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ABSTRACT In-memory computing (IMC) aims at executing numerical operations via physical processes,
such as current summation and charge collection, thus accelerating common computing tasks including the
matrix-vector multiplication. While extremely promising for memory-intensive processing such as machine
learning and deep learning, the IMC design and realization must face significant challenges due to device
and circuit nonidealities. This work provides an overview of the research trends and options for IMC-
based implementations of deep learning accelerators with emerging memory technologies. The device
technologies, the computing primitives, and the digital/analog/mixed design approaches are presented.
Finally, the major device issues and metrics for IMC are discussed and benchmarked.

INDEX TERMS In-memory computing, deep learning, deep neural network, emerging memory technolo-
gies, matrix-vector multiplication.

I. INTRODUCTION
Today, artificial intelligence and its enabling technology, the
deep neural networks (DNN), have become largely popular in
various applications such as image recognition, autonomous
vehicles, speech recognition, and natural language process-
ing. In the last five years, a state-of-the-art deep neural
network model increased the number of its parameters by
about 4 orders of magnitude, leading to a significant increase
in computational and memory requirements for both the
training and the inference operations [1], [2], [3], [4], [5],
[6]. Traditional computing systems (Fig. 1a) typically store
massive information on a memory unit that is physically
connected to the computational unit by a data bus. The
continuous data movement between the processing and the
memory units represents the main bottleneck due to the lim-
ited bandwidth, long latency, sequential data processing, and
high energy consumption [7], [8].
To minimize the latency and energy overhead of con-

ventional von Neumann computers, in-memory comput-
ing (IMC) aims at performing the computation in close
proximity to the memory or even in situ within the memory

itself [9], [10]. The range of operations that can be exe-
cuted within memory devices includes stateful logic [11],
[12], pulse integration [13], [14], associative memory [15],
[16], and stochastic computing [17]. The most popular and
enabling IMC operation is, however, matrix-vector multipli-
cation (MVM) via Ohm’s and Kirchhoff’s law in a memory
array [18], [19]. IMC has been thus largely targeted for
hardware accelerators of DNN, where MVM is by far the
most intensive workload. The ability to execute MVM in a
single operation by activating all rows and all columns in
parallel represents a key benefit of IMC that is unrivaled
by other technologies. Despite the simplicity of the MVM
concept and the potential advantages of IMC, the design
options and the interaction between circuit operation and
device nonidealities still represent a key open challenge.
This work provides an overview of IMC for DNN accel-

eration from the perspectives of device technology, circuit
design, device-circuit interaction, and its impact on comput-
ing accuracy. Section II illustrates the emerging nonvolatile
memory technologies that are currently considered for IMC.
Section III presents an overview of various IMC circuit
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FIGURE 1. Several examples of CPU - memory integration. (a) Von
Neumann architecture, in which CPU and memory are separated and
connected through a high-bandwidth bus, (b) Near-memory computing,
which features the embedding of a nonvolatile memory on the same
silicon as the CPU, for increased bandwidth and reduced data transfers,
(c) SRAM-based in-memory computing, in which the computation is
performed directly in the SRAM memory array, and (d) eNVM-based
in-memory computing, which features the integration of a high-density
memory allowing both parameter storage and calculation.

topologies for performing matrix-vector multiplication and
their possible applications. Among these applications, the
most promising one is the IMC acceleration of DNN infer-
ence, discussed in Section IV. Hence, Section V illustrates
the most critical device nonidealities affecting the accuracy
of IMC circuits. Section VI provides an overview of the
open challenges for the research field, while Section VII
concludes the work.

II. COMPUTATIONAL MEMORY TECHNOLOGIES
The main benefit of IMC is the improved energy effi-
ciency thanks to the reduction or suppression of data
movement. A first option to mitigate data movement is
to bring the main memory core directly on the chip via
high-density embedded DRAM [20] or embedded nonvolatile
memory (NVM). This approach, called near-memory com-
puting and depicted in Fig. 1b, allows the storage of even
megabytes of model parameters, such as synaptic weights
and activations, in close proximity to the processing unit.
A second option [21], [22], [23] is true IMC where com-
putation is executed directly within the SRAM array as
shown in Fig. 1c. A key limitation of this option is the
volatile nature of SRAM and the relatively low density
compared to DRAM and emerging NVM. In fact, each
SRAM cell consists of at least 6 transistors and the bit value
remains stored only until the power supply is switched off.
To overcome these limitations, the third option embraces
emerging NVM devices for both nonvolatile storage of
computational parameters and in situ MVM acceleration
(Fig. 1d).

Here, we will focus on emerging NVM technologies that
are suitable for the IMC concept of Fig. 1d. In general, these
devices have three major advantages, namely (i) nonvolatile
storage which allows for the persistence of synaptic weights

even when the supply is disconnected, (ii) integration in the
back-end of line (BEOL), which allows compatibility of the
NVM process irrespective of the details of the front-end
technology and (iii) high density compared to SRAM. The
major NVM technologies for IMC applications are sketched
in Fig. 2.
The resistive-switching random access memory (RRAM

in Fig. 2a) consists of a metal-insulator-metal (MIM) stack,
where the insulator serves as active switching material [24].
The memory operation relies on the activation and deac-
tivation of a conductive filament across the switching
layer [25]. RRAM generally displays binary states, referred
to as low resistance state (LRS) and high resistance state
(HRS) [26]. However, RRAM can also display multilevel
operation [27] where the conductance can be tuned in the
analog domain [28]. RRAM devices can be easily integrated
into crosspoint arrays [25] and scaled down to 22nm CMOS
technology [29].

The phase change memory (PCM in Fig. 2b) relies on
the ability to electrically change the crystalline/amorphous
phase of an active chalcogenide material, where the resis-
tance correspondingly changes by at least two orders of
magnitude [68]. The most typical material is Ge2Sb2Te5
(GST) [69], although Ge-rich alloys are adopted for high-
temperature retention in embedded solutions [70]. The phase
change is induced by Joule heating via the application of
voltage pulses. If the local temperature exceeds the melting
temperature, the resulting phase is amorphous, correspond-
ing to a HRS. If instead, the local temperature is below the
melting temperature for sufficient time, the structure stabi-
lizes to crystalline, corresponding to LRS [71]. Thanks to
the relatively mature technology, these devices have been
extensively used for IMC demonstrators [72].
The ferroelectric random access memory (FeRAM in

Fig. 2c) consists of a metal-ferroelectric-metal (MFM) struc-
ture, where the ferroelectric layer exhibits a permanent and
switchable electrical polarization [73]. FeRAM has received
renewed interest after the discovery of ferroelectric hafnium
oxides HfO2 with orthorhombic structure [74]. A key issue
with FeRAM is its destructive readout operation, due to
reading being performed above the coercive field. This lim-
itation is overcome by ferroelectric tunnel junction (FTJ),
where different polarization states seem to show different
resistances even at low voltages [75].
The spin-transfer torque magnetic random access memory

(STT-MRAM in Fig. 2d) consists of a MIM stack where the
top and bottom metals are ferromagnetic (FM) metals, such
as Fe, Co, Ni, and their alloys. The MIM displays a magneto-
tunnel junction (MTJ) effect, where different orientations of
the magnetic polarization in the two FM layers, namely a
parallel (P) or antiparallel (AP) state, result in a LRS or
HRS, respectively [76]. STT-MRAMs feature fast switching
and good cycling endurance [77], despite suffering from a
relatively small resistance window and difficult multilevel
operation, which limits the use of STT-MRAM to binarized
neural networks.
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FIGURE 2. Graphic representation of the main emerging memory devices. (a) Resistive random access memory (RRAM). (b) Phase change memory (PCM).
(c) Ferroelectric random access memory (FeRAM). (d) Spin-transfer torque magnetic random access memory (STT-MRAM). (e) Ferroelectric field-effect
transistor (FeFET). (f) Spin-orbit torque magnetic random access memory (SOT-MRAM). (g) Electrochemical random access memory (ECRAM).
(h) Memtransistor device.

Devices in Fig. 2a-d have a two-terminal structure, which
makes them suitable for high-density crosspoint architec-
tures [10]. In many cases, two-terminal devices are connected
to an access transistor resulting in a one-transistor/one-
resistor (1T1R) structure with improved control of the device
current during programming and readout. Alternatively,
three-terminal devices have been proposed. The ferroelec-
tric field-effect transistor (FeFET in Fig. 2e) consists of
a field-effect transistor in which the gate stack contains
a ferroelectric layer [78]. The ferroelectric polarization is
reflected by the threshold voltage VT of the device, result-
ing in a memory effect similar to floating gate devices.
FeFET arrays with ferroelectric HfO2 have been recently
demonstrated [35], [79].
The spin-orbit torque magnetic random access memory

(SOT-MRAM in Fig. 2f) consists of a magnetic tunnel junc-
tion (MTJ) structure deposited on top of a line of heavy
metal, such as Pt or W [80]. The MTJ is programmed in
a P/AP state by a current flowing across the heavy-metal
line via spin-orbit coupling. The cell is read by sensing the
MTJ resistance, as in the STT-MRAM. The three-terminal
structure allows the separation of the programming and the
reading paths, improving the cycling endurance and the write
speed [81].
The electrochemical random access memory (ECRAM in

Fig. 2g) consists of a transistor device where the conductivity
of the channel is modified in a nonvolatile way and can be
reversed by injecting ionized dopants across an electrolyte
layer [82]. ECRAM generally shows high endurance and
extremely low-power consumption thanks to the low mobility
channel, for instance, WO3 [83]. ECRAM also exhibits a
controllable, linear weight update that is suitable for training
accelerators [82], [84].
The memtransistor (Fig. 2h) consists of a transistor device

with a 2D semiconductor material for the channel layer [85],

[86], [87]. The memory behavior can be obtained by migra-
tion of dislocations in polycrystalline MoS2 [88], lateral
migration of Ag across the source/drain electrodes [85], or
charge-trapping [89]. In some cases, MoS2 memtransistors
display gradual weight-update characteristics that are useful
for reservoir computing [89] and training accelerators [90].

A. COMPARISON OF NVM TECHNOLOGIES
In order to summarize and provide some quantitative
information, Table 1 shows a comparison between the main
emerging memories and the charge-based CMOS memo-
ries [91]. Fig. 3a shows a correlation plot of speed, evaluated
as the inverse of the read time, and density, evaluated as
the inverse of the cell area. Data from the literature are
compared to the typical ranges for CMOS-based conven-
tional memory technologies, such as SRAM, DRAM, and
NAND Flash. The performance/cost of emerging NVM is
usually intermediate between CMOS memories, where speed
approaches DRAM whereas density is still generally between
SRAM and DRAM.
Fig. 3b shows the array size as a function of the tech-

nology node for various NVM demonstrators. The capacity
spans the whole range from embedded memory (1-100 MB)
to standalone memory (1-100 GB). Note that smaller tech-
nology nodes do not necessarily lead to higher array capacity,
which is due to the different maturity levels of the technolo-
gies. Fig. 3c shows the memory capacity of some NVM
demonstrators as a function of the year, highlighting the
continuous development of various memory technologies.

III. IN-MEMORY MATRIX-VECTOR MULTIPLICATION
Most IMC implementations aim at accelerating matrix-vector
multiplication (MVM), which is by far the most essential
computing primitive in deep learning and machine learn-
ing [92]. Fig. 4 shows a sketch of the MVM concept
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TABLE 1. Indicative performances and characteristics of different semiconductor memory technologies.

FIGURE 3. Performances and characteristics of various emerging memory demonstrators. (a) Memory speed (expressed as the inverse of the read time)
as a function of the device miniaturization (expressed as the inverse of the cell size) [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50]. (b) Memory capacity as a function of the technology node [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67].
(c) Memory array capacity during years [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67].

implemented in a crosspoint memory array. The applied volt-
age signals generate currents across each resistive element
that are given by the voltage-conductance multiplication
according to Ohm’s law. Currents reaching a grounded com-
mon row are the summation of individual cell currents
according to Kirchhoff’s current law (KCL). The output
current Ii at the ith row is thus given by:

Ii =
N∑

j

Gi,j · Vj, (1)

where Gi,j is the conductance of the memory device at a
certain position i, j, Vj the voltage applied at the jth column
and N is the number of columns and rows [10], [93].
MVM can thus be carried out by physical laws, in situ,

without modifying or moving the stored parameters [10].
Most importantly, thanks to the inherent parallelism of the
array, the MVM computation is virtually performed in one
step independently of the size of the matrix, thus achiev-
ing an outstanding time complexity of O(1). Note that the
memory array is typically compatible with the BEOL pro-
cess, allowing for 3D stacking and a memory density scalable
down to 4F2/N, where N is the number of stacked layers
and F is the feature size of the lithographic process.
Depending on the required specifications and the memory

devices, various IMC implementations of MVM acceler-
ators are possible. Fig. 5a shows the resistive crosspoint

FIGURE 4. Crosspoint memory array based on resistive memories can
perform matrix-vector multiplication directly in situ, by means of Ohm’s
law and Kirchhoff’s current law. By applying a voltage vector at the
columns, the analog conductive elements produce a current that is
collected at the rows, conveniently biased at 0 V. The resulting output
current vector is the multiplication of the conductance matrix G with the
voltage vector V.

array, similar to Fig. 4, where device conductances can
be programmed in the binary [94], [95] or multilevel
domain [96], [97]. Steady-state currents collected at the
grounded rows are generally acquired by a readout chain
consisting of a transimpedance amplifier (TIA) and an
analog-to-digital converter (ADC) [98]. A major limitation of
this architecture is the programming operation, where volt-
age/currents might be difficult to control [99]. In particular,
when applying various programming schemes [100], [101],
a certain number of half-selected cells experience a non-
negligible leakage current.
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FIGURE 5. Various implementations of IMC crosspoint accelerators of
MVM. (a) Resistive crosspoint array (1R). (b) Array with
one-transistor/one-resistor (1T1R) configuration. The transistor prevents
sneak path currents during the programming phase and allows finer
current control. (c) Array with one-selector/one-resistor (1S1R)
configuration. The highly non-linear selector prevents sneak path currents,
maintaining the cell footprint. (d) Capacitive crosspoint array, composed of
memory elements whose small-signal capacitance can be programmed.
(e) Temporal encoding of the input vector through gate voltage pulses
whose widths represent the input signals. Integration is required to collect
the transient currents. (f) MVM through resistance summation. An
XNOR-Multiply is performed by the 2T2R cell, which activates the path
corresponding to the multiplication result. The series of the resistive paths
inherently performs the accumulation.

To address these programming issues, an access device
is normally added in series to the resistive element. Fig. 5b
shows the 1T1R configuration, which allows finer control
of the program/read current, at the cost of a larger cell
footprint and of an additional line for the transistor gate
terminal [102], [103]. Fig. 5c shows the one-selector/one-
resistor (1S1R) configuration [104], [105]. A selector is a
non-linear element capable of suppressing the leakage, also
called sneak path, currents of half-selected cells during the
programming phase, while maintaining a small cell footprint
and a compact two-terminal configuration [106], [107].
Fig. 5d illustrates a crosspoint array based on capacitive

memory elements, whose small-signal capacitance can be
programmed. In this configuration, MVM computation is
typically carried out in two distinct phases. First, the capaci-
tors are pre-charged by applying a voltage proportional to the
input vector. Then, the capacitors are discharged by switches
placed at the end of columns and rows, while the accumu-
lated charges are collected by analog integrators [108]. In
this case, multiplication is carried out by the characteristic
law of the capacitance, namely Qi,j = Ci,j · Vj, where Ci,j
serves as the weight and Vj is the applied input/activation.
The input signals can generally be encoded either in

the voltage amplitude, through amplitude encoding, or in
the pulse width, through temporal encoding. This approach,
shown in Fig. 5e, is typically implemented in 1T1R arrays,
where the memory elements are subject to a fixed voltage
VREAD while the input signals are applied to the transistor
gates. By integrating the transient currents on a capaci-
tance or through the adoption of analog integrators, the

resulting voltage output will be proportional to the MVM
result [72].
Kirchhoff’s voltage law (KVL) can be used instead of

KCL for accumulation [109]. This is shown in Fig. 5f, where
the adoption of a 2T2R cell configuration enables a binary
XNOR multiplication between the input voltage and the con-
ductance. The multiplication activates only one of the two
paths, showing a LRS or an HRS depending on the result
of the multiplication. By sensing the series resistance sum-
mation at each column, it is possible to collect the results
of the MVM.

A. APPLICATIONS OF IMC MVM ACCELERATORS
Since MVM is ubiquitous in a variety of algorithms and
workloads, IMC circuits to accelerate MVM have thus been
demonstrated in several data-intensive computing tasks, as
schematically depicted in Fig. 6.
Applications include image processing and image com-

pression (Fig. 6a) via the discrete cosine transform (DCT).
Here, image processing/compression can be achieved by
applying the concept of MVM between a fixed DCT
matrix and the pixel intensity input vector, preserving only
frequencies within a desired frequency band based on the
compression ratio [19], [111].
In closed-loop IMC (CL-IMC), the MVM array core is

connected in the feedback loop of an array of operational
amplifiers (OAs), as shown in Fig. 6b [112]. This class of cir-
cuits allows the acceleration of a broad range of linear algebra
operations, such as matrix inversion [113], eigenvector extrac-
tion [114], linear regression [115], and ridge regression [116]
with a significant reduction in time complexity.
Combinatorial optimization (Fig. 6c) relies on the intrin-

sic noise of the memory elements and the peripheral circuit
as an on-chip source of entropy to carry out a physical sim-
ulated annealing to escape from local minima during the
iterative search [117]. In these applications, MVM acceler-
ators are typically used in recurrent architectures to map
restricted Boltzmann machines (RBM) [13], [118], [119]
or Hopfield neural networks [120], [121], [122]. Similarly,
Bayesian neural networks (Fig. 6d) rely on the intrinsic vari-
ations of programmed conductance to model the probability
distributions of a Bayesian network [123].

The most popular application for MVM remains DNN
inference (Fig. 6e) and training (Fig. 6f). A key differ-
ence between these applications is that synaptic weights
are obtained from ex situ software-based training in the
case of inference accelerators, while they are trained in
situ via iterative gradient descent algorithms in the case of
DNN training accelerators. Typically, a training accelerator
is capable of performing inference via forward propagation,
while featuring also an in situ weight-update scheme gen-
erally via vector-vector outer product within the crosspoint
array [124]. Weight update requires linearity and symme-
try of the conductance update under the application of a
sequence of identical pulses, in line with the backpropaga-
tion algorithm. The best candidate materials to yield a linear
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FIGURE 6. Example of applications that benefit from IMC matrix-vector multiplication. Depending on the frequency update requirements and the noise
sensitivity of the application, each hardware solution should combine memory devices with specific physical properties with adequate peripheral circuits.
For instance, applications that rely on one-time programming of weight values after an ex situ software-based training (e.g., DNN inference, CL-IMC, and
DCT) can trade off the need for accurate tuning algorithms with less stringent requirements on the cycling endurance of the device itself. On the other
hand, applications that demand frequent and continuous updates of the conductance matrix (e.g., DNN training) require efficient gradual programming
and endurance capabilities of the adopted memory device. Image “Pillars of Creation” from James Webb Space Telescope gallery [110].

FIGURE 7. DNN inference workload mainly consists of MVM, which is basically a Multiply-and-Accumulate operation. Crosspoint accelerators of DNN
inference can be classified depending on the way these two operations are performed. A fully digital approach relies on memory logic gates
implementing an XNOR-Multiply and on a counter for the accumulation. A mixed digital-analog approach requires an analog accumulation via Kirchhoff’s
current law (KCL). A fully analog approach relies on resistive elements, that allow the encoding of multilevel weights and activations. Going from digital
to analog, the parallelism and the information density of the accelerator increase, at the expenses of more severe parasitic effects and more complex
peripheral circuits. Further explorations of the fully analog approach are needed to unleash the potential of IMC for DNN inference acceleration.

weight update are ECRAM devices [125] and MoS2-based
charge-trap memory [89], [90].

IV. IN-MEMORY ACCELERATION OF DNN INFERENCE
The computational workload of a DNN mostly consists of
MVM with variable input vectors and stationary weight
matrices, which can be directly accelerated by a memory
array. Depending on multiply and accumulate operations

being performed by analog or digital operations, three dif-
ferent options can be identified for MVM accelerators, as
depicted in Fig. 7.

A. FULLY DIGITAL CIRCUITS
The fully digital approach relies on memory logic gates to
perform the multiplication, and on counters to perform the
sequential accumulation. To encode the binary alphabet of a
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FIGURE 8. Binary DNN usually adopt a (−1, 1) alphabet for activations and
weights. A multiplication in the (−1, 1) alphabet can be implemented in
the classical (0, 1) binary domain through an XNOR logic gate, encoding −1
as 0.

FIGURE 9. Error-resilient implementation of an XNOR in a fully digital
accelerator, based on a differential 2T2R RRAM cell. The activation signal A
enables the connection of the cell to the sense amplifier in a straight or
crossed path, allowing the sense amplifier to perform the comparison
between the two resistive states. Adapted with permission from [128].

binary neural network (BNN) [126], where activations and
weights can be −1 or 1, the logic gates usually implement
an XNOR operation, that allows mapping a (−1, 1) mul-
tiplication in the classical (0, 1) binary domain [127], as
schematically shown in Fig. 8.
Digital accelerators have been proposed with various

nonvolatile emerging memories, such as RRAM [128],
[129], [130], STT-MRAM [131], and FeFET [132]. The
memory logic gate is generally based on a single 1T1R
or differential 2T2R cell.
Fig. 9 shows a building block based on differential 2T2R,

also displaying the XNOR gate and the sense amplifier (from
bottom to top). The binary weight is stored as a resistive pair
(HRS, LRS) or (LRS, HRS) in the 2T2R cell. For instance, to
map a weight equal to 1, the memory element corresponding
to B is programmed to LRS while its complementary B is
programmed to HRS. The activation (input) signal A and
its complementary A connect the 2T2R cell to the sense
amplifier in a straight path, for input A = 1, or crossed path,
for input A = 0. When the clock signal closes the conductive
path to ground, the cross-coupled latch of the sense amplifier
compares the resistive states of the memory elements and

raises the voltage in one of the two output nodes, while
decreasing the other one. For instance, assuming A = 1 and
B = 1, the XNOR node potential increases while XNOR
decreases. The XNOR output is then digitally counted by a
popcount operation. Thanks to the binary comparison of the
two device resistances in the 2T2R structure, the memory cell
is resilient to drift, noise, device variability, and temperature
variations [128], [130].
SRAM-based digital accelerators have also been demon-

strated with various memory cells, ranging from six-
transistor (6T) cells to twelve-transistor (12T) cells [21],
[22], [23], [133]. While providing only volatile storage of
weights, SRAMs provide the advantage of a fully-CMOS
integration which can be manufactured even for extremely
scaled technology nodes, such as 5nm [133].
In general, the fully digital approach is exceptionally

robust to various nonidealities, such as device variability,
drift, noise, or IR drop, and it can have higher reconfigurabil-
ity [134], [135], [136]. However, because of the accumulation
through counting, the parallelism of the computation is lim-
ited to just one row at a time, thus limiting the available
throughput.

B. MIXED DIGITAL-ANALOG CIRCUITS
In a mixed digital-analog circuit for DNN acceleration, accu-
mulation is performed in the analog domain by KCL, thus
avoiding the sequential counting of the pulses, while multi-
plication remains implemented in the digital domain by an
XNOR gate.
The mixed approach has been demonstrated either with

emerging NVM, such as RRAM [137], [138], [139],
[140], [141] or FeFET [142], [143], or with various SRAM
cells, generally from 6T to 12T [23], [144], [145], [146],
[147]. As for the fully digital approach, the XNOR gate can
adopt the 1T1R cell [137], [140] with various differential
techniques with NVM [139], [142], [148] or SRAM, whose
output result is typically stored in a capacitor as a binary
charge quantity [145], [149], [150].
Fig. 10 shows the computing core of a mixed digital-

analog accelerator based on SRAM. XNOR is implemented
in an eight-transistors/one capacitance (8T1C) cell, where
the weight a and its negated ab are stored in the SRAM,
while activations x and its negated xb are applied at the
PMOS transistors connected to the cell capacitance [145].
Assuming a = 1 and x = 0, the complementary node ab
is shorted to the capacitance, setting the output voltage
to 0 V . Accumulation is then performed through charge
sharing of all cell capacitors to the shared bitline [145],
[151], [152]. Alternatively, charge accumulation has been
proposed by charge redistribution on weighted capacitances
[150], [153], [154].
When the multiplication results are produced in the form

of steady state currents instead of charge, it is sufficient
to collect them through a common node, exploiting KCL,
and acquire the output current sums through a readout cir-
cuit [137], [138], [139], [140]. Depending on the BNN,
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FIGURE 10. Implementation of an XNOR with an 8T1C SRAM cell in a
mixed digital-analog accelerator. Analog accumulation is performed by
charge sharing on a shared bitline. Reprinted with permission from [145].

the resulting current sum can also be directly compared to
a reference current by means of a sense amplifier [138],
thus operating a threshold-type activation function. When
adopting differential NVM cells, another proposed method
to perform accumulation consists in implementing a voltage
divider composed of pull-up or pull-down resistances accord-
ing to XNOR results [141], [147], [148], and then acquiring
the common node voltages, which are proportional to the
result of the MVM.
Overall, a mixed digital-analog approach takes advan-

tage of the inherent parallelism of IMC, virtually reaching
a computational complexity of O(1). However, the analog
accumulation requires a more complex peripheral circuitry,
often involving a bulky and energy-hungry readout chain,
and is more sensitive to parasitic effects, such as IR drop
and noise. Furthermore, when the multiplication relies on
a single NVM, without conductance comparisons or error-
resilient circuits, also device variability and drift can affect
the computation.

C. FULLY ANALOG CIRCUITS
Fully analog circuits perform accumulation by KCL and
multiplication by resistive memory elements via Ohm’s law.
The adoption of resistive memory elements limits possible
implementations to NVM technologies only, since SRAM
cells cannot provide ohmic behavior or work with analog
voltages. NVM-based analog accelerators have been imple-
mented with RRAM [94], [156], [157], [158], PCM [72],
[159], [160], [161], STT-MRAM [103], [162] and FeFET
devices [163].

Thanks to the multilevel operation, resistive memories
are suitable for implementing non-binary weights in the
same circuit footprint, thus enabling a higher area effi-
ciency, defined as the number of performed operations per
area unit. Indeed, memory elements can be programmed
in binary [103], [163] or multilevel mode [102], [160].

FIGURE 11. Possible implementations of the computing core in a fully
analog approach based on 1T1R configuration, relying on current and
charge accumulation, respectively. Reprinted with permission from [155].

Alternatively, multilevel weights are obtained through bit-
slicing techniques [156], [157], [162], differential imple-
mentations, or more complex cell structures, allowing several
conductive levels to be obtained [159]. Also, a hybrid binary-
multilevel accelerator has been proposed to achieve the
best trade-off between accuracy and area efficiency [161].
Alongside the increase in the number of conductive levels,
memory cells can contain a variable number of elements,
for instance, 1T1R cell [95], [102], [164], differential 2T2R
cell [158], or higher-complexity cells such as 8T4R [159].
In addition to multilevel weights, analog accelerators typi-
cally feature multilevel or analog activation signals that can
be modulated through amplitude [102], [159] or temporal
encoding [72], [156], [165].
Fig. 11 shows two possible implementations of fully

analog circuits, that rely on either current or charge accu-
mulation. Current-mode sensing requires applying a clamped
voltage to the source lines, thus generating current contribu-
tions in each 1T1R cell that are collected and converted to
a voltage by the current ADC. On the other hand, voltage-
mode sensing consists of two separate phases. First, the
multiplication results are stored in the source line capaci-
tances, then they are accumulated into a sample capacitance
by charge sharing. The voltage across the sample capacitance
is finally collected by the ADC [155].
Fully analog accelerators can harness the full potential of

IMC, thanks to the massive parallelism and the extremely
high information density of multilevel weights and activa-
tions. On the other hand, accurate readout and conversion
circuits are essential to fully benefit from these features,
resulting in a significant overhead of area, power, and
cost. Furthermore, analog computing is critically affected
by parasitic effects at device and circuit levels.

V. MEMORY NONIDEALITY AND METRIC
Memory devices and circuits rely on physical, materials-
based storage concepts that are never ideal. Fig. 12 sum-
marizes the main nonideality features, namely IR drop (a),
conductance variation (b), drift (c), and fluctuations (d).
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FIGURE 12. Examples of memory nonidealities. (a) Parasitic resistance
along wire connections responsible for the IR drop, (b) programming
variability in multilevel programming, (c) conductance drift that affects the
cells, and (d) Gaussian noise that is measured during the readout of a
RRAM cell. Reprinted with permission from [166], [167], [168].

IR drop refers to the current-induced voltage drop across
parasitic wire resistances along the rows and the columns
of the memory arrays (Fig. 12a). Wire resistance is non-
negligible in very scaled arrays because of the small section
of the metal lines. Furthermore, analog accumulation in par-
allel IMC requires several cells to be read at the same
time, thus increasing the wire current, hence the IR drop.
IR drop causes a modification of the effective cell voltage
compared to the externally applied signal, thus resulting in
a current error that is proportional to the average device
conductance, to the wire resistance, and to the square of
the array size [99], [169]. In practice, the error induced
by IR drop is the main limitation to array size up-scaling,
thus preventing reaching the ideal computational complex-
ity of O(1). Generally, IR drop is reduced by adopting
low conductance devices, differential cells [158], or small
computing-tile architectures [169]. More elaborated tech-
niques have been proposed at architectural level [170], [171],
algorithmic level [169], [172], [173], and training level [174].
Multilevel operation allows the improvement of area effi-

ciency [28], [175], [176]. However, NVMs have limited
precision in programming the conductance, for instance,
due to size variations of the conductive filament in RRAM
or crystalline grain size in PCM. The limited precision
arises as a device-to-device (D2D) variability or a cycle-to-
cycle (C2C) variability within the same device [177], [178].
D2D variability is shown in Fig. 12b, reporting a multilevel
RRAM device with a non-negligible spread of the conduc-
tive states. Differently from the digital domain, where binary

FIGURE 13. (a) Plot of the correlation between the conductance value G,
and its standard deviation, for a certain technology. (b) The simulated
relative current error of the MVM product as a function of the matrix size.
Device parameters were extracted from [79], [166], [184], [185].

levels can be discriminated despite a possible spread, com-
puting in the analog domain can be critically affected even
by a small variation.
Drift is generally observed in PCM, where the structural

relaxation of the amorphous phase causes an increase in resis-
tance with time [179]. Drift can also affect the polycrystalline
phase in multilevel PCM devices, as a result of residual amor-
phous regions [167], [180]. Fig. 12c shows the temporal decay
of conductance of multilevel analog states, described by their
slope ν on the bilogarithmic plot. Drift is also observed in
other devices, such as RRAM and FeFET, although the phys-
ical mechanism is different from PCM. Drift can be mitigated
by adopting reference PCM cells [140], [181], [182], [183]
or differential 2T2R structures [128].

Finally, various sources of noise and fluctuations may
affect NVM devices. For instance, Fig. 12d shows the 1/f
current noise of RRAM devices, causing an increasing rela-
tive spread of the measured current [168]. In addition to 1/f,
thermal and random telegraph noise (RTN) can contribute to
time-dependent variations of the weights, thus affecting the
accuracy of the analog MVM. Noise might be mitigated by
adopting analog integration of the readout current, although
at the cost of reduced speed of computation.
To properly benchmark various NVM technologies for use

in mixed or fully analog DNN accelerators, it is important
to set a common metric. To this purpose, Fig. 13a shows
a correlation plot between the average conductance value
G and the standard deviation σG. Data were obtained for
various NVM devices, including FeFET [79], PCM [185],
RRAM [166], and STT-MRAM [184]. The conductance
G should be minimized to reduce readout currents, hence
energy consumption and IR drop effects. Similarly, σG
should be minimized to improve the computing accuracy
in analog/mixed circuits. The observed trend in the figure
is that σG and G approximately correlate with a formula
σG/G ≈ 0.15, irrespective of the NVM technology and the
programmed state. Fig. 13b illustrates the relative current
error for an MVM operation in the presence of variations
and IR drop as a function of the array size for the NVM
devices in Fig. 13a. For relatively small array sizes, the error
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decreases as a result of variability averaging among NVM
devices. As the array size increases, IR drop causes the error
to steeply increase. The optimum size of the array, which
is identified in correspondence with the minimum error, is
dictated by σG and G, which control variability and IR drop,
respectively.

VI. OUTLOOK
IMC circuits are dense, fast, energy-efficient, and scalable.
Several solutions and applications have already been iden-
tified and explored for both machine learning and deep
learning. However, various technological and design chal-
lenges have also been identified. Further development and
industrialization of IMC require addressing these challenges
in two major directions.
The first direction concerns the study of device technol-

ogy and materials. IMC paradigm would greatly benefit from
the adoption of precise, stable, and low-current memory
devices that could be easily integrated in the BEOL of
extremely scaled lithographic processes, while also being
programmable in multiple conductive levels. Investigation
of materials and device physics can enlighten the phenom-
ena underlying nonidealities such as fluctuations and drift,
with the aim of developing new memory devices which
are immune from parasitic effects. Besides device devel-
opments, the engineering of the memory cell configuration,
such as 1S1R or 1T1R structure, could drastically reduce
the operating current, with strong advantages in terms of
lower energy consumption, lower IR drop, and higher area
efficiency of the IMC system. In summary, developments at
the device level would boost IMC performance in terms of
increased information density, throughput, area, and energy
efficiency.
The second direction to be explored is the study of com-

puting architectures and their interplay with the workload.
To maximize the system performance, computing parallelism
should be maximized to prevent multiplexing of the readout
chain. This approach is usually challenging since periph-
eral circuits consume the largest portion of energy and area
budget. However, these limitations could be relaxed by an
accurate co-design of the hardware and the neural network.
On the one hand, IMC circuits must be designed specifically
for an application, thus avoiding unnecessary features or
excessive precision, for instance by reducing ADC quantiza-
tion or implementing simplified activation functions. On the
other hand, given a target application, the neural network can
be customized to adopt the features that are suitable for IMC
acceleration, such as low-level quantization or hardware-
aware training procedures. Finally, an electronic design
automation (EDA) toolchain is needed in order to bridge
the gap between the end-user and the hardware system,
ranging from application-specific, high-level-of-abstraction
design tools [186], to dedicated compilers [187], [188], [189]
performing low-level core optimization in real-world imple-
mentations, similarly to existing CPU- and GPU-based
computing system.

VII. CONCLUSION
This work provides an overview of memory devices and
circuit topologies for IMC-based acceleration of machine
learning and deep learning. Among various applications, a
particular focus is given to the IMC acceleration of DNN
inference, for which various approaches are presented and
discussed, considering circuit overheads and parasitic effects
affecting the final accuracy. IMC is a potentially-disruptive
paradigm shift, either in terms of architectural change or raw
computing performances. Further research on memory device
engineering and understanding as well as on the hardware-
network synergy could eventually unleash the full potential
of IMC.
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