16,832 research outputs found

    Review and application of Artificial Neural Networks models in reliability analysis of steel structures

    Get PDF
    This paper presents a survey on the development and use of Artificial Neural Network (ANN) models in structural reliability analysis. The survey identifies the different types of ANNs, the methods of structural reliability assessment that are typically used, the techniques proposed for ANN training set improvement and also some applications of ANN approximations to structural design and optimization problems. ANN models are then used in the reliability analysis of a ship stiffened panel subjected to uniaxial compression loads induced by hull girder vertical bending moment, for which the collapse strength is obtained by means of nonlinear finite element analysis (FEA). The approaches adopted combine the use of adaptive ANN models to approximate directly the limit state function with Monte Carlo simulation (MCS), first order reliability methods (FORM) and MCS with importance sampling (IS), for reliability assessment. A comprehensive comparison of the predictions of the different reliability methods with ANN based LSFs and classical LSF evaluation linked to the FEA is provided

    Advanced Bayesian networks for reliability and risk analysis in geotechnical engineering

    Get PDF
    The stability and deformation problems of soil have been a research topic of great concern since the past decades. The potential catastrophic events are induced by various complex factors, such as uncertain geotechnical conditions, external environment, and anthropogenic influence, etc. To prevent the occurrence of disasters in geotechnical engineering, the main purpose of this study is to enhance the Bayesian networks (BNs) model for quantifying the uncertainty and predicting the risk level in solving the geotechnical problems. The advanced BNs model is effective for analyzing the geotechnical problems in the poor data environment. The advanced BNs approach proposed in this study is applied to solve the stability of soil slopes problem associated with the specific-site data. When probabilistic models for soil properties are adopted, enhanced BNs approach was adopted to cope with continuous input parameters. On the other hand, Credal networks (CNs), developed on the basis of BNs, are specially used for incomplete input information. In addition, the probabilities of slope failure are also investigated for different evidences. A discretization approach for the enhanced BNs is applied in the case of evidence entering into the continuous nodes. Two examples implemented are to demonstrate the feasibility and predictive effectiveness of the BNs model. The results indicate the enhanced BNs show a precisely low risk for the slope studied. Unlike the BNs, the results of CNs are presented with bounds. The comparison of three different input information reveals the more imprecision in input, the more uncertainty in output. Both of them can provide the useful disaster-induced information for decision-makers. According to the information updating in the models, the position of the water table shows a significant role in the slope failure, which is controlled by the drainage states. Also, it discusses how the different types of BNs contribute to assessing the reliability and risk of real slopes, and how new information could be introduced in the analysis. The proposed models in this study illustrate the advanced BN model is a good diagnosis tool for estimating the risk level of the slope failure. In a follow-up study, the BNs model is developed based on its potential capability for the information updating and importance measure. To reduce the influence of uncertainty, with the proposed BN model, the soil parameters are updated accurately during the excavation process, and besides, the contribution of epistemic uncertainty from geotechnical parameters to the potential disaster can be characterized based on the developed BN model. The results of this study indicate the BNs model is an effective and flexible tool for risk analysis and decision making support in geotechnical engineering

    Quality control and improvement of the aluminum alloy castings for the next generation of engine block cast components.

    Get PDF
    This research focuses on the quality control and improvement of the W319 aluminum alloy engine blocks produced at the NEMAK Windsor Aluminum Plant (WAP). The present WAP Quality Control (QC) system was critically evaluated using the cause and effect diagram and therefore, a novel Plant Wide Quality Control (PWQC) system is proposed. This new QC system presents novel tools for off line as well as on line quality control. The off line tool uses heating curve analysis for the grading of the ingot suppliers. The on line tool utilizes Tukey control charts of the Thermal Analysis (TA) parameters for statistical process control. An Artificial Neural Network (ANN) model has also been developed for the on-line prediction and control of the Silicon Modification Level (SiML). The student t-statistical analysis has shown that even small scale variations in the Fe and Mn levels significantly affect the shrink porosity level of the 3.0L V6 engine block bulkhead. When the Fe and Mn levels are closer to their upper specification limits (0.4 wt.% and 0.3wt.%, respectively), the probability of low bulkhead shrink porosity is as high as 0.73. Elevated levels of Sn (∼0.04 wt.%) and Pb (∼0.03 wt.%) were found to lower the Brinell Hardness (HB) of the V6 bulkhead after the Thermal Sand Removal (TSR) and Artificial Aging (AA) processes. Therefore, Sn and Pb levels must be kept below 0.0050 wt.% and 0.02 wt.%, respectively, to satisfy the bulkhead HB requirements. The Cosworth electromagnetic pump reliability studies have indicated that the life of the pump has increased from 19,505 castings to 43,904 castings (225% increase) after the implementation of preventive maintenance. The optimum preventive maintenance period of the pump was calculated to be 43,000 castings. The solution treatment parameters (temperature and time) of the Novel Solution Treatment during the Solidification (NSTS) Process were optimized using ANN and the Simulated Annealing (SA) algorithm. The optimal NSTS process (516°C and 66 minutes) would significantly reduce the present Thermal Sand Removal (TSR) time (4 hours) and would avoid the problem of incipient melting without sacrificing the mechanical properties. In order to improve the cast component characteristics and to lower the alloy price, a new alloy, Al 332, (Si=10.5 wt.% & Cu=2 wt.%) was developed by optimizing the Si and Cu levels of 3XX Al alloys as a replacement for the W319 alloy. The predicted as cast characteristics of the new alloy were found to satisfy the requirements of Ford engineering specification WSE-M2A-151-A2/A4.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation).Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F735. Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6201. Thesis (Ph.D.)--University of Windsor (Canada), 2005

    UQ and AI: data fusion, inverse identification, and multiscale uncertainty propagation in aerospace components

    Get PDF
    A key requirement for engineering designs is that they offer good performance across a range of uncertain conditions while exhibiting an admissibly low probability of failure. In order to design components that offer good performance across a range of uncertain conditions, it is necessary to take account of the effect of the uncertainties associated with a candidate design. Uncertainty Quantification (UQ) methods are statistical methods that may be used to quantify the effect of the uncertainties inherent in a system on its performance. This thesis expands the envelope of UQ methods for the design of aerospace components, supporting the integration of UQ methods in product development by addressing four industrial challenges. Firstly, a method for propagating uncertainty through computational models in a hierachy of scales is described that is based on probabilistic equivalence and Non-Intrusive Polynomial Chaos (NIPC). This problem is relevant to the design of aerospace components as the computational models used to evaluate candidate designs are typically multiscale. This method was then extended to develop a formulation for inverse identification, where the probability distributions for the material properties of a coupon are deduced from measurements of its response. We demonstrate how probabilistic equivalence and the Maximum Entropy Principle (MEP) may be used to leverage data from simulations with scarce experimental data- with the intention of making this stage of product design less expensive and time consuming. The third contribution of this thesis is to develop two novel meta-modelling strategies to promote the wider exploration of the design space during the conceptual design phase. Design Space Exploration (DSE) in this phase is crucial as decisions made at the early, conceptual stages of an aircraft design can restrict the range of alternative designs available at later stages in the design process, despite limited quantitative knowledge of the interaction between requirements being available at this stage. A histogram interpolation algorithm is presented that allows the designer to interactively explore the design space with a model-free formulation, while a meta-model based on Knowledge Based Neural Networks (KBaNNs) is proposed in which the outputs of a high-level, inexpensive computer code are informed by the outputs of a neural network, in this way addressing the criticism of neural networks that they are purely data-driven and operate as black boxes. The final challenge addressed by this thesis is how to iteratively improve a meta-model by expanding the dataset used to train it. Given the reliance of UQ methods on meta-models this is an important challenge. This thesis proposes an adaptive learning algorithm for Support Vector Machine (SVM) metamodels, which are used to approximate an unknown function. In particular, we apply the adaptive learning algorithm to test cases in reliability analysis.Open Acces

    Optimal design of mesostructured materials under uncertainty

    Get PDF
    The main objective of the topology optimization is to fulfill the objective function with the minimum amount of material. This reduces the overall cost of the structure and at the same time reduces the assembly, manufacturing and maintenance costs because of the reduced number of parts in the final structure. The concept of reliability analysis can be incorporated into the deterministic topology optimization method; this incorporated scheme is referred to as Reliability-based Topology Optimization (RBTO). In RBTO, the statistical nature of constraints and design problems are defined in the objective function and probabilistic constraint. The probabilistic constraint can specify the required reliability level of the system. In practical applications, however, finding global optimum in the presence of uncertainty is a difficult and computationally intensive task, since for every possible design a full stochastic analysis has to be performed for estimating various statistical parameters. Efficient methodologies are therefore required for the solution of the stochastic part and the optimization part of the design process. This research will explore a reliability-based synthesis method which estimates all the statistical parameters and finds the optimum while being less computationally intensive. The efficiency of the proposed method is achieved with the combination of topology optimization and stochastic approximation which utilizes a sampling technique such as Latin Hypercube Sampling (LHS) and surrogate modeling techniques such as Local Regression and Classification using Artificial Neural Networks (ANN). Local regression is comparatively less computationally intensive and produces good results in case of low probability of failures whereas Classification is particularly useful in cases where the reliability of failure has to be estimated with disjoint failure domains. Because classification using ANN is comparatively more computationally demanding than Local regression, classification is only used when local regression fails to give the desired level of goodness of fit. Nevertheless, classification is an indispensible tool in estimating the probability of failure when the failure domain is discontinuous. Representative examples will be demonstrated where the method is used to design customized meso-scale truss structures and a macro-scale hydrogen storage tank. The final deliverable from this research will be a less computationally intensive and robust RBTO procedure that can be used for design of truss structures with variable design parameters and force and boundary conditions.M.S.Committee Chair: Choi, Seung-Kyum; Committee Member: Muhanna, Rafi; Committee Member: Rosen, Davi

    Constructing prediction intervals for neural network metamodels of complex systems

    Full text link

    Artificial Neural Network Model for Prediction of Liquefaction Potential in Soil Deposits

    Get PDF
    With the increase in population, the evaluation of liquefaction is becoming more important for land use planning and development. In soil deposits under undrained condition, earthquakes induce cyclic shear stresses, may lead to soil liquefaction. Artificial neural network (ANN) is one of the, artificial intelligence (AI) approaches that can be classified as machine learning. Simplified methods have been practiced by researchers to assess nonlinear liquefaction potential of soil. In order to address the collective knowledge built up in conventional liquefaction engineering, an alternative general regression neural network model is proposed in this paper. To meet this objective, a total of 30 boreholes are introduced into the model. The data includes the results of field test from (Babol, Mazandaran, Iran). The results produced by the proposed Artificial Neural Network model compared well with the determined liquefaction decision obtained by simplified methods. It provides a viable liquefaction potential assessment tool that assist geotechnical engineers in making an accurate and realistic predictions. Furthermore, this study integrates knowledge learned from field test and seismic parameters to the ongoing development of liquefaction analysis. The results show that there is liquefaction potential in western part of Babol, and in southern part of Babol no liquefaction potential were seen. In middle part and eastern part low liquefaction potential were predicted by ANNs. This study shows that neural networks are a powerful computational tool which can analyze the complex relationship between soil liquefaction potential and effective parameters in liquefaction
    corecore