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�
INTRODUCTION TO

MULTIPROCESSOR I�O

ARCHITECTURE

David Kotz

dfk�cs�dartmouth�edu

Department of Computer Science

Dartmouth College� Hanover� NH ����������

ABSTRACT

The computational performance of multiprocessors continues to improve by leaps

and bounds� fueled in part by rapid improvements in processor and interconnection

technology� I�O performance thus becomes ever more critical� to avoid becoming

the bottleneck of system performance� In this paper we provide an introduction to

I�O architectural issues in multiprocessors� with a focus on disk subsystems� While

we discuss examples from actual architectures and provide pointers to interesting

research in the literature� we do not attempt to provide a comprehensive survey� We

concentrate on a study of the architectural design issues� and the e�ects of di�erent

design alternatives�

� INTRODUCTION

As high�performance computers continue their stunning increases in compu�
tational performance� fueled in part by rapid improvements in processor and
interconnection technology� I�O becomes an increasingly important component
of overall system performance� This fact is especially true for parallel com�
puters� where the combination of numerous processors boosts computational
performance� leaving I�O as the serial bottleneck that limits scalability ����
Indeed� many scienti	c and commercial applications have tremendous I�O re�
quirements ��
�� both for moving data in and out of the parallel computer� as
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well as for manipulating datasets too large to 	t in primary memory� Thus� it is
imperative that a parallel I	O architecture is provided to support the parallel
computational architecture�

In this paper we survey some of the fundamental issues in parallel�I�O architec�
tural design� using several architectures from the past and present as examples�
We consider I�O to disks� tapes� external networks� and graphics� with an
emphasis on disks� In general� our focus is on input to and output from the
multiprocessor itself� Thus� we focus on internal disk subsystems� rather than
on network�attached 	le servers� Most modern multiprocessors have internal
disk systems� because they provide more e�ective performance 
especially for
small requests�� are scalable� and are particularly useful to support �out�of�
core� applications ����� Most multiprocessors are also connected to an external
mass�storage system� for long�term� high�capacity storage� which is one reason
to be interested in a fast� parallel network connection�

� REVIEW AND TERMINOLOGY

We assume that the reader is familiar with the fundamentals of I�O architec�
ture� but we provide a quick review here 
for a good introduction� see �����
chapter ��� Figure � shows a typical uniprocessor architecture� The CPU�
memory bus tends to be of proprietary design� tuned for the particular CPU or
memory� A bus adapter bridges between the proprietary CPU�memory bus and
an I�O bus� typically based on a standard such as SCSI or PCI� Controllers
connect the standard bus to speci	c I�O devices 
disk� network� or graphics��
The controllers are responsible for the low�level management of the device� in�
terpreting standard I�O commands from the bus� In this way� the CPU vendor
need only provide an adapter to a standard I�O bus� and the device vendor
need only provide a controller to connect to a standard I�O bus� In some buses�
such as SCSI� the controller is typically packaged with the device�

Note that peak I�O bandwidth� in any architecture� is limited by the slowest
component ����� Data from the disk
s� must �ow through the I�O bus� the
bus adapter� the memory bus� and into the memory� If the data is then sent
to another processor across the network� the data must �ow back out of the
memory� across the memory bus� through the bus adapter� across the I�O bus�
through the network interface� and across the network� Furthermore� an in�
memory copy may be necessary to repackage the data� Thus� the data may
�ow through the CPU and its cache� Any of these components may be a
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Figure � A typical uniprocessor architecture� showing the interconnection
between processors and I�O devices� via the processor�memorybus� an adapter�
an I�O bus� and a controller for each device


bottleneck� Note also that the memory and memory�bus bandwidth needs to
be ��� times that of the total disk or network bandwidth� because they are
used more than once�

We also assume that the reader is familiar with the fundamentals of parallel�
computer architecture 
for an introduction see ��� or ���� chapter �
�� In this pa�
per we use Flynn�s taxonomy ���� to distinguish between SIMD 
single instruc�
tion stream� multiple data stream� and MIMD 
multiple instruction stream�
multiple data stream� architectures�

Among MIMD machines� we distinguish between multiple�address�space sys�
tems and shared�address�space systems 
sometimes called shared�memory sys�
tems�� In a multiple�address�space system� each processor has its own private
physical address space� and the memory is physically distributed� Processors
communicate explicitly by passing messages over an interconnection network�
In a shared�address�space system� the hardware provides a shared physical ad�
dress space� If the shared memory is physically centralized� we call it a Uniform
Memory Access 
UMA� architecture� If the shared memory is physically dis�
tributed� we call it a Non�Uniform Memory Access 
NUMA� architecture� In
either case� communication is implicit� with hardware translating accesses to re�
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mote addresses into messages on the interconnection network� Note that both
architectures can support many di�erent programming paradigms� including
shared�memory and message�passing�

We often refer to processors� or processor�memory units� as �nodes�� a name
that comes from a vision of processors as nodes in the graph of an interconnec�
tion network�

� EXAMPLE ARCHITECTURES

We use the following machines as examples during our discussion of several
issues in the design of parallel I�O architecture� Although there are many
interesting parallel machines� we chose each of these as an interesting represen�
tative of an architectural category� We introduce each brie�y below� and cover
more details in later sections�

Shared�address�space UMA� DEC AlphaServer ����

UMA 
shared�memory� multiprocessors usually connect several CPUs to a sin�
gle memory with a single bus� Today� small shared�memory multiprocessors are
common� sold by nearly every Unix workstation vendor 
they are sometimes
called SMPs� for Symmetric MultiProcessors�� In the simplest case� an UMA
multiprocessor looks like the uniprocessor in Figure �� but with multiple CPUs
attached to the CPU�memory bus�

The DEC AlphaServer ��

 ����� sketched in Figure �� includes at least three
buses in a hierarchy� This structure allows connection of I�O devices designed
either for the fast� new standard PCI bus or the slower� old standard EISA and
SCSI buses� Since their PCI bus can sustain ��� MB�s� and one SCSI bus can
handle �
��
 MB�s� it is possible to connect several SCSI buses to the PCI bus�

Shared�address�space NUMA� KSR �

There are many di�erent varieties of NUMA architecture� but perhaps the most
recent common system is the KSR�� ����� Custom KSR microprocessors are
interconnected by a hierarchy of rings� and specialized hardware manages nearly
all of the memory in the machine as a shared cache� migrating sub�pages 
cache
lines� from processor to processor� A SCSI�bus adapter may be connected to
any processor node�
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Figure � Architectureof the DEC ����AlphaServer� an UMA multiprocessor
with substantial I�O capabilities
 The DEC ���� may be con�gured with up
to � CPUs
 
Adapted from ���� Figure �
�

Other NUMA systems with interesting I�O architectures include the BBN But�
ter�y Plus ���� which had VME�bus adapters connected directly to the multi�
stage omega interconnect� the NCR ��

 ��
�� with a tree interconnect and
specialized I�O nodes at the leaves� and the Convex Exemplar ����� with a
dedicated I�O processor for each cluster of computational processors�

Multiple�address�space� hypercube interconnect� nCUBE�ten

Some of the earliest large multiprocessors were based on a hypercube intercon�
nect� and there have been many I�O studies speci	cally aimed at hypercube�
interconnected multiprocessors ��
� ��� ��� ��� �
�� Thus� we consider this class
of machines separately from other multiple�address space machines�

We sketch the I�O architecture of the nCUBE�ten and nCUBE�� in Fig�
ure � ���� ��� ���� The nCUBE multiprocessor uses a hypercube topology
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I/O board

Compute board

nCUBE CPU

80286

Figure � Simpli�ed I�O architecture of the nCUBE�ten
 The actual I�O
board has �� nCUBE CPUs� and the actual compute board has �� nCUBE
CPUs
 Multiple boards are used to build larger systems
 Memory is not shown�
on the I�O board the nCUBE CPUs each share a region of memory with the
	��	�� which runs Unix and acts as a �host
� The nCUBE�� and nCUBE��
are similar


to interconnect custom microprocessors� each with several on�chip DMA ports
used for the connection to neighboring processors� One large hypercube of pro�
cessors is used for computation� a separate� smaller hypercube of processors is
dedicated to I�O� These I�O processors are grouped onto boards of ��� along
with an Intel �
��� CPU used as a �host� processor for interacting with users�
An I�O controller 
or SCSI adapter� may be connected to each of the I�O pro�
cessors� Most of the on�chip ports on the I�O processors are used to connect
to computational processors in the main hypercube�

The I�O architectures of the newer nCUBE�� and nCUBE�� ���� are similar
to that of the nCUBE�ten� though of course they are larger and faster� The
Intel iPSC machines are also similar� though without the smaller hypercube
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interconnecting I�O nodes� and without the �
��� host on the I�O boards
���� ��� ����

Multiple�address�space� other interconnect� CM�	

Most recent multiple�address�space multiprocessors 
including the IBM SP��
and the Intel Paragon� Dedicate a subset of the nodes to I�O� These �I�O
nodes� are the same type as the �compute nodes�� with the addition of I�O
buses and devices� The CM�� ���� ��� is more interesting� The CM�� is a collec�
tion of SPARC�based processor nodes connected by a fat�tree interconnect �����
Some of the nodes are compute nodes� and some are dedicated I�O nodes� as
shown in Figure � ���� ���� Compute nodes are grouped into partitions� and
each partition is assigned a special processor node as a partition manager� The
I�O nodes are di�erent from the compute nodes� and are specialized for dif�
ferent kinds of I�O devices� there are �disk� nodes� �HIPPI�network� nodes�
and �tape� nodes� Each disk storage node 
Figure �� has a SPARC CPU as
controller� a CM�� network interface� an � MB bu�er RAM� and four SCSI��
bus adapters� typically with two disks each�

SIMD� Maspar MP��

In the Maspar MP�� ����� each processing element 
PE� in the array is a simple
���bit microprocessor with a small amount of memory� Figure � shows a sketch
of the MP��� All PEs execute instructions broadcast by the Array Control Unit

ACU�� except for those PEs that may be temporarily inactive as a result of a
conditional operation� The PEs are connected by three networks� a broadcast
network for instructions from the ACU� a torus for nearest�neighbor commu�
nication� and a general �global router� for arbitrary inter�PE communication�
The MP�� adds I�O to the processor array by extending its global�router net�
work to a separate I�O controller ���� ���� Thus� a 	le�write operation becomes
a global communication operation� all active PEs send data through the global
router to the I�O RAM� which rearranges the data as necessary� The I�O
controller then arranges disk access�

� DISK I�O

In this section we discuss some of the architectural issues in parallel disk sub�
systems� and speci	c ways in which our example architectures deal with those
issues� After a review of disk arrays� we focus on 	ve fundamental issues in
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Processor node

I/O node

Disk drive

Router

Partition manager

PM1Partition 1 Partition 2

I/O partition

PM2

Figure � Typical attachment of I�O nodes in a CM�� prevents I�O traf�
�c from interfering with uninvolved partitions
 In particular� inter�I�O�node
transfers remain entirely within the I�O partition
 All I�O tra�c is managed
by a partition manager 
PM�
 
Adapted from ����
�

parallel�I�O architecture design� connection� management� placement� bu�er�
ing� and availability�

��� Disk arrays and RAID

Although disk arrays are not the focus of this paper� they represent a fun�
damental form of parallel I�O� We thus review the topic of disk arrays and
redundant disk arrays 
RAID� for readers who may not be familiar with the
topic� Chen et al� ���� and Gibson ���� provide more detailed surveys�

To improve the capacity and bandwidth of the disk subsystem� we may group
several disks into a disk array� and distribute a 	le�s data across all the disks in
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Figure � Architecture of a CM�� disk storage node
 
Adapted from ����
�

the group� This practice is typically called striping� declustering� or interleaving�
There is no universal agreement on the de	nition of these terms� but common
usage seems to indicate that declustering means any distribution of a 	le�s
data across multiple disks� whereas striping is a declustering based on a round�
robin assignment of data units to disks� Interleaving is less commonly used
now� but some have used it to mean striping when the disks are rotationally
synchronized�

Early work by Kim ���� and Salem ��
� demonstrated the usefulness of disk
arrays� but one of the signi	cant drawbacks was reduced reliability� Disk relia�
bility is usually expressed in terms of the Mean Time To Failure 
MTTF�� with
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Parallel Disk Array (8+P)

I/O RAM

I/O channel

VME bus

I/O controller

Array Control Unit

Global
Router

PE Array
Host

Figure � The Maspar MP�� I�O architecture
 The torus network is not
shown
 The global router allows general PE�to�PE communication� as well
as communication between PEs and the I�O RAM� a large bu�er memory

Individual global�router connections to each PE are not shown
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typical values in the hundreds of thousands of hours� If 	le data are striped
across N disks� then the failure of any one disk essentially causes the loss of
the 	le� If the disks are assumed to fail independently and with an exponential
failure rate� then an N �disk array will fail 
lose data� N times as often as a sin�
gle disk� i�e�� MTTFN � MTTF��N � Some form of fault�tolerance is necessary
to protect data against disk failure�

In ���� Patterson� Gibson� and Katz presented �a case for redundant arrays
of inexpensive disks 
RAID�� ����� in which they argued that disk arrays could
be faster� cheaper� smaller� and more reliable than traditional large disks� and
categorized several techniques for using redundancy to boost the availability of
disk arrays� We summarize the work here� Their RAID �levels� are 
Figure ���

RAID Level �
 Simple disk striping with no redundancy�

RAID Level �
 Otherwise known as disk mirroring� Disks are paired� and
every write is sent to both disks� If a disk fails� its mirror can be used
instead�

RAID Level �
 Hamming code� Data is striped across N data disks� Com�
pute a Hamming code ���� for each group of N bits� one taken from each
data disk at corresponding positions� to produce a larger set of bits� Add
several �check� disks� so that you can distribute the coded bits one per
disk� Since a Hamming code is designed to detect and correct errors� the
bit lost due to a disk failure can be recovered using the extra Hamming�
code bits stored on the check disks� For N � �
 disks� � check disks are
required� for N � �� disks� � check disks are required� Thus� fewer disks
are required than in RAID level �� The Thinking Machines DataVault ����
was one successful RAID � product�

RAID Level �
 Single�bit parity� Since� when a disk fails� it is known to have
failed� and the identity of the failed disk is known� a single parity bit for
each N �bit data word is su�cient to reproduce the lost bit in that word�
Thus� RAID level � uses only one �parity disk� for any group of size N �

RAID Level �
 Block�sized striping unit� RAID level � is e�ective for large
reads and writes� each of which span all of the disks� Some workloads� such
as transaction processing� tend to make smaller read and write requests�
RAID level � uses blocks instead of bits as the striping unit� although
parity is computed in the same way� one parity bit is produced from N
bits� one from each disk at corresponding positions� Thus� it is possible to
concurrently read di�erent blocks of data from each data drive� unlike in
RAID ��
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Figure � RAID levels � through �
 Each column represents a disk� all exam�
ples have the equivalent of � data disks
 Each row represents one stripe� with
one striping unit per disk
 The striping unit is typically one bit for RAID �
and RAID �� one block for others
 Shaded striping units represent redundant
information 
C for check bits� P for parity bits� or number for copy�


RAID Level 	
 Rotated parity blocks� Notice that in a workload of small
reads and writes� RAID level � requires four one�block I�Os to write a
single data block� read the old data and parity blocks� compute the new
parity block� and write the new data and parity blocks� Although the
data reads and writes are spread over N disks� the parity disk is used for
every write request� and thus becomes a bottleneck� RAID level � solves
this problem by distributing parity blocks across all disks� each stripe
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still contains N data blocks and one parity block� but their positions are
di�erent on each stripe�

The most common RAIDs in use are RAID level 
 
when reliability is not an
issue�� RAID level � 
primarily in critical database applications�� RAID level �

for high�bandwidth large�read and �write applications�� and RAID level � 
for
applications with small I�O requests��

There are numerous RAID implementations from many vendors� some imple�
mented in software 
in the 	le system or device driver�� and some implemented
in hardware and 	rmware 
in the disk controller�� There are a few software�
RAID systems that distribute data around a network ���� ��� ���� These sys�
tems are intended to support traditional distributed�workstation workloads�

One group at Hewlett�Packard has extensively examined the question of parallel
RAID management� beginning with DataMesh ���� and later TickerTAIP �����
Although these systems were designed primarily for uniprocessors� they do have
the potential to be connected to multiple independent processors� In their most
recent work they show how to use a hierarchy of RAID level � and level � to
construct an easy�to�use� cost�e�ective� high�performance disk array �����

��� Connection

An interconnection network is necessary to move data between multiple I�O
devices 
or I�O nodes� and multiple memories� There are three fundamental
issues involved in connecting I�O devices to computational nodes�

Is there a separate network� or subnetwork� dedicated to I	O tra
c� Or
does all I	O tra
c share the interprocessor communication network�

One extreme is to connect the I�O nodes� or even I�O�device adapters�
directly to the primary interconnection network� Another extreme is to
provide an entirely separate I�O network� to which each processor is con�
nected� Or� a compromise is to connect each I�O node to a few points
in the main network using an �extra� link� most communications between
computational nodes and I�O nodes are routed through the main network
as well as the link to the I�O node�

This distinction is important� because I�O�related network tra�c often
has di�erent characteristics from other interprocessor network tra�c� I�O
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messages tend to be large and bursty� while most other interprocessor
messages tend to be smaller� Throughput is usually the goal for I�O�
related communication� whereas latency is typically important for other
interprocessor messages� Each can cause congestion or contention that
negatively impacts the performance of the other ��� �� �
�� Although a
dedicated I�O network can separate the two forms of tra�c� it adds cost�
Ultimately� the question is whether� for 	xed cost� it is better to use one
network or two separate networks with less connectivity or bandwidth�
Although there has been some research on this issue 
such as ������ there
is as yet no de	nitive answer�

Does the network interface include support for DMA �direct memory ac�
cess
 or shared memory� Does it support user�level access� or are kernel
privileges required�

These issues are critical because an I�O system depends on an ability to
move data� Too many systems have fast interconnection networks that
are limited to slow performance by an ine�cient network interface� With�
out DMA� for example� the CPU must use programmed I�O� requiring an
interrupt to feed each packet into the network 
the IBM SP�� had this
restriction� limiting the performance of its parallel 	le system ������ Fur�
thermore� while simple DMA makes a big di�erence� more sophisticated
DMA functionality can be extremely useful� For example� if the DMA
unit can gather discontiguous memory chunks into a message� or scatter a
message into discontiguous memory chunks� extra memory�memory copies
can be avoided� Several parallel 	le systems have found it advantageous to
support discontiguous 	le accesses ���� ��� ���� for which data�reorganizing
DMA support would be helpful�

Since many parallel 	le systems are implemented as a user�level library
on the compute nodes� and a kernel�level server on the I�O nodes� perfor�
mance improves if messages can be sent and received through the network
interface from user level� without kernel intervention� because there is less
overhead on the compute nodes� Several research projects demonstrate the
bene	ts of user�level network interfaces ��� ����

Shared�address�space systems� by de	nition� have specialized hardware
support for load and store� to remote memories if necessary� from user
level� I�O activity would make good use of a block�transfer mechanism�
which can be viewed as a form of DMA to or from remote memory� The
BBN Butter�y had this feature ����
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Is the I	O adapter attached directly to the interconnection network� or to
an I	O�processor node�

Probably the simplest approach to building a parallel I�O system� par�
ticularly if the processor nodes are fairly conventional processor�memory
cards� is to add an I�O�bus adapter 
such as a SCSI�bus adapter� to some
of the processor nodes to form I�O nodes� The I�O devices are then at�
tached to those I�O buses� But an alternative used by some systems is to
build a custom adapter that connects the I�O bus directly to the primary
interconnection network� This design avoids an extra copy through the
I�O�node memory� but without a local I�O processor to manage access to
the device� management may be more complicated�

Connection in example architectures

DEC ����� Most disks 
or RAIDs� in the AlphaServer would be attached to
one or more SCSI buses� which are in turn attached to the PCI bus�

KSR �� SCSI�bus adapters are connected to I�O nodes� There is no separate
I�O network� The network interface supports a specialized shared�memory
protocol�

nCUBE�ten� as shown in Figure �� device controllers are connected to I�O
nodes� The I�O nodes are interconnected by a dedicated network� and are
connected to selected compute nodes� The network wires are connected
directly to the CPU itself� but are not accessible from user level�

CM�	� device controllers are attached to specialized I�O nodes� which are at�
tached to the interconnection network� I�O nodes have special DMA con�
trollers that can scatter data from the bu�er RAM� through the network
interface� to multiple compute nodes� in a wide variety of patterns� Al�
ternatively� it can gather data from multiple remote nodes into the bu�er�
This ability to reorganize data is an important component of the their
ability to provide a traditional linear�	le model� striped across disks in
���byte striping units� and yet be able to map the data in the 	le to dif�
ferent application �geometries� of processors and virtual processors� The
compute�node network interface is accessible at user level�

Maspar MP��� device controllers are attached to the I�O controller and I�O
RAM through either a VME bus or an optional� proprietary �

 MB�s I�O
bus� The I�O RAM connects to the PEs through the global router� which
is not dedicated to I�O� User�level access and DMA are moot questions�
as all actions are synchronous and controlled by the ACU�
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��� Management

Input�Output refers to the process of moving data into memory from a periph�
eral device� or out from memory to a peripheral device 
such as disk� tape� or
network�� In a multiprocessor� there may be many memories 
typically one for
each processor� and many peripheral devices� A key issue� then� is manage�
ment� what processors manage access to the devices� There are three common
solutions� shown in Figure �� where the management is

A
 centralized on one processor

B
 distributed among all processors� or

C
 distributed among a subset of processors that are dedicated to I�O�

Typically� as shown in Figure �� the devices are attached to their managing
processor�

The centralized approach is common in SIMD systems� where most manage�
ment is centralized anyway and the programming model is synchronous� In
large MIMD systems� however� it represents a serious potential bottleneck� es�
pecially when used with an asynchronous programming model�

Few systems choose to distribute management among all processors� preferring
to concentrate I�O hardware on a subset of processor nodes that are usually
dedicated to I�O activities� The concentration of I�O hardware on I�O nodes
has several advantages over full distribution �����

The number of I�O nodes and devices may be chosen independent of the
number of computational nodes� allowing more �exible system con	gura�
tion�

I�O nodes may be constructed di�erently� e�g�� with a di�erent CPU� more
or less memory� specialized DMA hardware� and of course adapters for
peripherals and I�O buses�

Fewer adapters may be needed�

System packaging may be simpler� since compute nodes may have di�erent
physical characteristics than I�O nodes� Each may 	t into di�erent types
of racks� for example�

I�O�service activity does not impact application computation by stealing
cycles or memory� or causing unexpected interrupts�
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A)

B)

C)

Figure 	 Three common solutions for management of parallel I�O� A� cen�
tralized� B� fully distributed� and C� distributed over a dedicated subset


On the other hand� distributing I�O management among all processors could
lead to better locality� if each processor could focus its I�O activity on its lo�
cal I�O devices� It is di�cult to characterize the performance tradeo�s of this
locality ����� especially given the wide variety of workloads and interconnection�
network architectures� but it seems likely that local disks would be useful for
paging and other forms of virtual�memory support for out�of�core computa�
tions ���� ����
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Management in example architectures

DEC ����� Theoretically� it is possible for any processor to manage the de�
vices� although some operating systems may choose to centralize the man�
agement on one processor� In a �symmetric� 
SMP� operating system�
management of all disks is distributed across all processors�

KSR �� Management and devices are distributed among a subset of proces�
sors� though they are not typically dedicated to I�O� Once disk data are
read into memory� and that memory is mapped into the application�s vir�
tual address space� the shared�memory system handles the movement of
data to the appropriate processors�

nCUBE�ten� A dedicated subset of I�O nodes� in conjunction with the host
processor� manage all I�O tra�c� Compute nodes send requests as mes�
sages to I�O nodes�

CM�	� All I�O activity is managed by a partition manager� That is� when
a compute node wants I�O� it contacts its partition manager� which then
contacts the necessary I�O nodes to arrange a transfer� High�level man�
agement is centralized� although there are also dedicated I�O nodes that
handle the low�level data �ow�

Maspar MP��� Management is centralized in the Array Control Unit�

Network�attached storage devices

There is an increasing trend to separate device management into high�level
and low�level components and to attach the device controller directly to an
interconnection network� rather than to a specialized I�O bus� Then a host
CPU in one location provides high�level management� while the low�level details
are handled by the device controller� This trend is partially a result of the
ever�increasing sophistication of device controllers� and by the potential for
better performance by moving data directly from the device to the network�
bypassing an I�O bus� I�O adapter� and any I�O node�s memory� The CM��
is one specialized example� Other important examples include the RAID�II
���� and HPSS ���� ��� projects� The trend toward network�attached storage
devices 
NASD� is still new and may have a signi	cant e�ect on parallel and
distributed I�O architecture�
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��� Placement

All multiprocessors have an interconnection network� and all networks have
some topology� Many topologies are more complex than a bus or a ring� such
as a hypercube or a mesh� Communication latency� bandwidth� and contention
in these networks often depend on the relative position of the endpoints of the
communication� Thus� the position of the I�O nodes or devices in the network
topology can have a signi	cant impact on the performance of the I�O system�
There are three typical approaches�

�� Position is ignored� I�O nodes or devices are placed anywhere�

�� All I�O nodes or devices are clustered in their own �partition� of the
network�

�� I�O nodes or devices are distributed around the network� but in carefully
chosen positions�

Position is largely irrelevant in some networks� such as buses and many rings�
In many of today�s networks� the distance between two points is less signi	cant
than the message�startup overhead or the length of the message� so position
would appear to be unimportant for large�message tra�c like I�O� Contention
can play a major role� however� if I�O nodes are clustered� tra�c to the I�O
cluster may be forced through a �narrow� subset of the network� On the other
hand� if I�O nodes are distributed around the network� I�O tra�c may interfere
with other interprocess communications� There have been many studies of this
issue� particularly in hypercube networks ��
� ��� ��� �
�� but also in other
networks ��� �� �
�� Again� there is no commonly accepted solution� Often�
packaging issues play a more dominant role in I�O�node placement than do
performance issues�

Placement in example architectures

DEC ����� not an issue� since the topology is �at�

KSR �� no special placement is necessary or� it seems� suggested�

nCUBE�ten� I�O nodes exist outside of the primary hypercube network� with
connections from I�O to compute nodes spaced evenly among compute
nodes�

CM�	� I�O processors are clustered together in their own partition� Thus� as
I�O tra�c goes through the fat tree� it goes �over� rather than through
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uninvolved partitions 
see Figure ��� Inter�I�O�node transfers remain en�
tirely within the I�O partition�

Maspar MP��� there is only one I�O �node�� the I�O controller� and it is
connected 
through the global router� to all PEs�

��� Bu	ering

Bu�ering and caching are important aspects of any I�O system� Bu�ering
is important� for example� between a disk drive and an interconnection net�
work� to compensate for the di�erent speeds� di�erent granularity 
blocks or
packets�� and burstiness due to device characteristics 
disk seeks� or load 
net�
work congestion�� A bu�er cache� which is an associatively addressed bu�er
pool holding recently used blocks� is important because it can often avoid I�O
entirely� A bu�er cache can be particularly important in the I�O node of a
multiprocessor� because it can take advantage of interprocessor locality� when
multiple processors are accessing di�erent parts of the same block �����

All I�O systems have bu�ering in several places� We expect to see small speed�
matching bu�ers in the interconnection network� network interfaces� and device
adapters� We expect to see bu�ers and caches inside the disk or tape controllers�
and memory caches in CPUs and processor boards� And� of course� operating
systems often use some RAM memory for a 	le�system bu�er cache� Of interest
here are systems that have explicit bu�er or cache hardware set aside for I�O�
beyond the usual hardware described above�

Bu
ering in example architectures

DEC ����� nothing special�

KSR �� nothing unusual�

nCUBE�ten� each I�O board has � MB� of which ��� KB is dedicated for
each I�O node� and the remaining � MB is used for the host processor�
Some of this memory is used by system software for I�O bu�ering�

CM�	� each I�O node has � MB of RAM dedicated to bu�ering�

Maspar MP��� the I�O controller has � MB of memory� augmented by up to
� GB of I�O RAM� all dedicated to I�O� This bu�er space is important�
to permit data to be rearranged between its layout in the 	le and its
distribution across processors� The 	le system also manages it as a bu�er
cache�
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��
 Availability

A multiprocessor system is made up of many components� used in parallel to
improve performance� When a 	le�s data are distributed across multiple storage
devices� the failure of any device 
and subsequently the loss of data stored on
that device� e�ectively causes the loss of the 	le� Thus� distributing data across
multiple storage devices may increase performance� but it decreases availability�
Disk failure can be masked by redundant disk arrays 
RAIDs�� I�O�node failure
is more complicated� Feitelson et al� ���� describe a clever method to handle
this case�

For maximum fault tolerance� failure of other components must also be consid�
ered� For example� if all disks in an array are connected to the same controller�
power supply� fan� or cable� the failure of any one of those components leads to
the failure of the entire array� Thus� some systems provide redundant copies of
the components so that the failure of any one component does not cause data
loss �����

Availability in example architectures

DEC ����� Nothing special� depends on hardware or software RAIDs�

KSR �� RAID � or RAID � disk arrays on each I�O node provide security
against disk failure� There is no architectural support for RAID across I�O
nodes� although the KSR operating system appears to support software
RAID across I�O nodes�

nCUBE�ten� There is no speci	c hardware to support availability� Use of
RAIDs would protect against disk failure� It appears that the system can
be recon	gured to route messages around failed nodes� although if an I�O
node fails� it appears that its controller would be inaccessible�

CM�	� The 	le system builds a software RAID � across disks� with ���byte
striping unit� The architecture includes a special diagnostic network for
detecting and diagnosing failures� but otherwise there is no unusual archi�
tectural support to increase disk�system availability�

Maspar MP��� They use a RAID � disk array 
hardware��

��� Database systems
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Databases are� of course� I�O�intensive applications� While most of the ma�
chines described above can support databases 
and many do�� there have been
several parallel architectures speci	cally designed to support databases ��
� ���
��� ���� The Teradata DBC��
�� ���� is perhaps one of the most interesting�
In this machine� the processor nodes are arranged in a binary�tree intercon�
nect� with I�O nodes and disk drives at the leaves of the tree� specialized
data�merging processors in the internal nodes� and one control processor at the
root� This structure is thus designed for the selection� merging� and sorting
operations common in database queries� It appears to be specialized for intra�
query parallelism rather than inter�query parallelism� Dewitt and Gray discuss
parallel database machines in more detail �����

� TAPE I�O

Most modern multiprocessors support tape devices� because many multiproces�
sors are used for data�intensive scienti	c or commercial applications� and tapes
are a cost�e�ective form of tertiary storage� Most connect standard tape drives
through a SCSI� or VME�bus� just like any disk drive� The CM�� actually has
a specialized tape node� which is quite similar to the disk node in Figure ��
A more interesting approach is tape striping� in which data from a single 	le
is striped across several tapes in several tape drives� for increased bandwidth
���� ���� It appears to be di�cult to obtain high performance from tape striping
unless the workload is primarily large� sequential transfers �����


 GRAPHICS I�O

Few multiprocessors have attempted to support parallel graphics hardware�
despite the common use of visualization in scienti	c multiprocessor applica�
tions� The nCUBE�� has the most interesting approach� which allows a single
framebu�er to be written in parallel ��� ���� As with the disk�I�O boards� the
nCUBE�� graphics board has �� I�O nodes and ��� connections to compute
nodes� The I�O�node memory is dual�ported video RAM� which is used as a
framebu�er by a high�quality display� Thus� the framebu�er can be modi	ed
by sending data to the appropriate I�O node� which then writes it into the
appropriate memory location� Striped graphics 
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� NETWORK I�O

Multiprocessors have always supported external networks� the early generation

BBN Butter�y I� Intel iPSC��� Cosmic Cube� etc�� typically had an Ethernet
connection but no local disk drives� Most modern multiprocessors connect
to external networks by attaching a network interface to one of the processor
nodes� With a fast external network� such as a HIPPI network� it is important
to consider how to smooth the �ow of data from compute nodes to the I�O node
and thence to the external network� or vice versa� especially when the data must
be gathered from 
or scattered to� many compute nodes ��� ���� On the other
side of the network interface� a industry�government consortium has de	ned a
protocol for parallel data transfers across multiple network connections between
distributed supercomputers and network�attached peripherals ����

The CM�� has specialized HIPPI�network nodes ����� they are similar to the
disk node in Figure � except that they have eight interfaces to the CM�� data
network� These eight �
 MB�s connections provide enough connection band�
width to service the �

 MB�s HIPPI bandwidth�

The nCUBE�� also supports HIPPI by using multiple internal�network connec�
tions to feed one HIPPI network ����� As with the disk and graphics boards�
the HIPPI�network board has �� I�O nodes and ��� connections to compute
nodes� The I�O�node memory is dual�ported video RAM� and shared with the
HIPPI DMA hardware� Thus� compute nodes send data to the I�O nodes� who
write it into bu�ers in the RAM� The HIPPI interface reads data out of those
bu�ers and writes it onto the network�

The Maspar MP�� attaches a HIPPI controller to its I�O bus� much like the
disk array in Figure � ����� Again the I�O RAM serves as a bu�er between the
HIPPI network and the internal global router�

� SUMMARY

We describe the fundamentals of I�O architecture for multiprocessors� includ�
ing a review of uniprocessor I�O architecture and disk arrays� Our discussion
focuses on disk subsystems� and in particular the following design issues� con�
nection� management� placement� bu�ering� and availability� We use several
machines as recurring examples� including the DEC AlphaServer ��

� KSR ��
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nCUBE�ten� CM��� and Maspar MP��� We also brie�y cover database systems�
tapes� external networks� and graphics�

There are other good surveys� although there is no single comprehensive survey
of parallel I�O architecture� See ���� for a taxonomy of older disk architectures�
chapter � of ���� for a good textbook presentation� ���� for a discussion of low�
level I�O architecture leading up to a discussion of RAID� ���� ��� for coverage of
RAID� and ���� ��� �
� for other excellent overviews of parallel�I�O architecture�
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