySCompartmentClass2CubePermission

- SRoleClass2CubePermission

- SRoleDescendant2CubePermission

- DenySRoleNonDescendant2CubePermission

- SLevelClass2CubePermission

- SecureProperty2CellPermission

- SCompartmentAtt2CellPermission

- DenySCompartmentAtt2CellPermission

- SRoleAtt2CellPermission

- SRoleDescendant2CellPermission

- DenySRoleNonDescendant2CellPermission

- SLevelAtt2CellPermission

Security (Cube Permissions) Security (Cell Permissions)Structural

Figure 6: SECDW2Cube transformation

elements by using the relations SFact2Cube which defines a Cube for each
SFact class, and CreateMeasureGroups which creates a MeasureGroup asso-
ciated with each cube and uses the relation SProperty2Measure to analyze
the attributes of the SFact and for each one, to include a Measure in the
MeasureGroup previously created.

Once structural elements have been created, SFact2Cube launches the
relations that analyze and process the security information (ownedSecInf)
associated with SFact classes (group security cube permissions in Figure 5)
and their attributes (group security cell permissions in Figure 5).

Figure 7 shows, using the QVT graphical syntax, a detailed view of the
SFact2Cube relation. The way in which the security information associated
with SFact classes and their attributes are processed by other relations can
be shown in the where clause of the relation (see bottom side of the Figure
7).

Firstly, security compartments, roles and levels defined over SFact classes
are analyzed creating security permissions that affect the Cube as a whole
(CubePermission). For instance, the relation SCompartmentClass2CubePermission
is focused on the security compartments and creates positive cube permis-
sions authorizing the access to the cube for the involved roles (that are
the representation of these compartments as roles in the logical model).
Then, the relation DenySCompartmentClass2CubePermission creates neg-
ative cube permissions denying the access for the remainder security com-
partments.

Since security information could be also attached to SFact attributes, the
relation SecureProperty2CellPermission processes fine grained security infor-
mation defined over SFact attributes in a similar way as SFact2Cube does,
but using auxiliary relations specifically created for this purpose (group se-

14

rols=OWNMEMB->select(d:SECDW::Class|d.oclIsKindOf(SECDW::SRole));

rolRoot=rols->select(r:SECDW::SRole | r.root.oclIsUndefined()).first();

--Cube Permissions

if(secInf.oclIsUndefined()) then true else

 --Authorizing and Denying Security Compartments

if(secInf.securityCompartments->size()>0)->forAll(scTmp:SECDW::SCompartment |

 SCompartmentClass2CubePermission(sf,scTmp,'','',s)) and

 DenySCompartmentClass2CubePermission(sp,sf,sfName,s)

else true endif and

 --Authorizing and Denying Security Roles

if(secInf.securityRoles->size()>0)->forAll(sr:SECDW::SRole | SRoleDescendant2CubePermission(sf,"+",sr,'','',s))

 and DenySRoleNonDescendant2CubePermission(secInf,sf,"-",rolRoot,'',sfName,s)

else true endif and

 --Authorizing and Denying Security Levels

if(secInf.securityLevel->size()>0) then

SLevelClass2CubePermission(sf,secInf.securityLevel,'+','','',s) and

SLevelClass2CubePermission(sf,secInf.securityLevel.infLevel,'-','',sfName,s)

else true endif

endif;

--Cell Permissions

SecureProperty2CellPermission (sp,sf,s);

 Where

SFact2Cube
name = spName
ownedMember = OWNMEM

sp: SecurePackage
ID = spName
name = spName

s: Schema
<<domain>>

<<domain>>

C E

name = sfName
ownedSecInf = secInf

sf: SFact
cubeID = sfName
cubeName = sfName

ownedCubes: Cube

C

<<domain>>

Figure 7: Relation SFact2Cube

curity cell permissions in Figure 6). That is, the definition of the security
level, compartments and roles which can access to the attribute. For in-
stance, the specification of certain security compartments is analyzed by the
SCompartmentAtt2CellPermission relation (shown in Figure 8) which creates
a positive cell permission granting the access to the information for autho-
rized compartments (which are represented as roles in the logical model).
Then, the relation DenySCompartmentAtt2CellPermission includes several
negative cell permissions denying accesses for the rest of compartments.

5.2.3. Processing Dimensions and Bases

The secure dimension and base classes defined in the conceptual model
are processed by the transformation SECDW2Dimension which generates
in the logical model dimensions, bases, attributes, hierarchies and security
permissions defined over dimensions and attributes. As Figure 9 shows, this
transformation is composed of the top relation SPackage2DimensionSchema

15

SCompartmentAtt2
CellPermission

<<domain>>
<<domain>>

C E

name = scName
sc: SCompartment

<<domain>>

C

name = spName
sp: SecureProperty

<<domain>>

name = sfName
sf: SFact

mpID = "MemberPermission" + spName + "+"
mpName = "MemberPermission" + spName + "+"
roleID = "SC" + scName
allowedSet = aSet
deniedSet = dSet

ownedMemberPermissions: MemberPermission

memberID = spName
memberName = spName

m: CubeRegionMember

Figure 8: Relation SCompartmentAtt2CellPermission

and several sets of relations focused on structural aspects such as dimensions,
attributes, bases and hierarchies; and the processing of security constraints
defined over dimensions and attributes.

Firstly, the relation SDimension2Dimension processes secure dimension
classes (SDimension) defined in the conceptual model and creates in the
logical model dimensions (Dimension) attached to the corresponding cube
(ownedDimensions). Then, dimension properties (SProperty) are transformed
into attributes (KeyAttribute and Attribute). On the other hand, the re-
mainder structural relations analyze the secure base classes (SBase) that
represent the different aggregation levels in which dimensions can be classi-
fied. Thus, base classes and their attributes are represented in the logical
model as attributes associated with dimensions, classification hierarchies and
aggregation levels.

SECDW2Dimension
top relation SPackage2DimensionSchema

- SDimension2Dimension

- KeyProperty2KeyAttribute

- NonKeyProperty2Attribute

- ProcessSBase

- ProcessSBaseAtt

- CreateOwnedHierarchies

- HierarchiesOwnedBase

- SCompartmentClass2DimensionPermission

- DenySCompartmentClass2DimensionPermission

- SRoleClass2DimensionPermission

- SRoleDescendant2DimensionPermission

- DenySRoleNonDescendant2DimensionPermission

- SLevelClass2DimensionPermission

Security (Dimension Permissions)Structural

- SecureProperty2AttPermission

- SecureBaseProperty2AttPermission

- SCompartmentAtt2AttPermission

- DenySCompartmentAtt2AttPermission

- SRoleAtt2AttPermission

- SRoleDescendant2AttPermission

- DenySRoleNonDescendant2AttPermission

- SLevelAtt2AttPermission

Security (Attribute Permissions)

Figure 9: SECDW2Dimension transformation

Figure 10 shows the relation CreateOwnedHierarchies as an example of
these relations focused on base classes. This relation checks the base classes

16

(ownedSBases) related with each dimension (sd:SDimension) and in the log-
ical model, attaches to the corresponding dimension (dim:Dimension) the
classification hierarchies needed (ownedHierarchies) and the different aggre-
gation levels that compose each hierarchy (ownedLevels).

CreateOwnedHierarchies
name = sdName
sd: SDimension

<<domain>>
<<domain>>

C E
dimensionID = sdName
dimensionName = sdName

dim: Dimension

hierarchyID = sdName+'Hierarchy'+sec(n)
hierarchyName = sdName+sbName

ownedHierarchies: Hierarchy

if (base.ownedBases.size()=0) then true else HierarchiesOwnedBase(sb,sdName,s) endif;

 Where

name = sbName
ownedSBases: SBase

levelID = sbName
levelName = sbName

ownedLevels: Level

Figure 10: Relation CreateOwnedHierarchies

Next, security information associated with dimension classes, base classes
or their attributes (ownedSecInf) is processed by specific relations (the groups
security dimension permissions and security attribute permissions showed in
Figure 9). Focusing on dimensions, the relation SDimension2Dimension an-
alyzes the security compartments, roles and levels associated with dimension
classes and uses auxiliary security relations (group security dimension per-
missions) to transform it into permissions defining which roles (at the logical
level) can access each dimension (DimensionPermission). Then, the rela-
tion SecureProperty2AttPermission processes fine grained security informa-
tion defined over dimension attributes by using the group of relations security
attribute permissions which defines in the logical model security permissions
associated with attributes (AttributePermission). Finally, security informa-
tion defined over base classes and their attributes are also analyzed by using
the relation SecurityBaseProperty2AttPermission and the group of relations
security attribute permissions. In this case attribute permissions are also cre-
ated, since the base classes (and their attributes) defined in the conceptual
model are transformed into dimension attributes in the logical model.

An example of relation focused on security is shown in Figure 11. The re-
lation SLevelClass2DimensionPermission analyzes the security level (SLevel)

17

SLevelClass2
DimensionPermissionname = sdName

sd: SDimension
dimensionID = sdName
dimensionName = sdName

d: Dimension
<<domain>>

<<domain>>

C E

name = slName
sl: SLevel

sdID = "DimensionPermission" + sdName + type
sdName = "DimensionPermission" + sdName + type
roleID = "SL" + slName
read = true
allowedSet = aSet
deniedSet = dSet

ownedDimensionPermissions: DimensionPermission

if (type.trim() = '+') then

 if (sl.supLevel.oclIsUndefined()) then true

 else SLevelClass2DimensionPermission (sd, sl.supLevel, type, aSet, dSet, s) endif

else

 if (sl.infLevel.oclIsUndefined()) then true

 else SLevelClass2DimensionPermission (sd, sl.infLevel, type, aSet, dSet, s) endif

endif

 Where

C

<<domain>>

Figure 11: Relation SLevelClass2DimensionPermission

associated with secure dimension classes (SDimension) and transforms it into
permissions (DimensionPermission) attached to the corresponding dimension
(ownedDimensionPermissions) at the logical level. For the security level spec-
ified, it creates in the logical model a set of positive permissions to allow the
access for the roles that represent the security level specified and their upper
levels, and a set of negative permissions to deny accesses from inferior security
levels. Positive and negative permissions are defined by setting the properties
allowedSet and deniedSet with the multidimensional elements which should
be shown or hidden.

5.2.4. Processing Security Rules

Security constraints defined as security information (security compart-
ments, roles and levels) attached to cubes, dimensions, bases and their at-
tributes (ownedSecInf), have been processed by the previous transforma-
tions. Nevertheless, our conceptual model allows the definition of more com-
plex security rules by using the metaclasses SecurityRule (for SIAR rules),
AuthorizationRule (for AUR rules) and AuditRule (for AR rules). Since
these rules can involve several multidimensional elements and the evaluation
of conditions, requires specific transformations to process them. The re-
mainder transformations, SecurityRule2CubePermission and SecurityRule2-
DimensionPermission, deal with the transformation of SIAR and AUR secu-
rity rules from conceptual to logical models, but in this proposal the transfor-
mation of audit rules, has not been considered since commercial tools include

18

specific tools for auditing which administrators directly manage.
The transformation SecurityRule2CubePermission processes security rules

attached to secure fact classes and their attributes. It is mainly composed
of a top relation ProcessCubeSecurityRules and two relations: ProcessCube-
SIAR which analyzes security information assignment rules (SIAR) and Pro-
cessCubeAUR which are focused on authorization rules (AUR). On the other
hand, the transformation SecurityRule2DimensionPermission processes secu-
rity rules associated with dimension and base classes and their attributes and
its composition is similar to the previous transformation. It is composed of a
top relation ProcessDimensionSecurityRules and two relations for SIAR and
AUR security rules, ProcessDimensionSIAR and ProcessDimensionAUR.

These relations analyze security rules defined in the conceptual model
attached to fact, dimension or base classes or their attributes, and represent
this information in the logical model by using security permissions attached
to cubes, dimensions or attributes. In order to achieve this goal, both trans-
formations serve from the groups of relations previously commented which
are focused on the creation of the different kind of security permission in log-
ical models. That is, the groups of relations focused on cubes: security cube
permissions and security cell permissions (Figure 5); and those focused on di-
mensions: security dimension permissions and security attribute permissions
(Figure 8).

Security Information Assignment Rules (SIAR) assign to several objects
a specific set of security privileges depending on a condition. This kind of
rule is defined in the conceptual model by using the SecurityRule metaclass.
The classes and properties affected by the rule are expressed in the prop-
erties involvedClasses, ownedSCObjects and ownedSPObjects. The condi-
tion to be evaluated is expressed in the CABExp property as a boolean
expression. Finally, two sets of security information (security level, com-
partments and roles) establish the security privileges needed to access the
objects affected by the rule if the condition if satisfied (CATHENSecInf) or
not (CAELSESecInf).

The relations ProcessCubeSIAR and ProcessDimensionSIAR are focused
on SIAR security rules, analyzing their information and generating in the
logical model the security permissions (cube, cell, dimension and attribute
permissions) needed to avoid unauthorized accesses to the affected objects.
As can be seen in Figure 12, the relation ProcessCubeSIAR checks Securi-
tyRule (SIAR) elements and their attributes (the affected secure fact classes,
the condition to evaluate and the security information sets to be applied).

19

Then, it analyzes the security information expressed in the SIAR (that is
composed of security compartments, roles and levels) and uses auxiliary rela-
tions previously defined (such as SLevelClass2CubePermission, SRoleDescen-
dant2CubePermission, etc.) in order to generate positive and negative cube
and cell permissions for the authorized and unauthorized security roles at the
logical level (which represent security compartments, roles and levels from
the conceptual model). The condition established in the CABExp property
is used in the definition of the negative permissions (deniedSet attribute)
to hide the instances that satisfy the condition. The relation ProcessDi-
mensionSIAR works in a similar way but focusing on secure dimension and
base classes by checking these kind of elements in the objects affected by
the SIAR rules and creating dimension and attribute permissions with the
corresponding auxiliary relations.

Authorization Rules (AUR) are defined in the conceptual model by using
the metaclass AuthorizationRule. This kind of security rule grants or denies
(ExceptSign property with values + or -) certain privileges (ExceptPrivilege
property) to certain elements (involvedClasses, ownedSCObjects and owned-
SPObjects properties) to the users that satisfy the condition expressed in the
AUR (CABExp property) and the security information (ownedSecInf prop-
erty).

Two relations check the AURs established in the conceptual model and
create the necessary security permissions in the logical model, which will be
positive or negative permissions depending on the AURs sign. The relation
ProcessCubeAUR establishes cube and cell permissions, whereas ProcessDi-
mensionAUR defines dimension and attribute permissions.

Figure 13 shows the relation ProcessDimensionAUR. This relation checks
AURs from the conceptual model and for each secure dimension or base class
involved, establish dimension and attribute permissions in the logical model
by considering the condition and the security information (security com-
partments, roles and levels) defined in the AUR. Solely positive or negative
permissions are created depending on AURs sign. For instance, if AURs sign
is negative, permissions to deny accesses are created by considering the secu-
rity information. That is, negative permissions for roles (at the logical level),
which represent the level (and inferior levels), role (and their descendants),
and compartment established in the AURs ownedSecInf property. In order to
achieve this goal, auxiliary relations previously defined are used with specific
parameters.

20

SFACT=class->select(f:SECDW::Class | f.oclIsKindOf(SECDW::SFact));

sp=sproperty->select(spro:SECDW::SecureProperty | spro.secureClass.oclIsKindOf(SECDW::SFact));

if(catSecInf.oclIsUndefined()) then true

--CubePermissions

else SFACT->forAll(sf:SECDW::SFact |

--Authorizing and Denying Security Levels

SLevelClass2CubePermission(sf,catSecInf.securityLevel,'+','','',s),

SLevelClass2CubePermission(sf,caeSecInf.securityLevel,'-','',cabExp,s),

SLevelClass2CubePermission(sf,caeSecInf.securityLevel.infLevel,'-','','',s),

--Authorizing and Denying Security Roles

catSecInf.securityRoles->forAll(sr:SECDW::SRole | SRoleDescendant2CubePermission(sf,"+",sr,'','',s),

 DenySRoleNonDescendant2CubePermission(sf,"-",sr,'',cabExp,s))

caeSecInf.securityRoles->forAll(sr:SECDW::SRole | DenySRoleNonDescendant2CubePermission(sf,"-",sr,'','',s))

--Authorizing and Denying Security Compartments

catSecInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 SCompartmentClass2CubePermission(sf,scTmp,'','',s),

 DenySCompartmentClass2CubePermission(sf,scTmp,'',cabExp,s))

caeSecInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 DenySCompartmentClass2CubePermission(spr,scTmp,'','',s))

--CellPermissions

sp->forAll(spr:SECDW::SecureProperty |

--Authorizing and Denying Security Levels

SLevelAtt2CellPermission(spr,catSecInf.securityLevel,'+','','',s),

SLevelAtt2CellPermission(spr,caeSecInf.securityLevel,'-','',cabExp,s)),

SLevelAtt2CellPermission(spr,caeSecInf.securityLevel.infLevel,'-','','',s))

--Authorizing and Denying Security Roles

catSecInf.securityRoles->forAll(sr:SECDW::SRole | SRoleDescendant2CellPermission(spr,"+",sr,'','',s),

 DenySRoleNonDescendant2CellPermission(spr,"-",sr,'',cabExp,s)))

caeSecInf.securityRoles->forAll(sr:SECDW::SRole | DenySRoleNonDescendant2CellPermission(spr,"-",sr,'','',s))

--Authorizing and Denying Security Compartments

catSecInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 SCompartmentAtt2CellPermission(spr,scTmp,'','',s),

 DenySCompartmentAtt2CellPermission(spr,scTmp,'',cabExp,s))

caeSecInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 DenySCompartmentAtt2CellPermission(spr,scTmp,'','',s))

) endif;

 Where

ProcessCubeSIAR
name = spName

sp: SecurePackage
ID = spName
name = spName

s: Schema
<<domain>>

<<domain>>

C E

ownedSCObjects = sclass
ownedSPObjects = sproperty
condition = cabExp
thenSecInf = catSecInf
elseSecInf = caeSecInf

ownedConstraint: SecurityRule

Figure 12: Relation ProcessCubeSIAR

6. Step 3: Transformation to OLAP implementation.

This section shows the transformations which have been developed in
order to automatically obtain the secure OLAP implementation from logical
models. In this case, we have defined model-to-text transformations by using

21

SDIM=class->select(d:SECDW::Class | d.oclIsKindOf(SECDW::SDimension or SECDW::SBase));

sp=sproperty->select(spro:SECDW::SecureProperty | spro.secureClass.oclIsKindOf(SECDW::SDimension or

SEWDW::SBase));

--DimensionPermissions

if(secInf.oclIsUndefined()) then true else

--Authorizing and Denying Security Levels

if(secInf.securityLevel->size()=0) then true else

 if(sig='+') then SDIM->forAll(sd:SECDW::SDimension |

 SLevelClass2DimensionPermission(sd,secInf.securityLevel,sig,cabExp,'',s))

 else if(sig='-') then SDIM->forAll(sf:SECDW::SDimension |

 SLevelClass2DimensionPermission(sd,secInf.securityLevel.infLevel,sig,'',cabExp,s))

 else true endif endif

endif and

--Authorizing and Denying Security Roles

if(secInf.securityRoles->size()=0) then true else

 if(sig='+') then SDIM->forAll(sd:SECDW::SDimension | secInf.securityRoles->forAll(sr:SECDW::SRole |

 SRoleDescendant2DimensionPermission(sd,sig,sr,cabExp,'',s)))

 else if(sig='-') then SDIM->forAll(sd:SECDW::SDimension | secInf.securityRoles->forAll(sr:SECDW::SRole |

 DenySRoleNonDescendant2DimensionPermission(sd,sig,sr,'',cabExp,s)))

 else true endif endif

endif and

--Authorizing and Denying Security Compartments

if(secInf.securityCompartments->size()=0)then true else

 if(sig='+') then SDIM->forAll(sd:SECDW::SDimension |

 secInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 SCompartmentClass2DimensionPermission(sd,scTmp,cabExp,'',s)))

 else if(sig='-') then SDIM->forAll(sd:SECDW::SDimension |

 secInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 DenySCompartmentClass2DimensionPermission(sd,scTmp,'',cabExp,s)))

 else true endif endif

endif and

--AttributePermissions

--Authorizing and Denying Security Levels

if(secInf.securityLevel->size()=0) then true else

 if(sig='+') then sp->forAll(spr:SECDW::SecureProperty |

 SLevelAtt2AttPermission(spr,secInf.securityLevel,sig,cabExp,'',s))

 else if(sig='-') then sp->forAll(spr:SECDW::SecureProperty |

 SLevelAtt2AttPermission(spr,secInf.securityLevel.infLevel,sig,'',cabExp,s))

 else true endif endif

endif and

--Authorizing and Denying Security Roles

if(secInf.securityRoles->size()=0) then true else

 if(sig='+') then secInf.securityRoles->forAll(sr:SECDW::SRole | sp->forAll(spr:SECDW::SecureProperty |

 SRoleDescendant2AttPermission(spr,sig,sr,cabExp,'',s)))

 else if(sig='-') then secInf.securityRoles->forAll(sr:SECDW::SRole | sp->forAll(spr:SECDW::SecureProperty |

 SRoleNonDescendant2AttPermission(spr,sig,sr,'',cabExp,s)))

 else true endif endif

endif and

--Authorizing and Denying Security Compartments

if(secInf.securityCompartments->size()=0) then true else

 if(sig='+') then secInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 sp->forAll(spr:SECDW::SecureProperty | SCompartmentAtt2AttPermission(spr,scTmp,cabExp,'',s)))

 else if(sig='-') then secInf.securityCompartments->forAll(scTmp:SECDW::SCompartment |

 sp->forAll(spr:SECDW::SecureProperty | DenySCompartmentAtt2AttPermission(spr,scTmp,'',cabExp,s)))

 else true endif endif endif

endif;

 Where

ProcessDimensionAUR
name = spName

sp: SecurePackage
ID = spName
name = spName

s: Schema
<<domain>>

<<domain>>

C E

ownedSCObjects = sclass
ownedSPObjects = sproperty
subjects = secInf
condition = cabExp
sign = sig

ownedConstraint: AuthorizationRule

Figure 13: Relation ProcessDimensionAUR

22

the MOFScript specification language that is the standard proposed by the
OMG.

Since logical models defined according SECMDDW are very close to
OLAP platforms, managing multidimensional elements and security con-
straints defined over them, the automatic transformation towards a secure
implementation for different OLAP tools can be easily achieved. In this pa-
per SSAS has been selected as the target OLAP platform. Therefore, this
section describes the MOFScript transformations developed to obtain the se-
cure implementation for SSAS from logical models. Only the implementation
for some transformations are shown.

SSAS uses several kinds of XML files (with role, cube and dim file ex-
tensions) to manage information about security roles, cubes and dimension.
Thus, the MOFScript M2T transformation developed to generate the se-
cure SSAS implementation from logical models has been grouped in three
sets, which are security configuration, cubes and dimensions. Next, each set
of transformations is briefly explained and some pieces of code are shown.
Firstly, the security configuration established in the logical model by using
a RBAC policy is processed (show Table 1). For each role, a XML file (with
role file extension) with information about its members.

texttransformation roles (in psm:SECMDDW) {
psm.Schema::main() {
self.ownedRoles->forEach(r:psm.Role) {
file rolefile (r.ID + .role);
rolefile.print(<Role>);
rolefile.print(<ID> + r.ID + </ID>);
rolefile.print(<Name> + r.name + </Name>);
rolefile.print(<Members >);
r.ownedMembers->forEach(m:psm.Member) {
rolefile.print(<Member><Name>+m.memberName+</Name></Member>); }

rolefile.print(</Members ></Role>); } }

Table 1: MOFScript transformation: security configuration

Then, structural and security aspects related with cubes are analyzed.
Table 2 shows a piece of code of this transformation. It creates a cube file
(cube file extension) for each detected cube in the logical model, including
information about the cube and its measures. Next, cube files are fulfilled
by other transformations which include the remainder information about
hierarchies and security permissions defined over cubes and cells.

23

texttransformation cubes (in psm:SECMDDW) {
psm.Schema::main() {
self.ownedCubes->forEach(c:psm.Cube) {
file cubefile (c.cubeID + .cube);
cubefile.print(<Cube>);
cubefile.print(<ID> + c.cubeID + </ID>);
cubefile.print(<Name> + c.cubeName + </Name>);
cubefile.print(<MeasureGroups>);
c.ownedMeasureGroups->forEach(mg:psm.MeasureGroup) {
cubefile.print(<MeasureGroup>);
cubefile.print(<ID> + mg.mGroupID + </ID>);
cubefile.print(<Name> + mg.mGroupName + </Name>);
cubefile.print(<Measures>);
mg.ownedMeasures->forEach(m:psm.Measure) {
cubefile.print(<Measure>);
cubefile.print(<ID> + m.measureID + </ID>);
cubefile.print(<Name> + m.measureName + </Name>);
cubefile.print(</Measure>); }

cubefile.print(</Measures>);
cubefile.print(</MeasureGroup>); }
cubefile.print(</MeasureGroups>);
cubefile.print(</Cube>); } }

Table 2: MOFScript transformation: cubes

Table 3 shows a transformation for dimensions which is focused on secu-
rity issues represented in the logical model. Finally, dimensions are processed
creating the dimension files needed (dim file extension) and the structural
aspects related with dimensions. After that, the security permissions defined
over this dimension or their attributes are analyzed and the security infor-
mation needed is included in the corresponding dimension file: information
about processing and reading privileges, MDX expressions defining the sets
which are denied and allowed for each role, etc. (see Table 3).

7. Validation Example

This section describes the application of our proposal for the develop-
ment of an OLAP application for a sales department. The DW used in
this example analyzes sales according to different perspectives (products,
dates, customers and stores) and also considers several security constraints.
Firstly, the system is modeled in a conceptual level. Then, the secure logi-

24

texttransformation dimensionPermissions (in psm:SECMDDW) {
psm.Schema::main() {
self.ownedCubes->forEach(c:psm.Cube) {
c.ownedDimensions->forEach(d:psm.Dimension) {
file dimfile (d.dimensionID + .dim);
dimfile.print (<DimensionPermissions>);
d.ownedDimensionPermissions->forEach(dp:psm.DimensionPermission) {
dimfile.print (<DimensionPermission>);
dimfile.print (<ID>+dp.dpID+</ID>);
dimfile.print (<Name>+dp.dpName+</Name>);
dimfile.print (<RoleID>+dp.roleID+</RoleID>);
dimfile.print (<Process>+dp.process+</Process>);
dimfile.print (<Read>+dp.read+</Read>);
dimfile.print (<AllowedSet>+dp.allowedSet+</AllowedSet>);
dimfile.print (<DeniedSet>+dp.deniedSet+</DeniedSet>);
dimfile.print (<AttributePermissions>);
dp.ownedAttributePermissions->forEach(ap:psm.AttributePermission) {
dimfile.print (<AttributePermission>);
dimfile.print (<AttributeID>+ap.attributeID+</AttributeID>);
dimfile.print (<AllowedSet>+ap.allowedSet+</AllowedSet>);
dimfile.print (<DeniedSet>+ap.deniedSet+</DeniedSet>);
dimfile.print (</AttributePermission>"); }
dimfile.print (</AttributePermissions>);
dimfile.print (</DimensionPermission>); }

dimfile.print ("</DimensionPermissions>"); } } }

Table 3: MOFScript transformation: dimensions

cal model for OLAP applications is automatically obtained (by applying the
QVT transformations defined). Finally, the secure implementation for SSAS
is automatically obtained from the logical model (by applying the MOFScript
rules developed).

7.1. Step 1: Conceptual Model

Figure 14 shows the conceptual model for the Sales DW, defined according
to SECDW. This example is composed of a central fact Sale (secure fact
class) with measures amount and quantity, which can be classified by using
different dimensions Product, Store, Date and Customer (secure dimension
classes). Furthermore, different aggregation levels have been defined (by
using secure base classes) for Products which can be grouped by Category
and for Customers which can be grouped by City.

25

+amount
+quantity

<<SFact>>
Sale

{SL = U}

+customerID
+name
+age
+address

<<SDimension>>
Customer
{SL = C}

+storeID
+storeDesc

<<SDimension>>
Store
{SL = C}

+productID
+productDesc
+delivery

<<SDimension>>
Product
{SL = C}

+dateID
+dateDesc

<<SDimension>>
Date

{SL = U}

+cityID
+cityDesc

<<SBase>>
City

{SL = U}

+categoryID
+categoryDesc

<<SBase>>
Category
{SL = U} +userCode

+userName
+securityLevel

<<UserProfile>>
UserProfile

+CABExp = "[Product].[delivery]==anonymous"
+CATHENSecInf = {SL=S}
+CAELSESecInf = {SL=C}

<<SecurityRule>>
SIARProduct

+ExceptSign = '+'
+ExceptPrivilege = 'read'
+CABExp = "[Customer].[customerID]==[UserProfile].[userCode]"

<<AuthorizationRule>>
AURCustomer

Figure 14: Example: Conceptual Model (PIM)

On the other hand, the security configuration is established. Although
our proposal allows to specify it based on security roles, levels and compart-
ments, this example only considers the following set of security levels: secret
(S), confidential (C) and undefined (U). Therefore, the user profile stores
the security level associated with the user as well as information about its
identification and name. Security constraints have been established over
multidimensional elements by using this security configuration, that is, by
using security information sets composed of a specific security level required.
Firstly, the security privileges needed to access fact, dimension and base
classes are defined (as tagged values): a security level of C is required to
access Product, Store and Customer dimensions; and a level of U for the fact
Sale, dimension Date and bases Category and City.

Moreover, several security rules complement the model. A security rule
(SIAR) attached to Product dimension, which increases the security level
necessary to access sales information grouped by Product from C to S if the
kind of delivery is anonymous (delivery property from Product dimension).
An authorization rule (AUR) attached to Customer allows each user to access
its own customers information (although users security level was lower than
the required one for Customer, that is C).

26

7.2. Step 2: Transformation to Logical Model for OLAP

Once the conceptual model has been defined, in this section the transfor-
mation rules developed are applied in order to obtain a logical model for se-
cure OLAP applications (according to SECMDDW metamodel). The result-
ing logical model shown in this section splits in several figures. Firstly, the se-
curity configuration defined is analysed by the transformation SECDW2Role.
In this case, as can be seen in Figure 15, just a specific role (SLS, SLC and
SLU) is created in the logical model for each security level from the concep-
tual model (S, C and U).

+ID = "sales"

+name = "sales"

Sales:Schema

+roleID = "SLC"

+roleName = "SLC"

:Role

+roleID = "SLS"

+roleName = "SLS"

:Role

+roleID = "SLU"

+roleName = "SLU"

:Role

Figure 15: Example: Logical Model (PSM). Security Configuration

Secure fact classes defined in the conceptual model are processed by
SECDW2Cube transformation. The secure fact class Sale generates at the
logical model a cube (Cube) with an attached measure group (Measure-
Group) composed of two measures (Measure): amount and quantity (see
Figure 16). The security level required for accesses to the Sale secure fact
class (a U security level) is represented in the logical model as a set of positive
security cube permission which grant accesses (process and read attributes)
to the cube Sale (allowedSet attribute) for the role SLU (roleID attribute),
and also for the roles SLC and SLC, since these roles represent users with
upper security privileges (upper security level).

+cpID = "CubePermissionSLS"
+cpName = "CubePermissionSLS"
+roleID = "SLS"
+process = true
+read = allowed
+allowedSet = [Sale]
+deniedSet = ""

:CubePermission
+cpID = "CubePermissionSLC"
+cpName = "CubePermissionSLC"
+roleID = "SLC"
+process = true
+read = allowed
+allowedSet = [Sale]
+deniedSet = ""

:CubePermission
+cpID = "CubePermissionSLU"
+cpName = "CubePermissionSLU"
+roleID = "SLU"
+process = true
+read = allowed
+allowedSet = [Sale]
+deniedSet = ""

:CubePermission

+cubeID = "Sale"
+cubeName = "Sale"

:Cube
+mGroupID = "Sale"
+mGroupName = "Sale"

:MeasureGroup

+amount
:Measure

+quantity
:Measure

+ID = "sales"
+name = "sales"

Sales:Schema

Figure 16: Example: Logical Model (PSM). Cubes

27

Then, both structural and security aspects related with dimension and
base classes are analyzed by the transformation SECDW2Dimension. As Fig-
ure 17 shows, each secure dimension class from the conceptual model gener-
ates a dimension (Dimension) in the logical model with associated attributes
(Attribute) and a key attribute for each dimension (KeyAttribute). The dif-
ferent classification hierarchies defined for each dimension with secure base
classes in the conceptual level, are specified in the logical model as hierarchies
(Hierarchy) and different aggregation levels (Level) associated with dimen-
sions (for instance, Customer can be grouped by City). Bases properties are
represented as dimension attributes in the logical level (for instance, cityID
and cityDesc from the base City are now attributes of Customer dimension).

+cubeID = "Sale"
+cubeName = "Sale"

:Cube

+dimensionID = "Customer"
+dimensionName = "Customer"

:Dimension
+dimensionID = "Product"
+dimensionName = "Product"

:Dimension

+productID
:KeyAttribute

+productDesc
:Attribute

+delivery
:Attribute

+CategorycategoryID
:Attribute

+CategorycategoryDesc
:Attribute

+address
:Attribute

+age
:Attribute

+name
:Attribute

+customerID
:KeyAttribute

+CitycityID
:Attribute

+CitycityDesc
:Attribute

+dimensionID = "Store"
+dimensionName = "Store"

:Dimension

+storeID
:KeyAttribute

+storeDesc
:Attribute

+dimensionID = "Date"
+dimensionName = "Date"

:Dimension

+dateID
:KeyAttribute

+dateDesc
:Attribute

+hierarchyID = "CustomerHierarchy1"
+hierarchyName = "CustomerHierarchy1"

:Hierarchy

+hierarchyID = "ProductHierarchy1"
+hierarchyName = "ProductHierarchy1"

:Hierarchy

+levelID = "City"
+levelName = "City"
+sourceAttributeID = "City"

:Level
+levelID = "Category"
+levelName = "Category"
+sourceAttributeID = "Category"

:Level

+ID = "sales"
+name = "sales"

Sales:Schema

Figure 17: Example: Logical Model (PSM). Dimensions Structure

The security privileges needed to access dimensions and bases are modeled
at the logical level as dimension permissions (as can be shown in Figure
18). Since a security level of C is required to access the dimension Store,
three security dimension permissions have been defined: two of them to
grant access for users with roles SLS and SLC (security levels S and C),
and one of them to deny access for users with a SLU role (security level U).
The remainder dimension permissions in Figure 18 are associated with the
dimension Date and are obtained in a similar way.

28

+dpID = "DimensionPermissionSLU"
+dpName = "DimensionPermissionSLU"
+roleID = "SLU"
+process = true
+read = allowed
+allowedSet = ""
+deniedSet = "[Store]"

:DimensionPermission

+dpID = "DimensionPermissionSLC"
+dpName = "DimensionPermissionSLC"
+roleID = "SLC"
+process = true
+read = allowed
+allowedSet = "[Store]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLS"
+dpName = "DimensionPermissionSLS"
+roleID = "SLS"
+process = true
+read = allowed
+allowedSet = "[Store]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLU"
+dpName = "DimensionPermissionSLU"
+roleID = "SLU"
+process = true
+read = allowed
+allowedSet = "[Date]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLC"
+dpName = "DimensionPermissionSLC"
+roleID = "SLC"
+process = true
+read = allowed
+allowedSet = "[Date]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLS"
+dpName = "DimensionPermissionSLS"
+roleID = "SLS"
+process = true
+read = allowed
+allowedSet = "[Date]"
+deniedSet = ""

:DimensionPermission

+cubeID = "Sale"
+cubeName = "Sale"

:Cube

+dimensionID = "Customer"
+dimensionName = "Customer"

:Dimension

+dimensionID = "Product"
+dimensionName = "Product"

:Dimension

+dimensionID = "Store"
+dimensionName = "Store"

:Dimension

+dimensionID = "Date"
+dimensionName = "Date"

:Dimension

+ID = "sales"
+name = "sales"

Sales:Schema

Figure 18: Example: Logical Model (PSM). Dimensions Security

The dimension and attribute permissions needed to represent at the log-
ical level the security constraints that affect Product dimension and their
associated base class Category are shown in Figure 19. Firstly, dimension
permissions are created for each role (SLS, SLC and SLU). The security level
required to access Product is C, but there is also a security rule (SIAR) that
increase it to S when the kind of delivery is anonymous. The transformation
SecurityRules2DimensionPermission processes this SIAR generating dimen-
sion permissions that represent this situation by using allowed and denied
sets: SLS role can access all products, with anonymous delivery or not (then,
the allowedSet is set to [Product]); SLC role can only access products with not
anonymous delivery (deniedSet set to [Product].[delivery]==anonymous);
and SLU role cannot access any product (deniedSet set to [Product]). Nev-
ertheless, the last dimension permission is denying all accesses to products
for the SLU role and in the conceptual model, the security level required
for the base class Category is U. In order to provide accesses to Category
information (categoryID and categoryName properties) for the role SLU, pos-
itive attribute permissions for the attributes CategorycategoryID and Cate-
gorycategoryName are created in the logical model attached to the dimension
permission corresponding to the role SLU.

Dimension permissions associated with Customer dimension are shown
in Figure 20. In the conceptual model, it was established a security level of
C for Customer dimension and U for City base. Security dimension permis-
sions are created in the logical model for each role: granting accesses for SLS
and SLC, and denying accesses for SLU. Furthermore, since users with a
U security level cab see City information, positive attribute permissions for
their attributes (CitycityID and CitycityName) are attached to the dimen-

29

+dpID = "DimensionPermissionSLS"
+dpName = "DimensionPermissionSLS"
+roleID = "SLS"
+process = true
+read = allowed
+allowedSet = "[Product]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLC"
+dpName = "DimensionPermissionSLC"
+roleID = "SLC"
+process = true
+read = allowed
+allowedSet = ""
+deniedSet = "[Product].[delivery]==anonymous"

:DimensionPermission

+dpID = "DimensionPermissionSLU"
+dpName = "DimensionPermissionSLU"
+roleID = "SLU"
+process = true
+read = allowed
+allowedSet = ""
+deniedSet = "[Product]"

:DimensionPermission

+attributeID = "CategorycategoryID"
+allowedSet = "[Product].[CategorycategoryID]"
+deniedSet = ""

:AttributePermission

+attributeID = "CategorycategoryDesc"
+allowedSet = "[Product].[CategorycategoryDesc]"
+deniedSet = ""

:AttributePermission

+cubeID = "Sale"
+cubeName = "Sale"

:Cube

+dimensionID = "Product"
+dimensionName = "Product"

:Dimension

+ID = "sales"
+name = "sales"

Sales:Schema

Figure 19: Example: Logical Model (PSM). Security Rules

sion permission for the role SLU. Nevertheless, an authorization rule (AUR)
allows users to access their own customer information. The transformation
SecurityRule2DimensionPermission changes in the logical model the infor-
mation needed to represent this constraint. In this case, since SLS and SLC
roles can access all Customer information, only the dimension permission for
the SLU role has to be modified by setting the allowed set to the condition
[Customer].[customerID] == [UserProfile].[userCode].

+dpID = "DimensionPermissionSLU"
+dpName = "DimensionPermissionSLU"
+roleID = "SLU"
+process = true
+read = allowed
+allowedSet = "[Customer].[customerID]==[UserProfile].[userCode]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLC"
+dpName = "DimensionPermissionSLC"
+roleID = "SLC"
+process = true
+read = allowed
+allowedSet = "[Customer]"
+deniedSet = ""

:DimensionPermission

+dpID = "DimensionPermissionSLS"
+dpName = "DimensionPermissionSLS"
+roleID = "SLS"
+process = true
+read = allowed
+allowedSet = "[Customer]"
+deniedSet = ""

:DimensionPermission

+attributeID = "CitycityID"
+allowedSet = "[Customer].[CitycityID]"
+deniedSet = ""

:AttributePermission

+attributeID = "CitycityDesc"
+allowedSet = "[Customer].[CitycityDesc]"
+deniedSet = ""

:AttributePermission

+cubeID = "Sale"
+cubeName = "Sale"

:Cube

+dimensionID = "Customer"
+dimensionName = "Customer"

:Dimension

+ID = "sales"
+name = "sales"

Sales:Schema

Figure 20: Example: Logical Model (PSM). Authorization Rules

7.3. Step 3: Transformation to OLAP implementation

The logical model obtained in the previous section is closer to OLAP
applications than the conceptual model, allowing the generation of the even-
tually secure implementation for different OLAP tools. In this paper, MOF-
Script transformations have been developed for generating the implementa-
tion in one of the most used OLAP tools, SSAS. This transformation gener-
ates different kind of files: for each security role (files SLS.role, SLC.role and

30

SLU.role); for the Sales cube (Sales.cube file); and for each dimension (files
Product.dim, Customer.dim, etc.).

Table 4 shows a piece of code from the Product.dim file in which can be
shown how the dimension permission for the role SLU has been represented
for SSAS by using its XML syntax and MDX expressions for the allowed and
denied sets.

<Dimension>
<ID>Product</ID><Name>Product</Name>
<!--Structural aspects have been omitted-->
<DimensionPermissions>
<!--Dimension Permissions for SLS and SLC have been omitted-->
<DimensionPermission>
<ID>DimensionPermissionSLU</ID>
<Name>DimensionPermissionSLU</Name>
<RoleID>SLU</RoleID>
<Process>true</Process><Read>Allowed</Read>
<AllowedSet></AllowedSet>
<DeniedSet>[Product]</DeniedSet>
<AttributePermissions>
<AttributePermission>
<AttributeID>CategorycategoryID</AttributeID>
<AllowedSet>[Product].[CategorycategoryID]</AllowedSet>
<DeniedSet></DeniedSet>
</AttributePermission>
<AttributePermission>
<AttributeID>CategorycategoryDesc</AttributeID>
<AllowedSet>[Product].[CategorycategoryDesc]</AllowedSet>
<DeniedSet></DeniedSet>
</AttributePermission>
</AttributePermissions>

</DimensionPermission>
</DimensionPermissions>
</Dimension>

Table 4: Example: SSAS implementation

8. Conclusions

DWs manage vital business information which is very sensitive and has to
be correctly assured in order to avoid unauthorized access. Because an early
detection of security requirements has influence in the further design decisions

31

providing better security specifications and final products, security measures
should be considered in the whole development process from early stages
to final tools. Furthermore, since DWs are queried by tools which manage
specific cubes or views from the corporative DW, security constraints should
be also defined in this metadata layer by using the same multidimensional
elements that will be managed by the final users of OLAP tools.

Thanks to our proposal we are able to develop secure OLAP applications,
providing a complete MDA architecture composed of several security mod-
els and automatic transformations towards the final secure implementation.
That is: (i) a new logical multidimensional metamodel (SECMDDW) which
is based on the OLAP package of CWM extended with security issues al-
lowing the definition of the security configuration of the system and both
structural and security aspects of cubes and dimensions; (ii) a set of QVT
transformations from our conceptual models (PIM) to the new multidimen-
sional logical models (PSM), which integrates the new PSM metamodel in
the MDA architecture; (iii) the corresponding model-to-text transformations
which allows the automatic code generation into a specific OLAP tool (SSAS)
from the new multidimensional logical models (PSM).

In order to fulfill our MDA architecture, in this paper has been also
included support to the transformation of complex security rules which are
defined in conceptual models as OCL expressions. To achieve this goal, our
UML profile for the conceptual modelling of secure DWs (PIM) has been
improved with new metaclasses for managing information about complex
security rules which are next used by QVT rules to obtain PSM models. The
improvements carried out in the PIM do not affect the MDA architecture
and the previously defined rules for the relational approach. Furthermore,
an application example has been presented in order to validate our proposal,
in which a conceptual model is defined and transformation rules are applied
to generate the secure multidimensional logical model and the eventually
implementation into SSAS.

Our further work will improve this architecture in several lines: (i) in-
cluding new PSM models, giving support to other final platforms (such as
Pentaho); (ii) defining inverse transformations for allowing modernization
processes; and (iii) including dynamic security models which complement
the existing models dealing with the inference security problem.

32

Acknowledgements.

This research is part of the following projects: SERENIDAD (PEII11-
037-7035) financed by the Viceconsejera de Ciencia y Tecnologa de la Junta
de Comunidades de Castilla-La Mancha (Spain) and FEDER, and SIGMA-
CC (TIN2012-36904) and GEODAS (TIN2012-37493-C03-01) financed by
the Ministerio de Economa y Competitividad (Spain).

Bibliography

References

[1] W. Inmon, 2.0 - architecture for the next generation of data warehous-
ing, Morgan Kaufman Series in Data Management Systems, Morgan
Kaufmann, 2008.

[2] B. Thuraisingham, M. Kantarcioglu, S. Iyer, Extended rbac-based de-
sign and implementation for a secure data warehouse, International
Journal of Business Intelligence and Data Mining (IJBIDM) 2 (4) (2007)
367–382.

[3] E. Fernández-Medina, J. Jurjens, J. Trujillo, S. Jajodia, Model-
driven development for secure information systems, Information and
Software Technology 51 (5) (2009) 809–814, 0950-5849 doi: DOI:
10.1016/j.infsof.2008.05.010.

[4] A. Abraham, J. Lloret Mauri, J. Buford, J. Suzuki, S. Thampi, K. Kha-
jaria, M. Kumar, Evaluation of Approaches for Modeling of Security in
Data Warehouses, Vol. 191, Springer Berlin Heidelberg, 2011, pp. 9–18.

[5] S. Fischer-Hübner, S. Katsikas, G. Quirchmayr, A. Salem, S. Triki,
H. Ben-Abdallah, N. Harbi, O. Boussaid, Verification of Security Coher-
ence in Data Warehouse Designs, Vol. 7449, Springer Berlin Heidelberg,
2012, pp. 207–213.

[6] OMG, Mda. model driven architecture guide version 1.0.1,
http://www.omg.org/cgi-bin/doc?omg/03-06-01 (2003).

[7] OMG, Qvt. meta object facility 2.0 query/view/transformation specifi-
cation, http://www.omg.org/spec/QVT/1.1 (2011).

33

[8] E. Fernández-Medina, J. Trujillo, M. Piattini, Model driven multidi-
mensional modeling of secure data warehouses, European Journal of
Information Systems 16 (4) (2007) 374–389.

[9] J. Jurjens, Secure Systems Development with UML, Springer-Verlag,
2004.

[10] J. Jurjens, H. Schmidt, Umlsec4uml2 - adopting umlsec to support uml2,
Tech. rep., Technical Reports in Computer Science. Technische Univer-
sitat Dortmund, http://hdl.handle.net/2003/27602 (2011).

[11] D. Basin, J. Doser, T. Lodderstedt, Model driven security: from uml
models to access control infrastructures, ACM Transactions on Software
Engineering and Methodology 15 (1) (2006) 39–91.

[12] F. J. B. Nunes, A. D. Belchior, A. B. Albuquerque,
Security engineering approach to support software se-
curity, Services, IEEE Congress on 0 (2010) 48–55.
doi:http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.37.

[13] A. Cuzzocrea, V. Russo, Privacy Preserving OLAP and OLAP Security,
IGI Global, Hershey, PA, USA, 2009, pp. 1575–1581. doi:10.4018/978-
1-60566-010-3.ch241.

[14] A. Rosenthal, E. Sciore, View security as the basic for data warehouse
security, in: 2nd International Workshop on Design and Management of
Data Warehouse (DMDW’00), Vol. 28, Sweden, 2000, pp. 8.1–8.8.

[15] F. Saltor, M. Oliva, A. Abelló, J. Samos, Building secure data warehouse
schemas from federated information systems (2002).

[16] E. Weippl, O. Mangisengi, W. Essmayr, F. Lichtenberger, W. Wini-
warter, An authorization model for data warehouses and olap, in:
Workshop on Security in Distributed Data Warehousing, New Orleans,
Louisiana, USA, 2001.

[17] T. Priebe, G. Pernul, A pragmatic approach to conceptual modeling of
olap security, in: 20th International Conference on Conceptual Modeling
(ER 2001), Springer-Verlag, Yokohama, Japan, 2001.

34

[18] J. Trujillo, E. Soler, E. Fernández-Medina, M. Piattini, A uml 2.0 profile
to define security requirements for datawarehouses, Computer Standards
and Interfaces (CSI) 31 (5) (2009) 969–983.

[19] E. Yu, Towards modelling and reasoning support for early-phase require-
ments engineering, in: 3rd IEEE International Symposium on Require-
ments Engineering (RE’97), Washington, DC, 1997, pp. 226–235.

[20] E. Fernández-Medina, J. Trujillo, R. Villarroel, M. Piattini, Develop-
ing secure data warehouses with a uml extension, Information Systems
32 (6) (2007) 826–856.

[21] E. Fernández-Medina, J. Trujillo, R. Villarroel, M. Piattini, Access con-
trol and audit model for the multidimensional modeling of data ware-
houses, Decision Support Systems 42 (2006) 1270–1289.

[22] J. Trujillo, E. Soler, E. Fernández-Medina, M. Piattini, An engineering
process for developing secure data warehouses, Information and Software
Technology 51 (6) (2009) 1033–1051.

[23] E. Soler, J. Trujillo, E. Fernández-Medina, M. Piattini, Building a secure
star schema in data warehouses by an extension of the relational package
from cwm, Computer Standards and Interfaces (CSI) 30 (6) (2008) 341–
350.

[24] OMG, Cwm. common warehouse metamodel. version v1.1,
http://www.omg.org/spec/CWM/1.1 (2003).

[25] E. Soler, J. Trujillo, C. Blanco, E. Fernández-Medina, Designing secure
data warehouses by using mda and qvt, Journal of Universal Computer
Science (JUCS) 15 (8) (2009) 1608–1641.

[26] C. Blanco, E. Fernández-Medina, J. Trujillo, M. Piattini, How to im-
plement multidimensional security into olap tools, Int. J. of Business
Intelligence and Data Mining - IJBIDM 3 (3) (2008) 255.

35

