
? 8 2 - 2 9 0 - 2 2

RTI/2094/02-02F
r

NASA Contractor Report 165926

PROBLEMS RELATED TO THE
INTEGRATION OF FAULT-TOLERANT
AIRCRAFT ELECTRONIC SYSTEMS

Contract Number NAS1-16489

NASA
National Aeronautics and
Spaee Administration

'": Langley Research Center
I Hampton,Viriginia?23665'

https://ntrs.nasa.gov/search.jsp?R=19820021146 2020-03-21T07:57:50+00:00Z

NASA Contractor Report 1G5926

PROBLEMS RELATED TO THE
INTEGRATION OF FAULT-TOLERANT
AIRCRAFT ELECTRONIC SYSTEMS

J. A. Bannister, K. Trivedi,
V. Adlakha, and T. A. Alspaugh, Jr.

Research Triangle Institute
Research Triangle Park, North Carolina

Contract NAS1-16489
June 1982

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

PREFACE

This report was prepared by the Research Triangle Institute, Research
Triangle Park, North Carolina, for the National Aeronautics and Space

Administration under Task 2 of Contract No. NAS1-16489. The research was

conducted under the direction of personnel in the Flight Electronics

Division, Langley Research Center. Mr. Milton Holt was the Langley
Technical Representative for this task.

Development of the methodology has been a team effort, with signifi-
cant contributions made by Milton Holt and Rick Butler of Langley Research

Center.
Joseph A. Bannister was the RTI Project Manager for the study.
The authors of this report are:

J. A. Bannister
K. Trivedi

V. Adlakha
T. A. Alspaugh, Jr.

Use of commercial products or names of manufacturers in this report does

not constitute official endorsement of such products or manufacturers,

either expressed or implied, by the National Aeronautics and Space
Administration.

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 DESIGN OF THE HARDWARE FOR AN INTEGRATED AIRCRAFT
ELECTRONIC SYSTEM . 7

2.1 A Taxonomy of Computing Systems Capable
of Concurrent Instruction Execution 7
2.1.1 Motivations for the use of

multiprocessor systems 8
2.1.2 Taxonomic framework 9
2.1.3 Previous taxonomies of

multiprocessor systems 9
2.1.3.1 Flynn's taxonomy 10
2.1.3.2 Anderson and Jensen's

taxonomy 13
2.1.3.3 The taxonomy of Davis,

Denny and Sutherland 26
2.1.3.4 Siewiorek's taxonomy 28

2.1.4 A proposed taxonomy 30
2.2 A Methodology for the Design of

Multiprocessor Systems 32
2.2.1 Functional requirements of the system 32
2.2.2 Measures for the evaluation of systems 35
2.2.3 Tools for the methodology 39

2.2.3.1 Automatic generation of
reliability functions for
PMS structures 39

2.2.3.2 Simulation to determine
performance. . 41

2.3 A Strawman Fault-Tolerant Integrated
Aircraft Electronic System 41

3.0 ALGORITHMS AND CONTROL STRUCTURES FOR AN INTEGRATED
AIRCRAFT ELECTRONIC SYSTEM 45

3.1 Managing System Resources 45
3.1.1 Scheduling of real-time fault-tolerant

systems 45
3.1.1.1 General scheduling theory 45
3.1.1.2 Scheduling repeatedly requested

tasks subject to hard real-time
deadlines 49

3.1.2 Task allocation for the derivation of
timely schedules 52
3.1.2.1 Mathematical formulation of the

task allocation problem 53
3.1.2.2 Heuristic approach to the task

allocation problem 58
3.1.2.3 Evaluation of the heuristic

algorithm for task allocation 60

TABLE OF CONTENTS
(Continued)

3.1.2.4 Performance guarantees for a
restricted task allocation
problem 61
3.1.2.4.1 Difficulty of the

restricted task
allocation problem 64

3.1.2.4.2 An approximation
algorithm and its
performance guarantee 66

3.1.3 Task allocation for reliability
maximization 80

3.2 Discussion of the Role of Software Design 81
3.2.1 Introduction to classical engineering

design methodology 81
3.2.2 The classical engineering design

methodology 82
3.2.2.1 Abstraction 82
3.2.2.2 The black box 83
3.2.2.3 Specifications and testing 83
3.2.2.4 The design process 84
3.2.2.5 Iterative convergence 86
3.2.2.6 Recursive decomposition 86
3.2.2.7 Documentation 86
3.2.2.8 Pilot operation 88

3.2.3 Software engineering 88
3.2.3.1 Abstraction 88
3.2.3.2 Black box 88
3.2.3.3 Specification and test 89
3.2.3.4 The design process 89
3.2.3.5 Iterative convergence 89
3.2.3.6 Documentation 90

3.2.4 Software engineering tools and techniques 91
3.2.4.1 A set of documents 91
3.2.4.2 Formal languages 91
3.2.4.3 Modularity and information hiding. ... 91
3.2.4.4 Reference vs. statement in

documentation 92
3.2.4.5 Simulation 92

4.0 CONCLUSIONS AND FURTHER WORK 93

4.1 Additional Tools Required 93
4.2 Techniques and Theoretical Work Needed 94
4.3 Peer Review of Specific Systems 94

v-i

TABLE OF CONTENTS
(Continued)

Page

REFERENCES 95

APPENDICES 99

A 99
B 103
C 109

vn

LIST OF FIGURES

Figure
No. ~ Title Page

1.1 Past Aircraft Electronic System 2

1.2 Current Aircraft Electronic System 3

1.3 Future Integrated Aircraft Electronic System 5

2.1 Models of Computer Systems 11

2.2 Flynn's Partitioning of the Design Space 12

2.3 An Interconnected Computer System Is the Result
of a Series of Design Decisions, and the Decision
Space Can Be Considered to Be a Tree 14

2.4 DDL (Loop) 16

2.5 DDC (Complete interconnection) 17

2.6 DSM (Multiprocessor) 18

2.7 DSB (Global bus) 19

2.8 ICDS (Star) 20

2.9 ICDL (Loop with central switch) 21

2.10 ICS (Bus with central switch) 22

2.11 IDDR (Regular network) 23

2.12 IDDI (Irregular network) 24

2.13 IDS (Bus Window) 25

2.14 The function of a path is to provide communication
the path's structure is indicated by its topology.
The function of an element is to perform certain
operations and the element's most important
structural feature is its granularity 27

2.15 Important Aspects of Element Operation 29

2.16 Multiple-Processor Design-Space Parameters 31

2.17 Multiple-Processor Design-Space Parameters 33

2.18 Elements of the Proposed Design Methodology 34

IX

LIST OF FIGURES
(Continued)

Page

2.19 Reliability modeling at the PMS level 42

2.20 DDC Architecture for Aircraft Electronics 44

3.1 Priority List Scheduling Algorithm 50

3.2 Example of the Construction of t and s 69

3.3 Cost Preserving Transformation of the Optimal
Assignment by Step (1) 71

3.4 Assignment After Application of Step (1) and
Renumbering 72

3.5 Cost Preserving Transformation of the Optimal
Assignment by Step (2) 73

3.6 Final Assignment After Transformation by Steps
(1) and (2). The Transformed Assignment Costs
No More Than the Optimal Assignment 74

3.7 q^(t) Cannot Have One Step 77

q*(t) Cannot Have Three or More Steps 78

3.8 Steps in the Design Process 85

3.9 Iterations for Improving Abstractions 87

LIST OF TABLES

Table
No. Title Page

1.1 Summary of System Characteristics 6

2.1 Aircraft Electronic Functions for All Flight Phases . . 36

2.2 Reliability Requirements 37

2.3 Computational Requirements 38

2.4 Reliability, Performance and Cost of Generic
Classes of Multiprocessor Systems. . . 40

3.1 Processor Utilization 62

3.2 Processor Utilization and Memory 63

1.0 INTRODUCTION

In recent years, electronics in commercial transport aircraft have be-
come increasingly sophisticated as the functions of flight control,

guidance, navigation, propulsion control and communication have steadily
been enhanced through the use of programmed digital hardware. A

continuation of this trend is reflected in the desire to fully integrate
aircraft electronic functions. This report is directed at the

identification of a methodology for the design of systems that fully
integrate the aircraft electronic functions mentioned above.

System integration is measured by the ability of separate tasks to
share system resources and exchange information. Past aircraft electronic
systems had a low level of integration. A typical system as shown in
Figure 1.1, had the following salient system characteristics:

• There was a proliferation of dedicated, independent processors.

f Each processor viewed itself as the center of the universe. There
was no communication between processors.

• Tasks were rigidly segregated. For instance, flight control func-
tions and navigation functions were performed by physically sepa-
rate subsystems.

t Since processors did not communicate, algorithms and data struc-
tures could not exploit concurrency.

• The lack of hardware redundancy made it necessary to use mechanical
backup.

• Analog technology permeated the system.

Current aircraft electronic systems reflect an increase in integra-

tion, as typified by the aircraft electronics of the Boeing 757. A func-
tional description of this system is illustrated in Figure 1.2. Character-

istics include:'

• Specialized processors are dedicated to specific tasks.

t Interprocessor communication is limited to a restricted subset of
processors.

PAST AIRCRAFT ELECTRONIC SYSTEM

V
V COMMUNICATIONS
V

_L

COCKPIT

V

o
o

NAVIGATION

LANDING

SENSORS AUTOPILOT

ACTUATORS

DISPLAYS

Figure 1.1

CURRENT AIRCRAFT ELECTRONIC SYSTEM

Mode control panel

Intra-system communicalions—mostly data buses and discretes

B O E I N G 757

Figure 1.2

3 i

• Tasks are segregated. /

t Some algorithms cooperate to take advantage of concurrency. How-
ever, the number of cooperating algorithms is still far below
potential.

• The use of hardware redundancy is ad hoc rather than systematic.
Mechanical backup is still necessary.

• Extensive analog technology is still present.

One can extrapolate the historical tendency of aircraft electronics
toward integrated systems. The functional elements of a postulated future
system are shown in Figure 1.3. Some of its characteristics are:

• Processors are general-purpose rather than specialized. This en-
hances the modularity and flexibility of the system.

t There is full interprocessor communication. This permits increased
information utilization by processors. It also allows the system
to globally monitor itself.

• Tasks are fully integrated. Any processor can perform any task.
This increases system flexibility and makes possible reconfigura-
tion and graceful degradation.

• Full interprocessor communication, processor modularity and task
integration make it possible to fully exploit the power of con-
currency.

• A systematic use of hardware redundancy exists in order to achieve
ultrahigh reliability.

• The trend is toward fully digital processing elements.

A matrix comparing the characteristics of past, present and future

systems is shown in Table 1.1.
The remainder of this report will consider the establishment of a

methodology to identify and design fault-tolerant integrated aircraft elec-
tronic systems. This study proceeds by considering the design of the hard-
ware for an integrated aircraft electronic system, and questions relating

to the programming and control of the system.

J F H T U R F INTEGRATED AIRCRAFT ELECTRONIC SYSTEM

I

COMMUNICATION

LINKS

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

PROCESSOR-
MEMORY

Figure 1.3
N;

5

00
o

-I-J
oo

i-
O)

-(->
O
n3
S_
(O
£
o

O)

S-
tO

OO

O)

J3

0

0
c:
.c
o
O)

1—

o
O)
i-
i_
3
u
d
0

c
o

•1 —
-4_>
to
1*4

•r—
r—
(O
o
0

c
0

.J3
rO
^_
OJ
Q.
O
O

O)
O
C
<o
4.
O)
r^

0
1—
4J
i —
3
fO

u_

£>
•r-
4_
fO

r—
~^

~U
O
s:

O)
4_1
OO

>^
OO

en
O
r^
to
C

«£

~CJ
C

• i—
r^
CO

o
o

N/ -£5 (/)

oo O) oo
n3 N O)

I— •!- 0
•— O

JC <O S-
O O Q.
t3 ^3

UJ — 1 fO

•4-*
C
(D
t/)
r*>
<

>^<^ n—
rO

-o u
Q^ *r—
> C Q.
O) "3 3

•r— f~ NX
J= O O
O O) <O
<: s: co

£
1 0

i — O> 00
n3 oo oo
•i- O O)
O Q. O
O) i- O
Q- 3 s_

00 Q- Ou

^>
00
ro
0-

1

T3 "fO CD
•i- -(-> O
i_ -r- i—
o CD tO
^> <r~ c~
31 Q <

O

Q.
0

S

0

0
JS.J T3 oo
oo Q} oo
fO M O)

|— -r- 0
r— O

O O Q-
f& ^J

UJ — 1 to

00

00 4-»
fO (O

1— i-
0)

O) Q-
E 0
0 O

oo o

•

O) +
>^ 5
o "O ^*>*~~

1C O 03
T3 CO
d) "O fO •»—
> 0) T3 C Q.
O) 4-> C <T5 3
•i- -r- 3 JC _i/:
^: E "o o o
O <r* O> O) ftj

«a: _ i a: s: OQ

00
s-

1 0
r— O! 00
to oo oo
•i- O O)
O Q. O
O) i- O
Q. 3 S_

00 Q- D.

c
O)
00
O)
i-
Q.

<O
•4_>

•r—
CD

•r—
Q

r^
to
J3
O

r—
CD

E

S- 0
o M- -*:
00 1_ 00
00 O) fO
O) Q- 1—
o

>i 0 >> >>
c s_ ITS c:
<i Q- SI «C

0

4-> O) S-
fO ^^ fO t^-
S- .0 S- 0

Q, oo C ••— 00 j*
O 00 O -Q -M 00
o o E s- oi <e<_> a. <: =t oo i —

0)
00

>^ja o >>
•r- O

T3 -(-> • C
Q^ 'O QJ *"O
> E S T3
O) O) T3 C

••--(-> a: 3
_G 00 T3
O >»4— O)
<: oo o a:

oo

1 O
i — Q) oo
<T5 00 OO
S- O O>
O) Q. O
c s_ o
O) 3 S-

CD Q. Q.

Ol

3
1 '

3
1 1

2.0 DESIGN OF THE HARDWARE FOR AN INTEGRATED AIRCRAFT ELECTRONIC SYSTEM

In general, programmed systems such as integrated aircraft electronic

systems can be divided into two major components: hardware and software.
The design of a system's software traditionally follows the design of its
hardware, since the activity of programming a system depends upon the pre-
existence of the system. In this chapter the design of the hardware
component of the system is discussed.

The system hardware design will be discussed first in terms of a tax-
onomy of systems that are appropriate for program-controlled aircraft elec-
tronics. A taxonomy is a powerful tool in system design since it allows
one to systematically categorize a potentially unbounded number of possible
system designs. Having thus categorized the designs, one is in the posi-
tion to determine which systems are suitable for the intended application.
Thus, it is possible to select a specific system. After establishing the

taxonomy, a methodology for choosing a suitable hardware structure for the
system will be considered. Having done this, the methodology will be sup-
plied to select a candidate integrated avionic system.

2.1 A Taxonomy of Computing Systems Capable of Concurrent
Instruction Execution

The purpose of this section is to propose a taxonomy of computing
systems that are capable of concurrent instruction execution. Such systems
are often referred to as concurrent, parallel or multiprocessor systems.

This section effectively ignores nonconcurrent, nonparallel or uni-
processor systems for several reasons. First, in the aircraft electronics
suite, a large number of functions must be simultaneously performed. This

suggests that a computing system that performs these functions must be ca-
pable of simultaneous and independent instruction execution. It is unlike-
ly that a nonconcurrent system could be time-shared by these functions in

any effective manner. Second, since avionics perform extremely critical
functions, there is a driving need to ensure the reliability of the system.
Fault-tolerant methods are the proven approach to achieve high reliability.

These methods rely on hardware redundancy to tolerate faults in the system.
Thus, system modules, whose function it is to interpret and execute program
instructions, are replicated. By virtue of this redundancy, such a system
is capable of independent, concurrent instruction execution. One can see,
therefore, that a concurrent system is the only reasonable alternative for
any candidate integrated avionic system. Thus, the taxonomy will deal
exclusively with concurrent systems.

2.1.1 Motivations for the use of multiprocessor systems. - The power
of multiprocessor systems is derived from their ability to achieve algo-
rithmic speedup over uniprocessor systems. A multiprocessor system is
understood to be any programmed system of two or more processors capable of
independent, simultaneous instruction execution and information exchange
via some interconnection mechanism (See ref. 30).

In addition to the high speed capability, there are many reasons (See
ref. 30) for employing multiprocessor systems in integrated flight elec-
tronic systems. These reasons include:

Load sharing. In the event that one processor has a heavier load than
the other processors in the system, some of its load can be redistrib-
uted to the other processors.

Peak computing power. It is possible to devote the entire system to a
single task.

Performance/cost. There is an abundance of small processors with an
instructions/second/dol1ar ratio superior to that of large "super
processors."

Graceful degradation. One can design multiprocessor systems with no
central critical components. Failures may then be configured out of
the system and the remaining processors may take up all or part of the
failed unit's load.

Modular growth. One can design systems in which processors, memories
and I/O subsystems are added incrementally.

Functional specialization. One can add functionally specialized proc-
essors to improve performance for a particular application.

8

2.1.2 Taxonomic framework. - The classical paradigm for taxonomies is
the Linnaean taxonomy that is used for biological classification. Two
major principles of a taxonomic framework are illustrated by the Linnaean
taxonomy:

1) A good taxonomy is hierarchical. That is, the subject being tax-
onomized can be partitioned from a very coarse level down to a
very fine level. For instance, the Linnaean taxonomy dichotomizes
all life into plant and animal kingdoms; animals are further di-
vided into vertebrates and invertebrates, etc. This taxonomy
forms an eight-level tree structure with gradations of resolution
ranging from kingdoms (coarse) to species (fine).

2) A good taxonomy is based on the functional properties of the ob-
jects being classified. For example, a taxonomy based solely on a
machine's physical structure is unlikely to be very useful (See
ref. 8). Thus, a taxonomy of multiprocessor systems that inte-
grates structural and functional system properties in its charac-
terization of these systems should be considered.

A taxonomy of multiprocessor systems should embody these two important

principles.
Although a taxonomy for multiprocessor systems is desired, in reality

very few multiprocessor systems have been designed. Even fewer systems
have been built and a mere handful of relatively unsophisticated multi-
processor systems are commercially available. Given such a paucity of
practical design experience in the field of multiprocessor systems, it is
necessary to consider a taxonomy for potential as well as actual systems.

Many decisions must be made when designing a multiprocessor system.
The totality of these decisions will be referred to as the "multiprocessor
system design space." Equivalently, the term "design space" will mean the
complete collection of actual multiprocessor system designs.

2.1.3 Previous taxonomies of multiprocessor systems. - Several taxon-
omies of the multiprocessor system design space exist. Four such taxon-

omies, Flynn's (See ref. 12), Anderson and Jensen's (See ref. 1), Davis,

Denny and Sutherland's (See ref. 8), and Siewiorek's (See ref. 30), are
discussed below.

2.1.3.1 Flynn's taxonomy: Flynn's taxonomy is a well-known taxonomy
that is based on the multiplicity of data and instruction streams. There

are only four classes in this taxonomy, as shown in Figure 2.1. They are
SISD, SIMD, MISD and MIMD, which stand for single instruction (stream),
single data (stream); single instruction (stream), multiple data (stream);
multiple instruction (stream), single data (stream); and multiple instruc-
tion (stream), multiple data (stream), respectively. Models of each of
these classes are shown in Figure 2.2.

Flynn's taxonomy certainly integrates both structural and functional
properties of multiprocessor systems. His classification of these systems
is based on extremely important system features, viz., control and storage
features.

However, the taxonomy is not based upon a hierarchical organization.
There is only one level of classification, which leaves much to be desired
when one is considering the design of a system. Essentially, the only
design parameters that can be controlled explicitly are the multiplicities

of the instruction stream or of the data stream. Clearly, much more is re-
quired for a taxonomy of multiprocessor systems. A further drawback of

this taxonomy is that the resolution of its classes is far too coarse.
There are only four basic classes in the design space and each class may

comprise an unmanageable number of system designs.
One goal of a design methodology is the ability to choose a design

that will fit the intended system application. It is desirable that, once
the functional and operational requirements of a system have been identi-
fied, there will be a methodology that is capable of selecting suitable de-
signs for the system. Flynn's taxonomy refers only to instruction and data

channels. It is doubtful that one can relate these two design parameters
to the given requirements in a meaningful way. Certainly, nothing is known

in the general literature that indicates how to relate these elements.
This taxonomy is, therefore, unsuitable for use in a design methodology for
integrated aircraft electronic systems.

10

Control
unit

Instruction stream Arithmetic
processor

Data stream

a) Model of an SISO computer

Instruction stream

b) Model of an SIMD computer

Instruction stream 1

Instruction stream 2

Control
unit N

Instruction stream N

Data stream 1

Data stream 2

Data stream N

Data stream

c) Model of an MISD computer

Control
unit 1

Control
unit 2

Instruction stream 1

Instruction stream 2

Arithmetic
processor 1

Arithmetic
processor 2

Data stream 1

Data stream 2

Control
unit N

Instruction stream N Arithmetic
processor N

Data stream N

d) Model of an MIMD computer

Figure 2.1. Models of Computer Systems.

11

SIMD MIMD

LD
en.

SISD M I S D

INSTRUCTION STREAM

Figure.2.2. Flynn's Partitioning of the Design Space.

12

2.1.3.2 Anderson and Jensen's taxonomy: The taxonomy of Anderson and
Jensen is primarily directed toward the classification of multiprocessor
system interconnection structures. This taxonomy assumes three primitive
notions—the processing element (PE), which is any unit that is able to
execute instructions, and the paths and switching elements, which make up
the interconnection structure. A path is a medium through which messages
can be transferred between other system elements, e.g., wires, radio,
common-carrier links. A switching element is an entity that determines the
path that a message will take, e.g., elements for routing and dispatching.
The taxonomy describes the possible configurations of the three
architectural primitives: PE's, paths and switching elements.

This taxonomy, shown in Figure 2.3, is clearly hierarchically organ-
ized. The premise of this organization is that the multiprocessor design
space is considered to be a tree. Designing a system is tantamount to mak-
ing a series of design decisions. In the taxonomy of Anderson and Jensen
there are four basic design decisions to be made:

1) transfer strategy
2) transfer control method
3) transfer path structure
4) system architecture

Decisions (1) and (2) are strategic decisions; i.e., they involve
very fundamental policy decisions. Such decisions usually have a far-
reaching effect on the system's operational capabilities and may have a
significant impact on such important system features as performance, relia-
bility, cost effectiveness and modularity. The first decision is whether
to use direct or indirect transmission of messages from a source to a des-
tination. Indirect transmission is distinguished from direct transmission
by the presence of message-switching entities between sources and destina-
tions. Units such as repeaters and temporary buffers do not constitute in-
direct communication mechanisms; rather they are to be considered integral
parts of the direct link. Nor do preprocessing or postprocessing deci-
sions applied by source or destination elements to messages imply indirec-
tion. In the event that an indirect transfer strategy has been chosen, the

13

z
s°
O I-H

1—• I—
I— <C'
00
LU i—I

•z. •=>o 2:o s:
o: o
LU Oi—
z ce
1-1 Ou.

on
s

o
• 0)
o
cen•^
</i
O)
Q

M-
O

t/)
OJ

•i—
s_
O)

OO
(U
(U
&-

M- I—

° *-M
^ <u
3 CO
I/I
OJ O

OC 4->

a

d) T3
.c d)
•M S- .

O)
(/) X3

f—I T—

en
E C
O) O

•4-> O
(/)
>, O)

OO CQ

i_ C
O) <O
4J O
3
Q. O)
E y
o <o
O 0.

00
•o
QJ C

-)-> O
(_> -r-
O) Wl
c •>-
c o
O OJ
O Q
S-
<D CD

4-> -C
C -4->

H^

-o
c c

«C 03

gu
re

 2
.3

designer must also decide whether the switching of messages is to be ef-
fected by a sole entity (centralized routing of messages) or by several
entities (decentralized routing of messages).

Design decisions (3) and (4) are tactical decisions in that they con-
cern themselves with what are commonly known as implementation details.
Decision (3) determines the structure of the transfer path. Two alterna-
tives exist for the transfer path structure: the path may be dedicated or
shared. Decision (4) provides for the choice of the system topology.
Anderson and Jensen identified 10 basic topologies in their taxonomy:

1) Loop (DDL): Figure 2.4

2) Complete interconnection (DDC): Figure 2.5

3) Central memory (DSM): Figure 2.6
4) Global bus (DSB): Figure 2.7

5) Star (ICDS): Figure 2.8

6) Loop with central switch (ICDL): Figure 2.9

7) Bus with central switch (ICS): Figure 2.10
8) Regular network (IDDR): Figure 2.11

9) Irregular network (IDDI): Figure 2.12

10) Bus window (IDS): Figure 2.13

(The acronyms denote the path on the taxonomy tree, which begins at the

root and ends at the leaf that describes the system under consideration.

For example, DDL stands for JJirect Predicated j_pop.)

This taxonomy views an interconnected multiprocessor system as a
series of design decisions. The design space is then equivalent to the
taxonomic tree.

There is a richness in Anderson and Jensen's taxonomy that makes it
attractive for real-life uses. It is most definitely a rather complete
characterization of interconnection architectures for multiprocessor
systems and therefore is of interest to designers of multiprocessor

systems.
The major difficulty with the taxonomy is that it suffers from poor

resolution. The primitives of the taxonomy are processing elements, paths,

15

DIRECT INDIRECT

DEDICATED SHARED

LOOP COMPLETE

PROCESSING
ELEMENT

COMMUNICATIONS
PATH

Figure 2.4. DDL (Loop).

16

DIRECT INDIRECT

DEDICATED SHARED

LOOP COMPLETE

Figure 2.5 DDC (Complete interconnection),

17

DIRECT INDIRECT

DEDICATED

MEMORY

SHARED

BUS

MEMORY

Figure 2.6, DSM (Multiprocessor)

18

I
DIRECT INDIRECT

DEDICATED SHARED

MEMORY BUS

Figure 2.7. DSB (Global bus)

DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

STAR LOOP

Figure 2.8. ICDS (Star),

20

DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

STAR LOOP

Figure 2.9. ICDL (Loop with central switch).

21

DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

BUS

Figure 2.10.. ICS (Bus with central switch),

22

DIRECT INDIRECT

I
CENTRALIZED DECENTRALIZED

DEDICATED SHARED

REGULAR IRREGULAR

Figure 2.1.1. I DDR (Regular network),

23

DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

REGULAR IRREGULAR

Figure 2.12.IDDI (Irregular network)

24

DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

Figure 2.13.IDS (Bus Window)

25

and switching elements. A designer would prefer a much finer resolution,

e.g., details of the memory system, bandwidth ratios, and I/O system struc-
ture.

The next taxonomy attempts to reflect the multiprocessor design space
at a higher resolution.

2.1.3.3 The taxonomy of Davis, Denny and Sutherland: The taxonomy of
Davis, Denny and Sutherland builds upon the taxonomy of Anderson and Jensen

in several important ways. The atomic entities of Davis, Denny and
Sutherland's taxonomy are paths and elements. A path is considered to be a
unit that transmits information without modifying its content; a path does
not provide for information storage. An element is an entity that performs

an action on data, such as storage or arithmetic operations. As in
Anderson and Jensen's taxonomy, there are two basic criteria applied to the
atoms: function and structure.

Applying these two criteria yields the taxonomy shown in Figure 2.14.
There are four principal taxonomic parameters in this scheme:

1) Topology: path structure
2) Communication: path function

3) Granularity: element structure
4) Operation: element function

Topology, according to Davis, Denny and Sutherland, is the dominant

design decision. The interconnection topology parameter is organized ex-
actly as in the taxonomy of Anderson and Jensen.

Communication is the function of the system's paths. Three communica-
tion components are considered noteworthy:

1) Mobility: the ratio of program information' to data information
transferred on the path.

2) ATR: average transmission rate over the path.

3) Bandwidth: the maximum number of bits of information that can be
transmitted on the path in 1 second.

26

PATH ELEMENTS

STRUCTURE

FUNCTION

TOPOLOGY

COMMUNICATION

GRANULARITY

OPERATION

Figure 2.14. The function of a path is to provide communication and
the path's structure is indicated by its topology. The
function of an element is to perform certain operations
and the element's most important structural feature is its
granularity.

27

Each of these three components may be quantified to a certain degree.
Using a three-level quantification of each component, the communication
parameter can be expressed as a cross-product:

Communication =
high bandwidth
medium bandwidth
low bandwidth

heavy mobility
moderate mobility
slight mobility

high ATR
medium ATR
low ATR

The dimension or size of an element needs to be considered. For in-
stance, one must be able to distinguish between a 16 x 16 array of LSI-ll's
and a 16 x 16 array of CRAY-l's. The size of the largest repeated element
is called the system's granularity. It will often suffice to discuss gran-
ularity in terms of small, medium and large.

The element's operation is a functional description of the element.
The dominant function of an element is the way it transforms input data to
output data. An element is also categorized by the ratio of storage de-
vices to combinational logic present in the element—this is called the
memory-logic mix of the element. Other aspects of an element's operation
are indicated in Figure 2.15.

2.1.3.4 Siewiorek's taxonomy: Siewiorek's taxonomy is concerned with
a substantially greater number of design parameters than the previously
discussed taxonomies. This is appealing in that it makes it possible for
the designer of a multiprocessor system to consider a large number of tax-
onomically di'stinct designs. Generally speaking, this taxonomy conveys a
great deal of information. It also treats aspects of multiprocessor system
design that are ignored by the other taxonomies.

Siewiorek concentrates on seven major design parameters:

1) Node types—processors, memories, switches and other devices.

2) Memory system—a decision parameter that considers the logical
address space and the physical organization of memory.

3) Memory switch—a decision parameter specifying the mechanism that
provides system components access to shared memory.

4) Processor-memory data paths—a decision parameter that treats
properties of data paths such as sharing and bandwidth.

28

c
o

s_
CU
O.
O

C
O)

O)

o
CO

o
0)
0.

(O

o
Q.

uri1

CM

0)
S-
3
O)

29
CD

5) I/O system—a decision parameter that deals with the logical and
physical structures of I/O.

6) Ratios--a decision parameter that determines the relationships
that other parameters should have to each other. Important ratios
include processor-memory and I/0-memory bandwidths.

7) Interprocessor communication—a decision parameter that includes
deciding how the hardware will handle interrupts and exceptions.

These decision parameters are further divided into subparameters,
which allow the choice of a system to be made in an orderly and simplified
manner. For example, the task of selecting the appropriate memory system
is decomposed into selecting the logical and physical structures of the
memory. Choosing the logical structure is further broken down into choos-
ing among several memory-sharing methods (e.g., local, multiport simplex,
shared-overlapped) and choosing among various alternatives for memory pro-
tection (e.g., object-based, capability-based). The full taxonomy is dis-
played in Figure 2.16.

2.1.4 A proposed taxonomy. - Each of the previously considered taxon-
omies emphasizes certain system characteristics. Two of these—

Siewiorek's taxonomy and Anderson and Jensen's taxonomy--will greatly
influence a taxonomy for multiprocessor systems. Anderson and Jensen's

taxonomy does a particularly thorough job of classifying how multiprocessor
systems may be connected. Siewiorek's taxonomy has the advantage of

completeness and fineness of resolution—it is capable of examining systems
at a fine level of detail. Each of these features is desirable and will be

incorporated into the taxonomy for multiprocessor systems.
The ingredient lacking in the previously discussed taxonomies is the

explicit consideration of reliability. This ingredient will be included in
the taxonomy for multiprocessor systems. Moreover, it will play a central

role in the design methodology, in support of which the taxonomy stands.
The final taxonomy is illustrated in Figure 2.17.

30

Dimensions

Node Types
Nonhomogeneous
Homogeneous

Memory System
Logical structure of address space

Local
Shared

1
n
n(m)

Protection
None
Object
Capability

Physical structure of memory
Size

Immediate
System

Redundancy
Replication (*r)
Coding

Parity (*p)
Hamming (*h)

Memory Switch
Logical structure

Accessibility
All
Partial

Overlapped
Multiple disjoint

Access time
Uniform
Hierarchical

Physical structure
Interconnection
Direct (circuit-switched)
Logical paths
(message-switched)

Growth rate
Linear
Polynomial

Concurrency

Processor-Memory Data Paths
Width of Data Path
Sharing

Simplex
Half-duplex
Full-duplex
Half-multiplexed
Full-multiplexed
Broadcast

Data rate
Delay

I/O system
Logical structure

I/O initialization
Uniform from all processors
Partial

I/O data transmission
Uniform to all processors/memory
Partial

Access Time
Uniform
Hierarchical

Physical structure
Size
Data rate
Interconnection

Direct (circuit-switched)
Logic paths (message-switched)

Growth rate
Linear
Polynomial

Concurrency
Sharing

Simplex
Half-duplex
Full-duplex
Half-multiplexed
Full-multiplexed
Broadcast

Ratios
Memory bandwidth/processor band-
width
I/O bandwidth/memory bandwidth

Interprocessor communication
Interprocessor interrupt
Pseudointerrupt device
Segment typing
Mailboxes

Figure 2.16. Multiple-Processor Design-Space Parameters

31

2.2 A Methodology for the Design of Multiprocessor Systems

The previous section was devoted to selecting a taxonomy that meets

instruction execution requirements. These requirements include the need
for a hierarchically organized taxonomy and the need for a taxonomy based
on the functional properties of the systems under study. The taxonomy for
multiprocessor systems represents a merger of the taxonomies of Siewiorek

and of Anderson and Jensen.
This taxonomy will serve as a framework for selecting a system design.

It views the multiprocessor design space as a tree structure with design
decisions to be made at each internal (nonleaf) node. A design methodology
should provide designers with criteria for choosing which branch of the
taxonomy tree to take. At any given node in the tree decisions are made
based on the trade-offs in reliability, performance and cost. The inter-
section of these choices is the subspace of feasible designs (see Figure
2.18).

2.2.1 Functional requirements of the system. - Before one begins to
design a system, one must understand the top-level functions that the sys-
tem will perform. This is a crucial activity which requires a serious
effort. System functions may be described at several levels—from the top-

most level to a description of each software module. Typically, functional
descriptions are in informal English prose, but it is also possible to
employ formal descriptions; in fact, formal functional specification makes
it possible to apply various mathematical models in the verification or

validation of the system.
A requirements specification should accompany the functional specifi-

cation. The requirements specification describes the computational (per-
formance) and reliability required by each of the identified functions.

The aircraft electronics suite cleaves naturally into two components:
a sensor-based (or data acquisition) system and a processor-based (or data
processing) system. The sensor-based system includes actuating functions
as well. The processor-based system performs the computations and arith-

metic operations necessary to aircraft electronics. The sensor-based

32

Dimensions

Node Types
Nonhomogeneous
Homogeneous

Memory System
Logical structure of address space

Local
Shared

1
n
n(m)

Protection
"None
Object
Capability

Physical structure of memory
Size

Immediate
System

Redundancy
Replication (*r)
Coding

Parity (*p)
Hamming (*h)

Memory Switch
Logical structure

Accessibility
All
Partial

Overlapped
Multiple disjoint

Access time
Uniform
Hierarchical

Physical structure
Interconnection
Direct (circuit-switched)

Dedicated path
Loop
Complete interconnection

Shared path
Central memory
Global bus

Logical paths
(message-switched)
Centralized routing
Dedicated path

Star
Loop with central switch

Shared path
Bus with central switch

Decentralized routing
Dedicated path

Regular network
Irregular network

Shared path
Bus window

Growth rate
Linear
Polynomial

Concurrency
Redundancy

Processor-Memory Data Paths
Width of Data Path
Sharing

Simplex
Half-duplex
Ful1-duplex
Half-multiplexed
Full-multiplexed
Broadcast

Data rate
Delay

I/O system
Logical structure

I/O initialization
Uniform from all processors
Partial

I/O data transmission
Uniform to all processors/memory
Partial

Access Time
Uniform
Hierarchical

Physical structure
Size
Data rate
Interconnection
Direct (circuit-switched)
Logic paths (message-switched)

Growth rate
Linear
Polynomial

Concurrency
Sharing

Simplex
Half-duplex
Full-duplex
Half-multiplexed
Full-multiplexed
Broadcast

Redundancy
Ratios

Memory bandwidth/processor band-
width
I/O bandwidth/memory bandwidth

Interprocessor communication
Interprocessor interrupt
Pseudointerrupt device
Segment typing
Mailboxes

Figure 2.17. Multiple-Processor Design-Space Parameters

33

System Functional
Description and
Requirements

Methodology
for Design of

Reliable
Systems

Methodology

for Design of
High-Performance

Systems

Methodology

for Design of
Cost-Effective

Systems

Subspate of
Feasible Designs

Multiprocessor Design Space

Figure 2.18. Elements of the Proposed Design Methodology.

r
34

system does signal processing, front-end processing and filtering, as well

as system I/O.
Functions to be performed by the processor-based system are shown in

Table 2.1. The flight phases in which these functions are required are
also tabulated. Tables 2.2 and 2.3 indicate the reliability and computa-
tional requirements for various functions. Computational requirements are
used to estimate the processor power required to execute the functions;

reliability requirements are used to estimate the level of reliability
appropriate to the processor-based system. As shown in the tables, air-
craft electronic functions have high reliability and computational require-
ments.

2.2.2 Measures for the evaluation of systems. - In this section a set
of measures for evaluating multiprocessor systems are proposed and then
used in the design methodology. The significance of measures to the

methodology is that they allow system designs to be measured with respect
to some desirable characteristic. One can then select those designs whose
measures meet the postulated system requirements.

The proposed measures fall into three broad classes: reliability,
performance, and cost.

Reliability measures
• failure-effect: the susceptibility of a system to a single

failure
• fai1ure-reconfiguration: the ability of a system to operate in

a degraded mode once a failure has occurred
Performance measures

t bottleneck: the tendency of a system's throughput to be limited
by lowered performance in a subsystem

• communication complexity: the totality of decisions made during
communications by source processes, destination processes or
switching entities

l/l
QJ

.e
a,

cC

O

c
o

c
o1-
4->
u
a>

i,
u

CJ

(U

O i.

OO I Q. Q_ O. C D C Q C Q D - I C O Q _ Q . t /) t / > O O O O Q _ Q .

Q. Q_ Q_ o_ CO

o_ o_ co Q_ a_

10 10

O- O- f) I Q_ O_ O. -Q_ CO

C
s- o
o —

4-> 4J
ro ITS
(j cn

01 o>
I— 4J
Q. "-

T3 O
C •—

OS

(O UJ

l— CL 4J 4->
•O O O ••- «-
(O 4J 4-> 4-> (1J

<u
•o

0)a)
o.

a>
o
<o

TJ

» g

COg

s-
'5

T3
C
O

<D
E

5 o
£ 4-> 4-> i-

•r- !_ 4->
-M C O C
C O CX O
<u s: o. <-J
3 E ^> <N

.
Q . 4 - * ' —

(O (O | — ̂

O
-OI-

36

tf>
s_
o

co

E
OJ

oo.

cr
0)

Of.

4-1 0)
10 4-1
a o

s-

•o o
QJ -I—

OJ OJ O) OJ

PO CO CO CO IT)
I I I I I
OJ OJ OJ OJ ^ OJ OJ CO

c;
o
^j
u
c

o1-
c
o
o
OJ

5

«t

^o

c
o

l_
O)

3

u.

6i-
c
o

IO
o

— 1

o
IO
u
-O'
c

4-1

-a o <u
c •— "o

i— CL 4-1
0 0 - . -

3 3 4J

C
o
4-1
IO
cn

10
s:

IO

S-
<u

1— 1

UJ

0

Ol

"a.
4-1

E

60

LU

I
an
o

<u

r—

<v
<e

0

s
LU
s:
o

_

c
o
4J
IO
cn
>
10

IO
4-1
ie
o

<t

«;
4J

"-

C
IO
E

"io
XX

c
o
4-1

1
4-*
t/>
UJ

o>
T3
3

4->

4-*

(O eC
4->

Q -0
OJ

-M 0)
^ Q.
O) V)

U. «I

>.
(tJ

Q. >>
(/) <O

o 'o.
u •»-
.c
Q- 4-»

CD 1—

O)
u
c

^^
o

^£

c
o
t/1

o
CJ

^_J

<r
•,

c

O
O

(O

IO
o

to
CD

O

•o
c
3
O

V-

^C'

«t

c

o

rtJ GO
4-> 0nj >— *
0 <

u
o

-4->

c

c

£
cn
c

o
•r-
C
O

§
4-1
t/)

t/1

O
4J t-
i- 4J
O C
CL O
f> (j

CO <U
c

ll- 01
_l UJ

10
4-1
J= 4-1
cn 10

cn

O •—

O) o
M-
IO >>
t/1 4-1

<v
O <4-
4^ IO

IO O
O 4-1

— 10
S- U
u ••-

4-1

i— C
Q) y

O *— */>
•r— 10 QJ
1/1 C U
t/i o> c:

•r- l"1 QJ
E 3

i— cr
c 10 a;
•i- C I/I

o c
OJ •<- O
Cn u
IO I- O
JZ 0) —
O 0. E

o o
4-1 C
C i— O
IO IO u
<J "- O>

H ^ QJ
•r- IO »—
C 4J JD

•i- J3 S-

(/I

c
o

c c
o o <*-
•i- i- O
4-1 4-1
U O (/»
C C CO
3 3 O

ui i/i in in t/i
tn t/i i/i V) t/i

<_> O t_>

37

(/I

R
eq

ui
re

m
en

t

1C
c
o

4->
ro
4^
3
Q.
E
O
O

00

CM

CU

«->
ro

1—

t/l
C
0

o

c
t—4

•(—

o
i-
OJ
Q.

t/l
•o
S-

3^

>

O

Q.

C
0

ro

Ol

S-
CU
Q.

<
O
CU

E

•
u
<U
to

OJ

m
Q£

in oj o m o o o
r»- &i IO OJ LT> »-H in
O O CM ro oj
CM ^H r— (f\J

CM ^o i— i in o r .̂ m
O O 0 O O O O

O 0 O 0 0 O 0

O VO CO ^" O f^- O
in r**. in -̂ o *o <JD
f— i oj oo oj in ro
i— 1 CM t— 1

ID
OJ CO

S ^- ^- ^£) O CO O
0 CO ^-
CM

O O O O in O in
oj m *± »o co oj

CM CM •— 1

g L o t n m o o o o o o o j o o o o
o r o t — i i r > r o m « d - O ' - H * o o o o o

o o m « — (P o m ^ - C M r o c M ^ t n r o o ^ o o

8 O O O O J O O O * - t C M O O O ' - H O O
o o o o o o o o c o o o o o o

o o o o o o o o o o o o o o o

O O O O O C M O O < — I O O O O O O

S o o o o v o o o r o o i n o o o o
O O C M O ^ t f > O C J % C S J C M l D C O O J O

in IT) ^ - i— l rH OJ CM

Lfl LO O

O O O O O C M L O O ' — ' ^ " O O O O OO O O O O I O C M O i n m o o o
C M O J C M O C M t — I t — 1 O J O J C M O O

in CM oj

CM in to

10 m in o ID I D C O O O O ^ ^ S - ^ O O
i— i f-H r-» m

VO OJ

o
o
in

•-H
.— I

O

VD
0
UD
ro

8

ro
ro

o
i-

c
o

CU
T3
3

4-1

«

(—

0

'C
O

CU

3

U.

o

c
o
(J
•o
ro
O

S-
o
ro
O

•D
C

T3 O CU
c r— -a

r— <-> 4^

o o ••-
3 3 4->

C
O

ro
Ol

ro

,

1 *

OJ

»— t

s
CU

"o.

3

08

LU

/•*•!

o:
O

CU

^_

CU

ro
00

S-
o
«t

o

-ô
1 *
ro
01

ro

ro

ro
O

=c

T?
01
4->

Ll-

C
ro
E

ro

O

ro

LU

CU
T3
3

4_)

ro <f

ro »

CU
4-> CU
s. a.
Ol en

LU «r

>^ro

O.
to

O

U

.c
o.
ro
S-
(D

ra

Q.

Q

X
CU

r—

U
C
ro
•o
O

eC

c
O
1/1

o
o

00
CO

o
""

c
3
O
S-
cs

0 S-

< 5
•s *

§ 1
o

o o
ro ro on
4-> 4-1 O
ro ro •— t
O D <

i-
O
4-»
• r—

C
o

4-*
C
CU

S-

cn
c

o
.̂
c
i
E
CU

oo

^_
oa.
o.
3
00

CU
14-
_J

o
1 *
c
o

CU
c

O)
c
LU

38

Cost measures

a cost-modularity: the incremental cost of adding an element
t place-modularity: the degree to which the location or function

of an added element is restricted
• connection-flexibility: the ability to employ alternative top-

ologies, given a specific interconnection structure.

These measures are not intended to be quantitative and often take
qualitative values (high, moderate, low) when applied to systems.

Table 2.4 shows how different generic families of the taxonomy vary
with respect to the identified reliability, performance and cost measures.

2.2.3 Tools for the methodology. - The qualitative measures discussed
above are useful in selecting feasible designs. Once the feasible design
subspace has been isolated, however, more precision is desired in evaluat-
ing the best design for this particular application. Simulation and ana-
lytical tools are the time-proven means for the precise evaluation of a
given design. Some of these tools are discussed below.

2.2.3.1 Automatic generation of reliability functions for PMS struc-
tures: Each of the various multiprocessor systems treated by the taxonomy
can be expressed in PMS descriptions. PMS is a well-known hardware de-
scription language (See ref. 3), the description of which is beyond the
scope of this report. Once a set of feasible systems have been targeted,
they may be translated into PMS descriptions.

The motive for describing the systems in PMS notation is the Advanced
interactive ̂ ymbolic ^valuation of Reliability (ADVISER) program (See ref.
18). ADVISER is the result of a study to demonstrate the feasibility of
building design tools that perform a significant portion of the reliability
analysis of systems. ADVISER attempts to relieve the designer of the bur-
den of the traditionally complex, tedious and error-prone reliability
analysis of systems. The user of ADVISER essentially provides ADVISER with
a PMS description of the system under examination and the failure rate de-
scription of various PMS components. ADVISER ultimately produces symbolic
reliability functions of the system. The scope of systems analyzable by
ADVISER is shown in Figure 2.19.

39

s-
o

o
i.
a.

o>
o

o
<t-
s_
o>

IO

"oi

CO

01

l/>

t-

IO

£
4J

o
0

M
ea

su
re

s
P

er
fo

rm
an

ce
as

ur
es

I

R
e

lia
b

|\

M
ea

su
re

co
n

n
e

ct
io

n
fl

e
x

ib
il

it
y

X
4-*

1 1-
01 IO
o •—
<0 3

1 L_
4J 10

O 3
u-o

co
m

m
un

ic
at

io
n

co
m

p
le

xi
ty

b
o

tt
le

n
e

ck
u

ra
ti

o
n

cn

i*-

-r
e

co

10

u
01
4-

<u1
t-
3

10

/

.c
<J

s

LU
CL.

JZ
u
4-*

's

.c
IO
Q.

LU
Q_

Ol
.C S-
U 3
4-» i —

'x'<o
CO «*-

<D
i-

.c •—
10 10

CL. <t-

0)

3

UJ -i-
Q_ IO

QJ
JC i.
U 3
4J i—

a '«

(U
L.
3

JZ *—
4-» •*-
<O IO
CL, t-

S-
'3

LU i —

«

/
oo

1

1

I- O
<u o
> cn

'

S- O
<U o
> cr

1- 0
<u o
> cn

3

lo
o

p
b

a
n

d
w

id
th

,
PE

1

o
o
CL

i.
0
o
CL

•

i.
O
0
CL

O
O
Ct

§

'

'

•o
0
o
cn

i

i.
o
o
CL

i-
O

R

•£
O

no
ne

 o
b

vi
o

u
s

'

0
o

•o
o
0
cn

1

•o
0
o

T3
0
O
cn

O
O

1

1

s- o
01 O
> cn

'

i. O
01 O
> cn

o
>)4-> S-
t- o
> o o

0
cn

o

m
em

or
y

ba
nd

w
id

th

i

o
o
0.

-o
o
0
cn

i

i.
o
o
0.

T3
O
O
cn

o

'

'

•o
o
o
cn

i

i-
og.

•o
0

I O
cn

lo
w

to

m
od

er
at

e
bu

s
b

a
n

d
w

id
th

i

0
o
CL

i- 0
01 O
> cn

'

i.
0
o
Q.

i~ 0
OJ O
> cn

CO

o

i.
0
o
CL

0

•o
o
o
cn

'

S-
o
o
CL

o
o
cn

m
od

er
at

e

JC
u

X

o
o
Q.

IO

O
4-> i.

O
•a o
O CL
0
cn

i.
o
0
CL

i.
ra

0

•o o
o o
0 0
cn

Q
O

S-

IO
<*-

•o
o
ocn

o
o
cn

i

•o
0
ocn

T3
O
Ocn

m
od

er
at

e
lo

o
p

b
a

n
d

w
id

th
,

P
E

,
sw

it
ch

in
g

0
o
CL

O
0
CL

0
O
CL

O
0
CL

S-
o
0
CL

0
O
CL

g

t-
oi.

•o
o

•o
0
o
cn

i

•o
o
0
cn

•o
0
o
cn

m
od

er
at

e
bu

s
b

a
n

d
w

id
th

,
sw

it
ch

in
g

O

§.

0
o
CL

•o
O
0
cn

O
O
CL

o
o
CL

IO

I/I
o

S-
0
o
o.

i-
og.

i.
o
o
CL

i.
0
o
CL

0
o
CL

O
O
CL

m
od

er
at

e
no

ne
 o

b
vi

o
u

s

og.

0
o
CL

s.
o
o
CL

4-> 1
1-

-o <u
o -a <u
O O 4->
cn E 10

o
4-> 1

-O 01
o -a <uo o *->
cn E *

o
4-> 1

s-
-0 <U
o -o <u
O O 4->
cn E ia

ex.
O

•a
o
ocn

•a \
0ocn

•ooocn

T3
o
0
cn

-a
0

• o
cn

•o
o
0
cn

cn

no
ne

 o
b

vi
o

u
s

•o i-
o o ••-
O 4-» IO
cn <*-

00--
o 4-> 10
cn t-

•o
0
o
cn

?oi
0 4-> 10
cn 14-

T3 i.
O O "-
O 4-> IO
cn V

•o
O
O
cn

o
o

•o
0
o
Cn

•o
os,

T3
O
0
cn

•a
o
o
cn

•o
o
o
cn "

•o
o
ocn

m
od

er
at

e
bu

s
b

a
n

d
w

id
th

,
sw

it
ch

in
g

i.

IO

•o
o
0

u
s

i-
IO

o
0
cn

LO
o

40

A program such as ADVISER can then be used to further attenuate the

feasible design subspace. The output of ADVISER is simply used to concen-
trate on those systems with estimated reliability ranges within the window

of postulated reliability requirements.
2.2.3.2 Simulation to determine performance: A candidate system

should certainly be subject to scrutiny before plans to implement the
system are pursued. In the absence of any physical system, simulation
becomes a necessity. Simulation is also a very cost-effective means for
predicting system behavior and fine-tuning design parameters. Simulation
techniques to deal with three performance issues—throughput, deadlock and
bottleneck—will be considered below.

The Extendable Computer System Simulator II (ECSS II), a program based
on SIMSCRIPT (See ref. 19), is used principally for simulating computer
system behavior. It has the capability to model various system components
such as processors, memories, I/O and other devices, and queues as well as
various attributes of these entities. It can also model certain events
related to the entities' functions, e.g., arrival, processing and storage.

This tool is publicly available from the Models Directorate of FEDSIM and
has the promise of great usefulness in the proposed taxonomy.

Ramamoorthy (See ref. 26) has an approach for predicting maximum
performance of a system and for detecting the potential for deadlock in

systems. Both approaches are based, on concepts from the theory of Petri
nets. In modeling systems with Petri nets the problem is that there is no
easy way to interpret the system as a Petri net; i.e., this is an art and
not a science. If this impediment can be removed, Ramamoorthy's techniques
will indeed be attractive.

Han's (See ref. 16) approach to identifying system bottlenecks is also

based on Petri nets. The same considerations that apply to Ramamoorthy's
work also apply here. If the details of Petri net modeling can be worked

out, then bottleneck identification will be feasible.

2.3 A Strawman Fault-Tolerant Integrated Aircraft Electronic System

For the purposes of illustration and discussion a strawman system is
presented below. Examining Table 2.4 gives a rough estimate of the total

41

PMS Reliability Computation

Repairable

Systems
Nonrepayable

Systems

Repair
Strategies
(no maintenance)

Periodic Maintenance

and Repair Strategies

Failure to

Exhaustion

Figure 2.19. Reliability modeling at the PMS level

42

figure of merit for each of the 10 different interconnection architectures.

If reliability, performance and cost are weighted as three, two and one,
respectively, then a ranking of the different interconnections may be ob-
tained. In calculating the figure of merit, "good" is interpreted as
three, "fair" is interpreted as two and "poor" is interpreted as one. The
relative ranking is as follows.

1) DDC

2) DSM
3) IDDI

4) DSB

5) ICS

6) IDS

7) ICDS

8) DDL

9) IDDR

10) ICDL

The use of the DDC architecture, the highest ranking, will be consid-
ered in a fault-tolerant integrated aircraft electronic system. The system
design will be divided into the design of the sensor-actuator subsystem and
the processor system. A complete interconnection structure can be immedi-
ately eliminated from the sensor-actuator subsystem, since information ex-
change between sensors and actuators will be limited to a few subsets of
the entire subsystem. However, complete interconnection of sensor-
actuators with processing elements will be included. Furthermore, all
processors will be completely interconnected and fully replicated for the
purposes of fault-tolerance and reconfiguration. Processors will also have
complete interfacing with the sensors and actuators. The strawman system
is depicted in Figure 2.20. '

43

Sensor-Actuator Subsystem

Interface between
subsystems - full
interconnection

between elements of
both subsystems

Processor Subsystem

Figure 2.20. DDC Architecture for Aircraft Electronics.

44

3.0 ALGORITHMS AND CONTROL STRUCTURES FOR AN INTEGRATED AIRCRAFT

ELECTRONIC SYSTEM

In the previous chapter, the design of the hardware for an integrated
aircraft electronic system was discussed. In this chapter, the software
aspects of system design will be considered, first in terms of the
management of system resources and then in terms of the role of software
design in the overall system design.

3.1 Managing System Resources

3.1.1 Scheduling of real-time fault-tolerant systems. - In this sec-
tion the general background material that is necessary for understanding
how systems are scheduled and how scheduling methods are evaluated is pro-
vided, followed by the specific problem of scheduling tasks in aircraft
electronic systems.

3.1.1.1 General scheduling theory: Scheduling is a crucial aspect of
the problem of efficiently managing the resources of a computing system.
If a system has available a finite amount of certain resources (e.g. proc-
essors, devices, memory) to be used by a group of competing consumers (gen-
erally speaking, tasks or jobs), then it is imperative to schedule these
consumers. The act of scheduling the consumers is essentially a directive
which notifies the system when and for how long a consumer shall use
specific resources.

Scheduling is necessary from the point of view of making the system
work: the tasks to be performed must be scheduled and dispatched (started)
in some specific order and at certain points in time if the system is to
even begin performing its function. Hence, a mechanism for producing and
initiating schedules is inherently present in all operational systems.

The real payoff, however, stems from the fact that different schedules
may have different overall system implications. One major system implica-
tion is the cost of executing a set of tasks. In general, two different
schedules will have two different costs. Clearly, one wishes to choose the
schedule with the smaller cost. Another important system implication in-
volves the relative importance or criticality of the tasks. One would

45

like to be confident that the most critical tasks will always have enough

resources available to fully perform their functions. This could entail
preempting tasks of lesser criticality, but the system may nevertheless

function acceptably even when the least critical tasks are offered less
than their requested complement of resources. A schedule controls the
tasks' access to resources; therefore, scheduling plays a key role in the
effort to ensure that critical tasks are provided the resources they re-

quire (possibly at the expense of less critical tasks).
The choice of the "right" scheduling strategy will thus yield a system

with desirable characteristics: reduced running costs, assurance that
critical tasks will be performed, and efficient use of resources.

In a computing system dedicated to guidance and flight controls, tasks
will have to be repeatedly executed in a real-time manner. More specifi-
cally, the existence of some number of processing elements can be assumed.
The number of processors may decrease as the result of hardware failures.
The tasks will be ordered according to their relative importance to the
given flight phase. These are the essential elements of the system that is
to be scheduled.

Generally in scheduling multiprocessor systems, one begins with a set

of m (identical) processors

P - f P l . P2> ••" praf'

A task system for a set of processors P is a triple (T, <, M) where:

1) T = {Tĵ T2, .-..--,• T^J is a set'of tasks' to be executed.

2) < is an irreflexive partial ordering on T indicating the prece-
dence constraints of the tasks; Ti < Tj means that T^ must

be completely executed before T..- can be started.
J

3) M: T >-|x: x is a positive'real number} is a function speci-
fying the execution time required by each task.

Note that a task has the same execution time for each processor.
If one would like to schedule the tasks on various processors, given

such a task system, a list is created that tells, for each task, the time

46

at which it is to be started and the processor on which it is to run. This
schedule must be consistent: two tasks cannot be scheduled to run on the
same processor at any given time. These notions are formalized by defining
a schedule for a task system (T, <, M) on processor set P to be a function

S: jx: where x is a non-negative real number}—»- 2'

(2T is the set of all subsets of T). The function S must satisfy the
following properties:

1) |s(t) £ m for all t _> 0. No more than m processors are running
at any time.

2) There is a minimal real number w(S) such that for all t _>.
S(t) = 0. w(S) is the total execution time for S.

3) U S(t) = T. All tasks get scheduled.
0 <_ t <_ «(S)

4) Let t<.(T.) -- inf "t

be the starting time of task Tj.
T.J « S(t) if and only if

W 1* IW +M(Ji)-

A task runs for only one uninterrupted time segment.
5) If T. < T., then tc(t.) +M(T.) < tc(T,). A task may not be

I J - S I I — S J

started until its predecessors are completed.

Scheduling a task system on multiprocessors to minimize the schedule's
total execution time (w(S), or simply w if no possibility of confusion
exists) is thought to be an inherently difficult problem (i.e., the problem
of determining an optimal schedule is NP-hard). This is highly unfortu-
nate, as schedulers are generally required to make decisions in real-time.
One is therefore forced to consider scheduling algorithms that do not give
optimal schedules. These nonoptimal algorithms are sometimes referred to
as "heuristic" algorithms. Heuristics are, strictly speaking, not algo-
rithms but rather loosely applied approaches to the solution of a problem

47

(i.e., a "rule of thumb"); nonetheless, the oxymoronic phrase "heuristic
algorithm" will often be employed to refer to an algorithm that does not in
all cases produce an optimal solution.

If one accepts the thesis that the general multiprocessor scheduling
problem is intractable, then one must resolve to live with lowered expecta-
tions. There are basically two ways to deal with intractability. These
are:

1) Design efficient algorithms that produce suboptimal solutions.
2) Restrict the given problem so that one can design efficient algo-

rithms that still produce optimal solutions.
Alternative (1) is essentially an attempt to discover algorithms whose exe-
cutions require reasonable amounts of time and space and whose outputs are
suboptimal, yet acceptable. Alternative (2) attempts to discover nontrivi-
al, useful subproblems of the original problem for which algorithms with
reasonable time and space requirements can be designed. Furthermore, the
restricted algorithm should produce optimal results.

It is necessary to digress momentarily in order to clarify what con-
stitutes a reasonable algorithm or an acceptable solution. In the jargon
of computer science a reasonable algorithm is one that requires space and
time that grow no faster than a polynomial function of the problem size.
Even this is unrealistic since polynomials may grow very rapidly (e.g.,

10 * x) . In practice it is common to expect a reasonable algorithm to
run in quintic time and space. The other subtlety involves deciding when
an algorithm produces a "good" suboptimal solution. Usually, given an
algorithm that is suboptimal, the question is posed: "Is there a guarantee
that this algorithm will never give a result that is 'x1 percent worse than
optimal?" Given a heuristic algorithm HA for a problem P one can speak of
the absolute performance ratio for an instance I of the problem. This is
defined to be HA(I)/OPTP(I), where OPTp(I) is the optimum for instance
I of problem P. In general, one hopes to find a constant upper (lower)
bound on the absolute performance ratio for minimization (maximization)
problems. It is desirable in practice to establish an upper bound of no
more than 2 or 3 (100 - 200% more than the optimum). A less desirable, but
more common, situation is when the upper bound is a function of the problem
parameters rather than a constant.

48

In the face of intractability the two alternatives discussed above

have actually been employed by computer scientists.
As an example of alternative (2), one could use a very simple algo-

rithm to schedule a task system on a set of processors. One such simple
algorithm is the priority list scheduling algorithm given in Figure 3.1. A
classical result of Graham (See ref. 14) is the following.

Theorem 3.1: Let wg be the smallest possible total execution time
for a task system (T, <, M) on a set of m identical processors P and
cop|_ be the total execution time for (T, <, M) on P when scheduled by a
priority list discipline. Then

Furthermore, this bound is tight; i.e., an infinite number of task systems

(Ti, <, ̂) exist such that

"PL

where upL is the total execution time of (T^, <, M) scheduled on P by

a priority list discipline.
The above theorem is a guarantee that the priority list scheduling al-

gorithm of Figure 3.1 will always produce a schedule that is completed in
less than twice the optimal completion time. Note also that the algorithm
is a polynomial time algorithm (running in time proportional to mn). This
is a premier example of a fast algorithm that gives reasonably good (but

suboptimal) schedules.
3.1.1.2 Scheduling repeatedly requested tasks subject to hard real-

time deadlines: The scheduling problems discussed in the previous section
seek to schedule tasks that are executed only once and are not subject to
any deadlines. In a real-time environment, especially in control systems
such as flight controls and guidance, the tasks will typically be repeated-
ly requested and executed. Each task will have to be completed before its
next request—this constitutes the task's inherent deadline.

The implicit assumptions in this application are:

49

Input

A set of n independent tasks with execution times mu[l..n] to be scheduled

on m processors.

Output

A schedule specified as

assign[l..n] - task i is assigned to processor assign[i]

start[l..n] - the task's start time
finish[l..n] - the task's finish time

Algorithm

0;
1 to m do free[j] -* 0 od;
1 to n

1;
for j -« 1 to m

do if free[min] > free[j] then min-*—j fi od;
assign[i] -^ min;

start[i] -* free[min];

free[min] ~* finish[i];

if omega < finish[i] then omega-* finish[i] fi

od
end.

Figure 3.1. Priority List Scheduling Algorithm

50

1) The requests for each task consist of an infinite number of equal-
ly spaced requests.

2) Each task must be completed before its next request.

3) The tasks are independent of each other.

4) Each task has a constant run-time.

5) The execution of a task can be divided into discrete chunks, i.e.,
tasks can be scheduled preemptively.

First, in terms of how to schedule such a set of tasks on a single

processor, the fundamental question is: "How does one know when a set of
tasks can be scheduled on a processor?" This question was answered by Liu
and Layland (See ref. 22). If the utilization of a task is defined as its
run-time divided by its request interval, then a set of tasks may be sched-

uled on a processor, provided that the sum of all task utilizations does
not exceed certain scheduling constants. The scheduling constants are re-
lated to the particular scheduling algorithms used. Liu and Layland stud-
ied two algorithms. In the rate monotonic priority algorithm the highest

priorities are assigned to tasks with the highest utilizations; tasks are
then preemptively scheduled by using a standard priority algorithm. In the

deadline-driven algorithm, each task's priority at any given time is de-
termined by the proximity of its deadline; tasks are continuously being

reprioritized and rescheduled (preemptively). Thus, according to Liu and
Layland, a set of tasks may be preemptively scheduled on a processor by
either of the above algorithms as long as certain constraints are satisfied
by the set of tasks. The constraint is that the sum of the tasks' utiliza-
tions shall not exceed certain scheduling constraints. For the rate mono-
tonic priority algorithm and the deadline-driven algorithm, the scheduling

constants in this application are In 2 (approximately .69) and 1, respec-
tively.

Dhall and Liu (See ref. 10) studied a generalization of the problem
above where multiprocessors are available. Their solution reduces the mul-
tiprocessor problem to first allocating subsets of tasks to the processors
and then individually applying either the rate-monotonic priority algorithm
or the deadline-driven algorithm individually to each processor and the
tasks allocated to it. The problem of scheduling real-time fault-tolerant

51

systems then becomes one of allocating a set of replicated tasks to a col-

lection of processors.

3.1.2 Task allocation for the derivation of timely schedules. - Sev-
eral classes of problems play key roles in the integration of fault-
tolerant guidance and flight control systems. In the past, these problems
were not addressed in any systematic manner; system designers relied on in-
tuition and ad hoc methods in solving these problems, or the problems were

completely ignored.
Some specific classes of integration problems that warrant systematic

approaches are:
- efficient resource allocation in fault-tolerant multiprocessor sy-

stems
- reliable restructuring of control laws in the face of altered

flight requirements
- use of parallelism in conventional control theory
- methods for simplifying the programming and use of fault-tolerant

multiprocessor systems

- techniques for improving software reliability in fault-tolerant
multiprocessor systems

One very important topic in guidance and flight control systems is re-
lated to two of these classes. This topic—the sizing, allocating, and
scheduling of a system of processor-memories and tasks—involves the prob-
lem classes, efficient resource allocation and simplification of program-
ming.

Sizing, resource allocation and scheduling may be approached in two
ways: statically or dynamically. The static discipline normally requires
off-line precompilation of the allocation and schedule, relying heavily on
tabular methods, thus requiring some form of involvement on the part of the
programmer for table creation. The dynamic discipline frees the programmer
from this onus and requires less memory.

An interesting problem addressed in the design of SIFT (See ref. 33)

is the allocation problem, which requires that tasks and processor-memories
be mutually allocated in such a way that processor-memory load is balanced.
A special-purpose technique has been employed (See ref. 33) and the results

52

appear to be satisfactory. The results were obtained for SIFT with a
small, hypothesized task set for which strong assumptions about the proces-

sor and task characteristics were made. There is no indication that the
allocation derived for SIFT could not be improved. The design of large
fault-tolerant multiprocessor systems with static allocation will require
that this problem be solved in a generic way. The initial objective is to

provide a general-purpose solution to the problem which will optimize the
allocation with respect to selected target functions.

3.1.2.1 Mathematical formulation of the task allocation problem: In
considering a problem in which a set of tasks and a collection of process-

ors are given, the most general case is one in which all processors may be
different, although a uniform processor set is most likely to be encounter-
ed in fault-tolerant systems. The characteristics of each processor, viz.,
speed (in instructions per second) and memory capacity (in words or bytes)

are assumed to be known.
Information is also available about the tasks, which are assumed to be

periodically executed. The information available on the tasks includes
iteration rates (the number of times the task is requested per second), the
number of instructions executed per iteration, and the amount of memory re-
quired by the tasks (i.e., the space occupied by the program plus the maxi-
mum size achieved by its activation records). Other information includes

the active and passive replication factors of the tasks: an actively rep-
licated task is executed on each processor to which it is allocated, where-
as a passively replicated task is not executed under'normal conditions.
The passively replicated task resides in the memory of a processor and is
executed only in the event that one of its active instances is unable to be
executed. In that case, the passive task becomes active and the task sys-
tem is reconfigured by allowing the formerly passive task to execute on its
assigned processor. Clearly, passive allocation is employed for the most

critical tasks.
It is well known (See ref. 22) that periodic tasks may be well sched-

uled on a processor as long as the tasks' collective utilization of the
processor is maintained below a certain threshold. For example, a set of
periodic tasks may be scheduled on a processor using the rate-monotonic

53

priority algorithm or the deadline-driven algorithm, if the utilization of
the processor is In 2 or 1, respectively.

The problem is essentially to assign the tasks to processors so that
no single processor is utilized much more than any other. For example, if
a two-processor system is considered and a set of five tasks are assigned,
the tasks are T^, T2, T^, T^, Tg and the processors are P^ and P2. The

tasks have respective utilization factors of .5, .4, .3, .2, .2. If each
task is to be actively replicated only once and no task is to be passively

replicated, there are 32 different assignments possible. Assigning Ti, T^
to P and T2, T^, Tg to P2 achieves the optimum since both processors obtain

a utilization of .8, indicating that perfect balance in utilization has
been achieved.

In the allocation problem one is given m (identical) processors and n
tasks are to be actively and passively allocated to distinct processors.
One has available certain information about the processors (speed, memory
capacity, etc.) and the tasks (executable instructions, memory

requirements, replication factor, etc.). The tasks are to be assigned to
the processors so as to achieve a balance of processor utilization and
memory consumption. This problem is a formalization of a problem
encountered in the design of SIFT system (See ref. 32,33).

One way to effect this assignment is by solving the following non-
linear (quadratic) integer (0-1) program:

minimize
6 + e

subject to

y1n- = PKjXm IJ

U + y1d 11 (1111".

54

x . .U . < f.
Ki<n 1J 1J ~ J

Ki<n

x..., y... *{0,1} (Ki<n, Kj<m)

The symbols are explained:

U.. = L/T.R. (KKn, KjXm) task i's utilization of
J J processor j

V,- = E (x,-,- + y-iiJM,- (Kj<m) processor j's memory loading
0 l<i<n 1J J

_̂ _̂ ^ - r\

6 = E (E xiiUT,- - E E x.^-./m) variance in processor
Kj<m KKn J J Kl<m Kk<n ' utilization

« = E (V. - E V./m) variance in processor memory loading
KjXm J Kk<m

1 if task i is actively assigned
to processor j

0 otherwise

1 if task i is passively assigned
to processor j

0 otherwise

a. (Ki_<ri) = number of times task i is to be actively replicated

P-j (iXiXn) = number of times task i is to be passively replicated

L (Ki<n) = number of instructions to be executed by task i
I __ —

per iteration

Kj<rn) =

55

I (ICKn) = iteration period for task i

R. (l<jXm) = speed (in instructions per second) of processor j
J

f. (l<jXm) = scheduling constant for processor j (e.g., In 2)
J

M. (KiXn) = memory required by task i

C. (KjXm) = memory capacity of processor j
J

There are many possible reasons to achieve a balanced loading of the
processors and memories:

1) The effective failure rate of a processor may be related to its
load (utilization). In a system with otherwise homogeneous processors one
will want to equalize their effective failure rates.

2) The time to reconfigure the tasks assigned to a processing unit
upon its failure will certainly depend upon its loading. Since which unit
will fail first is not known ahead of time, the reconfiguration time is
minimized by equal (or nearly equal) loading.

3) Since, in general, many tasks are assigned to a processor, queue-
ing for its service will take place. It is a well known result of queueing
theory that the startup delay for tasks ("waiting time") is a highly non-
linear function of server utilization. Clearly, one would not want any one
processor heavily utilized, thus creating nonacceptable startup delays for
tasks assigned to it.

For convenience, the problem discussed above will be referred to as
the processor utilization and memory balancing problem (PUMBP). PUMBP re-
quires the optimization of a nonlinear objective function with decision
variables that take on zero-one values and are subject to linear con-
straints. In practice, PUMBP may take up to 200 decision variables and 150
constraining inequalities. There is a strong reason to believe that such
an instance of PUMBP would defy solution by traditional methods (e.g., im-
plicit enumeration, branch and bound). For instance, all known algorithms

56

for the quadratic assignment problem blow up with about a dozen decision

variables.

One alternative is to try to reduce this computational burden. To
this end, a variant of the PUMBP will be considered.

This new problem is motivated by the fact that in today's technology,
memory is plentiful and inexpensive. In contrast, processor time is at a

premium. Therefore, in the new problem those decisions affecting memory
loading will be ignored and processor utilization will be the primary con-

cern. The new problem, which will be referred to as the processor utiliza
tion balancing problem (PUBP), has the following formulation:

minimize 5

subject to constraints

- = a- (Ki<n)
1J n

E x..U . <f (KjXm)
Ki<n 1J 1J

1 .

where all variables are defined as above.

This formulation represents a slight improvement over PUMBP: the

number of decision variables is halved, and the number of constraints is

drastically reduced. One is still, however, minimizing a nonlinear objec-

tive function. PUBP can be completely linearized, thus reducing the prob-

lem to a standard integer (0-1) linear program. The transformed PUBP is as

follows:

57

minimize E(E x^ n - iD^ i - E
2<j<m KiXn 1J"i 1J l<k<n

subject to the constraints

= a

E xnuu i
l i < n u U

xkiUki
Kk<n kj kj

x, . e{0, l (Ki<n, Kj<m)
' J

Observe that the objective function simplifies to

since the intermediate values of j mutually cancel each other. Thus, in
this second problem an attempt was made to minimize the (statistical) range
of the processors' utilization factors, whereas in the first problem an
attempt was made to minimize the variance of the processors' utilization
factors. Both range and variance are measures of statistical dispersion,

although variance is generally considered the superior measure. With
stronger conditions on the problem structure, however, it may be possible
to find an assignment that minimizes variance by minimizing range, the
latter procedure being easier to perform.

Using well-known solution techniques for zero-one programming, it may
be possible to efficiently solve the above class of problems (See ref.
5,20,28,31).

3.1.2.2 Heuristic approach to the task allocation problem: In their

pure forms PUMBP and PUBP seek to find optimal solutions. Solving these
problems to optimal ity may not be possible in all cases without expending

58

significant processing effort since both problems are NP-hard. One should,
therefore, consider efficient algorithms for PUMBP and PUBP that produce
good (that is, feasible and close to optimum)--though not necessarily

optimal—solutions.
Examples of such heuristics are discussed below. As explained

previously, there are n tasks, with each task replicated some number of
times on m processors. Replicated tasks are to reside on distinct
processors.

One attempt at a heuristic solution is to make a tableau of task
instances.

tll t!2 ••• tla1

t21 t22 ... t2a

Here t^,- represents the jth instance of the ith task. Next, tasks are
allocated by columns; i.e., t^, t2}, ... tp^ are allocated to however many

of the m processors they require. This is done by the following algorithm
and has the advantage of allocating different instances of a task to
different processors.

Suppose one wishes to allocate n tasks with utilization factors Uj,
Up, ..., U to m processors. Assume U, >_ U2 >_ ... U . An algorithm to do

this allocation is as follows:

for i <-- 1 to n do
UMin <— U[l];
jMin <— 1;
for j <-- 2 to m do

if UMin > U[j] then
UMin <— U[j];
jMin <-- j fi

od;
PU[jMin] <-- PU[jMin] + U[1]

od;

59

In the following discussion, this and other approximation algorithms

(See ref. 7,9,21) and the bounds on their behavior with respect to the
optimal algorithm are explored. The relationship, if any, with other
similar efforts (See ref. 5,15,27) is also pursued.

3.1.2.3 Evaluation of the heuristic algorithm for task allocation*:
The problem was to assign replicated tasks to different processors to
achieve a balance in the processor utilization, while ensuring a separation
of tasks. A computer program was written to implement a heuristic
algorithm (see Appendix A). The program was run using values 4, 5, and 6
for the number of processors (computer output enclosed in Appendix C).
Table 3.1 shows the utilization of alternative experiments. It is apparent
from the data in Table 3.1 that in each case a perfect balance of processor
utilization is achieved.

So far the concept of memory utilization has been completely ignored.
A check on memory utilization with five processors revealed that in three

out of five cases memory exceeds the assumed memory capacity of 20
kilowords per processor. A perusal of data (See Table V-3 in ref. 33)
confirmed that five processors are not enough for assignment of all tasks.
Note that the allocation of task in Table V-4 (See ref. 33) is not

feasible. The memory requirement of processor 1 is 26,495, exceeding the
capacity of 20,000.

Let USUM = total utilization requirement of all tasks,

MSUM = total memory requirement of all tasks,
IR = number of replications per tasks, and
NP = No. of processors required.

Also note that
utilization capacity of a processor = .5
memory capacity of a processor = 20,000

Then MP = M,..,2*(USUM*IR),
20,000

The program was modified to determine the number of processors by

making use of the above expression for NP (see Appendix B). The results
show a perfect balance in processor utilization with six processors, but

*Section 3.1.2.3 was contributed by Veena Adlakha, North Carolina Central
University.

60

again memory exceeds the processor capacity of 20 kilowords in three cases

(see Appendix C).

The program was further modified to place a check on memory at each

step. To reiterate, the program arranges the processors in ascending order

in terms of accumulated processor utilization. Before going down the list
and assigning replications of a task, the program checks the total memory,

if the current task is assigned to that processor. If the total memory
exceeds the memory capacity of 20,000, the possiblity of assigning the task

to the next processor is explored. Table 3.2 presents the results of this
experiment (see Appendix C). It is clearly established that a balance in

both processor memory and processor utilization is achieved.
3.1.2.4 Performance guarantees for a restricted task allocation

problem: In this case, the following problem is considered. There are m
processors and n tasks. All processors are identical, and all tasks have

known utilizations ui (KKn). One desires to assign each task to two
separate processors in such a way that the statistical variance of the

processors' utilization is minimized. (The utilization of a processor is
defined to be the sum of the utilizations of all tasks assigned to the

processor.) This subproblem of PUBP will be referred to as the BALANCE

problem.

The problem described above arises in connection with a real-life
problem in the design of fault-tolerant real-time computing systems. The

scenario is a fault-tolerant system in which two copies of a process are
concurrently executing on different processors. Thus a single faulty

processor may be identified by voting on the processors' results.*
The problem can be made mathematically precise as follows:

1 \~^Minimize •=:/.(m L̂

subject to the constraints

„ :ij = 2 (KKn)
j

x. . e {0,1} (KKn, KjXm)

* I he results presented are valid for processes with arbitrary replication
factors, but the proofs are more complicated.

61

Table 3.1
Processor Utilization

Number of Processors
Processor 4 5 6

1 .420 .321 .268

2 .420 .322 .268

3 .420 .321 .268

4 .420 .322 .268

5 -- .322 .268

6 -- -- .268

62

Table 3.2

Processor Utilization and Memory

Processor
Number of Processors = 6

Utilization Memory

1

2

3
4

5

6

Total

.268

.268

.268

.268

.268

.268

1.608

16532

16532

16532
17427

17427

17427

101877

63

where

X.. = 1 if task i is assigned to processor j

0 -otherwise (ICKn, KjXm)
u- = task i's utilization (Ki<n)

I """* ~~" *

One can now show that BALANCE is NP-hard.
3.1.2.4.1 Difficulty of the restricted task allocation problem.

Theorem 3.2: BALANCE is NP-hard.
Proof: NP-hardness can be shown by reduction to PARTITION.

The decision problem PARTITION is formulated as follows (See ref. 13)
Instance: Finite set A and a size s(a)« 1L for each a « A.
Question: Is there a subset A' c A such that £] s(a) = zL s(a)?

a«A' a«A-A'

BALANCE is reformulated as a decision problem.

Instance: Finite set A, a size s(a)« 7Z- for each a « A, positive integer
m and positive real number V.
Question: Can A be partitioned into m subsets A,, ..., A such that

for each a«A there are exactly two subsets A^ , A. with a « A., and a < A .

and

One can now show that any instance of PARTITION can be polynomially
transformed into an equivalent instance of BALANCE. Given any instance I
of PARTITION consisting of finite set A and a size s(a)e 7// for each

64

a « A , one can solve the instance I1 of BALANCE consisting of the same set

A, the same size function s, m = 4 and V = 0.

Claim: The answer to the instance I of PARTITION is affirmative if and

only if the answer to the instance I1 of BALANCE is affirmative.
Proof of Claim: It is clear that if the answer to I is affirmative then

the answer to I' is affirmative as well. One simply takes A^ = A2 = A1 and
A3 = A4 = A-A'.

If the answer to I1 is affirmative, then

s(A1) = s(A2) = s(A3) = s(A4). Let BI = t\± n A2 and B2 = A3 n A4.

Then, C, U C~ = C, U C,.
J. L- O ^

"̂"̂ -̂NHence, / ̂ s(a) = / J s(a).
a«B^ a«B2

Therefore, / j s(a) = / ^ s(a) for 1 <_ i, j <_ 4.
aeCi ae .

This implies that A may be partitioned as A| = B2 U C2, A2' = B^ U C^,

A^ = B2 U C2, A4 = B2 U C2, and each a A is in exactly two of the Ai

Moreover, -̂̂ ^̂

2-^s(a) = 2-/s(a) f o r l < ^ i , j < 4 .

»jaeA'.
'

Taking A1 = Aj^ and A - A1 = A3, the answer to instance I of PARTITION

is affirmative.

65

3.1.2.4.2. An approximation algorithm and its performance guarantee.
The balance problem is NP-hard. Thus one should to consider approxi-

mation algorithms with efficient execution times. The following algorithm
is one example. It will be referred to as algorithm "A".

0) i <-- 1.

1) Find the two least utilized processors (of lowest indices) and
assign task i to them (twice).

2) i <— i + 1. If i > n then stop or else go to (1).

Here the assumption is that u^ >_ ,.. >^ un.

Definition 3.1: Let S be a set of numbers. Define
nin S = min (S - {min S)). This is known as the "next minimum."
N.B. nin T _< nin S, T _< S.

Lemma 3.1: Suppose that algorithm A is applied to tasks with utilizations
ul 2l ••• >. un on m Processors. Let q-p ..., qm be the resulting processor
utilizations. Then max (q.-l - nin {q-} < u,, where k is the last task

j J ~
assigned by A to the maximally utilized processor.

Proof: Suppose that q, = max {q.} and one copy of task k is assigned to
j J

processor 1, algorithm A assigns task k to the two least utilized
processors. Assume that task k was assigned to processors 1, I1. Let p,,

..., pm be the accumulated processor utilizations just immediately before
task k was assigned to processors 1, 1' by algorithm A. Then

p-i + UK = q-i = max {q.l . Also, p-| _< nin (p.} , since processor 1 was one
J J

of the two least utilized processors at the time task k was being assigned.

Moreover, p. <a. (l<j<m). Therefore p-, _< nin (p.K nin (q.) . Hence,J J i j J j J
rewriting p, as max (q.) - u. , results in max {q.}- u. <_ nin (q.) , and

1 j J j J K j J

the lemma is proved.

Definition 3.2: Let q = (qp ..., qm) and p = (pp ..., p) be two sequences

66

such that q., p. _> oA ^q. =^ p. and max {q.} _< 2nin {q.} . Define
J J £—J J ^^~ J -j J -j J

j j

K(m) = lubt^(q.)2/ V(P-i)2 >. Also define K = lub;{K(m)} .
L*t J Z^ J mq>p * m

j J

Lemma 3.2: Suppose that there are n tasks with utilizations u,, ..., u
which are to be legally (i.e., two copies of each task are assigned to dis-

tinct processors) assigned to m processors. Let q^, ..., q be the proces-
sor utilizations resulting from algorithm A. Let qt, ..., q* be the

processor utilizations resulting from optimal algorithm 0. Then

Proof: Let q-, = max {q-}» and suppose that task k was the last task
i

assigned by algorithm A to processor 1. Also assume that task k was

assigned (redundantly) to processor T. Let p^, ..., p be the processor
utilizations immediately before task k was assigned. We have two cases.

Case 1: p-| ^ 0. Then 0 < p-| <_ p- > 0 (l<jXm, j ^ I 1), since proc-
essors 1 and 1' were the two least utilized processors prior to the

assignment of task k. Thus p. > u,, (Kj<m, jVl'h since each of these
J — *

processors had a task (of utilization at least u.) already assigned to it-
recall that p. > 0 (KjXm, j/11). Therefore nin {q.} >_ u, because

J •; J K '
- -q. > p. and u, < min {q.} < nin {q.} (since u. < p- < q- for 1 < j < m,J ~ J K — • /11 j — • j K j j

J>"1 .')j"7T Clearly V^q • = V^q*- Hence, by Lemma 3.1,

max {q.} < nin {q.} + u, < 2nin {q.} .
j J ~ j J k~ j J

Therefore,

67

Case 2: p, = 0. Then p. = 0 (j'2.1) and p. = u, (j<l) because q, = u. is
I J J K I K

maximal. Find the smallest number t such that there is a processor s which

has at least two tasks assigned to it and max J q . l = q . For example see
i~>t ' J > s

Figure 3.2. J-

There are two subcases of case 2.
Subcase 2.1; No such t exists. Then all processors have l.ess,than:two tasks

assigned to them. In this case A has produced an optimal assignment and

Subcase 2.2; Such a t exists. Suppose task r was the last task assigned
to processor s by algorithm A. Then, by Lemma 3.1,

max |q-l - nin J q. I < u . Also, u < nin jq. I . Hence,
' J ' J ' ~ r r ~ ' -J '

max Jq, t ̂ nin jq. | + u < 2nin {q.}.
j_>t J j>t J J2*

The next step is to perform a cost-preserving transformation on the
\

optimal assignment.

Claim: The optimal assignment resulting in processor utilizations qt, ...,

q* can be transformed into an (not necessarily legal, i.e., two copies of a

task may be assigned to the same processor) assignment with processor
utilizations qj, ..., q' such that

2 ~̂"V 2

J J J J

and

(1 < j < t).

68

1
2
3
4
5
6
7
8
9
10
11
12

t = 7 s = 9

Figure 3.2. Example of the construction of t and s,

69

Proof of Claim: The transformation is as follows:

1) Do until none of the tasks 1, 2, ..., p̂[• are co-assigned to

the same processor: If two of tasks 1, 2, ..., \—?r\ are co-assigned to
a processor, then place the smaller task on the least utilized processor

that has assigned to it none of the tasks 1, 2 ~~2~ ' This step is

always possible if two of tasks 1, 2, ..., t-1 are co-assigned to a

processor. The transformation will never increase the cost of the assign-

ment. (See Figure 3.3.)
2) Assume that now the processors have been renumbered so that task j

is assigned to processors 2j-l and 2j (1 <_ j _< |t/2j). (See Figure 3.4.)

Note that none of the tasks 1, 2, ..., —^— are assigned to processors

. , . , ft-llt, . . ., m, and if 1 , then tasks and J,2 are assigned

-1
< i'2 <.to different processors. Now, if tasks i^ and i~ (1 <. ii _<

are assigned to processor j, (IXjXt), then find a minimally utilized

processor among t, ..., m (say j~). Then q'. < u. (by construction oft . • j2- T!
t). Task \2 can be removed from processor j^ and assigned to processor

J2 with no cost increase. (See Figure 3.5.)

ft-flStep (1) can be applied until each of tasks 1, 2, ...,

assigned to a separate processor. Then step (2) can be applied until each

(instance) of tasks t-1 + 1, ..., n is assigned to one of the processors

t, ..., m. The ultimate assignment is as in Figure 3.6 (after renumber-

ing).

Let q']_, .., q'm denote the processor utilizations in the
transformed assignment. The transformed assignment has cost no more than

the optimal legal assignment; i .e. ,

In both the transformed assignment and the assignment resulting from

algorithm A, task i is assigned to processors 2i-l and 2i (1 j< i £ [t/2j) .

Therefore, q, = q'. (l<j<t), and
J J

70

1 1 j-L < J2 < t contains no task 1, 2, ...,

transformed to ...

so cost does
not increase

Figure 3.3. Cost-preserving transformation of the optimal
assignment by step (1).

71

b«J

m

Figure 3.4. Assignment after application
of step (1) and renumbering.

72

transformed to ...

\
• • • \

so cost does
not increase

Figure 3.5. Cost-preserving transformation of the
optimal assignment by step (2).

73

t-1

t

m

only tasks
ft-1/2] +1, ..., n
are assigned to these
processors

Figure 3.6. Final assignment after transformation by
steps (1) and (2). The transformed assignment
costs no more than the optimal assignment.

74

j<t JH

E(2(q,)
jx

Also, by the claim,

The task set — i— +1, ..., n was assigned to processors t, . . . , m
by algorithm A and the maximally utilized processor s had at least two
tasks assigned to it. Therefore, case 1 applies and

max {q. |j £ 2 • nin {q,}.
J ' J-*

Hence, (q,) (m_t+1)
j J < Klm r L) < K.

Lemma 3.3: IOm' < „,-"",. ; hence K < 1.69 for m > 3.

75

Proof: Consider the problem of finding a nonincreasing step function q(t)

(0 _< t <^ m) such that:

1) q(0) <

/

m
q(t)dt = s (s a constant)

i
fy

3) / q (t)dt is maximized for the given m and s.
J n

If q*(t) is a nonincreasing step function satisfying conditions (1) - (3),

then,
/ \ /-

KimJ <J
•m 2

o

/

m 2 ^ £
q*(t)dt represents the maximum value that \ ^ q. can assume

/ j J

2
c

•'o

V^ J' ' 9where q. >. 0, > q, = s and max q. _< 2nin |q. 1 (1 <_ j £ m); and s^/m
J A^^^ J J J

j J J
• ^

represents the minimum value that \ ^p. can assume where \ Ap. = s and

p. >0 (1 < j < m) .

Note that q*(t) can have only two nonzero "steps." If it had

/

m 2
q..(t)dt would not be maximal. This is illustrated

u

in Figure 3.7.

Therefore, q*(t) must have the following form.

q*(t) =
2x 0 _< t < k

x k < t < m-1
0 m-1 < t < m

76

q*(t)

one step

m-1

can be transformed to better

q**(t)

m-1

/•m p ^
J q**(t)dt > J q*(t)dt

Figure 3.7. q*(t) cannot have one step.

77

q*(t)

three-or-more step

m-1

q* can be transformed to better

q**(t)

m-1

'PI 2
l*(t)dt

Figure 3.7 (continued). q*(t) cannot have three or more steps.

78

Thus, s = 2xk + x(m - 1 - k) and k = s/x - m + 1. So

"2
q*(t)dt = 4x2(s/x - m + 1) + x2(2m - s/x - 2)

= 3sx + 2x2 - 2mx2.

This attains a maximum of

w h e n x = 3 s

8m - 8 "'""' 4m - 4'

Hence, K^ < -| . -=r̂ -r .— o m - i

For the PUBP the performance of approximation algorithms is compared

to optimal algorithms. Simply comparing the statistical variance is not
sufficient since one should normally expect the variance allowances to
differ for differing task sets. Therefore a.measure akin.vto .the
coefficient of variation will be used. Given an approximate assignment

(x-jj) and an optimal assignment (x'jj) the relative costs are
compared as follows:

Theorem 3.1: Suppose that there are n tasks with utilizations u^, ...,

un which are to be legally (i.e., two copies of each task are assigned to
distinct processors) assigned to m processors. Let q^, ..., qm be the

processor utilizations resulting from algorithm A. Let qj q* be the

79

VA =

processor utilizations resulting frpm optimal algorithm 0. Let

1 X~~* 2 // 2 X~^ \2= -—- > q. /(-:::- / u. \ denote the relative variation in processor

J *

utilization under the approximate assignment A. Let

VQ = -i- N A(q^) /(-_— \ ^ u. | denote the relative variation in

J ' i
processor utilization under the optimal algorithm 0. Then

AdVA/VO< i <..*)
^n- < 1.69 (m > 3)

Hence, the approximation algorithm is always less than 69% off optimum.

Proof: Note that VA/VQ = ̂ jf. I ']T(q*)
2. '

j. / j
But for m = 2, algorithm A produces optimal assignments. Therefore, by

.3, VA/VQ 1 sfm̂ IT < 1'69 for m 1 3» and VV0 = 1 for m = 2Lemma 3.

3.1.3 Task allocation for reliability maximization*. - A function

f(_x) of a vector argument _x = (x^, x2, ..., xn) is said to be symmetric if
for any permutation y_ = (y,, y^, ..., y) of £» f(x_) = f(y.)« A function

f(_x_) is said to be concave if

Af(x_(1)) + (1 -x)f(_x(2)) <_f (\x.(1) + (1 - A)_x(2)).

Definition of a convex function is obtained by reversing the inequality

above. A set C of points is said to be convex if for

C,\x(1) + (l-X)x^2) «C for X> 0.
— —

^Section 3.1.3 was contributed by Kishor Trivedi, Duke University.

80

Theorem 3.2: A symmetric concave function f(xj over a symmetric convex
space is maximized by equalizing all of its arguments.

Proof: Assume that there is a two-dimensional feasible space for
convenience, although the argument is easily generalized. The proof
proceeds by contradiction.

Assume that the optimal point is (x,y) where x ^ y. Since the
feasible space is symmetric, then (y,x) is also in it. Furthermore, since
the feasible space is convex, any point on the line joining the two points

is also feasible. In particular, (-̂ î , -) is feasible. By symmetry of

f(_x), f(x,y) = f(y,x) is the maximal value, but by concavity of f,

> f(x.y) + lf(x,y) = f(x,y)

which implies that (-r^ r) is also an optimum.

Thus, if one assumes that the system reliability is a concave function
of detection latencies, for instance, then clearly it being symmetric, the
reliability is maximized by equalizing detection latencies. Similarly,
reliability is maximized by equalizing reconfiguration times and so on.

Given enough time, concavity of reliability may also be established.

3.2 Discussion of the Role of Software Design*

3.2.1 Introduction to classical engineering design methodology. -

This section discusses the elements of classical engineering design
methodology with particular reference to software engineering. It assumes
a basic familiarity with the problems of software engineering.

*Section 3.2 was contributed by Thomas Alspaugh, Jr., IBM, Research

Triangle Park.

81

The term "methodology" is often considered a buzzword. According to
Webster, a methodology is "a body of methods, rules, and postulates employ-
ed by a discipline". Sage (See ref. 29) narrows it to "a set of tools, a
set of proposed activities for problem solution, and a set of relations
among the tools and activities". These are very broad, high-level
definitions; indeed, methodologies themselves are difficult to express
except in broad, high-level terms. They are so abstract that a true
understanding of them requires a consideration of the concrete application
which inspired them.

Engineering solutions can be applied to a certain restricted class of
problems that can be adequately expressed in explicit, concrete, and
quantitative terms. Such solutions are characterized by predictable
behavior which can be quantified and verified. The creation of such solu-
tions is constrained by the limited capacity to deal with complex ideas or
consider all the ramifications of complex interactions. The methodology
deals with these issues and problems.

Nearly everyone has had the experience of apprehending and solving a
simple everyday engineering problem almost at one stroke, with no conscious
effort. The problem was apprehended intuitively, synthesis of the solution
occurred unconsciously, and understanding of the situation was so intimate
that it was a foregone conclusion that the realization of the solution
would meet the need completely. But most problems are not so tractable.
The methodology helps one to solve problems by conscious effort while
trying to attain the unity and integrity that characterize the correct
intuitive solution.

3.2.2 The classical engineering design methodology. - The methodology
consists of a number of components: abstraction, the "black box", specifi-
cations and testing, the design process, iterative convergence, recursive
decomposition, documentation, and pilot operation. Each component is con-
sidered below.

3.2.2.1 Abstraction: Abstraction is a powerful concept that perme-
ates the engineering design methodology. The process of abstraction
consists of conceptually separating the important characteristics of a

82

situation or object from a mass of unimportant information. The character-
istics that were abstracted form a model or abstraction that can stand for
the situation or object itself to a certain extent. This abstraction can
be studied and manipulated instead of the complex thing from which it was
abstracted, and if the abstracted characteristics are well chosen the
results are applicable to the thing itself. This is a powerful technique
for dealing with complex things and ideas.

Three examples of the use of abstraction in the creation of engineer-
ing solutions follow. In considering the problem, certain aspects of it
will be important and others less so. Also, it may be useful to consider
some characteristics of the problem in terms of mathematics or some other
mental model rather than in the terms of the problem itself, thus ignoring
some aspects of those characteristics. The solution itself will have many
properties irrelevant to the problem it solves, or it may be only an
approximate solution, though close enough for practical purposes.

3.2.2.2 The black box: The concept of the black box is a particular-
ly important example of abstraction. A black box is a system whose inner
workings are completely invisible. Its externally visible behavior can be
described completely and concisely. Its internal structure may be, and
probably is, much more complex, but this complexity need not be considered
in using the black box. An engineering solution that can be conceived of
as a black box is more useful than one that cannot. Such a system is
allowed more flexibility in its internal workings, since only a small
subset of its characteristics are constrained. It is easier to think about
and use, since its behavior can be described more abstractly and more
concisely. It is easier to reuse later in another problem, since it does
not require a large investment of time to understand how it behaves.

3.2.2.3 Specifications and testing: The technique of specifications
and testing arises from the nature of engineering, which considers things
in terms of quantifiable physical characteristics. Thus, an existing or
desired engineering solution can be adequately described in such terms. An
abstraction of a solution or a set of solutions can be so expressed; if the
abstraction contains precisely the properties that a satisfactory solution

C
83

must have, then its description constitutes the specifications for the
solution, the requirements which a solution must meet in order to be
satisfactory. The properties of a candidate solution can be tested and
compared with the specifications to decide if the candidate is a
satisfactory solution.

3.2.2.4 The design process: The design process is a sequence of
steps whose goal is to develop a solution for a complex problem. The
process is arranged to encourage the same integrity that occurs in the case

of intuitive solutions to simple problems. The steps of the process are
depicted in Figure 3.8. They are:

1. Problem definition. The problem is explored and its important
characteristics are abstracted. No reference is made to possible
solutions; the problem is considered in its own terms. Objectives
and criteria for solutions are developed and the worth of having a
solution (or the cost of not having a solution) is estimated.

2. Requirements. The statement of the problem is recast in terms of
engineering. The requirements that a candidate solution will have
to meet in order to be acceptable are developed. Still no
reference is made to specific solutions.

3. Design synthesis. A design for a system that will meet the
requirements is synthesized.

4. Realization. The design is realized.

5. Design test. The realization of the design is tested to ensure
that it meets the requirements determined in the second step.

6. Requirements test. The realization of the design, which has now
Jjeen established as an embodiment of the requirements, is tested
"in the context of the problem to ensure that the requirements meet
the definition of the problem and that the definition of the
problem is accurate.

The integrity of the process is verified by the testing steps.
Divergence can occur at each point at which a new abstraction is developed:

problem definition, establishment of requirements, design synthesis; and at
the point at which an abstraction is realized: design realization. The

process may be viewed as a chain of abstractions leading from the problem
to its concrete solution. If each abstraction is accurate and well chosen

84

Problem
Definition

Requirements

Design

Synthesis

i'.

Realization

Design Test

Requirements

Test

Fi;gure'i3.8. Steps in the Design Process,

85

and if the realization correctly reflects the final abstraction, then the
solution will necessarily meet the needs of the problem. The testing
ensures that each link in the chain is firmly joined to what comes before.

3.2.2.5 Iterative convergence: Iterative convergence refers to the
trial-and-error process by which the abstractions in the design process are
improved. The limitations of our mental capacity make it unlikely that
abstractions will be adequate from the start. The testing steps may reveal
faulty abstractions and provide a means for pinpointing their shortcomings.
The design sequence is then followed again, starting from the improved

abstraction (Figure 3.9).
3.2.2.6 Recursive decomposition: Nearly all problems are too large

to solve as a whole. The required solution would be too complex to be
adequately understood. In such cases the solution can be analyzed as the
combination of several black boxes, each of which is then considered as a
subproblem. The subproblems are treated precisely as any other problem
needing an engineering solution; each subproblem is analyzed, requirements
are generated, and a subsolution is designed, realized, and tested. If

these subproblems are also too large, they can be similarly decomposed in a
recursive manner until manageable problems are obtained. The solution to
the original problem is obtained by recursively assembling all the
subsolutions.

The correctness of the abstraction involved in the decomposition is
tested when the subsolutions have been implemented by combining them and
testing that the combination meets the requirements established for the
solution.

3.2.2.7 Documentation: Documentation is an important part of the
creation of an engineering solution in that it provides information needed

by the users and maintainers of the solution. Less obvious is its value to
the creators of the solution. The structure of the documentation directs

the thought of the writer, and if the structure of the documentation is
well chosen, the writer will be assisted in relating the important issues

of the solution. The act of writing itself forces the thorough consider-
ation of what is being written, and questions that can be glossed over in

86

Problem

Definition

Requirements

Design

Synthesis

1
Realization

Design Test

Yes

No

Requirements
Test

No

Figure 3.9. Iterations for Improving Abstractions.

87

one's mind become painfully obvious when they are put on paper. Brooks

(See ref. 4) also points out that the management of the creation of an
engineering solution revolves around a relatively small body of information
concerning the system, and the writing down and dissemination of this
information is a crucial part of the managing task.

3.2.2.8 Pilot operation: The term "pilot operation" refers to a
small-scale test solution used to gain knowledge and experience that will
be useful in the creation of a large and expensive solution. The pilot
operation risks a relatively small investment to reduce the risk that the
large investment for the actual solution will be wasted. Pilot operations
are useful for solutions embodying ideas that have never been tested or

that have been tested only on a much smaller scale; large changes of scale
change the relative importance of the aspects of the problem and solution
which must be taken into account, thus possibly invalidating the
abstractions that were appropriate on a small scale.

3.2.3 Software engineering. - Certain areas of the methodology pose

special problems or are of special interest in software engineering. They
are described below, organized by the component of the methodology with

which they are concerned.
3.2.3.1 Abstraction: In Brooks' phrase, programmers work with a very

tractable medium (See ref. 4). The flexibility inherent in programming
means that any program is the embodiment of a large number of implicit or

explicit decisions which together define the program. It is difficult to
abstract from such a large number of decisions, particularly since they may
interact in complex ways. Also, software deals with dynamic processes
that evolve over a period of time; such processes are more difficult to
think about than the more static relations that characterize other

engineering disciplines (See ref. 11).
3.2.3.2 Black box: For these same reasons, black boxes are more of a

problem in software engineering. Problems with software engineering black

boxes are usually thought of as problems in the interface, which is the
manifestation of the abstraction that describes the black box. Software
black boxes also are less easily portable because the inputs they require
may be difficult to abstract and understand.

88

3.2.3.3 Specification and test: Software specifications commonly
specify both too little, and in one sense, too much. The large number of
important decisions makes it difficult to cover all the important decisions
when making specifications; this leads to the ad hoc making of design
decisions by the implementers, who usually have no overview of the solution
and cannot be relied upon to choose correctly. In another sense,
specifications often specify too much, in that they unduly restrict the
implementation (See ref. 23).

3.2.3.4 The design process: Several parts of the design process are
of particular concern.

When considering a problem to be solved by software, it is very tempt-
ing to define the problem itself by specifying to some level of detail a
possible solution. Most software engineers find it easier to think in
software terms than in terms of a specific problem.

Two aspects of the process of synthesizing the design of a solution
are of special concern. First, it is very desirable but not easy for de-
signs to reflect the natural structure of a solution. It is desirable
because such designs are much easier to think about, but it is difficult
because problems almost always have some aspects that are difficult to
reconcile with the main characteristics. Second, solutions usually need to
be adapted to slightly different problems as time goes by, and it is desir-
able to design a solution so it may be adapted easily.

Testing software is of limited value since tests can only show the
presence of errors, not their absence. The complexity of software solu-
tions requires extensive tests to provide confidence that the software is
reasonably free of errors. Formal proof is a tempting alternative, but it
has drawbacks also. The process of proving correctness is arduous, and
also it is all too easy to prove one thing while thinking one is proving
something else.

3.2.3.5 Iterative convergence: The iterative process of testing,
finding, and fixing problems in a software solution tends over time to make
the structure of the solution less orderly, particularly if the problems
show up some length of time after the solution was tested and declared
accurate. The temptation to attempt to repair the solution without taking
the time to understand it completely, together with the natural human

89

tendency to treat symptoms before the underlying problem is evident,
combine to make the solution not fit its abstractions and behave in more
complex, less predictable ways as it grows older.

3.2.3.6 Documentation: The complexity of software solutions makes
them more difficult to document. Because software is so flexible and
tractable, any solution involves a large number of decisions. The amount
of information that must be organized and recorded in the documentation
makes it likely that the organization of that information will not be very
good. Ideally, the documentation should be useful both as an introduction
or overview for a neophyte and as a reference for a person who has at least
the knowledge provided by the overview but not necessarily a thorough
understanding of the whole software system. In fact, this rarely occurs.

Parnas (See ref. 24) lists six important problems plaguing most
software documentation.

1. It is obtuse in the assumptions made about the purposes and
knowledge of the reader.

2. It is hard to use as a reference.

3. It is expensive to maintain.

4. It is repetitive and boring, and thus is not read attentively.

5. It uses inconsistent terminology.

6. It is written for people who know as much as the writers of the
documentation.

The writers of most documentation try to make each piece of informa-
tion understandable when looked up for reference by surrounding it with the
background they believe it requires. This means that any particular fact
is likely to be recorded in many places throughout the documentation, and
if the decision leading to that fact is changed a great deal of effort is
required to revise the documentation. It also means that a person reading

the documentation will encounter many facts over and over again, probably
expressed in exactly the same sentences and paragraphs.

3.2.4 Software engineering tools and techniques. - Certain tools and

techniques have been developed to aid in the creation of software engi-
neering solutions.

3.2.4.1 A set of documents: Brooks (See ref. 4) presents a set of
documents intended to aid in the management of a software project. They
consist of: (1) the objectives—defining the problem, the goals, the

constraints and the priorities; (2) the specifications—consisting of the
user's manual for the system to be created, which he views as setting forth
the requirements for the visible behavior of the system, and the internal
documentation; (3) the schedule; (4) the budget; and (5) the space

allocation and organizational chart for the people working on the system.
Parnas (See ref. 24) lists a set of documents useful in the creation

of a software system. They are: (1) the requirements for the solution;
(2) secret test plans, to be concealed from the implementers of the

solution; (3) the software decomposition document; (4) the individual
module interface documents; (5) the individual module design documents; (6)
the uses/subsets document, setting forth the interdependences between
modules and the useful subsets of the whole system; and (7) the process
structure document, dealing with scheduling.

3.2.4.2 Formal languages: English prose is not well adapted for a
precise and unambiguous description of software systems. Many formal
languages have been developed for various aspects of software engineering,
though none has been very widely used except in the specification of
programming languages. Two examples of formal languages which bear on the
software engineering design methodology are TRACES, which is used in
writing module specifications (See ref. 2), and SPECIAL, which is used in
writing more general specifications (See ref. 25).

3.2.4.3 Modularity and information hiding: The classical motivation
behind the use of black boxes is portability. Two more motivations for
modularization are the splitting of the task into work assignments for a
single person or a small group so that a minimum of coordination and

communication between subtasks is needed, and the reduction of the inter-
dependence of the decisions that together define the solution, so that at
least some decisions may be changed without reworking much of the solution

91

(See ref. 23). To achieve these goals, the system may be modularized using
Parnas" principle of information hiding, so that every decision that is
likely to change is hidden in an abstract module whose external behavior
is not dependent, on the decision, and that in fact every module in the
system depends not at all or as little as possible on the way any
particular module is implemented.

3.2.4.4 Reference vs. statement in documentation: In computer
languages an abstract name can be used to refer to a constant whose actual
value is defined at precisely one place in a program. Documentation
written analogously by using abstract names to refer to specific decisions
would be very simple to change; if the documentation was organized strictly
and simply, it would also be easy to use as a reference. Heninger et al.

(See ref. 17) have done precisely that in the complete rewriting of the
very large requirements document for the A-7 Operational Flight Program,
and the result has been quite successful.

3.2.4.5 Simulation: Software engineering allows another kind of
decomposition. A solution that would normally be a complex program running
on a simple machine can be broken down into a simpler program running on a
more complex abstract machine, and a program, running on the simple
machine, which simulates the abstract machine. A well-chosen decomposition
of this type can make a significant reduction in the effort required to

implement a solution.

92

4.0 CONCLUSIONS AND FURTHER WORK

This report has presented a methodology for the initial identification

and design of integrated aircraft electronic systems that are intended for
use in commercial aircraft.

The report presented a taxonomy of multiprocessor systems as a frame-
work for understanding, discussing and characterizing systems. This taxon-

omy included the identification of major system design parameters. A meth-
odology for estimating system behavior was also proposed. System behavior

is partially described in terms of the reliability, performance and cost of
a system. Measures for reliability, performance and cost were defined and

applied to the proposed taxonomy, and a strawman system was identified.
The report also included a discussion of algorithms for and control of

fault-tolerant integrated aircraft electronic systems. Management of sys-
tem resources, especially scheduling and task allocation were shown to be
important to the reliability and performance of a fault-tolerant integrated
aircraft electronic system. Formal analysis of scheduling and allocation

algorithms demonstrate the usefulness of approximation or heuristic algo-
rithms. The role of software design methodologies was discussed in the
context of integrated aircraft electronic system design.

4.1 Additional Tools Required

Various tools will aid the development of a methodology for designing
fault-tolerant integrated aircraft electronic systems. Two classes of

tools are needed.

1) Tools to aid in the classification and description of multiproces-
sor systems. This includes hardware description languages and de-
sign capture (display) systems.

2) Tools to aid in system simulation and in the estimate of identi-
fied system measures.

93

4.2 Techniques and Theoretical Work Needed

A fully integrated aircraft electronic system enhanced by fault-

tolerant hardware and software will represent one of the most complex
systems ever engineered. Large gaps still exist in our knowledge of

fault-tolerant systems and multiprocessor systems. These gaps cut across
the areas of hardware design and especially software design. Further
theoretical work is suggested in the following areas:

1) Develop the theory of fault tolerance to the point where it can be
extended to the design of sensor-actuator systems.

2) The study of multiprocessor systems is still in its infancy.
Bring this field of study to the point of maturity. It is
recommended that particular emphasis be placed on how to make
these systems fault-tolerant and on how to efficiently manage
resources and contain complexity.

3) There is a glaring need to be able to identify precisely the
functional scope of a projected system. Even more critical is the
need to pair the functional elements of a projected system with
reliability and performance. Once this has been done, there is
the need to translate the function specifications and requirements
into an actual hardware-software system.

4) Each of the findings pertaining to (1) - (3) should be based on
and substantiated by experimental data and actual experience.

4.3 Peer Review of Specific Systems

Perhaps the most effective way to design and evaluate systems is by
exposing the system design to stone throwing at various points in the
design of the system. Working groups, conferences and frequent publication
of one's efforts provide an ideal forum for such review.

94

REFERENCES

1. Anderson, G.A., and Jensen, E.D.: Computer Interconnection
Structures: Taxonomy, Characteristics and Examples, ACM
Computing Surveys, v. 7, n. 4, December 1975.

2. Bartussek, W., and Parnas, D.L.: Using Traces to Write Abstract
Specifications for Software Modules, Technical Report TR77-012,
University of North Carolina at Chapel Hill, December 1977.

3. Bell, C. 6., and Newell, A. Computer Structures: Readings and
Examples, McGraw-Hill, New York, 1971.

4. Brooks, P.P., Jr.: The Mythical Man-Month, Reading, MA: Addison-
Wesley Publishing Co., 1975.

5. Buckles, B., and Hardin, D.: Partitioning and Allocation of Logical
Resources in a Distributed Computing Environment, Tutorial:
Distributed System Design, IEEE, New York, 1979.

6. Byrne, J., and Proll, L.: Algorithm 341, Solution of Linear Programs
in 0-1 Variables by Implicit Enumeration, CACM, v. 13, n. 4,
April 1970.

7. Coffman, E.G., Jr.: Computer and Job Shop Scheduling Theory, John
Wiley & Sons, New York, 1976.

8. Davis, A.L., Denny, W.M., and Sutherland, L: A Characterization of
Parallel Systems, Technical Report UUCS-80-108, Department of
Computer Science, University of Utah, August 1980.

9. Dhall, S.K.: Scheduling Periodic-Time-Critical Jobs on Single
Processor and Multiprocessor Computing Systems, Ph.D.
Dissertation, Dept. of Computer Science, University of Illinois
at Urbana-Champaign, 1977.

10. Dhall, Sudarshan K., and Liu, C.L.: On a Real-Time Scheduling
Problem, Operations Research, v. 26, n. 1, January-February
1978.

11. Dijkstra, E.: Go to Statement Considered Harmful, Communications of
the ACM, v. 11, n. 3, pp. 147-148, March 1968.

12. Flynn, M.J.: Some Computer Organizations and Their Effectiveness,
IEEE TC, v. C-21, n. 9, September 1972.

13. Garey, M.R., and Johnson, D.S.: Computers and Intractability, W.H.
Freeman, San Fransisco, 1979.

14. Graham, R.L.: Bounds on Multiprocessing Timing Anomalies, SIAM J.
Appl. Math, v. 17, n. 2, March 1969.

95

REFERENCES
(Continued)

15. Gylys, V.B.,and Edwards, J.A.: Optimal Partitioning of Workload for
Distributed Systems, Tutorial: Distributed System Design, IEEE,
New York, 1979.

16. Han, Y.W.: Performance Evaluation of a Digital System, Using a Petri
Net-like Approach, Proceedings of the National Electronics
Conference, v. 32, October 1978.

17. Heninger, K.L., Kallander, J.W., Parnas, D.L., and Shore, J.E.:
Software Requirements for the A-7E Aircraft, Washington, D.C.:
NRL Report 3876, Naval Research Laboratory, Nov. 27, 1978.

18. Kini, Vittal: Automatic Generation of Reliability Functions for
Processor-Memory-Switch Structures, Ph.D. Thesis, Carnegie-Mellon
University, February 1981.

19. Kosy, Donald W.: The ECSS II Language for Simulating Computer
Systems, Rand, Santa Monica, Ca., December 1975.

20. Land, A., and Powell, S.: Computer Codes for Problems of Integer
Programming, Annals of Discrete Mathematics, v. 5, 1979.

21. Lawler, E.L., and Martel, C.U.: Scheduling Periodically Occurring
Tasks on Multiple Processors, IPL, Feb. 1981.

22. Liu, C.L., and Layland, J.W.: Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment, JACM, v. 20, n. 1,
January 1973.

23. Parnas, D.L.: On the Criteria to Be Used in Decomposing Systems into
Modules, Communications of the ACM, v. 15, n. 12, pp. 1053-1058,
Dec. 1972":

24. Parnas, D.L., Hester, S. D., and Utter, D. F., "Using Documentation as
a Software Design Medium," BSTJ, v. 60, n. 8, Oct. 1981, pp.
1941-1977.

25. Robinson, L.: The HDM Handbook: The Foundations of HDM, v. 1,
Technical Report for NOSC Contract N00123-76-C-0195, June 1979.

26. Ramamoorthy, C.V.: The Design Methodology of Distributed Computer
Systems, NTIS Report AFOSR-TR-80-0542, June 1979.

27. Rao, G.S., Stone, H.S., and Hu, T.C.: Assignment of Tasks in a
Distributed System with Limited Memory, IEEE TC. v. C-28, n. 4,
April 1979.

96

REFERENCES
(Continued)

28. Ross, G., and Soland, R.: Modeling Facility Location Problems as
Generalized Assignment Problems, Management Science, v. 24, n. 3,
1977.

29. Sage, A.P.: A Case for a Standard for Systems Engineering
Methodology, IEEE Transactions on Systems, Man, and Cybernetics,
v. SMC-7, n. 7, pp. 499-504, July 1977.

30. Siewiorek, D., Bell, C.G., and Newell, A.: Computer Structures:
Principles and Examples, McGraw-Hill, New York, 1982.

31. Taha, H.: Integer Programming: Theory, Applications, and
Computations.Academic Press, New York, 1975.

32. Wensley, J.H., et al.: SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control, IEEE Proceedings, v. 66, n. 10,
October 1978.

33. Wensley, J.H., et al.: Design Study of Software-Implemented Fault-
Tolerance (SIFT) Computer, Interim Technical Report for NASA
Contract NAS1-13792, June 1978.

97

Appendix A

The following is a listing

of the original heuristic algorithm

discussed in Section 3.1.2.3.

C THIS IS A PROGRAM FOR HEURISTIC APPROACH OF ALLCATING NT TASKS
C WITH IR REPLICATIONS TO MP PROCESSORS SO THAT DIFFERENT
C REPLICATIONS ARE ALLOCATED TO DISTINCT PROCESSORS AND
C PROCESSOR UTILIZATION IS BALANCED
C PU ARRAY KEEPS TRACK OF UTILIZATION OF PROCESSORS
C IORDER KEEPS THE ORDER OF PROCESSOR UTILIZATION ARRAY
C WHEN SORTED IN ASCENDING ORDER

REAL*4 U(40),PU(12)/12*0.0/,B(12)/12*0.O/
INTEGER I ORDER(12)
READ(1,801) IR,NT,MP

801 FORMAT(315)
C IR=NUMBER OF REPLICATIONS PER TASK
C NT=NUMBER OF TASKS
C MP=NUMBER OF PROCESSORS

WRITE(3,901) NT,IR,MP
MAX=NT
N=0

10 READ(1,802) X
802 FORMAT(F7.3)

IF (X.EQ.999.) GO TO 20
N=N+1
IF (N.LE.MAX) U(N)=X
IF (N.LE.MAX) GO TO 10

N=MAX
20 CALL MXSORT(U,N)

WRITE(3,905)
WRITE(3,906)(U(I),I=1,N)

C ASSIGN REPLICATIONS TO PROCESSORS
DO 60 I=1,NT

DO 40 L=1,MP
B(L)=PU(L)

. IORDER(L)=L
40 - CONTINUE

CALL MNSORT(B,IORDER,MP)
DO 50 K=1,IR

PU(IORDER(K))=PU(IORDER(K))+U(I)
50 CONTINUE

WRITE(3,903) I
WRITE(3,907) (IORDER(K),K=1,IR)
WRITE(3,908)
WRITE(3,902) (PU(K),K=1,MP)

60 CONTINUE
901 FORMAT (//,' NUMBER OF TASKS = »,14,//)

*' NUMBER OF REPLICATIONS PER TASKS = ',14,7,
*' NUMBER OF PROCESSORS = »,I4,//)

902 FORMAT(5X,F6.4)
903 FORMAT(/,' REPLICATIONS OF TASK1,13,' ARE ASSIGNED TO PROCESSORS')
905 FORMATC SORTED DATA')
906 FORMAT(4X,F7.3)
907 FORMAT(4X,14)
908 FORMAT(//,' TOTAL UTILIZATION OF PROCESSORS = ')

STOP
END

SUBROUTINE MXSORT(U,N)
C SORTS THE ARRAY U OF TASK UTILIZATION IN DECENDIN6 ORDER

DIMENSION U(N)
IF (N.LE.1) RETURN
LAST=N-1
DO 102 I=I,LAST

UMAX=U(I)
JMAX=I
JFIRST=I+1
DO 101 J=JFIRST,N

IF (UMAX.GE.UU)> GO TO 101
UMAX=U(J)
JMAX=J

101 CONTINUE
U(JMAX)=U(I)
U(I)=UMAX

102 CONTINUE
RETURN
END

SUBROUTINE MNSORTCB,IORDER,MP)
C SORTS THE CURRENT ARRAY OF PROCESSORS UTILIZATION IN
C ASCENDING ORDER

DIMENSION B(MP),IORDER(MP)
LAST=MP-1
DO 202 1=1,LAST

BMIN=B(I)
JMIN=I
JFIRST=I+1
DO 201 J=FIRST,MP

IF (BMIN.LE.B(J)) GO TO 201
BMIN=B(J)
JMIN=J

201 CONTINUE
IDUMMY=IORDER(JMIN)
IORDER(JMIN)=IORDER(I)
IORDER(I)=IDUMMY

B(JMIN)=B(I)
B(I)=BMIN

202 CONTINUE
RETURN
END

Appendix B

The following is a listing

of the modified heuristic algorithm
discussed in Section 3.1.2.3.

C THIS IS A PROGRAM FOR HEURISTIC APPROACH OF ALLCATING NT TASKS
C WITH IR REPLICATIONS TO MP PROCESSORS SO THAT DIFFERENT
C REPLICATIONS ARE ALLOCATED TO DISTINCT PROCESSORS AND
C PROCESSOR UTILIZATION IS BALANCED
C PU ARRAY KEEPS TRACK OF UTILIZATION OF PROCESSORS
C MU ARRAY KEEPS TRACK OF MEMORY OF PROCESSORS
C I ORDER KEEPS THE ORDER OF PROCESSOR UTILIZATION ARRAY
C WHEN SORTED IN ASCENDING ORDER
C JORDER KEEPS THE ORDER OF TASK UTILIZATION ARRAY
C WHEN SORTED IN DESCENDING ORDER
C IR=NUMBER OF REPLICATIONS PER TASK
C NT=NUMBER OF TASKS
C MP=NUMBER OF PROCESSORS

REALM U(40),PM(12)/12*0.0/
REAL*4 USUM,UTOTAL
INTEGER M(40),PM(12)/12*0/
INTEGER MSUM,MTOTAL
INTEGER IORDER(12),JORDER(40),KORDER(5)
READ(1,801) IR,NT
MAX=NT
M=0

10 READ(1,802) X,MX
IF (X.EQ.999.) GO TO 20
N=N+1
JORDER(N)=N
IF (N.LE.MAX) U(N)=X
IF (N.LE.MAX) M(N)=MX
IF (N.LE.MAX) GO TO 10

20 USUM=0.0
MSUM=0
DO 15 1=1,NT

C ADD THE UTILIZATION AND MEMORY NEEDS OF ALL TASKS
USUM=USUM+U(I)
MSUM=MSUM+M(I)

15 CONTINUE
C CALCULATE THE NUMBER OF PROCESSORS NEEDED
C UTILIZATION CAPACITY OF A PROCESSOR =0.5
C MEMORY CAPACITY OF A PROCESSOR = 20000

USUM=USUM*IR
MSUM=MSUM*IR
USUM=USUM/(0.5)
MSUM=(MSUM/20000)+1
MP=(2*USUM)
IF (MP,IT.MSUM) MP=MSUM
WRITE(3,901) NT,IR,MP
CALL MXSORT(U,N,JORDER)
WRITE(3,905)
WRITE(3,906)(U(I),J=1,N)

C ASSIGN I REPLICATIONS TO PROCESSORS
DO 60 1=1,NT

DO 40 I=1,MP
R(I)=PU(I)
IORDER(I)=1

40 CONTINUE

CALL MASORKB, IORDER,MP)
C II = NUMBER OF REPLICATIONS ASSIGNED SO FAR AT A GIVEN STEP
C CHECK = 1 IF MAXIMUM UTILIZATION OR CAPACITY IS ACHIEVED
C KORDER KEEPS TRACK OF ORDER OF PROCESSORS TO WHICH
C TASK REPLICATION ARE ASSIGNED AT A GIVEN STEP

11=0
DO 50 K=1,MP

UTOTAL=PU(IORDER(K))+U(I)
MTOTAL=PM(IORDER(K)+M(JORDER(I))
IF ((UTOTAL.GT.(.345)).OR.(MTOTAL.GT.20000)) GO TO 50
l l = l l + 1
PU(IORDER(K))=UTOTAL
PM(IORDER(K))=MTOTAL
KORDER(II)=IORDER(K)
IF (II.EQ.IR) GO TO 55

50 CONTINUE
55 WRITE(3,903) I

WRITE(3,907) (KORDER(K),K=1,IR)
WRITE(3,908)
WRITE(3,902) (PU(K),K=1,MP)
WRITE(3,909)
WRITE(3,910) (PM(K),K=1,MP)

60 CONTINUE
801 FORMAT(2I5)
802 FORMAT(F7.3,I8)
901 FORMAT (//.'NUMBER OF TASKS = !,I4,/,

*' NUMBER OF REPLICATIONS PER TASK = ',I4,/,
*' NUMBER OF PROCESSORS = ',I4,//)

902 FORMAT(5X,F6.4)
903 FORMAT(/,'REPLICATIONS OF TASK',13,' ARE ASSIGNED TO PROCESSORS')
905 FORMATC SORTED DATA')
906 FORMAT(4X,F7.3)
907 FORMAT(4X,14)
908 FORMAT(//,'TOTAL UTILIZATION OF PROCESSORS = ')
909 FORMAT(//,'TOTAL MEMORY OF PROCESSORS = ')
910 FORMAT(5X,16)

STOP
END

SUBROUTINE MXSORT(U,N,JORDER)
C SORTS THE ARRAY U OF TASK UTILIZATION IN DECENDING ORDER

DIMENSION U(N),JORDER(N)
IF (N.LE.1) RETURN
LAST=N-1
DO 102 1=1,LAST

UMAX=U(I)
JMAX=I
JFIRST=M
DO 101 J=JFIRST,N

IF (UMAX.GE.U(J)) GO TO 101
UMAX=U(J)
JMAX=J

101 CONTINUE

JDUMMY=JORDER(JMAX)
JORDER(JMAX)=JORDER(I)
JORDER(I)=JDUMMY

U(JMAX)=U(I)
U(I)=UMAX

102 CONTINUE
RETURN
END

SUBROUTINE MNSORT(B,IORDER,MP)
C SORTS THE CURRENT ARRAY OF PROCESSORS UTILIZATION IN
C ASCENDING ORDER

DIMENSION B(MP),IORDER(MP)
LAST=MP
DO 202 I = 1,LAST

BM1N=B(J)
JMIN=I
JFIRST=M
DO 201 J=JFIRST,MP

IF (BMIN.LE.B(J)) GO TO 201
BMIN=B(J)
JMIN=J

201 CONTINUE
IDUMMY=IORDER(JMIN)
IORDER(JMIN)=IORDER(I)
IORDER(I)=IDUMMY

B(JMIN)=B(I)
B(I)=BMIN

202 CONTINUE
RETURN
END

Appendix C

This appendix includes computer printouts
of the algorithms discussed in
Sections 3.1.2.2 and 3.1.2.3.

RUN #1

NUMBER OF TASKS = 23
NUMBER OF REPLICATIONS PER TASK = 3
NUNBER OF PROCESSORS = 4

SORTED DATA
0.119
0.077
0.069
0.055
0.034
0.032
0.028
0.023
0.021
0.019
0.014
0.014
0.009
0.006
0.004
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.001

REPLICATIONS OF TASK 1 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0

REPLICATIONS OF TASK 2 ARE ASSIGNED TO PROCESSORS
4
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1960
0.1960
0.0770

REPLICATIONS OF TASK 3 ARE ASSIGNED TO PROCESSORS
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.1880
0.1960
0.2650
0.1460

REPLICATIONS OF TASK 4 ARE ASSIGNED TO PROCESSORS
4
1
2

TOTAL UTILIZATION OF PROCESSORS =
0.2430
0.2510
0.2650
0.2010

REPLICATIONS OF TASK 5 ARE ASSIGNED TO PROCESSORS
4
1
2

TOTAL UTILIZATION OF PROCESSORS =
0.2770
0.2850
0.2650
0.2350

REPLICATIONS OF TASK 6 ARE ASSIGNED TO PROCESSORS
4
3
1

TOTAL UTILIZATION OF PROCESSORS =
0.3090
0.2850
0.2970
0.2670

REPLICATIONS OF TASK 7 ARE ASSIGNED TO PROCESSORS
4
2
3

TOTAL UTILIZATIONS OF PROCESSORS =
0.3090
0.3130
0.3250
0.2950

REPLICATIONS OF TASK 8 ARE ASSIGNED TO PROCESSORS
4

1
2

TOTAL UTILIZATIONS OF PROCESSORS =
. 0.3320

0.3360
0,3250
0.3180

REPLICATIONS OF TASK 9 ARE ASSIGNED TO PROCESSORS
4
3
1

TOTAL UTILIZATION OF PROCESSORS =
0.3530
0.3360
0.3460
0.3390

REPLICATIONS OF TASK 10 ARE ASSIGNED TO PROCESSORS
2
4
3

TOTAL UTILIZATION OF PROCESSORS =
0.3530
0.3550
0,3650
0.3580

REPLICATIONS OF TASK 11 ARE ASSIGNED TO PROCESSORS
1
2
4

TOTAL UTILIZATION OF PROCESSRS =
0.3670
0.3690
0,3650
0.3720

REPLICATIONS OF TASK 12 ARE ASSIGNED TO PROCESSORS
3
1
2

TOTAL UTILIZATION OF PROCESSORS =
0.3810
0.3830
0.3790
0,3720

REPLICATIONS OF TASK 13 ARE ASSIGNED TO PROCESSORS

4
3
1

TOTAL UTILIZATION OF PROCESSORS =
0.3900
0.3830
0.3080
0.3810

REPLICATIONS OF TASK 14 ARE ASSIGNED TO PROCESSORS
4
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.3900
0.3890
0.3940
0.3870

REPLICATIONS OF TASK 15 ARE ASSIGNED TO PROCESSORS
-4
2
1

TOTAL UTILIZATION OF PROCESSORS =
0.3940
0.3930
0.3940
0.3910

REPLICATIONS OF TASK 16 ARE ASSIGNED TO PROCESSORS
4
2
1

TOTAL UTILIZATION OF PROCESSORS =
0.3980
0.3970
0.3940
0.3950

REPLICATIONS OF TASK 17 ARE ASSIGNED TO PROCESSORS
3
4
2

TOTAL UTILIZATION OF PROCESSORS =
0.3980
0.3990
0.3960
0.3970

REPLICATIONS OF TASK 18 ARE ASSIGNED TO PROCESSORS

3
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3990
0.3990
0.3970
0.3980

REPLICATIONS OF TASK 19 ARE ASSIGNED TO PROCESSORS
3
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.4000
0.3990
0.3980
0.3990

REPLICATIONS OF TASK 20 ARE ASSIGNED TO PROCESSORS
3 ' '
4
2

TOTAL UTILIZATION OF PROCESSORS =
0.4000
0.4000
0.3990
0.4000

REPLICATIONS OF TASK 21 ARE ASSIGNED TO PROCESSORS
3
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.4010
0.4000
0.4000
0.4010

REPLICATIONS OF TASK 22 ARE ASSIGNED TO PROCESSORS
2
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.4010
0.4010
0.4010
0.4020

REPLICATIONS OF TASK 23 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.4020
0.4020
0.4020
0.4020

RUN #2

NUMBER OF TASKS = 23
NUMBER OF REPLICATIONS PER TASK = 3
NUMBER OF PROCESSORS = 5

SORTED DATA
0.119

. 0.077
0.069
0.055
0.034
0.032
0.028
0.023
0.021
0.019
0.014
0.014
0.009
0.006
0.004
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.001

REPLICATIONS OF TASK 1 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0
0.0

REPLICATIONS OF TASK 2 ARE ASSIGNED TO PROCESSORS
4
5
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1960
0.0770
0.0770

REPLICATIONS OF TASK 3 ARE ASSIGNED TO PROCESSORS

4
5
1

TOTAL UTILIZATION OF PROCESSORS =
0.1880
0.1190
0.1960
0.1460
0.1460

REPLICATIONS OF TASK 4 ARE ASSIGNED TO PROCESSORS
2
4
5

TOTAL UTILIZATION OF PROCESSORS =
0.1880
0.1740
0.1960
0.2010
0.2010

REPLICATIONS OF TASK 5 ARE ASSIGNED TO PROCESSORS
2
1
3

TOTAL UTILIZATION OF PROCESSORS =
0.2220
0.2080
0.2300
0.2010
0.2010

REPLICATIONS OF TASK 6 ARE ASSIGNED TO PROCESSORS
4
5
2

TOTAL UTILIZATION OF PROCESSORS =
0.2220
0.2400
0.2300
0.2330
0.2330

REPLICATIONS OF TASK 7 ARE ASSIGNED TO PROCESSORS
1
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.2500

0.2400
0.2580
0.2610
0.2330

REPLICATIONS OF TASK 8 ARE ASSIGNED TO PROCESSORS
5
2
1

TOTAL UTILIZATION OF PROCESSORS =
0.2730
0.2630
0.2580
0.2610
0.2560

REPLICATIONS OF TASK 9 ARE ASSIGNED TO PROCESSORS
5
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.2730
0.2630
0.2790
0.2820
0.2770

REPLICATIONS OF TASK 10 ARE ASSIGNED TO PROCESSORS
2
1
5

TOTAL UTILIZATION OF PROCESSORS =
0.2920
0.2820
0.2790
0.2820
0.2960

REPLICATIONS OF TASK 11 ARE ASSIGNED TO PROCESSORS
3
2
4

TOTAL UTILIZATION OF PROCESSORS =
0.2920
0.2960
0.2930
0.2960
0.2960

REPLICATIONS OF TASK 12 ARE ASSIGNED TO PROCESSORS

1
3
2

TOTAL UTILIZATION OF PROCESSORS =
0.3060
0.3100
0.3070
0.2960
0.2960

REPLICATIONS OF TASK 13 ARE ASSIGNED TO PROCESSORS
5
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3100
0.3070
0.3050
0.3050

REPLICATIONS OF TASK 14 ARE ASSIGNED TO PROCESSORS
5
4
3

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3100
0.3130
0.3110
0.3110

REPLICATIONS OF TASK 15 ARE ASSIGNED TO PROCESSORS
2
5
4

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3140
0.3130
0.3150
0.3150

REPLICATIONS OF TASK 16 ARE ASSIGNED TO PROCESSORS
3
2
5

TOTAL UTILIZATION OF PROCESSORS =
0.3150

0.3180
0.3170
0.3150
0.3190

REPLICATIONS OF TASK 17 ARE ASSIGNED TO PROCESSORS
4
1
3

TOTAL UTILIZATION OF PROCESSORS =
0.3170
0.3180
0.3190
0.3170
0.3190

REPLICATIONS OF TASK 18 ARE ASSIGNED TO PROCESSRS
4
1
2

TOTAL UTILIZATION OF PROCESSORS =
0.3180
0.3190
0.3190
0.3180
0.3190

REPLICATIONS OF TASK 19 ARE ASSIGNED TO PROCESSORS
4
1
5

TOTAL UTILIZATION OF PROCESSORS =
0.3190
0.3190
0.3190
0.3190
0.3200

REPLICATIONS OF TASK 20 ARE ASSIGNED TO PROCESSORS
2
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3200
0.3200
0.3190
0.3200
0.3200

REPLICATIONS OF TASK 2.1 ARE ASSIGNED TO PROCESSORS

3
5
4

TOTAL UTILIZATION OF PROCESSORS =
0.3200
0.3200
0.3200
0.3210
0.3210

REPLICATIONS OF TASK 22 ARE ASSIGNED TO PROCESSORS
2
1
,3

TOTAL UTILIZATION OF PROCESSORS =
0.3210
0.3210
0.3210
0.3210
0.3210

REPLICATIONS OF TASK 23 ARE ASSIGNED TO PROCESSORS
5
2
4

TOTAL UTILIZATION OF PROCESSORS =
0.3210
0.3220
0.3210
0.3220
0.3220

RUN #3

NUMBER OF TASKS = 23
NUMBER OF REPLICATIONS PER TASK = 3
NUMBER OF PROCESSORS = 5

SORTED DATA
0.119
0.077
0.069
0.055
0.034
0.032
0.028
0.023
0.021
0.019
0.014
0.014
0.009
0.006
0.004
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.001

REPLICATIONS OF TASK 1 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0
0.0

REPLICATIONS OF TASK 2 ARE ASSIGNED TO PROCESSORS
4
5
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1960
0.0770
0.0770

REPLICATIONS OF TASK 3 ARE ASSIGNED TO PROCESSORS

4
5
1

TOTAL UTILIZATION OF PROCESSORS =
0.1880
0.1190
0.1960
0.1460
0.1460

REPLICATIONS OF TASK 4 ARE ASSIGNED TO PROCESSORS
2
4
5

TOTAL UTILIZATION OF PROCESSORS =
0.1880
0.1740
0.1960
0.2010
0.2010

REPLICATIONS OF TASK 5 ARE ASSIGNED TO PROCESSORS
2
1
3

TOTAL UTILIZATION OF PROCESSORS =
0.2220
0.2080
0.2300
0.2010
0.2010

REPLICATIONS OF TASK 6 ARE ASSIGNED TO PROCESSORS
4
5
2

TOTAL UTILIZATION OF PROCESSORS =
0.2220
0.2400 .
0.2300
0.2330
0.2330

REPLICATIONS OF TASK 7 ARE ASSIGNED TO PROCESSORS
1
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.2500

0.2400
0.2580
0.2610
0.2330

REPLICATIONS OF TASK 8 ARE ASSIGNED TO PROCESSORS
5
2
1

TOTAL UTILIZATION OF PROCESSORS =
0.2730
0.2630
0.2580
0.2610
0.2560

REPLICATIONS OF TASK 9 ARE ASSIGNED TO PROCESSORS
5
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.2730
0.2630
0.2790
0.2820
0.2770

REPLICATIONS OF TASK 10 ARE ASSIGNED TO PROCESSORS
2
1
5

TOTAL UTILIZATION OF PROCESSORS =
0.2920
0.2820
0.2790
0.2820
0.2960

REPLICATIONS OF TASK 11 ARE ASSIGNED TO PROCESSORS
3
2
4

TOTAL UTILIZATION OF PROCESSORS =
0.2920
0.2960
0.2930
0.2960
0.2960

REPLICATIONS OF TASK 12 ARE ASSIGNED TO PROCESSORS

1
3
2

TOTAL UTILIZATION OF PROCESSORS =
0.3060
0.3100
0.3070
0.2960
0.2960

REPLICATIONS OF TASK 13 ARE ASSIGNED TO PROCESSORS
5
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3100
0.3070
0.3050
0.3050

REPLICATIONS OF TASK 14 ARE ASSIGNED TO PROCESSORS
5
4
3

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3100
0.3130
0.3110
0.3110

REPLICATIONS OF TASK 15 ARE ASSIGNED TO PROCESSORS
2
5
4

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3140
0.3130
0.3150
0.3150

REPLICATIONS OF TASK 16 ARE ASSIGNED TO PROCESSORS
3
2
5

TOTAL UTILIZATION OF PROCESSORS =
0.3150

0.3180
0.3170
0.3150
0.3190

REPLICATIONS OF TASK 17 ARE ASSIGNED TO PROCESSORS
4
1
3

TOTAL UTILIZATION OF PROCESSORS =
0.3170
0.3180
0.3190
0.3170
0.3190

REPLICATIONS OF TASK 18 ARE ASSIGNED TO PROCESSRS
4
1
2

TOTAL UTILIZATION OF PROCESSORS =
0.3180
0.3190
0.3190
0.3180
0.3190

REPLICATIONS OF TASK 19 ARE ASSIGNED TO PROCESSORS
4
1
5

TOTAL UTILIZATION OF PROCESSORS =
0.3190
0.3190
0.3190
0.3190
0.3200

REPLICATIONS OF TASK 20 ARE ASSIGNED TO PROCESSORS
2
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3200
0.3200
0.3190
0.3200
0.3200

REPLICATIONS OF TASK 21 ARE ASSIGNED TO PROCESSORS

3
5
4

TOTAL UTILIZATION OF PROCESSORS =
0.3200
0.3200
0.3200
0.3210
0.3210

REPLICATIONS OF TASK 22 ARE ASSIGNED TO PROCESSORS
2
1
3

TOTAL UTILIZATION OF PROCESSORS =
0.3210
0.3210
0.3210
0.3210
0.3210

REPLICATIONS OF TASK 23 ARE ASSIGNED TO PROCESSORS
5
2
4

TOTAL UTILIZATION OF PROCESSORS =
0.3210
0.3220
0.3210
0.3220
0.3220

RUN #4

NUMBER OF TASKS = 23
NUMBER OF REPLICATIONS PER TASK = 3
NUMBER OF PROCESSORS = 5

SORTED DATA
0.119
0.077
0.069
0.059
0.034
0.032
0.028
0.023
0.021
0.019
0.014
0.014
0.009
0.006
0.004
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.001

REPLICATIONS OF TASK 1 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0
0.0

TOTAL MEMORY OF PROCESSORS =
1500
1500
1500

0
0

REPLICATIONS OF TASK 2 ARE ASSIGNED TO PROCESSORS
4
5
3

TOTAL UTILIZATION OF PROCESSORS =

0.1190
0.1190
0.1960
0.0770
0.0770

TOTAL MEMORY OF PROCESSORS =
1500
1500
2810
1310
1310

REPLICATIONS OF TASK 3 ARE ASSIGNED TO PROCESSORS
4
5
1

TOTAL UTILIZATION OF PROCESSRS =
0.1800
0.1190
0.1960
0.1460
0.1460

TOTAL MEMORY OF PROCESSRS =
1592
1500
2810
1402
1402

REPLICATIONS OF TASK 4 ARE ASSIGNED TO PROCESSORS
2
4
5

TOTAL UTILIZATION OF PROCESSORS =
0.1880
0.1740
0.1960
0.2010
0.2010

TOTAL MEMORY OF PROCESSORS =

1592
2525
2810
2427
2427

REPLICATIONS OF TASK 5 ARE ASSIGNED TO PROCESSORS
2

1
3

TOTAL UTILIZATION OF PROCESSORS =
0.2220
0.2080
0.2800
0.2010
0.2010

TOTAL MEMORY OF PROCESSORS =
3842
4779
5060
2427
2427

REPLICATIONS OF TASK 6 ARE ASSIGNED TO PROCESSORS
4
5
2

TOTAL UTILIZATION OF PROCESSORS =
0.2220
0.2400
0.2300
0.2330
0.2330

TOTAL MEMORY OF PROCESSORS =
3842
11025
5060
8677
8677

REPLICATIONS OF TASK 7 ARE ASSIGNED TO PROCESSORS
1
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.2500
0.2400
0.2580
0.2610
0.2330

TOTAL MEMORY OF PROCESSORS =
4392
11025
5616
9227
8677

REPLICATIONS OF TASK 8 ARE ASSIGNED TO PROCESSORS
5
2
1

TOTAL UTILIZATION OF PROCESSORS =
0.2730
0.2630
0.2580
0.2610
0.2560

TOTAL MEMORY OF PROCESSORS =
6467
13100
5610
9227
10752

REPLICATIONS OF TASK 9 ARE ASSIGNED TO PROCESSORS
5
3
4

TOTAL UTILIZATION OF PROCESSORS =
0.2730
0.2630
0.2790
0.2820
0.2770

TOTAL MEMORY OF PROCESSORS =
6467
13100
6810
10427
11952

REPLICATIONS OF TASK 10 ARE ASSIGNED TO PROCESSORS
2
1
5

TOTAL UTILIZATION OF PROCESSORS =
0.2920
0.2820
0.2790
0.2820
0.2960

TOTAL MEMORY OF PROCESSORS =
15807
22440
6810

10427
21292

REPLICATIONS OF TASK 11 ARE ASSIGNED TO PROCESSORS
3
2
4

TOTAL UTILIZATION OF PROCESSORS =
0.2920
0.2960
0.2930
0.2960
0.2960

TOTAL MEMORY OF PROCESSORS =
15807
22500
6876
10487
21292

REPLICATIONS OF TASK 12 ARE ASSIGNED TO PROCESSORS
1
3
2

TOTAL UTILIZATION OF PROCESSORS =
0.3060
0.3100
0.3070
0.2960
0.2960

TOTAL MEMORY OF PROCESSORS =
17707
24400
8770
10487
21292

REPLICATIONS OF TASK 13 ARE ASSIGNED TO PROCESSORS
5
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3100
0.3076
0.3050
0.3050

TOTAL MEMORY OF PROCESSORS =

18137
24400
8770
10917
21722

REPLICATIONS OF TASK 14 ARE ASSIGNED TO PROCESSORS
5
4
3

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3100
0.3130
0.3110
0.3110

TOTAL MEMORY OF PROCESSORS =
18137
24400
9388
11527
22332

REPLICATIONS OF TASK 15 ARE ASSIGNED TO PROCESSORS
2
5
4

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3140
0.3130
0.3150
0.3150

TOTAL MEMORY OF PROCESSORS =
18137
24905
9380
12032
22837

REPLICATIONS OF TASK 16 ARE ASSIGNED TO PROCESSORS
3
2
5

TOTAL UTILIZATION OF PROCESSORS =
0.3150
0.3180
0.3170
0.3150

0.3190

TOTAL MEMORY OF PROCESSORS =
18137
25205
9680
12032
23137

REPLICATIONS OF TASK 17 ARE ASSIGNED TO PROCESSORS
4
1
3

TOTAL UTILIZATION OF PROCESSORS =
0.3170
0.3180
0.3190
0.3170
0.3190

TOTAL MEMORY OF PROCESSORS =
19437
25205
10980
13332
23137

REPLICATIONS OF TASK 18 ARE ASSIGNED TO PROCESSORS
4
1
2

TOTAL UTILIZATION OF PROCESSORS =
0.3180
0.3190
0.3190
0.3190
0.3180
0.3190

TOTAL MEMORY OF PROCESSORS =
19999
25767
10980
13894
23137

REPLICATIONS OF TASK 19 ARE ASSIGNED TO PROCESSORS
4
1
5

TOTAL UTILIZATION OF PROCESSORS =

0.3190
0.3190
0.3190
0.3190
0.3200

TOTAL MEMORY OF PROCESSORS =
20314
25767
10980
14209
23452

REPLICATIONS OF TASK 20 ARE ASSIGNED TO PROCESSORS
2
4
1

TOTAL UTILIZATION OF PROCESSORS =
0.3200
0.3200
0.3190
0.3200
0.3200

TOTAL MEMORY OF PROCESSORS =
20564
26017
10980
14459
23452

REPLICATIONS OF TASK 21 ARE ASSIGNED TO PROCESSORS
3
5
4

TOTAL UTILIZATION OF PROCESSORS =
0.3200
0.3200
0.3200
0.3210
0.3210

TOTAL MEMORY OF PROCESSORS =
20564
26017
11980
15459
24452

REPLICATIONS OF TASK 22 ARE ASSIGNED TO PROCESSORS
2
1

TOTAL UTILIZATION OF PROCESSORS =
0.3210
0.3210
0.3210
0.3210
0.3210

TOTAL MEMORY OF PROCESSORS =
21564
27017
12980
15459
24452

REPLICATIONS OF TASK 23 ARE ASSIGNED TO PROCESSORS
5
2
4

OF PROCESSORS =TOTAL UTILIZATION
0.3210
0.3220
0.3210
0.3220
0.3220

TOTAL MEMORY OF PROCESSORS =
21564
27152
12980
15594
24587

RUN #5

NUMBER OF TASKS = 23
NUMBER OF REPLICATIONS PER TASK = 3
NUMBER OF PROCESSORS = 6

SORTED DATA
0.119
0.077
0.069
0.055
0.034
0.032
0.028
0.023
0.021
0.019
0.014
0.014
0.009
0.006
0.004
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.001

REPLICATIONS OF TASK 1 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0
0.0
0.0

TOTAL MEMORY OF PROCESSORS =
1500
1500
1500

0
0
0

REPLICATIONS OF TASK 2 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0770
0.0770
0.0770

TOTAL MEMORY OF PROCESSORS =
1500
1500
1500
1310
1310
1310

REPLICATIONS OF TASK 3 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.1460
0.1460
0.1460

TOTAL MEMORY OF PROCESSRS =
1500
1500
1500
1402
1402
1402

REPLICATIONS OF TASK 4 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1740
0.1740
0.1740
0.1460
0.1460
0.1460

TOTAL MEMORY OF PROCESSORS =
2525
2525
2525

1402
1402
1402

REPLICATIONS OF TASK 5 ARE ASSIGNED TO PROCESSRS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.1740
0.1740
0.1740
0.1800
0.1800
0.1800

TOTAL MEMORY OF PROCESSORS =
2525 <
2525
2525
3652
3652
3652

REPLICATIONS OF TASK 6 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2060
0.2060
0.2060
0.1800
0.1800
0.1800

TOTAL MEMORY OF PROCESSORS =
8775
8775
8775
3652
3652
3652

REPLICATIONS OF TASK 7 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2060
0.2060

0.2060
0.2080
0.2080
0.2080

TOTAL MEMORY OF PROCESSORS =
8775
8775
8775
4202
4202
4202

REPLICATIONS OF TASK 8 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2290
0.2290
0.2290
0.2080
0.2080
0.2080

TOTAL MEMORY OF PROCESSORS =
10850
10850
10850
4202
4202
4202

REPLICATIONS OF TASK 9 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2290
0.2290
0.2290
0.2290
0.2290
0.2290

TOTAL MEMORY OF PROCESSORS =
10850
10850
10850
5402
5402
5402

REPLICATIONS OF TASK 10 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2480
0.2480
0.2480
0.2290
0.2290
0.2290

TOTAL MEMORY OF PROCESSORS =
20190
20190
20190
5402
5402
5402

REPLICATIONS OF TASK 11 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2480
0.2480
0.2480
0.2430
0.2430
0.2430

TOTAL MEMORY OF PROCESSORS =
20190
20190
20190
5462
5462
5462

REPLICATIONS OF TASK 12 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2480
0.2480
0.2480
0.2570
0.2570
0.2570

TOTAL MEMORY OF PROCESSORS =
20190
20190
20190
7362
7362
7362

REPLICATIONS OF TASK 13 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2570
0.2570
0.2570
0.2570
0.257.0
0.2570

TOTAL MEMORY OF PROCESSORS =
20620
20620
20620
7362
7362
7362

REPLICATIONS OF TASK 14 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2630
0.2630
0.2630
0.2570
0.2570
0.2570

TOTAL MEMORY OF PROCESSORS =
21230
21230
21230
7362
7362
7362

REPLICATIONS OF TASK 15 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2630
0.2630
0.2630
0.2610
0.2610
0.2610

TOTAL MEMORY OF PROCESSORS =
21230
21230
21230
7867
7867
7867

REPLICATIONS OF TASK 16 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2630
0.2630
0.2630
0.2650
0.2650
0.265Q

TOTAL MEMORY OF PROCESSORS =
21230
21230
21230
8167
8167
8167

REPLICATIONS OF TASK 17 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2650
0.2650
0.2650
0.2650
0.2650
0.2650

TOTAL MEMORY OF PROCESSORS =
22530
22530
22530

8167
8167
8167

REPLICATIONS OF TASK 18 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2660
0.2660
0.2660
0.2650
0.2650
0.2650

TOTAL MEMORY OF PROCESSORS =
23092
23092
23092
8167
8167
8167

REPLICATIONS OF TASK 19 ARE ASSIGNED TO PROCESSORS
4 .
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2660
0.2660
0.2660
0.2660
0.2660
0.2660

TOTAL MEMORY OF PROCESSORS =
23092
23092
23092
8482
8482
8482

REPLICATIONS OF TASK 20 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2670
0.2670

0.2670
0.2660
0.2660
0.2660

TOTAL MEMORY OF PROCESSORS =
23342
23342
23342
8482
8482
8482

REPLICATIONS OF TASK 21 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2670
0.2670
0.2670
0.2670
0.2670
0.2670

TOTAL MEMORY OF PROCESSORS =
23342
23342
23342
9482
9482
9482

REPLICATIONS OF TASK 22 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2680
0.2680
0.2680
0.2670
0.2670
0.2670

TOTAL MEMORY OF PROCESSORS =
24342
24342
24342
9482
9482
9482

REPLICATIONS OF TASK 23 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2680
0.2680
0.2680
0.2680
0.2680
0.2680

TOTAL MEMORY OF PROCESSORS =
24342
24342
24342
9617
9617
9617

RUN #6

NUMBER OF TASKS = 23
NUMBER OF REPLICATIONS PER TASK = 3
NUMBER OF PROCESSORS = 6

SORTED DATA
0.119
0.077
0.069
0.055
0.034
0.032
0.028
0.023
0.021
0.019
0.014
0.014
0.009
0.006
0.004
0.004
0.002
0.001
0.001
0.001
0.001
0.001
0.001

REPLICATIONS OF TASK 1 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0
0.0
0.0

TOTAL MEMORY OF PROCESSORS =
1500
1500
1500

0
0
0

REPLICATIONS OF TASK 2 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.0770
0.0770
0.0770

TOTAL MEMORY OF PROCESSORS =
1500
1500
1500
1310
1310
1310

REPLICATIONS OF TASK 3 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.1190
0.1190
0.1190
0.1460
0.1460
0.1460

TOTAL MEMORY OF PROCESSORS =
1500
1500
1500
1402
1402
1402

REPLICATIONS OF TASK 4 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.1740
0.1740
0.1740
0.1460
0.1460
0.1460

TOTAL MEMORY OF PROCESSORS =
2525
2525
2525

1402
1402
1402

REPLICATIONS OF TASK 5 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.1740
0.1740
0.1740
0.1800
0.1800
0.1800

TOTAL MEMORY OF PROCESSORS =
2525
2525
2525
3652
3652
3652

REPLICATIONS OF TASK 6 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2060
0.2060
0.2060
0.1800
0.1800
0.1800

TOTAL MEMORY OF PROCESSORS =
8775
8775
8775
3652
3652
3652

REPLICATIONS OF TASK 7 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2060
0.2060

0.2060
0.2080
0.2080
0.2080

TOTAL MEMORY OF PROCESSORS =
8775
8775
8775
4202
4202
4202

REPLICATIONS OF TASK 8 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2290
0.2290
0.2290
0.2080
0.2080
0.2080

TOTAL MEMORY OF PROCESSORS =
10850
10850
10850
4202
4202
4202

REPLICATIONS OF TASK 9 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2290
0.2290
0.2290
0.2290
0.2290
0.2290

TOTAL MEMORY OF PROCESSORS =
10850
10850
10850
5402
5402
5402

REPLICATIONS OF TASK 10 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2290
0.2290
0.2290
0.2480
0.2480
0.2480

TOTAL MEMORY OF PROCESSORS =
10850
10850
10850
14742
14742
14742

REPLICATIONS OF TASK 11 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2430
0.2430
0.2430
0.2480
0.2480
0.2480

TOTAL MEMORY OF PROCESSORS =
10910
10910
10910
14742
14742
14742

REPLICATIONS OF TASK 12 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2570
0.2570
0.2570
0.2480
0.2480
0.2480

TOTAL MEMORY OF PROCESSORS =
12810
12810
12810
14742
14742
14742

REPLICATIONS OF TASK 13 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2570
0.2570
0.2570
0.2570
0.2570
0.2570

TOTAL MEMORY OF PROCESSORS =
12810
12810
12810
15172
15172
15172

REPLICATIONS OF TASK 14 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2630
0.2630
0.2630
0.2570
0.2570
0.2570

TOTAL MEMORY OF PROCESSORS =
13420
13420
13420
15172
15172
15172

REPLICATIONS OF TASK 15 ARE ASSIGNED TO .PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2630
0.2630
0.2630
0.2610
0.2610
0.2610

TOTAL MEMORY OF PROCESSORS =
13420
13420
13420
15677
15677
15677

REPLICATIONS OF TASK 16 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2630
0.2630
0.2630
0.2650
0.2650
0.2650

TOTAL MEMORY OF PROCESSORS =
13420
13420
13420
15977
15977
15977

REPLICATIONS OF TASK 17 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2650
0.2650
0.2650
0.2650
0.2650
0.2650

TOTAL MEMORY OF PROCESSRS =
14720
14720
14720

15977
15977
15977

REPLICATIONS OF TASK 18 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2660
0.2660
0.2660
0.2650
0.2650
0.2650

TOTAL MEMORY OF PROCESSORS =
15282
15282
15282
15977
15977
15977

REPLICATIONS OF TASK 19 ARE ASSIGNED TO PROCESSORS
4 .
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2660
0.2660
0.2660
0.2660
0.2660
0.2660

TOTAL MEMORY OF PROCESSORS =
15282
15282
15282
16292
16292
16292

REPLICATIONS OF TASK 20 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2670
0.2670

0.2670
0.2660
0.2660
0.2660

TOTAL MEMORY OF PROCESSORS =
15532
15532
15532
16292
16292
16292

REPLICATIONS OF TASK 21 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2670
0.2670
0.2670
0.2670
0.2670
0.2670

TOTAL MEMORY OF PROCESSORS =
15532
15532
15532
17292
17292
17292

REPLICATIONS OF TASK 22 ARE ASSIGNED TO PROCESSORS
1
2
3

TOTAL UTILIZATION OF PROCESSORS =
0.2680
0.2680
0.2680
0.2670
0.2670
0.2670

TOTAL MEMORY OF PROCESSORS =
16532
16532
16532
17292
17292
17292

REPLICATIONS OF TASK 23 ARE ASSIGNED TO PROCESSORS
4
5
6

TOTAL UTILIZATION OF PROCESSORS =
0.2680
0.2680
0.2680
0.2680
0.2680
0.2680

TOTAL MEMORY OF PROCESSORS =
16532
16532
16532
17427
17427
17427

1. Report No. . 2. Government Accession No.

165926
4. Title and Subtitle

PROBLEMS RELATED TO THE INTEGRATION OF
FAULT-TOLERANT AIRCRAFT ELECTRONIC SYSTEMS

7. Author(s) . . -

J. A. Bannister, K. Trivedi,
V. Adlakha, and T. A. Alspaugh, Jr.

9. Performing Organization Name and Address

Systems and Measurements Division
Research Triangle Institute
P.O. Box 12194
Research Triangle Park, NC 27709

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington * DC 20546

3. Recipient's Catalog No.

5. Report Date
June 1982

6. Performing Organization Code

8. Performing Organization Report No.

505-34-43-06
10. Work Unit No.

11. Contract or Grant No.

NAS1-16489
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This report explores several problems related to the design of integrated
fault-tolerant aircraft electronic systems.

Problems related to the design of the hardware for an integrated aircraft electronic
system are first considered. Taxonomies of concurrent systems are reviewed and a
new taxonomy is proposed. An informal, methodology intended to identify feasible
regions of the taxonomic design space is described. Specific tools are recommended
for use in the methodology. Based on the methodology, a preliminary "strawman"
integrated .fault-tolerant aircraft electronic system is. proposed.

Next, problems related to the programming and control of integrated aircraft
electronic systems are discussed. Issues of system resource management, including
the scheduling and allocation of real-time periodic tasks in a multiprocessor
environment, are treated in detail. The role of software design in integrated
fault-tolerant aircraft electronic systems is .discussed.

Conclusions and recommendations for.further work are included.

17. Key Words (Suggested by Author(s))

design methodology, fault- tolerance
integrated aircraft electronic systems,
multiprocessor taxonomy, .real-time
periodic scheduling, reliability, software
engineering, task allocation

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject Category 61

20. Security Classif. (of this page) 21. No. of Pages 22. Price"

Unclassified 168

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

