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Abstract

Title of Thesis: Multistage Interconnection Networks: Improved Routing Algo-

rithms and Fault Tolerance

Kuo-Yu Chen, Master of Science in Electrical and Computer Engineering, 1991

Thesis directed by: Assistant Professor Dr. John D. Carpinelli

Multistage interconnection networks for use by multiprocessor systems are opti-

mal in terms of the number of switching element, but the routing algorithms used to

set up these networks are suboptimal in terms of time. The network set-up time and

reliability are the major factors to affect the performance of multistage interconnec-

tion networks. This work improves routing on Bend' and Clos networks as well as

the fault tolerant capability. The permutation representation is examined as well

as the Clos and Bend networks. A modified edge coloring algorithm is applied to

the regular bipartite multigraph which represents a Clos network. The looping and

parallel looping algorithms are examined and a modified Tree-Connected Computer

is adopted to execute a bidirectional parallel looping algorithm for Bend networks.

A new fault tolerant Clos network is presented.
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Chapter 1

Introduction

1.1 Motivation and Objectives

As the number of task and complexity of scientific and engineering applications

such as weather forecasting, artificial intelligence, expert system are increasing,

high-performance computers are increasingly in demand. Although VLSI techniques

have considerably increased the performance and reliability of hardware devices for

advanced computer architecture, parallel computation as well as fast algorithms

are also needed to meet the above demands. Through parallel computers and com-

puting algorithms, the tasks can be divided into subtasks and the subtasks can

be executed simultaneously. The interconnection network can provide the parallel

communication needs between multiple processors, shared memory modules and

I/O systems. The network set-up time and system reliability are the major factors

that affect the system performance. To reduce the set-up time and provide the fault

tolerant capability are the major goals of this thesis.
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1.2 Background

1.2.1 Parallel Computers

Parallel computers can be characterized into three structural classes: pipelined

computers, array processors, and multiprocessor systems. In pipelined computers,

successive instructions are executed in an overlapped fashion in terms of execution

steps per instruction[11,14,15,19]. An array processor is a synchronous parallel com-

puter which consists of multiple processing elements (PEs), a control unit (CU), and

an interconnection network (IN). The CU broadcasts instructions to the PEs and all

the PEs execute in parallel in a lock-step fashion on different data. The IN provides

communication paths between PEs and for processor-memory communication.

Array processors are also known as SIMD machines; that stands for single in-

struction and multiple data streams. It is specially designed to perform vector

computations over matrices or arrays of data[16,24,25,26]. A multiprocessor system

is a single computer that contains multiple processors. All processors may share

access to memory modules, I/O channels, and peripheral devices. Processors may

communicate and cooperate at different levels in solving a given problem. A mul-

tiprocessor system is controlled by a single integrated operating system instead of

several autonomous computers in a multiple computer system. Unlike the SIMD

machines which execute synchronously, the processors in multiprocessor systems

can asynchronously, autonomously execute different instructions on different data.

Those are considered as MIMD machines[2,7,13].

Multiprocessor systems can be classified into tightly coupled and loosely coupled

multiprocessor systems. Figure 1.1 shows the basic organization of a nonhierachical

loosely coupled multiprocessor system. In such systems, each processor has a set

of I/O devices and a large memory. We refer to a processor, its local memory, and
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I/O devices as a computer module. Computer modules communicate through an

interconnection network. Since the processor accesses most of the instructions and

data from its local memory, a loosely coupled system is often referred to as a dis-

tributed system. Processors in tightly coupled multiprocessor systems communicate

through shared memory modules. Each processor may have a small local memory

and buffer cache. An interconnection network provides the complete connectivities

between processors, shared memory modules, and I/O devices. The configuration

of a tightly coupled multiprocessor system is shown in figure 1.2.

1.2.2 Multiprocessor Interconnection Networks

Multiprocessor interconnection networks{8,10] are classified into bus interconnec-

tion, crossbar interconnection, and multistage interconnection networks. The time

shared bus organization, as shown in figure 1.3, is the simplest way to give multiple

processors access to a shared memory. Crossbar interconnection networks, shown

in figure 1.4, use a crossbar switch of N 2 crosspoints to connect N processors to N

memories; this is considered a strictly non-blocking network. Multistage intercon-

nection networks (MINs) have long been studied for use in telephone switching and

multiprocessor systems to meet the communication needs of multiprocessor systems

in a cost-effective manner. Although crossbar systems prevent bus contention by

providing dedicated paths between processors and memories, the hardware cost has

limited it to a small number of processors (from four to sixteen processors).

Typically MINs designed for N inputs and N outputs contain 0(N lg N) stages

of Nlm crossbar switching elements of size rn x m. The area complexity of a MIN

is 0(N lg N), compared to 0(N 2 ) of the crossbar network. A Baseline network is

shown in figure 1.5. But there is a trade-off between cost and performance. The set-

up time, 0(N lg N), for a MIN is much larger than the delay time, 0(1g N), when

3



Figure 1.1: A loosely coupled multiprocessor system
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Figure 1.2: A tightly coupled multiprocessor system
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Figure 1.4: A crossbar switching system

routing algorithms are executed in a single processor computer. A lot of research

has been directed toward network routing algorithms for different MINs, such as

Omega[18], Baseline[30], and shuffle-exchange[27,29]. However, unlike Clos and

Bend networks, those networks have limited permutation capability. Much research

has been dedicated to the non-blocking Clos and Bend networks[3,6,21,22,23,28].

6



Figure 1.5: A multistage Baseline interconnection network

1.2.3 Fault Tolerant Multistage
Interconnection Networks

The reliable operation of an interconnection network is an important factor when

evaluating system performance. This issue can be classified into fault diagnosis and

fault tolerance. The fault diagnosis concerns fault-detection and fault-location for

every fault in a target system. The main concern in fault tolerance is the full

connection capability with graceful degradation in spite of the existence of faults.

In recent years, much research has been reported on multiple-path MINs to provide

alternate path when faults occur[1,17,20].

7



1.3 Outline

This thesis is dedicated to improve the routing algorithms on Clos and Bene§

networks as well as fault-tolerant Clos networks. The rest of the thesis is organized

as follows. In Chapter 2, the permutation representation for network settings is

introduced. The Clos and Bend networks are also discussed. The regular bipartite

multigraph representation of Clos networks and edge coloring algorithms as applied

to decompose bipartite multigraphs are examined in Chapter 3. Also, a modified

edge coloring algorithm that includes Euler partition and maximum matching pro-

cedures is presented. In Chapter 4, the looping algorithm, run on a single processor

computer, and the parallel looping algorithm, run on a Tree-Connected computer,

are introduced for routing algorithms of Bene§ network. A new bidirectional parallel

looping algorithm is presented. In Chapter 5, the fault model and design objectives

are discussed and a new fault-tolerant Clos network which provide 3-fault robust

capability is presented. A comparison with the original Clos network and Nas-

sar's FTC[20] is discussed. Finally, conclusions and possible further research are

presented in Chapter 6.
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Chapter 2

Multistage Interconnection
Networks

2.1 Introduction

A multistage interconnection network is capable of connecting an arbitrary inlet

to an arbitrary outlet. It can be classified into three classes: blocking, rearrangeably

non-blocking, or strictly non-blocking. In a blocking network, connections of input-

output pairs may result in conflicts in the use of the network links. For example,

Omega and Baseline networks are blocking networks[27,29,30]. A rearrangeable

non-blocking network can connect all possible connections between inlets and outlets

by possibly rearranging its existing paths. For example, Bend and Clos network

belong to this class. A network is strictly non-blocking if it can realize all possible

connections without blocking, or modifying the existing paths, such as crossbar

networks.

In Section 2.2 the permutation representations for a switch, stage, and network

settings are described. The rearrangeable Clos network is discussed in Section 2.3.

The rearrangeable Bene§ network is examined in Section 2.4.

9



2.2 The permutation representation

A multistage interconnection network consists of several stages of switches. The

outputs of one stage are connected to the inputs of the next stage. Each stage

contains several disjoint switches. A switch is the basic element in a network. A

switch with N inputs, and N outputs can realize N! one-to-one mappings.

The permutation notation is one of the common methods used to describe the

mappings in a switch, stage, and network. A permutation is a one-to-one mapping

of a set element onto itself. In standard permutation notation, there are two rows

of values. The values in the upper row are mapped onto the elements in the lower

row. For example, given a set of values {0, 1, 2, 3} for which 0 maps to 1, 1 to 2,
(

2 to 3, and 3 to 0, the permutation, P, of the set is written as P 	 0 1 2 3
1 2 3 0 ).

A permutation must contain one or more disjoint cycles. The following example

consists of two cycles.

P =
(3 0 1 2 )

1 2 3 ( 4 5 6 7 ) 	 ( 0 1 2 3 4 5 6 7
or P

3 	 7 4 5 6 	 3 0 1 2 7 4 5 6 )

The setting of a switch is a set of one-to-one mappings of input onto output, so

it can be represented by a permutation. Consider the switch shown in figure 2.1,

with four inputs and four outputs. The equivalent permutation representation is
( 0 1 2 3

1 3 2 0 )•

As mentioned before, a stage consists of several disjoint switches. Consider a

stage with two 3 x 3 switches; the inputs and outputs of the first switch are labelled

0, 1, 2 and the inputs and outputs of the second switch are labelled 3, 4, 5. The
( 	 ) 	 (first switch realizes the setting 	 0 1 2 	 and the second one realizes 	 3 4 5

1 2 0 	 5 3 4
Combining these two disjoint permutations to form the permutation representation

(of the stage setting, as shown in figure 2.2, P = 0 1 2 3 4 5
1 2 0 5 3 4

10



Figure 2.1: A switch setting

Figure 2.2: A stage setting
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Figure 2.3: A network setting

The permutation notation of a network setting is the ordered composition of the

permutation of each stage. Consider a network with four inputs and two stages.

The first stage realizes the permutation P1 = (0 1 2 3 |1 2 3 0 )and the second stage

realizes the permutation P2 = (0 1 2 3 | 3 2 1 0 ). Inlet 0 of the first stage is mapped

onto outlet 1 and the input 1 of the second stage is mapped onto the output 2.

Since the output of the first stage is connected to the input of the second stage, the

input 0 is mapped onto the output 2 through the entire network. Repeating the

same process, the permutation realized by the network is P = (0 1 2 3 | 2 1 0 3) . The

network setting is shown in figure 2.3.

2.3 Clos Network

A Clos network is a 3-stage network, originally developed for telephone traffic

routing[6]. The first stage contains k m x n switches which are numbered from 0

to k — 1. The inputs of the ith switch are labelled from m • i to m • (i + 1) — 1.

The second stage consists of n k x k switches and the third stage contains k nxm

12



Figure 2.4: 3-stage (m, n, k) Clos network

switches. Each switch can realize any one-to-one mapping of its inputs onto its

outputs. Each switch in the center stage derives one input from each switch in the

first stage and each switch in the third stage receives one input from each switch in

the center stage.

A Clos network with these parameters described above is referred to as an

(m, n, k) Clos network with size N = k • m; it is shown in figure 2.4. If n ≥ m, the

network is a rearrangeable Clos network. If n ≥  2m — 1, the network is a strictly

non-blocking Clos network. The number of inputs and outputs to a Clos network

is referred as the size N.

In the rest of the thesis, we will consider the regular (m, n, k) Clos network with

m = 2 only.

13



2.4 Bene§ Network

A Bend network[3] is derived from the 3-stage (m, n, k) Clos network with m

n = 2, and k = 2 by decomposing the k x k switches in the center stage into 3-stage

Clos networks and continuing the decomposition until each switch is a 2 x 2 cell.

To illustrate the decomposition process, consider a Clos network with n = m

2, and k = 4 shown in figure 2.5. Each 4 x 4 switch in the center stage can be

considered as a subnetwork and decomposed into a (2, 2, 2) Clos network. Figure

2.6 shows the final result of decomposing a (2, 2, 4) Clos network and that is an 8 x 8

Bend network. An N-input Bene§ network has 2(1g N)-1 stages and 0(N lg N) 2x

2 crossbars.

Waksman[30] had shown that one switch can be removed from the first stage

or the last stage of a Bene§ network without affecting the rearrangeability. For

example, this yields the 4 x 4 Waksman network, shown in figure 2.7, and the 8 x 8

network, shown in figure 2.8. The looping algorithms discussed in chapter 4 will

use the result of the Waksman network.

14



Figure 2.5: (2,2,4) Clos network
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Figure 2.6: 8 x 8 Beneš Network
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Figure 2.7: 4 x 4 Waksman network
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Figure 2.8: 8 x 8 Waksman network
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Chapter 3

Routing on Clos Networks

3.1 Introduction

This chapter examines the edge coloring method in bipartite multigraph and

its application on Clos networks. The bipartite multigraph representation of the

Clos network is described in Section 3.2. There are two major methods of edge

coloring: Vizing's method[31], and Euler partitions. The Euler partition procedure

adopted in Gabow's Edge Coloring Algorithm[9] will be discussed in Section 3.3.

A matching M is the set of edges of a multigraph such that no two of the edges

are incident to the same vertex. In Section 3.4, two methods of matching will be

discussed: Gabow's MD procedure[9], which finds a matching that covers all the

vertices with maximum degree A, and Hoperoft and Karp's Maximum Matching

algorithm[12] which finds a matching with the greatest possible number of vertices.

In Section 3.5, the Edge Coloring Algorithm developed by Gabow is modified to

take the feature of the regular bipartite multigraph and apply it to Clos networks.

3.2 Bipartite Multigraph representation

As described in Chapter 2, a 3-stage (rn, n, k) Clos network has size N = m x k,

k m x n switches in the first stage, n kxk switches in the center stage, and k

19



n x m switches in the last stage. Since we only consider the regular Clos network

with 7n n, a permutation realized by a Clos network can be represented by a

regular bipartite multigraph.

A graph consists of two sets, V, and E. The elements of V are called vertices,

points, or nodes. The set E, the edges, contains unordered pairs of distinct vertices

(v, u). The graph is denoted by G(V, E). If an edge (v, u) occurs more than once,

G is a multigraph. An undirected graph is said to be bipartite if its vertices can be

partitioned into two disjoint subsets V1 and V2, such that each edge is incident to

a vertex in V1 and a vertex in V2.

The bipartite multigraph can be represented by a triplet {V1, V2, E}. The

degree of a vertex, v, is equal to the number of edges which are incident to v. The

degree of a multigraph is equal to the highest degree of its vertices. If every vertex

has the same degree k, a multigraph is called k-regular. A regular (M, 771, k) Clos

network has 7n inlets in each switch of the first stage, and m outlets in each switch

of the last stage. Each switch in the first and the last stage can be viewed as a

vertex with degree rn. Each switch in the first stage is an element of set V1 and each

switch in the last stage is an element of set V2. So, the input-output mappings of a

regular Clos network can be represented by a regular bipartite multigraph. Consider
( 4 )

the permutation P = 
0 1 2 3 5 6 7 8 realized by a (3, 3, 3) Clos network.
5 7 0 4 2 1386

Figure 3.1.a shows the mappings between the first and last stages, and figure 3.1.b

is the corresponding regular bipartite multigraph representation.

As mentioned before, an (m, in, k) Clos network has 7n k x k switches in the

center stage. Applying edge coloring, discussed in Section 3.5, to partition the m-

regular bipartite multigraph into m subgraphs, each subgraph will be the setting of

a switch in the center stage. After the settings of the center stage are determined,

the settings in the first and the last stage will be easy to determine.

20



Figure 3.1: (a) The mapping of the first and last stage of the Clos network (b) The
regular bipartite multigraph representation of figure 3.1.a.
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3.3 Euler Partition

The Euler partition divides the edges of a graph into open and closed paths which

form a set P. A path, p, is a sequence of edges — (v i , v 2 ), (v 2 , v3 ), 	 , 	 va).

If v i vn , p is an open path. If v1 	p is a closed path. Each vertex with odd

degree must be one end of an open path.

A path is formed by the following processes. Start from an arbitrary vertex v 1

of odd degree (or non-zero even degree if no vertex has odd degree) and choose an

edge incident to that vertex. Add the edge to path p, then traverse the edge to the

other vertex v2 which the edge is incident to. Delete the edge from the graph. Start

from v 2 and continue to choose, traverse, add, and delete edges until a vertex with

zero degree is reached. This gives a path p. Then choose a new starting vertex and

repeat the same process until the set E in the graph G is empty.

The procedure EP, developed by Gabow[9], is presented below:

PROCEDURE EP;

BEGIN

1. Make P an empty list;

2. Make S an empty queue;

3. Put all vertices of odd degree in S;

4. Put all vertices of non-zero even degree in S;

5. WHILE S is non-empty DO

BEGIN

6. Let s be the first vertex in S;

7. 	 Delete s from S;

COMMENT vertex .s may have degree 0, since edges are deleted from G

in line 13;

22



8. IF vertex s has non-zero degree THEN

BEGIN

9. Make a new path p empty;

10. v:= s;

11. WHILE vertex v has non-zero degree DO

BEGIN

12. Let (v, w) be an edge in G;

13. Delete (v, to) from G;

14. Put (v, w) in p;

15. v:= w;

END;

16. Put path p in P;

17. IF vertex s has non-zero degree THEN Put s in S;

END;

END;

END EP;

The procedure EP finds an Euler partition in 0(E) time and uses 0(E) space.

To illustrate this procedure, consider the regular bipartite multigraph in figure

3.1.b. Figure 3.1.b is redrawn in figure 3.2. Start from vertex 1 which has degree

3, traverse the edges 1, 4, 6, 7, 8, 9 to form an open path p i . Delete those edges

from G and start from vertex 2 which now has degree 1. Then traverse edge 5 from

v2 to v4 to form path p 2 because v4 has zero degree after deleting edge 5 from G.

Finally, start from vertex v 5 and traverse edges 2, 3 to form path p3 . At the end of

EP, the list P will contain paths p i , p2 and p3 .

23



Figure 3.2: Regular bipartite multigraph representation of figure 3.1.a

3.4 Matchings

This section describes Gabow's matching procedure MD, and Hoperoft and

Karp's Maximum Matching algorithm. The Maximum Matching will replace the

MD procedure in Gabow's Edge Coloring Algorithm for the Clos network.

A matching of a graph is a set of edges such that no two of the edges are

connected. A maximum matching contains the greatest possible number of edges.

For a k-regular bipartite multigraph denoted ( V1 , V 2E),a maximum matching must

contain k edges and cover all of the vertices in sets V1 and V2 . Let Δ be the maximum

degree of a bipartite multigraph; there exists a minimal edge coloring which uses

exactly Δ  colors[4], and a matching can be colored by one color.

Gabow's matching procedure MD finds a matching M that covers every vertex

with degree Δ. A matching can be found as follows:

1. For i = 1, 2, find a maximum matching Mi that covers every vertex of degree

min V.

2. Put all edges of M1 ∩  M2 in M.

24



3. Put all edges of M1 e M2 in N. (A connected component C in N is a path

with edges alternately in Mi. and M2.)

4. For each connected component C in N, put all edges of Mi n C in M, where

i is determined by C. If C is an open path of odd length, then choose i so

Mi n C is maximum. If C is an open path with even length, exactly one

end of C is a vertex of degree A. Choose i so that Mi covers that vertex. If

C is a closed path, choose i arbitrarily.

After step 4, M is the matching that covers every vertex of degree A. The procedure

MD is presented below:

PROCEDURE MD;

BEGIN

1. FOR i 1, 2 DO COMMENT find a matching Mi that covers every vertex

of maximum degree A in Si;

BEGIN

2. Let T be the set of vertices in Si that do not have maximum degree;

3. let H be the multigraph G — T;

4. let Mi be a maximum matching on H;

END;

COMMENT form M from MI. and M2 ;

5. M := M1 n M2;

6. N :=	 ED M2 ;

7. FOR each connected component C of N DO

BEGIN

8. Let C be the sequence of edges e l , €2, • - • , Cr;

9. 	 Without loss of generality assume C starts with a vertex of degree A.
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10. FOR i 1 STEP 2 TO r DO

11. Put et in M;

END;

END MD;

Lines 1-4 perform step 1, line 5 implements step 2, line 6 executes step 3, and

lines 7-11 complete step 4. The total run time is 0(ViE) and the algorithm uses

0(E) space. To illustrate this procedure, consider the bipartite multigraph shown

in figure 3.3 which has maximum degree 3 in vertices 2, 4, 5 and 6. After step I, M1

and M2 are shown in figure 3.4.a. M is empty after step 2. In step 3, N consists

of two connected components shown in figure 3.4.b. Figure 3.4.c shows the final

matching M after step 4.

Gabow's MD is suited to irregular bipartite multigraphs only. For a regular

bipartite multigraph, only line 4 of MD procedure is needed to find the matching

M (or maximum matching) which covers all vertices of degree A. Since each vertex

has the same degree in a regular bipartite multigraph, the set T in line 2 is always

empty, and H is always equal to G. When M1 is found in line 4, actually it is the

final result M for procedure MD.

In line 4, Gabow used Hoperoft and Karp's Maximum Matching algorithm[12] to

find the maximum matching M i . So we will use the Maximum Matching algorithm

to replace the MD procedure in Gabow's Edge Coloring algorithm[9] to apply to a

regular bipartite multigraph.

Hoperoft and Karp's Maximum Matching algorithm is presented below:

step 0: M 4- (I)
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Figure 3.3: A bipartite multigraph with maximum degree 3

step 1: Let l(M) be the length of a shortest augmenting path relative to M. Find

a maximal set of paths { Q1 , Q 2 ,..., Q t } with the properties that

(a) for each i, Q is an augmenting path relative to M and |Qi| = 1(M);

(b) the Qi are vertex disjoint.

Halt if no such paths exist.

step 2: M ← M + Q1 + Q 2 ... Qt ; go to step 1.

A path ( without repeated vertices )

P = (v1, v2), (v2, v3),... , (v2k-1, v2k)

is called an augmenting path if v 1 and v21, are both free and its edges are alternately

in E — M and in M. A vertex is free if it is incident to no edge in M. Two
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Figure 3.4: (a) M1 and M2 of the bipartite multigraph shown in figure 3.3 after step
1 of MD procedure. (b) After step 3. (c) Final result of M.
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vertices are jointed if they are incident to the same edge. The Maximum Matching

algorithm runs in 0(0E) time.

3.5 Modified Edge Coloring on Clos Network

This section describes the modified version of Gabow's Edge Coloring algorithm

EC to find a minimal edge coloring of a regular bipartite multigraph.

A colored graph does not contain any vertex with edges of the same color incident

to it. If A is the maximum degree of a regular bipartite multigraph, then there

exists a minimal edge coloring which uses exactly A colors. Therefore an rn-regular

bipartite multigraph can be colored by using only m colors. As noted in Section

3.2, an (m, m, k) Clos network has m k x k switches at the center stage, and can be

represented by a m-regular bipartite multigraph. So each color in a regular bipartite

multigraph will represent a mapping of one center-stage switch in a Clos network.

After the mapping in the center stage has been determined, it will be easy to set

up the switches in the first and the last stages.

The EC algorithm uses a divide-and-conquer technique which divides graph G

into two subgraphs, G i and G2. To divide G, use the Euler Partition procedure de-

scribed in Section 3.3 to get path set P, then put each edge of each path alternately

in G1 and G2. Let A be the maximum degree in G; then the maximum degree in

G 1 , or G2 is ['Ili or i] . IF A is even, EP can get a minimal coloring. When L

is odd, and both subgraphs have maximum degree rti , the total number of colors

of G is A + 1 which is not minimal. To solve this problem, apply Hoperoft and

Karp's Maximum Matching algorithm to find a maximum matching if A is odd.

Then assign one color to the matching and delete it from G. After G has maximum

degree A — 1, the EP can be used to get G 1 and G2. The modified EC algorithm is

presented below:
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PROCEDURE EC;

BEGIN

PROCEDURE REC(A);

COMMENT REC recursively colors a regular bipartite multigraph G that

contains no vertices of degree 0. A is the maximum degree of a vertex.

L 1 and L2 are lists, local to REC, that store the edges of G;

BEGIN

1. IF D is odd THEN

BEGIN

COMMENT make M a matching that covers every vertex of degree A,

and color the edges in M;

2. IF L1 = 1 THEN M := G ELSE MM;

3. Let e be a new color;

4. FOR each edge e E M DO

BEGIN

5. color(e):= c;

6. Delete e from G;

END;

END;

7. EP; COMMENT put the edge of G into an euler partition P;

8. IF P is not empty THEN

BEGIN

9. Make L 1 and L2 empty lists;

10. FOR each path p in P DO

BEGIN

11. 	 Let p be the sequence of edges el,.. • ,er;
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12. FOR i := 1 TO r DO

13. IF i is odd THEN put e t in L1

ELSE put et in L2;

END;

14. FOR i := 1, 2 DO

BEGIN

15. Let G be the multigraph consists of the edges in L i and the vertices

incident to them;

16. REC(W); COMMENT color the edges in L i ;

END;

END;

END REC;

17. Delete all vertices of degree 0 from G;

18. Let A be the maximum degree of a vertex;

19. REC(A);

END EC;

The modified EC algorithm finds a minimal edge coloring of a regular bipartite

multigraph in 0(0E) time and 0(E) space. The run time for a Clos network is

0(kIN lgm).
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Chapter 4

Routing on Beneg Networks

4.1 Introduction

In this chapter, a modified Tree-Connected Computer (TCC) and improved

Parallel Looping Algorithm are presented. In Section 4.2, the well known Looping

algorithm, which uses a single processor to determine the switch settings of a Bene§

network, is described. In Section 4.3, the TCC used for PARALOOP[5] is discussed

and a modified version of TCC, TTCC, with two processors is presented. The

parallel looping algorithm PARALOOP is examined in Section 4.4. In Section

4.5, a bidirection parallel looping algorithm, BiPARALOOP, is presented. This

algorithm, executed on the TTCC, can achieve a 50% speedup over the original

TCC.

4.2 Looping Algorithm

The Looping Algorithm is used to set up a Bene§ network. As mentioned in

Chapter 2, a Bene§ network is derived from a 3-stage (2, 2, 2') Clos network by

decomposing the two switches in the center stage into two 3-stage Clos networks

and continuing the decomposition until each switch is a 2 x 2 cell. What the

Looping Algorithm does is similar to the decomposition process. It decomposes
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a permutation realized by a Bene§ network into two subgroups (the mapping of

the two center subnetworks) and determines the switch settings in the first, and

the last stage. The Looping Algorithm is sequentially called to decompose the two

center subnetworks and recursively called to set the center stage subnetwork until

the subnetwork consists of one switch.

An N x N Bene§ network has N inlets and N outlets numbered 0,1, ... , N — 1.

As defined in [23], a and b are called dual values or duals if [1 = 	 J. a = 6

means that a is the dual of b. So, D {(0,1), (2,3), , (N — 2, N — 1)1 is the set

of duals. In the Looping Algorithm, the duals will be sent to or received from the

opposite subnetwork (CO, Cl). The following procedure is the implementation of

the Looping Algorithm on Bene§ networks.

PROCEDURE LOOP(P, N);

BEGIN

	CO :=	 C1 := 1), CYCLE := (1);a 0;

WHILE I P 1> 0 DO

BEGIN

CO := CO+ {( a div 2
p(a) div 2 };

	P 	 P {( P(aa) f ' 
	C1	 + 	

p- 1 (p(a)) div 2
23(0 div 2

	p 	 p 	 1 p( (P  ) 	 ;

CYCLE CYCLE + {a} + -{p-1 (p(a))};

IF p-1 (p(a)) fl CYCLE THEN

a := p- i(p(a));

ELSE a := x where x cl CYCLE;

END;{ while }

) 1;
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IF CO I > 2 THEN

BEGIN

LOOP(CO, 1);

LOOP(C1, --1);
END;{ if }

END{ procedure }

Let P be the permutation realized by a Bene§ network, and

p p (00 p p (NN

( 0 )The Looping Algorithm arbitrarily chooses one element of P such as 	 and
p(0)

puts it into CO, the upper subnetwork. Since the dual values must go to a different

subnetwork, the dual of p(0), p(0) must go to C1. So, the element ;0) is

added to C1, the lower subnetwork. Before adding an element to CO or Cl, the

0, p(0), p(0), and a have to shift right one bit of its binary representations. Since

input a is sent to Cl, -a- is routed to CO. The mapping pca) is assigned to CO.

Then follow the same procedure until P has been decomposed completely to get

CO and Cl. If a permutation consists of more than one cycle, arbitrarily choose

another element and start the same process when a cycle is finished.

The run time is 0(N) per iteration and there are 2lg N- 1 stages, so the run time

is 0(N lg N) for the entire network. As mentioned in Section 2.4, one switch can be

removed from the Bene§ network to yield a Waksman network. This corresponds

to arbitrarily choosing one element from permutation P.

To illustrate this procedure, consider the permutation

( 0 1 2 3,4 5 6 7
P

5 7 3 2 6 1 0 4
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realized by an 8 x 8 Bene§ network. The right-shift function is skipped here. Ar-

bitrarily choose a = 0. For the first round of the WHILE loop, P = 8 and

(

a 	= ° ) is placed into CO. The dual of output 5 is 4, so ( 7 ) is addedp(a) 	 5	 4

(
to Cl. Now, the set CYCLE contains (0, 7) and P remains 1 2 3 4 5 6

7 3 2 6 1 0

The dual of input 7 is 6, which belongs to P, so a = 6. The second round of WHILE

loop begins. At the end of the third round, the set CYCLE contains (0, 7, 6, 5, 4,

1) that forms a cycle and P remains 2 3( ). Then arbitrarily choose a = 2 and
32

start the forth round to get CO = 0 6 4 2
5063   )

, Cl = 7 5 1 3 ). The switch
4172

settings of the first stage are easy to get by routing the inputs in CO to the upper

subnetwork and the inputs in Cl to lower subnetwork. The switch settings in the

last stage can be determined by deriving the outputs in CO from the upper subnet-

work and the outputs in Cl from the lower subnetwork. The LOOP is recursively

called to finish all the switch settings. The settings are shown in figure 4.1.

4.3 The Tree-Connected Computer

Two versions of the Tree-Connected Computer (TCC) are discussed in this sec-

tion. They are used to run parallel Looping Algorithms.

In an ordinary TCC, all processors are connected as in a binary tree. Processor

P(x,y), 0 < x < (1g N) — 2 and 0 < y < 2x — 1, has two child processors P(x

1, 2y), P(x + 1, 2y + 1). N is the size of the Bene.; network. P(0, 0) is the root

processor and processors P((lg N) — 1, y), 0 < y <	 — 1, are the leaf processors

which have no child processors. A TCC for the 8-input Bene§ network is shown in

figure 4.2.

A modified version of the TCC with two processors per node is called the TTCC.

Nodes are connected as in a binary tree. Node T(x, y), 0 < x < (1g N) — 2, 0 <
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Figure 4.1: The switch settings of an 8 x 8 Beneš network for a permutation P =
( 0 1 2 3 4 5 6 7

5 7 3 2 6 1 0 4
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Figure 4.2: Tree-Connected Computer for N 8

y ≤ 2x - 1, has two child nodes T(x + 1, 2y), T(x 1, 2y -I- 1). T(0, 0) is the root

node and nodes N((lg N) — 1, y), 0 ≤ y ≤ (N/2) — 1, are the leaf nodes which have

no child nodes. Node T(x, y) has two processors, P1 (a 1 , b1 ) and P2 (a 2 , b2 ), where

a 1 = a2 = x, b1 = 2y, and b2 = 2y -F 1; P1 and P 2 share a dual-port memory

where the permutation is stored. A TTCC for the 8-input Bend network is shown

in figure 4.3.

The time needed to transfer data between processors or nodes is O(1). There are

O(N) connections in the TCC and TTCC. Each connection has O(1g N) width and

the overall complexity is O(N lg N). Compare this to the complete interconnected

computer of Nassimi and Sahni[21} that has O(N 2 1g N) complexity which is not

feasible for a large value of N. The time needed to transfer data between processors

or nodes is O(1).
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Figure 4.3: 2-processor TCC (TTCC) for N = 8

4.4 Parallel Looping Algorithm

As with the Looping Algorithm described in Section 4.2, there are two indepen-

dent subsets, C0 and C1, after each iteration. So, the center subnetworks can be

set in parallel by a TCC.

Let P be the permutation realized by an N x N Beneš network and

The implementation of parallel Looping Algorithm[5] is shown below:

PROCEDURE PARALOOP(P, N);

BEGIN

C0 := Φ; C1 := Φ ; CON SYMBOLS := Φ; a := 0;

WHILE |P| > 0 DO

BEGIN

38



CO := CO+ {( p(aa)mmodioc(Nulv222))};

P P {( a 	;P(a))}t( P-1 (Pap(a) modd(NI2) )1 ;

p = p 	 1) ip((a()a)) )1 ;

IF p-1 (p(a))0 CONSYMBOLS THEN

BEGIN

CONSYMBOLS := CONSYMBOLS {p -1 (p(a)));

a := p --- 1 (p(a));

END;

ELSE

a x where x sZCONSYMBOLS;

IF I CO 1 > 2 THEN

PARABEGIN

PARALOOP(CO, 1);

PARALOOP(C1,1);

END;{parabegin}

ELSE; {exit}

END{procedure}

It is assumed that the original permutation P with N elements is stored in

the root processor. At the end of the WHILE loop, the mappings of the first

and last stages are created and the permutations, CO, and Cl, for the two in-

ner subnetworks are formed. CO and C1 are stored in the child processors of the

root processor and computed simultaneously by running PARALOOP(CO, and

Cl:= C l +
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PARALOOP(C1,1). The PARALOOP(P,N) is called recursively to process the

subnetworks until the subnetwork consists of one switch. Figure 4.4 depicts how

the procedure is executed. The C is; in processor p(i,j) corresponds to the permu-

tation for the jth subnetwork at ith level. Processors p(i,j), 0 < j < 2' — 1, are

executing simultaneously to decompose its permutation for its child processors. P

is the original permutation.

The run time of PARALOOP is 0(N) and results a speedup of 0(1g N) over

the Looping Algorithm.

4.5 Bidirection Parallel Looping Algorithm

The Bidirection Parallel Looping Algorithm is run on the 2-processor Tree-

Connected Computer (TTCC). It takes the features that dual values are sent to

different subsets (CO, Cl), and CO and Cl are independent.

As mentioned in Section 2.2, a permutation consists of one or more than one

cycle. The Looping Algorithm decomposes each cycle into CO and C1 by starting

from an arbitrarily chosed input-output mapping and tracing down the cycle to the

other end of the cycle (the dual of the starting input). When the starting input is

chosen and added to CO, its dual value must go to C1. So, we can use two processors

to decompose each cycle concurrently.

BiPARALOOP(P, N)	 I* Processor p1 */

{

1. CO = 01); Cl = 	 a = 0;

2. for (; ; )
	

/* infinite loop */

{

3. 	 CO = CO + 	 p(a42/2 )};
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Figure 4.4: (a) 8-input Beneš network
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Figure 4.4: (b) Execution of the Parallel Looping Algorithm for N = 8
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13. a minimal even value in P;

}

14. else break;

}

15. if (I CO I > 0)

1* parallel begin */

16. BiPARALOOP(CO, 1'21 );

17. BiPARALOOP(C1,2);

/* end of parallel */

18. 1- 	 /* end of procedure */

The differences of BiPARALOOP on p2 are listed below:

line 1: CO 	 (1); Cl 	 4); a = 1;

line 3: Cl Cl 	 p(a42/2 	 ;

line 6: CO = CO + 	
P-1(P(194ai)2)12 };

line 10: a = minimal odd value in P;

line 13: a = minimal odd value in P;

The original permutation P is stored in the root node, and CO and Cl are stored

and executed in its child nodes. To illustrate the BiPARALOOP, consider the switch

setttings in figure 4.1. Figure 4.5 shows how the BiPARALOOP is executed. The

bold lines are set by pl. The other lines are routed by p2.

In Parallel Looping Algorithm, the WHILE loop runs 2 times. In BIPAR-

ALOOP, the FOR loop executes 4 times. So this algorithm can result in a 50%
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speedup over the Parallel Looping Algorithm.
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Figure 4.5: The switch settings of P = (0 1 2 3 4 5 6 7
| 5 7 3 2 6 1 0 4 )via BiPARALOOP

algorithm
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Chapter 5

Fault-Tolerant Clos Network

5.1 Introduction

An ordinary (m,n, k) Clos network has some degree of fault tolerance capability

if n > m[20]. But this exists only if the fault occurs in the center stage. A Fault-

Tolerant Clos network which provides alternate paths to bypass a fault at any stage

is presented in this chapter. In Section 5.2, the fault model and design objectives are

described. The construction of the FTC as well as the extra hardware elements are

presented in Section 5.3. In Section 5.4, fault recovery is described. A comparison

to the ordinary Clos network and Nassar's FTC[20] is discussed in Section 5.5.

5.2 Fault Model and Design Objectives

A fault model defines the possible physical failures of the fault tolerant network.

It also implies its fault tolerance capabilities. The fault model is defined below:

1. Any switch can fail.

2. Any interstage link can fail.

3. Additional hardware can not fail.
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The Fault-Tolerant Clos network has full recovery, so the network can achieve

the prefault connectivity. The faults are assumed to occur independently and the

faulty elements can not be used again.

The design objectives are:

1. single switch fault tolerance in each stage,

2. single link fault tolerance in each interstage link,

3. low switch and link complexity,

4. the same switch size of an ordinary Clos network,

5. the same routing algorithm.

The first three objectives are easily met by other fault tolerance networks[17,20]

but the FTC presented here can achieve all five objectives.

5.3 Design of the Fault-Tolerant Clos Network

Recall from Chapters 2 and 3 that a 3-stage (m, n, k) Clos network with size

N.mx k must have k m x n switches in the first stage, n kxk switches in the

center stage, and k n x m switches in the last stage. The edge coloring algorithm

determines the mapping of the center stage first and then sets the first and last

stages to complete the input-output mappings through the 3-stage network. The

FTC is used to completely recover the connections after faults occur.

A Clos network with n > m has some degree of fault tolerance[20]. The FTC

presented here uses an ordinary (m, m , k) Clos network. The idea of the new FTC

is to isolate the faulty switches by bypassing the inputs to and receiving from the

standby switches. The FTC is 3-fault robust since it can completely recover the
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Figure 5.1: A (3,3,3) Clos network

network when one fault occurs in each stage. A (3,3,3) Clos network is shown in

figure 5.1 and its FTC network is shown in figure 5.2.

Before describing the construction of the FTC, we have to describe the extra

2 x 2 switches added to the inputs and outputs of each switch. The 2 x 2 switch

shown in figure 5.3 is used to do the function of isolating. Figure 5.4 shows the four

states of the 2 x 2 switch.

IN0 is connected to the ordinary outlet of the previous stage and OUT0 is con-

nected to the inlet of the next stage. IN1 and OUT1 are the extra links connected

to the standby switch. Figure 5.5 shows an example of these connections.

Each 2 x 2 switch has four states controlled by INO and OUT0. These four

states are described below:

1. State (0,0) : When P is non-faulty and N is non-faulty, the linkage is the same
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Figure 5.2: A (3,3,3) Fault-Tolerant Clos network
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Figure 5.3: A 2 x 2 switch

Figure 5.4: The four states of a 2 x 2 switch

Figure 5.5: A connection between 2 x 2 switch and stages. P stands for the previous
stage, N means the next stage, SO and S1 are the standby switches.
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as the ordinary network. See figure 5.4.a.

2. State (0,1) : When P is non-faulty and N is faulty, the inputs of switch N will

be redirected to the standby switch by connecting INO to OUT1. See figure

5.4.b.

3. State (1,0) : When P is faulty and N is non-faulty, the inputs of switch N

will be linked to the outputs of the standby switch in the previous stage by

connecting IN1 to OUTO. See figure 5.4.c.

4. State (1,1) : When P and N are faulty, the inputs of the faulty switch N in the

next stage will be redirected to the standby switch and linked to the outputs

of the standby switch in the previous stage by connecting IN1 to OUT1. See

figure 5.4.d.

The construction of an (m, m, k) Fault-Tolerant Clos network, shown in figure

5.6, is formed by the following processes:

1. Start with a 3-stage (m, m, k) Clos network of size N.

2. Assume there is one null stage before the first stage and one after the last

stage, then put N 2 x 2 switches between every two stages.

3. Put one extra m x m switch in the first stage and the last stage, and one kxk

switch in the center stage.

4. Connect INO, OUTO of each 2 x 2 switch to stages like the connections de-

scribed in figure 5.5.

5. For the first three columns of N 2 x 2 switches, connect each OUT1 of the ith

2 x 2 switch of each ordinary switch to the ith input of the standby switch.
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6. For the fourth column of N 2 x 2 switches, connect each IN1 of the ith 2 x 2

switch of each ordinary switch to the ith output of the standby switch.

7. Ground all the IN1 in the first column.

8. Ground all the OUT1 in the fourth column.

9. Connect the ith output of the standby switch at the first stage to k IN1's

at the second column of 2 x 2 switch which are connected to the ith ordinary

switch in the center stage.

10. Connect the ith output of the standby switch at the second stage to N IN1's

at the third column of 2 x 2 switch which are connected to the ith ordinary

switch in the last stage.

5.4 Fault Recovery

The ability of the FTC is to find an alternate path to complete the mappings of

the prefault permutation at any given time. At most one faulty switch can occur

at each stage at a time. When one or more faults occur, the following three steps

can recover from the faults.

1. Change the state of the extra 2 x 2 switches.

2. Apply the edge coloring algorithm to the same permutation.

3. Set the switches.

In step 3, it is assumed that the control unit knows which switches are faulty

and sets the appropriate standby switch. If no fault occurs, only steps 2 and 3 have

to be performed. In this situation, the routing process is the same as described in
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Figure 5.6: An (m,m, k) FTC
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Chapter 3. So only one extra operation, step 1, is needed to reconfigure the FTC if

faults occur.

As mentioned in Section 5.3, the state of the 2 x 2 switch is controlled by INO

and OUTO. When a fault occurs at a switch, the INO and OUTO which connect

to the faulty switch will change the state of the 2 x 2 switch. The faulty switch

must notify the control unit so the control unit can transfer the setting from the

faulty switch to the standby switch. The fault detection and location techniques

are beyond the range of this thesis.

To illustrate the fault recovery, consider the permutation

P_ ( 01 	2 3 4 5 6 7 8 )
5 2 3 6 8 1 4 0 7

realized in an ordinary Clos network and an FTC when faults occur. Figure 5.7

shows the switch settings in a non-faulty Clos network. Let X(i, j) is the faulty

switch, the jth switch at the ith stage. Assume switches X(0, 1), X(1, 2), X(2, 2)

fail at the same time; figure 5.8 depicts this situation.

The link failure can be viewed as a failure of the switches which connect to the

failed link directly.

5.5 Comparison

Since the FTC presented in the chapter does not change the size of the permuta-

tion and uses the same edge coloring algorithm, it has the same run time complexity,

0(kNlg m). However, it does introduce some propagation delay due to the extra

2 x 2 switches.

The FTC presented in this chapter offers some improvements compared to the

Nassar's FTC[20] on a permutation of size N.
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Figure 5.7: The switch settings of permutation  P= ( 0 1 2 3 4 5 6 7 8| 5 2 3 6 8 1 4 0 7 ) r
7

alized by a (3,3,3) Clos network.
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Figure 5.8: The switch setting of permutation P = (0 1 2 3 4 5 6 7 8| 5 2 3 6 8 1 4 0 7 )real
ized by a (3,3,3) FTC. The star, *, marks the faulty switches.
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1. There is only one extra operation to reconfigure the FTC when faults oc-

cur at any stage—change the state of the 2 x 2 switch. Nassar's FTC needs

three additional operations to reconfigure the FTC if faults occur at the outer

stages—change the state of the multiplexers and demultiplexers, terminal re-

labelling and permutation translation.

2. The ordinary Clos network needs two different sizes of switches, m x m and

k x k. The FTC presented here needs two extra m x m switches, one k x k

switch, and 4N 2 x 2 switches to provide alternate paths. But Nassar's FTC

uses five different sizes of switch, m x (m +1), (k + 1) x (k +1) , (m + 1) x m,

multiplexer and demultiplexer.

3. There is no permutation translation or size change. But Nassar's FTC expands

the permutation size from N to N k. This requires more computing time

for the routing algorithm as well as storage space for the permutation. Also

the time to do the permutation translation when an outer stage switch fails

increases.
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Chapter 6

Conclusions

Improved routing algorithms for Clos networks and Bene§ networks as well as

fault tolerant Clos networks have been developed.

A permutation with size N realized by a 3-stage (m, rn, k) Clos network with size

N m x k is represented by an m-regular bipartite multigraph. A modified Edge

Coloring Algorithm that consists of Euler Partition and Maximum Matching pro-

cedure is used to decompose the m-regular bipartite multigraph into rn subgraphs.

Each subgraph represents the mapping of a switch in the center stage of the Clos

network. The original Edge Coloring algorithm contains matching procedure MD

developed by Gabow. MD procedure uses Hoperoft and Karp's Maximum Matching

algorithm to find two maximum matchings, M 1 and M2, that cover all vertices of

maximum degree in V1 and V2 . For a regular bipartite multigraph, each vertex has

the same degree. So, the M1 or M2 covers all of the graph in a multigraph and is

the maximum matching needed in EC algorithm.

The Looping algorithm and Parallel Looping algorithm (PARALOOP) for the

Bene§ network were examined. The Bidirectional Parallel Looping algorithm (Bi-

PARALOOP) was presented. The Looping algorithm is executed in a single pro-

cessor; the Parallel Looping algorithm is executed in a Tree-Connected Computer
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(TCC) to route the two independent inner subnetworks simultaneously instead of

sequentially in the Looping algorithm. The BiPARALOOP algorithm is executed

in a modified TCC, TTCC, with two processors per node to run each cycle of a per-

mutation concurrently instead of sequentially in the TCC with one processor per

node. The BIPARALOOP on TTCC can gain 50% speedup over the PARALOOP

on TCC.

The Tree-Connected Computer is well matched to the parallel routing algorithm

for the Bene§ network. The Euler partition procedure in edge coloring algorithms

decomposes a graph into two subgraphs. How the TCC can be utilized to execute

the Euler Partition to determine the switch settings in the center stage of Clos

network will be an interesting research topic.

The Fault-Tolerant Clos network presented in this thesis considerably increases

the reliability of the network by using little additional hardware and does not signif-

icantly degrade the performance under both normal and faulty conditions. Through

the isolation of the faulty switches, we can redirect the input-output connections to

alternate paths. It needs only one additional operation to reconfigure the network;

the Nassar's FTC needs at most three extra operations. There is no change in the

size of switches as well as the size of the permutation in the new FTC. Nassar's

FTC expands the permutation size from N to N K and needs a permutation

translation when faults detected. Those will use more space and increase the com-

puting time. This new FTC uses three different sizes of switch but Nassar's FTC

uses five different sizes of switch.
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