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Reconfiguration for Fault Tolerance and for Performance Enhancement: 
A Comparative Analysis 

Abstract 

Architecture reconfiguration, the ability of a system to alter the active intcrconncction among modules, has 

a history of different purposes and strategies. Its purposes develop from the relatively simple desire to 

formalize procedures that all processes have in common to reconfiguration for the improvement of 

fault-tolerance, to reconfiguration for performance enhancement, either through Ihe simple maximizing of 

system use or by sophisticated notions of wedding topology to the specific needs of a given process. 

Strategies range from straightforward redundancy by means of an identical backup systcm to inlricate 

structures employing multistage interconnection networks. 

The present discussion surveys the more important contributions to developments in reconfigurable 

architecture. The strategy here is in a sense to approach the field from an historical pcrspcctivc, with the 

goal of developing a more coherent theory of reconfiguration. First, the Turing and von Neurnann 

machines are discussed from the perspective of system reconfiguration, and it is secn that this early 

important theoretical work contains little that anticipates rcconfiguration. Thcn some carly dcvcloprncnls 

in reconfiguration are analyzed, including the work of Estrin and associa~cs on thc "fixed plus variable" 

rcsuucturablc cornputcr system, h e  attcmpt to ff ~eorizc about corlfiguri~blc cor~~l)ulcrs by Millcr aucl Cockc, 

and the work of Reddi and Feustel on their restructable computcr systcrn. 

The discussion then focuses on the most sustaincd systcrns for fault tolcrar~cc and pcrronnarlce 

enhancement that have been proposed. An attempt will be made to define fault tolcrance and to investigate 

some of the strategies used to achieve it. By investigating four different systcrns, the Tandern computer, 

the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from tlynarnic redundancy 

to reconfiguration is observed. Then reconfiguntion for pcrforrnance entlanccrncnt is cliscusscd. A survcy 

of some proposals is attempted, then the discussion focuses on the most sustaincd systems r hat have bccn 

proposed: PASM, the DC architecture, the Star local network, and the NYU Ultracomputcr. The 

discussion is organized around a comparison of control, scheduling, communication, arld nctwork topology. 

Finally, comparisons! are drawn between fault tolcrance and performance cnhanccment, in ordcr to 

clarify the notion of reconfiguration and to reveal the common ground of fault tolerance and perfo'onnarlce 

enhancement as well as the areas in which they diverge. An attempt is made in Lhc conclusion to derive 

from this survey and analysis some observation%pn the nature of reconriguration, as wcll as some remarks 

on necessary further areas of research. 



Table of Contents 

1. Introduction 

2. Reconfiguration in the Early Literature 
2.1 Strategy of the Present Section 
2.2 Early Theory in Computation 
2.3 Miller and Cocke's Theory of Configurable Computers 
2.4 A Comparison of Two Early Designs 

3. Reconfiguration for Fault Tolerance 
3.1 Goals of this Discussion 
3.2 Defining Fault Tolerance 
3.3 Dynamic Redundancy 
3.4 Fault Tolerance and Interconnection Networks 
3.5 Summarizing Reconfiguration for Fault Tolerance 

4. Reconfiguration for Performance Enhancement 
4.1 Goals of this Discussion 
4.2 Defining Performance Enhancement 
4.3 The P M ~  System 
4.4 The Chip Computer 
4.5 TRAC 
4.6 Other Proposals 

5. Strategies for Interconnection 
5.1 The Dynamic Architecture 
5.2 The PASM Architecture 
5.3 The Star Local Network 
5.4 The NYU Ultracomputer 

6. Issues of Control 
6.1 The DC Group 
6.2 PASM Control 
6.3 Thc Star Network 
6.4 The NYU Ullracomputcr 

7. Conclusion 
7.1 What Has Been Attempted in this Study 
7.2 The Nature of Reconfiguration 
7.3 Suggestions for Further Study 

8. Bibliography 



Figures 

The Search Mode Configurable Computer 

The Interconnection Mode Configurable Computer 

Block Diagram of V, the Variable Structure Computer System : 

The Restructurable System Architecture 

A Tree of Fault Tolerance 

Developments in Dynamic Redundancy 

C.vmp Voter-centered Architecture 

The Generalized Cube and the States of an Interchange Box 

The Extra Stage Network and the End-stage Switches 

The Ganlma Network 

A Section of the MPP Array 

The P M ~  Architecture 

Three Lattice Structures in CIW 

The Switch Lattice Configured as a Mesh Pattern 

The Switch Lattice Configured as a Binary Tree 

The Banyan Interconnection Network for TRAC 

A Hypercube With 64 Nodes 

DC Group with Four Processors Connected 

The Cube Network, in Topology and Cube Transformation 

Star's Modified Baseline Network 

The Ultracomputer's Omega Network 



1. INTRODUCTION . . 

Among the well known issues in computer design is system reconfiguration, but in spite of 

being well known it has developed little focus, remaining instead at a level of proliferation 

of different purposes and design strategies. There are, of course, some aspects of 

reconfiguration about which there is agreement. It has been defined as a condition under 

which a system may assume several architectural configurations, each of which is 

characterized by its own topology of activated interconnections between modules [Sie79b]. 

And it can be agreed that reconfiguration by its very nature makes subsystems out of larger 

systems, for different purposes, traditionally for fault tolerance and more recently for 

performance enhancement. 

Some aspects of reconfiguration, of course, remain without agreement. Perhaps the 

greatest indication of the state of thinking about reconfiguration is the traditional 

understanding that reconfiguration means many things, and that it is usually an adjunct to 

other concerns. As a design problem it certainly does not exist alone, and discussions of 

reconfiguration will very often be found in the literature on SIMD and MIMD research, 

partitionable architectures, and parallel processing. It has been said to be a state change 

that is effected without human intervention [Ma82], although work has been done to allow 

control "explicitly," by the high-level programmer [Sch86]. The very proliferation of 

proposals for widely different architectures all coming under the umbrella of a similar 

purpose suggests the variety of perspective. And while the term recorfigz~rable is widely 

understood, it is not in universal use in discussions of this design issue: other possibilities 

include dynamic architecture ([Kar86b]), restructurable [Red78], and corzfigurable [Sny82]. 

For our purposes in this investigation, the two different, major purposes for 

reconfiguration - fault tolerance and performance enhancement - provide the  most 

interesting focus for investigation. Fault tolerance, the ability of a system to continue 
J>.. 

operation under less than maximum and perhaps increasingly degrading conditions, and 

performance enhancement, the attempt to match systems to advanced processing demands, 



have separately developed strategies for reconfiguration. But their similarities and the 

space where they come together that is the focus of this investigation. 

Many early developments in computer technology display a primitive version of 

what might be called reconfiguration, in that they formalized system alteration that occurred 

as a result of I/O control, secondary storage access, overlaying, and other procedures that 

processes have in common. A system that has more software and hardware components 

than are needed for a specific task must therefore be configured for that task; that is, the 

subset of the system that is needed for the task must be created. As systems became more 

complicated and time-sharing became standard, the forming of subsets of the overall entity 

became part of the formal thinking on software control. The early PDP-I 1 handbook, for 

example, in its discussion of the innovative abilities of the UNIBUS to allow bidirectional 

and asychronous communication between any two connected modules, perceives of the 

machines capabilities as a form of reconfiguration [Dec76]. But we must bear in mind here 

that this is only a simple, primitive version of what we are calling "reconfiguration," and 

that more sophisticated strategies follow. 

When Denning presents the theory of virtual memory as a disassociating of physical 

address space and logical address space, he is speaking of the reconfiguring of the system 

into subsets [Den70]. Fault-tolerance is the next step in this developn~ent, whereby subsets 

of the system form redundant parts allowing for continued operation when components 

fail. Fault-tolerance is still very much at the forefront of thinking on reconfiguration (e.g., 

[Sie82]), but added to this are concerns over the use of reconfiguration for performance 

enhancement, either through the simple maximizing of use of the entire system, or by the 

more sophisticated notion of wedding topology to the specific needs of a given process: 

this has been referred to as enhancing the degree of "match" between algorithm and 

architecture [Yd85]. System reconfiguration - the creating of subsets that will be more in 
4L. 

tune with a specific task than is the entire system - stands in opposition to the trend toward 

dedicated systems. 



The concern of the present study is system reconfiguration for the sake of 

performance enhancement as well is fault tolerance, with an emphasis on multiprocessor 

environments. The issues involved in system reconfiguration are many. Control is a 

dominant concern, for the creating of subsets within a system brings up the problem of 

individual unit performance in coordination with the whole. A particular aspect of control 

is scheduling, for maximum use of the system but also for problems of synchronization 

when the purpose of the system is parallel processing. Communication needs are strong 

when reconfiguration occurs in a multiprocessing environment, and much of the literature 

concerns itself with the interconnection networks that are necessary in a reconfigurable 

system. Another major issue is precisely when and where the reconfiguration will occur; 

among the more interesting developments here is the research into revising the traditional 

high-level languages to support programmer- controlled configuration [Kuc85] [Cli85] [Arv80] 

[Ree80]. Designs for reconfiguration are also controlled, or it seems they should be, by the 

purpose for which the system is being developed. Many proposals, some more developed 

than others, responding to these issues and to the need for reconfigurable systems, have 

appeared in the literature. 

Our strategy here is to approach the field from an historical perspective, with the 

goal of developing a better understanding of reconfiguration. First, the Turing and von 

Neumann machines will be discussed from the perspective of system reconfiguration, and 

it will be seen that this early and important theoretical work contains little tliat anticipates 

reconfiguration. One intention in this analysis is to develop the theme that reconfiguration, 

unlike other major developments in the technology, proceeds without a theoretical base. 

We will focus on some key developments in reconfiguration, which include the work of 

Estrin and associates on the "fixed plus variable" restructurable computer system. We will 

then discuss an interesting attempt by Miller and Cocke to theorize about configurable 

computers. We also review the work of Reddi and Feustel on their restructable computer 

system. This section of the paper is therefore not so much a survey as a close look at some 

key developments. The discussion will then focus on the most sustained systems for fai~lt 



tolerance that have been proposed. An attempt will be made to define fault tolerance and to 

investigate some of the strategies used to achieve it. We will see that a distinction can be 

made between the early strategies leading up to what Siewiorek calls "dynamic 

redundancy" [Sie82] and the later developments that make use of strategies beyond those in 

Siewiorek's scheme, including systems that employ multistage interconnection networks. 

By investigating four different systems, the Tandem computer, the C.vmp system, the 

Extra Stage Cube, and the Gamma network, we will see the move from dynamic 

redundancy to the more advanced version of reconfiguration that is our interest here. 

Indeed, it would be appropriate to invent new terminology to describe the more 

sophisticated strategies that we will be discussing. 

Discussion of performance enhancement and its relation to recorifiguration will then 

be attempted, through a survey and analysis of some of the more significant proposals. 

Some of these design have reached fruition in the form of working machines, if only in 

prototype; others remain paperwork machines, which, however, contribute in their own 

way to the development of thinking on the subject. Interest in these new designs results 

from the realization that the architecture concepts and technology of the now fillly 

developed high performance "von Neumann" machines will not match the demands for 

massive processing that are present in such fields as image processing and 

supercomputing. The issue of reconfiguration for performance enhancement aligns itself 

strongly with issues of parallel processing, including the issue of intcrcorlllection 

networks. A survey of some of these many proposals will first be attempted, in order to 

give the reader a sense of the range of ideas on the subject, and in order to provide a 

contrast to the proposals for reconfiguration for fault tolerance. Then the most sustained 

systems that have been proposed will be discussed under the two issues of communication 

and control. These developments include the dynamic architecture of the Kartashevs, 

PASM, the Star local network, and the N ~ U  Ultracomputer. 

Reconfiguration for performance enhancement is perhaps a stronger concern in this 

study than is reconfiguration for fauIt tolerance, but the comparison of the two issues 



should reveal their common ground as well as the areas in which they diverge. An attempt 

will therefore be made in the cchclusion to derive from this survey and analysis some 

observations on the nature of reconfiguration, as well as some remarks on necessary 

further areas of research. It is hoped that these effort will provide the groundwork for a 

more accurate understanding of the topic. 



2. RECONFIGURATION IN THE EARLY LITERATURE 

2.1 Strategy of the Present Section. The discussion here begins our historical 

analysis of reconfiguration. By loo&g at some early work, both in theory and in the 

development of design proposals, we will be able to formulate some fundamental premises 

upon which to proceed with the analysis of later developments. We will see that many of 

the motivations for reconfiguration appear early in the literature, but that computer 

applications had not yet sufficiently developed, particularly in areas of image processing 

and related matters in robotics, to allow a fully developed set of motivations and criteria. 

We will also see that reconfiguration appears very little in the early thinking on computing, 

because aspects of finite time and finite space are not relevant to that thinking. 

Reconfiguration rises late, relatively speaking, in the development of the technology; it 

rises as a response to problems in the technology itself, rather than as a response to the 

very nature of algorithms and problem solving. 

In order to proceed with these observations we will look at three different sections of 

early developments. First we will examine, with an eye on reconfiguration, the early 

classic thinking on computation, the well known presentations of Turing and von 

Neumann. The question here is, in this early, famous theorizing on the nature of 

computation, is there anything that anticipates reconfiguration? Next we will look at an 

article from the mid 70s by Miller and Cocke, which attempts to provide a theoretical 

framework for developing notions of reconfiguration. Finally, we will analyze and 

compare two early proposed systems that of Estrin and associates and that of Reddi and 

Feustel. 

2.2 Early Theory in Computation. In developing an understanding of 

reconfiguration, we would tend to look back to the early thinking on cor~iputing, but in 

doing so we will find that there is very little in the classic literature that suggests 

reconfiguration. We could take the worksf Turing and of von Neumann as central here. 

The Turing machine, as originally presented [Tur36], is the classic of sequential 

processing. State change is effected by the linear movement of the sqiiares of a tape 



through the "machine." The machine is able to read, or to scan, the square of the tape that 

it was at the moment focusing on, or that was "in" the machine. The symbol set of the tape 

was limited to 0, 1, and empty. The machine could read and write symbols, but it could 

also erase them; and while it could only move from one square to the next, it could go 

backwards and forwards and it could move over a square without a1 tering it, so that its 

domain was the infinite tape. The combinations of reading, writing, erasing, and scanning 

gave the machine a finite set of states, which Turing called its "m-configurations." 

Through this behavior the machine was capable of memory, in that it could move to a 

previously scanned and (perhaps) altered square, and thereby "recall" what was there. It 

could also perform arithmetic, through a process of copying and erasing. 

The advances of the Turing machine over the more simple automata, including its 

left and right movement and its ability to mark squares, are ingenious, but they do not take 

the idea of processing beyond the sequential. Perhaps the most important reason that the 

Turing machine is not concerned with parallelism and reconfiguration is the fact that tirne 

and space are not issues in the machine: the tape that passes through the reading and 

writing head is potentially infinite, and computation, while always finite, can go on 

indefinitely in Turing's theoretical context. 

The first presentation of the computer by von Neumann and associates [Bur461 is not 

a theoretical paper but rather an astonishingly complete description of the logical design of 

the sequential machine. Its importance, however, has propelled it into the realm of theory 

in the field. It is important as "theory" partly because it establishes time and space as 

important to the fundamental thinking about computing machines. The paper presents a 

practical core of considerations on memory storage, control and machine/human 

communication, and arithmetic. The change of state consists of the movement from one 

instruction to the next, under the control of the Control Register and the Control Counter. 

It establishes the notion of the machine asJan instrument of strict sequential code execution 

with no distinction in the internal representation of different data types. The only hint of 

processing beyond the strictly sequential is the sirggestion in the paper of a method of error 



checking whereby two identical computers, controlled by the same clock, operate in 

parallel and check each other's results. 

2.3 Miller and Cocke's Theory of Configurable Computers. At this point we 

will pause to consider not a proposed design, but rather the attempt by Miller and Cocke in 

the early 70s to present a theory of the "configurable" computer [Mi174]. The attempt is 

interesting because in addition to the principles it lays out, it also presents a class of 

configurable computers, called "search mode configurables," which do not make use of an 

interconnection network; this description shows a strategy that seems to have been lost in 

further thinking of reconfiguration, and reminds us that there was a time when 

reconfiguration was not necessarily wed to the problem of interconnection networks. 

Miller and Cocke observe that all developments up until that time have not changed 

the fundamental von Neumann concept of the stored program: innovations have removed 

bottlenecks and improved performance, but the von Neumann machine remains. For 

Miller and Cocke, the most important implication of the stored program machine is that the 

program must be used to mold the algorithm to the fixed structure of the machine. That is, 

the program is used to sequence the program operation; or machine first, algorithm second. 

Miller and Cocke regard the new class of configurable computers to be a major departure 

from this traditional stored program approach, while still making use of notions of the 

program, high-level languages, compiler techniques, etc. The important motivation in 

configurable computers is that "the machine structure should attain the natural structure of 

the algorithm being performed." The advantage to these proposed machines is that they 

will enjoy the speed enhancement found in special purpose machines, but also not discard 

the advantages of general purpose machines. Configurable computers also enhance the 

development of parallel execution. 

These and other advantages are found in two classes of configurable computers, the 

search mode configurables and the interbwnection mode configur;dbles. A search mode 

configurable, as pictured in Figure 1, is a multiprocessing system with three parts, a set of 

operational units, memory, and a searcher. 
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Figure 1 - The Search Mode Configurable Computer 

If we are thinking with hindsight and therefore conceiving of an interconnection 

network as an inevitable part of a reconfigurable system, the searcher takes the place of the 

network. When an operational unit has finished a task it requests the searcher to find a 

suitable task in memory for it to process next. Tasks in memory are conceived of as data 

containing internal information, via an operation code and a tag, that identifies the data as 

an appropriate task for a given operational unit. The searcher therefore searches memory 

to find a unit of data that is a suitable match for the requesting operational unit. During 

processing, an operational unit may change the internal information stored with the data, 

thereby returning the unit to memory with information that destines the unit for further 

processing by another operational unit. 

Clearly, in this multiprocessing environment parallel processing of different units of 

the same algorithm can take place. The bottleneck switches from processors to the 

searcher, but the design allows for a multi-searcher system. The searcher, in addition to 

performing as a processor, might seem to be an interconnection network, except that the 

kind of processing it performs and the presence of internal information in the data in 

memory effect memory/processor relationship. 

The alternate possibility presented by Miller and Cocke, called by them the 

interconnection mode configurables, is closer to what we would normally understand to be '-.. 
a reconfigurable system structure. This is for the simple reason that the hecart of the matter 

is the now well understood interconnection network, the ICN. See Figure 2. 
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Figure 2 - The Interconnection Mode Configurable Arcl~itecture 

Instead of having the searcher connect memory and the operational units, the 

operational units themselves are connected to one another, depending on appropriate 

interconnection based on analysis of the algorithm. This connecting is done by the 

interconnection network; the interconnection network can thus be seen as replacing the 

searcher, or can be seen as a refinement or further development of the searcher design. 

Access frequency to memory is therefore diminished, because completion of a process in a 

given unit does not here mean return of data to memory, as in searcher mode, but rather 

movement of data via the interconnection network to the next operational unit, in a manner 

that bears similarity to data-flow architecture. 

The high-level language program is first compiled into blocks of a size suitable for 

use of the operational units. The compiler then works sequentially with these blocks. The 

compiler performs a type of data flow analysis on the given block, and then establishes a 

setup procedure for the block; the setup procedure is basically the flow of operation for the 

interconnection network. The setup procedure is stored in nlenlory as an instruction, and 

is the first instruction of a block. All instructions have been accessed during the execution 

of a block, and therefore memory access need only occur for operands and results. 

Completion of the execution of a block means exit from the block and initializing of the 

setup of the next block. This scheme is therefore based on the notion of preanalysis and an 
'>.. 

establishing of all patterns of interconnection before nin time. Each block can be 

conceived of as detemining a special-purpose machine that exists for the duration of its 



own execution. We will see that this model anticipates the later work of the Kartashevs on 

their dynamic architecture w79al. 

The theory of Miller and ~ o c k e  does not establish with any detail a complete system 

for reconfiguration; but it does show the fundamental workings that others will develop 

more fully. The search mode appears to be an early development, overtaken by the more 

valuable interconnection mode; and we will see that most later proposals are built on this 

model. 

2.4 A Comparison of Two Early Designs. Some early work that deserves 

attention is that of Estrin and associates on the F plus V (fixed plus variable) machine 

Est601 [Est63a] [Est63b]. There is no need in the present context to review the details of 

planned implementation in the design, although plans for scheduling and human interaction 

Est63b], as well as the strategy of physical changing the wiAng harness that connects 

modules to effect reconfiguration [Est63a] are of interest. What is important here are the 

motivations established by Estrin for the development of a reconfigurable system -- or 

rather, in his presentation, a "restructurable computer system" -- as well as some of the 

notions of how the design should proceed. 

The issue for Estrin is practicable computability, and the problems that fd l  outside 

its domain [Est63a]. Practicable computability is a function, among other things, of cost, 

limit of size, time, and machine reliability. While advances up until the early sixties had 

increased the number of problems that could be called practicably comput:tble, the nulnber 

that was not was still large. Coupled with the inherent, finite limits of the machine was the 

demand placed on it to be general purpose. 

Estrin saw this as a further restriction in an already limited environment. The 

general purpose computer is a compromise in establishing of word length, selection of 

arithmetic algorithms, and determination of instruction set. The desire to serve a wide 

variety of problems prevents the general (iiurpose ~nacl~ine from developing into a system 

that has the speed or size necessary to solve the problems that remain outside the domain of 

the practicably computable. 

11 



The solution that had been developing at the time of Estrin's proposal was the 

building of the special purpose computer: general purpose problem solving was slighted in 

the favor of machines that were constructed for the fast and efficient solution of restricted 

classes of problems. Thus, the domain of the solvable was, according to Estrin, not 

restricted so much by available technology as by the demand of general purpose. 

Paradoxically, therefore, the domain of the solvable could be expanded by limiting 

the number of problems that a given system could solve. Of course the drawback here was 

also evident: the special purpose computer does not respond readily to changes in problem 

formulation, solution methods, or computational needs. By establishing a system that 

does a few things well the numbers of things it does not do well increases, and the 

likeliness increases, given the range of problems that need to be solved, that the machine 

will enter a state in which it is not performing efficiently.   here is also the practical 

problem of catering to an audience large enough to provide the means for development of 

an inevitably expensive system that provides only limited problem solving. 

Estrin offered the following premises for the development of a new system that 

would address these matters: 

1. In the solution of any given problem, a special purpose computer can be 
built to be more efficient than a general purpose computer. 
2. The essential sequential form of many algorithms contains parts which 
may be executed simultaneously on different processors with a consequent 
reduction of the computation time. 
3. Within the constraints of a finite hardware inventory, a greater riumber 
of computing substnictures can be built if the inventory is restr-iict~~t-;~ble 
than if it is committed to a nonvariable system. 
4. Writing a compiler program for a large computer system is an effort 
measured in man years and is practical only if the computational 
characteristics (e.g., instruction list and meaning of instructions) remain 
essentially fixed over the lifetime of the system [Es~63a]. 

Estrin's response to his own premises was the proposed fixed plus variable 

computer [Est60]. Attempting to combine the advantages of both general purpose and special 

purpose schemes, it consisted of a highTspeed general purpose computer (the fixed part F), 
jt. 

which was to operate in conjunction with a second system (the variablev. See Figure 3. 



The F computer was in his design to be the IBM 7090; the V was to be comprised of 

as many large and small high-speed substructures as necessary to carry out the defined set of 

special purpose problems. Furthermore, the V system would be reconfigured into whatever 

structure necessary to compute the class of special problems. The cooperation of the F and V 

systems would occur under the direction of a supervisory control unit (SC). 

Reddi and Feustel approach the problem from a different perspective: the issue for 

them is the nature of von Neumann architecture, most specifically the implications of strict 

sequential code execution and the uniform internal representation of data [Red78]. While 

acknowledging the value of the von Neumann paradigm in the development of the 

technology, Reddi and Feustel saw sequential execution as an impedirnent to high speed 

computation and efficient resource utilization, because it does not exploit the parallelism 

inherent in a problem and in hardware structures. 

Figure 3 - Block Diagram of V, the Variable Structure Computer System 



Of course, we can see this criticism as simply another version of Estrin's problem of 

practicable computability. The second characteristic of von Neumann architecture, the 

uniform internal representation of dab, was seen by Reddi and Feustel as a problem when 

complex data structures were present. This was a special interest of Feustel, who had 

earlier developed the concept of a tagged architecture, which provided at the machine level 

bit structures that defined by type the data associated with them [Feu73]. 

Along with Eshin, Reddi and Feustel recognized that the solution of special purpose 

architectures, while enhancing performance for certain problem domains, also imposed a 

new version of rigidty on the computing environment. Their proposed solution was, like 

Estrin's, in the second, interconnection mode of Miller and Cocke, but it differed from 

Estrin's in that it recognized information flow rather than algorithmic structures. See 

Figure 4. 
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Figure 4 - The Restructurable System Architecture 



The algorithm to be executed was to be compiled into program blocks, and the 

compiler would then establish a system configuration for each block. Reddi and Feustel's 

restructurable computer system made use of an intermediary language, Realist, which 

specified the configuration for each block. Rather than by an interconnection network, the 

configurations were to be implemented by bus units that were to provide data and control 

paths between resources. The system would support scalar operations as well as pipeline 

and parallel operations. 

Thus we can see from these early proposed designs that reconfiguration does not 

arise from the initial theory of computation, but rather from the early attempts to enhance 

performance. These early attempts occur because the initial theory is seen to have been 

exhausted, or as Estrin saw it, basic computation theory does not coincide with the domain 

of practical computability. 



3. RECONFIGURATION FOR FAULT TOLERANCE 

3.1 Goals of this Discussion. Of the two major reasons for developments in 

reconfiguration, fault tolerance and performance enhancement, fault tolerance is the older 

concern, and there are strategies for fault tolerance that have little to do with 

reconfiguration, or that employ reconfiguration only in the widest sense. The function of 

the present section of this study is to clarify the definition of fault tolerance and the issues 

involved in it, and then to present a description and analysis of some of the major 

developments in architecture for fault tolerance. A comp&son of fault tolerance to 

' performance enhancement and their influence in design for reconfiguration will be held 

until the end of this entire study. 

3.2 Defining Fault Tolerance. Siewiorek has well defined the issues involved in 

fault tolerance, and it is appropriate here to review his findings [Sie82] [ S i e ~ ] .  We can 

approach his overall discussion of fault-tolerant architecture by constructing of tree, shown 

in Figure 5, based on his findings and pruned in the interests of reconfiguration. 

FAULT-TOLERANT SYSTEMS 

AVAILABILITY RELIABILITY 

FAULT FAULT 
AVOIDANCE TOLERANCE 

DETECTION MASKING DYNAMIC 
REDUNDANCY REDUNDANCY 

Figure 5 - A Wee of Fault Tolerance 



Briefly, let us consider the nodes of this tree before we go on to focus on the node 

that interests us, here, which is the iightmost leaf, "dynamic redundancy." According to 

Siewiorek, fault-tolerant systems are either highly available or highly reliable. Availability 

is a function of time, A(t), and expresses the probability that the system is operational at an 

instant of time t. If time goes to infinity, the function expresses the fraction of time that the 

system is available for useful computation. The availability of a system cannot be 

expressed as an unbroken linearity, of course: preventive maintainance and repair intrude 

on the time of availability. System reliability is also a function of time, R(t). According to 

Siewiorek, it is the conditional probability that the system has survived the interval [O,t], 

given that it was operational at time t = 0. Reliability is a more critical issue than is 

availability, and is used to describe systems without online repair capability (such as in a 

satellite) or for which repair is impossible, either because of critical functioning (such as on 

an aircraft in flight) or prohibitive expense. 

Reliability is provided either through fault avoidance or fault tolerance. Fault 

avoidance is conservative, and relies on the use of high-reliability components, component 

bum-in, and careful signal-path routing. It is important to notice the conservative thrust 

here: the goal is the prevention of failure. Thus, fault-tolerant systems can be seen as 

non-conservative, in that the goal is not the prevention of failure, but rather the 

manipulation of failure. Because failure is a state that is planned for -- we might say "built 

into" the system -- the design can be more adventurous. Failure manipulation is provided 

in all cases by redundancy, either time redundancy, usually provided by software, and 

basically characterized by repeated execution, or physical redundancy, most primitively 

characterized by the wheeling in of a new, duplicate system. 

Siewiorek sees a redundant system as having up to ten stages -- fault confinement, 

fault detection, fault masking, retry, diagnosis, reconfiguration, recovery, restart, repair, 

and reintegration. He divides all of these 6Jages into three classes, the three final nodes on 

the tree. Fault detection is actually a prelude to fault tolerance in this scheme; strictly 

speaking fault detection can occur as an end in itself, leading to a dead state of system 



failure. In the present scheme, however, fault detection leads to either masking 

redundancy or dynamic redundancy: the tree above is therefore somewhat 

misrepresentative. Masking redundancy is, furthemlore, not necessarily preceded by fault 

detection, and is not necessarily concerned with giving warning of failure or even detecting 

it. Multiple execution of the same algorithm, for example, with voting on results, is 

designed to mask failure, but will not give notification of failure. 

The domain of interest in the present study is the rightmost node of the tree, dynamic 

redundancy, which is Siewiorek's term for what we call reconfiguration. It includes 

conditions of online repair following a combination of masking redundancy coupled with 

fault detection. It also includes the simple notion of switching whole systems. It is the 

most active, non-conservative of the strategies of fault tolerance, and demands further 

discussion. We might add that Siewiorek's conception stops in its development before the 

advances in design that unite fault tolerance and performance enhancement are 

encountered. These include multistage interconnection networks, and largely concern the 

problem of communication. Thus, the discussion of dynamic redundancy will be followed 

by a discussion of reconfiguration for performance enhancement, where we will perhaps 

see that "reconfiguration" is more fully developed, and where the term "dynamic 

redundancy" will not be appropriate. 

3.3 Dynamic Redundancy. Lala conceives of a system with dynamic redundancy as 

one which has several modules, but only one operati~ig at a given time; the others :u-e 

standbys which will be switched in under an overall system strategy of f i i~l l t  detection and 

fault recovery [Ld85]. This accords with Siewiorek's scheme which begins with the simple 

notion of a complete backup system being manually substituted for the faulted system. A 

diagram of these developments is presented in Figure 6 [Sie82]. The first of these is the 

pre-1975 suategy of con~plete replacement. This strategy is clearly the simplest, although it 

is also the most expensive in terms of haraware. It is also the most nir~nual, both in 

conception and in implementation. The second, the use of a switch to allow peripherals to 

be attached to either processor, limited the replace~i~ent strategy to critical components. 
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An iniprovement on the switching of peripherals, which was still a manual process, 

was the equiping of them with dual ports, as shown in number 3 of Figure 6. With the 

addition of an interprocessor communication bus, loosely coupled processing became 

possible. This is a major step away from the basic idea of having a second processor for the 

sake of standby only. One operating system could in normal functioning make use of both 

(or all) processors, and when a fault occurred the failed unit could be configured out of the 

system in a strategy of "graceful degradation." The final step in this evolution is the addition 

of shared memory to produce a tightly coupled multiprocessor. The processors share a 

common set of memory and peripherals, and under a single operating system any similar 

unit can back up a failed component. This last stage in the scheme of Figure 6 leads to the 

development of strategies to implement interconnection networks in fault-tolerant systems. 

Before we investigate multistage interconnection networks, however, we should pause 

over two systems, the Tandem system and C.vmp, that represent respectively the last two 

stages of the development we have been discussing. 

3.3.1 The Tandem Nonstop system begins conceptually with strategy 1, which we have 

seen in Figure 6, in that the fundamental design principle is to duplicate everything, so that 

any single hardware fault will not prevent system failure. Tandem is a reconfigurable 

multiple processor system designed for online transaction processing [Kat78a]. However, the 

first advance over strategy 1 is that all maintenance and replacement of failed components is 

done online without bringing down the system. The second major advance, and the one that 

puts the Tandem system in the fourth category of Figure 6, is that the processor modules, of 

which there can be a maximum of sixteen, are all interconnected. 

Each processor module consists of an instruction processor unit (IPU), memory, a bus 

control unit, and UO channel, and a diagnostic data transreceiver (DDT). 'The presence of 

separate memory coupled with each IPU marks the Tandem system as representative of 

strategy 4 in Figure 6, rather than of strati& 5 in the figure. The IPU is a pipe-lined 

processor, and the module has up to 2 megabytes of storage, with a memory word width of 



22 bits. The dual bus system that provides interprocessor communication which causes the 

Tandem system to be loosely coupied is called the DYNABUS. The buses are independent and 

separately controlled, and their supply comes from different sources, so that a single 

power failure does not affect more than one processor. Messages are sent over the DYNABUS 

in 16-byte packets which are up to 32K bytes long. The VO channel in each processor 

module has its own processor, which handles transfers between 110 devices and memory; 

this separate processing allows communication to proceed with limited intervention by the 

IPU. 

The diagnostic data transreceiver (DDT), a part of each processor module, monitors the 

status of the other elements of the processor module, and reports any errors to the operations 

and service processor, which is an adjunct to the operating system. An example of the 

rnonitoringlreconfiguring capability of the system may be seen in the operation of the 

dual-port device controllers [Bar78]. VO devices are connected to a given processor modules 

by one of the two ports of the controller, and the other one port is connected to another 

processor, but in normal function only in a standby capacity. When failure occurs, the DDT 

reports the failure, and the standby port is put into operation, thus allowing the completion of 

an VO operation. Dual disk drives also allow a doubling of the data base, with automatic 

writing to both dnves during normal operation, and a system of rewriting when a failed drive 

has restarted. 

A copy of the Tandem operating system, called GUARDIAN, resides in each processor 

module. Again, the principle here is simple redundancy: a processor will always have a 
I 

backup processor containing data and processing information which is refreshed at critical 

points; the presence of GUARDIAN in the backup processor allows that processor to proceed 

with operations should the first processor fail. 

3.3.2 C.vmp. The final stage of the development modeled by Figure G can be demonstrated '\, 
by the C.vmp system out of Carnegie-Mellon University. The systenl was originally 

designed in the mid seventies as the third of a series of machines with high 



processor-to-memory bandwidth, all of which make use of commercially available hardware 

[Sie78]. C.vmp (for Computer, ~ G e d  MultiProcessor) had as part of its original purpose 

fault tolerance in an industrial environment, with electromagnetic noise, less knowledgeable 

users, and nonstop operation. 

The response to fault-tolerance came in the form of a strategy for bus-level voting 

[Sie77]. As we can see from Figure 7, memory is separate from individual processors, and 

all memory/processor transactions must pass through the voting mechanism. 

'*, 
Figure 7 - C.vmp Voter-centered Arcliitecture 
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The three processors can act individually, . . on different processes, and in this 

situation the voter is not activated. ' But when the processors are operating simulaneously 

on the same program, the voter is activated, either by an external event or under control of 

one of the processors. In this situation, what is basically a simple form of redundancy 

occurs: the processors establish results or request memory access that, when transmitting 

over the bus must compare with results from the other processors. Disagreements among 

the processors, which mean error, will prevent transmittal of infomlation over the bus 

lines. 

3.4 Fault Tolerance and Interconnection Networks. Many interconnection 

networks have been proposed, and they have been surveyed in, for example [Siei'ga], 

[Mas79], Een811, and perhaps most fully in [Bro83]. It should be understood that while the 

term "interconnection network" can refer to any form of communication linking, including 

telephone systems, satellite networks, and manual switching of office equipment, the term 

is used here to mean multistage switching for very rapid data transfer among many 

processing elements in a limited environment under automatic control. This limitation of 

definition tends to be in agreement with common usage in the literature. It is also 

important to remember here that we have proposed that interconnection networks are the 

center of the stage for the development of fault tolerant systems that goes beyond the 

five-stage scheme proposed by Siewiorek and discussed above. 

Feng describes Fen811 the four fundamental decisions that go into the architecture of 

interconnection networks: 

1) Operation mode, which can be either synchronous or asynchronous. Synchronous 

communication is demanded by data manipulation or datdinstruction broadcast; 

asychronous communication is fundamental to multiprocessing, where connection requests 

are issued dynamically. A system can be designed to handled both synchronous and 

asynchronous communication. d>h 

2) Control strategy. The switching elements and interconnecting links establish 

communication paths by means of proper setting by the control unit. The two basic 
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methods of control are the use of a centralized controller and distributed control; in the 

latter method switches are set by'inhividual controls. 

3) Switching methodologies, of which there are two, circuit switching and packet 

switching. Circuit switching, which is appropriate for transmission of large amounts of 

data, establishes a complete physical path between source and destination, thereby tying up 

a considerable number of resources. Packet switching, which is appropriate for short data 

transmissions, establishes chunks, or packets, of data that are routed, essentially from 

node to node, without establishing all at once a physical path between source and 

destination. While interconnection networks tend to be developed for one or the other 

switching methodology, an interconnection network can be designed to implement both. 

4) Network topology. The diagrammatic representation of a network that we most closely 

associate with the entire subject matter demonstrates the most obvious aspect of a network, 

its topology. Network topology can be most formally represented in graph theoretic 

structures of nodes and arcs, and it has been suggested that this form of diagrammatic 

representation is most suitable for meaningful analysis of network capability [Agr83]. 

Network topologies are of two kinds: static topology establishes passive connections 

between elements, with dedicated, non re~o~gurab l e  links; dynamic topology establishes 

reconfigurable links controlled by active switching elements. Interconnection networks of 

the type under present investigation tend to be dynamic. 

Interconnection networks are at the heart of the multiprocessing environment, and as 

we are presently seeing, they have become important in the development of fault-tolerant 

systems. Indeed, one of the themes of the present study is that interconnection networks 

provide the arena for the meeting of these two design issues. While many different 

interconnection networks have been proposed, they share similar chr\racteristics, and W11 

and Feng wu80] and Agrawal [Agr83] have shown that most of the proposed networks are 

topologically equivalent. Agrawal pointsfto the value in this: initial design and fabrication 

of circuitry is expensive and production cost is low, which encollrages the use of 

off-the-shelf components; therefore, if the circuitry designed for one interconnection 
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network is equivalent to that needed by another, the same off-the-shelf components can be 

used. Interconnection networks'for different applications can be designed differently while 

still using the same components, and the control algorithms for different interconnection 

networks can be similarly applied [Agr83]. 

Three representative versions of this embellishment are now discussed, both for 

themselves and for the general principles they display. They are the Extra Stage Cube, the 

Gamma network, and the MPP, massively parallel processor, developed by NASA. 

3.4.1 The Extra Stage Cube can be simply understood as an extension of the Generalized 

Cube that is presented elsewhere in the literature (e.g., [Siesla], [Sie78b]), and that is 

analyzed in this study in the section on the PASM architecture, considered under 

reconfiguration for performance enhancement. It is a multistage cube-based network with 

N inputs and N outputs. It shares with other topologies of the multistage type the 

characteristics of N = 2n with n = log2N stages. Each stage has N/2  interchange boxes. 

Each of these interchange boxes has four legitimate states, straight, exchange, and lower 

and upper broadcast. The basic cube topology and the four states of the interchange boxes 

are illustrated in Figure 8. 
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Figure 8 - The Generalized Cube and the States of an Intercl~arlge Ijox 

The Extra Stage Cube is an extension of this basic design. An extra stage is added 

to the cube, as are multiplexers and demultiplexers. This extra stage is added to the input 

side of the network, and the multiplexers and demultiplexers are added to each end stage. 

This topology is illustrated in Figure 9. 
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Figure 9 - The Extra Stage Network and the End-stage Switclies 

The function of the multiplexers and demultiplexers is to allow the end stages to be 

enabled and disabled, which is the basic mechanism for fault tolerance. We shall in this 

discussion refer to the extra stage as the leftmost stage and the final output stage as the 

rightmost stage. The leftmost or rightmost stage is enabled if its switches provide 

interconnection, and it is disabled if they are bypassed. The denlultiplexer at each switch 

input and the multiplexer at each switch output, as shown in Figure 9, accolnplish this 

task. And in the design of the Extra Stage Cube, whereas the switches themselves have 

individual controls, the multiplexers and demultiplexers of a given stage are set with one 

signal; thus the whole stage is either enabled or disabled. 

Under normal, non-fault, conditions, the leftmost stage is dis:ibled and the rightrnost 
'tc 

stage is enabled, which results in a working network that is identical to the Generalized 

Cube. If a fault is detected then reconfiguration occurs. If the fault is in  the rightmost 



stage then it is disabled and the leftmost stage is enabled. If the fault occurs in one of the 

middle stages then both leftmos't arid rightmost stages are enabled. A fault in the leftmost 

stage does not demand re~onfi~uratibn, because normal mode includes the disabling of that 

stage. And the routing for all of these contingencies is still based on the ith bit of the 

address of the output port to which data is sent [Sie79b]. Thus we have the principle of 

redundancy operating in an extended interconnection network. 

3.4.2 The Gamma network demonstrates another strategy of redundancy for fault 

tolerance in an intercommunication network. Figure 10 shows the scheme of the Gamma 

network; a brief review of its workings will be given below. 

Figure 10 - The Gamma Network 

The design is a refinement of the design for an inverse augmented data manipulation 

network (IADM) that comes from Siege1 and associates [McM82a] [McM82b]. I t  has two main 



innovative aspects: the network uses 3 x 3 switching elements, instead of the typical 2 x 2 

elements, and it uses an elaborate-"redundant number system" to represent and determine 

routing paths [Par84]. AS we can see from the above figure, 3 input/3 output switches are 

used in the middle stage, with single input and output occuring in the end input and output 

stages. The three transition possibilities -- up, straight, and down -- work together with the 

redundant number system to produce multiple path possibilities for the exchanges. 

The numbering system is redundant in the sense that values can have multiple 

representations, while still maintaining the same value. Digits in the numbering system can 

take three values, 1,0,  and 1, with this last value, 1, simply being a representation of -1 

[Par82]. Thus, for example, the value 3 can be represented both as 01 1 and 101. 

Furthermore, there is a relationship between these three values and the three paths out of and 

into switches: each of the three values can represent one of the three switches. 

With this association formed, the routing tag can be developed. The Gamma network 

has n + 1 stages with N switches in each stage, where N = 2". A message can change its 

route at n points in the system, and the routing tag is an n-digit fully redundant binary 

number. At each digit, therefore, the path up, straight, or down can be represented by the 

three numbers possible at the digit place. The various paths for the same source and 

destination result from using the difference modulo N of the source and destination, and by 

then representing this number in the redundant numbering system. Thus, if each stage is 

represented by each digit, and if each digit can be 1,O, or 1, then by calculating the various 

representations of the difference modulo N of the source and destination, the different paths 

of the signal can be determined. The permutations that result provide possibilities than are 

more enhanced that Siegel's IADM network [Par84]. 

3.4.3 The MPP,  massivelyparallelprocessor, was developed for processing satellite 

imagery at the NASA Goddard Space Flight Center [BatgOJ. The system Ins a configuration of 
'>.. 

128 x 128 microprocessors that can be used in parallel. Figure 11 shows a portion of the 

total array configuration. 



Figure 11 - A Section of the MPP Array 

The MPP is essentially an two-dimensional array processor operating in SIMD mode, 

with each processor in the 128 x 128 configuration having a 1024-bit random access memory. 

The MPP performs bit-slice arithmetic with variable-length operands. Each processor 

element is connected to its nearest neighbors. The array topology can be explicitely 

rearranged into horizontal and vertical cylindersor into a torus. Figure 11 shows a portion of 

the total array configuration. 

Failure in this massive system is controlled by having four columns of processors that 

are redundant to the main two-dimensional array, making the total configuration 132 columns 

by 128 rows. Circuitry is provided to mask out hardware faults; inoperative columns are 

simply bypassed, leaving a logical array structure of 128 x 128. The complexity resulting 

from the addition of the added elements is reduced by the necessity of providing 
4%. 

interconnection along the rows of the array, not along the columns, since the substitutions 

are column based. 



There are further complications to. the MPP system, but this explanation reveals the 

basic method of redundancy thG th'e network employs. A simple observation here is that this 

is quite a different scheme from others we have seen; it seems now appropriate to pause and 

offer some analysis of what we have seen in our investigation of reconfiguration for fault 

tolerance. 

3.5 Summarizing Reconfiguration for Fault Tolerance. In this section we have 

attempted to define fault tolerance in general, and some of the strategies used to achieve it. 

Fault tolerance is an older concern than performance enhancement, as we are defining these 

terms and there are strategies for fault tolerance that have little to do with reconfiguration. 

The attempt has been made to clarify the definition of fault tolerance and the issues involved 

in it, and to present a description and analysis of some of the major developments in 

architecture for fault tolerance. Only in the last two stages of Siewiorek's scheme of a 

five-stage development toward "dynamic redundancy" can we begin to see what we call here 

reconfiguration. These last two stages were further discussed by an investigation of two 

specific systems, the Tandem computer and the C.vmp system, which are seen as 

representing the fourth and fifth stages of Siewiorek's scheme. This discussion of dynamic 

redundancy was therefore followed by a discussion of reconfiguration with ICN'S, and 

"reconfiguration" is seen here as replacing "dynamic redundancy" when we begin to speak 

of the use of interconnection networks for fault tolerance. Investigation of the use of 

interconnection networks was demonstrated by three quite different desig [is, the Extra Stage 

Cube, the Gamma network and the MPP system. 

The goal of reconfiguration for fault tolerance is not the prevention of failure, but 

rather the manipulation of failure. Because failure is a state that is planned for -- we niight 

say "built into" the system -- the design can be more adventurous. In the early stage of friult 

tolerance, the tolerance is provided in all cases by redundancy, either time redundancy, 

usually provided by software, and basically characterized by repeated execution, or physical 

redundancy, most primitively characterized by the wheeling in of a new, duplicate system. 

However, while design in more advanced systems can be less conservative, and while fault 



tolerance can become more accurate and efficient, the implementation of more recent fault 

tolerance does not replace the basic process of redundancy; it simply makes this fundamental 

process more sophisticated. The major shift is that the redundant elements are not purely 

redundant, in the sense of existing only for use in case of failure of other elements. Rather, 

they may have functions of their own which they perform while not being in what we might 

call the "redundant state." An adder that acts as a multiplier when the actual multiplier has 

failed is a simple example of this. In the non-redundant state it is an adder, and in the 

redundant state, entered when the multiplier has failed, it is a multiplier. And its goal 

remains the same: the correct execution of a specified algorithm in the presence of defects 

[Sie821. But for our purposes, it is the place where fault tolerance links up with 

reconfiguration for performance enhancement. 



4. RECONFIGURATION FOR PERFORMANCE ENHANCEMENT 

4.1 Goals of this Discussion. 'Rather than attempting at the outset a theoretical 

model of performance enhancement and its relation to reconfiguration, in this section and 

the following two sections we will attempt to survey and analyze some of the more 

significant proposals for performance enhancement. Some of these system designs have 

reached fruition in the form of working machines, if only in prototype; others remain 

paperwork machines, which contribute in their own way to the development of thinking on 

reconfiguration for performance enhancement. A survey of some of these many proposals 

will first be attempted, in order to give the reader a sense of the range of ideas on the 

subject, and in order to provide a contrast to the proposals for reconfiguration for fault 

tolerance. In sections 5 and 6, the discussion will focus on the most sustained systems 

that have been proposed, not system by system, but under the two issues of 

communication and control. While we will not stop and deliberately contrast and compare 

the two sets of proposals, those for fault tolerance and those for performance 

enhancement, the relationship should be apparent, and will become the center of 

discussion in the conclusion of this study. 

The developments in reconfiguration for performance enhancement include the 

dynamic architecture of the Kartashevs, PASM, the Star local network, and the NYU 

Ultracomputer. The dynamic architecture of the Kartashevs has developed over ten years 

and differs considerably from the others in communication, control, and other issues 

[Kar79a]. PASM (Partitionable SIMD/MIMD Machine), developed at Purdue University and 

at present in prototype stage of development, is a dynamically reconfigurable 

multimicroprocessor system [Siegl]. Star, a local computer network that is being designed 

to integrate image database management and image analysis into one system, gets its name 

from its topology: a star-connected communication subnet centralizes distributed-controlled 

switching elements to provide a tight cohpling among a large number of autonomous 

elements W1.1821. A recent entry in the field is the NYU Ultracomputer, which is a 



general-purpose MIMD machine accessing a central shared memory via a message 
, . 

switching network with @e geometry of an Omega-type network [Go1831. 

This analysis of designs should allow some final remarks on the nature of 

reconfiguration for performance enhancement. But first, it is necessary to provide some 

fundamental notions of what exactly "performance enhancement" means in the context of 

our discussion. 

4.2 Defining Performance Enhancement. We might broadly define the 

development of computer technology, and thus the development of performance 

enhancement, as having four stages: 

1) the machine-based technology, wherein the von Neumann design was fully developed 

and single-process operation control was left up to the programmer; 

2) the operating system technology, which lifted the programmer away from the details 

that were common to all processes and placed them under the domain of the operating 

system; 

3) multiprocessing, allowing for the use of the developed technology in pipeline and array 

processing; 

4) reconfiguration, the stage that allows multiprocessing that is algorithm-driven, and that 

allows processing to conform to the manifold needs of an advanced, highly powered, 

high-demand environment, such as image processing. 

While not always schematized in this manner, these developnients are well known 

and fully presented in the literature. For our purposes, we should note that our concern 

with "performance enhancement" aligns with this fourth stage of development, which 

includes the concerns of parallel processing in both SIMD and MIMD modes, and that 

problem solving in the research usually centers on the communication links between 

processors and memory. Furthermore, we should observe that reconfiguration for 

performance enhancement, while making'use of similar strategies, does not have the same 

concerns as reconfiguration for fault tolerance. However, the use of sinlilar strategies in 

these two domains may provide the key to unification, at least in concept. 
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4.3 Early Developments. Ln a 1979 pa.per introducing basic principles of their own 

dynamic computer architecture,'.thk Kartashevs review the major developments up until that 

time in reconfiguration design [Kar79a]. Their survey begins with the work of Estrin, 

whose work we investigated in Section 2 of this report. Estrin developed at UCLA in the 

late fifties and early sixties a "restructurable" system that pioneered the strategy of 

examining the algorithmic structure of a problem and then assigning the tasks of the 

problem to either "Fixed" or "Variable" subsets of the system [Est63]. This assignment was 

based on the pre-analysis of the problem and the subsequent "decomposition" of the 

problem into different tasks needing different architectures, two concepts fundamental to 

reconfiguration. The Kartashevs also mention the Illiac-Iv computer, which allows the 

reconfiguration of one 64-bit processing element into two 32-bit or eight 8-bit processors; 

it is devised mainly for the enhancement of parallel execution [Bar68]. Other major work 

they discuss includes Lipovski's extension of the concept of a reconfigurable array 

processor developed for SIMD to the MIMD mode [Lip77], and the work of Reddi and 

Feustel, who like Estrin and others before them, proposed the matching of topology to 

alogrithm [Red78]. They introduced an intermediate language called REALIST, which 

identifies the structure appropriate to the computation needs, and they proposed the 

implementation of the system using APL. Clearly, at the point when the Kartashevs 

introduce their system much work had already been done. 

It remains the purpose of the present section to survey some other developnlents, in 

order to extend the 1979 review by the Kartashevs, and to present the fundamentals issues 

that all proposals for reconfigurable architecture must face, as well as the various strategies 

that are possible. 

4.4 The pM4 System. This is an architecture out of Purdue University - the Purdue 

Multi-mode Multimicroprocessor systern,[Bri79]. Its development demonstrates the need 

for processing of images, an environment that is generally characterized as having massive 

amounts of data upon which the same relatively simple task must operate. A screen of 500 



x 500 pixels of information from which basic texture analysis must be extracted is the 
. . 

obvious example. An SIW machine is needed here. But the system should be 

reconfigurable, because this simple kind of operation is not the only need in image 

processing. The P M ~  system is designed to have three operation modes in addition to 

SIMD. In multiple SIMD mode, a number of SIMD operations can be executed in parallel. 

In MIMD mode, individual instruction streams have a sequence of scalar operations, and 

these parallel processes may be interdependent. Vector instructions may not appear in 

MIMD mode, but they may appear in the fourth mode of the P M ~  system, the Distributive 

Mixed Mode. Here, SIMD vector instructions and parallel MIMD processes are 

simultaneously executed. 

(a) Overview. The system consists of N identical Processor-Memory Units (PMU), 

K identical Vector Control Units (VCU), a three-level hierarchical memory, and a set of 

interconnection networks and memory management units. See Figure 12. The three levels 

of memory are the local memory in both VCUs and PMUs, the shared memory with direct 

interconnection to the processors, and the lowest level, the file memory. 

(b) Vector control. Each vcu consists of a microprocessor and a local memory 

(LM) and Local Memory Management Unit (LMMU). This local nielnory is part of the 

highest level of the three-level memory subsystem. The dominance of the VCUs in the 

design suggests that, in spite of the intention of having four modes in the architecture, the 

system is most strongly oriented to SIMD processing. Indeed, this mode is the one most 

carefully discussed in the proposal, and SIMD mode will therefore be the focus of 

discussion here. Vector control instructions and program of an SIMD process are loaded 

into the VCU local memory prior to execution. The VCU broadcasts instructions to all of 

the PMUs that have been assigned via reconfiguration to the given SIhlD process. Disabling 
4-. 

PMUs in the system that are not part of the reconfigured SIMD subsystem is a f~inction of 

the VCU. There seems to be no particular tying of a given VCU to a given subset of PMUs 



in the P M ~  system; if this is the case, then the system can be reconfigured in SIMD mode 
. 3 

to utilize from 1 PMU to N PMLfs. 

(c) Other Processors. The Processor Memory Units, the PMUs, in the system 

resemble the VCUs in their organization. Like the VCUs, they consist of three units - a 

microprocessor, local memory (LM), and a memory management unit (LMMU). The LMs in 

the PMUs constitute the second part of the highest level of the memory in the system, the 

first part being the LMs of the VCUs discussed above. Each LM acts as a cache for its 

associated processor. The LMMU in each PMU loads and unloads local memory, and it also 

SHARED MEMORY 

F I L E  nEltoRY CONTROL u t j I r  ( F n c u )  
I------J 

I F I L E    EMORY 
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Figure 12 - The P M ~  Arcl~itecture 



acts as a channel to transfer a block of shared memory to any VCU memory associated with 
. . 

the PMU in a reconfiguratipn. Pfogram transfer from shared memory to the LM of the VCU 

does not have to pass through the processor in a given PMU; rather a multiplexor connects 

each PMU with the Vector Control busses to the LMMU or the processor. Access can 

therefore be through the LMMU. The multiplexor also broadcasts instructions for a VCU to 

logically connected PMUs in SIMD mode. 

(d) Interconnection Networks. Figure 12 indicates the presence of four 

communication s~tbsystems in P M ~  : between the VCUs and the PMUs, the interprocessor 

communication network (IPCN), the processor to shared-memory interconnection network 

(PMIN), and the connection to the file-memory control unit (FMCU). 

VCU-PMU communication and the P C N  are the links of most interest to the problem of 

reconfiguration, and they will therefore be the focus of this brief discussion. Fundamental 

control of reconfiguration for SIMD mode during VCU-PMU communication resides in the 

VCU, in that the given VCU broadcasts instructions to its subset of PMUs. The VCU is also 

capable of sending permutation function commands to the IPCN for the purpose of 

permuting the data in a group of PMUs. The VCU also has the ability to mask out PMUs, 

which allows the VCU control over the broadcasting of instructions; it can thus change the 

configuration of its subset in SIMD mode. The IPCN, also of interest in reconfiguration 

strategies, was not fully worked out at the time of the initial proposal [Bri79], but its major 

purposes are clear. Partitioning of the network, which can occur only in fixed-sized 

blocks, is to be implemented by the K N ,  in order to allow parallel execution of small-size 

SIMD operations. It is also used to implement permutation functions needed for SIMD 

processes. The data from multiple SIMD processes can be permuted under control of the 

IPCN. 
4*, 

4.4 The CHiP Computer. More than other designs, the CHiP (Configurable, Highly 

Parallel) computer takes into consideration the implications of VLSI technology ISny82J. 



For one thing, none of the communication strategies in the design makes use of crossover 

paths, which have been demonsbated to decrease efficiency and increase cost when 

implemented on a chip ~ ~ ~ 8 1 1 .  And the design starts from the developments in what are 

referred to in the proposal as "algorithmically specialized processors," which are 

architectures designed for processing of particular problems, such as systems of linear 

equations, tree processing, searching and sorting, and data base querying. The CHiP 

architecture grapples with the rigidity inherent in these different designs not by 

interconnecting a set of dedicated processors, but by implementing all of them - or most of 

them - in one lattice design of switches and processors. It exploits implications of 

"algorithmically specialized" processors, including construction based on a few easily 

tessellated processing elements, locality of data movement, and the appropriateness of 

pipelining. Clearly the purpose of reconfiguration here is quite different from what we 

saw in the P M ~  design. There, reconfiguration allowed implementation of SIMD, MSrMD 

and MIMD processing in image processing; here, the goal is more multi-purpose, and 

reconfiguration allows efficient use as well as parallel processing. It is particularly suited 

for computationally dense processing, for example, solving a system of linear equations 

[Gar18 11. 

(a) Overview. The machine consists of three parts: a group of identical 

microprocessors, a switch lattice, and a controller. The switch lattice, a regular structure 

formed from programmable switches connected by data paths, is the innovative aspect of 

the design. The microprocessors are connected in a regular pattern to the switches, and the 

connection of the two groups of units form the overall lattice structure. 'I'he switches have 

local memory and can store several configuration settings. Using circuit switching and the 

implications of the interconnections, the switches set static connections in the mesh of 

possible paths. As can be seen from Figure 13, different patterns of switch-processor 

interconnection are possible. Part of the 2oal in implementing the architecture is to have as 

much of a lattice as possible placed on one chip, and, as mentioned above, the design, 



while intricate, will never involve crossover paths, and therefore is appropriate for 
. . 

wafer-level technology. 

Figure 13 -Three Lattice Structures in CIIiP 

For a given process, demanding a given architectural pattern, the lattice is 

reconfigured: a subset of the overall group of switches and processors is activated to create 

an algorithmically specialized processor. Switches contain local memory that stores 

configuration settings. Direct, static connections are established between processors, and 

these connections are maintained until the task connected wit11 this :ucl~itccti~re is 

completed. Figure 14 shows reconfiguration into a mesh pattern; Figure 15 shows 

reconfiguration for binary tree processing. Note that the goal here is not partitioning for 

the sake of creating simultaneously operating subsets, in that only one subset is created at 

one time. Therefore, parallel processing beyorid the domain of the fundamental 

design. 



Figure 14 - The Switch Lattice 
Configured as a Mesh Pattern 
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Figure 15 - The S~vi tc l~  Lattice 
Configured as a Binary Tree 

(b) Cotztrol. Switch memories are loaded with configuration settings by the 

controller, using a separate interconnection network. The settings for a given 

configuration must be loaded into the same memory location in each switch. This loading 

occurs before processing, and is performed in parallel with the processor program nienlory 

loading. The memory locations must be the same in all switches, partly because the 

controller is operating in broadcast mode when it sets the switches. The setting remains 

static throughout processing in a given configuration. When a new configuration is 

necessary for the next phase of processing, the controller again broadcasts a switch setting 

message. There is thus only one logical step in reconfiguration before processing resumes. 

(c) Switches, lattices, and the intercpnnection patterns. 'The various possible lattice 

patterns in Figure 13 demonstrate that switches can have two different relations to the 

processors: they can stand alone as the connection between two processors, or they can be 



part of a set of switches forming a corridor. This allows specialization of switch use, with 

corridor switches tending to perfork routing, and "coupling" switches acting like 

processor ports for connection with conidor transmission. Lattices themselves can also 

take different forms. Fewer switch comdors provide tighter coupling but allow for less 

flexibility and a potentially high incident of processor underuse. Maximum efficiency 

finally depends on the particular applications of the system. And final patterns of 

embedding do not depend on geometry alone; more sophisticated methods of use need to 

be employed. 

4.5 TRAC. The Texas Reconfigurable Array Computer, developed at the University of 

Texas at Austin, was originally designed for scientific processing,'but the design 

demonstrates a common goal of reconfigurable architecture - the restructuring of one 

system for a wide range of use. The focus of its design innovation is its dynamically 

reconfigurable banyan network [SejsO]. Of the systems we are discussing in this section, it 

is closest to the CHiP computer in intention - a multi-use system - yet it stands out in its 

focus on intercommunications needs. While it is no longer under development, its design 

proposal allows us to see a certain type of strategy in reconfiguration: interconnection of 

many system elements for the sake of various tasks. 

(a) Overview. The initial TRAC design calls for a system connecting 16 processors 

to 8 1 memory and 40 elements. The resources can be partitioned into from 1 to 16 units, 

which run independently. As with other designs, independent control of partitions and 

real-time (referred to in TRAC literature as "space sharing") rather than tin~e sharing are 

goals. The system is dynamically reconfigurable while running. 

The TRAC subsystems can operate in various types of parallel execution. During 

asynchronous MIMD operation, a given task may fork into subtasks. The system also 

supports asynchronous pipelining. Vector parallelism is also supported, as well as 
' 3 .  

synchronous parallelism with external control of startups and interrupts. 

(b) Control. Control centers in the scheduler. When a task begins, it  passes 



information to the scheduler about type of . . data structure and the urgency of the task. 

Urgency can determine the numtier of processors allocated. The scheduler acts as 

arbitrator among tasks for resource contention. A special aspect of the system is the 

concept of "folding" of elements in a vector. If a task is allocated fewer processors than it 

needs, elements are packed into the available memory modules, in a process that doubles 

up the use of the available memory elements This packing is transparent to the user, and 

does not require additional machine-language instructions. 

(c) Processors. Each processor operates with 8-bit operands, and multi-precision 

data is processed in parallel using multiple processors. An instruction tree connects all 

processors in a partition during an instruction-fetch cycle. The memory element of one of 

the processors fetches the instruction then broadcasts it to all of the other processors in the 

partition. 

/ - Data Subtree connecting P1 wlth 
/ 

MI, M2, M3, Mq 

- lnstruct lon Broodcost Tree 

connectlns PI wlth P8 

- Also Shared Memory Tree 

allowlng PI and P8 t o  share H8 

Figure 16 - The Banyan Interconnection Netw~ork for TRAC 

' t k  

(d) The banyan interconnection network. At the heart of the TRAC system is its 

banyan network. Three types of "subtrees" in the network are established i n  the system: 



data trees, instruction trees, and shared memory trees. They are trees in terms of the 

utilization of the banyan configui-ation (see Figure 16) but they perform logically as 

busses. The data tree connects a processor with memory; the instruction tree broadcasts 

instructions to participating processors in SIMD mode; shared memory trees connect a set 

of processors to a single memory module for the purpose of sharing data. The banyan 

configuration is found to be attractive for the reason that most designers find multistage 

interconnection networks attractive: the decreased number of switches. Unlike the 

crossbar networks, the switch number of which increases 0(n2), the banyan network 

switch need increases O(n*log n). 

4.6 Other Proposals. Many other reconfigurable architectures have been proposed, 

and have attained various stages of development. Lundstrom and Barnes describe a 

system to be used as a Flow Model Processor in the Numerical Aerodynamic Simulator for 

NASA IJun801. Its prime interest is MIMD for parallel processing. The system includes 

memory that is connected individually to each processor and memory that is shared; the 

goal is maximum memory availability to reduce conflict. The interconnection network 

chosen to connect the proposed 512 processor/local-memory with shirred memory is the 

baseline network of Wu and Feng [Wu78]. Reconfiguration is explicit, with source code 

that compiles into the same program for execution for all processes in an array. Use of 

Fortran is proposed, with an extension of two new instructions, the concurrency construct 

"DOALL" and the definition of index sets through "DOMAIN," a means for distinguishing 

local from global variables. All processors can request connection to a n y  memory motl~rle 

in the 512- processor x 512-memory configuration. In another paper, Gray expands on 

Snyder's work on the CHiP system to offer a distributed control structure that can be used 

to grow automatically the configurations described in CHiP from seed states implanted at 

arbitrary locations in the array [Gra82]. Tbis is an enhancement to the Snyder design, in that 
'& 

the seed states replace thk need for setting the switches individually and externally. (See 

section 4.4 of this study.) Based on the assumption that the different possible 



configurations of the lattice are fixed, predetermined, and capable of being stored locally in 

the memory of the selected "seed,stateU switches, patterns of configuration are generated 

outward from the "seed state" switch to the neighboring switches. This reconfiguration 

strategy is aimed at functional enhancement but also fault tolerance. All processors are 

identical and control is distributed throughout the array, and, as in the CHiP architecture, no 

multistage interconnection network is implemented. 

A reconfigurable multirnicroprocessor research system under developnlent at Los 

Alamos National Laboratory is reported on by Tnijillo [Tru82]. It is a tightly-coupled, 

shared-memory MIMD system supporting reconfiguration between processors and memory 

nodes, for the purpose of structuring processors into rings, trees and stars. It uses a full 

crossbar, multiple bus network between processors and memory to allow for full 

processor-to-processor and processor-to-memory communication. Three types of 

processors are included in the system: a system control processor, general floating point 

processors, and dedicated data transfer processors. Processor-to-processor 

communication is implemented indirectly through the processor-memory interconnection 

by data transfer processors that move data between global memory nodes. 

F'rocessor-to-memory communication is provided by memory-mapping logic at each 

processor, a multiported memory controller at each global nlemory node, and the multiple 

bus interconnection network. An orthogonal packaging scheme allows minimal bus 

lengths for the physical connection of processors and memory nodes. l'he system is 

designed as a research tool for implementing and evaluating parallel processing algorithms 

on different multiprocessor architectures to be reconfigured as subsets. A different 

strategy is the data-flow, "language-based" reconfigurable architecture proposed by Chen 

and Ritter that is designed for use as a processor for parallel computation of variable image 

neighborhood operations [Chew]. Reconfiguration is important here because the data of 

pixel neighborhoods is variable. The sys&m is "language-based" in that processing is 

defined in terms of a few elementary operations and functions; vririor~s image processing 

tasks, such as edge detection and Fourier transformations, are developed out of the 
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elementary operations and functions. The . . tasks are then expressed as data flow graphs that 

are mapped to the reconfigurable system. Image data is input through a front-end system 

that interfaces with a distributed network that leads to various operation modules. 

Reconfiguration is controlled by an arbitration network. 

A methodology for performance enhancement through reconfiguration architecture 

for VLSI design comes from Japan [Iwa85]. The increased numbers of integrated circuits 

that can be put on a chip also means increased design manpower and design time. What is 

suggested is a hierarchical design structure, to distribute tasks in the design process, and 

versatility of the inner modules, to allow for multipurpose use. A hard disk controller that 

can interface with many different drivers and that can be programmed by users for such 

variables as track format and parity byte length is the first implementation of the method. 

Finally, the Cosmic Cube, an experimental computer for highly parallel processing, has 

been developed at Caltech [Sei85]. See Figure 17. 

Figure 17 - A Iiypercube \Vitli  64 Nbdes 

The Hypercube consists of 64 sma~~computers that are connected with bidirectioni~l, 

asynchronous, point-to-point communication channels. This is quite different frorn other 

proposals, in two major ways: 1) the MIMD machine uses message passing rather than 
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shared variables, and 2) the processor/memory units, which do not need a interconnection 

for processor/memory access, ark dl connected in a "hypercube" mesh that allows 

one-to-one communication between processors. A direct network like the hypercube is 

intended to work very well with large numbers of nodes. The major implication of the 

point-to-point communication in the Hypercube is that there are no switching mechanisms, 

and the processor and storage units are ideally intended to reside in high-density 

packaging, most ideally on a single chip. 

This review of various architectures should demonstrate the range of goals and 

designs that use reconfiguration strategies for performance enhancement. The next two 

sections of this paper will focus more in depth on the two issues of communication and 

control in four major systems. 



5. STRATEGIES FOR INTERCONNECTION . . 

Interconnection directly influences ~rocessor/memory relationships and determines use of 

local versus shared memory [Gaj85]. The distinction has been made between "logically 

partitioned" systems - those that use software techniques - and "physically partitioned" 

systems - those that use hardware switches [Sie79b]. If we use this distinction, then we are 

speaking here of physically partitioned systems, although software control is present. The 

various strategies proposed for interconnection always have speed and cost as issues, but, 

as we shall see, changing technology is also an issue, and it may well alter the speed and 

cost of a given strategy. 

5.1 The dynamic architecture of the Kartashevs makes use of the simplest 

reconfiguration strategy of the four under analysis. The initial proposal calls for a lining 

up of computer elements, CEs, each containing a processor and local memory, and 
e 

connecting them with a data path from one to the next [Kar79a]. That is, if there are five 

CEs, CE1-5, CEl can be connected to CE2 , but not to CE3 , and so forth. See Figure 18. 

The connecting lines (MSEs) can assume three modes: right transfer, left transfer, and no 

transfer. If transfer mode, left or right, is in operation, then the adjacent CEs in question 

are linked, or are part of a subset computer C. In Figure 18, CEsl-4 constitute a subset, 

and the MSEs between them are in transfer mode. The MSE between CEq and is in no 

transfer mode. 

Figure 18 - DC Group with Four Processors Connected 



Further notation is necessary here. CEs are linked together to form a subset, or 

"computer," C. Each C has k number of CEs, and one of those CES, i, is the leftmost, or 

most significant, in the linear, horizontal configuration. Thus each "computer" is designated 

as Ci(k), in Figure 18, the "computer" interconnected by the MSEs in transfer mode is C1(4). 

This notation points up the limited configuration possibilities in the Kartashev system: only 

adjacent CES can be connected. The different possible configurations therefore is quite 

limited, and easy to determine. A five CE system, for example, yields only C1(5), C1(4) C5(1) 

In a later paper [Kar80a] refinements were made to the original proposal, to loosen the 

tight coupling between processors and local memory elements. Basically, interface units are 

introduced into the design to allow each processor to communicate with :dl or any of the 

memory elements, not just the one that was tied to it in the original proposal. However, the 

limitation of communication only between adjacent processors, and the resulting limited set 

of configuration possibilities, remains; more recent work on task pre-analysis [Kar82a], and 

the most recent discussion of the overall system [Kar86], retain the basic elements of the 

original design. 

This proposed reconfiguration strategy has the advantages of simplicity and fast data 

transfer rate. And in an implementation with many processors, there would be considerable 

performance improvement over more rigid systems [Kar78a]. However, the 

intercommunication structure, based on connection of adjacent processors only, is the least 

versatile of the structures we are investigating, and clearly, in an ongoing processing 

environment, the loss of performance due to fragmentation will be great. 

5.2 The PASM architecture, when first fully proposed [Sie8laJ, did not have a specified 

interconnection network; two different possibilities were being considered, the Generalized 
#>, 

Cube and the Augmented Data Manipulator (ADM). Recent public:ltior~ on the project lSch861 

suggests that the decision has been made to implement a multistage cube network. The 



goals, for whatever network, are the same 1) a switch growth rate that is less than the N~ 

growth rate of crossbar, the ~ u b e ' h a v i n ~  N/2 switches and the ADM N switches; 2) 

distributed control by routing tags generated by each processor; 3) SIMD and MIMD 

operation; and 4) partitioning into independent subnetworks [Siegla]. 

The interconnection network is to be used in PASM to connect processor/memory 

elements (PES), and the goals for the network parallel the goals for the system at large: 1) 

massive processing, to the size of 1024 processors, which demands a reduction in the number 

of switching elements; 2) total reconfiguration potential for the processors, which can only 

be attained through distributed control; 3) application to all necessary tasks for image 

processing, which demands both SIMD and MIMD; and 4) potentially total control in 

subnetworks. In SIMD mode, the machine consists of a control unit, PEs, and the 

interconnection network. The control units broadcast instructions to the processors; and 

whatever subset of processors has been grouped, and whose data paths to the control unit 

have therefore been enabled, execute the same instruction at the same time. Data is taken 

from the local memory associated with each processor. In MIMD mode each processor can 

follow an independent instruction stream, with instructions coming from the individual 

memory associated with each processor. Here the controller does not broadcast instructions, 

but it may coordinate processor activity. 

The Cube network has been presented in the PAShl literature under at least three 

different names, "Generalized Cube" [Sie8la], "Multistage Cube" [Sic80], and "Extra Stage 

Cube" [Ada821 [Kue85b]. This leads to some confusion, so the present discussion will be 

oriented to the basic design of the Binary n-Cube network, designed by Pease [Pea77]. See 

Figure 19. 

The Binary n-Cube network is appropriate to PASM because it was originally 

designed for processor-to-processor comnfhnication rather than for aligning data between 

memory and processors [Bro83]. The Cube is somewhat analogous to the Omega network, 



Figure 19 - The Cube Network, in Topology and Cube Transformation 

but the difference is shown by the graphic representation of routing along the edges of a 

three-dimensional cube in n-space. Horizontal lines connect points whose labels differ in the 

low-order bit position, diagonal lines connect points whose labels differ in the middle 

position, and vertical lines connect points with differences in the high-order position. 

Mapping these connections to the multistage network represents the strategy for individual 

box control: the addresses of the two input lines to an interchange box at stage i differ only 

in the ith position [Sie79a]. The elegance of Siegel's proposal lies in the use of the cube 

structure to partition the set of connected elements into subsets that constitute independent 

networks [Sie80]. Reconfiguration is greatly enhanced, clearly, over the linear strategy of the 

Kartashevs. The number of permutations is greater; however, blocki~ig stilI occurs, both in 

the set and in the subsets. 

5.3 The Star local network is the only system under analysis that takes into 

consideration in its communications strategies the ISOIOSI seven-level reference model 

[Zim80]. Star is designed for image processing; it organizes multiple host computers, VLSI 

units, memory units for real-time image analysis, and large-scale database nlanagemerlt units 

around the communication subnet Starneb.IWu821. This subnet implements the first three 

levels of the OSI model, that are normally referred to in the literature as the physical, datalink, 

and network layers. Star is the most loosely linked system of those we nre studying. 
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Star makes use of a modified baseline , . network. A baseline network unmodified 

displays characteristics s-lar t6 those employed in PASM: it provides multistage connection 

between elements, and it expands at a growth rate less than that of the crossbar. But as we 

have seen, these multistage networks allow for only one path between elements and a high 

blocking rate. Thus, the modification to the baseline network proposed in Star is the addition 

of an extra stage, as shown in Figure 20. The goal here is to provide greater fault tolerance 

and higher availability. Simple analysis of Figure 20 reveals that the extra stage allows the 

network to have two connection paths for each pair of elements. The routing scheme stays 

the same except for the extra stage, which is the new first stage. Both outputs of the source 

switching element - which is the new stage - will lead to the destination; thus selection can 

occur at the source based on priority or system fault. 

Figure 20 - Star's Modified Ijaseline Network 

5.4 The NYU Ultracomputer uses reconfiguration of its network for support of a 

message-passing strategy; this purpose puts the design outside the general realm that we 

are discussing here, which is reconfiguration for the purpose of the creation of system 

partitioning for the sake of fault tolerance and/or performance enhancement. However, its 

design of a shared-memory, multiple-instpction-stream, multiple-data-stream sytstem 

includes interesting variations on our present discussion of interconnection strategies, and 

therefore a review of the system seems warranted. 



The Ultracomputer and its interconnection network can be described in the context of 

its goal to approach the "idealizd" 'parallel processor, for enhancements to the network 

make that goal possible [Got83a]. The ideal parallel processor consists of autononlous 

processing elements sharing a central memory; however the crucial issue is the possibility 

of simultaneous reads and writes directed at the same memory cell and accomplished in a 

single cycle. The designers acknowledge the physical impossibility here, and offer instead 

of a "real" parallel processor offer a "virtual," as we might call it, version of the real thing. 

This is accomplished through a single primitive, the fetch-and-add operation. 

Behind this operation is the "serialization principle," which in a sense is a rewriting 

of the very notion of parallelism. The principle is that the effect of parallel processing can 

be seen as a serialized, unspecified, order of operations. A simultaneous request to the 

same memory cell for one load and two stores, for example, results is wllat can be seen as 

a serial process. The memory cell comes to contain one of the quantities written to it, but 

not both, and the load will return either the original value or one of the stored values; and 

because there are two different stores, even if a stored value is returned it is not necessarily 

the one that the memory cell finally contains. All of this is accomplished in one cycle, not 

a series of cycles; the serialization principle describes effect, not implementation. 

The function of the fetch-and-add operation is to implement the seri:ilization 

principle. The operation appears as F & A (V, e ). V is an integer variable and e is an 

integer expression, and the operation is indivisible. The operation returns the old value of 

V and replaces it in memory by the sum of V + e. That is, two operations that we would 

normally consider to be separate, and potentially conflicting, are put in one "critical 

section" unit. The serialization principle is in operation here in that if V is a shared 

variable and many fetch-and-add operations address V simultaneously, they would appear 

as if they had occurred in an unspecified order; that is, each operation will yield an 

intermediate, and different, value for V and the final V stored in memory would be a 

result of all operations. This includes the possibility of the various fetches having arbitrary 



results. If PEi executes ANSi <-- F&A (V, ei ) and simulta~~eously PEj executes ANSj 
. . 

<-- F&A (V,  eij) , and if V is not sil~iultencoi~sly t~pd;ttcd by yet :lno~hcr processor, tllcn, 

in addition to V in memory becoming V + ei + e j  , one of two conditiotls will occur with 

the fetches: 

ANSi <-- V and 

or 

ANSj <-- V and 

ANS <-- V + ei J 

And always, V <-- V +ei + e j  . The goal is the processing of parnllel algorithms 

without critical sections, exclusive of the fetch-and-add instruction, and some results of 

this execution in the Ultra environment have been reported [Kru82]. All of this takes place 

in the context of an interconnection network that basically makes use of the Omega 

topology pictured in Figure 21. 

Figure 21 - The Ultracomputer's Omega Network 



The nature of reconfiguration in the Ultracomputer resides here: the network uses a 

sophisticated switching design to 'all& the system to approach the ideal parallel processor 

described above. This is only in a limited sense reconfiguration for perfol-rnance 

enhancement in the sense that we are in general discussing; for one thing, in no way does the 

reconfiguration of the Ultra network change the topology of the system. The goals for the 

network include three that it shares with other users of this kind of network: 1) bandwidth 

linear in N, the number of PEs; 2) Memory access time logarithmic in N; and 3) expansion 

at a rate of N log N. However, it has two special goals: 1) routing is to be performed at the 

switch level; and 2) concurrent access by different processors to the same memory cell 

occurs in the same time as access by one processor. The two special goals are associated 

with the issues involved with the serialization principle, the fetch-and-add operation, arid 

parallel processing. Local routing and concurrent access feed into the enhancements to the 

Omega network provided by Ultra. First, the network is pipelined, which maximizes the use 

of local routing and allows a delay between messages that is equal to switch cycle time, not 

network transit time. This means that the network is message switched, and that switch 

settings are not maintained while awaiting reply. This strategy would nornlally have its own 

high blocking factor; to offset this, each switch has a queue which holds requests, so that the 

need for resubmission is reduced. And the destination and return adresses do not have to be 

transmitted with each message. Instead, the origin of a message entering the network is 

determined by its input port. This means that only the destination address is needed. By a 

simple algorithm, each stage of the network replaces the bit that sent the message to that stage 

with a bit replacement signifying the return address. When the message has reached its 

destination, the bit pattern that allowed the transmitting to the destination has been completely 

changed into the return address. 

There are other issues associated with the network in Ultra, iricluding the combination 

of requests and the implementation of the k~ch-and-add primitive; they are reserved for 

discussion under control, in the next section of this paper. 



6. ISSUES OF CONTROL , . .  

The possibilities of system operation in subsets under reconfiguration increases 

considerably the issues involved in control. First of all, control means here determining, 

maintaining and terminating the configuration itself, as well as (possibly) coordinating the 

subsets created. Routing of instruction streams is a central issue here, and particularly in 

MIMD mode becomes problematic, because each partition must have its own control 

structure. Much of what would under simple SISD processing be handled in hardware 

becomes in a reconfiguration environment a complex software issue. By looking at the 

issue of control in the four systems that were discussed in the previous section - the DC 

Group, the PASM architecture, the Star Local Network, and the NYU Ultracomputer - we 

will see some proposed solutions to the problems of control in sophisticated systems. 

All of the issues involved in control cannot be discussed for all four systems, 

because the awareness of these issues varies from designer to designer. However, the 

systems under study do offer various and interesting solutions to the problems of control, 

and we will see that these solutions do not necessarily grow in complexity with the 

complexity of the overall systems, largely because there is a tradeoff between coniplexity 

and flexibility in larger systems. 

6.1 The DC Group solution to the problem of control centers on two principles of 

reconfiguration in the system: 1) If there are n computer elements, CES, consisting of 

processor and local memory, then there are potentially 1 to n number of possible subsets 

that can be formed, with from 1 to n possible different timing demands; 2) all of the 

possibly n different computers should be able to operate concurrently; and 3) the possible 

different combination of CEs is limited by the linear configuration of the system discussed 

in section 5 of this paper. Each CE must potentially have its own control unit, which must 

be coordinated with other units of other CEs in a computer that is constructed of more than 
4*k 

1 CE; that is, potentially n control units will have to function as one [Kx78]. 

Control issues and proposed solutions were described early by the Kartashevs for 



their dynamic architecture [Kar78d] [Kar77]. Rejecting the synchronous and asychronous 

control organizations appropriate to'systems with one central or several fixed local control 

units, they proposed a modular control organization. Originally thought of in the context 

of LSI technolology, each CE, synonymous with each LSI module, wiis provided with a 

local modular control device, MCD, which was capable of running a subset with a size of 

1, but which was also capable of being coordinated with all other MCDs of a given 

configured subset up to size n. 

The thinking here, originated in an earlier technology, has not changed, it seems, in 

its basic concepts. Each program instruction is written concurrently to all modules of a 

subset "computer," although it is unclear what overall control element of the system does 

this writing [Kar79a]. It is executed during one instruction cycle, but because the operand 

word size and memory speed vary, the MCD generates variable subcycles. But these 

subcycles are the same, of course, for all members of the subset computer. The MCD is 

the same for all elements in the subset, and processor dependent and data fetch intervals 

last the same time in all modules. The number of   nodules cont:lined il l  a given subset does 

not affect sequencing or duration of instructions or cycles. 

As we observed in section 5 of this paper, the DC group design allows mainly for 

linear communication between adjacent elements; thus, as Figure 6 shows, a system with 5 

computer elements yields only 16 different configurations. This sin~plifies communication 

control somewhat, in that broadcasting of instructions among connected processors occurs 

by right- and left-transfer of the connecting bus. One can conceive of a subset, therefore, 

as that group of processors that has its outermost bus lines set in no-transfer mode. 

Transfer control, that is, the setting of the connecting bus into right-transfer, left-transfer, 

or no-transfer mode, is provided by a V monitor that is external to the group; if several 

units makes concurrent communication requests, the V monitor resolves conflicts on the 
d*< 

basis of priority codes assigned to the programs being computed. The V monitor is also 

connected by a separate bus to every module. In a given subset, one t~iodule, the most 
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significant, transfers to the V monitor the control codes necessary for architectural 

transitions. Thus the V monitor is involved in both instruction requests and 

reconfiguration moments. 

6.2 PASM control, unlike that of the Kartashev system, does not allow for the 

configuration of one processor element as one subset, and this limitation is evident in the 

control structure. The microcontrollers, MCs, are a set of microprocessors that act as 

control units for processors in SIMD mode and control the activities of the processors in 

MIMD mode [Sie8 la]. If there are Q microcontrollers and N processors, then NlQ is the 

size of the smallest allowable partition. The number of allowable partitions is therefore 

equal to the number of microcontrollers. The PASM literature speaks normally of 1024 

processors and 16 controllers, with a resulting 64 as the number of partitions. 

Each MC is a unit consisting of a microprocessor and a memory element; like the 

processors themselves in PASM, the MCs have double memory elements so that memory 

loading and processing can go on simultaneously. When the subset is in SIMD mode, each 

MC fetches instructions from its memory element and executes control flow instructions, as 

well as broadcasting the data processing instructions to its connected processors. In MIMD 

mode the microcontrollers help coordinate the activities of their connected processors. 

What seems to be unique to the PASM design is the notion of permanently assigning 

a given MC to a given subset of PEs. The other systems under study do not have this 

limitation. Because of this structure, the operating system only has to schedule and 

monitor the MCs; it never interfaces directly with the processors themselves. This suggests 

a special permanent subdividing of the overall system. The design also eliminates the need 

for a interconnection network allowing for communication among all processors, because a 

strong definition of precisely which processors need to talk to each other is determined 

from the outset. The obvious disadvantagk of this system is that larger subsets can only 

grow by the order of two, and the total interconnection possibility of N! allowed by a full 

interconnection is not possible in PASM. 
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6.3 The Star network centers control of network routing in the switches. The 

switching element, which is mohulir and always constructed of a single type, is built of 

two major parts, called the control plane and the data plane [Wu82]. Data communication 

occurs in the data plane, and the control plane generates the control signals that establish 

connection paths used to transmit the data of the data plane. 

The control plane sets up the path, by setting the switches, from the source to the 

destination, according to the routing scheme based on the modified network topology 

discussed in section 5. Through a set of input control lines, the control circuit receives 

signals from the previous stage in the network, develops control signals for its associated 

data plane, and sets up the signals for transmission to the next stage. The control plane has 

four internal registers to record the current connection status of the switching element. 

Starnet is a circuit switching network, and with the above-described design the 

physical path for transmission is established in one clock period with two phases. In 

phase one, the request for connection is sent down the switches according to the routing 

scheme, and the control planes in each switch go through the handshaking process 

described above. If the request has been successful, and no conflict has been encountered, 

an acknowledge signal is generated by the receiver. This completes phase 1. During 

phase 2 the switching elements that have already been involved in the path establishing 

update their internal registers and set up the connection path. Thus, at the end of phase 2 

the physicd path is established; it will remain established as long as necessary, and until 

the source issues a signal to disconnect. 
0 

Within this scheme, during SIMD processing a controller broadcasts instructions to 

the processors that have been established as part of the subset for SIMD mode, and the 

instructions are then executed against the data stored in the associated memory. A task in  

SIMD mode is initiated when a task descriptor is sent by a cooperating processor to a VLSI 

processor unit that will serve as the contGller. The task descriptor inclodes the number of 

processor units and the layout of the data streams. It is then the job of the controller to 

transmit the signals to connect the necessary processor units, and these individual 
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processor units establish necessary data paths to memory units. 

In MIMD processing, wheninbividual processors execute independently, the 

network capablity is used to establish configurations based on process needs; this is clearly 

one of the goals of a full interconnection network. The strategy in Star is called 

distributed scheduling; all free VLSI processors are equally accessable to a requesting 

controller, and no heirarchical or precedent relationship exists among the free processor 

units. When a task enters a cooperating processor, a task descriptor is formed to exploit 

parallel execution. The descriptor is passed by the cooperating processor to a free 

processor in a chain-of-command strategy to complete the parallel execution with as many 

processor connected as necessary. All connections in the communication network, 

connecting all cooperating processors, are maintained until completion of the task. 

6.4 The NYU Ultracomputer makes use of a switch-oriented, local control scheme 

that is similiar to the one found in the Star network. However, while Star is circuit 

switched, the Ultracomputer is message switched. This means that full paths are not 

established from sender to receiver in a predictable cycle, and that switch settings are not 

held. Furthermore, the strategy of control is designed to maximize the goal of the system 

to provide for the kind of parallel processing described in section 5. 

Control in the Ultracomputer involves maintaining the queue described in section 5, 

generation of destination and return addresses, and implementing of concurrent loads and 

stores [Got83a]. Because switch settings are not maintained, the system needs an elaborate 

method of keeping track of addresses. It does not transmit destination and return 

addresses with each message; rather it provides an elaborate algorithm that performs bit 

replacements at each stage of the network. Basically, the relevant bit that determined 

routing to a given switch is replaced, after use, as it were, with a bit that will allow for 

return. When the message has reached the destination, the destination address has been 

replaced, bit by bit, by the source address."~hus, storage for address in the 

message-switched packet is mimimized. 



The most elaborate innovation in the , . Untracomputer is the strategy for combining 

requests to the same memory cell. based on the serialization principle discussed in section 

3, the following concurrent requests can be combined: 

1) Load-Load : one of the requests is forwarded and the return is sent to each 

processor that generated the request; 

2) Load-Store : The store is forwarded and the resulting value is returned to the 

processor requesting the load; 

3) Store-Store : forward one store and discard the other. 

These combinations can occur at any stage of the network. They can also be combined 

with the fetch-and-add operation at the switches, because the switches contain the 

necessary adder to implement the F&S. And a generalization of this design allows for a 

fetch-and-@ instruction, providing for other arithmetic functions. Thus, we can see that the 

special logical considerations of the Ultracomputer determine greatly issues of control in 

the interconnection network. 



7. CONCLUSION 

7.1 What Has Been Attempted in this Study. In order to discover where 

reconfiguration "comes from," and so that we could formulate some fundamental premises 

upon which to proceed with the analysis of later developments, our discussion began by 

looking at some early work in computation, both in theory and in the development of 

proposed designs. The early classic thinking on computation, the well known 

presentations of Turing and von Neumann, was examined first. We then looked at the 

efforts of Miller and Cocke to provide a theoretical framework for developing notions of 

reconfiguration, as well as the two early proposed systems of Estrin and associates and of 

Reddi and Feustel. 

We saw that many of the motivations for reconfiguration appear early in the 

literature, but that the technology had not yet sufficiently developed to allow a fully 

developed set of motivations and criteria. We observed that reconfiguration appears very 

little in the early think on computing, because aspects of finite time and finite space do not 

influence that thinking. The early literature, therefore, does not provide us with a model 

for reconfiguration. Reconfiguration rises late, relatively speaking, in the development of 

the technology; it rises as a response to problems in the technology itself, rather than as a 

response to theory of algorithms and problem solving. Its model grows within the 

historical dimension of the development of the technology itself. 

The focus of the discussion then turned to fault tolerance. The attempt was made to 

clarify the definition of fault tolerance and the issues involved in it, and to present a 

description and analysis of some of the major develop~nents in architecture for fault 

tolerance. Siewiorek's conception of the stages of development in fault tolerant 

architectures has been regarded as a scheme that stops before the more advanced designs 

for fault tolerance. Only in the last two stages of his five-stage development toward 

"dynamic redundancy" can we begin to see what we call here reconfiguration. These last 

two stages were further discussed by an investigation of two specific systems, the Tandem 

computer and the C.vmp system, which represent the fourth and fifth stages of 



Siewiorek's scheme. This discussion of dynamic redundancy was therefore followed by a 

discussion of some recent designs for reconfiguration, and "reconfiguration" is seen here 

as replacing "dynamic redundancy" when we begin to speak of the use of interconnection 

networks for fault tolerance. Investigation of the use of communication networks was 

demonstrated by three quite different designs, the Extra Stage Cube, the Gamma network, 

and the MPP system. 

The goal of reconfiguration for fault tolerance is not the prevention of failure, but 

rather the manipulation of failure. The inherent tendency toward failure is countered by the 

potential for protection and recovery, mainly through the exploitation of another inherent 

tendency, the tendency toward permutations for protection. Because failure is a state that 

is planned for the design can be more adventurous. In early stages of fault tolerance, the 

tolerance is provided in all cases by redundancy, either time redundancy, usually provided 

by software, and basically characterized by repeated execution, or physical redundancy, 

most primitively characterized by the wheeling in of a new, duplicate system. However, 

while design can be less conservative, and while fault tolerance can becorne more accurate 

and efficient, the implementation of more advanced designs does not replace the basic 

process of redundancy; it simply makes this fundamental process more sophisticated. And 

its goal remains the same: the correct execution of a specified algorithm in the presence of 

defects. 

The discussion then turned to reconfiguration for the sake of perfor~i~nrlce 

enhancement, largely for tasks in image processing and parallel processing. Many 

reconfigurable systems have been proposed, and the review considers the P M ~  system, the 

CHiP computer, and TRAC, as well as other proposals. This review demonstrated the 

range of issues involved in reconfiguration for perfomlance enhancement, including the 

nature of the processors, the relationship of processors to memory, local memory versus 

global memory, scheduling and other issd6s of control, interconnection cotn~nunication, 

and purpose for which the system is designed. Sections 5 and 6 of the report discussed 

interconnections strategies and control in four other proposed systems, which were 



deemed to be the most fully developed in the literature: the dynamic architecture of the 

Kartashevs, the PASM architectuie, ;he Star local network, and the NYU Ultracomputer. 

In the remainder of this conclusion, some observations on the tendencies in the 

design of a reconfigurable architecture will be attempted, and some remarks will be made 

on further areas of research that would extend our understanding of the subject. 

7.2 The Nature of Reconfiguration. When a system undergoes reconfiguration, its 

nature as a whole is changed because of the demands of a specific task, and this change 

may result in the partitioning of the system, and therefore the creation of subsystems. 

Advances in research in VLSI technology have made it feasible to consider the 

implementation of massive and complex parallel architectures built of thousands of 

processors, which provide enormous throughput; this potential alters radically the notion 

of what constitutes the set of computable problems. But the availability of such massive 

power is not alone the solution to all computation. These large numbers of processors can 

be configured in different ways, to perform SIMD- and MIMD-based tasks, among others. 

It is clear that not only masses of processors, but also their configuration, lead to efficient 

complexity. This leads to the problem of the degree of match be tween algori t l~m and 

architecture that efficient complexity implies. A system with a fixed architecture will only 

match a small set of the computationally complex algorithms that exist. It is well known 

that a massively parallel system, when mismatched with a task demanding a different 

configuration, experiences performance degradation. Thus we have the justification for 

our interest in the development of architectures that can reconfigure into a different 

complexity, under the control of software. The goal here is proper match between 

algorithms and architectures, no matter what the complexity and demands of the 

algorithms. 

An important issue in designing a reconfigurable architecture is the nature of 

communication in the system, both arnoni'the elements in a subset and among the subsets 

of the entire system. Complexity in algorithms often means complexity in communication 

needs among processors, memory, and 110 devices. Reconfigurntion in multiprocessing 
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environments places extra demands on communication, and this topic often dominates 

serious investigation. Communication figures in control of partitioning, scheduling, and 

other system issues, as well as in processor and memory communication in the 

reconfigured subset. Goals for communication are total communication - the highest 

possible number of linkage permutations among modules - but also the least possible 

complexity and cost. A popular approach to communication is the implementation of the 

multistage interconnection network. In spite of its delay, its relatively high blocking 

factor, and the implications of its inevitable crossover lines in a VLSI environment [Fra81], 

the multistage ICN remains attractive because of its limited growth rate when large numbers 

of connected elements are being considered. In the light of the discussion of this issue in 

the literature, some strategies for interconnection can be seen to be much too limited, most 

obviously the linear bus connection strategy of the Kartashev dynamic architecture. And 

the multistage interconnection network seems to work; recent reports on the Star system 

[Wu85], PASM [Dav85], and TRAC [Des85] all report favorably on its use. This is especially 

true of the implementation of the TRAC prototype in which the use of banyan 

interconnection network is considered to be the most important contribution of the TRAC 

project. 

Two important aspects of the implementation of a multistage interconnection 

network should also be mentioned here. The first is the problem of local versus global 

memory, which results, when dealing with an interconnection networ-k, in the issue of 

whether to attach local memory to given processors or to have global memory that is 

accessed by all processors via the ICN. By its very nature the nlultiprocessing environment 

is meant to obliterate the "von Neumann bottleneck," the problem of one processor at the 

center of a powerful system; but the design strategy that demands access to memory by 

processors over an ICN runs the risk of creating a new bottleneck, here not in the 
'\, 

processing, but rather in the conununication link. As we have seen local memory seems a 

solution here, but sophisticated use of the interconnection network, particularly the 



strategies employed in the NYU Ultracomputer, is a solution that allows use of global 
. . 

memory. The other aspect.of ICN' implementation is the nature of communication beyond 

mere topology, specifically the methods employed in setting switches. Early plans for 

external control of switches seem to have given way to methods of local switch control, 

which decrease blocking and allow greater flexibility. The use in PASM of the extra stage 

cube topology is representative here. But also of concern is the issue of whether or not the 

network should be circuit switched, message switched, or both. The Ultracomputer, with 

its queueing at switches and its combining of instructions at switches, represents a 

sophisticated approach to message switching in an interconnection network. The PASM 

cube allows both circuit and message switching, and also of interest is the TRAC system, 

whose banyan network is capable of implementing both circuit and message switching. 

Much of this discussion does indeed focus on multistage i~iterconnection networks 

for both fault tolerance and performance enhancement; however, it would be narrow in 

focus to think of the communications needs of reconfigurable architecture in these terms. 

We have seen, for example, the lattice structures employed in the CHiP architecture, and the 

importance of the 4N grid communication strategy employed by the MPP system. 

The development of interconnection strategies dominates reconfiguration for both 

fault tolerance and performance. This suggests a close affinity between these two design 

issues. Advances in communication and control can be employed for either purpose. 

However, our analysis seems to indicate that the connections between fault tolerance and 

performance must be carefully limited. Redundancy is an impon;int dividing point: 

redundancy is the center of reconfiguration for fault tolerance, whereas maximization of 

resources, with a minimum of overlap of redundancy of resources, is the purpose of 

performance enhancement. 

7.3 Suggestions for Further Study. As stated above, this survey begins at the 
'l 

advent of VLSI technology, but we observe in the systems under study a need for stronger 

impact of the new technology on the thinking about system design. Certainly 



multiprocessing systems will make use of chip advances for the individual processors in 

the system; but we have seen a deske to use off-the-shelf processors, rather than attempts 

at individual design; and most obvious is the persistence of the attraction of con~munication 

links that are not chip-based, and which have as their performance criteria pre-vLS1 

considerations, mainly the problem of growth in the number of switches in a network. 

Fault-tolerant circuit layout designs, including spare row and column organization, 

enhance integrated circuit yield w00861. There are of course problems of cost and chip-pin 

ratios with the technology. This is a complex issue and demands consideration that would 

expand greatly the scope of the present study. 

One of the most interesting aspects of reconfiguration is the pre-analysis of 

algorithms, and the growing investigation of the union of actual processes with 

architecture. The high-level language program is a view of one single system carrying out 

a sequence of computations; on the level of the machine, a different view prevails, one in 

which the execution of instructions, allocation of resources, and structure of 

comrnumications is many-layered and representative of the actual process in a different 

way. Many of the systems under study are structured for the task environment. The CHiP 

system, for example, in an obvious way shows reconfiguration of its lattice network for 

the sake of process. The tendency here is beyond reconfiguration for the sake of creating a 

general-purpose machine, to reconfiguration to the sake of specific purposes in a specific 

environment. It was stated in the beginning of this paper that reconfiguration perhaps 

stands in opposition to the tendency toward dedicated systems; but with the potential of 

reconfiguration within specific task environments, most notably irnage processing, we see 

the development of an interest in reconfiguration that does not make a machine general 

purpose, but rather oriented to a predefined subset of tasks. A report on the PASM project, 

for example, deals with the uniting of the design of the system with the specific task of 

contour analysis for image processing [~$683]. 

The recent efforts toward designing a reconfigurable architecture are ernerging 



beyond the stage of paperwork design into the stage of implementation. The recent report 
. . 

on TRAC announces an up-and-iunning prototype, with a developed instruction set and 

operating system. The originally proposed Banyan network has been successfully 

implemented. Packet switching allows asychronous communication among the TRAC 

processors, and the network supports the dynamic generation of the three tree-shaped, 

circuit-switched communication structures - shared tree, data tree, and instruction tree - that 

were in the original design [Des85]. Also of interest is the development at IBM of the 

Research Parallel Processor Prototype (RP3), which will attempt to implement the research 

efforts of both the Nnr Ultracomputer and the Caltech Cosmic Cube in a full-scale 

research-oriented machine supporting 512 microprocessors [PfiB]. It is reported that 

performance evaluation and detailed physical and logical design have already provided 

results, and that the machine will be kept as an open project, allowing collaboration with 

other organizations. 
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