
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1987

Reconfiguration for Fault Tolerance and Performance Analysis Reconfiguration for Fault Tolerance and Performance Analysis

Harold Henry Kollmeier
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Harold Henry Kollmeier, "Reconfiguration for Fault Tolerance and Performance Analysis", . November
1987.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-87-106.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/732
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F732&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/732
mailto:repository@pobox.upenn.edu

Reconfiguration for Fault Tolerance and Performance Analysis Reconfiguration for Fault Tolerance and Performance Analysis

Abstract Abstract
Architecture reconfiguration, the ability of a system to alter the active interconnection among modules,
has a history of different purposes and strategies. Its purposes develop from the relatively simple desire
to formalize procedures that all processes have in common to reconfiguration for the improvement of
fault-tolerance, to reconfiguration for performance enhancement, either through the simple maximizing of
system use or by sophisticated notions of wedding topology to the specific needs of a given process.

Strategies range from straightforward redundancy by means of an identical backup system to intricate
structures employing multistage interconnection networks. The present discussion surveys the more
important contributions to developments in reconfigurable architecture. The strategy here is in a sense to
approach the field from an historical perspective, with the goal of developing a more coherent theory of
reconfiguration. First, the Turing and von Neumann machines are discussed from the perspective of
system reconfiguration, and it is seen that this early important theoretical work contains little that
anticipates reconfiguration. Then some early developments in reconfiguration are analyzed, including the
work of Estrin and associates on the "fixed plus variable" restructurable computer system, the attempt to
theorize about configurable computers by Miller and Cocke, and the work of Reddi and Feustel on their
restructable computer system.

The discussion then focuses on the most sustained systems for fault tolerance and performance
enhancement that have been proposed. An attempt will be made to define fault tolerance and to
investigate some of the strategies used to achieve it. By investigating four different systems, the Tandern
computer, the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from dynamic
redundancy to reconfiguration is observed. Then reconfiguration for performance enhancement is
discussed. A survey of some proposals is attempted, then the discussion focuses on the most sustained
systems that have been proposed: PASM, the DC architecture, the Star local network, and the NYU
Ultracomputer. The discussion is organized around a comparison of control, scheduling, communication,
and network topology.

Finally, comparisons are drawn between fault tolerance and performance enhancement, in order to clarify
the notion of reconfiguration and to reveal the common ground of fault tolerance and performance
enhancement as well as the areas in which they diverge. An attempt is made in the conclusion to derive
from this survey and analysis some observations on the nature of reconfiguration, as well as some
remarks on necessary further areas of research.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-87-106.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/732

https://repository.upenn.edu/cis_reports/732

RECONFIGURATION FOR FAULT
TOLERANCE AND PERFORMANCE

ANALYSIS
Harold Henry Kollmeier

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04-6389

November 1987

Acknowledgements: This research was supported in part by DARPA grants N00014-85-
K-0018, NSF grant MCS-8219196-CER and U.S. Army grants DAA29-84-K-0061,
DAA29-84-9-0027.

UNIVERSITY OF PENNSYLVANIA

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

RECONFIGURATION FOR FAULT TOLERANCE

AND PERFORMANCE ENHANCEMENT :

A COMPARATIVE ANALYSIS

Harold Henry Kollmeier

Philadelphia, Pennsylvania

May, 1987

A thesis presented to the Faculty of Engineering and Applied Science of the University of
Pennsylvania in partial fulfillment of the requirements for the degree of Master of Science
in Engineering for graduate work in Con~puter and Information Science.

I
I / 1 , .
I I ' ' 1 ' \ / (, 1 / 1 , (

' I ' Yuen-wah Eva Ma

0 . Peter Buneman

. .

Reconfiguration for Fault Tolerance and for Performance Enhancement:
A Comparative Analysis

Abstract

Architecture reconfiguration, the ability of a system to alter the active intcrconncction among modules, has

a history of different purposes and strategies. Its purposes develop from the relatively simple desire to

formalize procedures that all processes have in common to reconfiguration for the improvement of

fault-tolerance, to reconfiguration for performance enhancement, either through Ihe simple maximizing of

system use or by sophisticated notions of wedding topology to the specific needs of a given process.

Strategies range from straightforward redundancy by means of an identical backup systcm to inlricate

structures employing multistage interconnection networks.

The present discussion surveys the more important contributions to developments in reconfigurable

architecture. The strategy here is in a sense to approach the field from an historical pcrspcctivc, with the

goal of developing a more coherent theory of reconfiguration. First, the Turing and von Neurnann

machines are discussed from the perspective of system reconfiguration, and it is secn that this early

important theoretical work contains little that anticipates rcconfiguration. Thcn some carly dcvcloprncnls

in reconfiguration are analyzed, including the work of Estrin and associa~cs on thc "fixed plus variable"

rcsuucturablc cornputcr system, h e attcmpt to ff ~eorizc about corlfiguri~blc cor~~l)ulcrs by Millcr aucl Cockc,

and the work of Reddi and Feustel on their restructable computcr systcrn.

The discussion then focuses on the most sustaincd systcrns for fault tolcrar~cc and pcrronnarlce

enhancement that have been proposed. An attempt will be made to define fault tolcrance and to investigate

some of the strategies used to achieve it. By investigating four different systcrns, the Tandern computer,

the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from tlynarnic redundancy

to reconfiguration is observed. Then reconfiguntion for pcrforrnance entlanccrncnt is cliscusscd. A survcy

of some proposals is attempted, then the discussion focuses on the most sustaincd systems r hat have bccn

proposed: PASM, the DC architecture, the Star local network, and the NYU Ultracomputcr. The

discussion is organized around a comparison of control, scheduling, communication, arld nctwork topology.

Finally, comparisons! are drawn between fault tolcrance and performance cnhanccment, in ordcr to

clarify the notion of reconfiguration and to reveal the common ground of fault tolerance and perfo'onnarlce

enhancement as well as the areas in which they diverge. An attempt is made in Lhc conclusion to derive

from this survey and analysis some observation%pn the nature of reconriguration, as wcll as some remarks

on necessary further areas of research.

Table of Contents

1. Introduction

2. Reconfiguration in the Early Literature
2.1 Strategy of the Present Section
2.2 Early Theory in Computation
2.3 Miller and Cocke's Theory of Configurable Computers
2.4 A Comparison of Two Early Designs

3. Reconfiguration for Fault Tolerance
3.1 Goals of this Discussion
3.2 Defining Fault Tolerance
3.3 Dynamic Redundancy
3.4 Fault Tolerance and Interconnection Networks
3.5 Summarizing Reconfiguration for Fault Tolerance

4. Reconfiguration for Performance Enhancement
4.1 Goals of this Discussion
4.2 Defining Performance Enhancement
4.3 The P M ~ System
4.4 The Chip Computer
4.5 TRAC
4.6 Other Proposals

5. Strategies for Interconnection
5.1 The Dynamic Architecture
5.2 The PASM Architecture
5.3 The Star Local Network
5.4 The NYU Ultracomputer

6. Issues of Control
6.1 The DC Group
6.2 PASM Control
6.3 Thc Star Network
6.4 The NYU Ullracomputcr

7. Conclusion
7.1 What Has Been Attempted in this Study
7.2 The Nature of Reconfiguration
7.3 Suggestions for Further Study

8. Bibliography

Figures

The Search Mode Configurable Computer

The Interconnection Mode Configurable Computer

Block Diagram of V, the Variable Structure Computer System :

The Restructurable System Architecture

A Tree of Fault Tolerance

Developments in Dynamic Redundancy

C.vmp Voter-centered Architecture

The Generalized Cube and the States of an Interchange Box

The Extra Stage Network and the End-stage Switches

The Ganlma Network

A Section of the MPP Array

The P M ~ Architecture

Three Lattice Structures in CIW

The Switch Lattice Configured as a Mesh Pattern

The Switch Lattice Configured as a Binary Tree

The Banyan Interconnection Network for TRAC

A Hypercube With 64 Nodes

DC Group with Four Processors Connected

The Cube Network, in Topology and Cube Transformation

Star's Modified Baseline Network

The Ultracomputer's Omega Network

1. INTRODUCTION . .

Among the well known issues in computer design is system reconfiguration, but in spite of

being well known it has developed little focus, remaining instead at a level of proliferation

of different purposes and design strategies. There are, of course, some aspects of

reconfiguration about which there is agreement. It has been defined as a condition under

which a system may assume several architectural configurations, each of which is

characterized by its own topology of activated interconnections between modules [Sie79b].

And it can be agreed that reconfiguration by its very nature makes subsystems out of larger

systems, for different purposes, traditionally for fault tolerance and more recently for

performance enhancement.

Some aspects of reconfiguration, of course, remain without agreement. Perhaps the

greatest indication of the state of thinking about reconfiguration is the traditional

understanding that reconfiguration means many things, and that it is usually an adjunct to

other concerns. As a design problem it certainly does not exist alone, and discussions of

reconfiguration will very often be found in the literature on SIMD and MIMD research,

partitionable architectures, and parallel processing. It has been said to be a state change

that is effected without human intervention [Ma82], although work has been done to allow

control "explicitly," by the high-level programmer [Sch86]. The very proliferation of

proposals for widely different architectures all coming under the umbrella of a similar

purpose suggests the variety of perspective. And while the term recorfigz~rable is widely

understood, it is not in universal use in discussions of this design issue: other possibilities

include dynamic architecture ([Kar86b]), restructurable [Red78], and corzfigurable [Sny82].

For our purposes in this investigation, the two different, major purposes for

reconfiguration - fault tolerance and performance enhancement - provide the most

interesting focus for investigation. Fault tolerance, the ability of a system to continue
J>..

operation under less than maximum and perhaps increasingly degrading conditions, and

performance enhancement, the attempt to match systems to advanced processing demands,

have separately developed strategies for reconfiguration. But their similarities and the

space where they come together that is the focus of this investigation.

Many early developments in computer technology display a primitive version of

what might be called reconfiguration, in that they formalized system alteration that occurred

as a result of I/O control, secondary storage access, overlaying, and other procedures that

processes have in common. A system that has more software and hardware components

than are needed for a specific task must therefore be configured for that task; that is, the

subset of the system that is needed for the task must be created. As systems became more

complicated and time-sharing became standard, the forming of subsets of the overall entity

became part of the formal thinking on software control. The early PDP-I 1 handbook, for

example, in its discussion of the innovative abilities of the UNIBUS to allow bidirectional

and asychronous communication between any two connected modules, perceives of the

machines capabilities as a form of reconfiguration [Dec76]. But we must bear in mind here

that this is only a simple, primitive version of what we are calling "reconfiguration," and

that more sophisticated strategies follow.

When Denning presents the theory of virtual memory as a disassociating of physical

address space and logical address space, he is speaking of the reconfiguring of the system

into subsets [Den70]. Fault-tolerance is the next step in this developn~ent, whereby subsets

of the system form redundant parts allowing for continued operation when components

fail. Fault-tolerance is still very much at the forefront of thinking on reconfiguration (e.g.,

[Sie82]), but added to this are concerns over the use of reconfiguration for performance

enhancement, either through the simple maximizing of use of the entire system, or by the

more sophisticated notion of wedding topology to the specific needs of a given process:

this has been referred to as enhancing the degree of "match" between algorithm and

architecture [Yd85]. System reconfiguration - the creating of subsets that will be more in
4L.

tune with a specific task than is the entire system - stands in opposition to the trend toward

dedicated systems.

The concern of the present study is system reconfiguration for the sake of

performance enhancement as well is fault tolerance, with an emphasis on multiprocessor

environments. The issues involved in system reconfiguration are many. Control is a

dominant concern, for the creating of subsets within a system brings up the problem of

individual unit performance in coordination with the whole. A particular aspect of control

is scheduling, for maximum use of the system but also for problems of synchronization

when the purpose of the system is parallel processing. Communication needs are strong

when reconfiguration occurs in a multiprocessing environment, and much of the literature

concerns itself with the interconnection networks that are necessary in a reconfigurable

system. Another major issue is precisely when and where the reconfiguration will occur;

among the more interesting developments here is the research into revising the traditional

high-level languages to support programmer- controlled configuration [Kuc85] [Cli85] [Arv80]

[Ree80]. Designs for reconfiguration are also controlled, or it seems they should be, by the

purpose for which the system is being developed. Many proposals, some more developed

than others, responding to these issues and to the need for reconfigurable systems, have

appeared in the literature.

Our strategy here is to approach the field from an historical perspective, with the

goal of developing a better understanding of reconfiguration. First, the Turing and von

Neumann machines will be discussed from the perspective of system reconfiguration, and

it will be seen that this early and important theoretical work contains little tliat anticipates

reconfiguration. One intention in this analysis is to develop the theme that reconfiguration,

unlike other major developments in the technology, proceeds without a theoretical base.

We will focus on some key developments in reconfiguration, which include the work of

Estrin and associates on the "fixed plus variable" restructurable computer system. We will

then discuss an interesting attempt by Miller and Cocke to theorize about configurable

computers. We also review the work of Reddi and Feustel on their restructable computer

system. This section of the paper is therefore not so much a survey as a close look at some

key developments. The discussion will then focus on the most sustained systems for fai~lt

tolerance that have been proposed. An attempt will be made to define fault tolerance and to

investigate some of the strategies used to achieve it. We will see that a distinction can be

made between the early strategies leading up to what Siewiorek calls "dynamic

redundancy" [Sie82] and the later developments that make use of strategies beyond those in

Siewiorek's scheme, including systems that employ multistage interconnection networks.

By investigating four different systems, the Tandem computer, the C.vmp system, the

Extra Stage Cube, and the Gamma network, we will see the move from dynamic

redundancy to the more advanced version of reconfiguration that is our interest here.

Indeed, it would be appropriate to invent new terminology to describe the more

sophisticated strategies that we will be discussing.

Discussion of performance enhancement and its relation to recorifiguration will then

be attempted, through a survey and analysis of some of the more significant proposals.

Some of these design have reached fruition in the form of working machines, if only in

prototype; others remain paperwork machines, which, however, contribute in their own

way to the development of thinking on the subject. Interest in these new designs results

from the realization that the architecture concepts and technology of the now fillly

developed high performance "von Neumann" machines will not match the demands for

massive processing that are present in such fields as image processing and

supercomputing. The issue of reconfiguration for performance enhancement aligns itself

strongly with issues of parallel processing, including the issue of intcrcorlllection

networks. A survey of some of these many proposals will first be attempted, in order to

give the reader a sense of the range of ideas on the subject, and in order to provide a

contrast to the proposals for reconfiguration for fault tolerance. Then the most sustained

systems that have been proposed will be discussed under the two issues of communication

and control. These developments include the dynamic architecture of the Kartashevs,

PASM, the Star local network, and the N ~ U Ultracomputer.

Reconfiguration for performance enhancement is perhaps a stronger concern in this

study than is reconfiguration for fauIt tolerance, but the comparison of the two issues

should reveal their common ground as well as the areas in which they diverge. An attempt

will therefore be made in the cchclusion to derive from this survey and analysis some

observations on the nature of reconfiguration, as well as some remarks on necessary

further areas of research. It is hoped that these effort will provide the groundwork for a

more accurate understanding of the topic.

2. RECONFIGURATION IN THE EARLY LITERATURE

2.1 Strategy of the Present Section. The discussion here begins our historical

analysis of reconfiguration. By loo&g at some early work, both in theory and in the

development of design proposals, we will be able to formulate some fundamental premises

upon which to proceed with the analysis of later developments. We will see that many of

the motivations for reconfiguration appear early in the literature, but that computer

applications had not yet sufficiently developed, particularly in areas of image processing

and related matters in robotics, to allow a fully developed set of motivations and criteria.

We will also see that reconfiguration appears very little in the early thinking on computing,

because aspects of finite time and finite space are not relevant to that thinking.

Reconfiguration rises late, relatively speaking, in the development of the technology; it

rises as a response to problems in the technology itself, rather than as a response to the

very nature of algorithms and problem solving.

In order to proceed with these observations we will look at three different sections of

early developments. First we will examine, with an eye on reconfiguration, the early

classic thinking on computation, the well known presentations of Turing and von

Neumann. The question here is, in this early, famous theorizing on the nature of

computation, is there anything that anticipates reconfiguration? Next we will look at an

article from the mid 70s by Miller and Cocke, which attempts to provide a theoretical

framework for developing notions of reconfiguration. Finally, we will analyze and

compare two early proposed systems that of Estrin and associates and that of Reddi and

Feustel.

2.2 Early Theory in Computation. In developing an understanding of

reconfiguration, we would tend to look back to the early thinking on cor~iputing, but in

doing so we will find that there is very little in the classic literature that suggests

reconfiguration. We could take the worksf Turing and of von Neumann as central here.

The Turing machine, as originally presented [Tur36], is the classic of sequential

processing. State change is effected by the linear movement of the sqiiares of a tape

through the "machine." The machine is able to read, or to scan, the square of the tape that

it was at the moment focusing on, or that was "in" the machine. The symbol set of the tape

was limited to 0, 1, and empty. The machine could read and write symbols, but it could

also erase them; and while it could only move from one square to the next, it could go

backwards and forwards and it could move over a square without a1 tering it, so that its

domain was the infinite tape. The combinations of reading, writing, erasing, and scanning

gave the machine a finite set of states, which Turing called its "m-configurations."

Through this behavior the machine was capable of memory, in that it could move to a

previously scanned and (perhaps) altered square, and thereby "recall" what was there. It

could also perform arithmetic, through a process of copying and erasing.

The advances of the Turing machine over the more simple automata, including its

left and right movement and its ability to mark squares, are ingenious, but they do not take

the idea of processing beyond the sequential. Perhaps the most important reason that the

Turing machine is not concerned with parallelism and reconfiguration is the fact that tirne

and space are not issues in the machine: the tape that passes through the reading and

writing head is potentially infinite, and computation, while always finite, can go on

indefinitely in Turing's theoretical context.

The first presentation of the computer by von Neumann and associates [Bur461 is not

a theoretical paper but rather an astonishingly complete description of the logical design of

the sequential machine. Its importance, however, has propelled it into the realm of theory

in the field. It is important as "theory" partly because it establishes time and space as

important to the fundamental thinking about computing machines. The paper presents a

practical core of considerations on memory storage, control and machine/human

communication, and arithmetic. The change of state consists of the movement from one

instruction to the next, under the control of the Control Register and the Control Counter.

It establishes the notion of the machine asJan instrument of strict sequential code execution

with no distinction in the internal representation of different data types. The only hint of

processing beyond the strictly sequential is the sirggestion in the paper of a method of error

checking whereby two identical computers, controlled by the same clock, operate in

parallel and check each other's results.

2.3 Miller and Cocke's Theory of Configurable Computers. At this point we

will pause to consider not a proposed design, but rather the attempt by Miller and Cocke in

the early 70s to present a theory of the "configurable" computer [Mi174]. The attempt is

interesting because in addition to the principles it lays out, it also presents a class of

configurable computers, called "search mode configurables," which do not make use of an

interconnection network; this description shows a strategy that seems to have been lost in

further thinking of reconfiguration, and reminds us that there was a time when

reconfiguration was not necessarily wed to the problem of interconnection networks.

Miller and Cocke observe that all developments up until that time have not changed

the fundamental von Neumann concept of the stored program: innovations have removed

bottlenecks and improved performance, but the von Neumann machine remains. For

Miller and Cocke, the most important implication of the stored program machine is that the

program must be used to mold the algorithm to the fixed structure of the machine. That is,

the program is used to sequence the program operation; or machine first, algorithm second.

Miller and Cocke regard the new class of configurable computers to be a major departure

from this traditional stored program approach, while still making use of notions of the

program, high-level languages, compiler techniques, etc. The important motivation in

configurable computers is that "the machine structure should attain the natural structure of

the algorithm being performed." The advantage to these proposed machines is that they

will enjoy the speed enhancement found in special purpose machines, but also not discard

the advantages of general purpose machines. Configurable computers also enhance the

development of parallel execution.

These and other advantages are found in two classes of configurable computers, the

search mode configurables and the interbwnection mode configur;dbles. A search mode

configurable, as pictured in Figure 1, is a multiprocessing system with three parts, a set of

operational units, memory, and a searcher.

M E M O R Y

J

S E A R C H E R

*
A C T l Y E

O P E R A T l O N A L
U N I T S

Figure 1 - The Search Mode Configurable Computer

If we are thinking with hindsight and therefore conceiving of an interconnection

network as an inevitable part of a reconfigurable system, the searcher takes the place of the

network. When an operational unit has finished a task it requests the searcher to find a

suitable task in memory for it to process next. Tasks in memory are conceived of as data

containing internal information, via an operation code and a tag, that identifies the data as

an appropriate task for a given operational unit. The searcher therefore searches memory

to find a unit of data that is a suitable match for the requesting operational unit. During

processing, an operational unit may change the internal information stored with the data,

thereby returning the unit to memory with information that destines the unit for further

processing by another operational unit.

Clearly, in this multiprocessing environment parallel processing of different units of

the same algorithm can take place. The bottleneck switches from processors to the

searcher, but the design allows for a multi-searcher system. The searcher, in addition to

performing as a processor, might seem to be an interconnection network, except that the

kind of processing it performs and the presence of internal information in the data in

memory effect memory/processor relationship.

The alternate possibility presented by Miller and Cocke, called by them the

interconnection mode configurables, is closer to what we would normally understand to be '-..
a reconfigurable system structure. This is for the simple reason that the hecart of the matter

is the now well understood interconnection network, the ICN. See Figure 2.

MEMORY

S E T U P
C O N T R O L

A C C E S S
C O N T R O L

I I I I T E R C O N N E C T I O N
n x n I O P E R A T I O N A L

N E T W O R K U N I T S I
Figure 2 - The Interconnection Mode Configurable Arcl~itecture

Instead of having the searcher connect memory and the operational units, the

operational units themselves are connected to one another, depending on appropriate

interconnection based on analysis of the algorithm. This connecting is done by the

interconnection network; the interconnection network can thus be seen as replacing the

searcher, or can be seen as a refinement or further development of the searcher design.

Access frequency to memory is therefore diminished, because completion of a process in a

given unit does not here mean return of data to memory, as in searcher mode, but rather

movement of data via the interconnection network to the next operational unit, in a manner

that bears similarity to data-flow architecture.

The high-level language program is first compiled into blocks of a size suitable for

use of the operational units. The compiler then works sequentially with these blocks. The

compiler performs a type of data flow analysis on the given block, and then establishes a

setup procedure for the block; the setup procedure is basically the flow of operation for the

interconnection network. The setup procedure is stored in nlenlory as an instruction, and

is the first instruction of a block. All instructions have been accessed during the execution

of a block, and therefore memory access need only occur for operands and results.

Completion of the execution of a block means exit from the block and initializing of the

setup of the next block. This scheme is therefore based on the notion of preanalysis and an
'>..

establishing of all patterns of interconnection before nin time. Each block can be

conceived of as detemining a special-purpose machine that exists for the duration of its

own execution. We will see that this model anticipates the later work of the Kartashevs on

their dynamic architecture w79al.

The theory of Miller and ~ o c k e does not establish with any detail a complete system

for reconfiguration; but it does show the fundamental workings that others will develop

more fully. The search mode appears to be an early development, overtaken by the more

valuable interconnection mode; and we will see that most later proposals are built on this

model.

2.4 A Comparison of Two Early Designs. Some early work that deserves

attention is that of Estrin and associates on the F plus V (fixed plus variable) machine

Est601 [Est63a] [Est63b]. There is no need in the present context to review the details of

planned implementation in the design, although plans for scheduling and human interaction

Est63b], as well as the strategy of physical changing the wiAng harness that connects

modules to effect reconfiguration [Est63a] are of interest. What is important here are the

motivations established by Estrin for the development of a reconfigurable system -- or

rather, in his presentation, a "restructurable computer system" -- as well as some of the

notions of how the design should proceed.

The issue for Estrin is practicable computability, and the problems that fd l outside

its domain [Est63a]. Practicable computability is a function, among other things, of cost,

limit of size, time, and machine reliability. While advances up until the early sixties had

increased the number of problems that could be called practicably comput:tble, the nulnber

that was not was still large. Coupled with the inherent, finite limits of the machine was the

demand placed on it to be general purpose.

Estrin saw this as a further restriction in an already limited environment. The

general purpose computer is a compromise in establishing of word length, selection of

arithmetic algorithms, and determination of instruction set. The desire to serve a wide

variety of problems prevents the general (iiurpose ~nacl~ine from developing into a system

that has the speed or size necessary to solve the problems that remain outside the domain of

the practicably computable.

11

The solution that had been developing at the time of Estrin's proposal was the

building of the special purpose computer: general purpose problem solving was slighted in

the favor of machines that were constructed for the fast and efficient solution of restricted

classes of problems. Thus, the domain of the solvable was, according to Estrin, not

restricted so much by available technology as by the demand of general purpose.

Paradoxically, therefore, the domain of the solvable could be expanded by limiting

the number of problems that a given system could solve. Of course the drawback here was

also evident: the special purpose computer does not respond readily to changes in problem

formulation, solution methods, or computational needs. By establishing a system that

does a few things well the numbers of things it does not do well increases, and the

likeliness increases, given the range of problems that need to be solved, that the machine

will enter a state in which it is not performing efficiently. here is also the practical

problem of catering to an audience large enough to provide the means for development of

an inevitably expensive system that provides only limited problem solving.

Estrin offered the following premises for the development of a new system that

would address these matters:

1. In the solution of any given problem, a special purpose computer can be
built to be more efficient than a general purpose computer.
2. The essential sequential form of many algorithms contains parts which
may be executed simultaneously on different processors with a consequent
reduction of the computation time.
3. Within the constraints of a finite hardware inventory, a greater riumber
of computing substnictures can be built if the inventory is restr-iict~~t-;~ble
than if it is committed to a nonvariable system.
4. Writing a compiler program for a large computer system is an effort
measured in man years and is practical only if the computational
characteristics (e.g., instruction list and meaning of instructions) remain
essentially fixed over the lifetime of the system [Es~63a].

Estrin's response to his own premises was the proposed fixed plus variable

computer [Est60]. Attempting to combine the advantages of both general purpose and special

purpose schemes, it consisted of a highTspeed general purpose computer (the fixed part F),
jt.

which was to operate in conjunction with a second system (the variablev. See Figure 3.

The F computer was in his design to be the IBM 7090; the V was to be comprised of

as many large and small high-speed substructures as necessary to carry out the defined set of

special purpose problems. Furthermore, the V system would be reconfigured into whatever

structure necessary to compute the class of special problems. The cooperation of the F and V

systems would occur under the direction of a supervisory control unit (SC).

Reddi and Feustel approach the problem from a different perspective: the issue for

them is the nature of von Neumann architecture, most specifically the implications of strict

sequential code execution and the uniform internal representation of data [Red78]. While

acknowledging the value of the von Neumann paradigm in the development of the

technology, Reddi and Feustel saw sequential execution as an impedirnent to high speed

computation and efficient resource utilization, because it does not exploit the parallelism

inherent in a problem and in hardware structures.

Figure 3 - Block Diagram of V, the Variable Structure Computer System

Of course, we can see this criticism as simply another version of Estrin's problem of

practicable computability. The second characteristic of von Neumann architecture, the

uniform internal representation of dab, was seen by Reddi and Feustel as a problem when

complex data structures were present. This was a special interest of Feustel, who had

earlier developed the concept of a tagged architecture, which provided at the machine level

bit structures that defined by type the data associated with them [Feu73].

Along with Eshin, Reddi and Feustel recognized that the solution of special purpose

architectures, while enhancing performance for certain problem domains, also imposed a

new version of rigidty on the computing environment. Their proposed solution was, like

Estrin's, in the second, interconnection mode of Miller and Cocke, but it differed from

Estrin's in that it recognized information flow rather than algorithmic structures. See

Figure 4.

STORAGE

BUS 23

DESCRIPTOR

Figure 4 - The Restructurable System Architecture

The algorithm to be executed was to be compiled into program blocks, and the

compiler would then establish a system configuration for each block. Reddi and Feustel's

restructurable computer system made use of an intermediary language, Realist, which

specified the configuration for each block. Rather than by an interconnection network, the

configurations were to be implemented by bus units that were to provide data and control

paths between resources. The system would support scalar operations as well as pipeline

and parallel operations.

Thus we can see from these early proposed designs that reconfiguration does not

arise from the initial theory of computation, but rather from the early attempts to enhance

performance. These early attempts occur because the initial theory is seen to have been

exhausted, or as Estrin saw it, basic computation theory does not coincide with the domain

of practical computability.

3. RECONFIGURATION FOR FAULT TOLERANCE

3.1 Goals of this Discussion. Of the two major reasons for developments in

reconfiguration, fault tolerance and performance enhancement, fault tolerance is the older

concern, and there are strategies for fault tolerance that have little to do with

reconfiguration, or that employ reconfiguration only in the widest sense. The function of

the present section of this study is to clarify the definition of fault tolerance and the issues

involved in it, and then to present a description and analysis of some of the major

developments in architecture for fault tolerance. A comp&son of fault tolerance to

' performance enhancement and their influence in design for reconfiguration will be held

until the end of this entire study.

3.2 Defining Fault Tolerance. Siewiorek has well defined the issues involved in

fault tolerance, and it is appropriate here to review his findings [Sie82] [S i e ~] . We can

approach his overall discussion of fault-tolerant architecture by constructing of tree, shown

in Figure 5, based on his findings and pruned in the interests of reconfiguration.

FAULT-TOLERANT SYSTEMS

AVAILABILITY RELIABILITY

FAULT FAULT
AVOIDANCE TOLERANCE

DETECTION MASKING DYNAMIC
REDUNDANCY REDUNDANCY

Figure 5 - A Wee of Fault Tolerance

Briefly, let us consider the nodes of this tree before we go on to focus on the node

that interests us, here, which is the iightmost leaf, "dynamic redundancy." According to

Siewiorek, fault-tolerant systems are either highly available or highly reliable. Availability

is a function of time, A(t), and expresses the probability that the system is operational at an

instant of time t. If time goes to infinity, the function expresses the fraction of time that the

system is available for useful computation. The availability of a system cannot be

expressed as an unbroken linearity, of course: preventive maintainance and repair intrude

on the time of availability. System reliability is also a function of time, R(t). According to

Siewiorek, it is the conditional probability that the system has survived the interval [O,t],

given that it was operational at time t = 0. Reliability is a more critical issue than is

availability, and is used to describe systems without online repair capability (such as in a

satellite) or for which repair is impossible, either because of critical functioning (such as on

an aircraft in flight) or prohibitive expense.

Reliability is provided either through fault avoidance or fault tolerance. Fault

avoidance is conservative, and relies on the use of high-reliability components, component

bum-in, and careful signal-path routing. It is important to notice the conservative thrust

here: the goal is the prevention of failure. Thus, fault-tolerant systems can be seen as

non-conservative, in that the goal is not the prevention of failure, but rather the

manipulation of failure. Because failure is a state that is planned for -- we might say "built

into" the system -- the design can be more adventurous. Failure manipulation is provided

in all cases by redundancy, either time redundancy, usually provided by software, and

basically characterized by repeated execution, or physical redundancy, most primitively

characterized by the wheeling in of a new, duplicate system.

Siewiorek sees a redundant system as having up to ten stages -- fault confinement,

fault detection, fault masking, retry, diagnosis, reconfiguration, recovery, restart, repair,

and reintegration. He divides all of these 6Jages into three classes, the three final nodes on

the tree. Fault detection is actually a prelude to fault tolerance in this scheme; strictly

speaking fault detection can occur as an end in itself, leading to a dead state of system

failure. In the present scheme, however, fault detection leads to either masking

redundancy or dynamic redundancy: the tree above is therefore somewhat

misrepresentative. Masking redundancy is, furthemlore, not necessarily preceded by fault

detection, and is not necessarily concerned with giving warning of failure or even detecting

it. Multiple execution of the same algorithm, for example, with voting on results, is

designed to mask failure, but will not give notification of failure.

The domain of interest in the present study is the rightmost node of the tree, dynamic

redundancy, which is Siewiorek's term for what we call reconfiguration. It includes

conditions of online repair following a combination of masking redundancy coupled with

fault detection. It also includes the simple notion of switching whole systems. It is the

most active, non-conservative of the strategies of fault tolerance, and demands further

discussion. We might add that Siewiorek's conception stops in its development before the

advances in design that unite fault tolerance and performance enhancement are

encountered. These include multistage interconnection networks, and largely concern the

problem of communication. Thus, the discussion of dynamic redundancy will be followed

by a discussion of reconfiguration for performance enhancement, where we will perhaps

see that "reconfiguration" is more fully developed, and where the term "dynamic

redundancy" will not be appropriate.

3.3 Dynamic Redundancy. Lala conceives of a system with dynamic redundancy as

one which has several modules, but only one operati~ig at a given time; the others :u-e

standbys which will be switched in under an overall system strategy of f i i~l l t detection and

fault recovery [Ld85]. This accords with Siewiorek's scheme which begins with the simple

notion of a complete backup system being manually substituted for the faulted system. A

diagram of these developments is presented in Figure 6 [Sie82]. The first of these is the

pre-1975 suategy of con~plete replacement. This strategy is clearly the simplest, although it

is also the most expensive in terms of haraware. It is also the most nir~nual, both in

conception and in implementation. The second, the use of a switch to allow peripherals to

be attached to either processor, limited the replace~i~ent strategy to critical components.

PROCESSOR PERIPHERALS

1 PERIPHERALS

I MEMORY PROCESSOR

SWITCH PERIPHERALS

I MEMORY PROCESSOR

I MEMORY PROCESS OR 1
DUAL-PORTED PERIPHERALS

I I
MEMORY PROCESSOR 1 -

I MEMORY PROCESSOR
1 7

DUAL-PORTED PERIPHERALS

I MEMORY PROCESSOR

Figure 6 - Developments in Dynamic Redundancy

19

r PROCESSOR

MEMORY
-

PROCESSOR

- - DUAL-PORTED PERIPHERALS

An iniprovement on the switching of peripherals, which was still a manual process,

was the equiping of them with dual ports, as shown in number 3 of Figure 6. With the

addition of an interprocessor communication bus, loosely coupled processing became

possible. This is a major step away from the basic idea of having a second processor for the

sake of standby only. One operating system could in normal functioning make use of both

(or all) processors, and when a fault occurred the failed unit could be configured out of the

system in a strategy of "graceful degradation." The final step in this evolution is the addition

of shared memory to produce a tightly coupled multiprocessor. The processors share a

common set of memory and peripherals, and under a single operating system any similar

unit can back up a failed component. This last stage in the scheme of Figure 6 leads to the

development of strategies to implement interconnection networks in fault-tolerant systems.

Before we investigate multistage interconnection networks, however, we should pause

over two systems, the Tandem system and C.vmp, that represent respectively the last two

stages of the development we have been discussing.

3.3.1 The Tandem Nonstop system begins conceptually with strategy 1, which we have

seen in Figure 6, in that the fundamental design principle is to duplicate everything, so that

any single hardware fault will not prevent system failure. Tandem is a reconfigurable

multiple processor system designed for online transaction processing [Kat78a]. However, the

first advance over strategy 1 is that all maintenance and replacement of failed components is

done online without bringing down the system. The second major advance, and the one that

puts the Tandem system in the fourth category of Figure 6, is that the processor modules, of

which there can be a maximum of sixteen, are all interconnected.

Each processor module consists of an instruction processor unit (IPU), memory, a bus

control unit, and UO channel, and a diagnostic data transreceiver (DDT). 'The presence of

separate memory coupled with each IPU marks the Tandem system as representative of

strategy 4 in Figure 6, rather than of strati& 5 in the figure. The IPU is a pipe-lined

processor, and the module has up to 2 megabytes of storage, with a memory word width of

22 bits. The dual bus system that provides interprocessor communication which causes the

Tandem system to be loosely coupied is called the DYNABUS. The buses are independent and

separately controlled, and their supply comes from different sources, so that a single

power failure does not affect more than one processor. Messages are sent over the DYNABUS

in 16-byte packets which are up to 32K bytes long. The VO channel in each processor

module has its own processor, which handles transfers between 110 devices and memory;

this separate processing allows communication to proceed with limited intervention by the

IPU.

The diagnostic data transreceiver (DDT), a part of each processor module, monitors the

status of the other elements of the processor module, and reports any errors to the operations

and service processor, which is an adjunct to the operating system. An example of the

rnonitoringlreconfiguring capability of the system may be seen in the operation of the

dual-port device controllers [Bar78]. VO devices are connected to a given processor modules

by one of the two ports of the controller, and the other one port is connected to another

processor, but in normal function only in a standby capacity. When failure occurs, the DDT

reports the failure, and the standby port is put into operation, thus allowing the completion of

an VO operation. Dual disk drives also allow a doubling of the data base, with automatic

writing to both dnves during normal operation, and a system of rewriting when a failed drive

has restarted.

A copy of the Tandem operating system, called GUARDIAN, resides in each processor

module. Again, the principle here is simple redundancy: a processor will always have a
I

backup processor containing data and processing information which is refreshed at critical

points; the presence of GUARDIAN in the backup processor allows that processor to proceed

with operations should the first processor fail.

3.3.2 C.vmp. The final stage of the development modeled by Figure G can be demonstrated '\,
by the C.vmp system out of Carnegie-Mellon University. The systenl was originally

designed in the mid seventies as the third of a series of machines with high

processor-to-memory bandwidth, all of which make use of commercially available hardware

[Sie78]. C.vmp (for Computer, ~ G e d MultiProcessor) had as part of its original purpose

fault tolerance in an industrial environment, with electromagnetic noise, less knowledgeable

users, and nonstop operation.

The response to fault-tolerance came in the form of a strategy for bus-level voting

[Sie77]. As we can see from Figure 7, memory is separate from individual processors, and

all memory/processor transactions must pass through the voting mechanism.

'*,
Figure 7 - C.vmp Voter-centered Arcliitecture

Cm*
r r-----

Front
End
Cornpulsr

1 -

POP- l o p

C

FQP- 10/A

The three processors can act individually, . . on different processes, and in this

situation the voter is not activated. ' But when the processors are operating simulaneously

on the same program, the voter is activated, either by an external event or under control of

one of the processors. In this situation, what is basically a simple form of redundancy

occurs: the processors establish results or request memory access that, when transmitting

over the bus must compare with results from the other processors. Disagreements among

the processors, which mean error, will prevent transmittal of infomlation over the bus

lines.

3.4 Fault Tolerance and Interconnection Networks. Many interconnection

networks have been proposed, and they have been surveyed in, for example [Siei'ga],

[Mas79], Een811, and perhaps most fully in [Bro83]. It should be understood that while the

term "interconnection network" can refer to any form of communication linking, including

telephone systems, satellite networks, and manual switching of office equipment, the term

is used here to mean multistage switching for very rapid data transfer among many

processing elements in a limited environment under automatic control. This limitation of

definition tends to be in agreement with common usage in the literature. It is also

important to remember here that we have proposed that interconnection networks are the

center of the stage for the development of fault tolerant systems that goes beyond the

five-stage scheme proposed by Siewiorek and discussed above.

Feng describes Fen811 the four fundamental decisions that go into the architecture of

interconnection networks:

1) Operation mode, which can be either synchronous or asynchronous. Synchronous

communication is demanded by data manipulation or datdinstruction broadcast;

asychronous communication is fundamental to multiprocessing, where connection requests

are issued dynamically. A system can be designed to handled both synchronous and

asynchronous communication. d>h

2) Control strategy. The switching elements and interconnecting links establish

communication paths by means of proper setting by the control unit. The two basic

23

methods of control are the use of a centralized controller and distributed control; in the

latter method switches are set by'inhividual controls.

3) Switching methodologies, of which there are two, circuit switching and packet

switching. Circuit switching, which is appropriate for transmission of large amounts of

data, establishes a complete physical path between source and destination, thereby tying up

a considerable number of resources. Packet switching, which is appropriate for short data

transmissions, establishes chunks, or packets, of data that are routed, essentially from

node to node, without establishing all at once a physical path between source and

destination. While interconnection networks tend to be developed for one or the other

switching methodology, an interconnection network can be designed to implement both.

4) Network topology. The diagrammatic representation of a network that we most closely

associate with the entire subject matter demonstrates the most obvious aspect of a network,

its topology. Network topology can be most formally represented in graph theoretic

structures of nodes and arcs, and it has been suggested that this form of diagrammatic

representation is most suitable for meaningful analysis of network capability [Agr83].

Network topologies are of two kinds: static topology establishes passive connections

between elements, with dedicated, non re~o~gurab l e links; dynamic topology establishes

reconfigurable links controlled by active switching elements. Interconnection networks of

the type under present investigation tend to be dynamic.

Interconnection networks are at the heart of the multiprocessing environment, and as

we are presently seeing, they have become important in the development of fault-tolerant

systems. Indeed, one of the themes of the present study is that interconnection networks

provide the arena for the meeting of these two design issues. While many different

interconnection networks have been proposed, they share similar chr\racteristics, and W11

and Feng wu80] and Agrawal [Agr83] have shown that most of the proposed networks are

topologically equivalent. Agrawal pointsfto the value in this: initial design and fabrication

of circuitry is expensive and production cost is low, which encollrages the use of

off-the-shelf components; therefore, if the circuitry designed for one interconnection

24

network is equivalent to that needed by another, the same off-the-shelf components can be

used. Interconnection networks'for different applications can be designed differently while

still using the same components, and the control algorithms for different interconnection

networks can be similarly applied [Agr83].

Three representative versions of this embellishment are now discussed, both for

themselves and for the general principles they display. They are the Extra Stage Cube, the

Gamma network, and the MPP, massively parallel processor, developed by NASA.

3.4.1 The Extra Stage Cube can be simply understood as an extension of the Generalized

Cube that is presented elsewhere in the literature (e.g., [Siesla], [Sie78b]), and that is

analyzed in this study in the section on the PASM architecture, considered under

reconfiguration for performance enhancement. It is a multistage cube-based network with

N inputs and N outputs. It shares with other topologies of the multistage type the

characteristics of N = 2n with n = log2N stages. Each stage has N/2 interchange boxes.

Each of these interchange boxes has four legitimate states, straight, exchange, and lower

and upper broadcast. The basic cube topology and the four states of the interchange boxes

are illustrated in Figure 8.

I 0

M u
' P T

w P

T U
T

. ' U U U
S T A C E 2 1 0

L O V E R
B R O A D C A S T

Figure 8 - The Generalized Cube and the States of an Intercl~arlge Ijox

The Extra Stage Cube is an extension of this basic design. An extra stage is added

to the cube, as are multiplexers and demultiplexers. This extra stage is added to the input

side of the network, and the multiplexers and demultiplexers are added to each end stage.

This topology is illustrated in Figure 9.

I k- I N T E R C H A N G E B O X

Figure 9 - The Extra Stage Network and the End-stage Switclies

The function of the multiplexers and demultiplexers is to allow the end stages to be

enabled and disabled, which is the basic mechanism for fault tolerance. We shall in this

discussion refer to the extra stage as the leftmost stage and the final output stage as the

rightmost stage. The leftmost or rightmost stage is enabled if its switches provide

interconnection, and it is disabled if they are bypassed. The denlultiplexer at each switch

input and the multiplexer at each switch output, as shown in Figure 9, accolnplish this

task. And in the design of the Extra Stage Cube, whereas the switches themselves have

individual controls, the multiplexers and demultiplexers of a given stage are set with one

signal; thus the whole stage is either enabled or disabled.

Under normal, non-fault, conditions, the leftmost stage is dis:ibled and the rightrnost
'tc

stage is enabled, which results in a working network that is identical to the Generalized

Cube. If a fault is detected then reconfiguration occurs. If the fault is in the rightmost

stage then it is disabled and the leftmost stage is enabled. If the fault occurs in one of the

middle stages then both leftmos't arid rightmost stages are enabled. A fault in the leftmost

stage does not demand re~onfi~uratibn, because normal mode includes the disabling of that

stage. And the routing for all of these contingencies is still based on the ith bit of the

address of the output port to which data is sent [Sie79b]. Thus we have the principle of

redundancy operating in an extended interconnection network.

3.4.2 The Gamma network demonstrates another strategy of redundancy for fault

tolerance in an intercommunication network. Figure 10 shows the scheme of the Gamma

network; a brief review of its workings will be given below.

Figure 10 - The Gamma Network

The design is a refinement of the design for an inverse augmented data manipulation

network (IADM) that comes from Siege1 and associates [McM82a] [McM82b]. I t has two main

innovative aspects: the network uses 3 x 3 switching elements, instead of the typical 2 x 2

elements, and it uses an elaborate-"redundant number system" to represent and determine

routing paths [Par84]. AS we can see from the above figure, 3 input/3 output switches are

used in the middle stage, with single input and output occuring in the end input and output

stages. The three transition possibilities -- up, straight, and down -- work together with the

redundant number system to produce multiple path possibilities for the exchanges.

The numbering system is redundant in the sense that values can have multiple

representations, while still maintaining the same value. Digits in the numbering system can

take three values, 1,0, and 1, with this last value, 1, simply being a representation of -1

[Par82]. Thus, for example, the value 3 can be represented both as 01 1 and 101.

Furthermore, there is a relationship between these three values and the three paths out of and

into switches: each of the three values can represent one of the three switches.

With this association formed, the routing tag can be developed. The Gamma network

has n + 1 stages with N switches in each stage, where N = 2". A message can change its

route at n points in the system, and the routing tag is an n-digit fully redundant binary

number. At each digit, therefore, the path up, straight, or down can be represented by the

three numbers possible at the digit place. The various paths for the same source and

destination result from using the difference modulo N of the source and destination, and by

then representing this number in the redundant numbering system. Thus, if each stage is

represented by each digit, and if each digit can be 1,O, or 1, then by calculating the various

representations of the difference modulo N of the source and destination, the different paths

of the signal can be determined. The permutations that result provide possibilities than are

more enhanced that Siegel's IADM network [Par84].

3.4.3 The MPP, massivelyparallelprocessor, was developed for processing satellite

imagery at the NASA Goddard Space Flight Center [BatgOJ. The system Ins a configuration of
'>..

128 x 128 microprocessors that can be used in parallel. Figure 11 shows a portion of the

total array configuration.

Figure 11 - A Section of the MPP Array

The MPP is essentially an two-dimensional array processor operating in SIMD mode,

with each processor in the 128 x 128 configuration having a 1024-bit random access memory.

The MPP performs bit-slice arithmetic with variable-length operands. Each processor

element is connected to its nearest neighbors. The array topology can be explicitely

rearranged into horizontal and vertical cylindersor into a torus. Figure 11 shows a portion of

the total array configuration.

Failure in this massive system is controlled by having four columns of processors that

are redundant to the main two-dimensional array, making the total configuration 132 columns

by 128 rows. Circuitry is provided to mask out hardware faults; inoperative columns are

simply bypassed, leaving a logical array structure of 128 x 128. The complexity resulting

from the addition of the added elements is reduced by the necessity of providing
4%.

interconnection along the rows of the array, not along the columns, since the substitutions

are column based.

There are further complications to. the MPP system, but this explanation reveals the

basic method of redundancy thG th'e network employs. A simple observation here is that this

is quite a different scheme from others we have seen; it seems now appropriate to pause and

offer some analysis of what we have seen in our investigation of reconfiguration for fault

tolerance.

3.5 Summarizing Reconfiguration for Fault Tolerance. In this section we have

attempted to define fault tolerance in general, and some of the strategies used to achieve it.

Fault tolerance is an older concern than performance enhancement, as we are defining these

terms and there are strategies for fault tolerance that have little to do with reconfiguration.

The attempt has been made to clarify the definition of fault tolerance and the issues involved

in it, and to present a description and analysis of some of the major developments in

architecture for fault tolerance. Only in the last two stages of Siewiorek's scheme of a

five-stage development toward "dynamic redundancy" can we begin to see what we call here

reconfiguration. These last two stages were further discussed by an investigation of two

specific systems, the Tandem computer and the C.vmp system, which are seen as

representing the fourth and fifth stages of Siewiorek's scheme. This discussion of dynamic

redundancy was therefore followed by a discussion of reconfiguration with ICN'S, and

"reconfiguration" is seen here as replacing "dynamic redundancy" when we begin to speak

of the use of interconnection networks for fault tolerance. Investigation of the use of

interconnection networks was demonstrated by three quite different desig [is, the Extra Stage

Cube, the Gamma network and the MPP system.

The goal of reconfiguration for fault tolerance is not the prevention of failure, but

rather the manipulation of failure. Because failure is a state that is planned for -- we niight

say "built into" the system -- the design can be more adventurous. In the early stage of friult

tolerance, the tolerance is provided in all cases by redundancy, either time redundancy,

usually provided by software, and basically characterized by repeated execution, or physical

redundancy, most primitively characterized by the wheeling in of a new, duplicate system.

However, while design in more advanced systems can be less conservative, and while fault

tolerance can become more accurate and efficient, the implementation of more recent fault

tolerance does not replace the basic process of redundancy; it simply makes this fundamental

process more sophisticated. The major shift is that the redundant elements are not purely

redundant, in the sense of existing only for use in case of failure of other elements. Rather,

they may have functions of their own which they perform while not being in what we might

call the "redundant state." An adder that acts as a multiplier when the actual multiplier has

failed is a simple example of this. In the non-redundant state it is an adder, and in the

redundant state, entered when the multiplier has failed, it is a multiplier. And its goal

remains the same: the correct execution of a specified algorithm in the presence of defects

[Sie821. But for our purposes, it is the place where fault tolerance links up with

reconfiguration for performance enhancement.

4. RECONFIGURATION FOR PERFORMANCE ENHANCEMENT

4.1 Goals of this Discussion. 'Rather than attempting at the outset a theoretical

model of performance enhancement and its relation to reconfiguration, in this section and

the following two sections we will attempt to survey and analyze some of the more

significant proposals for performance enhancement. Some of these system designs have

reached fruition in the form of working machines, if only in prototype; others remain

paperwork machines, which contribute in their own way to the development of thinking on

reconfiguration for performance enhancement. A survey of some of these many proposals

will first be attempted, in order to give the reader a sense of the range of ideas on the

subject, and in order to provide a contrast to the proposals for reconfiguration for fault

tolerance. In sections 5 and 6, the discussion will focus on the most sustained systems

that have been proposed, not system by system, but under the two issues of

communication and control. While we will not stop and deliberately contrast and compare

the two sets of proposals, those for fault tolerance and those for performance

enhancement, the relationship should be apparent, and will become the center of

discussion in the conclusion of this study.

The developments in reconfiguration for performance enhancement include the

dynamic architecture of the Kartashevs, PASM, the Star local network, and the NYU

Ultracomputer. The dynamic architecture of the Kartashevs has developed over ten years

and differs considerably from the others in communication, control, and other issues

[Kar79a]. PASM (Partitionable SIMD/MIMD Machine), developed at Purdue University and

at present in prototype stage of development, is a dynamically reconfigurable

multimicroprocessor system [Siegl]. Star, a local computer network that is being designed

to integrate image database management and image analysis into one system, gets its name

from its topology: a star-connected communication subnet centralizes distributed-controlled

switching elements to provide a tight cohpling among a large number of autonomous

elements W1.1821. A recent entry in the field is the NYU Ultracomputer, which is a

general-purpose MIMD machine accessing a central shared memory via a message
, .

switching network with @e geometry of an Omega-type network [Go1831.

This analysis of designs should allow some final remarks on the nature of

reconfiguration for performance enhancement. But first, it is necessary to provide some

fundamental notions of what exactly "performance enhancement" means in the context of

our discussion.

4.2 Defining Performance Enhancement. We might broadly define the

development of computer technology, and thus the development of performance

enhancement, as having four stages:

1) the machine-based technology, wherein the von Neumann design was fully developed

and single-process operation control was left up to the programmer;

2) the operating system technology, which lifted the programmer away from the details

that were common to all processes and placed them under the domain of the operating

system;

3) multiprocessing, allowing for the use of the developed technology in pipeline and array

processing;

4) reconfiguration, the stage that allows multiprocessing that is algorithm-driven, and that

allows processing to conform to the manifold needs of an advanced, highly powered,

high-demand environment, such as image processing.

While not always schematized in this manner, these developnients are well known

and fully presented in the literature. For our purposes, we should note that our concern

with "performance enhancement" aligns with this fourth stage of development, which

includes the concerns of parallel processing in both SIMD and MIMD modes, and that

problem solving in the research usually centers on the communication links between

processors and memory. Furthermore, we should observe that reconfiguration for

performance enhancement, while making'use of similar strategies, does not have the same

concerns as reconfiguration for fault tolerance. However, the use of sinlilar strategies in

these two domains may provide the key to unification, at least in concept.

33

4.3 Early Developments. Ln a 1979 pa.per introducing basic principles of their own

dynamic computer architecture,'.thk Kartashevs review the major developments up until that

time in reconfiguration design [Kar79a]. Their survey begins with the work of Estrin,

whose work we investigated in Section 2 of this report. Estrin developed at UCLA in the

late fifties and early sixties a "restructurable" system that pioneered the strategy of

examining the algorithmic structure of a problem and then assigning the tasks of the

problem to either "Fixed" or "Variable" subsets of the system [Est63]. This assignment was

based on the pre-analysis of the problem and the subsequent "decomposition" of the

problem into different tasks needing different architectures, two concepts fundamental to

reconfiguration. The Kartashevs also mention the Illiac-Iv computer, which allows the

reconfiguration of one 64-bit processing element into two 32-bit or eight 8-bit processors;

it is devised mainly for the enhancement of parallel execution [Bar68]. Other major work

they discuss includes Lipovski's extension of the concept of a reconfigurable array

processor developed for SIMD to the MIMD mode [Lip77], and the work of Reddi and

Feustel, who like Estrin and others before them, proposed the matching of topology to

alogrithm [Red78]. They introduced an intermediate language called REALIST, which

identifies the structure appropriate to the computation needs, and they proposed the

implementation of the system using APL. Clearly, at the point when the Kartashevs

introduce their system much work had already been done.

It remains the purpose of the present section to survey some other developnlents, in

order to extend the 1979 review by the Kartashevs, and to present the fundamentals issues

that all proposals for reconfigurable architecture must face, as well as the various strategies

that are possible.

4.4 The pM4 System. This is an architecture out of Purdue University - the Purdue

Multi-mode Multimicroprocessor systern,[Bri79]. Its development demonstrates the need

for processing of images, an environment that is generally characterized as having massive

amounts of data upon which the same relatively simple task must operate. A screen of 500

x 500 pixels of information from which basic texture analysis must be extracted is the
. .

obvious example. An SIW machine is needed here. But the system should be

reconfigurable, because this simple kind of operation is not the only need in image

processing. The P M ~ system is designed to have three operation modes in addition to

SIMD. In multiple SIMD mode, a number of SIMD operations can be executed in parallel.

In MIMD mode, individual instruction streams have a sequence of scalar operations, and

these parallel processes may be interdependent. Vector instructions may not appear in

MIMD mode, but they may appear in the fourth mode of the P M ~ system, the Distributive

Mixed Mode. Here, SIMD vector instructions and parallel MIMD processes are

simultaneously executed.

(a) Overview. The system consists of N identical Processor-Memory Units (PMU),

K identical Vector Control Units (VCU), a three-level hierarchical memory, and a set of

interconnection networks and memory management units. See Figure 12. The three levels

of memory are the local memory in both VCUs and PMUs, the shared memory with direct

interconnection to the processors, and the lowest level, the file memory.

(b) Vector control. Each vcu consists of a microprocessor and a local memory

(LM) and Local Memory Management Unit (LMMU). This local nielnory is part of the

highest level of the three-level memory subsystem. The dominance of the VCUs in the

design suggests that, in spite of the intention of having four modes in the architecture, the

system is most strongly oriented to SIMD processing. Indeed, this mode is the one most

carefully discussed in the proposal, and SIMD mode will therefore be the focus of

discussion here. Vector control instructions and program of an SIMD process are loaded

into the VCU local memory prior to execution. The VCU broadcasts instructions to all of

the PMUs that have been assigned via reconfiguration to the given SIhlD process. Disabling
4-.

PMUs in the system that are not part of the reconfigured SIMD subsystem is a f~inction of

the VCU. There seems to be no particular tying of a given VCU to a given subset of PMUs

in the P M ~ system; if this is the case, then the system can be reconfigured in SIMD mode
. 3

to utilize from 1 PMU to N PMLfs.

(c) Other Processors. The Processor Memory Units, the PMUs, in the system

resemble the VCUs in their organization. Like the VCUs, they consist of three units - a

microprocessor, local memory (LM), and a memory management unit (LMMU). The LMs in

the PMUs constitute the second part of the highest level of the memory in the system, the

first part being the LMs of the VCUs discussed above. Each LM acts as a cache for its

associated processor. The LMMU in each PMU loads and unloads local memory, and it also

SHARED MEMORY

F I L E nEltoRY CONTROL u t j I r (F n c u)
I------J

I F I L E EMORY

'\..

Figure 12 - The P M ~ Arcl~itecture

acts as a channel to transfer a block of shared memory to any VCU memory associated with
. .

the PMU in a reconfiguratipn. Pfogram transfer from shared memory to the LM of the VCU

does not have to pass through the processor in a given PMU; rather a multiplexor connects

each PMU with the Vector Control busses to the LMMU or the processor. Access can

therefore be through the LMMU. The multiplexor also broadcasts instructions for a VCU to

logically connected PMUs in SIMD mode.

(d) Interconnection Networks. Figure 12 indicates the presence of four

communication s~tbsystems in P M ~ : between the VCUs and the PMUs, the interprocessor

communication network (IPCN), the processor to shared-memory interconnection network

(PMIN), and the connection to the file-memory control unit (FMCU).

VCU-PMU communication and the P C N are the links of most interest to the problem of

reconfiguration, and they will therefore be the focus of this brief discussion. Fundamental

control of reconfiguration for SIMD mode during VCU-PMU communication resides in the

VCU, in that the given VCU broadcasts instructions to its subset of PMUs. The VCU is also

capable of sending permutation function commands to the IPCN for the purpose of

permuting the data in a group of PMUs. The VCU also has the ability to mask out PMUs,

which allows the VCU control over the broadcasting of instructions; it can thus change the

configuration of its subset in SIMD mode. The IPCN, also of interest in reconfiguration

strategies, was not fully worked out at the time of the initial proposal [Bri79], but its major

purposes are clear. Partitioning of the network, which can occur only in fixed-sized

blocks, is to be implemented by the K N , in order to allow parallel execution of small-size

SIMD operations. It is also used to implement permutation functions needed for SIMD

processes. The data from multiple SIMD processes can be permuted under control of the

IPCN.
4*,

4.4 The CHiP Computer. More than other designs, the CHiP (Configurable, Highly

Parallel) computer takes into consideration the implications of VLSI technology ISny82J.

For one thing, none of the communication strategies in the design makes use of crossover

paths, which have been demonsbated to decrease efficiency and increase cost when

implemented on a chip ~ ~ ~ 8 1 1 . And the design starts from the developments in what are

referred to in the proposal as "algorithmically specialized processors," which are

architectures designed for processing of particular problems, such as systems of linear

equations, tree processing, searching and sorting, and data base querying. The CHiP

architecture grapples with the rigidity inherent in these different designs not by

interconnecting a set of dedicated processors, but by implementing all of them - or most of

them - in one lattice design of switches and processors. It exploits implications of

"algorithmically specialized" processors, including construction based on a few easily

tessellated processing elements, locality of data movement, and the appropriateness of

pipelining. Clearly the purpose of reconfiguration here is quite different from what we

saw in the P M ~ design. There, reconfiguration allowed implementation of SIMD, MSrMD

and MIMD processing in image processing; here, the goal is more multi-purpose, and

reconfiguration allows efficient use as well as parallel processing. It is particularly suited

for computationally dense processing, for example, solving a system of linear equations

[Gar18 11.

(a) Overview. The machine consists of three parts: a group of identical

microprocessors, a switch lattice, and a controller. The switch lattice, a regular structure

formed from programmable switches connected by data paths, is the innovative aspect of

the design. The microprocessors are connected in a regular pattern to the switches, and the

connection of the two groups of units form the overall lattice structure. 'I'he switches have

local memory and can store several configuration settings. Using circuit switching and the

implications of the interconnections, the switches set static connections in the mesh of

possible paths. As can be seen from Figure 13, different patterns of switch-processor

interconnection are possible. Part of the 2oal in implementing the architecture is to have as

much of a lattice as possible placed on one chip, and, as mentioned above, the design,

while intricate, will never involve crossover paths, and therefore is appropriate for
. .

wafer-level technology.

Figure 13 -Three Lattice Structures in CIIiP

For a given process, demanding a given architectural pattern, the lattice is

reconfigured: a subset of the overall group of switches and processors is activated to create

an algorithmically specialized processor. Switches contain local memory that stores

configuration settings. Direct, static connections are established between processors, and

these connections are maintained until the task connected wit11 this :ucl~itccti~re is

completed. Figure 14 shows reconfiguration into a mesh pattern; Figure 15 shows

reconfiguration for binary tree processing. Note that the goal here is not partitioning for

the sake of creating simultaneously operating subsets, in that only one subset is created at

one time. Therefore, parallel processing beyorid the domain of the fundamental

design.

Figure 14 - The Switch Lattice
Configured as a Mesh Pattern

-

0 0 0 0 0 0 0 0 0

0

0

0

0

ROOT 0

0

0

0 0 0 0 0 0 0 0 0

i

Figure 15 - The S~vi tc l~ Lattice
Configured as a Binary Tree

(b) Cotztrol. Switch memories are loaded with configuration settings by the

controller, using a separate interconnection network. The settings for a given

configuration must be loaded into the same memory location in each switch. This loading

occurs before processing, and is performed in parallel with the processor program nienlory

loading. The memory locations must be the same in all switches, partly because the

controller is operating in broadcast mode when it sets the switches. The setting remains

static throughout processing in a given configuration. When a new configuration is

necessary for the next phase of processing, the controller again broadcasts a switch setting

message. There is thus only one logical step in reconfiguration before processing resumes.

(c) Switches, lattices, and the intercpnnection patterns. 'The various possible lattice

patterns in Figure 13 demonstrate that switches can have two different relations to the

processors: they can stand alone as the connection between two processors, or they can be

part of a set of switches forming a corridor. This allows specialization of switch use, with

corridor switches tending to perfork routing, and "coupling" switches acting like

processor ports for connection with conidor transmission. Lattices themselves can also

take different forms. Fewer switch comdors provide tighter coupling but allow for less

flexibility and a potentially high incident of processor underuse. Maximum efficiency

finally depends on the particular applications of the system. And final patterns of

embedding do not depend on geometry alone; more sophisticated methods of use need to

be employed.

4.5 TRAC. The Texas Reconfigurable Array Computer, developed at the University of

Texas at Austin, was originally designed for scientific processing,'but the design

demonstrates a common goal of reconfigurable architecture - the restructuring of one

system for a wide range of use. The focus of its design innovation is its dynamically

reconfigurable banyan network [SejsO]. Of the systems we are discussing in this section, it

is closest to the CHiP computer in intention - a multi-use system - yet it stands out in its

focus on intercommunications needs. While it is no longer under development, its design

proposal allows us to see a certain type of strategy in reconfiguration: interconnection of

many system elements for the sake of various tasks.

(a) Overview. The initial TRAC design calls for a system connecting 16 processors

to 8 1 memory and 40 elements. The resources can be partitioned into from 1 to 16 units,

which run independently. As with other designs, independent control of partitions and

real-time (referred to in TRAC literature as "space sharing") rather than tin~e sharing are

goals. The system is dynamically reconfigurable while running.

The TRAC subsystems can operate in various types of parallel execution. During

asynchronous MIMD operation, a given task may fork into subtasks. The system also

supports asynchronous pipelining. Vector parallelism is also supported, as well as
' 3 .

synchronous parallelism with external control of startups and interrupts.

(b) Control. Control centers in the scheduler. When a task begins, it passes

information to the scheduler about type of . . data structure and the urgency of the task.

Urgency can determine the numtier of processors allocated. The scheduler acts as

arbitrator among tasks for resource contention. A special aspect of the system is the

concept of "folding" of elements in a vector. If a task is allocated fewer processors than it

needs, elements are packed into the available memory modules, in a process that doubles

up the use of the available memory elements This packing is transparent to the user, and

does not require additional machine-language instructions.

(c) Processors. Each processor operates with 8-bit operands, and multi-precision

data is processed in parallel using multiple processors. An instruction tree connects all

processors in a partition during an instruction-fetch cycle. The memory element of one of

the processors fetches the instruction then broadcasts it to all of the other processors in the

partition.

/ - Data Subtree connecting P1 wlth
/

MI, M2, M3, Mq

- lnstruct lon Broodcost Tree

connectlns PI wlth P8

- Also Shared Memory Tree

allowlng PI and P8 t o share H8

Figure 16 - The Banyan Interconnection Netw~ork for TRAC

' t k

(d) The banyan interconnection network. At the heart of the TRAC system is its

banyan network. Three types of "subtrees" in the network are established i n the system:

data trees, instruction trees, and shared memory trees. They are trees in terms of the

utilization of the banyan configui-ation (see Figure 16) but they perform logically as

busses. The data tree connects a processor with memory; the instruction tree broadcasts

instructions to participating processors in SIMD mode; shared memory trees connect a set

of processors to a single memory module for the purpose of sharing data. The banyan

configuration is found to be attractive for the reason that most designers find multistage

interconnection networks attractive: the decreased number of switches. Unlike the

crossbar networks, the switch number of which increases 0(n2), the banyan network

switch need increases O(n*log n).

4.6 Other Proposals. Many other reconfigurable architectures have been proposed,

and have attained various stages of development. Lundstrom and Barnes describe a

system to be used as a Flow Model Processor in the Numerical Aerodynamic Simulator for

NASA IJun801. Its prime interest is MIMD for parallel processing. The system includes

memory that is connected individually to each processor and memory that is shared; the

goal is maximum memory availability to reduce conflict. The interconnection network

chosen to connect the proposed 512 processor/local-memory with shirred memory is the

baseline network of Wu and Feng [Wu78]. Reconfiguration is explicit, with source code

that compiles into the same program for execution for all processes in an array. Use of

Fortran is proposed, with an extension of two new instructions, the concurrency construct

"DOALL" and the definition of index sets through "DOMAIN," a means for distinguishing

local from global variables. All processors can request connection to a n y memory motl~rle

in the 512- processor x 512-memory configuration. In another paper, Gray expands on

Snyder's work on the CHiP system to offer a distributed control structure that can be used

to grow automatically the configurations described in CHiP from seed states implanted at

arbitrary locations in the array [Gra82]. Tbis is an enhancement to the Snyder design, in that
'&

the seed states replace thk need for setting the switches individually and externally. (See

section 4.4 of this study.) Based on the assumption that the different possible

configurations of the lattice are fixed, predetermined, and capable of being stored locally in

the memory of the selected "seed,stateU switches, patterns of configuration are generated

outward from the "seed state" switch to the neighboring switches. This reconfiguration

strategy is aimed at functional enhancement but also fault tolerance. All processors are

identical and control is distributed throughout the array, and, as in the CHiP architecture, no

multistage interconnection network is implemented.

A reconfigurable multirnicroprocessor research system under developnlent at Los

Alamos National Laboratory is reported on by Tnijillo [Tru82]. It is a tightly-coupled,

shared-memory MIMD system supporting reconfiguration between processors and memory

nodes, for the purpose of structuring processors into rings, trees and stars. It uses a full

crossbar, multiple bus network between processors and memory to allow for full

processor-to-processor and processor-to-memory communication. Three types of

processors are included in the system: a system control processor, general floating point

processors, and dedicated data transfer processors. Processor-to-processor

communication is implemented indirectly through the processor-memory interconnection

by data transfer processors that move data between global memory nodes.

F'rocessor-to-memory communication is provided by memory-mapping logic at each

processor, a multiported memory controller at each global nlemory node, and the multiple

bus interconnection network. An orthogonal packaging scheme allows minimal bus

lengths for the physical connection of processors and memory nodes. l'he system is

designed as a research tool for implementing and evaluating parallel processing algorithms

on different multiprocessor architectures to be reconfigured as subsets. A different

strategy is the data-flow, "language-based" reconfigurable architecture proposed by Chen

and Ritter that is designed for use as a processor for parallel computation of variable image

neighborhood operations [Chew]. Reconfiguration is important here because the data of

pixel neighborhoods is variable. The sys&m is "language-based" in that processing is

defined in terms of a few elementary operations and functions; vririor~s image processing

tasks, such as edge detection and Fourier transformations, are developed out of the

44

elementary operations and functions. The . . tasks are then expressed as data flow graphs that

are mapped to the reconfigurable system. Image data is input through a front-end system

that interfaces with a distributed network that leads to various operation modules.

Reconfiguration is controlled by an arbitration network.

A methodology for performance enhancement through reconfiguration architecture

for VLSI design comes from Japan [Iwa85]. The increased numbers of integrated circuits

that can be put on a chip also means increased design manpower and design time. What is

suggested is a hierarchical design structure, to distribute tasks in the design process, and

versatility of the inner modules, to allow for multipurpose use. A hard disk controller that

can interface with many different drivers and that can be programmed by users for such

variables as track format and parity byte length is the first implementation of the method.

Finally, the Cosmic Cube, an experimental computer for highly parallel processing, has

been developed at Caltech [Sei85]. See Figure 17.

Figure 17 - A Iiypercube \Vitli 64 Nbdes

The Hypercube consists of 64 sma~~computers that are connected with bidirectioni~l,

asynchronous, point-to-point communication channels. This is quite different frorn other

proposals, in two major ways: 1) the MIMD machine uses message passing rather than

4 5

shared variables, and 2) the processor/memory units, which do not need a interconnection

for processor/memory access, ark dl connected in a "hypercube" mesh that allows

one-to-one communication between processors. A direct network like the hypercube is

intended to work very well with large numbers of nodes. The major implication of the

point-to-point communication in the Hypercube is that there are no switching mechanisms,

and the processor and storage units are ideally intended to reside in high-density

packaging, most ideally on a single chip.

This review of various architectures should demonstrate the range of goals and

designs that use reconfiguration strategies for performance enhancement. The next two

sections of this paper will focus more in depth on the two issues of communication and

control in four major systems.

5. STRATEGIES FOR INTERCONNECTION . .

Interconnection directly influences ~rocessor/memory relationships and determines use of

local versus shared memory [Gaj85]. The distinction has been made between "logically

partitioned" systems - those that use software techniques - and "physically partitioned"

systems - those that use hardware switches [Sie79b]. If we use this distinction, then we are

speaking here of physically partitioned systems, although software control is present. The

various strategies proposed for interconnection always have speed and cost as issues, but,

as we shall see, changing technology is also an issue, and it may well alter the speed and

cost of a given strategy.

5.1 The dynamic architecture of the Kartashevs makes use of the simplest

reconfiguration strategy of the four under analysis. The initial proposal calls for a lining

up of computer elements, CEs, each containing a processor and local memory, and
e

connecting them with a data path from one to the next [Kar79a]. That is, if there are five

CEs, CE1-5, CEl can be connected to CE2 , but not to CE3 , and so forth. See Figure 18.

The connecting lines (MSEs) can assume three modes: right transfer, left transfer, and no

transfer. If transfer mode, left or right, is in operation, then the adjacent CEs in question

are linked, or are part of a subset computer C. In Figure 18, CEsl-4 constitute a subset,

and the MSEs between them are in transfer mode. The MSE between CEq and is in no

transfer mode.

Figure 18 - DC Group with Four Processors Connected

Further notation is necessary here. CEs are linked together to form a subset, or

"computer," C. Each C has k number of CEs, and one of those CES, i, is the leftmost, or

most significant, in the linear, horizontal configuration. Thus each "computer" is designated

as Ci(k), in Figure 18, the "computer" interconnected by the MSEs in transfer mode is C1(4).

This notation points up the limited configuration possibilities in the Kartashev system: only

adjacent CES can be connected. The different possible configurations therefore is quite

limited, and easy to determine. A five CE system, for example, yields only C1(5), C1(4) C5(1)

In a later paper [Kar80a] refinements were made to the original proposal, to loosen the

tight coupling between processors and local memory elements. Basically, interface units are

introduced into the design to allow each processor to communicate with :dl or any of the

memory elements, not just the one that was tied to it in the original proposal. However, the

limitation of communication only between adjacent processors, and the resulting limited set

of configuration possibilities, remains; more recent work on task pre-analysis [Kar82a], and

the most recent discussion of the overall system [Kar86], retain the basic elements of the

original design.

This proposed reconfiguration strategy has the advantages of simplicity and fast data

transfer rate. And in an implementation with many processors, there would be considerable

performance improvement over more rigid systems [Kar78a]. However, the

intercommunication structure, based on connection of adjacent processors only, is the least

versatile of the structures we are investigating, and clearly, in an ongoing processing

environment, the loss of performance due to fragmentation will be great.

5.2 The PASM architecture, when first fully proposed [Sie8laJ, did not have a specified

interconnection network; two different possibilities were being considered, the Generalized
#>,

Cube and the Augmented Data Manipulator (ADM). Recent public:ltior~ on the project lSch861

suggests that the decision has been made to implement a multistage cube network. The

goals, for whatever network, are the same 1) a switch growth rate that is less than the N~

growth rate of crossbar, the ~ u b e ' h a v i n ~ N/2 switches and the ADM N switches; 2)

distributed control by routing tags generated by each processor; 3) SIMD and MIMD

operation; and 4) partitioning into independent subnetworks [Siegla].

The interconnection network is to be used in PASM to connect processor/memory

elements (PES), and the goals for the network parallel the goals for the system at large: 1)

massive processing, to the size of 1024 processors, which demands a reduction in the number

of switching elements; 2) total reconfiguration potential for the processors, which can only

be attained through distributed control; 3) application to all necessary tasks for image

processing, which demands both SIMD and MIMD; and 4) potentially total control in

subnetworks. In SIMD mode, the machine consists of a control unit, PEs, and the

interconnection network. The control units broadcast instructions to the processors; and

whatever subset of processors has been grouped, and whose data paths to the control unit

have therefore been enabled, execute the same instruction at the same time. Data is taken

from the local memory associated with each processor. In MIMD mode each processor can

follow an independent instruction stream, with instructions coming from the individual

memory associated with each processor. Here the controller does not broadcast instructions,

but it may coordinate processor activity.

The Cube network has been presented in the PAShl literature under at least three

different names, "Generalized Cube" [Sie8la], "Multistage Cube" [Sic80], and "Extra Stage

Cube" [Ada821 [Kue85b]. This leads to some confusion, so the present discussion will be

oriented to the basic design of the Binary n-Cube network, designed by Pease [Pea77]. See

Figure 19.

The Binary n-Cube network is appropriate to PASM because it was originally

designed for processor-to-processor comnfhnication rather than for aligning data between

memory and processors [Bro83]. The Cube is somewhat analogous to the Omega network,

Figure 19 - The Cube Network, in Topology and Cube Transformation

but the difference is shown by the graphic representation of routing along the edges of a

three-dimensional cube in n-space. Horizontal lines connect points whose labels differ in the

low-order bit position, diagonal lines connect points whose labels differ in the middle

position, and vertical lines connect points with differences in the high-order position.

Mapping these connections to the multistage network represents the strategy for individual

box control: the addresses of the two input lines to an interchange box at stage i differ only

in the ith position [Sie79a]. The elegance of Siegel's proposal lies in the use of the cube

structure to partition the set of connected elements into subsets that constitute independent

networks [Sie80]. Reconfiguration is greatly enhanced, clearly, over the linear strategy of the

Kartashevs. The number of permutations is greater; however, blocki~ig stilI occurs, both in

the set and in the subsets.

5.3 The Star local network is the only system under analysis that takes into

consideration in its communications strategies the ISOIOSI seven-level reference model

[Zim80]. Star is designed for image processing; it organizes multiple host computers, VLSI

units, memory units for real-time image analysis, and large-scale database nlanagemerlt units

around the communication subnet Starneb.IWu821. This subnet implements the first three

levels of the OSI model, that are normally referred to in the literature as the physical, datalink,

and network layers. Star is the most loosely linked system of those we nre studying.

50

Star makes use of a modified baseline , . network. A baseline network unmodified

displays characteristics s-lar t6 those employed in PASM: it provides multistage connection

between elements, and it expands at a growth rate less than that of the crossbar. But as we

have seen, these multistage networks allow for only one path between elements and a high

blocking rate. Thus, the modification to the baseline network proposed in Star is the addition

of an extra stage, as shown in Figure 20. The goal here is to provide greater fault tolerance

and higher availability. Simple analysis of Figure 20 reveals that the extra stage allows the

network to have two connection paths for each pair of elements. The routing scheme stays

the same except for the extra stage, which is the new first stage. Both outputs of the source

switching element - which is the new stage - will lead to the destination; thus selection can

occur at the source based on priority or system fault.

Figure 20 - Star's Modified Ijaseline Network

5.4 The NYU Ultracomputer uses reconfiguration of its network for support of a

message-passing strategy; this purpose puts the design outside the general realm that we

are discussing here, which is reconfiguration for the purpose of the creation of system

partitioning for the sake of fault tolerance and/or performance enhancement. However, its

design of a shared-memory, multiple-instpction-stream, multiple-data-stream sytstem

includes interesting variations on our present discussion of interconnection strategies, and

therefore a review of the system seems warranted.

The Ultracomputer and its interconnection network can be described in the context of

its goal to approach the "idealizd" 'parallel processor, for enhancements to the network

make that goal possible [Got83a]. The ideal parallel processor consists of autononlous

processing elements sharing a central memory; however the crucial issue is the possibility

of simultaneous reads and writes directed at the same memory cell and accomplished in a

single cycle. The designers acknowledge the physical impossibility here, and offer instead

of a "real" parallel processor offer a "virtual," as we might call it, version of the real thing.

This is accomplished through a single primitive, the fetch-and-add operation.

Behind this operation is the "serialization principle," which in a sense is a rewriting

of the very notion of parallelism. The principle is that the effect of parallel processing can

be seen as a serialized, unspecified, order of operations. A simultaneous request to the

same memory cell for one load and two stores, for example, results is wllat can be seen as

a serial process. The memory cell comes to contain one of the quantities written to it, but

not both, and the load will return either the original value or one of the stored values; and

because there are two different stores, even if a stored value is returned it is not necessarily

the one that the memory cell finally contains. All of this is accomplished in one cycle, not

a series of cycles; the serialization principle describes effect, not implementation.

The function of the fetch-and-add operation is to implement the seri:ilization

principle. The operation appears as F & A (V, e). V is an integer variable and e is an

integer expression, and the operation is indivisible. The operation returns the old value of

V and replaces it in memory by the sum of V + e. That is, two operations that we would

normally consider to be separate, and potentially conflicting, are put in one "critical

section" unit. The serialization principle is in operation here in that if V is a shared

variable and many fetch-and-add operations address V simultaneously, they would appear

as if they had occurred in an unspecified order; that is, each operation will yield an

intermediate, and different, value for V and the final V stored in memory would be a

result of all operations. This includes the possibility of the various fetches having arbitrary

results. If PEi executes ANSi <-- F&A (V, ei) and simulta~~eously PEj executes ANSj
. .

<-- F&A (V, eij) , and if V is not sil~iultencoi~sly t~pd;ttcd by yet :lno~hcr processor, tllcn,

in addition to V in memory becoming V + ei + e j , one of two conditiotls will occur with

the fetches:

ANSi <-- V and

or

ANSj <-- V and

ANS <-- V + ei J

And always, V <-- V +ei + e j . The goal is the processing of parnllel algorithms

without critical sections, exclusive of the fetch-and-add instruction, and some results of

this execution in the Ultra environment have been reported [Kru82]. All of this takes place

in the context of an interconnection network that basically makes use of the Omega

topology pictured in Figure 21.

Figure 21 - The Ultracomputer's Omega Network

The nature of reconfiguration in the Ultracomputer resides here: the network uses a

sophisticated switching design to 'all& the system to approach the ideal parallel processor

described above. This is only in a limited sense reconfiguration for perfol-rnance

enhancement in the sense that we are in general discussing; for one thing, in no way does the

reconfiguration of the Ultra network change the topology of the system. The goals for the

network include three that it shares with other users of this kind of network: 1) bandwidth

linear in N, the number of PEs; 2) Memory access time logarithmic in N; and 3) expansion

at a rate of N log N. However, it has two special goals: 1) routing is to be performed at the

switch level; and 2) concurrent access by different processors to the same memory cell

occurs in the same time as access by one processor. The two special goals are associated

with the issues involved with the serialization principle, the fetch-and-add operation, arid

parallel processing. Local routing and concurrent access feed into the enhancements to the

Omega network provided by Ultra. First, the network is pipelined, which maximizes the use

of local routing and allows a delay between messages that is equal to switch cycle time, not

network transit time. This means that the network is message switched, and that switch

settings are not maintained while awaiting reply. This strategy would nornlally have its own

high blocking factor; to offset this, each switch has a queue which holds requests, so that the

need for resubmission is reduced. And the destination and return adresses do not have to be

transmitted with each message. Instead, the origin of a message entering the network is

determined by its input port. This means that only the destination address is needed. By a

simple algorithm, each stage of the network replaces the bit that sent the message to that stage

with a bit replacement signifying the return address. When the message has reached its

destination, the bit pattern that allowed the transmitting to the destination has been completely

changed into the return address.

There are other issues associated with the network in Ultra, iricluding the combination

of requests and the implementation of the k~ch-and-add primitive; they are reserved for

discussion under control, in the next section of this paper.

6. ISSUES OF CONTROL , . .

The possibilities of system operation in subsets under reconfiguration increases

considerably the issues involved in control. First of all, control means here determining,

maintaining and terminating the configuration itself, as well as (possibly) coordinating the

subsets created. Routing of instruction streams is a central issue here, and particularly in

MIMD mode becomes problematic, because each partition must have its own control

structure. Much of what would under simple SISD processing be handled in hardware

becomes in a reconfiguration environment a complex software issue. By looking at the

issue of control in the four systems that were discussed in the previous section - the DC

Group, the PASM architecture, the Star Local Network, and the NYU Ultracomputer - we

will see some proposed solutions to the problems of control in sophisticated systems.

All of the issues involved in control cannot be discussed for all four systems,

because the awareness of these issues varies from designer to designer. However, the

systems under study do offer various and interesting solutions to the problems of control,

and we will see that these solutions do not necessarily grow in complexity with the

complexity of the overall systems, largely because there is a tradeoff between coniplexity

and flexibility in larger systems.

6.1 The DC Group solution to the problem of control centers on two principles of

reconfiguration in the system: 1) If there are n computer elements, CES, consisting of

processor and local memory, then there are potentially 1 to n number of possible subsets

that can be formed, with from 1 to n possible different timing demands; 2) all of the

possibly n different computers should be able to operate concurrently; and 3) the possible

different combination of CEs is limited by the linear configuration of the system discussed

in section 5 of this paper. Each CE must potentially have its own control unit, which must

be coordinated with other units of other CEs in a computer that is constructed of more than
4*k

1 CE; that is, potentially n control units will have to function as one [Kx78].

Control issues and proposed solutions were described early by the Kartashevs for

their dynamic architecture [Kar78d] [Kar77]. Rejecting the synchronous and asychronous

control organizations appropriate to'systems with one central or several fixed local control

units, they proposed a modular control organization. Originally thought of in the context

of LSI technolology, each CE, synonymous with each LSI module, wiis provided with a

local modular control device, MCD, which was capable of running a subset with a size of

1, but which was also capable of being coordinated with all other MCDs of a given

configured subset up to size n.

The thinking here, originated in an earlier technology, has not changed, it seems, in

its basic concepts. Each program instruction is written concurrently to all modules of a

subset "computer," although it is unclear what overall control element of the system does

this writing [Kar79a]. It is executed during one instruction cycle, but because the operand

word size and memory speed vary, the MCD generates variable subcycles. But these

subcycles are the same, of course, for all members of the subset computer. The MCD is

the same for all elements in the subset, and processor dependent and data fetch intervals

last the same time in all modules. The number of nodules cont:lined il l a given subset does

not affect sequencing or duration of instructions or cycles.

As we observed in section 5 of this paper, the DC group design allows mainly for

linear communication between adjacent elements; thus, as Figure 6 shows, a system with 5

computer elements yields only 16 different configurations. This sin~plifies communication

control somewhat, in that broadcasting of instructions among connected processors occurs

by right- and left-transfer of the connecting bus. One can conceive of a subset, therefore,

as that group of processors that has its outermost bus lines set in no-transfer mode.

Transfer control, that is, the setting of the connecting bus into right-transfer, left-transfer,

or no-transfer mode, is provided by a V monitor that is external to the group; if several

units makes concurrent communication requests, the V monitor resolves conflicts on the
d*<

basis of priority codes assigned to the programs being computed. The V monitor is also

connected by a separate bus to every module. In a given subset, one t~iodule, the most

56

significant, transfers to the V monitor the control codes necessary for architectural

transitions. Thus the V monitor is involved in both instruction requests and

reconfiguration moments.

6.2 PASM control, unlike that of the Kartashev system, does not allow for the

configuration of one processor element as one subset, and this limitation is evident in the

control structure. The microcontrollers, MCs, are a set of microprocessors that act as

control units for processors in SIMD mode and control the activities of the processors in

MIMD mode [Sie8 la]. If there are Q microcontrollers and N processors, then NlQ is the

size of the smallest allowable partition. The number of allowable partitions is therefore

equal to the number of microcontrollers. The PASM literature speaks normally of 1024

processors and 16 controllers, with a resulting 64 as the number of partitions.

Each MC is a unit consisting of a microprocessor and a memory element; like the

processors themselves in PASM, the MCs have double memory elements so that memory

loading and processing can go on simultaneously. When the subset is in SIMD mode, each

MC fetches instructions from its memory element and executes control flow instructions, as

well as broadcasting the data processing instructions to its connected processors. In MIMD

mode the microcontrollers help coordinate the activities of their connected processors.

What seems to be unique to the PASM design is the notion of permanently assigning

a given MC to a given subset of PEs. The other systems under study do not have this

limitation. Because of this structure, the operating system only has to schedule and

monitor the MCs; it never interfaces directly with the processors themselves. This suggests

a special permanent subdividing of the overall system. The design also eliminates the need

for a interconnection network allowing for communication among all processors, because a

strong definition of precisely which processors need to talk to each other is determined

from the outset. The obvious disadvantagk of this system is that larger subsets can only

grow by the order of two, and the total interconnection possibility of N! allowed by a full

interconnection is not possible in PASM.

57

6.3 The Star network centers control of network routing in the switches. The

switching element, which is mohulir and always constructed of a single type, is built of

two major parts, called the control plane and the data plane [Wu82]. Data communication

occurs in the data plane, and the control plane generates the control signals that establish

connection paths used to transmit the data of the data plane.

The control plane sets up the path, by setting the switches, from the source to the

destination, according to the routing scheme based on the modified network topology

discussed in section 5. Through a set of input control lines, the control circuit receives

signals from the previous stage in the network, develops control signals for its associated

data plane, and sets up the signals for transmission to the next stage. The control plane has

four internal registers to record the current connection status of the switching element.

Starnet is a circuit switching network, and with the above-described design the

physical path for transmission is established in one clock period with two phases. In

phase one, the request for connection is sent down the switches according to the routing

scheme, and the control planes in each switch go through the handshaking process

described above. If the request has been successful, and no conflict has been encountered,

an acknowledge signal is generated by the receiver. This completes phase 1. During

phase 2 the switching elements that have already been involved in the path establishing

update their internal registers and set up the connection path. Thus, at the end of phase 2

the physicd path is established; it will remain established as long as necessary, and until

the source issues a signal to disconnect.
0

Within this scheme, during SIMD processing a controller broadcasts instructions to

the processors that have been established as part of the subset for SIMD mode, and the

instructions are then executed against the data stored in the associated memory. A task in

SIMD mode is initiated when a task descriptor is sent by a cooperating processor to a VLSI

processor unit that will serve as the contGller. The task descriptor inclodes the number of

processor units and the layout of the data streams. It is then the job of the controller to

transmit the signals to connect the necessary processor units, and these individual

58

processor units establish necessary data paths to memory units.

In MIMD processing, wheninbividual processors execute independently, the

network capablity is used to establish configurations based on process needs; this is clearly

one of the goals of a full interconnection network. The strategy in Star is called

distributed scheduling; all free VLSI processors are equally accessable to a requesting

controller, and no heirarchical or precedent relationship exists among the free processor

units. When a task enters a cooperating processor, a task descriptor is formed to exploit

parallel execution. The descriptor is passed by the cooperating processor to a free

processor in a chain-of-command strategy to complete the parallel execution with as many

processor connected as necessary. All connections in the communication network,

connecting all cooperating processors, are maintained until completion of the task.

6.4 The NYU Ultracomputer makes use of a switch-oriented, local control scheme

that is similiar to the one found in the Star network. However, while Star is circuit

switched, the Ultracomputer is message switched. This means that full paths are not

established from sender to receiver in a predictable cycle, and that switch settings are not

held. Furthermore, the strategy of control is designed to maximize the goal of the system

to provide for the kind of parallel processing described in section 5.

Control in the Ultracomputer involves maintaining the queue described in section 5,

generation of destination and return addresses, and implementing of concurrent loads and

stores [Got83a]. Because switch settings are not maintained, the system needs an elaborate

method of keeping track of addresses. It does not transmit destination and return

addresses with each message; rather it provides an elaborate algorithm that performs bit

replacements at each stage of the network. Basically, the relevant bit that determined

routing to a given switch is replaced, after use, as it were, with a bit that will allow for

return. When the message has reached the destination, the destination address has been

replaced, bit by bit, by the source address."~hus, storage for address in the

message-switched packet is mimimized.

The most elaborate innovation in the , . Untracomputer is the strategy for combining

requests to the same memory cell. based on the serialization principle discussed in section

3, the following concurrent requests can be combined:

1) Load-Load : one of the requests is forwarded and the return is sent to each

processor that generated the request;

2) Load-Store : The store is forwarded and the resulting value is returned to the

processor requesting the load;

3) Store-Store : forward one store and discard the other.

These combinations can occur at any stage of the network. They can also be combined

with the fetch-and-add operation at the switches, because the switches contain the

necessary adder to implement the F&S. And a generalization of this design allows for a

fetch-and-@ instruction, providing for other arithmetic functions. Thus, we can see that the

special logical considerations of the Ultracomputer determine greatly issues of control in

the interconnection network.

7. CONCLUSION

7.1 What Has Been Attempted in this Study. In order to discover where

reconfiguration "comes from," and so that we could formulate some fundamental premises

upon which to proceed with the analysis of later developments, our discussion began by

looking at some early work in computation, both in theory and in the development of

proposed designs. The early classic thinking on computation, the well known

presentations of Turing and von Neumann, was examined first. We then looked at the

efforts of Miller and Cocke to provide a theoretical framework for developing notions of

reconfiguration, as well as the two early proposed systems of Estrin and associates and of

Reddi and Feustel.

We saw that many of the motivations for reconfiguration appear early in the

literature, but that the technology had not yet sufficiently developed to allow a fully

developed set of motivations and criteria. We observed that reconfiguration appears very

little in the early think on computing, because aspects of finite time and finite space do not

influence that thinking. The early literature, therefore, does not provide us with a model

for reconfiguration. Reconfiguration rises late, relatively speaking, in the development of

the technology; it rises as a response to problems in the technology itself, rather than as a

response to theory of algorithms and problem solving. Its model grows within the

historical dimension of the development of the technology itself.

The focus of the discussion then turned to fault tolerance. The attempt was made to

clarify the definition of fault tolerance and the issues involved in it, and to present a

description and analysis of some of the major develop~nents in architecture for fault

tolerance. Siewiorek's conception of the stages of development in fault tolerant

architectures has been regarded as a scheme that stops before the more advanced designs

for fault tolerance. Only in the last two stages of his five-stage development toward

"dynamic redundancy" can we begin to see what we call here reconfiguration. These last

two stages were further discussed by an investigation of two specific systems, the Tandem

computer and the C.vmp system, which represent the fourth and fifth stages of

Siewiorek's scheme. This discussion of dynamic redundancy was therefore followed by a

discussion of some recent designs for reconfiguration, and "reconfiguration" is seen here

as replacing "dynamic redundancy" when we begin to speak of the use of interconnection

networks for fault tolerance. Investigation of the use of communication networks was

demonstrated by three quite different designs, the Extra Stage Cube, the Gamma network,

and the MPP system.

The goal of reconfiguration for fault tolerance is not the prevention of failure, but

rather the manipulation of failure. The inherent tendency toward failure is countered by the

potential for protection and recovery, mainly through the exploitation of another inherent

tendency, the tendency toward permutations for protection. Because failure is a state that

is planned for the design can be more adventurous. In early stages of fault tolerance, the

tolerance is provided in all cases by redundancy, either time redundancy, usually provided

by software, and basically characterized by repeated execution, or physical redundancy,

most primitively characterized by the wheeling in of a new, duplicate system. However,

while design can be less conservative, and while fault tolerance can becorne more accurate

and efficient, the implementation of more advanced designs does not replace the basic

process of redundancy; it simply makes this fundamental process more sophisticated. And

its goal remains the same: the correct execution of a specified algorithm in the presence of

defects.

The discussion then turned to reconfiguration for the sake of perfor~i~nrlce

enhancement, largely for tasks in image processing and parallel processing. Many

reconfigurable systems have been proposed, and the review considers the P M ~ system, the

CHiP computer, and TRAC, as well as other proposals. This review demonstrated the

range of issues involved in reconfiguration for perfomlance enhancement, including the

nature of the processors, the relationship of processors to memory, local memory versus

global memory, scheduling and other issd6s of control, interconnection cotn~nunication,

and purpose for which the system is designed. Sections 5 and 6 of the report discussed

interconnections strategies and control in four other proposed systems, which were

deemed to be the most fully developed in the literature: the dynamic architecture of the

Kartashevs, the PASM architectuie, ;he Star local network, and the NYU Ultracomputer.

In the remainder of this conclusion, some observations on the tendencies in the

design of a reconfigurable architecture will be attempted, and some remarks will be made

on further areas of research that would extend our understanding of the subject.

7.2 The Nature of Reconfiguration. When a system undergoes reconfiguration, its

nature as a whole is changed because of the demands of a specific task, and this change

may result in the partitioning of the system, and therefore the creation of subsystems.

Advances in research in VLSI technology have made it feasible to consider the

implementation of massive and complex parallel architectures built of thousands of

processors, which provide enormous throughput; this potential alters radically the notion

of what constitutes the set of computable problems. But the availability of such massive

power is not alone the solution to all computation. These large numbers of processors can

be configured in different ways, to perform SIMD- and MIMD-based tasks, among others.

It is clear that not only masses of processors, but also their configuration, lead to efficient

complexity. This leads to the problem of the degree of match be tween algori t l~m and

architecture that efficient complexity implies. A system with a fixed architecture will only

match a small set of the computationally complex algorithms that exist. It is well known

that a massively parallel system, when mismatched with a task demanding a different

configuration, experiences performance degradation. Thus we have the justification for

our interest in the development of architectures that can reconfigure into a different

complexity, under the control of software. The goal here is proper match between

algorithms and architectures, no matter what the complexity and demands of the

algorithms.

An important issue in designing a reconfigurable architecture is the nature of

communication in the system, both arnoni'the elements in a subset and among the subsets

of the entire system. Complexity in algorithms often means complexity in communication

needs among processors, memory, and 110 devices. Reconfigurntion in multiprocessing

63

environments places extra demands on communication, and this topic often dominates

serious investigation. Communication figures in control of partitioning, scheduling, and

other system issues, as well as in processor and memory communication in the

reconfigured subset. Goals for communication are total communication - the highest

possible number of linkage permutations among modules - but also the least possible

complexity and cost. A popular approach to communication is the implementation of the

multistage interconnection network. In spite of its delay, its relatively high blocking

factor, and the implications of its inevitable crossover lines in a VLSI environment [Fra81],

the multistage ICN remains attractive because of its limited growth rate when large numbers

of connected elements are being considered. In the light of the discussion of this issue in

the literature, some strategies for interconnection can be seen to be much too limited, most

obviously the linear bus connection strategy of the Kartashev dynamic architecture. And

the multistage interconnection network seems to work; recent reports on the Star system

[Wu85], PASM [Dav85], and TRAC [Des85] all report favorably on its use. This is especially

true of the implementation of the TRAC prototype in which the use of banyan

interconnection network is considered to be the most important contribution of the TRAC

project.

Two important aspects of the implementation of a multistage interconnection

network should also be mentioned here. The first is the problem of local versus global

memory, which results, when dealing with an interconnection networ-k, in the issue of

whether to attach local memory to given processors or to have global memory that is

accessed by all processors via the ICN. By its very nature the nlultiprocessing environment

is meant to obliterate the "von Neumann bottleneck," the problem of one processor at the

center of a powerful system; but the design strategy that demands access to memory by

processors over an ICN runs the risk of creating a new bottleneck, here not in the
'\,

processing, but rather in the conununication link. As we have seen local memory seems a

solution here, but sophisticated use of the interconnection network, particularly the

strategies employed in the NYU Ultracomputer, is a solution that allows use of global
. .

memory. The other aspect.of ICN' implementation is the nature of communication beyond

mere topology, specifically the methods employed in setting switches. Early plans for

external control of switches seem to have given way to methods of local switch control,

which decrease blocking and allow greater flexibility. The use in PASM of the extra stage

cube topology is representative here. But also of concern is the issue of whether or not the

network should be circuit switched, message switched, or both. The Ultracomputer, with

its queueing at switches and its combining of instructions at switches, represents a

sophisticated approach to message switching in an interconnection network. The PASM

cube allows both circuit and message switching, and also of interest is the TRAC system,

whose banyan network is capable of implementing both circuit and message switching.

Much of this discussion does indeed focus on multistage i~iterconnection networks

for both fault tolerance and performance enhancement; however, it would be narrow in

focus to think of the communications needs of reconfigurable architecture in these terms.

We have seen, for example, the lattice structures employed in the CHiP architecture, and the

importance of the 4N grid communication strategy employed by the MPP system.

The development of interconnection strategies dominates reconfiguration for both

fault tolerance and performance. This suggests a close affinity between these two design

issues. Advances in communication and control can be employed for either purpose.

However, our analysis seems to indicate that the connections between fault tolerance and

performance must be carefully limited. Redundancy is an impon;int dividing point:

redundancy is the center of reconfiguration for fault tolerance, whereas maximization of

resources, with a minimum of overlap of redundancy of resources, is the purpose of

performance enhancement.

7.3 Suggestions for Further Study. As stated above, this survey begins at the
'l

advent of VLSI technology, but we observe in the systems under study a need for stronger

impact of the new technology on the thinking about system design. Certainly

multiprocessing systems will make use of chip advances for the individual processors in

the system; but we have seen a deske to use off-the-shelf processors, rather than attempts

at individual design; and most obvious is the persistence of the attraction of con~munication

links that are not chip-based, and which have as their performance criteria pre-vLS1

considerations, mainly the problem of growth in the number of switches in a network.

Fault-tolerant circuit layout designs, including spare row and column organization,

enhance integrated circuit yield w00861. There are of course problems of cost and chip-pin

ratios with the technology. This is a complex issue and demands consideration that would

expand greatly the scope of the present study.

One of the most interesting aspects of reconfiguration is the pre-analysis of

algorithms, and the growing investigation of the union of actual processes with

architecture. The high-level language program is a view of one single system carrying out

a sequence of computations; on the level of the machine, a different view prevails, one in

which the execution of instructions, allocation of resources, and structure of

comrnumications is many-layered and representative of the actual process in a different

way. Many of the systems under study are structured for the task environment. The CHiP

system, for example, in an obvious way shows reconfiguration of its lattice network for

the sake of process. The tendency here is beyond reconfiguration for the sake of creating a

general-purpose machine, to reconfiguration to the sake of specific purposes in a specific

environment. It was stated in the beginning of this paper that reconfiguration perhaps

stands in opposition to the tendency toward dedicated systems; but with the potential of

reconfiguration within specific task environments, most notably irnage processing, we see

the development of an interest in reconfiguration that does not make a machine general

purpose, but rather oriented to a predefined subset of tasks. A report on the PASM project,

for example, deals with the uniting of the design of the system with the specific task of

contour analysis for image processing [~$683].

The recent efforts toward designing a reconfigurable architecture are ernerging

beyond the stage of paperwork design into the stage of implementation. The recent report
. .

on TRAC announces an up-and-iunning prototype, with a developed instruction set and

operating system. The originally proposed Banyan network has been successfully

implemented. Packet switching allows asychronous communication among the TRAC

processors, and the network supports the dynamic generation of the three tree-shaped,

circuit-switched communication structures - shared tree, data tree, and instruction tree - that

were in the original design [Des85]. Also of interest is the development at IBM of the

Research Parallel Processor Prototype (RP3), which will attempt to implement the research

efforts of both the Nnr Ultracomputer and the Caltech Cosmic Cube in a full-scale

research-oriented machine supporting 512 microprocessors [PfiB]. It is reported that

performance evaluation and detailed physical and logical design have already provided

results, and that the machine will be kept as an open project, allowing collaboration with

other organizations.

8. BIBLIOGRAPIIY

[Ada821 G.B. Adams 111 and HJ. ~iegel , "The extra stage cube: A fault-tolerant intcrconnection nctwork
Tor supersystems, " IEEE li-aris. Comput., vol. C-31, pp. 443-454, May 1982.

[Agr83] D.P. Agrawal, "Graph theoretical analysis and design of mullislage intcrconnection networks,"
IEEE Trans. Cornput., vol. C-32, pp. 637-648, July 1983.

[Agr82] D.P. Agrawal, "Testing and fault-tolerance of multistage interconnection networks." Computer,
vol. 15, pp. 41-53, Apr. 1982.

[Ale861 N.A. Alexandridis, "Adaptable software and hardware: Problems and solulions," Computer, vol.
19, pp. 29-39. Feb. 1986.

[Arv80] h i n d , "Decomposing a program for multiple processor systems," in Proc. 1980 Int. Conf.
Parallel Processing, 1980, pp. 7-14.

[Bar681 G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slolnick, and R. Stokes, "The Illiac IV computer,"
IEEE Trans. Cornput., vol. C-17, pp. 746-757, Aug. 1968.

[Bar781 J.F. Bartlett, "A 'Nonstop' operating system," in Proc. 11th Int. C o d on Syst. Sciences,
Hawaii, 1978, pp. 103-119.

[Bat801 K.E. Batcher, "Design of a massively parallel processor," IEEE Trans. Comnpur., vol. C- 19, pp.
836-840, Sept. 1980.

[Bri79] F.A. Briggs, F.-S. Fu, K. Hwang, and J.H. Patel, " P M ~ - a reconfigurable multiprocessor system
for pattern recognition and image processing," in Proc. 1979 Nut. Comput. Conf., AFIPS, vol. 48, 1979,
pp. 255-265.

[Bro83] G. Broomell and J.R. Heath, "Classification categories and historical devclopmcnt of circuit
switching topologies," Computing Surveys, vol. 15, pp. 95- 133, June 1983.

[Bur461 A.W. Burks, H.H. Goldstein, and J. von Ncumann, "Prclirninary discussion of thc logical dcsign
of an electronic computing instrument," Part I, Vol.1, Report prepared for U.S. Artrty Ord. Depr., 1946;
rcprintcd in J. von Neumann. Collected Works, Vol. V, Pcrgamon Press, 1963.

[Chew] S. Chen and G.X. Ritter, "Reconligurable architecture for image processing," in Proc. Int. Cot$
on Computer Design, 1984, pp. 516-519.

[Cla82] E.M. Clarke and C.N. Nikolaou, "Distributed reconfiguration strategies for fault-tolerant
multiprocessor systems," IEEE Trans. Comput., vol. C-31, pp. 77 1-784, Aug. 1982.

[Cli85] C.L. Cline and H.J. Siegel, "Augmenting Ada for SIMD parallel processing," IEEE Trans. Soft.
Eng., vol. SE-11, pp. 970-977, Sept. 1985.

[Dav85a] N.J. Davis IV and H.J. Siegel, "The PASM prolotype interconnection nctwork dcsign," in Proc.
1985 Nut. Comput. Conf., AFLPS, vol. 54,1982, pp. 183- 190.

[Dav85b] N.J. Davis 111, W. T.-y Hsu, and H.J. Siegel, "Fault location ~cchniqucs for dis~ributed control
interconnection networks," IEEE Trans. Complir,, vol. C-34, pp. 902-910, Oct. 1985.

[Dm821 C.G. Davis, S.P. Karbshev, and S.I. Kartashcv, "Reconfigurable multicompurcr networks for
very fast real-time applications," in Proc. 1982 Nut. Comput. Conf., AFIPS, vol. 51, 1982, pp. 167-184.

[Den701 P.J. Denning, "Virtual Memory," Computing Surveys, vol. 2, pp. 153-189, Scpt. 1970.

[Des85] S.J. Deshpande, R.M. Jeneveip, and GJ . Lopovski, "TRAC: An expcricnce wilh a novel
architectural prototype," in Proc. 1985 Nut. Comput. Conf., AFIPS, vol. 54, 1982, pp. 247-258.

[Dig761 Digital Equipment Company, "Pdp- 1 1 04/34/45/55 processor handbook," 1976.

Ed1821 J. Edler, A. Gottlieb, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, M. Snir, P.J. Teller, and J.
Wilson, "Issues related to MIMD shared-memory computers: The N W Ultlacornputer approach," in Proc.
9th Annual Symp. Comput. Arch., Apr. 1982, pp. 63-72.

[Esf85] A.-H. Esfahanian and S.L. Hakimi, "Fault-tolerant routing in DeBruijn cornrnunication
networks," IEEE Trans. Comput., vol. C-34, pp. 777-788, Sept. 1985.

[Est60] G. Estrin, "Organization of computer systems: The fixed plus variable structure computer," in
Proc. Western Joint Computer Conf., 1960, pp. 33-40.

[Est63a] G. Estrin, B. Russell, R. Turn, and J. Bibb, "Parallel processing in a rcstructurable computer
system," IEEE Trans. Comput., vol. EC-12, pp. 747-755, Dec. 1963.

Esl63bl G. Estrin and R. Turn, "Automatic assignment of co~npulations in a variable structure
computer system," IEEE Trans. Comput., vol. EC-12, pp. 755-773, Dec. 1963.

For851 J.A.B. Fortes and C.S. Raghavendra, "Gracefully degradable processor arrays," IEEE Trans.
Comput., vol. C-34, pp. 1033-1044, Nov. 1985.

[Fot61] J. Fotheringham, "Dynamic storage allocation in the Atlas computer including an automatic use
of a backing store," Comm. ACM, vol. 4, pp. 435-436, Oct. 1961.

[Fra81] M.A. Franklin, "VLSI performance comparison of banyan and crossbar comrnunicauons
networks," IEEE Trans. Comput., vol. C-30, pp. 283-291, Apr. 1981.

[Feu731 E.A. Feustel, "On the advantages of tagged architecture," IEEE Trans. Comput., vol. C-22, pp.
644-656, July 193.

[Gan81] D.B. Gannon and L. Snyder, "Linear rccurrcncc algorithms for VLSI: Thc configurable, highly
parallel approach," in Proc. 1981 Int. Conf. Parallel Processing, 1981, pp. 259-260.

[Gaj85] D.D. Gajski and J.-K. Peir, "Essential issues in multiprocessor systems," Computer, vol. 18,
pp. 9-27, June 1985.

[Got83a] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph. and M. Snir, "The
N W Ultracomputer - Designing an MIMD shared memory parallel computer," IEEE 7'rans. Comput.,
vol. C-32, pp. 175-189, Feb. 1983.

[Got83b] A. Goulieb, B. D. Lubachevsky, and L. Rudolph, "Basic techniques for thc cf'ficicnt coordina~ion
of very large numbers o l coopcrating sequential processors," ACM I'OPLAS, Jan. 1983, pp. 164-189.

[Gra82] F.G. Gray, "General purpose reconfigurable architccturc," in Proc. Int. Co~zf. on Circuits and
Computers, 1982, pp. 122-125.

FIwa841 K. Hwang and F. A. Briggs, Computer AMlitecture and Parnllcl Processing, McGraw-Hill Book
Co., 1984.

	Reconfiguration for Fault Tolerance and Performance Analysis
	Recommended Citation

	Reconfiguration for Fault Tolerance and Performance Analysis
	Abstract
	Comments

	tmp.1195151182.pdf.Egsqi

