313 research outputs found

    Introduction to Multiprocessor I/O Architecture

    Get PDF
    The computational performance of multiprocessors continues to improve by leaps and bounds, fueled in part by rapid improvements in processor and interconnection technology. I/O performance thus becomes ever more critical, to avoid becoming the bottleneck of system performance. In this paper we provide an introduction to I/O architectural issues in multiprocessors, with a focus on disk subsystems. While we discuss examples from actual architectures and provide pointers to interesting research in the literature, we do not attempt to provide a comprehensive survey. We concentrate on a study of the architectural design issues, and the effects of different design alternatives

    Problems related to the integration of fault tolerant aircraft electronic systems

    Get PDF
    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included

    Fault-tolerant vertical link design for effective 3D stacking

    Full text link
    [EN] Recently, 3D stacking has been proposed to alleviate the memory bandwidth limitation arising in chip multiprocessors (CMPs). As the number of integrated cores in the chip increases the access to external memory becomes the bottleneck, thus demanding larger memory amounts inside the chip. The most accepted solution to implement vertical links between stacked dies is by using Through Silicon Vias (TSVs). However, TSVs are exposed to misalignment and random defects compromising the yield of the manufactured 3D chip. A common solution to this problem is by over-provisioning, thus impacting on area and cost. In this paper, we propose a fault-tolerant vertical link design. With its adoption, fault-tolerant vertical links can be implemented in a 3D chip design at low cost without the need of adding redundant TSVs (no over-provision). Preliminary results are very promising as the fault-tolerant vertical link design increases switch area only by 6.69% while the achieved interconnect yield tends to 100%.This work was supported by the Spanish MEC and MICINN, as well as European Comission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04. It was also partly supported by the project NaNoC (project label 248972) which is funded by the European Commission within the Research Programme FP7.Hernández Luz, C.; Roca Pérez, A.; Flich Cardo, J.; Silla Jiménez, F.; Duato Marín, JF. (2011). Fault-tolerant vertical link design for effective 3D stacking. IEEE Computer Architecture Letters. 10(2):41-44. https://doi.org/10.1109/L-CA.2011.17S414410

    Context flow architecture

    Get PDF

    Multistage interconnection networks : improved routing algorithms and fault tolerance

    Get PDF
    Multistage interconnection networks for use by multiprocessor systems are optimal in terms of the number of switching element, but the routing algorithms used to set up these networks are suboptimal in terms of time. The network set-up time and reliability are the major factors to affect the performance of multistage interconnection networks. This work improves routing on Benes and Clos networks as well as the fault tolerant capability. The permutation representation is examined as well as the Clos and Benes networks. A modified edge coloring algorithm is applied to the regular bipartite multigraph which represents a Clos network. The looping and parallel looping algorithms are examined and a modified Tree-Connected Computer is adopted to execute a bidirectional parallel looping algorithm for Benes networks. A new fault tolerant Clos network is presented

    Reconfiguration for Fault Tolerance and Performance Analysis

    Get PDF
    Architecture reconfiguration, the ability of a system to alter the active interconnection among modules, has a history of different purposes and strategies. Its purposes develop from the relatively simple desire to formalize procedures that all processes have in common to reconfiguration for the improvement of fault-tolerance, to reconfiguration for performance enhancement, either through the simple maximizing of system use or by sophisticated notions of wedding topology to the specific needs of a given process. Strategies range from straightforward redundancy by means of an identical backup system to intricate structures employing multistage interconnection networks. The present discussion surveys the more important contributions to developments in reconfigurable architecture. The strategy here is in a sense to approach the field from an historical perspective, with the goal of developing a more coherent theory of reconfiguration. First, the Turing and von Neumann machines are discussed from the perspective of system reconfiguration, and it is seen that this early important theoretical work contains little that anticipates reconfiguration. Then some early developments in reconfiguration are analyzed, including the work of Estrin and associates on the fixed plus variable restructurable computer system, the attempt to theorize about configurable computers by Miller and Cocke, and the work of Reddi and Feustel on their restructable computer system. The discussion then focuses on the most sustained systems for fault tolerance and performance enhancement that have been proposed. An attempt will be made to define fault tolerance and to investigate some of the strategies used to achieve it. By investigating four different systems, the Tandern computer, the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from dynamic redundancy to reconfiguration is observed. Then reconfiguration for performance enhancement is discussed. A survey of some proposals is attempted, then the discussion focuses on the most sustained systems that have been proposed: PASM, the DC architecture, the Star local network, and the NYU Ultracomputer. The discussion is organized around a comparison of control, scheduling, communication, and network topology. Finally, comparisons are drawn between fault tolerance and performance enhancement, in order to clarify the notion of reconfiguration and to reveal the common ground of fault tolerance and performance enhancement as well as the areas in which they diverge. An attempt is made in the conclusion to derive from this survey and analysis some observations on the nature of reconfiguration, as well as some remarks on necessary further areas of research

    Probabilistic structural mechanics research for parallel processing computers

    Get PDF
    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical

    Fault-tolerant interconnection networks for multiprocessor systems

    Get PDF
    Interconnection networks represent the backbone of multiprocessor systems. A failure in the network, therefore, could seriously degrade the system performance. For this reason, fault tolerance has been regarded as a major consideration in interconnection network design. This thesis presents two novel techniques to provide fault tolerance capabilities to three major networks: the Baseline network, the Benes network and the Clos network. First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT technique is in fact the result of merging two widely known interconnection mechanisms: a normal interconnection network and a shared bus. This technique is most suitable for networks with small switches, such as the Baseline network and the Benes network. For the Clos network, whose switches may be large for the SFT, another technique is developed to produce the Fault-Tolerant Clos (FTC) network. In the FTC, one switch is added to each stage. The two techniques are described and thoroughly analyzed

    Scalable Parallel Computers for Real-Time Signal Processing

    Get PDF
    We assess the state-of-the-art technology in massively parallel processors (MPPs) and their variations in different architectural platforms. Architectural and programming issues are identified in using MPPs for time-critical applications such as adaptive radar signal processing. We review the enabling technologies. These include high-performance CPU chips and system interconnects, distributed memory architectures, and various latency hiding mechanisms. We characterize the concept of scalability in three areas: resources, applications, and technology. Scalable performance attributes are analytically defined. Then we compare MPPs with symmetric multiprocessors (SMPs) and clusters of workstations (COWs). The purpose is to reveal their capabilities, limits, and effectiveness in signal processing. We evaluate the IBM SP2 at MHPCC, the Intel Paragon at SDSC, the Gray T3D at Gray Eagan Center, and the Gray T3E and ASCI TeraFLOP system proposed by Intel. On the software and programming side, we evaluate existing parallel programming environments, including the models, languages, compilers, software tools, and operating systems. Some guidelines for program parallelization are provided. We examine data-parallel, shared-variable, message-passing, and implicit programming models. Communication functions and their performance overhead are discussed. Available software tools and communication libraries are also introducedpublished_or_final_versio
    corecore