52 research outputs found

    Variation Analysis, Fault Modeling and Yield Improvement of Emerging Spintronic Memories

    Get PDF

    STT-MRAM for real-time embedded systems: performance and WCET implications

    Get PDF
    STT-MRAM is an emerging non-volatile memory quickly approaching DRAM in terms of capacity, frequency and device size. Intensified efforts in STT-MRAM research by the memory manufacturers may indicate a revolution with STT-MRAM memory technology is imminent, and therefore it is essential to perform system level research to explore use-cases and identify computing domains that could benefit from this technology. Special STT-MRAM features such as intrinsic radiation hardness, non-volatility, zero stand-by power and capability to function in extreme temperatures makes it particularly suitable for aerospace, avionics and automotive applications. Such applications often have real-time requirements --- that is, certain tasks must complete within a strict deadline. Analyzing whether this deadline is met requires Worst Case Execution Time (WCET) Analysis, which is a fundamental part of evaluating any real-time system. In this study, we investigate the feasibility of using STT-MRAM in real-time embedded systems by analyzing average system performance impact and WCET implications.This work was supported by BSC, Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under ExaNoDe project (grant agreement No 671578). Jaume Abella was partially supported by the Ministry of Economy and Competitive-ness under Ramon y Cajal postdoctoral fellowship RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Magnetic and Spin Devices

    Get PDF
    As the scaling of electronic semiconductor devices displays signs of saturation, the main focus of research in microelectronics is shifting towards finding new computing paradigms. Electron spin offers additional functionality to digital charge-based devices. Several fundamental problems, including spin injection to a semiconductor, spin propagation and relaxation, and spin manipulation by the gate voltage, have been successfully resolved to open a path towards spin-based reprogrammable electron switches. Devices employing electron spin are nonvolatile; they are able to preserve the stored information without external power. Emerging nonvolatile devices are electrically addressable, possess a simple structure, and offer endurance and speed superior to flash memory. Having nonvolatile memory very close to CMOS offers a prospect of data processing in the nonvolatile segment, where the same devices are used to store and process the information. This opens perspectives for conceptually new low-power computing paradigms within Artificial Intelligence of Things (AIoT). This Special Issue focuses on all topics related to spintronic devices such as spin-based switches, magnetoresistive memories, energy harvesting devices, and sensors that can be employed in in-memory computing concepts and in Artificial Intelligence

    HOPE: Holistic STT-RAM Architecture Exploration Framework for Future Cross-Platform Analysis

    Full text link
    Spin Transfer Torque Random Access Memory (STT-RAM) is an emerging Non-Volatile Memory (NVM) technology that has garnered attention to overcome the drawbacks of conventional CMOS-based technologies. However, such technologies must be evaluated before deployment under real workloads and architecture. But there is a lack of available open-source STT-RAM-based system evaluation framework, which hampers research and experimentation and impacts the adoption of STT- RAM in a system. This paper proposes a novel, extendable STT-RAM memory controller design integrated inside the gem5 simulator. Our framework enables understanding various aspects of STT-RAM, i.e., power, delay, clock cycles, energy, and system throughput. We will open-source our HOPE framework, which will fuel research and aid in accelerating the development of future system architectures based on STT-RAM. It will also facilitate the user for further tool enhancement

    Evaluation of STT-MRAM main memory for HPC and real-time systems

    Get PDF
    It is questionable whether DRAM will continue to scale and will meet the needs of next-generation systems. Therefore, significant effort is invested in research and development of novel memory technologies. One of the candidates for nextgeneration memory is Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM). STT-MRAM is an emerging non-volatile memory with a lot of potential that could be exploited for various requirements of different computing systems. Being a novel technology, STT-MRAM devices are already approaching DRAM in terms of capacity, frequency and device size. Special STT-MRAM features such as intrinsic radiation hardness, non-volatility, zero stand-by power and capability to function in extreme temperatures also make it particularly suitable for aerospace, avionics and automotive applications. Despite of being a conceivable alternative for main memory technology, to this day, academic research of STT-MRAM main memory remains marginal. This is mainly due to the unavailability of publicly available detailed timing parameters of this novel technology, which are required to perform a cycle accurate main memory simulation. Some researchers adopt simplistic memory models to simulate main memory, but such models can introduce significant errors in the analysis of the overall system performance. Therefore, detailed timing parameters are a must-have for any evaluation or architecture exploration study of STT-MRAM main memory. These detailed parameters are not publicly available because STT-MRAM manufacturers are reluctant to release any delicate information on the technology. This thesis demonstrates an approach to perform a cycle accurate simulation of STT-MRAM main memory, being the first to release detailed timing parameters of this technology from academia, essentially enabling researchers to conduct reliable system level simulation of STT-MRAM using widely accepted existing simulation infrastructure. Our results show that, in HPC domain STT-MRAM provide performance comparable to DRAM. Results from the power estimation indicates that STT-MRAM power consumption increases significantly for Activation/Precharge power while Burst power increases moderately and Background power does not deviate much from DRAM. The thesis includes detailed STT-MRAM main memory timing parameters to the main repositories of DramSim2 and Ramulator, two of the most widely used and accepted state-of-the-art main memory simulators. The STT-MRAM timing parameters that has been originated as a part of this thesis, are till date the only reliable and publicly available timing information on this memory technology published from academia. Finally, the thesis analyzes the feasibility of using STT-MRAM in real-time embedded systems by investigating STT-MRAM main memory impact on average system performance and WCET. STT-MRAM's suitability for the real-time embedded systems is validated on benchmarks provided by the European Space Agency (ESA), EEMBC Autobench and MediaBench suite by analyzing performance and WCET impact. In quantitative terms, our results show that STT-MRAM main memory in real-time embedded systems provides performance and WCET comparable to conventional DRAM, while opening up opportunities to exploit various advantages.Es cuestionable si DRAM continuará escalando y cumplirá con las necesidades de los sistemas de la próxima generación. Por lo tanto, se invierte un esfuerzo significativo en la investigación y el desarrollo de nuevas tecnologías de memoria. Uno de los candidatos para la memoria de próxima generación es la Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM). STT-MRAM es una memoria no volátil emergente con un gran potencial que podría ser explotada para diversos requisitos de diferentes sistemas informáticos. Al ser una tecnología novedosa, los dispositivos STT-MRAM ya se están acercando a la DRAM en términos de capacidad, frecuencia y tamaño del dispositivo. Las características especiales de STTMRAM, como la dureza intrínseca a la radiación, la no volatilidad, la potencia de reserva cero y la capacidad de funcionar en temperaturas extremas, también lo hacen especialmente adecuado para aplicaciones aeroespaciales, de aviónica y automotriz. A pesar de ser una alternativa concebible para la tecnología de memoria principal, hasta la fecha, la investigación académica de la memoria principal de STT-MRAM sigue siendo marginal. Esto se debe principalmente a la falta de disponibilidad de los parámetros de tiempo detallados públicamente disponibles de esta nueva tecnología, que se requieren para realizar un ciclo de simulación de memoria principal precisa. Algunos investigadores adoptan modelos de memoria simplistas para simular la memoria principal, pero tales modelos pueden introducir errores significativos en el análisis del rendimiento general del sistema. Por lo tanto, los parámetros de tiempo detallados son indispensables para cualquier evaluación o estudio de exploración de la arquitectura de la memoria principal de STT-MRAM. Estos parámetros detallados no están disponibles públicamente porque los fabricantes de STT-MRAM son reacios a divulgar información delicada sobre la tecnología. Esta tesis demuestra un enfoque para realizar un ciclo de simulación precisa de la memoria principal de STT-MRAM, siendo el primero en lanzar parámetros de tiempo detallados de esta tecnología desde la academia, lo que esencialmente permite a los investigadores realizar una simulación confiable a nivel de sistema de STT-MRAM utilizando una simulación existente ampliamente aceptada infraestructura. Nuestros resultados muestran que, en el dominio HPC, STT-MRAM proporciona un rendimiento comparable al de la DRAM. Los resultados de la estimación de potencia indican que el consumo de potencia de STT-MRAM aumenta significativamente para la activation/Precharge power, mientras que la Burst power aumenta moderadamente y la Background power no se desvía mucho de la DRAM. La tesis incluye parámetros detallados de temporización memoria principal de STT-MRAM a los repositorios principales de DramSim2 y Ramulator, dos de los simuladores de memoria principal más avanzados y más utilizados y aceptados. Los parámetros de tiempo de STT-MRAM que se han originado como parte de esta tesis, son hasta la fecha la única información de tiempo confiable y disponible al público sobre esta tecnología de memoria publicada desde la academia. Finalmente, la tesis analiza la viabilidad de usar STT-MRAM en real-time embedded systems mediante la investigación del impacto de la memoria principal de STT-MRAM en el rendimiento promedio del sistema y WCET. La idoneidad de STTMRAM para los real-time embedded systems se valida en los applicaciones proporcionados por la European Space Agency (ESA), EEMBC Autobench y MediaBench, al analizar el rendimiento y el impacto de WCET. En términos cuantitativos, nuestros resultados muestran que la memoria principal de STT-MRAM en real-time embedded systems proporciona un desempeño WCET comparable al de una memoria DRAM convencional, al tiempo que abre oportunidades para explotar varias ventajas

    A quantum sensing metrology for magnetic memories

    Full text link
    Magnetic random access memory (MRAM) is a leading emergent memory technology that is poised to replace current non-volatile memory technologies such as eFlash. However, the scaling of MRAM technologies is heavily affected by device-to-device variability rooted in the stochastic nature of the MRAM writing process into nanoscale magnetic layers. Here, we introduce a non-contact metrology technique deploying Scanning NV Magnetometry (SNVM) to investigate MRAM performance at the individual bit level. We demonstrate magnetic reversal characterization in individual, < 60 nm sized bits, to extract key magnetic properties, thermal stability, and switching statistics, and thereby gauge bit-to-bit uniformity. We showcase the performance of our method by benchmarking two distinct bit etching processes immediately after pattern formation. Unlike previous methods, our approach unveils marked differences in switching behaviour of fully contacted MRAM devices stemming from these processes. Our findings highlight the potential of nanoscale quantum sensing of MRAM devices for early-stage screening in the processing line, paving the way for future incorporation of this nanoscale characterization tool in the semiconductor industry

    Thermal Aware Design Automation of the Electronic Control System for Autonomous Vehicles

    Get PDF
    The autonomous vehicle (AV) technology, due to its tremendous social and economical benefits, is transforming the entire world in the coming decades. However, significant technical challenges still need to be overcome until AVs can be safely, reliably, and massively deployed. Temperature plays a key role in the safety and reliability of an AV, not only because a vehicle is subjected to extreme operating temperatures but also because the increasing computations demand more powerful IC chips, which can lead to higher operating temperature and large thermal gradient. In particular, as the underpinning technology for AV, artificial intelligence (AI) requires substantially increased computation and memory resources, which have been growing exponentially through recent years and further exacerbated the thermal problems. High operating temperature and large thermal gradient can reduce the performance, degrade the reliability, and even cause an IC to fail catastrophically. We believe that dealing with thermal issues must be coupled closely in the design phase of the AVs’ electronic control system (ECS). To this end, first, we study how to map vehicle applications to ECS with heterogeneous architecture to satisfy peak temperature constraints and optimize latency and system-level reliability. We present a mathematical programming model to bound the peak temperature for the ECS. We also develop an approach based on the genetic algorithm to bound the peak temperature under varying execution time scenarios and optimize the system-level reliability of the ECS. We present several computationally efficient techniques for system-level mean-time-to-failure (MTTF) computation, which show several orders-of-magnitude speed-up over the state-of-the-art method. Second, we focus on studying the thermal impacts of AI techniques. Specifically, we study how the thermal impacts for the memory bit flipping can affect the prediction accuracy of a deep neural network (DNN). We develop a neuron-level analytical sensitivity estimation framework to quantify this impact and study its effectiveness with popular DNN architectures. Third, we study the problem of incorporating thermal impacts into mapping the parameters for DNN neurons to memory banks to improve prediction accuracy. Based on our developed sensitivity metric, we develop a bin-packing-based approach to map DNN neuron parameters to memory banks with different temperature profiles. We also study the problem of identifying the optimal temperature profiles for memory systems that can minimize the thermal impacts. We show that the thermal aware mapping of DNN neuron parameters on memory banks can significantly improve the prediction accuracy at a high-temperature range than the thermal ignorant for state-of-the-art DNNs

    MRAM commercialization potential evaluation Research Based on the Chinese Market

    Get PDF
    Regarding the Chinese data storage industries, there is an urgent need for a national strategy and new investments as there are new technologies emerging in the global markets. The storage technology commercialization activities are becoming a widespread concern for the Chinese government and their strategic enterprises. The promotion of storage technology commercialization has become a common goal for enterprise and national government strategies. How the potential for commercialization of a storage technology can be assessed, what evaluation index should be used, and what the factors affect the storage technology are the important issues that must be addressed

    NASA Electronic Parts and Packaging (NEPP) Program: Overview and Technology Focus Areas - Responsive Technology Assurance for Civil Space

    Get PDF
    NASA Electronic Parts and Packaging (NEPP) Program Overview and Technology Highlights The NEPP Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable use of electrical, electronic, and electromechanical parts by NASA, in collaboration with other government agencies and industry. The NASA Electronic Parts Assurance Group (NEPAG) is a core portion of NEPP. This presentation highlights key focus areas for 2019
    • …
    corecore