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Abstract

A key requirement for engineering designs is that they offer good performance across a

range of uncertain conditions while exhibiting an admissibly low probability of failure.

In order to design components that offer good performance across a range of uncertain

conditions, it is necessary to take account of the effect of the uncertainties associated

with a candidate design. Uncertainty Quantification (UQ) methods are statistical meth-

ods that may be used to quantify the effect of the uncertainties inherent in a system

on its performance. This thesis expands the envelope of UQ methods for the design of

aerospace components, supporting the integration of UQ methods in product development

by addressing four industrial challenges.

Firstly, a method for propagating uncertainty through computational models in a hi-

erachy of scales is described that is based on probabilistic equivalence and Non-Intrusive

Polynomial Chaos (NIPC). This problem is relevant to the design of aerospace components

as the computational models used to evaluate candidate designs are typically multiscale.

This method was then extended to develop a formulation for inverse identification, where

the probability distributions for the material properties of a coupon are deduced from

measurements of its response. We demonstrate how probabilistic equivalence and the

Maximum Entropy Principle (MEP) may be used to leverage data from simulations with

scarce experimental data- with the intention of making this stage of product design less

expensive and time consuming.

The third contribution of this thesis is to develop two novel meta-modelling strategies

to promote the wider exploration of the design space during the conceptual design phase.

Design Space Exploration (DSE) in this phase is crucial as decisions made at the early,

conceptual stages of an aircraft design can restrict the range of alternative designs avail-

able at later stages in the design process, despite limited quantitative knowledge of the

interaction between requirements being available at this stage. A histogram interpolation

algorithm is presented that allows the designer to interactively explore the design space

with a model-free formulation, while a meta-model based on Knowledge Based Neural
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Networks (KBaNNs) is proposed in which the outputs of a high-level, inexpensive com-

puter code are informed by the outputs of a neural network, in this way addressing the

criticism of neural networks that they are purely data-driven and operate as black boxes.

The final challenge addressed by this thesis is how to iteratively improve a meta-model

by expanding the dataset used to train it. Given the reliance of UQ methods on meta-

models this is an important challenge. This thesis proposes an adaptive learning algorithm

for Support Vector Machine (SVM) metamodels, which are used to approximate an un-

known function. In particular, we apply the adaptive learning algorithm to test cases in

reliability analysis.
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the training data; and the upper and lower estimates of ĝ for two Monte
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Chapter 1

Introduction

A key requirement for engineering designs is that they offer good performance across a

range of uncertain conditions while exhibiting an admissibly low probability of failure.

A rigorous regime of computational and physical testing is necessary to certify a new

product, making it costly to develop multiple designs in parallel and can lead to delays

if the requirements change during the design process (see, e.g. [1, 2]). There is industrial

and academic interest in developing data-driven meta-models that can estimate the per-

formance and the probability of failure of a candidate design when experimental data is

missing or scarce and computational resources may be limited. Such meta-models allow

the designer more freedom to explore the design space before committing resources to a

single design.

Uncertainty Quantification (UQ) methods are statistical methods that may be used to

quantify the effect of the uncertainties inherent in a system on its performance. Broadly,

UQ methods may be divided into two groups: the first including methods for forwards

uncertainty propagation, in which the effect of uncertain inputs on the Quantity of In-

terest (QoI) of a computer code are characterised. The uncertain QoI, w, is typically

represented via a probability distribution that can be absolutely continuous and repre-

sented by a probability density function (PDF). Methods for reliability analysis, which

estimate the probability of a candidate design exceeding a set of requirements imposed

21



Introduction 22

on the system, fit within this category of UQ methods. Conversely, the second family

of UQ methods solve inverse problems in which the uncertain system inputs are deduced

from measurements of the QoI. An example of such a problem is inverse identification, in

which the material properties are deduced from experimental measurements of a QoI.

Regardless of whether the uncertainty propagation is forwards or inverse, most problems

in UQ can only be solved through a meta-modelling strategy due to the computational

costs associated with each evaluation of an expensive computer code. For instance, con-

sider the problem of of estimating the expected value of a QoI for an uncertain system

with nu uncertain inputs ξ ∈ ℜnu . This is calculated through:

〈w〉 =
ˆ

ξ

w(ξ)ρ(ξ)dξ, (1.1)

where ρ(ξ) refers to the joint probability density function of the uncertain inputs. In

practice this integral is often evaluated numerically, typically through a Monte Carlo

sampling strategy:

ŵ ≈ 1
nMC

nMC
∑

i=1

w(ξ̂
(i)

), (1.2)

where ξ̂ are nMC Monte Carlo samples drawn from the joint density. Monte Carlo

methods typically require 106 − 107 samples to converge, which can become computation-

ally intractable if the computer code is expensive to evaluate. If this is the case then a

meta-model for w is required. In the context of designing aeronautical components, w, is

typically the output of a behavioural model for structural and fluid mechanics. Examples

of meta-modelling strategies in the UQ literature include: polynomial chaos expansions

(PCEs) [3], response surface methods [4], artificial neural networks [5], Gaussian Process

models (GPMs) [6], and Support Vector Machines (SVMs) [7].
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1.1 Aims and Objectives

The aim of this PhD studentship was to develop novel methods for UQ that address spe-

cific challenges that arise during the design of new aerospace components. We illustrate

the design process of a new product with the cone of uncertainty, displayed in Figure 1.2,

to indicate where each of these challenges occur in the chronology of product develop-

ment. Confusingly, in this context ‘uncertainty’ refers to the potential of the project to

explore alternative designs, rather than the inherent uncertainty present in the system

that might be introduced by manufacturing defects for example. The designs of new en-

gineering products are developed within the design space, X, a space of nx parameters

that influence the performance of the final design. The subspace containing points in the

design space that satisfy the requirements imposed on the design is referred to as the

feasible region. In the early stage there are numerous candidate designs which lie in the

feasible region of the design space and as a consequence there is initially a high degree

of uncertainty as there are numerous potential designs. However, over time decisions are

made which restrict the feasible region of the design space by narrowing the range of

values over which each parameter can take and by reducing the dimensionality of the

design space by finalising the values of parameters. These decisions reduce the level of

uncertainty until eventually there is convergence to a final design [8, 9, 10].

Some of the challenges that we discuss are general and will be present at all times

during product development, while some arise at specific instances. These challenges may

be summarised as follows:

1. Multiscale uncertainty quantification

How can uncertainty be propagated efficiently between scales in a multiscale model?

This is a problem that is relevant throughout the design process. In particular we

consider the stochastic upscaling problem, in which uncertanties at the lowest scales

of a hierachy of models are propagated to coarser scales, where the domain of the

model is larger but less granular.



1.1. AIMS AND OBJECTIVES 24

2. Design Space Exploration

Decisions made at the early, conceptual stages of product design can restrict the

range of alternative designs available at later stages in the design process, despite

limited quantitative knowledge of the interaction amongst requirements being avail-

able in the conceptual design stage. For this reason there has been interest in

methods that enable a wider exploration of the design space at the conceptual

design stage. As noted in Figure 1.2 designs are typically evaluated using either his-

toric data (results from experiments/simulations of previous products) or high-level

computer code, that can be run quickly, at this stage. Methods for Design Space

Exploration (DSE) must balance balance flexibility in exploring the design space

with the associated cost of evaluating potentially expensive computer code at the

investigated parameter points in the design space.

3. Inverse identification and data fusion

Once a design evolves beyond the conceptual design stage it becomes economic to

assess its performance with more granular, expensive computer code. In addition,

prototyping and physical tests will begin. Aerospace components must be validated

with rigorous physical tests before being certified, requiring thousands of tests of

individual carbon fibre composite coupons. Such tests are expensive and time con-

suming [11]. In addition, the measurement of some properties of composite materials

can be very challenging. For these reasons, there has been interest in using computer

code to reduce the burden of coupon testing.

We consider two formulations through which data from simulations may be leveraged

by experimental data: firstly by considering an inverse problem in which missing

data for the material properties of a composite material is deduced from experi-

mental measurements of a QoI. Secondly, by developing a method for data fusion in

a forwards uncertainty propagation that allows scarce experimental data to inform
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Figure 1.1: An illustration of the cone of uncertainty: as more decisions are made the
range of possible outcomes for a project narrows.

the predictions of a computer code, a relatively under-researched problem in the

UQ literature.

4. Adaptive learning

In this thesis we develop methods to address the above challenges by employing

PCEs, GPMs, SVMs and neural networks as meta-models. A meta-model is de-

veloped based on a training set consisting of evaluations of an expensive computer

code at certain parameter points. The final challenge considered in this thesis is how

such a training set might be expanded to improve the accuracy of a meta-model.

Specifically, we develop an adaptive learning method for reliability analysis using

SVMs.

1.2 Thesis Outline

The remainder of this thesis describes the methods that were developed to address the

challenges identified above. While the four challenges are distinct, there are commonal-

ities in the methods that were developed. This thesis has been organised so that these

methods and the links between them may be presented in a logical manner; with the



1.2. THESIS OUTLINE 26

consequence that the chapters are out of chronological order in terms of product develop-

ment (for instance we consider inverse identification before DSE in the conceptual design

phase). The thesis is organised as follows: in Chapter 2 we present an algorithm for

multiscale uncertainty quantification through probabilistic equivalence and Non-Intrusive

Polynomial Chaos (NIPC). We expand upon this algorithm to develop a framework for

inverse identification problems, which is presented in Chapter 3, along with a data fusion

algorithm for leveraging PCEs and scarce experimental data. In Chapter 4 we introduce

two machine learning based algorithms for DSE: a model-free formulation that uses prob-

abilistic equivalence and GPMs in a novel, data-driven histogram interpolation algorithm

and a Knowledge Based Neural Network (KBaNN) architecture for bi-fidelity modelling,

in which a neural network is used to inform the predictions of an inexpensive, high-level

computer code. Finally, Chapter 5 describes an algorithm for adaptive learning of an

unknown function with a meta-model, with specific application to reliability analysis with

SVMs. Figure 1.2 is a schematic illustrating the methods developed in the PhD and the

links between them.

Figure 1.2: Schematic illustrating the methods developed in the PhD.
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2.1 Literature discussion

As has been discussed, computational modelling plays an extensive part in aircraft design

throughout product design: Computational Fluid Dynamics (CFD) models are used from

the preliminary design phase onwards to predict the aerodynamic performance of aircraft

designs; Finite Element Method (FEM) models are used in the aero-elastic analysis of

the aircraft structure; heat transfer models are used in the design of propulsion systems

and even the economic impact of a new aircraft design can be modelled with market

penetration models [12]. Such models may be multiscale in nature. For instance, in the

case of multiscale models of composite materials the scales may range from the microscale

through to the component level [13]. The multiscale modelling of composite materials is

a popular area of research [14, 15, 16, 17, 18]]. Computational fluid dynamics (CFD)

models and heat transfer models may also be multiscale [19, 20].

In recent years the potential of Uncertainty Quantification (UQ) to accelerate the pro-

cess of aircraft design and component certification has come to be recognised [21]. UQ

is used to understand how parametric uncertainties affect output quantities of interest

by propagating uncertainties through computational models [22]. To conduct UQ on

multiscale models it is therefore necessary to develop computationally efficient means of

propagating uncertainties through scales. Figure 2.1 shows a schematic of the stochastic

upscaling problem: from fine-scale PDF data on coupons we need to forecast the prop-

erties of a complete part. The problem can also be seen as the inverse one, in which

properties of the materials (as distributions) are needed to achieve a specific aeroplane

design. There is no difference in the problem formulation, although in the case of the

inverse formulation the solution attained is often not unique.

The aim of the framework presented in this chapter is to use stochastic model reduc-

tion, through probabilistic equivalence, to reduce the number of stochastic parameters

at each scale as the multi-scale model moves from more fundamental scales to the level

of a complete part, or even to the level of the entire aircraft. Reducing the number of
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stochastic dimensions makes uncertainty quantification of the entire structure more com-

putationally efficient. Whether the method discussed here is appropriate at every stage

of this upscaling process will naturally depend on the nature of the model at each scale.

However, there is some precedent in the literature for applying stochastic model upscaling

to models of large composite structures. For instance, Sasikumar et al. (2015) argue that

when the properties of each individual laminae in a composite plate is modelled as an

independent random field the number of stochastic parameters becomes prohibitive. In

this case, stochastic model reduction through probabilistic equivalence is achieved in two

methods: on the nodal response and on the probabilistic characteristics of the matrix

[23]. Gorguluarslan and Choi (2014) demonstrate that stochastic model order reduction

can be implemented at the level of a complete part: in this particular case by up-scaling

from a fine-scale, mesostructured model of a hydrogen tank to one where it is treated as

homogeneous [24]. This test case is analogous to wing structural design in aeronautics,

where both finite element and analytical, lumped mass models may be used to model a

wing.

In other works in the literature, the problem of stochastic upscaling in multiscale models

has commonly been studied from the perspective of modelling groundwater flow through

heterogeneous porous media [25, 26, 27, 28, 29]. Achieving accurate predictions from these

models is important in contaminant spread, nuclear waste disposal and oil recovery anal-

yses. However, uncertainties exist due to the variation in permeability with length scale

and also due to epistemic uncertainties arising from lack of information about the system

[25]. Both intrusive and non-intrusive methods have been proposed for propagating uncer-

tainty in stochastic multiscale models, such as the multiscale porous heterogeneous flow

problem. Intrusive methods involve changing the underlying model in order to propagate

uncertainty through scales and will be discussed first. Non-intrusive methods, which treat

the model at each scale as a black box, will then be discussed.

Intrusive approaches to multiscale stochastic upscaling problems typically recast the un-

derlying model equations in the form of stochastic partial differential equations (SPDEs).
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Once in this form these equations may be solved through one of a number of established

methods such as Monte Carlo simulation [30], spectral stochastic finite element method

[31] or the stochastic collocation method. Stochastic collocation is a popular choice be-

cause of its fast convergence rates and has been applied frequently to flow problems in

heterogeneous media [28]. By representing the random coefficients in the SPDEs through

polynomial chaos expansions and the Karhunen–Loève expansion, it is possible to gen-

erate a set of sample points through Smolyak sparse grid collocation [25, 27] or through

the probabilistic collocation technique [28]. The resulting deterministic equations may be

solved through an appropriate strategy such as the multiscale finite element method [29,

32] or the multiscale discontinuous Galerkin method [33]. In multiscale finite elements,

basis functions are generated at the coarse grid level which are consistent with the small

scale subgrid structures [29]. The use of stochastic collocation coupled with multiscale

finite elements is a common approach in the literature [27, 28, 34]. As an alternative to

stochastic collocation, Dostert et al. (2008) [26] use Markov Chain Monte Carlo (MCMC)

methods in the situation where the prior distribution of the stochastic equation coeffi-

cients is known. If the measurement error is assumed to follow a Gaussian distribution

then a sampling target distribution may be constructed from which a Markov Chain may

be generated.

Another intrusive technique, coarse graining, is used to find a low-fidelity model which

may be matched to a complex, high-fidelity model. In future evaluations the low-fidelity

model is used in the place of the high-fidelity model; Bilionis and Zabaras (2013) intro-

duce a stochastic optimisation framework to find an effective coarse grained potential that

matches the output of a high-fidelity model based on a number of Monte Carlo samples.

Such a technique is reminiscent of the stochastic upscaling technique described here, al-

though our technique is non-intrusive and requires fewer high-fidelity model realisations

than would be the case when using Monte Carlo sampling, as used in Bilionis and Zabaras

[35]. Lastly, a fuzzy stochastic global–local algorithm is proposed in Babuska and Mo-

tamed (2016) [36] that upscales uncertainty through a non-stationary fuzzy-stochastic
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field, which is evaluated to find a quantity of interest at the coarse-scale. This method

is currently limited to the case of upscaling in a one-dimensional fibre composite and

is not readily generalisable. In this thesis non-intrusive methods, which do not change

the underlying model, are preferred as they are compatible with models already used in

industry.

Non-intrusive techniques for multiscale uncertainty propagation attempt to quantify

the information loss between scales in a hierarchy of models. Early works sought to inte-

grate tools for uncertainty quantification that were already available in the literature with

multiscale problems. For instance, a non-intrusive stochastic solver for multiscale com-

posites is outlined in Fish and Wu (2011) [37]. The Karhunen–Loève expansion is used

to reduce the dimensionality of probability space and a stochastic collocation method, in

combination with a massively parallel computer architecture, are employed to reduce the

computational cost of the uncertainty analysis. More recent works attempt to quantify

the information loss between scales and to model the cross scale dependencies within the

model. For example a multiscale PCE method was proposed in Mehrez et al. (2018) [38]

to model the dependencies of the outputs at a particular level in a hierarchical structure

of models on the inputs at finer scales. A generalised hidden Markov model is employed

in Wang (2011) [39] for the same purpose. A common non-intrusive stochastic technique

is that of probabilistic equivalence, where at each interface between scales the coarse-scale

inputs are searched for that will produce a statistically equivalent output to that of the

fine-scale model [24, 40, 41]. The resulting optimisation problem is usually solved with a

genetic algorithm. Choi et al. (2015) [41] employ a hybrid optimisation procedure with

the genetic algorithm and sequential quadratic programming.

Recent works have sought to apply machine learning to the problem of upscaling un-

certainty in multiscale problems in both intrusive and non-intrusive methodologies. For

instance in Chan and Elsheikh (2018) [42] a neural network is used to generate the coarse-

scale basis functions in multiscale finite elements in order to reduce the computational cost

of repeated model evaluations. Multi-response Gaussian processes are used in Bostanabad
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Figure 2.1: The stochastic upscaling problem — how to propagate uncertainties from the
finest to the coarsest scales?

et al. (2018) [43] to model the aleatory and epistemic uncertainties arising in multiscale

models of woven composites. Trehan and Durlofsky (2018) [44] introduced a Machine

Learning framework to model the upscaling error between a high-fidelity model of a reser-

voir and a low-fidelity model. Simulations of the high-fidelity model are used for a high-

dimensional regression to model the error based on user defined features. A random forest

is the chosen statistical regression. Scheidt and Caers (2013) [45] similarly addressed the

problem of modelling the upscaling error in reservoir models, this time through the use

of kernel clustering.

Every method for uncertainty propagation in multiscale models must strike a balance

between repeating high-fidelity simulations at the lowest scales in order to understand

how uncertainties at the lowest scale impact the coarse-scale quantities of interest with

the computational resources available. The method presented in this chapter builds upon

the upscaling algorithm presented in Arnst and Ghanem (2008) [40] through the use of a

moment base arbitrary Polynomial Chaos (aPC) formulation. The application of aPC to

this algorithm, as opposed to using Monte Carlo sampling, greatly increases the compu-

tational efficiency by reducing the number of model evaluations needed for the upscaling

at both the coarse and fine-scale.
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Figure 2.2: Illustration of the stochastic upscaling algorithm. A PCE for the coarse in-
puts, η, are searched for which, when propagated through the coarse model,
give a statistically equal output to that of the fine model when known fine
inputs, ξ, are propagated

2.2 Algorithm for stochastic model reduction with

probabilistic equivalence

2.2.1 Fine and coarse-scale probabilistic models

The uncertainty affecting a computational model may be thought of as belonging to one

of two categories: model uncertainty and parametric (or aleatoric) uncertainty. Model

uncertainties refer to uncertainties arising from the truncation of the infinite-dimensional

real world system that the model has been created to represent [46]. These uncertain-

ties are difficult to quantify but will not be considered here; this chapter will focus on

the propagation of parametric uncertainties between scales in multiscale models. Para-

metric uncertainties refer to incomplete knowledge of constants, boundary conditions or

initial conditions in the computational model. It is assumed that such parameters can be

identified and the uncertainty represented through a PDF [47].
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The upscaling procedure detailed here propagates uncertainty from a fine-scale model

to a coarse-scale model at the next highest scale in a hierarchy of models that can be used

to represent the whole aircraft structure. In so doing the impact of uncertainties at the

most fundamental scales on the complete structure may be quantified. Note that it is also

possible to reverse the order of the hierarchy of models for use in inverse problems: the

coarse-scale model can be used to explore the design space rapidly and identify interesting

features which may be modelled in detail using the fine-scale model.

The fine-scale model occupies the probability space denoted by the triplet (Ωh,Fh,Ph)

where Ωh denotes the sample space of the fine model, Fh the set of events and Ph the

probabilities assigned to these events. A realisation ωh in the fine model sample space

produces a fine random input vector ξ = ξ(ωh). Evaluating the fine model, when the

uncertain parameters take the values of the components of ξ , yields a fine-scale output

yh:

yh = w(ξ), (2.1)

where w represents the quantities of interest (QoIs) of the model. Through repeated

model realisations at the fine-scale it is possible to generate a joint density for the out-

put statistics of the fine model quantity of interest, denoted fh(w). Similarly, the coarse

model occupies the probability space occupied by the triplet (Ωc,F c,Pc) and a realisation

ωc produces a coarse random input vector η = η(ωc). Evaluating the coarse model with

this input vector yields a coarse-scale output vector yc, where:

yc = w(η). (2.2)
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The joint density of the coarse-scale output is then denoted by f c(w) [41]. The goal

of the upscaling procedure is to find the input distributions at the coarse-scale such that

the coarse model has a statistically equal output to the fine model.

2.2.2 Problem formulation

The problem of propagating uncertainty from one model to another model higher up in

the hierarchy of scales is depicted in Figure 2.2. A stochastic upscaling algorithm is used

to achieve this. To do so outputs common to both models are identified so that yh and

yc may be defined. In order to achieve an abstraction from coupon level to component

level, as depicted in Figure 2.1, it is necessary that there will always be some overlap in

the model QoIs.

Given that the input distributions at the fine-scale are known, an arbitrary Polyno-

mial Chaos formulation can be used to generate a sampling grid containing nsp points,

corresponding to the set of random input vectors, Ξ = [ξ(1), ..., ξ(nsp)], at which the fine

model is evaluated. A meta-model is constructed with a PCE from which the joint density

fh(w) for the variable(s) common to both the fine and coarse models may be generated

with Monte Carlo sampling. In general, we restrict our attention to systems with a sin-

gle output and from here onward denote the QoI as w ∈ ℜ1. The stochastic upscaling

algorithm then searches for the random input vector, η, which when simulated s times

and propagated with aPC through the coarse-scale model produces an output distribution

f c(w) that is statistically equivalent to that of the fine-scale model i.e.

∀w : f c(w(η)) = fh(w(ξ)). (2.3)

Achieving exact equivalence between the two probability distributions is a computa-

tionally intractable problem so in practice an input vector η is sought which minimises

the statistical distance between the two probability distributions i.e.
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Figure 2.3: Flowchart of the stochastic upscaling algorithm

η = argmin
η

d(f c(w(η)), fh(w(ξ))), (2.4)

where d refers to the statistical distance, a metric that quantifies the difference between

the two continuous probability distributions. Possible choices for the statistical distance

are discussed below. η may be approximated as a Polynomial Chaos Expansion (PCE).

The mathematical background of PCEs is discussed in the next section, together with an

explanation of how Non-Intrusive Polynomial Chaos (NIPC) formulations can be used in

forwards uncertainty propagation.

2.2.3 Propagating uncertainty with Non-Intrusive Polynomial

Chaos

Non-Intrusive Polynomial Chaos (NIPC) is a popular technique used widely in Uncer-

tainty Quantification to propagate aleatoric input uncertainties through computational

models by providing a spectral representation of uncertainty (see e.g. [48]). A meta-model
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for the stochastic response of a model, w(ξ), is constructed as a function of nu indepen-

dent stochastic input variables ξ ∈ ℜnu . w(ξ) is expanded into a basis of orthogonal

polynomials to give a spectral representation of uncertainty:

w(ξ) =
P
∑

k=1

λkΨk(ξ), (2.5)

where Ψ refers to a multivariate orthogonal polynomial, given as the product of a set of

univariate, orthogonal polynomials ψ. The deterministic coefficients of the PCE are de-

noted λ ∈ Λ ⊆ ℜP . A single realisation of the Polynomial Chaos Expansion (PCE) may

be generated by sampling the components of the input random vector ξ from probability

distributions for the nu uncertain system inputs, with joint density ρ(ξ). This process is

illustrated in Figure 2.4. For a PCE of order p, there are P = (nu+p)!
nu!p!

linear combination

Figure 2.4: Schematic illustrating a forwards propagation of uncertainty with NIPC.
Model evaluations at the collocation points are used to derive the coefficients
of the PCE, which approximates the response surface of the model.

terms and the multivariate orthogonal polynomial may be calculated as:

Ψk(ξ) =
nu
∏

i=1

ψIk,i
(ξi), k = 1 . . . P, (2.6)
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where I ∈ ℜP ×nu refers to the index matrix for the expansion. For instance, the case

nu = 2 and p = 1 will have index matrix:

I =

















0 0

1 0

0 1

















, (2.7)

with the second row yielding the product Ψ2(ξ) = ψ1(ξ1)ψ0(ξ2). Note that as a product

of orthogonal polynomials, and due to the statistical independence of the inputs, Ψk is

itself orthogonal. There are optimal choices for the univariate orthogonal polynomials

that correspond to the probability distributions from which the stochastic input variables

are drawn; Xiu and Karniadakis (2002) proved that members of the Askey scheme of

orthonormal polynomials are optimal for certain types of stochastic processes such as the

uniform, normal, and exponential processes [49]. The Askey scheme is discussed in more

detail below. Alternatively, the orthogonal polynomials may be derived directly from the

input data. Arbitrary Polynomial Chaos (aPC) uses the statistical moments of the input

data to calculate the PCE. This is a useful formulation for engineering purposes as it

makes it possible to propagate scarce input data without needing to make assumptions

as to which family of probability distribution the data belongs [50]. The aPC method

used here calculates the orthogonal polynomial for each input by first forming the Hankel

matrix of moments:

M =

























µ0 µ1 . . . µp

µ1 µ2 µp+1

...
. . .

µp µp+1 ... µ2p+1

























(2.8)
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where µi represents the ith statistical moment of the input data. Computing the Cholesky

decomposition M = RTR and calculating the inverse of R produces an upper triangular

matrix, the elements of which form an orthogonal system of polynomials according to the

Mysovskih theorem [51]. Using the analytical formulas of Rutishauser (1963) a three term

recurrence can be found for these polynomials in terms of the matrix elements Rij:

ψj−1(ξ) = bj−1ψj−2(ξ) + ajψj−1(ξ) + bjψj(ξ), (2.9)

where:

aj =
Rj,j+1

Rj, j
− Rj−1,j

Rj−1,j−1

, bj =
Rj+1,j+1

Rj,j

, (2.10)

and R0,0 = 1 and R0,1 = 0 [52]. The roots of the polynomial of order p may then be found

by finding the eigenvalues of the symmetric, tri-diagonal Jacobi matrix [53, 54]:

J =









































a1 b1

b1 a2 b2

b2 a3 b3

. . . . . . . . .

bp−2 ap−1 bp−1

bp−1 ap









































. (2.11)

Having determined the orthogonal polynomials, the coefficients of the PCE are found

non-intrusively using evaluations of the computational model. These coefficients may be

found through the calculation of the integral

λk =
1

〈Ψ2
k〉

ˆ

ξ∈Ω

w(ξ)Ψk(ξ)ρ(ξ)dξ, (2.12)
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using either Galerkin projection, collocation or numerical integration [55]. In the above

integral ρ(ξ) =
∏nu

i=1 ρi(ξi) represents the tensor product form of the joint density for the

uncertain inputs, while the denominator, the squared norm of the multivariate orthogonal

polynomial, is defined as the product of the square norms of the univariate orthogonal

polynomials. As noted in Eldred (2009) there are simple, closed form expressions for the

univariate inner products if the univariate polynomials belong to the Askey scheme [56,

57]. Alternatively, the coefficients may be found through a linear regression; the compu-

tational model is evaluated at each of nsp sample points, allowing the coefficients to be

found through:

Aλ̂ = Y , (2.13)

where Y = [w(ξ(1)), w(ξ(2)), . . . , w(ξ(nsp))]T is a vector of function evaluations, λ̂ =

[λ1,λ2, . . . ,λP ]T , i.e. the numerical estimates of the PCE coefficients, and the matrix

A ∈ ℜnsp×P is defined as:

A =

















Ψ1(ξ
(1)) . . . ΨP (ξ(1))

...
. . .

...

Ψ1(ξ
(nsp)) . . . ΨP (ξ(nsp))

















. (2.14)

Note that collocation based approaches exploit the orthonormal properties of the multi-

variate polynomials in their formulation, which is not the case in linear regression. The

cardinality of P is such that the number of PCE coefficients grows rapidly with nu, the

so-called ‘curse of dimensionality’. One strategy to mitigate this cost is to use Smolyak’s

algorithm to generate a sparse grid on which to sample w [53]. Other methods to exploit

sparsity in high-dimensional spaces include: least angle regression [58], the alternating

Least squares scheme [59], compressive sampling [60, 61, 62], and variational inference

[63].
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In the case of the arbitrary Polynomial Chaos formulation used here the coefficients

of the PCE are found by direct numerical approximation. The eigenvalues of the Jacobi

matrix in (2.11) give the optimal Gaussian collocation points, associated with each un-

certain input, while the first component of each eigenvector can be used to calculate the

weight, ωi associated with the ith eigenvalue through:

ωi = v2
i,1, (2.15)

where vi,1 refers to the 1st element of the ith eigenvector of J . A sequence of one-

dimensional Gaussian quadrature rules can be derived from these collocation points and

weights:

Uij
=

mij
∑

k=1

w(ξ(k)
ij

)ω(k)
ij
, (2.16)

where mij
j ∈ {1, . . . , nu} is the maximum adaptive order for each quadrature rule Uij

and w(ξ(k)
ij

) refers to a model evaluation at the collocation point ξ
(k)
ij

. Smolyak’s algorithm

is then applied to find a sparse quadrature, As containing nsp points on which the model

is evaluated:

As =
∑

l+1≤|i|≤l+nu

(l − 1)l+nu−|i|









nu

l + nu − |i|









⊗nu

k=1 Uik
. (2.17)

The parameter l refers to the level of the Smolyak grid. Increasing the level of the grid

increases the accuracy of the PCE by adding more points to the grid, which also increases

the computational cost by requiring more model evaluations. Figure 2.5 shows the one-

dimensional collocation points associated with a continuous Gaussian distribution and

lognormal histogram and the corresponding level 3 Smolyak grid. Having evaluated the
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computational model at each of the nsp sample points in the Smolyak quadrature, the

coefficients of the PCE may be numerically approximated through:

λk =
∑nsp

i=1 w(ξ(i))Ψk(ξ(i))θi
∑nsp

i=1 Ψk(ξ(i))θi

, (2.18)

where ξ(i) and θi represent the sparse grid collocation points and weights. More details

on the aPC formulation used may be found in Ahlfeld et al (2016) [53].

Once a PCE is obtained as a meta-model for w, Monte Carlo simulation can be used

to generate a dataset of outputs by drawing nMC samples from the nu input distributions

to create a dataset W = [w(ξ̂
(1)

), w(ξ̂
(2)

), . . . , w(ξ̂
(nMC)

)]. A PDF for the QoI, f(w), may

then be estimated using a Kernel estimation method to fit a kernel function to the dataset:

f(w) =
1

nMC × h

nMC
∑

i=1

K
(

w −Wi

h

)

. (2.19)

Possible choices for the kernel function K(.) are discussed in Scott and Silverman [64, 65].

Gaussian kernel functions are used here, which is a common choice of kernel function [66].

It is widely regarded that the estimation of the bandwidth, h, is far more crucial than the

choice of kernel function [67] and as such a number of methods for performing bandwidth

estimation are available (for more details see the review by Jones et al. [68]). We employ

a strategy for bandwidth estimation based on cross validation using the Kullback-Leibler

divergence [69].

So far this section has described how NIPC may be used in general to propagate input

uncertainties through a computational model of a system, with discussion of the main

steps of the aPC formulation used (see Appendix A1 for an example of an application

of aPC). In the algorithm for multiscale uncertainty quantification presented here Poly-

nomial Chaos is used not only to propagate input uncertainties through a coarse-scale

model of the system, but also to represent the uncertain inputs at the coarse-scale. A

PCE represents these missing inputs, denoted by η, and is a function of the random
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Figure 2.5: One-dimensional collocation points for a Gaussian PDF and a lognormal his-
togram (left). On the right, a level 3 Smolyak grid produced using aPC

Askey scheme Interval Orthogonal Generating probabil-
ity distribution

distribution polynomial
Uniform [a, b] Legendre U(−1, 1)
Gaussian [−∞,∞] Hermite N(0, 1)
Gamma [0,∞] Laguerre Γ(α, 1), α > 0

Table 2.1: Common types of parametric distributions and their corresponding univariate
orthogonal polynomials in the Askey scheme

vector, z ∈ ℜnm , where nm is the number of missing coarse-scale inputs:

η(z) =
P
∑

α, |α|=0

PαΨα(z), (2.20)

where in this instance P = (p+nm)!
p!nm!

. The components of z are generated from probability

distributions that are dependent on the orthonormal basis used. The right hand column

of Table 2.1 lists the generating distributions for a selection of probability distributions

in the Askey scheme. Pα ∈ ℜnm×P , the parameter set of the PCE, is the target of the

stochastic upscaling algorithm.
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2.2.4 Metrics for the statistical distance

For the upscaling procedure to work it is necessary to have a measure of similarity between

two probability distributions. As can be seen in Figure 2.3 the evaluation of the statistical

distance between the two distributions fh(w) and f c(w) is necessary in order to determine

the convergence of the stochastic upscaling algorithm. The way in which the statistical

distance is defined has a significant impact on the speed of convergence and the quality of

the matching. Possible choices of the statistical distance include the Kolmogorov-Smirnov

(KS) distance and generalised method of moments. Note that neither of these distances

(or the Kullback Leibler Divergence discussed in the next chapter) define a metric space.

2.2.4.1 Kolmogorov-Smirnov distance

The Kolmogorov–Smirnov (KS) distance is defined as:

dKS = sup
w

|F c(w) − F h(w)|, (2.21)

where F c(w) and F h(w) are the Cumulative Distribution Functions (CDFs) of the com-

mon variable for the coarse-scale and fine-scale respectively [70]. Note that the CDF is

defined as the integral of its PDF i.e. for an arbitrary PDF, f c(w), the CDF, F c(w), is

given by:

F c(w) =
ˆ w

−∞
f c(t)dt. (2.22)

Thus, the CDF may be thought of as an alternative representation of the PDF. The KS

distance between two arbitrary CDFs is illustrated in Figure 2.6. The ability to attach

a normalised significance level to the stochastic upscaling makes this definition of the
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Figure 2.6: CDFs of two arbitrary distributions — the KS distance (arrow in red) is de-
fined as the supremum distance between the two CDFs.

statistical distance appealing. The KS distance also allows matching of higher-order sta-

tistical moments, although this may come at the expense of fitting the first two statistical

moments. However, the KS distance is only a meaningful distance metric if there is some

overlap between the PDFs. This point is illustrated in Figure 2.7, in which four datasets

have been created from sampling different Gaussian distributions: while the CDF of B

clearly lies further away from the target distribution than that of C, because neither dis-

tribution overlaps with the target CDF the KS distance for both is 1. It can therefore

be inappropriate to use the KS distance as a measure of statistical distance if there is

uncertainty on the upper and lower bounds of the parameter set Pα. By tabulating the

statistical distances between the distributions A, B, and C (Table 2.2) it is clear that the

method of moments provides a more appropriate distance measure for when the target and

trial distributions are not overlapped. However, the KS distance gives a more meaningful

statistic once an overlap between the distributions is established as the statistic can be

related to a confidence level; this particular aspect is expanded upon in the next chapter

when we discuss a formulation for data fusion between simulations and experimental data.

2.2.4.2 Method of Moments

The statistical distance, quantified by the Method of Moments, is defined in general as:
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Figure 2.7: PDFs (left) and CDFs (right) of four datasets, sampled from Gaussian dis-
tributions. The CDFs of B and C do not overlap with that of the target
distribution, hence both have a KS distance of 1.

Metric d(Target,A) d(Target,B) d(Target,C)
KS distance 0.2 1 1
Method of moments (γ = 1) 0.2165 14.34 26.24

Table 2.2: A comparison of the statistical distances of the distributions A, B, and C from
Figure 2.7 from the target distribution for different measures of statistical dis-
tance.

dMM(f c(w), fh(w)) = ‖m − m̃‖2
2 + γ‖C − C̃‖2

2, (2.23)

where γ is a user defined weighting parameter to weight the importance of the first sta-

tistical moment against the second [40]. The vectors m and m̃ contain the mean values

of the output quantity of interest, whilst the matrices C and C̃ represent the covariance

matrices of the fine-scale and coarse-scale quantities of interest respectively.

Defining the statistical distance in this way means that the fitting of higher order sta-

tistical moments is sacrificed in favour of fitting the first two moments. Whether this

yields satisfactory results will depend on the form of the PDF being matched: for highly

skewed distributions it may be more appropriate to use a weighted sum of KS distances, as

opposed to the method of moments. On the other hand, matching the first two statistical
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moments would be considered acceptable for Gaussian processes or variables. In the case

of a single QoI, i.e. w ∈ ℜ1 this statistical distance is equivalent to the weighted sum of

the first two statistical moments.

2.2.4.3 Selection of optimisation strategy

The manner in which the PCE coefficients are updated will depend on the choice of opti-

misation algorithm. The framework is flexible in the sense that it admits the use of any

single or multiple-objective optimisation strategy, however, the problem is non-convex due

to the nature of the statistical distance- a real number that quantifies the difference be-

tween two continuous functions. For this reason, gradient free optimisation methods are

preferred such as the Nelder-Mead method [71], simulated annealing [72], particle swarm

optimisation [73] or genetic optimisation methods [74]. If there are multiple QoI then it

may be preferable to use a multi-objective optimisation strategy, rather than combining

the statistical distances into a single metric. In this work an interior point algorithm from

the MATLAB Optimization toolbox was used to perform a constrained local optimisation.

The algorithm was started from multiple points in the PCE parameter space to minimise

the risk of converging to a local minima. More details of the interior point algorithm may

be found in Byrd et al (1999) [75] and Waltz et al (2006) [76].

2.3 Stochastic upscaling with a single common QoI

The capacity of the stochastic upscaling algorithm to propagate uncertainty from a fine-

scale model to a coarse-scale model of reduced stochastic dimension is demonstrated for

the case of a wing box. The wing box is a useful test case in aeronautics and has been

used as a benchmark test in a number of publications such as Arnst and Ghanem (2008)

and Riccio et al. (2013) [40, 77]. The particular example of propagating uncertainty from

a wing box model to a Bernoulli beam to demonstrate multiscale uncertainty propaga-

tion was inspired by Arnst and Ghanem (2008) [40]. Only a single QoI, the first natural
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Figure 2.8: Wing box, with mesh, created in Abaqus

frequency, is common to both models. At the more fundamental fine-scale a wing box

model was created in Abaqus [78] and a vibration analysis performed to find the first

natural frequency of the beam. At the coarse-scale, the wing box was considered to be

part of a larger structure where it was instead modelled as a simple cantilever beam using

the Bernoulli beam equation. Figure 2.8 shows the wing box that was created in Abaqus

with length 8m, width 0.9m, and thickness 0.22m. Figure 2.9 shows a cross section of

the wing box: the material properties of each of the 6 strips joining the plates to the ‘I’

beams were characterised as random input variables. Considering the Young’s modulus

and Poisson ratio of each strip to be random variables resulted in the fine model being

of stochastic dimension 12. In the case of the Bernoulli beam model, the density and

Young’s modulus of the entire beam were considered to be random material properties,

hence the coarse-scale model was of stochastic dimension 2. Having propagated known

fine-scale PDFs using aPC through the wing box model to create a PDF of values for the

first natural frequency of the wing box, the stochastic upscaling algorithm was used to

find PDFs for the material properties of the Bernoulli beam such that the PDF of its first

natural frequency matched that of the wing box model.
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Figure 2.9: Cross sectional view of the meshed wing box. The material properties of the
thin strips between the plates and I beams (coloured in red) are considered to
be random, hence the model is of stochastic dimension 12

2.3.1 Stochastic upscaling with Gaussian input distributions

Figure 2.10 displays the probabilistic equivalence that was established for the QoI, the first

natural frequency of vibration of the wing box. In this case the random material properties

in the fine-scale model were sampled from two normal distributions: N(2.1 × 108, 5 × 107)

for the Young’s modulus and N(0.3, 0.01) for the Poisson’s ratio of each strip. Given

that the fine-scale material properties are sampled from normal distributions, Hermite

polynomials were chosen as the orthonormal basis in the gPCE representations of the

coarse-scale material properties. It was found that it was possible to achieve good prob-

abilistic equivalence between the output PDFs using a first-order Wiener PCE: the KS

distance between the two outputs was 0.0163, significantly lower than the target of 0.03,

which we used as a threshold KS distance for probabilistic equivalence. This demon-

strates that it is possible to achieve stochastic upscaling using a coarse model of reduced

stochastic dimension for input PDFs belonging to the Askey scheme.

2.3.2 Stochastic upscaling for non–Askey scheme input

distributions

The stochastic upscaling algorithm was also demonstrated for non-Askey scheme input

distributions. Non-Askey, heavy tailed distributions such as the Cauchy distribution are
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Figure 2.10: Stochastic upscaling for the case of Gaussian input distributions using a first-
order PCE (dKS = 0.0163)

useful in rare events simulation and so important for designing reliable components [79].

Stochastic upscaling of the first natural frequency was repeated for the wing box case

study but with non-Askey scheme input distributions. Figure 2.11 shows the result of the

stochastic upscaling when the Young’s moduli of the 6 strips were selected from a Cauchy

distribution with parameters C(0.1×108, 2.1×108) and the Poisson’s ratios from a stable

distribution with parameters S(1, 1, 0.008, 0.3). In this case, a second-order Wiener PCE

was used in order to achieve satisfactory stochastic upscaling. The KS distance, 0.0268,

is below the target of 0.03 for stochastic upscaling. The example case of a wing box mod-

elled in Abaqus serves as a proof of concept for the stochastic upscaling algorithm using

aPC. The ability to achieve stochastic upscaling for both Askey and non-Askey scheme

input PDFs implies that probabilistic equivalence should be achievable for any reasonable

input PDF.

2.3.3 Choice of univariate orthogonal polynomials

As has been discussed previously, the choice of which orthonormal polynomials to use as

the basis for the PCE can have an impact on the quality of the results. Using Hermite

polynomials in the previous section was the natural choice given that the fine-scale inputs

to the wing box were normally distributed. However, for cases where the fine-scale inputs
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Figure 2.11: Stochastic upscaling with non-Askey scheme input distributions using a
second-order PCE (dKS = 0.0268)

do not follow distributions belonging to the Askey scheme, as is the case in the previous

section, the choice of which univariate orthogonal polynomial to use as a basis can become

significant and can affect the convergence of the results. This point is demonstrated in

Figure 2.12: the same non-Askey scheme inputs to the wing box model are used as in the

previous section and the results of the stochastic upscaling between the coarse-scale and

fine-scale PDFs are plotted against the gPCE order, p, for different choices of univariate

orthogonal polynomials. The orthonormal bases used are those in Table 2.1. The KS

distance is again used to quantify the stochastic upscaling. For the probability distribu-

tions in Section 2.3.2 it was found that the choice of Laguerre polynomials led to faster

convergence. Such differences in speed of convergence may become significant if compu-

tational resources are limited: a judicious choice of univariate orthogonal polynomial can

reduce CPU time by limiting the number of coefficients which must be found through

optimisation to achieve a satisfactory stochastic upscaling.

Summary

In summary, a non-intrusive framework for the propagation of uncertainties through mul-

tiscale models has been presented here. The method is applicable to field analyses where

multi-scale phenomena are of interest, for instance in magnetic and acoustic analyses.
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Figure 2.12: Plots comparing the convergence of the statistical distance, as quantified
by the Kolmogorov–Smirnov distance, for different orthonormal polynomial
bases

The method has been able to achieve satisfactory stochastic upscaling for both Askey and

non-Askey scheme input distributions. Achieving a good matching for thick tailed distri-

butions such as the Cauchy distribution is significant as these distributions are used often

in accident prediction. As has been discussed above, future works on stochastic model

upscaling should focus on propagating uncertainty through more than just two scales in

case studies that are more complicated.

Thus far, works on stochastic model upscaling have focused on a two-scale problem:

a quantity of interest common to both the fine and coarse-scale models is identified and

probabilistic equivalence is achieved for this quantity of interest. In order to achieve the

full component roll-up illustrated in Figure 2.1 it is necessary to propagate uncertainty

through multiple scales and upscaling through probabilistic equivalence may be used more

than once in the course of the roll-up. However, the quantity for which the probabilistic

equivalence is found will not be the quantity that is passed up to coarser scales and cer-

tainly will not be the quantity of interest of the model at the coarsest scale. A thorough

error analysis of a realistic problem involving multiple scales is necessary in order to de-

termine that employing probabilistic equivalence at several stages of the roll-up of scales

does not introduce significant model errors at the coarsest scale. An error analysis such

as this will be the subject of future research on this topic.
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In this chapter, two methods are introduced for leveraging the results of computational

models with scarce experimental data. To relate these methods to the chronology of

product development, depicted in Figure 1.2, these methods are intended for use after

53



3.1. BACK-CALCULATION OF MISSING INPUT PROBABILITY DISTRIBUTIONS 54

the conceptual phase, when prototyping and limited experimental tests begin. The first

of the two methods discussed here adapts the algorithm for multiscale uncertainty prop-

agation, introduced in the previous chapter, for inverse identification problems. Inverse

identification problems are a form of inverse problem in which the material properties

of a structure are derived from experimental measurements of its response. The second

method discussed here is used to fuse the results of forward propagations of uncertainty

using NIPC with scarce experimental data.

3.1 Back-calculation of missing input probability

distributions

Inverse problems occur frequently in science and mathematics, for instance in geophysics

[80, 81], computer vision [82], and astronomy [83]. In turbomachinery, a design can be

formulated as an inverse problem, where the required blade design is often specified and

a blade shape that would accomplish a given performance is sought (see, e.g. [84, 85, 86,

87]). In contrast, the algorithm introduced here uses an inverse framework to leverage

the data from the digital twin of a system to enrich and analyze scarce or missing data.

As Hadamard established [88], inverse problems are in general ill-posed with non-unique

solutions, making them challenging to solve. Inverse problems represent a wide chapter of

applied mechanics (see, e.g. [89]), with techniques such as reverse Monte Carlo developed

to solve such problems [90]. More recently, there has been an interest in developing in-

verse methods that are capable of handling missing data. Such problems occur frequently

in geophysical exploration problems, where radar and sonar technology is used to deduce

subsurface properties based on the boundary of a scattered wave field. For instance, Liu

et al (2018) [91] proposes a joint inversion and interpolation problem, where missing sen-

sor data is interpolated and refined as model estimates improve. An Adaptive Eigenspace
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Inversion algorithm is proposed in Grote et al (2017) [92] and shown to be more tolerant

to missing data than the standard nodal representation of the inverse density.

Inverse identification problems are a subset of inverse problems in which the material

properties of a structure are deduced based upon its response. In general, an inverse

identification method consists of three components: experimental observations of a set of

quantities of interest (QoI); a computational model of the experiment; and an algorithm

for identifying values for the missing inputs that, when propagated through the compu-

tational model, yield values for the QoI that are sufficiently similar to those obtained

through experimental testing. The inverse identification problem is typically cast as an

optimisation problem; inputs that minimise the discrepancy between the experimental

measurements of the QoI and the outputs of a computational model of the material are

sought.

Inverse identification methods are commonly used to deduce the material properties of

composite materials. The problem is also relevant to tubomachinery, where many param-

eters that are important for life expectancy or performance are not measured directly. For

instance, the Turbine Entry Temperature is not directly measured in gas turbines and is

often inferred from downstream temperature measurements [93]. Previous works in which

the material characteristics of composite structures have been found through inverse iden-

tification have used a variety of optimisation algorithms such as the Levenberg-Marquardt

algorithm [94]; Sequential Quadratic Programming (SQP) [95]; Genetic algorithms [96,

97]; and other evolutionary algorithms [98]. A recent survey of the inverse identification

literature found that the popularity of gradient-based optimisation methods has been in

decline relative to non-gradient based methods such as genetic algorithms. This is likely

due to the inefficiency of gradient-based algorithms in handling the highly nonlinear and

typically non-convex nature of the inverse identification problem [99].

Finite Element Model Updating (FEMU) is a popular inverse identification method

in the literature, particularly for determining the material characteristics of composite

materials (see, e.g. [94, 100, 101]). A Finite Element model of the system being studied
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is created, the inputs of which are adjusted until the model outputs match the experi-

mentally measured outputs. Extensions of FEMU such as Regularized Model Updating

have also been proposed [102]. Another popular method, the Virtual Fields Method, a

non-iterative approach proposed by Grédiac [103] in which a set of equations are built

from full field experimental measurements and the Principle of Virtual work, has also

been widely used [104, 105, 106]. For a more complete review of the existing literature

of identification methods see Avril et al. [107]. A common trait of these works is that

they assume that a full set of measurements is available for each coupon. Processing a

batch of coupons would thus require the solution of an optimisation problem for each

coupon, which would involve an inordinate amount of physical testing. More realistically,

coupons in a batch are divided into groups and a single kind of material characterization

test is performed on each group. The result of such testing is that the measured material

properties are no longer tied to the experimental responses as the tests have been carried

out on separate coupons. It is not possible to calculate the missing material properties on

a coupon-by-coupon basis, instead the material properties and responses of the composite

are treated as realisations of a random process, described with independent probability

distributions. The framework introduced here can be used to solve inverse identification

problems for incomplete datasets where specimens have not been fully tested.

As has been discussed, the inverse identification algorithm introduced here to back-

calculate the probability distributions for missing uncertain inputs has been adapted

from the algorithm for multiscale uncertainty propagation based on probabilistic equiv-

alence [40, 108]. While not necessarily considering an application to inverse uncertainty

propagations, other works have introduced methods for determining a Polynomial Chaos

representation of a random field from a set of experimental observations [109, 110].

The objective of the inverse identification algorithm is to back-calculate probability dis-

tributions for nm missing uncertain inputs in a system of stochastic dimension nu. These

nm missing probability distributions are generated by producing s realisations of a PCE

that represents the aleatoric uncertainty in the missing inputs. In other words, a random
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input vector for the system is defined as:

ξ = [φm
1 ,φ

m
2 , ...,φ

m
nm
, ξnm+1

, ..., ξnu
], (3.1)

where elements 1 to nm of the random input vector are a single realisation of a PCE with

parameter set Pα:

φm =
P
∑

α, |α|=0

PαΨα(z). (3.2)

Elements m + 1 to nu of ξ are found by sampling probability distributions based on

the available experimental measurements of the other inputs. Experimental measure-

ments of the system outputs are used to estimate a probability distribution for the QoI,

f exp(w). Coefficients of the PCE are found such that when the uncertainty in the inputs

are propagated through a computational model, the statistical distance, d, between the

subsequent probability distribution for the QoI and the existing probability distribution

based on experimental measurements is minimised. This problem may be expressed as

an optimisation problem for the set of PCE coefficients, Pα:

Pα = arg min
Pα

d(f exp(w), f(w(ξ))). (3.3)

where f(w(ξ)) is an estimate of the QoI probability distribution using aPC. The steps of

the back-calculation algorithm may be summarised as follows:

1. Initialise a set of PCE coefficients, Pα, and generate s random vectors zs

2. Generate a set of s PCE realisations of φm

3. Propagate the input uncertainties with aPC to generate a probability distribution

for the QoI f(w(ξ))

4. Evaluate the statistical distance, d, between f(w(ξ)) and the experimental proba-

bility distribution of the QoI f exp(w)
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Figure 3.1: An illustration of the back-calculation framework. Arbitrary Polynomial
Chaos is used to propagate uncertainty in the input parameters through a
computational model. An optimisation algorithm is used to update the coef-
ficients of the PCE such that, when the uncertainties are propagated through
the model, the statistical distance between experimental and computational
PDFs for the QoI is reduced

5. EXIT if d has converged, otherwise update coefficients Pα (depending on the opti-

misation algorithm used) and return to step 2

The optimisation strategy discussed in the previous chapter was reused for this algorithm

and the KS distance was again used to calculate the statistical distance between the

two probability distributions for the QoI. aPC is used to propagate the uncertainties in

the inputs parameters through a computational model of the experiment and generate

a polynomial chaos expansion for the QoI. As has been discussed, aPC requires fewer

model evaluations than Monte Carlo sampling, so is computationally more efficient. Even

in cases where a surrogate model already exists for the system we believe it is still prefer-

able to use aPC to propagate input uncertainties as it can process scarce data efficiently

(see [111]). The algorithm is represented in diagrammatic form in Figure 3.1.
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The method was applied to two test cases: in the first test case the method was vali-

dated by demonstrating that an input distribution could be exactly reconstructed if there

is no model error. A synthetic dataset and a surrogate model derived from CFD sim-

ulations of a scroll compressor were used to accomplish this. In the second test case,

missing probability distributions representing the material properties of a set of carbon

fibre coupons were estimated using a dataset of real experimental data.

3.1.1 Validation with scroll compressor test case

The back-calculation framework introduced in this paper is generalised and may be ap-

plied to any problem in which missing input distributions are back-calculated for small,

incomplete datasets. In this section we validate the framework using a scroll compressor

as a test case. Scroll compressors are a positive displacement machine that have been used

as compressors in refrigeration systems and heat pumps [112, 113]. They are a useful test

case for the framework as variations in geometry of the scroll compressors have a signif-

icant effect on the efficiency (η) of the scroll compressor [114], however, the parameters

defining the geometry can be difficult to measure experimentally [115].

Recently there has been interest in using Computational Fluid Dynamics (CFD) to

analyze the performance of scroll compressors, the performance of which varies according

to the shape of the spirals. CFD simulations using a moving mesh, which were tuned

to experimental results in the literature, were used to create a response surface for the

efficiency of the scroll compressor (η) as a function of three geometric parameters: the

scroll wrap thickness (t), the height of the scroll (hscroll), and the orbiting radius (Ror).

The midline of the scroll is defined as a circular arc which intersects with a circular invo-

lute. The geometries of the fixed and orbiting scrolls are found by displacing a distance

of Ror/2 above and below the midline, as can be seen in Figure 3.2. In this work the

the equidistant curve approach from Wang et al (2018) [116] was adopted to define the

geometry of the midline.
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Figure 3.2: An illustration of the midline of the scroll compressor (left) and the fixed and
orbiting scrolls (right)

The back-calculation algorithm was validated by finding a distribution for the scroll

height based on a synthetic dataset. As is discussed in Arai et al (2018) [115] the scroll

height is a difficult and time consuming parameter to measure experimentally, so there is

motivation in using a numerical method to estimate a distribution based on experimental

measurements of other parameters.

Values of the geometrical parameters of the scroll were taken from Wang et al and

the CFD simulations were verified by comparison to the experimental data in this work.

Figure 3.3 shows the results of 45 CFD simulations of the scroll compressor. The ten most

efficient designs of the 45 simulated are highlighted in red, indicating a clustering of high

efficiency designs for compressors with relatively low scroll wrap thicknesses and relatively

high orbit radii. A polynomial response surface was fitted to these results, reducing the

number of CFD simulations that needed to be performed for the back-calculation.

The aim of the test case is illustrated in Figure 3.4: a PCE is sought for the parameter

hscroll, which is difficult to measure experimentally, using measurements of the efficiency

(η, the QoI of the CFD simulations) and measurements of the thickness and orbit radius.

Synthetic datasets were used firstly to validate the framework with Gaussian probability

distributions and then with multiple missing, non-Askey distributions. In all cases, it

was possible to recover a distribution of hscroll assuming that the computational model is

perfectly calibrated to the experiments.
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Figure 3.3: A parallel axis plot displaying the results of the CFD simulations. The scroll
designs yielding the 10 highest efficiencies are highlighted in red. Lengths are
in cm.

3.1.1.1 Validation with Gaussian distributions

A synthetic dataset was used to validate the ability of the framework to recover missing

input distributions. The dataset for the inputs of 200 scroll compressors was generated by

sampling three Gaussian distributions. Data for t and Ror was generated using the dis-

tribution N(5.5, 0.25), while data for hscroll was generated from N(40, 2.5). The response

surface based on the results of CFD simulations was used to produce a distribution of

the efficiencies of the scroll compressor, in other words the assumption is made that the

computational model is perfectly calibrated to experiments for the purposes of validating

the framework. Histograms of the dataset are illustrated in Figure 3.5. The framework

was validated by back-calculating a distribution for hscroll based on the distributions of η,

Ror, and t. A PCE of order p = 2 was found for hscroll, using Hermite polynomials as the

orthonormal basis as this is the optimal choice for Gaussian inputs (see e.g., [108]). As

can be seen from Figure 3.6 it is possible to find a PCE distribution which recovers the

missing distribution in this instance. The framework can be considered validated in the

sense that it can recover the missing distribution exactly when the computational model

is perfectly calibrated.
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Histograms 

for 𝑡 and 𝑅𝑜𝑟 Scroll compressor response 

surface and aPC

Compare experimental and 

simulated distributions of 𝜂

gPCE for ℎ𝑠𝑐𝑟𝑜𝑙𝑙

Update coefficients 

Experimental 

measurements of 𝜂

Figure 3.4: A summary of the back-calculation problem for the scroll compressor test case.
A PCE is sought to find a distribution for hscroll, based on a response surface
and experimental measurements of t, Ror, and η. CFD simulations of the
scroll compressor were used to fit the response surface

Figure 3.5: Histograms displaying the synthetic dataset used to validate the framework.
t, Ror, and hscroll were sampled from the normal distributions N(5.5, 0.25),
N(5.5, 0.25), and N(40, 2.5) respectively
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Figure 3.6: CDFs for the simulated and experimental distributions of η (left) and hscroll

(right) used to validate the framework. It is possible to recover a missing input
distribution precisely provided the simulations used in the back-calculation are
correctly calibrated

3.1.1.2 Back-calculation of missing input distributions with scarce data

Having demonstrated that the back-calculation framework can recover the results of a

forward propagation of uncertainty, the capacity of the framework to efficiently handle

scarce data was demonstrated. Data was removed at random from the synthetic dataset

illustrated in Figure 3.5 such that only 60 measurements in total were available across all

of the specimens and that only a single parameter was measured for a given specimen.

This is in contrast to the data used for the validation, in which t, Ror, and η were measured

for each specimen, resulting in 600 measurements in total. As can be seen from Figure

3.7, it is still possible to find a PCE for hscroll such that, when the input uncertainties

are propagated using aPC, a reasonable approximation of the distribution for η can be

found. Practically, there is no limit to the scarcity of the QoI data for which the statis-

tical distance can be found as the Kolmogorov-Smirnov distance can still be employed to

measure the supremum distance between empirical CDFs of the QoI distribution even if

the experimental QoI dataset is extremely limited in size, for instance consisting of just a

handful of measurements. However, in this case seeking an exact probabilistic equivalence

between the QoI distributions may be placing a level of constraint on the PCE that is
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Figure 3.7: CDFs for η for the case of sparse data (left). A QQ plot for every tenth per-
centile of the experimental and simulated distributions of η. The black line
indicates the line of equality, with the majority of percentiles lying on or near
this line (right)

not warranted by the size of the dataset. In cases such as these it may be more appro-

priate to place a non-parametric confidence interval around the experimental CDF (for

instance with the Dvoretzky-Kiefer-Wolfowitz inequality and Massart bound [117, 118])

and instead constrain the simulated QoI probability distribution to lie within that bound,

rather than attempting to minimise the statistical distance between the two distributions

directly.

3.1.1.3 Back-calculation of multiple missing, non-Gaussian input

distributions

A second synthetic dataset was used to demonstrate the ability of the back-calculation

framework to recover multiple missing, non-Gaussian input distributions. The non-

Gaussian input distributions used are displayed in Figure 3.8: the scroll thickness was

sampled from the uniform distribution U(1.3, 5.1), the scroll radius from a Logistic dis-

tribution with parameters µ = 5.5 and σ = 0.1, and the scroll height from the Lognormal

distribution with parameters µ = 3.688 and σ = 0.0632. Monte Carlo sampling of these

distributions was used to generate a probability distribution for the scroll efficiency, a

histogram of which may be seen in Figure 3.8. The goal of this test was to demonstrate
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the generality of the framework by recovering the distributions of Ror and hscroll based on

probability distributions for t and η only.

The results of the back-calculation are displayed in Figure 3.9. As can be seen from

the plots of the CDF of the scroll efficiency in the top left panel of the figure and the QQ

plot in the top right, it is possible to find distributions of the missing inputs that, when

propagated through the computational model using aPC, yield an almost exact match

to the distribution for η displayed in Figure 3.8. CDFs of these input distributions are

displayed in the centre left and bottom left panels of Figure 3.9, while kernel density

estimates of the PDFs are displayed in the centre right and bottom right panels. As can

be seen, the estimates of the input distributions found by Monte Carlo sampling of the

PCE are an almost exact match to the distributions in the synthetic dataset. A PCE of

order p = 2 was used, which required 12 coefficients to be found by solving (3.3).

In this case Hermite polynomials were used as the basis function of the PCE- given

that neither of the missing distributions are in the Askey scheme an optimal choice of

orthogonal polynomial does not exist. The choice of polynomial basis does of course have

an impact on the probabilistic equivalence, as has been shown in the previous chapter. A

judicious choice of polynomial basis can improve the efficiency of the back-calculation as

a lower order PCE can be used, which reduces the dimensions of the search space which

is explored by the algorithm to find the optimal set of PCE coefficients. In practice the

order of the PCE is increased until the statistical distance between the CDFs of the QoI

converges.

3.1.2 Carbon fibre coupons test case

Having validated the inverse identification algorithm using the scroll compressor as a test

case, we now apply the algorithm to a test case in which probability distributions for

the material properties of a batch of carbon fibre coupons are back-calculated using a

dataset of scarce experimental data. Inverse identification is a problem that frequently

arises in the design of new composite materials. The manufacturing process of composite
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Figure 3.8: Histograms for the synthetic dataset with non-Gaussian input distributions.
t was sampled from the uniform distribution U(1.3, 5.1), Ror from a logistic
distribution with parameters µ = 5.5 and σ = 0.1, and hscroll is sampled from
a lognormal distribution with parameters µ = 3.688 and σ = 0.0632

materials is highly complicated, resulting in significant variance in the material properties

when measured in coupon tests [119]. These uncertainties must be quantified in order to

produce confidence intervals for the material properties, which in practice requires exten-

sive experimental testing. As an example, the process of certification for a new product in

the aeronautical industry requires thousands of tests of individual carbon fibre composite

coupons. Extensive testing of coupons can make the design process for a new composite

material expensive and time consuming [120]. In addition, the measurement of shear

properties of composite materials can be very challenging [121]. For instance, Melin et

al. (2000) compared four methods of measuring the inter-laminar shear strength (ILSS)

and found significant variation in the stress-strain responses in shear between the differ-

ent experimental methods, concluding that the ILSS was significantly underestimated by

many methods [122]. For these reasons, there has been interest in using computational

simulations to reduce the burden of coupon testing, as well as in developing methods that
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use computational models of a composite structure in order to deduce material properties

from full field observations of the structures’ behaviour.

In practice we note that probability distributions estimated from experimental data

may well be multi-modal. Instead of modelling such distributions with a very high-order

PCE it is instead possible to model multi-modal probability distributions as a mixture

of low order PCEs. A consequence of this is that fewer coefficients need to be found

numerically (see [123]), reducing the size of the space which must be searched by the

optimisation algorithm to find the optimal set of coefficients. For this reason we extend

the inverse identification framework by representing the nm missing inputs with a multi-

modal Polynomial Chaos Expansion (mmPCE). Following the formalism of Nouy (2010),

a second random variable, z2, is introduced which is independent of z1. The probability

space occupied by η is now (Ωm,Fm,Pm) where Ωm = Ω1 × Ω2 and Pm = P1 ⊗ P2 (the

tensor product of the set of probabilities P1 and P2 . A mixture of m PCEs can be made,

each of which is weighted by an indicator function I such that the vector of missing inputs

η may be written as:

η(z) =
m
∑

i=1

IFm
i

(z2)
[

P
∑

α,‖α‖=0

P (i)
α Ψα(z1)

]

=
m
∑

i=1

P
∑

α,‖α‖=0

IFm
i

(z2)P
(i)
α Ψα(z1). (3.4)

The set of events Fm
i is partitioned by m intervals Ωm

i = [xi−1, xi], i = 1, . . . ,m where

0 = x0 < x1 < · · · < xm = 1. z2 is a random variable, in this case sampled from the

uniform distribution U(0, 1). It is possible to define the sample space Ωm
i = z−1

2 (F i)

for i = 1, . . . ,m. This characterises the partition with xi =
∑i

j=1 P(Ωm
j ) [123]. The

expansion is thus defined by the parameter sets associated with each of the m PCEs,

P (i)
α , i = 1, . . . ,m, and the partitions X = {x1, x2, . . . , xm−1}, which are the targets of the

optimisation.

The algorithm was tested using a dataset comprised of laboratory measurements of

carbon fibre composites and a computational model based on the equations of classical
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laminate theory. A brief explanation of carbon fibre composites and a description of

the classical laminate theory is included below, followed by a description of the inverse

identification test case and results.

3.1.2.1 Classical laminate theory equations and choice of failure criterion

A carbon fibre composite is constructed of layers of unidirectional carbon fibres held to-

gether by a resin, referred to as the matrix. A single layer is referred to as a lamina or ply.

Note that there are two sets of co-ordinates in a composite, (x, y) co-ordinates refer to

global co-ordinates of the laminate as a whole, while the local co-ordinates (1, 2) refer to

directions parallel with the fibres and transverse to the fibres in each lamina. A rotation

is needed to move from global to local co-ordinates, which will depend on the orientation

of the fibres in the lamina. For more details on carbon fibre composites see, e.g. [124,

125, 126]. As has been discussed above, significant variance is observed in the material

properties of composite materials when measured in coupon tests due to the complexity

of the manufacturing process [127]. The stacking of individual, unidirectional plies to

form a composite is illustrated in Figure 3.10. The figure also illustrates the directions

in which the loads Nx and Nxy are applied. A rotation of θ degrees must be applied to

move from the global co-ordinates (x, y) to the local co-ordinates (1, 2).

A deterministic model, based on the equations of classical laminate theory, was used as

a computational model of the physical coupon tests. The coupons themselves consisted

of 48 laminae in a (([90/02/45/ − 45/0]4)s)s stacking sequence. The applied stresses Nx

and Nxy were incremented in ratio until a failure criterion was met at any of the laminae:

1. Initialise Nx and Nxy

2. Apply loads Nx and Nxy (Nx = 3.33Nxy)

3. Find the mid surface strains ǫx,ǫy and γxy

4. Apply rotations to find the local strains in each ply (ǫ1,ǫ2,γ12)
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5. Evaluate the Yamada-Sun failure criterion for each ply (described below)

6. If the failure criterion is met at any of the plies then the laminate is considered to

have met the first failure stress, otherwise increment the applied load and return to

Step 2

The relationship between the mid surface strains and the local stresses in a given ply

is represented using the reduced stiffness matrix Q. Through the plane stress assumption

the full 6 × 6 can be reduced to a 3 × 3 matrix, the components of which are determined

by the material properties of the laminate:
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, (3.5)

where σ1 is refers to tension/compression in the principal fibre direction, σ2 is the ten-

sion/compression in the transverse direction and τ12 the shear stress. The elements of the

reduced stiffness matrix are dependent on the material properties of the ply, determined

by the following relations:

Q11 =
E1

1 − ν12ν21

, Q12 =
ν12E2

1 − ν12ν21

=
ν21E1

1 − ν12ν21

, Q66 = G12, (3.6)

where E1 represents the Young’s modulus in the fibre direction, E2 the Young’s modulus

in the transverse direction, G12 the shear modulus, and ν12 Poisson’s ratio. A linear strain

distribution is assumed through the thickness of the laminate:
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where ǫ0
x, ǫ0

y, and γ0
xy represent the mid-surface strains and κx, κy, and κxy the curvature

in the laminate. The applied loads (Nx, Ny, Nxy) and moments (Mx,My, Mxy) are related

to the mid-surface strains and curvatures through:
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, (3.8)

where the elements of the ABD matrices depend on a summation across all n plies in the

laminate:

Aij =
n
∑

k=1

(Q̄ij)k(zk − zk−1), Bij =
n
∑

k=1

1

2
(Q̄ij)k(z2

k − z2
k−1), Dij =

n
∑

k=1

1

3
(Q̄ij)k(z3

k − z3
k−1),

(3.9)

where Q̄ij represents the ijth element of the reduced stiffness matrix of the kth ply when

it has been rotated to lie in the (x,y) co-ordinate system. It is possible to greatly simplify

equation (3.8) through symmetry considerations, for instance [B] = [D] = 0 and A16 =

A26 = 0 due to the symmetrical layup of the laminate. In the test case only horizontal

and shear loads are applied, meaning there is no curvature due to the applied moments.

This allows a further simplification of equation (3.8):
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(3.10)

The Yamada Sun failure criterion was used to determine whether failure had occurred in

an individual lamina [128]. The equations were used to relate the applied load to the mid

surface strains and in turn the local stresses in each ply. The laminate was considered to

have reached first failure when the condition:

(

σ1

f1

)2

+

(

τ12

f12

)2

= 1, (3.11)

was met in any ply. In (3.11) f1 and f12 represent the longitudinal and transverse strengths

of the composite respectively. Note that each of these linear transformations is dependent

on the material properties of the laminate.

3.1.2.2 Inverse identification test case

Experimental measurements were made of the longitudinal and transverse strengths of

the composite (f1 and f12); the shear modulus (G12); the Young’s modulus in the fibre

direction (E1) and the compression and shear stress required to cause the first failure of

the laminate (Nx and Nxy). Histograms of the available experimental data are displayed

in Figure 3.11; note that the data for Nx and Nxy is particularly scarce, consisting of only

6 measurements. The difficulty in accurately determining the shear strength of composite

materials is well known (see, e.g. Odegard and Kumosa (2000) [121]) so there is motiva-

tion in replacing difficult experimental tests with a computational model that can capture

the physics of experiment. By incorporating the model in the framework described here it

is possible to back calculate PDFs for quantities that may be difficult or costly to measure,

such as the shear properties, without having to directly measure them.
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Arbitrary Polynomial Chaos was again used to propagate the input uncertainties

through the classical laminate model. As the compression and shear stresses are

increased in ratio, a single PCE can be used to generate both probability distributions.

An advantage of using NIPC methods, such as aPC, to propagate uncertainty is that it is

possible to use the coefficients of the PCE to conduct a sensitivity study. Sudret (2008)

demonstrated that once a Polynomial Chaos representation of a model is available, the

Sobol sensitivity indices (defined below) may be calculated analytically at almost no

extra cost by post-processing the PCE coefficients [129]. For a system with Nu stochastic

inputs there are 2Nu − 1 Sobol indices in total, with each Sobol index, Si1,...,is
weighting

the contribution of an input to the total variance, D:

Si1,...,is
=
Di1,...,is

D
, (3.12)

where Di1,...,is
represents the partial variance and D is defined as the sum of the partial

variances:

D = var(w(ξ)) =
Nu
∑

i=1

Di +
∑

1≤i≤j≤Nu

Dij +D1,2,...Nu
, (3.13)

Di1,...,is
=
ˆ

Ωs

w2
i1,...,is

(ξi1 , ...ξis
)dξi1 ...dξis

, 1 ≤ i1 < ... < is ≤ Nu

where the integral is performed over a s-dimensional space of input parameters. By

exploiting the orthogonality of the multivariate PCE basis, it can be shown that each

Sobol index may be approximated by the ratio of two sums over the PCE coefficients

[130]:

Sk ≈
∑

k∈Ik
λ2

k〈ψk, ψk〉
∑P

i=1 λ2
k〈ψk, ψk〉 (3.14)
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Material property Sensitivity (%)
E1 0.35
f1 93.12
G12 0.04
f12 6.49

Table 3.1: Results of the Sobol sensitivity analysis using the experimental dataset. Given
the limited sensitivity of the model to E1 and G12 these parameters were treated
as constants for the purposes of back-calculating a distributions for f1 and f12

where the counting variable k sums up all rows of the multi-index matrix for which an

index ij is not zero and λk are the PCE coefficients found using the aPC formulation. A

Sobol sensitivity study was performed using the first-order Sobol indices, which quantify

the independent contribution of each input parameter to the total variance. Higher-order

Sobol indices account for the influence of combinations of parameters but are typically not

calculated. Table 3.1 displays the results of the Sobol sensitivity study, which used input

distributions from the first iteration of the back-calculation algorithm as inputs. The

sensitivity of the failure stresses to each of the four material properties can be quantified

as a percentage. As can be seen from the table, the classical laminate theory model has

limited sensitivity to f1 and f12 compared to E1 and G12. For this reason, E1 and G12

were subsequently treated as constants, allowing the stochastic dimension of the model to

be reduced to 2. Reducing the maximum adaptive order to 2 made the back-calculation

more computationally efficient as there were fewer points in the Smolyak sampling grid

at each iteration (see (2.17)). In addition, the dimensionality of the search space for the

mmPCE parameters is reduced.

Having established through the Sobol indices that the model had little sensitivity to

E1 and G12 the algorithm was used to back-calculate distributions for f1 and f12. The

situation is illustrated graphically in Figures 3.12 and 3.13. Figure 3.12 illustrates how

a carbon fibre laminate may be formed from a stack of unidirectional laminae. It also

tabulates which parameters have experimental data associated with them, while Figure

3.13 illustrates the framework for the specific test case presented here. The QoI of the
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experiment are the stresses Nx and Nxy, with the four stochastic material properties as

the input parameters to the computational model.

The Kolmogorov-Smirnov distance was used as the metric of statistical distance be-

tween the experimental and computational distributions of Nx and Nxy. The use of the

Kolmogorov-Smirnov distance makes the CDF a natural choice for visualising the distri-

butions. In Figure 3.14, the CDFs of the experimental and computational distributions

of Nxy are plotted, together with a QQ plot for every 10th quantile. Note that the com-

pression stress and shear stress are in ratio (Nx = 3.33Nxy) it is only necessary to plot

Nxy for the purposes of comparison. The majority of the quantiles lie on the identity line,

indicating that the distributions are close to being equivalent with one another. While the

statistical distance between the two CDFs has been minimised through an optimisation

procedure, the scarcity of the experimental data for Nxy is such that there are a range

of solutions which would have a comparable statistical distance which may be deemed

satisfactory for the purposes of probabilistic equivalence. If necessary, a bound could be

placed around the experimental CDFs, indicating the range of distributions that would

yield what would be considered an acceptable matching. An mmPCE consisting of a mix-

ture of 4 PCEs of order p = 3 was used. First-order PCEs were added to the mixture until

adding additional PCEs no longer reduced the KS distance, at which point the orders of

the PCEs in the mixture were increased. Table 3.2 displays the effect of increasing the

order of the PCEs on the KS distance.

Finally, the back-calculated distributions for f1 and f12 are compared with the avail-

able experimental data in Figure 3.15. Given the scarce nature of the experimental data,

quantifying the similarity between the calculated and experimental probability distribu-

tions is not trivial. One option is to represent the probability distributions graphically:

in Figure 3.14 the CDFs of the computed and experimental distributions are plotted on

the same axes for comparison, in addition to a set of QQ plots which allow us to compare

the quantiles of the probability distributions directly. From these plots we can see that

the distributions generated using the mmPCE are slightly less conservative than the ex-
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PCE order, p dKS

1 0.0934
2 0.0921
3 0.0912
4 0.0915

Table 3.2: The effect of increasing the order of the individual PCEs in the mmPCE on
the probabilistic equivalence in the distributions for Nxy, quantified by the KS
distance

Material property ∆µ (%) Wilcoxon rank sum test (p)
Nxy 0.39 0.9737
f1 2.72 0.0507
f12 0.56 0.6832

Table 3.3: A comparison of the computed and experimental probability distributions is
not trivial due to the scarcity of the experimental data. Here, the percentage
difference in the mean and the p-values from the Wilcoxon rank sum test are
presented for each of the uncertain parameters

perimental results, but comparable nonetheless. The 10th-80th quantiles lie on or near the

identity line, with the mmPCE yielding a more conservative value for the 90th quantile in

both cases. Table 3.3 presents the results of a quantitative approach to assessing the sim-

ilarity between the probability distributions. As can be seen from the second column of

Table 3.3, the means of the distributions are relatively similar. The third column contains

the p-values associated with the Wilcoxon rank sum test, which tests the null hypothe-

sis that the computed and experimental probability distributions come from continuous

probability distributions with equal medians. The null hypothesis cannot be rejected at

the 5% significance level for every parameter, although the p-value for f1 is significantly

lower than the other two. Nevertheless, these results are encouraging given the scarcity of

the experimental data, containing only 6 measurements of Nx and Nxy, and a relatively

simple computational model was employed to establish the probabilistic equivalence. The

test case serves as a proof of concept, illustrating that the framework has the potential to

yield reasonable estimates of missing probability distributions, even when the size of the

dataset is very limited.
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In this section we have introduced an algorithm for solving inverse identification prob-

lems based on probabilistic equivalence. The algorithm has been validated using two test

cases that reflect real-world engineering problems. In the case of the test case involving

carbon fibre coupons we demonstrate how mmPCEs may be used to efficiently handle

multi-modal data. Having discussed how probability distributions may be inferred from

scarce experimental distributions in an inverse formulation, we now examine the forwards

propagation of uncertainty and introduce an algorithm that enables the estimate of a

probability distribution based upon NIPC to be informed by scarce experimental mea-

surements of a QoI.
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Figure 3.9: CDFs for the experimental and simulated distributions of η for the case of non-
Gaussian input distributions (top left). The QQ plot of the same distributions
indicates the almost exact equivalence between the two (top right). Similarly
there is an almost exact equivalence between the distributions for the inputs
Ror and hscroll. This can be seen in the CDFs (centre left and bottom left) and
in the kernel density estimates of the PDFs (centre right and bottom right)
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Figure 3.10: A schematic illustrating how a carbon fibre composite is constructed from
layers of unidirectional plies (left). The directions of the global co-ordinates
are indicated, together with the directions of the compression load Nx and
shear load Nxy (top right). The angle θ defines the rotation necessary to
move from global co-ordinates (x, y) to the local co-ordinates of the ply (1, 2)
(bottom right)
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Figure 3.11: Histograms for the four stochastic material properties in the dataset
(E1, f1, G12, f12) and the compression and shear loadings responsible for first
failure of the laminate(Nx and Nxy). Note that the data for Nx and Nxy is
particularly scarce

Figure 3.12: An illustration of a carbon fibre composite, which is comprised of a stack
of unidirectional plies (left), and a summary of the experimental dataset
for the test case (right). It was assumed that experimental data was not
present for the strengths f1 and f12. Distributions for these quantities were
back-calculated and the results were compared to the experimental data
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Figure 3.13: Flowchart for the back-calculation algorithm illustrated for the carbon fibre
composite test case

Figure 3.14: A comparison of the CDFs for the quantity of interest, Nxy (left). The opti-
mum Kolmogorov Smirnov distance was found to be dks = 0.0912. A QQ plot
for every 10th quantile (right). The majority of quantiles lie on the identity
line, implying that the two distributions are statistically very similar
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Figure 3.15: A comparison of CDFs for f1 (top left) and f12 (top right). While compara-
ble, in general the back-calculated distributions are slightly less conservative
than the experimental results. QQ plots for f1 (bottom left) and f12 (bot-
tom right) for every 10th quantile indicate that the distributions are broadly
similar, but that the right tails of the back-calculated distributions are more
conservative (i.e. predict a lower strength for the composite)
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3.2 Data Fusion of NIPC and scarce experimental

data

As has been discussed, engineers must frequently produce designs that can yield good per-

formance in a wide variety of operating conditions and for this reason, UQ techniques are

used to evaluate the performance of candidate designs. To save both time and expense the

performance of these candidate designs are typically tested using complex computational

models. Non-intrusive Polynomial Chaos (NIPC) is a popular technique for propagating

the effect of aleatoric uncertainties through complex computational models. As has been

discussed previously, NIPC has been shown to yield results that are consistent with the

more established Monte Carlo (MC) sampling techniques but at a much reduced compu-

tational cost, with NIPC requiring many times fewer model evaluations than traditional

MC methods (see, e.g. [131]).

In recent years there has been great interest within the field of UQ in using multi-fidelity

techniques to carry out uncertainty propagations. The accuracy of uncertainty propaga-

tions are fundamentally limited by the accuracy of the computational model that is used,

however more accurate models are usually very computationally expensive. For instance,

in fluid dynamics a Direct Numerical Simulation (DNS) can give a highly accurate res-

olution of a flow field but usually takes several days to run, making the repeated model

evaluations necessary for UQ impractical. On the other hand, Reynolds-Averaged Navier-

Stokes (RANS) simulations are less accurate due to assumptions made in the Reynolds

stress closure but also far less computationally expensive and more suitable to repeated

evaluations. This has the led to the development of machine learning [132] and Bayesian

[133] approaches which use RANS to leverage the results of DNS simulations. A bi-fidelity

approach for combining RANS models of different fidelities was introduced by Doostan

et al. (2016), in which the low-fidelity model is used to learn a reduced basis, which is

used together with an interpolation rule and a limited number of high fidelity evaluations

to approximate the high fidelity solution [134]. A multi-fidelity extension to NIPC was
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introduced in Eldred et al. (2017) [56]. Methods such as Multi-level Monte Carlo [135,

136, 137], co-kriging [138] and Gaussian Process models (GPMs) [139, 140, 141] are used

widely in the UQ community to leverage the results of a small number of high-fidelity

simulations with many low fidelity model evaluations. A more comprehensive review of

multi-fidelity methods in Uncertainty Quantification may be found in the review paper of

Peherstorfer et al. (2018) [142].

However, while there has been great interest in developing methods that allow models

of different fidelities to be combined, there has been relatively little attention paid to

combining the results of uncertainty propagations with experimental data. While there

are established Bayesian methods for updating a probability distribution as more data is

collected (see e.g., [143]), this is an under-studied problem for frequentist methods. In

this section we introduce a framework by which the results of an uncertainty propagation

using a computational model may be adjusted based on the evidence of a limited set of

experimental measurements of a Quantity of Interest (QoI). An example of where this

problem is relevant is in the design process of composite materials, where thousands of

coupon tests are required in order to authorise the use of a new composite material. The

material properties of composite materials can vary significantly due to defects introduced

in the manufacturing process [127], thus materials are typically characterised by statisti-

cal quantities such as the b-basis [144]. A current topic of research is how computational

simulations of composite materials can be used to leverage the results of experimental

coupon tests.

It should be noted that while relatively under researched in the Engineering sciences,

the problem of combining evidence from different sources has been treated in other dis-

ciplines. For instance, Dempster-Shafer theory has been developed to combine evidence

from multiple sources to reach a subjective judgement [145, 146]. It has been applied in

software failure detection [147] and in Machine learning, where the accuracy of a decision

is improved by combining the evidence of multiple classifiers [148]. However, significant

criticism of Dempster-Shafer theory has been made in the literature, for instance in Pearl



3.2. DATA FUSION OF NIPC AND SCARCE EXPERIMENTAL DATA 84

(1990) [149].In econometrics and weather forecasting density forecasts from different ex-

perts are frequently combined directly [150, 151]. The earliest and most popular attempts

at forecast combination has been the ‘Linear Opinion Pool’, in which the resultant forecast

is simply the weighted sum of the individual forecasts [152]. For more complete reviews of

the probability distribution combining literature see, e.g. [150, 153, 154, 155]. A drawback

of the Linear Opinion Pool, shown by Hora (2004) [156], is that if each predictive dis-

tribution is calibrated then any non-trivial linear combination will itself be un-calibrated

[157, 158]. To this end, methods of non-linear combination have been developed in recent

years. Gneiting and Ranjan (2010) introduce the Beta calibrated linear pools, in which

the beta transform of the traditional linear pool is used to find the resultant distribution

[159]. Bassetti et al. (2018) placed the Beta calibrated linear pool in a Bayesian frame-

work [160] while Casarin et al. (2016) compared the performance of linear, harmonic and

logarithmic opinion pools in a Bayesian beta mixture model but found the schemes to

be substantially equivalent [161]. Kapetanios et al. (2015) introduced Generalised den-

sity forecast combinations, in which the weight functions of the Linear Opinion Pool are

allowed to vary spatially [162]. One of these schemes could well be an appropriate way

to directly combine experimental and computational probability distributions of a QoI,

but this would assume that there was firstly a sufficient number of experimental results

to estimate a probability distribution with sufficient confidence and secondly that some

limitation in the design of the experiment meant that it too was an abstract represen-

tation of the system being designed, in the same way that a computational model is an

abstract or idealised version of a system. It is assumed that the experimental data is too

scarce to meaningfully estimate a probability distribution when taken in isolation, but

that the experiment measures the QoI to a higher degree of accuracy than the compu-

tational model. Additionally, we assume that there is insufficient related evidence, for

instance comparisons of experimental and simulation results of previous test cases, to

formulate belief functions that could be combined according to Dempster-Shafer Theory.
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A number of works in the literature that have addressed the problem of updating

a probability distribution based on additional sources of data have done so using the

Maximum Entropy Principle (MEP). First developed by Jaynes (1982) for estimating a

canonical ensemble distribution constrained by particle number and total energy [163,

164], the MEP states that the least biased next estimate of a probability distribution is

the distribution that maximises the relative entropy between the old and new estimate

of the distribution, while at the same time conforming to a constraint imposed by the

experimental data. Typically, the maximum entropy approach involves finding a set of

Lagrange multipliers to reweight the initial estimate of the distribution and the imposed

constraint is usually the experimental mean. This is the approach adopted in Cesari et

al. (2018) to combine Molecular Dynamics simulations with experimental results [165]

and also in Lou and Cukier (2018) [166]. The Maximum entropy approach was expanded

in another paper by Cesari et al. (2016) to allow experimental errors to be included in

the formulation [167]. Such an approach has a number of limitations. Firstly, the La-

grange multiplier formulation makes it very difficult to change the modality of the new

estimate. Secondly, the use of moment based constraints is inappropriate for a limited

set of experimental results as the statistical moments are unlikely to have converged, thus

the approach taken in these works would force the new estimate to converge to a set of

statistical moments which are unlikely to reflect the ‘true’ distribution. The limitations of

moment based constraints are also discussed in Baggenstoss, where the joint distribution

of a set of scalar measurements is used as a constraint, as opposed to the average values of

each measurement [168]. Here, a p-box based constraint is used to update the results of

an uncertainty propagation using NIPC. In this way scarce experimental data can be used

to inform the estimate of the QoI’s probability distribution, without placing constraints

which are harsher than the weight of the experimental evidence implies.
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Figure 3.16: Having determined an initial estimate of the probability distribution for the
QoI, scarce experimental measurements of the QoI can be used to update
the coefficients of the PCE using a data fusion algorithm based on a MEP.
The PCE can be then be resampled to generate an updated probability dis-
tribution

3.2.1 Algorithm for data fusion of Polynomial Chaos with

experimental results

The algorithm proposed here allows an initial estimate of a probability distribution to be

updated through the fusion of an uncertainty propagation with NIPC and the evidence

of a scarce experimental dataset. The initial estimate of the QoI probability distribution

is arrived at by using an NIPC method to derive a PCE to approximate the response

surface of a computational model, w(ξ):

w(ξ) =
P
∑

k=1

λ0
kΨk(ξ), (3.15)

where λ0 ∈ ℜP refers to the initial estimate of the PCE coefficients. The algorithm in-

troduced here is general and can be applied to a PCE arising from either a forwards or

inverse propagation of uncertainty, although only the forwards case is considered here.

Having estimated a PCE for the QoI, Monte Carlo evaluations of this PCE are then used

to generate an initial estimate of the distribution. The algorithm updates the coefficients

of the PCE such that the new estimate of the distribution maximises the cross-entropy

between the initial estimate and the new estimate, while at the same time satisfying

a constraint on the new estimate imposed by the available experimental data. This is

illustrated schematically in Figure 3.16.
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The Kullback-Leibler (KL) divergence is used to quantify the statistical distance be-

tween the updated PDF fu(x) and the initial estimate of the PDF f 0(w). For a continuous

set of normalised probability distributions, the Kullback-Leibler divergence is defined as

[69]:

dKL(fu||f 0) =
ˆ ∞

−∞
fu(w) log

fu(w)
f 0(w)

dw. (3.16)

The Kullback-Leibler (KL) divergence is defined as the negative of the cross entropy, hence

minimising the KL divergence between two probability distributions is the equivalent of

maximising the cross-entropy. Minimising the KL divergence between the updated dis-

tribution and the initial estimate produces a distribution which introduces the minimum

amount of new information with respect to the prior knowledge [166, 167]. The steps of

the data fusion algorithm are illustrated in Figure 4.2. The initial estimate of the PCE

coefficients in equation (3.15), λ0
k, are then replaced with the updated set of coefficients,

λu
k , which are the solution of an optimisation problem, with a constraint imposed by the

experimental data. In this work a p-box placed around the experimental data is used to

constrain the CDF of the updated distribution F u(w) [169]. It should be noted that the

formulation is flexible and can admit a range of user chosen constraints. For instance, mo-

ment based constraints could be used such as the experimental mean or the experimental

standard deviation. However, given the scarcity of the experimental data the statistical

moments of the experimental data are unlikely to have converged to the true distribution,

making constraints based on the statistical moments of the experimental data unsuitable.

p-boxes themselves are discussed further below. The optimisation problem to find the

updated coefficients is formulated as:

λu
k = argmin

λu
k

dKL(fu(w)||f 0(w)) subject toF (w) ≤ F u(w) ≤ F̄ (w), (3.17)
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where F (w) and F̄ (w) refer to the lower and upper limits of the p-box respectively. In

general, a six sigma criterion is applied in reliability problems (see, e.g. [170]). Monto-

moli and Massini (2013) demonstrated that for aerospace accidents this criterion is not

accurate enough and tends to underestimate the likelihood of accidents [171]. Given the

scarcity of the experimental data, accurate estimation of the tails of the distribution is

not possible using existing methods in the literature (see, e.g. [172, 173]). We focus on

a more general case, where constraints are imposed that are likely to only affect the first

two or three statistical moments in order to make the experimental data consistent with

the probability distribution estimated from the PCE.

As with the algorithms based on probabilistic equivalence discussed above, the manner

in which the PCE coefficients are updated in the algorithm will depend on the optimisa-

tion strategy used. The use of an inequality constraint such as a p-box, in addition to the

lack of an analytical relationship between the PCE coefficients and fu(w), precludes the

use of Lagrange multipliers, which have been used in other works which use an MEP to

update a probability distribution. As with the algorithms based on probabilistic equiv-

alence, an interior point algorithm was used, initialised at a point in PCE space within

the feasible region. It was found that the variation of dKL in the P -dimensional PCE

parameter space was sufficiently smooth for the algorithm to avoid becoming trapped in

a local minima [174, 175].

3.2.2 p-boxes as a constraint on the optimisation

A p-box is defined by two curves F̄ (w) and F (w) which act as upper and lower bounds

to the updated CDF F u(w) respectively. The bounds are defined such that the true but

unknown CDF lies between F (w) and F̄ (w), i.e.: F (w) ≤ F true(w) ≤ F̄ (w) ∀w. p-

boxes may be non-parametric or parametric. Parametric p-boxes arise from distributions

which are known to conform to a particular probability distribution (normal, exponential,

Weibull, uniform, etc.) but with parameters which are specified imprecisely as intervals.

Non-parametric p-boxes are distribution-free and make no assumptions about the form
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Figure 3.17: Data fusion algorithm to adjust the coefficients based on an Maximum En-
tropy Principle, subject to constraints imposed by the available experimental
data

of a distribution and so are a more appropriate choice as a bound when there is insuf-

ficient data to specify a family of distributions to which the experimental data for the

QoI belongs. In this work a non-parametric technique based upon the Dvoretzky-Kiefer-

Wolfowitz inequality and the Massart bound (referred to as the DKWM bound) is used

to place a bound around the experimental data for the QoI [176]. Bounds based on the

DKWM bound place a confidence interval around the Kolmogorov Smirnov statistic be-

tween the unknown, true distribution F true and the distribution for the experimental data

F exp [117, 118]:

P[sup
w

|F exp(w) − F true(w)| ≤ 2e−2nǫ2

] = α. (3.18)
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With a confidence level α the true CDF does not differ from the experimental CDF by

more than the error, ǫ. Rearranging the RHS of this equation yields an expression for ǫ

given a desired confidence α:

ǫ =

√

√

√

√

−log
(

α
2

)

2n
, (3.19)

where n is the number of experimental data points available. Note that the inverse

dependence on n means that the bound becomes tighter if more experimental points are

available. By translating the experimental CDF vertically by ±ǫ, a p-box may be created,

i.e.:

F exp(w) − ǫ ≤ F true(w) ≤ F exp(w) + ǫ. (3.20)

The CDF of the updated distribution, F u(w) is constrained such that it lies within the

p-box. As the p-box is created through a vertical translation of F exp it is defined only

over the support of F exp and so does not constrain the tails of F u(w) directly. As has

been discussed, this is considered acceptable as the intention is to place a constraint that

affects the first two or three statistical moments of the updated probability distribution.

The tails of a distribution are typically determined by higher order statistical moments.

3.2.3 Carbon fibre composite test case

The algorithm for the fusion of simulations and scarce experimental measurements of a

QoI was tested using the dataset of laboratory measurements of carbon fibre composites

and the computational model based on the equations of classical laminate theory used

in the previous test case. In this instance, aPC is used to construct a surrogate for Nx

and Nxy based on the scarce experimental data for E1, G12, f1, and f12. The test case is
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relevant as, as has been discussed above, significant variance is observed in the material

properties of composite materials when measured in coupon tests due to the complex-

ity of the manufacturing process [127]. Certifying a new composite material can require

thousands of coupon tests, which is both expensive and time consuming, providing moti-

vation to replace physical tests with simulations wherever possible. Previous works have

attempted to reduce the computational cost of these simulations using non-intrusive poly-

nomial chaos approaches (see e.g. [177, 178, 179]). The data fusion algorithm presented

here can be used to enrich these PCE surrogates with scarce experimental measurements

of the QoI.

Having produced a surrogate using aPC, an estimate for the shear load probability

distribution, f 0(Nxy), was generated from 106 Monte Carlo realisations of the PCE. The

data fusion algorithm was then used to adjust the coefficients of the PCE based on the

evidence of the available experimental measurements of the failure stresses. Given the

relative simplicity of the computational model used, we expect the model error to result

in a discrepancy between the estimate of the failure stress distribution and the ‘true’ but

unknown distribution, which we assume can only be found with many experimental tests.

The aim of the data fusion algorithm is to improve the initial estimate provided by NIPC,

based on the evidence of a small number of experiments.

The results of the uncertainty propagation and subsequent data fusion are displayed in

Figure 3.18. The blue line in the left panel represents the CDF of the initial estimate of

the probability distribution from propagating the uncertainties in the material properties

with aPC, F 0(Nxy). The green line indicates the CDF of the 6 available experimental

results, F exp(Nxy). The DKWM bound was used to place a p-box around F exp(Nxy) with

a 95% confidence level. An interior point algorithm was used to find a set of updated

PCE coefficients which minimised the KL divergence between the initial and updated

estimate of the probability distribution of Nxy, while at the same time ensuring that the

updated probability distribution lies within the bounds set by the p-box. The algorithm

was initialised at a point in the PCE parameter space that satisfied the bounds and was
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Figure 3.18: A plot showing the CDFs of the original estimate of the probability distri-
bution arising from the aPC (blue); the available experimental data (green)
and the updated estimate of the probability distribution (red). The p-box,
generated by the DKWM bound, is shaded in grey (left subplot). Kernel den-
sity estimates of the original and updated estimates- note how the maximum
entropy estimator has smoothed the peaks in the original estimate arising
from the scarce input data (right subplot)

found to converge quickly, requiring only 74 function evaluations. The CDF of the up-

dated distribution is represented in red in the left panel of Figure 3.18. The right panel of

Figure 3.18 illustrates the kernel density estimates of the initial estimate of the probability

distribution f 0(Nxy) and the updated probability distribution fu(Nxy). Kernel density

estimates were made for f 0(Nxy) and fu(Nxy) based on 106 Monte Carlo realisations of

the PCE. As can be seen the updated distribution is weighted more heavily to the left,

giving a more conservative estimate of the failure strength distribution. The potential of

the data fusion algorithm to adjust the modality of the updated distribution is demon-

strated, with some peaks in f 0(Nxy) becoming smoothed out in the updated estimate as

a result of the MEP. These peaks likely arise due to the effect of the scarce input data on

the uncertainty propagation using aPC.

In recent years much attention has been paid to developing methods of combining mod-

els of different accuracies in order to propagate uncertainty, but relatively little attention

has been paid to improving uncertainty propagations by considering evidence from both
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computational models and experiments. The growing accuracy of computational models

offers industries the possibility of reducing the amount of physical testing needed in the

design phase of a product by supplementing physical tests with simulations, making this

research problem increasingly relevant. Data fusion allows for evidence from multiple

sources to be considered in order to estimate a probability distribution. The framework

introduced here is intended for cases where a probability distribution must be estimated

based on the evidence of simulations, which are relatively plentiful but are considered

less reliable than experimental measurements as a result of the epistemic uncertainties

present in the models (model error). The experimental data, while more reliable,

is expensive or time consuming to obtain and as a consequence there are not enough

points to fit a probability distribution to the data without making significant assumptions.

Summary

In this chapter we have presented two methods through which simulations might be used

to leverage scarce experimental data in an uncertainty propagation. The first method,

for inverse identification, was validated with synthetic data and the response surface of

a scroll compressor, before it was applied to real experimental data from coupon tests

of carbon fibre composites. The second method provided a framework for data fusion

between NIPC and experimental data in a forwards propagation of uncertainty. The

Maximum Entropy Principle is a key aspect of the framework. This assumption, together

with the data driven NIPC formulation used to propagate uncertainties, means that the

method is non-parametric as no assumptions are made as to the family to which the un-

derlying distribution belongs. This makes the framework well suited to handling scarce

data. As can be seen from Figure 3.18, the Maximum Entropy Principle tends to have a

smoothing effect in practice and can eliminate spurious peaks which arise in the original

estimate of the probability distribution due to the scarcity of the input data. The use of a

p-box as a constraint, as opposed to moment based constraints, is another feature of the
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framework that allows it to handle scarce data efficiently. Scarce experimental data can

be used to inform the updated estimate of the probability distribution, without placing a

set of onerous moment based constraints on the estimate which are unlikely to reflect the

moments of the true distribution.
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In the conceptual design phase of a new product, where the cone of uncertainty is

widest, high-level computational models tend to be used to evaluate candidate designs;

with more granular models being employed once desired areas of the design space are

identified and more resources can be budgeted for each candidate design. In this chap-

ter we present two machine learning based methods to assist design space exploration.

Firstly, we propose an interpolation method for model-free histogram interpolation, based

95
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on the principle of probabilistic equivalence discussed in previous chapters. Secondly, we

present a data fusion approach based on Knowledge Based Neural Networks (KBaNNs).

A KBaNN acts as a meta-model for a function that is expensive to evaluate by training

a neural network with a limited set of expensive model evaluations.

4.1 Histogram interpolation for Design Space

Exploration

In this section we present a novel algorithm to aid designers in the exploration of the

design space of a new engineering product during the conceptual design phase. As has

been discussed, the performance of any design will be non-deterministic due to the pres-

ence of irreducible uncertainties in the system, such as imperfections introduced during

the manufacturing process. The uncertain performance of a design can be represented

with a probability distribution for a quantity of interest. The algorithm presented here

develops a meta-model that allows the designer to estimate the probability distribution

for a candidate design without requiring additional experiments of simulations.

The designs for new engineering products are developed within the design space, X,

a nx-dimensional space of parameters that influence the performance of the final design.

A candidate design may be uniquely specified as a parameter point in the design space,

denoted x ∈ X ⊆ ℜnx . The subspace containing points in the design space that satisfy

a set of requirements imposed on the design is referred to as the feasible region. Mavris

et al (2000) discussed how decisions made at the early, conceptual stages of an aircraft

design can restrict the range of alternative designs available at later stages in the design

process, despite limited quantitative knowledge of the interaction between requirements

being available in the conceptual design stage [180]. Consequently, methods have been

developed to promote a wider exploration of the design space in the conceptual design

stage, with approaches based on evolutionary algorithms [181], the morphological matrix
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[182], and architecture design space graphs [183] proposed. Set based design strategies de-

velop multiple designs concurrently, deferring decisions that limit the scope of the design

space for as long as possible, allowing more time for the designers to accumulate knowl-

edge about the system trade-offs [184, 185, 186]. Methods for design space exploration

(DSE) must balance flexibility in exploring the design space with the associated cost of

evaluating potentially expensive computer code at the investigated parameter points in

the design space [187, 188]. For this reason there has been interest in developing interpo-

lation schemes that predict the performance of a candidate design based on historic data.

Examples include the interpolation method for Computer Aided Design (CAD) models

in Schulz et al (2017) [189] and the approach to DSE for architectural design in Ipek et al

(2008), in which neural networks were used as meta-models linking the design parameters

to experimental data [190].

In this section we present an algorithm for model-free DSE in the early stages of product

development by informing the decisions of designers using estimations based on historic

data. In this context historic data refers to either the results of simulations evaluated

according to a design of experiments (DoE) or the results of experiments and simula-

tions collected during the development of previous products. While the values of some

parameters may be selected by the designers, the performance of any design will be non-

deterministic due to the irreducible uncertainties present in the system, an example being

natural variability in material properties. The uncertain performance of a design can be

represented using a continuous function such as a PDF or CDF for a given Quantity of

Interest (QoI), w. Each candidate design is associated with a probability distribution

representing its performance. We propose an algorithm that will allow designers to es-

timate the performance of a candidate design from a set of training data. Figure 4.1

illustrates this problem for a nx = 2 design space with parameters x1 and x2. The blue

dots indicate the parameter points in the training dataset. An uncertainty analysis, using

either experiments or the evaluations of expensive computer code, has been conducted

at each of these points, hence a probability distribution for the QoI is associated with
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each parameter point. The objective of the algorithm presented here is to estimate the

probability distribution at a query parameter point in the design space, indicated by the

red cross, without requiring further experiments or model evaluations.

Histogram interpolation has been used in the past to accomplish this objective: Read

(1999) used a linear histogram interpolation method to find the reconstructed invariant

mass distribution of a Higgs boson. It was found that the interpolated probability dis-

tribution was consistent with the results of a Monte Carlo simulation, but much less

computationally expensive to obtain. A limitation of the method is that it is defined

for probability distributions that have a linear dependence on a particular parameter; in

the chapter, interpolation forms are defined for the normal and exponential distributions

[191]. A multi-dimensional, non-linear moment morphing technique was later introduced

in Baak et al (2015), again with a high energy physics application, to account for distri-

butions with a non-linear dependence on their parameters and to account for dependency

between them [192]. The method presented here is intended to provide a more flexible,

data-driven framework for histogram interpolation which is non-parametric (free from

assumptions about the forms of distributions).

The algorithm described here employs probabilistic equivalence to project continuous

probability distributions to a finite-dimensional space, corresponding to the coefficients

of a polynomial chaos expansion (PCE). These coefficients are allowed to vary spatially

within the design space and an interpolation function is developed for each coefficient

by fitting to the available training data. In this respect the algorithm is similar to deep

learning methods such as autoencoders that reduce the dimensionality of the input space

and train a neural network within the reduced space [193].

Gaussian Process models (GPMs) are used as interpolation functions for the PCE co-

efficients. While the algorithm presented here is novel, there is precedent for combining

Gaussian processes and polynomial chaos within a meta-model in the literature. Schöbi

et al (2015) developed Polyomial Chaos-based kriging, a meta-model that combines the

global interpolation properties of PCEs with a local correction provided by a Gaussian
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Figure 4.1: The performance of a design is typically non-deterministic due to the presence
of irreducible uncertainties in the system. Here an nx = 2 design space is il-
lustrated. Blue dots indicate parameter points for which QoI data is available.
The goal of the algorithm is to estimate the probability distribution at a new
parameter point (red cross).

process [194]. Polynomial Chaos-based kriging was later employed in an adaptive sam-

pling algorithm which was used to iteratively improve the accuracy of a meta-model for

the limit state function (LSF). As has been discussed, the feasible region of design space

refers to the subset of points for which a design satisfies a set of performance requirements

cast as inequality constraints. The LSF separates this region from the subspace containing

parameter points that violate the constraints [195]. Approximating a LSF is a key aspect

of reliability analysis, where it is used to calculate the probability of a system violating

the constraints, however, this is an issue we do not address in this chapter (although we

note that it would be possible to extend our scheme to do this). The formulation for

multi-scale uncertainty propagation in Thimmisetty et al (2018) employs Gaussian Pro-

cesses and PCEs in a similar manner to our algorithm, where the coefficients of the PCE

are themselves Gaussian random variables. This allowed the meta-model to reflect both

the global uncertainty structure through the GPMs, while also accounting for the local

uncertainty structure through the polynomial chaos [196].
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4.1.1 An algorithm for non-parametric, data-driven histogram

interpolation

In this section the steps of a novel algorithm for non-parametric, data-driven histogram

interpolation are outlined. A data-driven formulation is chosen so that the method might

be applicable to a wider variety of datasets than existing methods, which assume that

the histograms belong to a particular family of probability distribution. The goal of the

algorithm is to estimate the probability distribution, f̂(w|x∗), for the performance of a

candidate design at the parameter point x∗ ∈ X ⊆ ℜnx in the design space. Historic

data, which as discussed above may include either the results of experiments or computer

simulations, is used as training data to develop a set of interpolation functions. The train-

ing dataset includes the probability distributions f(w|x(i)) for a Quantity of Interest, w,

and conditional on their locations in the design space x(i) i = 1 . . . n. The mathematical

aspects of the algorithm are discussed in greater detail below. Note that in this work we

restrict our attention to the interpolation of univariate probability distributions for the

QoI, i.e. w ∈ ℜ1, although there is scope to extend our formulation to the multivariate

case.

4.1.1.1 Polynomial Chaos Expansions

In the algorithm presented here polynomial chaos is not applied to propagate uncer-

tainty but rather as a means for projecting continuous probability distributions into a

finite-dimensional space for the purposes of interpolation. To keep the algorithm general

we work only with the probability distribution of the QoI and assume that there is no

knowledge of the stochastic process by which this distribution is generated. A PCE is

constructed that is a function of a single random variable, ξ, that is sampled from a gen-

erating probability distribution which is dependent on the orthonormal basis used. The

right hand column of Table 2.1 lists the generating distributions for a selection of prob-

ability distributions in the Askey scheme. As has been discussed above, the stochastic
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response of a candidate design is dependent on its position in the design space as well as

on the uncertain inputs ξ. For this reason, the PCE parameter set is no longer treated as

a set of constants, but rather a set of functions dependent on x:

w(x, ξ) =
P
∑

k=1

λk(x)Ψk(ξ), (4.1)

where ξ ∈ ℜ1. At a given parameter point, x, a probability distribution for w may

be estimated through Monte Carlo sampling of ξ: nMC samples are generated from

the probability distribution associated with the chosen polynomial basis- referred to

as the generating probability distributions in Table 2.1. This yields the dataset W =

[w(x, ξ(1)), w(x, ξ(2)), . . . , w(x, ξ(nMC))] from which the CDF F̂ (w|λ,x) may be calculated

directly. The PDF f̂(x|λ,x) can be estimated from W through kernel density estimation

(see, e.g. [197, 198]).

4.1.2 Probabilistic Equivalence

The algorithm described here represents the uncertainty in the performance of a product

across the design space with a PCE, the coefficients of which are estimated with a set

of P interpolation functions. In order to find a meta-model for these coefficients it is

necessary to generate a set of training data by projecting PDFs or CDFs into a finite,

P -dimensional, PCE coefficient space, Λ. For each probability distribution in the training

set a probabilistic equivalence is sought:

∀w : f(w|x(i)) = f̂(w|λ(i),x(i)), i = 1 . . . n. (4.2)
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In this instance we define the probabilistic equivalence in terms of the PDFs rather than

the CDFs: f(w|x(i)) refers to the PDF at the ith parameter point in the training data

and f̂(w|λ(i),x(i)) represents the PDF estimated from the ith set of PCE coefficients.

As in previous chapters, achieving an exact probabilistic equivalence between the two

sets of PDFs is intractable. Instead, sets of coefficients are sought that minimise the statis-

tical distance between each pair of probability distributions and (4.2) may be reformulated

as n optimisation problems:

λ(i) = argmin
λ(i)

d(f(w|x(i)), f̂(w|λ(i),x(i))), i = 1 . . . n, (4.3)

where d refers to a measure of statistical distance between each pair of probability

distributions. The steps of the sub-algorithm used to estimate the PCE coefficients for

the ith training parameter point are as follows:

Input: QoI PDF f(w|x(i)) at ith parameter point x(i) and initialised PCE coeffi-

cients λ(i)

Output: PCE coefficients λ(i)

1. MC sampling of the PCE to generate nMC QoI samples, W

2. Kernel estimate of f̂(w|λ(i),x(i)) from W

3. Evaluate d(f(w|x(i)), f̂(w|λ(i),x(i)))

4. Check for convergence in d, otherwise update λ(i) and return to step 1

Note that there is an equivalent sub-algorithm for CDFs instead of PDFs if a statistical

distance based on CDFs is used. The manner in which the PCE coefficients are updated

will depend on the choice of optimisation algorithm. In general this is likely to be a

non-convex optimisation and for this reason non-gradient based optimisation strategies

are preferred such as genetic algorithms.
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The histogram interpolation algorithm described here uses probabilistic equivalence

to find a PCE representation for each probability distribution in the training dataset

and develops interpolation functions for the PCE coefficients. There is a certain level of

correlation between the PCE parameters which is difficult to quantify. For this reason,

the QR decomposition was used to decorrelate the training data, transforming the PCE

coefficients in the training data λ(i), i = 1 . . . n to a P -dimensional space in which the

correlations are removed, denoted as Λ̃ (see, e.g. [199]). A set of P interpolation func-

tions are trained on each component of the transformed data, λ(i) −→ λ̃
(i)
, i = 1 . . . n. An

inverse transformation is used to map the estimates of the meta-models back to Λ space.

It should be noted that there will be some inevitable information loss at the probabilis-

tic equivalence stage that is difficult to quantify. Given that any model-free interpolation

is only ever intended as a preliminary estimate and that efficient probabilistic equivalence

has been demonstrated for several non-Askey scheme distributions, this information loss

is considered to be negligible. In other words, the errors associated with the interpolation

of the PCE coefficients are assumed to be significantly greater than the errors in obtaining

the coefficients used as training data.

4.1.2.1 Gaussian process modelling

Having obtained a set of (transformed) PCE coefficients for each parameter point in the

training set using probabilistic equivalence and a QR decomposition, an interpolation

function, Φk, is developed for each transformed coefficient, λ̃k:

λ̃k(x) = Φk(x) + ǫk, k = 1 . . . P, (4.4)

where ǫk ∼ N (0, σǫk
) is an independent, identically distributed Gaussian noise with vari-

ance σ2
ǫk

. In this work, Gaussian Process models are used as interpolation functions.
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A widely used supervised learning algorithm, GPMs have previously been used in uncer-

tainty quantification [200, 201] and reliability based design [202, 203]. A Gaussian Process

prior is assumed over the regression functions, i.e.
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where µ is a function representing the mean of the process. The matrix, K, reflects

the covariances of the training data, which is organised into a matrix of inputs X =

[x(1),x(2), . . . ,x(n)]⊤ ∈ ℜn×nx and outputs Yk = [λ̃
(1)

k , λ̃
(2)

k , . . . , λ̃
(n)

k ]⊤ ∈ ℜn [204, 205].

Elements of the covariance matrix are given by:

Kij(X,X) = k(x(i),x(j)) + σ2
ǫk
δij, (4.6)

where k(.) represents the covariance function. Common choices for the covariance func-

tion, or kernel, include: the squared exponential, Matern and rational quadratic kernels.

In this work the squared exponential kernel is used:

k(g,h) = σ2exp

(

− (g − h)T Λ−1(g − h)
2

)

, (4.7)

where Λ = diag(l21, l
2
2, . . . , l

2
nx

) and g,h ∈ ℜnx . The correlation lengths li, i = 1 . . . nx

and amplitude σ are hyperparameters which must be determined numerically for each of

the P GPMs, together with σǫk
. In this work a squared exponential covariance function

was used as this is well suited for smoothly varying data, which is typical of the response

surfaces of engineering products. A consequence of assuming a Gaussian Process prior is

that the posterior predictive density is also Gaussian [204]:
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λ̃k|X, Yk,x
∗ ∼ N (µ̂k, σ̂k), (4.8)

where

µ̂k = µk(x∗) +K(x∗, X)⊤K(X,X)−1(Yk − µk(x∗)), (4.9)

σ̂2
k = K(x∗,x∗) −K(x∗, X)⊤K(X,X)−1K(x∗, X). (4.10)

Typically the mean function, µk(.), is set to 0 and emphasis is instead placed on

choosing an optimal covariance function. Having decided upon a covariance function

for the GP and a form for the mean function, the set of unknown hyperparameters

Θk = [σ, l1, l2, . . . , lnx
, σǫk

]⊤ must be computed to obtain the posterior distribution of

the GPM. It is not possible to place a prior on these parameters and solve analytically,

instead the hyperparameters must be estimated by assuming a relatively flat prior distri-

bution and by maximising the log marginal likelihood:

L(Θk) = log[P(Yk |X,Θk)] (4.11)

= −1
2

(

Y T
k (K(X,X) + σ2

ǫk
In)−1Yk + log( |K(X,X) + σ2

ǫk
In| ) + nlog(2π)

)

.

There are a variety of gradient based approaches to accomplish this estimation, assuming

that the gradient of the log likelihood is known [206]. However, as discussed in Petelin

et al (2011), deterministic optimisation approaches can be very sensitive to the initial

choice of hyperparameter value. Given that the marginal likelihood function usually

features many local maxima, evolutionary algorithms may be more appropriate for this

non-convex optimisation [207]. The set of hyperparameters that minimise the negative

of the log likelihood are found through a genetic algorithm. The steps of the algorithm

may be summarised as follows:

Input: Training data f(w|x(i)), x(i), i = 1 . . . n and query parameter point x∗
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Output: Estimated PDF f̂(w|λ(x∗),x∗)

1. Probabilistic equivalence sub-algorithm to find the set of PCE coefficients λ(i), i =

1 . . . n

2. Transform the coefficients to remove correlations λ(i) −→ λ̃
(i)

3. Train a GPM for each λ̃k, k = 1 . . . P

4. Estimate transformed PCE parameters λ̃(x∗) with GPMs

5. Reverse transformation λ̃(x∗) −→ λ(x∗)

6. Resample the PCE with Monte Carlo sampling

7. Kernel density estimate of f̂(w|λ(x∗),x∗)

4.1.3 Histogram interpolation test case

The histogram interpolation algorithm for DSE was validated using a benchmark test

case for methods in reliability based design [208, 209]. A function for the displacement

of a cantilever beam was used to generate synthetic data; the test function expresses the

displacement of the cantilever beam as a function of its dimensions, material properties,

and applied load:

D =
4x3

l

Exwxt

√

√

√

√

(

Ny

xt

)2

+

(

Nx

x2
w

)2

, (4.12)

where the parameters in this equation are defined in Table 4.1 and the geometry of the

test case is illustrated in Figure 4.2. The designer is assumed to have free choice in select-

ing the dimensions of the beam, corresponding to a nx = 3 design space with parameter

points x = [xl, xw, xt]⊤. The loadings and Young’s Modulus of the beam are uncertain
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Parameter Definition Probability distribution
xl Beam length —
xw Beam width —
xt Beam thickness —
D Beam displacement —
D0 Displacement tolerance —
Nx Horizontal load N(500, 100)
Ny Vertical load N(1000, 100)
E Young’s modulus N(2.9E7, 1.45E6)

Table 4.1: Definitions of the parameters used in the test case. The loads and Young’s
Modulus of the beam were considered to be stochastic parameters, with train-
ing data generated through MC sampling of the distributions detailed in the
right column

parameters, used to generate a probability distribution for the QoI, D. This quantity rep-

resents the total magnitude of displacement, with components in the x and y directions,

taken at the tip of the beam.

As has been discussed, we do not consider the problem of estimating the LSF: in this

test case we have attempted to mimic realistic design requirements through constraints

on the weight of the beam and an upper and lower bound on the beam width. The length

of the beam itself was treated as a discrete variable with three possible values. Including

a discrete variable within the test case was significant as continuous-discrete design spaces

are common in engineering applications. Not all variables can take arbitrary values, for

instance a component may be manufactured in standard sizes. Alternatively, some pa-

rameters such as the number of stringers reinforcing a panel or the number of bolts in a

connection may only take integer values [210]. The design space for the cantilever beam

test case is illustrated in Figure 4.3. The 20 black circles in plots (a)-(c) represent the

locations of the parameter points in the training dataset, while the red crosses indicate

the locations of query parameter points for which we wish to estimate the probability

distribution of D, normalised by the displacement tolerance, D0. Synthetic training data

was generated through Monte Carlo sampling of (4.12) at these locations in the design

space.
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We note that there is a rich literature in methods for the design of experiments (DoE)

based on space filling [211] and adaptive sampling approaches [212]. Adaptive methods

attempt to improve the accuracy of a meta-model by balancing the exploration of the

design space against exploitation, placing additional sampling points in regions of interest

and will be discussed further in the next chapter [213]. However, determining a sampling

strategy for generating the training data is not the focus of this chapter: the histogram

interpolation algorithm is intended for use with historic data, which may not have been

collected according to an organised scheme, and so instead we randomly disperse the

training parameter points. This has the interesting effect of creating regions of the de-

sign space where the training data is clustered tightly, as well as other regions where the

training data is sparse or non-existent.

The response surface of a beam with a length of 100in is illustrated in Figure 4.3(d)

(with the stochastic parameters set to their mean values in Table 4.1). This response sur-

face is fairly typical for engineering products: a smooth, continuous surface with regions

of relatively large gradients, indicating a rapid deterioration in performance once some

limit is reached. The cantilever beam test function is a useful test case in this respect

as it exhibits typical behaviour of an engineering product but is computationally cheap

to evaluate. Two synthetic datasets were generated to test the histogram interpolation

algorithm: the first from Monte Carlo samples taken from the Gaussian distributions

described in Table 4.1, the second from a mixture of uniform and Gaussian distributions,

meaning that the probability distribution for D/D0 was no longer a member of the Askey

family of probability distributions. Interpolation using this dataset was expected to be

more challenging as there was no longer an optimal choice of polynomial chaos with which

to establish a probabilistic equivalence with the training data.

We demonstrate the benefits of a non-parametric, data-driven approach by comparing

the estimations of the algorithm presented here against a parametric method that assumes

that the data is Gaussian and constructs a polynomial interpolation function for the mean

and standard deviation using the training data. We found that a polynomial interpolation
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Figure 4.2: Schematic offering two views of the cantilever beam model used as a test case.
The dimensions of the beam formed a three variable design space, while the
loadings and material properties of the beam were stochastic.

function that was fitted to the entire training dataset performed poorly. Instead, we fitted

a separate polynomial to each of the interval values of xl to provide a more challenging

test of the histogram interpolation algorithm. The maximum polynomial order before the

regression became underdetermined was chosen, i.e. order p = 2 for xl = 80 & 100in and

order p = 1 for xl = 120in. In the following, this parametric method is referred to as the

‘polynomial method’.

4.1.3.1 Histogram interpolation with Gaussian-like distributions

Monte Carlo sampling of (4.12) was used to generate a probability distribution for D/D0

at each of the 20 training points in the design space using 106 samples drawn from the

probability distributions in Table 4.1. The locations of these training points are illustrated

in Figure 4.3(a)-(c). The Monte Carlo sampling generated probability distributions for

D/D0 that were Gaussian-like.

The histogram interpolation algorithm was employed to estimate the probability dis-

tribution for D/D0 at four test points in the design space. These represent candidate

designs for which the designer wishes to estimate the uncertain QoI. The locations of

these test points are also illustrated in Figure 4.3(a)-(c). A probabilistic equivalence was
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(a) (b)

(c) (d)

Figure 4.3: (a-c) We mimic realistic design requirements through constraints on the beam
weight and width. The black dots indicate parameter points in the training
dataset, the red crosses indicate the 4 query parameter points used to test the
algorithm. (d) a surface plot of the response surface of the beam, using mean
values of the stochastic parameters.

established between the training data and a PCE with a Hermite polynomial basis, as

these polynomials are optimal for Gaussian distributions. A convergence study on the

order of the PCE was performed, in which the order was incremented until it no longer

reduced the statistical distance between the PCE and the training data. For this case the

order was set to p = 3. The results of the histogram interpolation are plotted in Figure

4.4. The estimated PDF, plotted in blue, is compared to the ‘true’ PDF for D/D0, plot-

ted in red. The ‘true’ PDF was computed from Monte Carlo sampling of (4.12). As can

be seen from Figure 4.4, the histogram interpolation algorithm provides almost an exact
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(a) (b)

(c) (d)

Figure 4.4: (a-d) plots of the estimated probability distribution for D/D0 (blue) against
the true distribution (red), found through direct MC simulation, for each of
the four test points.

estimate at points 2 and 3 (Figure 4.4(b)-(c)). The interpolation is less accurate at points

1 and 4, which are more isolated from the training data.

Table 4.2 quantifies the performance of the interpolation through the Kolmogorov-

Smirnov distance between the ‘true’ and estimated probability distributions and the per-

centage error in the mean and standard deviation. In terms of the percentage error in the

mean, all four estimates are relatively accurate. The trends in the KS distance and stan-

dard deviation confirm our observation that the proximity of the test data was correlated

with the performance of the algorithm. With the exception of test point 3, the algorithm

significantly outperforms the polynomial method.
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Method Test point dKS ∆µ (%) ∆σ (%)

Histogram Interpolation

1 0.1441 3.6237 12.2038
2 0.0417 1.1719 0.9035
3 0.0276 0.8808 2.8061
4 0.1155 3.3071 3.5007

Polynomial Method

1 0.2343 6.1308 7.3489
2 0.0495 1.0539 1.2269
3 0.2782 7.8364 7.7359
4 0.6639 23.864 23.8472

Table 4.2: The performance of the algorithm was quantified by comparing the KS distance
between the true and estimated distributions, as well as the % differences in
the mean and standard deviation.

4.1.3.2 Histogram interpolation with non-Askey scheme distributions

Having demonstrated that the histogram interpolation algorithm was capable of providing

reasonably accurate estimations for Gaussian distributions, using a PCE with a basis that

was optimal for the family of probability distribution being interpolated, the algorithm

was then tested by interpolating a type of distribution with no corresponding optimal

Askey polynomial. In this case, probability distributions for D/D0 were generated at

the training parameter points by sampling Nx and Ny from the uniform distributions

U(100, 400) and U(900, 1200) respectively. The Anderson-Darling test was used to reject

the null hypothesis that the distributions for D/D0 belonged to a family of probability

distribution within the Askey scheme at the 5% significance level (see Table 2.1), confirm-

ing that no optimal orthogonal polynomial existed for this distribution. Note that if the

input distributions were known to the designer a PCE with optimal polynomials could

be defined, in which the PCE was a function of the uncertain inputs ξ, along the lines of

Eq. (2.5). However, in this case we assume that only the data for D/D0 is available and

so the PCE is defined using the dummy variable z as in Eq. (4.1).

Hermite polynomials were again used as the multivariate polynomial basis for the PCE.

The choice of non-optimal basis polynomial has been shown to effect the quality of the

probabilistic equivalence, some polynomial bases might require a higher order PCE expan-



4.1. HISTOGRAM INTERPOLATION FOR DESIGN SPACE EXPLORATION 113

sion to achieve the same level of probabilistic equivalence as others [108]. A convergence

study was performed, with the degree of the PCE used set at p = 5.

Figure 4.8 illustrates the estimated PDF against the ‘true’ PDF found by Monte Carlo

sampling of (4.12). As can be seen from this figure and Table 4.3, the performance of the

algorithm for all the points is generally lower than for the case of the Gaussian inputs,

although the estimations for points 2 and 3 could still be considered to be sufficiently ac-

curate estimations for the purposes of an initial estimate. The results again demonstrate

the dependence of the algorithms performance on the proximity of the training data, as

can be seen in Figure 4.6 where the performance of the algorithm at each test point, as

quantified by the KS distance, is plotted against the k nearest neighbor (KNN) distance

of the test point from the training dataset (with k = 3 and the columns of X re-scaled to

lie in the range [-1,1]).

Again, we note from Table 4.3 that the Histogram Interpolation algorithm compared

favourably to the polynomial method. However, it is clear from both datasets that the

estimate of the algorithm alone is insufficient as it does not convey the level of predictive

uncertainty. Finding a suitable statistic for this, that correlates with the performance of

the histogram interpolation algorithm as quantified by the KS distance, is the subject of

the next section.
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Method Test point dKS ∆µ (%) ∆σ (%)

Histogram Interpolation

1 0.2607 7.2485 18.2026
2 0.0223 0.4678 8.4021
3 0.0688 1.8413 3.2259
4 0.1460 4.2228 7.4868

Polynomial Method

1 0.3001 8.0457 13.0399
2 0.064 0.9248 0.6394
3 0.3179 7.9270 7.4079
4 0.7220 24.0514 24.0653

Table 4.3: The performance of the algorithm tabulated for the second test case, where the
interpolated histogram does not have a corresponding optimal Askey polyno-
mial.

(a) (b)

(c) (d)

Figure 4.5: (a-d) Plots comparing the estimated PDF (blue) against the true distribution
found by direct MC sampling (red), for each of the test points. This time
the interpolated distribution did not belong to a family of distribution in the
Askey scheme for which an optimal orthogonal polynomial exists.
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Figure 4.6: The performance of the algorithm, as quantified by the KS distance, is strongly
correlated with the proximity of the test point to the training data. Here we
plot dKS against the nearest neighbor distance of the test point from the
parameter points in the training dataset.

4.1.4 Predictive uncertainty of histogram interpolation

The test cases presented above have demonstrated that the histogram interpolation algo-

rithm is capable of producing a relatively accurate estimate of a probability distribution in

a continuous-discrete design space. Naturally, the accuracy of the interpolation is strongly

dependent on the proximity of the test points to the training data, as shown in Figure

4.6. There is motivation in defining a statistic to accompany the estimated probability

distribution, f̂(w|λ(x∗),x∗), that indicates the level of predictive uncertainty.

While such an approach may be novel in the context of histogram interpolation, commu-

nicating the level of uncertainty in a meta-model is a common requirement. An advantage

of GPMs is that the predictive uncertainty may be estimated by leveraging the variance

of the Gaussian Process, σ2. Plots such as Figure 4.7(a) are common in the literature,

where a 95% confidence interval may be approximated by µ± 2σ.
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(a) (b)

Figure 4.7: (a) An example of how 2σ confidence bands can be used to visualise the pre-
dictive uncertainty in a GPM. (b) These bands are difficult to interpret for the
PCE coefficients, instead we use the statistical dispersion of f̂(w|λ(x∗),x∗)
and ĝ(w|λ(x∗),x∗) as a metric for the uncertainty in the estimate.

It is straightforward to visualise the predictive uncertainty when only a single output

parameter is estimated directly, however, in the algorithm presented here P transformed

PCE coefficients are estimated simultaneously. The abstract nature of these coefficients

makes communicating the level of uncertainty in the estimate challenging as the trans-

formed PCE parameters do not correspond to any physical or statistical quantity. A

further complication is that the sensitivity of the PCE to each coefficient varies spatially

in the design space. We propose a method that condenses the predictive uncertainties of

the P GPMs into a single statistic.

The approach taken here is to estimate two PDFs through Monte Carlo (MC) simu-

lation of the PCE coefficients and fitting a kernel by maximum likelihood estimation, as

discussed above. The first PDF, f̂(w|λ(x∗),x∗), is generated from a set of PCE coefficients

predicted by µ̂k and random sampling of the generating distribution for ξ (Figure 4.7(b)).

A second PDF, ĝ(w|λ(x∗),x∗), is estimated by sampling each λ̃k from its posterior dis-

tribution, in addition to the generating distribution for ξ. An estimate of the predictive

uncertainty is made by evaluating the statistical distance between f̂(w|λ(x∗),x∗) and

ĝ(w|λ(x∗),x∗), using a metric that emphasises the differences in the statistical dispersion

between the two probability distributions. There are a number of normalised measure of
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the statistical distance than be used for this, such as the Hellinger distance [214] or the

dissimilarity index [215]. Engineering designers are interested in measuring the similarity

of one distribution against another. As such we use the terms metric and measures in

the informal sense; It is clear that these measures of similarity do not conform fully to

the properties of a Metric Space. The dissimilarity index is defined as the integral of the

absolute difference between the distributions:

dfg =
1
2

ˆ ∞

−∞
|f̂(w|λ(x∗),x∗) − ĝ(w|λ(x∗),x∗)|dw, (4.13)

where we denote the statistical distance as dfg in this context. Regardless of whether

the Hellinger distance or dissimilarity index is used, as the confidence of the meta-model

estimate increases the kriging variances will shrink and consequently ĝ(w|λ(x∗),x∗) −→

f̂(w|λ(x∗),x∗) and dfg −→ 0.

This method can be used to visualise the uncertainty in the estimates of the histogram

interpolation algorithm within the design space. In Figure 4.8(a) we use the meta-model

developed in the previous section to estimate the probability distribution for D/D0 on

a mesh of parameter points that fills the design space. The KS distance between the

estimated distribution and the ‘true’ distribution found by direct Monte Carlo simulation

of (4.12) is used to quantify the performance of the algorithm on these test points. Figure

4.8(a) displays the spatial variation in the performance of the algorithm, as quantified by

the KS distance. The procedure outlined above is used to estimate the level of uncer-

tainty in the interpolation at each of these test points. The intention is to create a surface

for the spatial variation of the predictive uncertainty that is consistent with the surface

representing the algorithm’s performance. The choice of metric for the statistical distance

will influence the appearance of this surface. In Figure 4.8(b)-(c) the surface representing

the predictive uncertainty is plotted, using the Hellinger distance and the dissimilarity

index respectively. For the purposes of comparison we include a metric for the statistical
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distance that is not dependent on integration of the two distributions, which can have a

filtering effect, but rather on the ratio of variances (RoV) of the two distributions:

dfg = 1 −
σ2

f̂

σ2
ĝ

. (4.14)

Assuming that σĝ ≥ σf̂ , then this distance will also be normalised. The surfaces gen-

erated with the RoV used as dfg are plotted in Figure 4.8(d).

As can be seen, the surfaces for the predictive uncertainty in Figure 4.8(b)-(c) appear

to be consistent with the surface representing the performance, with the surfaces based

on the dissimilarity index appearing to be the most consistent with Figure 4.8(a). This

observation is confirmed by Table 4.4, which tabulates the Euclidean distance between the

surfaces representing the predictive error and the surface representing the performance of

the algorithm. In this case we find that a normalised metric based on the second statis-

tical moment is too conservative. Integration of the tails of the distributions appears to

give a more accurate metric for the predictive error of the histogram interpolation. For

the sake of clarity, statistical distances greater than 0.4 have been plotted as the same

color in Figure 4.8.
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(a)

(b)

(c)

(d)

Figure 4.8: (a) Surfaces representing the actual performance of the histogram interpola-
tion algorithm, quantified by the KS distance. (b-d) Surfaces representing the
predictive uncertainty using the Hellinger distance, dissimilarity index, and
ratio of variances for dfg.

In this half of the chapter we have introduced an algorithm for DSE that processes raw

data and performs a first estimate of the uncertain performance of a new design without
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L Dissimilarity index Hellinger distance Ratio of variances
80 20.25 11.75 63.84
100 24.70 42.95 13.81
120 39.02 45.34 27.66

Total 83.97 100.04 105.31

Table 4.4: The Euclidean distances between the surfaces representing the uncertainty in
the predictions, displayed in Figure 4.8(b-d), and the surfaces representing the
actual performance of the algorithm (4.8(a)).

requiring further evaluations of computer code or experiments. In the next section we

discuss a novel method for DSE which is intended to give a more accurate evaluation of a

candidate design in the conceptual design phase by combining a neural network with the

outputs of an inexpensive, high-level computer code.

4.2 Bi-fidelity modelling with Knowledge Based

Neural Networks

As has been discussed in previous chapters, an attractive strategy for mitigating the com-

putational cost of UQ algorithms is to supplement the results of the most accurate models

of a system, referred to as high-fidelity models, with models that are less computationally

expensive. These low-fidelity models may have simplified physics, a coarser meshing or

less detailed geometries and as a consequence are not as accurate. A popular area of

research has been in developing multi-fidelity methods that can leverage relatively scarce

high-fidelity data with low-fidelity data that is less accurate but much cheaper to obtain.

A particularly popular example of a multi-fidelity method is co-kriging [216, 217]. An

auto-regressive model is constructed to combine datasets of multiple fidelties, with the

outputs of the model treated as a realisation of a Gaussian random variable. A Markov

property is assumed: the coarse models cannot add additional information at locations

where high-fidelity data is available. Co-kriging has been used widely among many disci-

plines, however, there are a number of drawbacks that make its application to industrial
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problems challenging. Training the kernel involves repeated inversions of the correlation

matrix. This matrix scales with the size of the training dataset, which can become in-

tractable for large datasets [218]. Secondly, the kernel is sensitive to the choice of kernel

function, the choice of which is not trivial in high dimensional problems [219]. Con-

versely, neural methods have proved efficient for high dimensional meta-modelling [220,

221]. However, while neural networks can act as powerful approximators, they are purely

data-driven and function as black box models. Predictions made by neural networks are

often criticised due to this lack of transparency [222]. For these reasons there is interest in

developing deep neural networks which incorporate physical knowledge of a system [223].

Knowledge based neural networks use prior knowledge of a system to inform their pre-

dictions. In the original formulation for a hybrid learning system proposed in Towell and

Shavlik (1994) the prior knowledge is encoded in the network in the form of symbolic

rules which determine the neural network structure and the initialisation of its weights.

It was demonstrated that the performance of a classifier could be improved by incor-

porating these ‘domain theories’, especially if the data used to train the classifier was

limited[224, 225]. An alternative formulation for KBaNNs was later introduced in Wang

and Zhang (1997) in which prior knowledge is embedded in a neural network in the form

of a ‘knowledge layer’ consisting of empirical functions[226]. Later works replaced the

empirical functions with a low-fidelity model, producing a neural network for bi-fidelity

modelling[227, 228]. The general architecture for a KBaNN capable of bi-fidelity mod-

elling is illustrated in Figure 4.9.
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Figure 4.9: Architecture of a KBaNN for bi-fidelity modelling. A correction is made to
the outputs (y) of a coarse, low-fidelity model Fc(x) by a network consisting
of boundary neurons (b), region neurons (r), and normalised region neurons
(r′) for an input x.

As was referenced in the previous chapters’ discussion of data fusion, the high com-

putational cost associated with individual simulations make CFD simulations a popular

application in the multi-fidelity modelling literature. There are two approaches to defin-

ing a low-fidelity CFD simulation: the first approach is to alter the physics of the model

so that it is cheaper to evaluate. For instance, Direct Numerical Simulation (DNS) is a

high fidelity technique for modelling turbulent flows. The Navier-Stokes equations are

solved at every length scale, allowing the turbulence to be completely resolved and hence

providing complete knowledge of the flow. The drawback to the method is that it is very

computationally expensive, with each simulation typically taking a number of days to

run[229]. A number of works in the literature leverage a small set of DNS results with

Reynolds-Averaged Navier-Stokes (RANS) simulations, which are less accurate due to

simplifications in the turbulence closure but also cheaper to evaluate [132, 230, 231]. An

alternative approach is to use the same model with meshes of varying coarseness in order

to create low-fidelity surrogates. Examples of such an approach have been used in the

literature for the design of a transonic compression rotor in Shapar et al (2011)[232] and

in Shah et al (2015)[233] for airfoil design. This approach is similar to multi-scale mod-
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elling, where a relatively coarse model used to model the entire domain can be informed

by more accurate models of a sub domain (see e.g. [12, 13]).

In this chapter we introduce a novel KBaNN architecture and demonstrate the power

of the method by developing a local Navier-Stokes approximator that corrects the results

of low-fidelity CFD simulations using a coarse mesh. The approximator is a KBaNN that

has been trained using a dataset of high-fidelity and low-fidelity CFD data. A crucial

distinction between this work and the multi-fidelity modelling literature is that the multi-

fidelity approximator is tested on data harvested from a flow around a geometry that is

not the same as the geometry that was used to train it. In the test case presented here,

the approximator is trained on a dataset comprising simulations of a two-dimensional

channel flow and flow over a converging channel before being tested on a flow across a

NACA 2412 airfoil. By learning the local corrections that must be made to the velocity

field due to the coarseness of the mesh for a simple geometry, the system can generalised

to flows around more complex geometries that share similar physics. As computational

based design becomes an increasingly important part of designing new products, data-

bases of simulation results will begin to accumulate. This chapter presents a framework

by which these databases may continue to add value, by training a multi-fidelity system

that can be used to inform future designs.

4.2.1 Knowledge Based Neural Networks (KBaNNs)

Knowledge Based Neural Networks are a bi-fidelity machine learning architecture that

allow the outputs of a coarse scale model, Fc(x), to inform the predictions of a neu-

ral network. Having been trained using a dataset comprising outputs of a high-fidelity

model, Fe(x), the KBaNN corrects the outputs of the coarse model to emulate the output

of Fe(x). The generalised KBaNN architecture is illustrated in Figure 4.9. The architec-

ture is based on the KBaNN proposed in Wang et al (1997) but adapted for bi-fidelity

modelling. The formulism has also been modified to produce an additive rather than

multiplicative correction to Fc(x). It also now incorporates L2 regularisation. The neural
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architecture consists of five layers: input layer x, boundary layer b, region layer r, nor-

malised region layer r′, and output layer y. Neurons in the boundary layer are related to

the KBaNN inputs through the parameters V = [v(1), . . . ,v(nb)] associated with each of

the nb boundary neurons:

bi = v(i)T x, i = 1, . . . , nb. (4.15)

This is a generalised formulation for the boundary neurons in which linear boundaries are

assumed. It is noted in Wang et al (1997) that there is the potential to include problem

specific boundary functions if these are known. Neurons in the region layer are evalu-

ated in a similar fashion to the hidden layers of a Multi-Layer Perceptron (MLP), with

weighted connections between the neurons in the region layer and boundary layer:

ri =
nb
∏

j=1

σ(αijbj + θij), i = 1, . . . , nr, (4.16)

where σ(.) refers to a sigmoid activation function and nr the number of region neurons.

The parameters αij and θij refer to the weight and bias in the connection between the ith

region neuron and jth boundary neuron. Rational function based neurons [234] are used

in the normalized region layer to normalize the region layer outputs:

r′

i =
ri

∑nr

j=1 rj

, i = 1, . . . , nr. (4.17)

Finally, an additive correction with second order neurons [235] is applied to the outputs

of the coarse model in the output layer:

yj = βjFcj(x) +
nr
∑

i=1

ρijr
′
i + β0j

, j = 1, . . . , ny, (4.18)

where Fcj refers to the jth output of the coarse model. The parameter ρij weights the

contribution of the ith region to the jth output neuron. The KBaNN is trained using a
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dataset that includes n evaluations of the fine model and the corresponding coarse model

evaluations: [x(i), Fe(x(i)), Fc(x(i))], i = 1, . . . , n. The error in the KBaNN prediction

for the ith element of the training set is given by:

ǫ =
1
2

ny
∑

j=1

(y(i)
j − Fej

(x(i)))2 + δC(Φ), (4.19)

i.e. the sum of the mean square error (MSE) and a regularisation function C(.) that is

dependent on the complexity of the KBaNN, with:

C(Φ) =
nb
∑

i=1

∥

∥

∥v(i)
∥

∥

∥

2

2
+

nr
∑

i=1

nb
∑

j=1

α2
ij +

nr
∑

i=1

nb
∑

j=1

θ2
ij +

nr
∑

i=1

ny
∑

j=1

ρ2
ij +

ny
∑

j=1

β2
0j

+
ny
∑

j=1

(1 − |βj|)2, (4.20)

where Φ is the set of all KBaNN hyperparameters and the parameter δ, the regularisation

constant, weights the contribution of the model complexity term to the error. Penalising

model complexity in this way is intended to produce a more parsimonious model. Whilst

regularisation techniques in MLP’s typically act to force the network’s prediction to zero,

in the case of the KBaNN the regularisation is instead used to punish predictions that

deviate from the outputs of the coarse model. The KBaNN is trained through back-

propagation using gradient descent optimisation. In this chapter the adagrad algorithm

for gradient based optimisation is used [236]. Employing an adaptive learning rate, the

magnitude of the updates made to the KBaNN parameters each iteration is tailored to the

frequency with which the features in the training set occur and is well suited for sparse

datasets [236]. More details on the error back-propagation, including the derivatives for

the prediction error and Adagrad may be found in Appendix A2. An open source code

for implementing the KBaNN is available in MATLAB [237] and Python [238].
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4.2.2 KBaNN architecture for a local Navier-Stokes

approximation

In this chapter a KBaNN is used to perform a local correction to the results of a low-

fidelity CFD simulation of a two-dimensional laminar flow. The KBaNN is trained using

data taken from CFD simulations of a flow at two levels of meshing: a fine mesh which

has fully converged to a solution (i.e. the mesh quality no longer affects the solution) and

a coarser, more inaccurate mesh which is less computationally expensive to run. Having

learnt the discrepancies between the high and low-fidelity mesh the KBaNN can then be

employed to make corrections to CFD simulations of flows with similar physics.

Local velocity data is extracted from each of the simulations by superimposing ng × ng

sample grids on the flow and evaluating the velocity point at each data point. This is

illustrated in Figure 4.10, where a grid of data points is superimposed over a square mesh.

For a two-dimensional flow with no separation there are two configurations these sample

grids may take depending on whether a wall is present. A KBaNN is then trained for

each of these to situations i.e. a KBaNN trained for sample grids in the free-stream and

a separate KBaNN trained for sample grids in the boundary layer, with a row of points

inside a wall. The inputs of the KBaNN are the horizontal and vertical velocities along the

‘inlet’ side of the sample grid and the outputs the horizontal and vertical velocities of the

entire sample grid. The output dimensions therefore scale quadratically with ng, which

demonstrates why it is advantageous to use a neural method for the bi-fidelity modelling

as the number of dimensions can be significant even for a relatively small sample grid.

Note that the spatial location of the grid is not included in the training data. This allows

the KBaNN to be used on sample grids in the same flow in different locations or on sample

grids in flows with similar physics but different geometries.

In order to prevent the grid size, L, from impacting the results the velocity data is

scaled by a factor κ = L
L∗

, where L∗ is the characteristic length scale of the flow. The

KBaNN is used to predict the normalised velocities u∗ = κu and v∗ = κv.
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Figure 4.10: Schematic of the ng × ng sample grids used for the local Navier-Stokes ap-
proximation. There are two configurations for the grids: in the freestream or
near a wall with a boundary layer present. Velocity data from the inlet of the
grids were used as an input to the KBaNN, which estimated the velocities
for the entire sample grid.

The architecture of the KBaNN used for local Navier-Stokes approximation is illus-

trated in Figure 4.11. Note that this is a slight modification of the general KBaNN

architecture illustrated in Figure 4.9. The network is effectively split in half, with one

portion of the network learning the corrections to the horizontal velocity and the other

portion the vertical velocity correction. Splitting the network in this way was found to

be more efficient as fewer neurons in total were required to fit the training data. This is

a common technique that has been used in modular neural networks (see, e.g. [239]).

Figure 4.11: A modified KBaNN architecture was used for the local Navier-Stokes approx-
imator. It was found that training a separate set of boundary and region
neurons for each velocity component was more efficient (fewer neurons were
required overall) than the general KBaNN architecture illustrated in Figure
4.9.
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4.2.3 Test case and results

The potential of the KBaNN architecture described above to act as a local Navier-Stokes

approximator was demonstrated through two test cases. As described above, the system

consisted of two KBaNNs: one of which was trained on data taken from the freestream

and the other trained on grids located in the boundary layer. The KBaNNs were trained

using data taken from seven simulations of a simple two-dimensional channel flow. In six

of the simulations the channel walls were parallel, while in the seventh simulation one

of the walls was inclined, creating a converging channel. The system was first validated

using a channel flow simulation at a different Reynolds number before being applied to

the more challenging case of a flow around a NACA 2412 airfoil. The intention was to

train the system with a small dataset harvested from a relatively simple geometry and

then to use it to make local Navier-Stokes estimations of a flow around a more complex

geometry that shared similar physics.

For the test case of a channel flow at a different Reynolds number it was found that the

system greatly improved the accuracy of the coarse mesh simulation. In the case of the

airfoil the system led to an overall improvement in accuracy, despite the more complex

geometry of the flow around the airfoil compared to the training data.

4.2.3.1 Training and channel validation

Bi-fidelity CFD simulations of a laminar flow through a two-dimensional channel were

used to train two KBaNNs so that the system could learn the discrepancies between the

fine and coarse meshes. Figure 4.12(a) shows the two-dimensional channel flow and the

locations of the sample grids which were used to train the KBaNNs. One KBaNN was

trained using the blue sample grids located in the free stream, while the other was trained

on the data from the red sample grids lying in the boundary layer attached to the channel

wall. In Figure 4.12(b) a sample grid is superimposed on plots of the coarse and fine

meshes. As can be seen the spatial resolution of the fine mesh is significantly shorter than
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the length of the sample grid. It was chosen to be short enough to no longer affected the

results of the simulation. The spatial resolution of the coarse mesh is around 8 times larger

than that of the fine mesh. No-slip boundary conditions are applied to the boundaries at

y = 0 and y = 6, an outflow at the boundary at x = 10, and finally a uniform inflow was

applied between x = 0 and x = 1. Simulations of the channel were run at varying values

of the inflow velocity, U , for each mesh in order to generate a set of training data.

The training dataset was generated from the velocity data of the square, 9×9 sample

grids illustrated in Figure 4.12(a). As has been discussed above, the velocities were scaled

to account for effects introduced by changing the size of the grid. Data was collected from

grids of size L = 0.1, 0.5, and 0.75 so that these effects could be learned by the system.

A common problem in training neural networks is over-fitting the network to the

training data. A strategy to prevent over-fitting is to hold aside some training data and

use this as a validation dataset. Data was held aside from the channel configuration

illustrated in Figure 4.12(a) and also from a single simulation of the two-dimensional

flow through a converging channel. This flow is illustrated in Figure 4.12(c). The spatial

resolutions of the fine and coarse mesh were the same as with the other simulations, as

can be seen in Figure 4.12(d). The bottom wall was inclined to give a 5% slope and

the sample grids placed in different locations to the configuration in Figure 4.12(a). By

including data from a flow around a different geometry in the validation set the KBaNNs

were encouraged not to over-learn the discrepancies between the fine and coarse meshes.

The following simulations were used for the training and validation datasets:

Training data: Channel flow simulations at Re = [300, 480, 600, 720, 900]

Validation data: Channel flow simulation at Re = 660 and converging channel flow

at Re = 480
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with data extracted from the sample grids locations displayed in Figures 4.12(a) and

4.12(c) at three length scales. The KBaNN architecture illustrated in Figure 4.11 was

used. The sub networks were relatively small, with between 8-10 neurons in each layer

and an equal number of neurons in the boundary and region layers. 9 × 9 sample grids

required each sub network to have 18 neurons in the input layer and 81 neurons in the

output layer. Error back-propagation was used to train the KBaNNs, more details of

which may be found in Appendix A. A gradient based optimisation algorithm was used to

find values of the KBaNN parameter set Φ that minimised the mean squared error (MSE)

of the validation dataset.

Figure 4.13 displays the predictions of the KBaNNs for two sample grids in the channel

simulation at Re = 660 that was used in the validation dataset. These sample grids are

labelled in Figure 4.13(a). In 4.13(b-c) the fine mesh solution is plotted against the esti-

mations of the KBaNNs, with the coarse mesh solution included for comparison. As can

be seen there is very good agreement between the fine mesh solution and the predictions

of the KBaNNs. This agreement is reflected in Table 1, which tabulates the Residual

Sum of Squares (RSS) differences between the coarse mesh and fine mesh solutions and

between the KBaNN estimations and the fine mesh solution. Figure 4.14 illustrates the

performance of the system as a function of the number of grids included in the training

data. The RSS error between the fine and coarse mesh solutions are included as a com-

parison, represented by the horizontal lines in the figure. Increasing the scarcity of the

training data reduced the performance of the system, however, it was found that even

the KBaNNs trained with a minimal amount of data were more accurate than the coarse

mesh solution in isolation.

This test demonstrates that the system can give accurate predictions for a flow that

shares the same geometry as the flow used to train it. As can be seen in Figure 4.13 the

additive corrections made by the relatively small KBaNN effectively act as a high-order

transformation of the coarse mesh solution.
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Sample
grid

Velocity
component

RSS between
coarse and fine
mesh

RSS between
KBaNN and fine
mesh

1 u* 7.2058e-4 8.3983e-6
v* 6.6582e-5 1.0856e-6

2 u* 4.0879e-4 9.2442e-7
v* 2.5176e-4 1.2501e-8

Table 4.5: The residual sum of squares (RSS) between the KBaNN predictions and the
fine mesh for each of the sample grids pictured in Figure 4.13. The corrections
made by the KBaNNs greatly improve the accuracy of the solution

4.2.3.2 Airfoil test case

Having demonstrated that the KBaNNs were capable of giving highly accurate estima-

tions of the local velocity field for data harvested from a geometry identical to that used

to train it, the system was tested on a test dataset harvested from a more complex, un-

familiar geometry. A laminar flow around a NACA 2412 airfoil at Re = 480 was chosen

as the test geometry. Estimations are made challenging in the boundary layer by the

curvature of the airfoil and in the freestream by the displacement caused by the airfoil.

The flow is visualised in Figure 4.15(a), with the locations of the sample grids superim-

posed. A sample grid was placed in the boundary layer on the top surface of the airfoil.

Figure 4.15(b) displays this grid, superimposed on the two meshes. One challenge for

the system is that the grid sits on a section that is locally flat in the coarse mesh, while

the box in the coarse mesh curves to match the contours of the airfoil. The predictive

power of the system is dependent on the data used to train it. Consequently, the sample

grid in the boundary layer is situated upstream of the separation point, as the system

has no experience of a separated boundary layer. Similarly, the sample grid placed in

the freestream is located above the airfoil wake. The intention of the test case is to

demonstrate that a system trained using data taken from simple flows can be used to

make estimations in more complex flows, provided that the flow physics are sufficiently

similar. Making predictions in separated boundary layers and wakes would require a more

expansive training dataset, including flows with these features.
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Figure 4.16 displays the predictions of the KBaNNs for the sample grids around the

NACA 2412 airfoil. The results of the fine mesh and coarse mesh CFD simulations are

plotted for comparison. The RSS between the KBaNN predictions and the fine mesh

results are tabulated in Table 2, along with the RSS between the results of the coarse and

fine meshes for these grids. As with the channel test case, the freestream KBaNN is able

to significantly improve the accuracy of the coarse mesh. The boundary layer KBaNN

also leads to an overall increase in accuracy, although the system has difficulty estimating

the vertical velocity of this grid due to the curvature. Nevertheless, this test shows that

it is possible to use the KBaNNs on flows around different geometries to those in the

training data provided the physics of the flow is sufficiently similar.

There are several differences between the sample grids used to test the KBaNNs and the

grids used in the training and validation sets which make predictions challenging. Firstly,

the sample grids are smaller spatially. The KBaNNs accept the velocity components of

the sample points along the leading edge of the sample grid as inputs; the KBaNNs are

not trained to recognise the effect of altering the size of the sample grid explicitly, instead

the effects of the altered grid size are implicit in the velocity field of the coarse mesh.

Secondly, while the airfoil surface may be locally flat, there is curvature to the boundary

layer of the airfoil which is unlike the boundary layer KBaNN has been trained on. As can

be seen in Figure 4.15(b) the bottom edge of this sample grid curves to match the shape

of the airfoil, rather than being arranged in regular, evenly spaced rows and columns as in

the training and validation sets. For the case of the fine mesh this effect is not particularly

significant as the airfoil is locally flat, but aligning the sample grid to the top surface of

the airfoil when it is meshed more coarsely requires a rotation of the grid. The vertical

component of the velocity will be negative in the rotated grid. The flows used to train

the boundary layer KBaNN all have positive vertical velocities, so the KBaNN is tested

on a dataset that partly lies outside the range of the training data.

As can be seen from the table, the predictions of the KBaNN are a significant improves

the accuracy of the coarse mesh velocity field. The improvement is particularly significant
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Sample
grid

Velocity
compo-
nent

RSS between
coarse and fine
mesh

RSS between
KBaNN and fine
mesh

1 u* 1.618e-6 3.1175e-7
v* 4.1606e-7 1.713e-6

2 u* 5.2534e-5 2.0391e-6
v* 1.9255e-4 9.094e-6

Table 4.6: The RSS between the KBaNN predictions and the fine mesh for each of the
sample grids pictured in Figure 4.16(a). For comparison the RSS between
the coarse and fine mesh is included. As can be seen, the KBaNN improves
significantly on the fine mesh prediction.

for the sample grid in the freestream, labelled sample grid 2 in Figure 4.16(a). As can

be seen from Figure 4.16(c) the freestream velocity field of both the fine and coarse mesh

is approximately flat. The additive correction provided by the KBaNN acts to translate

the coarse mesh velocity field towards the fine mesh. The boundary layer KBaNN also

improves the prediction of the velocity field, as can be seen in Figure 4.16(b), although

at the cost of slightly underfitting the velocity field at the wall. However, given that the

velocities in this sample grid lie partially outside of the training data this is an encour-

aging result. The test case is intended as a proof of concept, demonstrating that it is

possible for a KBaNN to apply a local approximation to velocity fields that it has not

encountered before by learning from simpler flows. An area of future development is to

train a KBaNN with a more diverse set of training data, to allow it to be applied to a

wider variety of flows.

Summary

This chapter has introduced two meta-modelling approaches that can be used for DSE,

both of which leverage machine learning techniques. The histogram interpolation algo-

rithm defines a data-driven approach to DSE, in which estimations are made without

requiring the training data to belong to a particular family of probability distribution

and without requiring further evaluations of a computer code. In a departure from other

methods, we proposed a statistic to quantify the level of uncertainty associated with the
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estimated probability distribution. This statistic was found to closely correlate with the

actual performance of the algorithm for a test case in which synthetic data in a continuous-

discrete design space was interpolated. The second meta-modelling approach we described

here employed Knowledge-Based Neural Networks (KBaNNs), a data-driven method in

which a neural network is used to inform the output of a coarse computer code. Allowing

the KBaNN to be informed by the low-fidelity model of the system allows the KBaNN to

capture some of the physics of the system and in so doing helps to address the criticism

of neural networks that they are black boxes which are completely data-driven. The test

case, involving corrections to a two-dimensional velocity field from a RANS simulation,

illustrates how KBaNNs may be used in the future to estimate the performance of new

designs through a meta-model that is informed from the results of simulations that share

similar physics.



4.2. BI-FIDELITY MODELLING WITH KNOWLEDGE BASED NEURAL NETWORKS 135

Figure 4.12: (a) A visualisation of the two-dimensional channel flow used to train the
KBaNNs. The locations of the sample grids used to harvest velocity data are
superimposed. Blue grids correspond to sample grids in the freestream, red
to grids that bound the wall and capture the boundary layer. (b) Close ups
of the mesh near the wall of the channel, with a sample grid superimposed.
(c) A simulation of the flow over a slightly converging channel was included
in the validation data set to prevent overfitting (d) the spatial resolution of
the two meshes was kept the same.
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Figure 4.13: The performance of the KBaNNs was evaluated for a channel flow at
U = 0.11ms-1. (a) shows the locations of the two sample grids plotted.
(b-c) the KBaNN predictions significantly improve the coarse mesh velocity
field, while continuing to respect the no-slip boundary condition at the wall.

Figure 4.14: Plot of the performance of the KBaNNs as a function of the scarcity of the
training data. Note that in all cases the RSS error of the KBaNNs was less
than that of the coarse mesh.
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Figure 4.15: (a) Simulation results for the flow over a NACA 2412 airfoil at Re = 480.
Two sample grids were placed in the freestream, out of the wake of the airfoil,
and one on the top surface of the airfoil. (b) A closer view of the sample grid
on the top surface of the airfoil.
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Figure 4.16: (a) the locations of the sample grids used to test the KBaNN. (b-c) A com-
parison of the predicted velocities in the sample grids from the KBaNN versus
the fine mesh results. For comparison the velocities of the coarse mesh (which
the KBaNN estimation is in part based on) are included.
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learning. We introduce a method to iteratively improve a meta-model through an adap-

tive learning algorithm that selects informative parameter points to add to the training

dataset according to an optimality criterion. Specifically, we focus on the case of a Sup-

port Vector Machine (SVM) meta-model that is used to learn an unknown function that

separates two regions of a domain. In the context of reliability analysis these two regions

represent the failure domain, where a set of constraints or requirements are violated, and

a safe domain where they are satisfied. The Limit State Function (LSF) separates these

two regions. Evaluating the constraints for a given parameter point requires the evalu-

ation of a computational model that may well be expensive. For this reason we wish to

construct a meta-model that can estimate the LSF as accurately as possible, using only

a limited amount of training data. Applications in material science, structural dynamics,

aviation-safety and control systems can benefit from this methodology.

This chapter presents an adaptive strategy for estimating an LSF, using Support Vector

Machine (SVM) as a meta-model. An SVM with a polynomial kernel provides a semi-

algebraic approximation of the LSF. We describe an optimisation process that is used to

select informative parameter points to add to training data at each iteration to improve

the accuracy of this approximation. A formulation is introduced for bounding the pre-

dictions of the meta-model; in this way we seek to incorporate this aspect of Gaussian

Process Models (GPMs) within an SVM meta-model. Finally, we apply our algorithm

to two benchmark test cases, demonstrating performance that is comparable with, if not

superior, to a standard technique for reliability analysis that employs GPMs.

5.1 Meta-modelling strategies for reliability analysis

A key requirement for engineering designs is that they offer good performance across

a range of uncertain conditions while exhibiting an admissibly low probability of fail-

ure. Denote the following: x as a number of uncertain parameters with joint density

fx(x) with x ∈ X ⊆ ℜnx ; y = M(x) as the system response with y ∈ Y ⊆ ℜng ; and
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g(x) = M(x) − y0 ≤ 0 with g : ℜnx → ℜng as a set of requirements imposed upon the

system. The physical space X (distinct from the design space X) is divided into a safe

domain, {x : g(x) ≤ 0}, and a failure domain {x : g(x) > 0}, with the two separated by

the limit state function (LSF) {x : g(x) = 0}. The main goal of reliability analysis is to

evaluate the probability of failure, P:

P[g(x) > 0] =
ˆ

g(x)>0

fx(x)dx. (5.1)

Evaluating the failure probability is often difficult since it entails performing a multi-

dimensional integral over a complex integration domain, thereby requiring an approxima-

tion. In many cases M is cheap to evaluate so the probability of failure can be readily

estimated through Monte Carlo sampling. A Monte Carlo sampling approximation to the

probability of failure is:

P =
1
nmc

nmc
∑

i=1

I(g(x̂(i)) > 0) (5.2)

where I is an indicator function (1 if g(x) > 0, 0 otherwise), P the estimated probability

of failure, and nmc represents the number of Monte Carlo samples [240]. x̂(i) denotes

the ith Monte Carlo sample, drawn from fx. The resulting approximation is subjected to

sampling error because nmc is finite. However, when M is expensive to evaluate and nmc

is large, the cost of (5.2) becomes inadmissibly high. This has motivated the development

of methods for reliability analysis which replace M with a meta-model based on a training

set of expensive model evaluations. The meta-model, which is cheap to evaluate, is then

used to estimate P through Monte Carlo sampling. This model, which is trained using

a limited number of function evaluations of g(x), is given by ĝ(x). Therefore, a Monte

Carlo approximation to the failure probability based on ĝ(x) will suffer from both sam-

pling error and response error. Gaussian Processes [241, 242], Artificial Neural Networks
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[243], Polynomial Chaos [79], and response surface methods [244] have been commonly

used in the literature as surrogates to obtain ĝ(x).

A surrogate model for reliability analysis will perform well as long as the LSFs g(x) = 0

and ĝ(x) are sufficiently close. Large offsets in the response away from these functions

will be immaterial. This consideration enables casting the surrogate modeling problem as

the problem of creating a 2-classifier. These two categories correspond to points falling in

either the safe domain or the failure domain. This chapter proposes a strategy for adap-

tively training a reliability-based classifier according to a limited number of evaluations

of g(x) while accounting for uncertainty in the learned function.

Introduced by Vapnik in the field of statistical learning theory, Support Vector Ma-

chines (SVMs) [245, 246, 247] have been commonly used in reliability analysis [248, 249,

250]. This approach has several advantages: firstly, training a meta-model as a classifier,

rather than directly learning M(x) or g(x), allows discontinuous or binary responses to

be efficiently handled. Secondly, multiple constraints or failure modes, i.e. ng ≥ 1, may

be reduced to a single decision function [251]. A particular advantage of SVMs is the

efficiency with which the training data is handled as only the support vectors, a subset

of the training data, contribute to the model predictions.

Naturally, the use of a meta-model will sacrifice some accuracy in favour of reducing

the computational cost regardless of which strategy is used. For this reason there has

been much interest in developing adaptive methods for reliability analysis, which seek to

improve the accuracy of a meta-model iteratively, by adding additional model evaluations

to the dataset [252]. Several adaptive learning approaches have been proposed for adding

to the training set of a SVM. A common aspect of these approaches is to encourage explo-

ration of the physical space, X, by adding points to the training data that are separate

from the existing labelled samples. For instance, Basudhar and Missoum (2008,2010)

introduced an adaptive sampling method for constructing an estimate of the LSF using

SVMs based on optimisation. Informative samples are found by maximising an objective

function that depends on the nearest neighbor distance of the candidate from the train-



5.1. META-MODELLING STRATEGIES FOR RELIABILITY ANALYSIS 143

ing data in X [253, 254]. Pan and Dias (2017) proposed a pool based sampling scheme,

in which the most informative parameter point is chosen from the Monte Carlo samples

[255]. In this context informativeness quantifies the degree of exploration associated with

a given sample. In the algorithm of Pan and Dias informativeness is calculated with

a scoring function that depends in part on the nearest neighbour distance between the

parameter point and the training data. Alibrandi et al (2015) reduced the complexity of

the problem by confining the search for candidate points to a limited number of sampling

directions, as opposed to searching the entirety of the physical space [256].

There are several challenges inherent to adaptive learning with SVMs that the algo-

rithm presented here aims to address. Firstly, it is well recognised in the literature that

the most informative candidates to add to the training set lie on the estimated LSF [257].

However, the non-linear nature of the LSF can make it challenging to efficiently restrict

the search to such a subspace. One solution is to search for new candidates in the vicin-

ity of the support vectors, however, this can lead to a divergent search which may not

converge to the true LSF, referred to as ‘SVM locking’ in Basudhar and Missoum [254].

Secondly, while SVMs may generally scale more efficiently to higher dimensional physical

spaces and larger training sets than Gaussian processes, an estimate from a Gaussian

Process is accompanied by the predicted variance of the random process that gives an

indication of the uncertainty associated with that estimate. An analogous measure does

not exist for SVMs. The SVM solution to the classification problem yields not only an

approximation to the true LSF but also a volume where this function might be contained.

This subspace will be called the Limit State Volume (LSV). As more data is collected,

the LSV shrinks towards the LSF approximation.

The algorithm proposed here sequentially expands the training data set by identifying

optimal data points using a previously obtained SVM representation. This process ac-

counts for the uncertainty caused by learning the LSV from limited data. In particular,

we introduce a non-negative, polynomial function that at any value of x takes on a value

proportional to the distance from such a point to the closest member of the training data
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set, which we name the uncertainty function. The points being added to the training set

are optimal in the sense that they maximize the likelihood of the data and the uncertainty

function within the LSV. Furthermore, the best and worst-case LSFs within the LSV are

identified and used to compute a range of predicted failure probabilities. As more data is

gathered, the width of this interval approaches zero. As such, the role of the uncertainty

function is analogous to the predicted variance of the Gaussian Process Model (GPM)

(see e.g. [241, 242]). In this way we seek to combine the flexibility and efficiency of SVMs

when applied to reliability analysis, with the desirable attributes of Gaussian Processes

when applied to adaptive learning.

The remainder of this chapter is structured as follows: in the next section we discuss

the theoretical background of SVMs; the proposed algorithm for adaptive learning for re-

liability analysis using SVMs is then described; and finally the algorithm is implemented

for two benchmark test cases in which the performance of the algorithm is compared with

an established adaptive learning method for reliability analysis that employs GPMs.

5.2 Support Vector Machines for reliability analysis

Approaches that employ Support Vector Machines (SVMs) to estimate the LSF formulate

the problem as a two class classification problem, as opposed to developing an explicit

surrogate model for g(x). Membership of the two classes depends on whether g(x) > 0.

We first consider a case in which the failure and safe domains are linearly separable.

Using a set of n labelled training points (x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n)), where the

class labels y(i) ∈ {−1, 1} indicate whether the inequality constraints are satisfied (-1)

or violated (1), an SVM aims to approximate the LSF by finding the hyperplane with

maximal margin that separates the two classes:

w⊤x − b = 0, (5.3)
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where w ∈ ℜnx is the normal to the hyperplane and the bias, b, is a scalar. This is illus-

trated in Figure 5.1 for a nx = 2 physical space. Hereafter, we will refer to the training

data as the sequence D = {x(i), y(i)}, where i = 1, . . . n. In order to determine w, the

following constraints are imposed:

w⊤x − b ≥ 1 if y(i) = 1 (5.4)

w⊤x − b ≤ −1 if y(i) = −1,

These constraints are equivalent to y(i)(w⊤x(i) − b) ≥ 1 for i = 1, . . . n and have the effect

of defining a margin of width 2
‖w‖ within which no training data falls. The separating

hyperplane attaining the largest margin is given by the quadratic optimisation program:

min
w, b

1
2

‖w‖2 such that y(i)(w⊤x(i) − b) ≥ 1 for i = 1, . . . n (5.5)

This optimisation problem can be reformulated with the Lagrangian dual as:

L =
1
2

‖w‖2 −
n
∑

i=1

αi(y
(i)(w⊤x(i) − b) − y(i)) (5.6)

where αi are a set of Lagrange multipliers. The derivatives of the Lagrangian, L, are set

to 0 to yield the final form of this optimisation problem [247]:

max
α

L =
n
∑

i=1

αi − 1
2

n
∑

i=1

n
∑

j=1

αiαjy
(i)yjx

(i)⊤x(j) (5.7)

such that αi ≥ 0 and
∑

i

αiy
(i) = 0.

Using the Lagrangian dual we see that the only non-zero Lagrange multipliers corre-

spond to the subset of points in the training data that lie on the boundary of the LSV.

These data points are referred to as the support vectors. These Lagrange multipliers

refer to those samples for which |w⊤x − b| = 1 and can be found by using quadratic
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Figure 5.1: A trained Support Vector Machine (SVM) finds a separating hyperplane that
maximises the width of the margin between training data that is categorised
into two classes. Samples that lie on the margin are referred to as the Support
Vectors.

programming to solve the above optimisation problem, which has been demonstrated to

be convex [258]. The classification of an unlabelled sample, x, is determined by the sign

of its distance from the separating hyperplane, s(x):

s(x) = w⊤x − b with w =
nsv
∑

i=1

αiȳ
(i)x̄(i) (5.8)

where nsv refers to the number of support vectors and x̄(i) the ith support vector with

class label ȳ(i). The separating hyperplane, given by s(x) = 0, is the approximation to

the LSF; with the sign of s(x) used to determine class membership. The LSV is given

by {x : −1 ≤ s(x) ≤ 1}. The decision function may be evaluated inexpensively, allowing

the probability of failure to be estimated using nmc Monte Carlo samples drawn from the

joint distribution fx(x):
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P =
1
nmc

nmc
∑

i=1

I(s(x̂(i)) > 0) (5.9)

where x̂(i) is a Monte Carlo parameter point drawn from fx and I is the indicator function

defined earlier.

The formulation described above can be used to find the maximally separating hyper-

plane in physical space provided that the training points are linearly separable. However,

this might not be the case in many practical applications. In such cases, a transforma-

tion, Φ : X → Z, is used to map the training data from physical space, X, to a higher

dimensional feature space, Z ∈ ℜnz , where the data is linearly separable and a separating

hyperplane can be found:

w⊤Φ(x) − b = 0 with w =
nsv
∑

i=1

αiȳ
(i)Φ(x̄(i)) (5.10)

where w ∈ ℜnz . The form of the Lagrangian dual is such that in theory it is not necessary

to specify Φ explicitly in order to find the Lagrange multipliers; only the kernel of the

transformation, K(p, q) = Φ(p)Φ(q), p, q ∈ X need be defined. This is referred to as the

‘kernel trick’ and allows transformations to infinite dimensional feature spaces through

the use of Gaussian kernels. However, in this work we restrict our attention to polyno-

mial feature maps, which are of finite dimension, to not only work on a finite dimensional

feature space but also to use polynomial optimisation strategies. This mapping is param-

etized by the polynomial degree of the transformation and the number of monomials that

are kept. Note that the separating plane might only exist when the degree exceeds a

threshold value. This value can be found by using a bisection algorithm on the natural

numbers. In particular we use polynomial mappings with kernels:

K(p, q) = (1 − p⊤q)d, (5.11)
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where the order, d, of the kernel is user defined. For instance, a polynomial kernel of

degree d = 2 and nx = 2 corresponds to the feature map [259]:

z = Φ(x = {x1, x2}) =
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The inverse feature map, Φ−1 is found using the monomial terms of degree 1, in this case:

x = Φ−1(z) =
1√
2
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. (5.13)

Figure 5.2 demonstrates how a polynomial transformation may be used to lift training

data to a higher dimensional feature space where it becomes linearly separable. In this

case, a separating plane in physical space does not exist. However, the polynomial trans-

formation Φ(x) =
[

x2 x

]⊤
may be used to lift the data to a two dimensional space where

the data is linearly separable and a maximally separating hyperplane may be found. Note

that the entire physical space is mapped into a polynomial manifold in feature space. Ev-

ery point at the intersection between this manifold and the separating hyperplane s(z) = 0

will map to the LSF, g(x) = 0. In Figure 5.2 there are two such points, with the vertical

construction lines indicating their positions in physical space. However, in higher dimen-

sional feature spaces there will be infinitely many such points, with the estimate of the

LSF corresponding to the locus of points on the manifold which intersect the separating

hyperplane. In the next section we describe an adaptive learning algorithm which at

every iteration selects the most informative point from among these to label and add to

the training data.
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Figure 5.2: An example of how a polynomial transformation may be used to map data to
a higher dimensional feature space in which the transformed data becomes lin-
early separable. The transformation, Φ, creates a manifold of feasible points.
Points on the estimated LSF correspond to the intersections of the manifold
with the separating hyperplane.

5.3 Algorithm for Adaptive learning with Support

Vector Machines

Any adaptive learning algorithm must strike a compromise between refining the meta-

model in regions of X that already contain samples and placing new samples in unsampled

regions of X. These two search features are referred to as exploitation and exploration

respectively [260]. In the context of adaptive learning for reliability analysis, exploitation

may be characterised as identifying a high-likelihood point where the uncertainty function

takes on comparatively small values. In contrast, exploration may be thought as identi-

fying a high-likelihood point where the uncertainty function takes on comparatively large

values. The likelihood of a parameter point x is quantified with the likelihood function,

L(x). In this work we propose an algorithm for identifying a parameter point driven by
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an optimality criterion that balances exploration and exploitation. The response of the

expensive code is then evaluated at such a point, and the corresponding outcome is used

to expand the training dataset which will be used in the following iteration. There are

three desirable properties for a candidate training point to possess:

1. Lying on the estimated LSF

2. Attaining relatively high likelihood

3. Attaining comparatively large uncertainty function value

The range of failure probabilities described above can be computed at any iteration.

The algorithm will proceed until the spread of this interval is below a given threshold.

In the following sections we discuss how the proposed algorithm selects candidates with

these desirable features.

5.3.1 Selecting candidates on the LSF

In general, the most informative candidates lie on the estimated LSF. If an SVM meta-

model is employed, then these points will be those that satisfy {x : s(x) = 0}. For numer-

ical reasons this equality is typically relaxed to the inequality constraint {x : |s(x)| ≤ ǫ},

where ǫ is a tolerance on the distance of the candidate from the separating hyperplane

in feature space (see, e.g. [254]). Identifying points on the LSF by exploring its physical

space representation might be difficult. For this reason we introduce a formulation for

exploring the LSF in feature space. Recall from equation (5.10) that the SVM fits a sep-

arating hyperplane between the labelled data in feature space with normal w. Through

Gram-Schmidt orthogonalisation it is possible to develop an orthonormal basis that spans

this separating hyperplane:

z =
nz−1
∑

i=1

γie
(i) + e(0) (5.14)
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Figure 5.3: A polynomial mapping is used to lift a two dimensional physical space to a
three dimensional feature space where an orthonormal basis which spans the
separating hyperplane can be defined. The red circle indicates the locus of the
intersections between the separating hyperplane and the polynomial manifold,
i.e. the estimated LSF.

where z̃ ∈ ℜnz×nz−1 represents the orthonormal basis vectors, γ ∈ Γ ⊆ ℜnz−1 the as-

sociated weights, and e(0) ∈ ℜnz a vector of scalars. By definition, any choice of the

coefficients γ in this basis will produce a point that lies on the separating hyperplane in

feature space. However, the region of interest is the intersection between this hyperplane

and the mapping of physical space onto feature space, i.e., z = Φ(Φ−1(z)) where z is

in (5.14). This is illustrated in Figure 5.3, in which a two-dimensional physical space is

mapped to a three-dimensional feature space with a polynomial feature map. The red

circle indicates those points with weights γ1 and γ2 such that z lies on both the separating

hyperplane and the polynomial manifold.
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5.3.2 Finding Sets Containing Points with High Likelihood

As has been discussed, exploitation in the context of reliability analysis may be thought

of as sampling the LSF in regions with relatively high likelihood where the uncertainty of

the meta-model is low. The likelihood is given by L(x). The joint density is an example

of such a likelihood function. The high likelihood region near the LSV can be prescribed

in terms of super-level sets of the joint density. For instance, in the case of Gaussian

joint densities these level sets are ellipsoids, for which a closed-form expression is readily

available. Alternatively, if a closed form expression for this contour is unavailable then

we propose constraining the search to lie within an the region satisfying the inequality

L̂(x) ≥ L, where L represents a minimum admissible likelihood value. Note that this

region might be multiply connected and non-representable in closed form. This tolerance

is calculated as a function of the maximum value that the likelihood function takes on

the estimated LSF, which we denote L̂. This quantity is found through the solution of

the optimisation problem:

max
γ, ζ

L(Φ−1(z)) (5.15)

such that ‖z − Φ(ζ)‖2 ≤ ǫ, z =
nz−1
∑

i=1

γie
(i) + e(0),

where γ ∈ ℜnz−1 and ζ ∈ ℜnx . The dummy vector ζ ∈ X ⊆ ℜnx , is used in a manner

analogous to the Lagrange multipliers in (7). Hence, the solution to (5.15) yields a point

that is in both the physical space and the LSF, ζ⋆, for which the likelihood is maximal.

Note that by assuming ǫ > 0 we relax what should nominally be an equality constraint.

With L̂ determined through optimisation, a simple formulation to guarantee exploration

of regions with relatively high likelihood is to impose the inequality constraint L(x) ≥

L = κL̂, where κ < 1 is a positive constant specified by the user.
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5.3.3 Promoting exploration and quantifying predictive

uncertainty

Having introduced a formulation to explore the separating hyperplane in feature space,

with a set of constraints that ensure exploration of regions in X where the likelihood

function exceeds a threshold, we introduce a function for quantifying the separation of

a candidate parameter point from the training set in X. We term this function the un-

certainty function, U(x;Dx), where x ∈ ℜnx represents the candidate parameter point

in X and Dx = {x(1),x(2), ...,x(n)} ∈ ℜnx×n the sub-sequence of the training data cor-

responding to the locations of the training points in X. In addition to quantifying the

informativeness of the candidate point, the uncertainty function may also be used be used

to quantify the approximation error in the failure probability estimate resulting from only

using a limited number of training points. In so doing, the uncertainty function is analo-

gous to the variance in a GPM and is intended to marry this feature of GPMs with the

efficiency with which SVMs scale with nx and n. Any non-negative function which at any

fixed value of x takes on values proportional to the distance from that x to the closest

element of Dx can be used as an uncertainty function. This property can be written as:

U(x;Dx) = min
i

D(x; x(i)), (5.16)

where D is any norm. In this chapter we use the Mahalanobis distance given by:

D(p; q) = (p − q)⊤W (p − q), (5.17)

where W ∈ ℜnx×nx is a positive definite matrix of weights. In the case of W = I this

distance is equivalent to the squared Euclidean distance. Candidates in X that maximise

the uncertainty function are considered to be the most informative and are identified

through an optimization process:
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max
γ, ζ

U(Φ−1(z);Dx) such that (5.18)

‖z − Φ(ζ)‖2 ≤ ǫ, L(Φ−1(z)) ≥ L,

z =
nz−1
∑

i=1

γie
(i) + e(0).

Hence, we seek a parameter point that maximizes the uncertainty function while attain-

ing a sufficiently large likelihood. In general, the optimization problem described here is

likely to be non-convex and for this reason a Sequential Quadratic Programming (SQP)

algorithm is run from several initial conditions in order to select the best point.

In practice it may not be feasible to run an adaptive algorithm to convergence due

to the computational expense in evaluating g(x) at each iteration. For this reason, it

is convenient to quantify the uncertainty in the empirical estimate of the failure proba-

bility at each iteration, which could be expressed as the bounded interval [Pl, Pu]. The

formulation of a SVM does not provide a means to explicitly calculate this interval; we

propose a method that uses the available knowledge of the requirements g, together with

the uncertainty function. This data corresponds to the evaluation of the requirements for

the parameter points in Dx, which we denote: G = {g(x(i))}, i = 1, . . . n.

Firstly, we use an empirical function to approximate g as a function of the distance

from the separating hyperplane, which we denote ĝ(s). ĝ(s) is an increasing function that

passes through the origin. We represent ĝ as the weighted sum of a basis of functions that

share these properties, for instance in this work we choose:

ĝ(s) =















β⊤f(s), s ≥ 0

δ⊤f(s), s < 0















(5.19)

where f(s) = [s, s3, erf(s)]⊤ and β, δ ∈ ℜ3 contain non-negative weighing coefficients.

This format guarantees that ĝ and s have the same sign. Alternative forms can be used

instead. These coefficients can be found through a least squares fit to the training data,
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using G and the evaluation of s(x) for the parameter points in Dx. We combine the

empirical approximation for ĝ(s) with the uncertainty function to estimate the interval

[Pl, Pu] through:

Pu =
1
nmc

nmc
∑

i=1

I(ĝu(s(x̂(i)) > 0), (5.20)

Pl =
1
nmc

nmc
∑

i=1

I(ĝl(s(x̂
(i))) > 0),

where I refers to the indicator function defined above. ĝu(s(x̂(i))) and ĝl(s(x̂
(i))), which

represent a pessimistic and optimistic estimate of ĝ for the ith Monte Carlo sample re-

spectively, are determined as:

ĝu(s(x̂(i))) = ĝ(s(x̂(i))) + ρuU(x̂(i);Dx), (5.21)

ĝl(s(x̂
(i))) = ĝ(s(x̂(i))) − ρlU(x̂(i);Dx),

where the coefficients ρu and ρl are chosen by the user to make U and ĝ comparable.

We suggest defining these coefficients as a percentage of the values that ĝ takes at the

boundaries of the LSV (we choose 90% here). The set {s : g(s) > 0} corresponds to the

failure domain, therefore a positive shift will result in a more pessimistic estimate of P

as some Monte Carlo samples for which ĝ(s) ≤ 0 will be shifted to the upper half plane.

Conversely, subtracting the second term corresponds to a more optimistic of P (recall

that U is a non-negative function). We illustrate this in Figure 5.4 for two Monte Carlo

samples, where ĝ(s) is estimated from a training set containing 10 parameter points. The

formulation described in (5.20) and (5.21) has several desirable qualities:

1. The interval is based on U and is a function of Dx, instead of the support vectors.

2. g(s) is smooth of discontinuities since no training data falls in the LSV.
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Figure 5.4: Illustration of the least squares fitting for the empirical function ĝ(s) to the
training data; and the upper and lower estimates of ĝ for two Monte Carlo
samples.

3. The algorithm is guaranteed to decrease the width of the interval [Pl, Pu] as U and

the LSV tend to 0 as more points are added.

Having discussed in detail how the formulation of the adaptive sampling algorithm is in-

tended to promote the selection of an informative parameter point to add to the training

data at each iteration, we present the corresponding algorithm next:

Algorithm 1 (Adaptive learning with SVMs for reliability analysis):

Inputs: Training dataset D = {(x(i), y(i))}, G = {g(x(i))}, i = 1, . . . n and MC samples

{x̂(i)}, i = 1, . . . nmc

Outputs: Trained SVM meta-model, P , Pu & Pl

1. Train a SVM meta-model using the training dataset

2. Generate the orthonormal basis e & constant vector e(0) in Z

3. Determine L̂ through (5.15), calculate L

4. Estimate P , Pu, & Pl through (5.9), (5.20) & (5.21)

5. If |Pu − Pl| < ǫ stop. Otherwise, continue.

6. Determine next parameter point ζ∗ through (5.18)
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7. Evaluate g(ζ∗)

8. Update D & G. Go to step 1.

Recall that if closed form expressions for contours of equal likelihood exist, for example

ellipsoids in the case of Gaussian joint densities, then these can be used as a constraint

on the likelihood, making step 3 unnecessary. The convergence of Pu, which represents a

worst case estimation of the failure probability given the available data, can be used as a

stopping criteria for the algorithm. We suggest a stopping criteria based on the interval

value of Pu and Pl, i.e., |Pu − Pl| < ǫ. In the next section we apply the above algorithm

to two benchmark examples and compare its performance against an adaptive method

employing Gaussian Process models.

5.4 Validation with synthetic test cases

In this section we apply the algorithm for adaptive learning with SVMs presented above,

which we refer to here as AL-SVM for convenience, to two synthetic test cases. For now

we restrict our attention to applications involving low-dimensional physical spaces: both

test cases presented here have nx = 2 physical spaces. The first test case, the four branch

function, is a common benchmark problem in the reliability analysis literature, while the

second case features a simple feasible region that is bordered by discontinuities. In both

instances we compare the performance of AL-SVM to AK-MCS, an adaptive learning al-

gorithm that utilises GPMs. In AK-MCS a GPM is trained to approximate g(x) directly

using the training data. At each iteration the Monte Carlo parameter point for which a

scoring function is maximal is added to the training data. The scoring function is depen-

dent on the estimated constraint and the kriging variance. More details on AK-MCS may

be found in Echard et al [241].
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5.4.1 Four branch function

The first test case involves a nx = 2 physical space constrained by two polynomial and

two linear requirements:

g(x1, x2) = max















































3 + 0.1(x1 − x2)2 − 1√
2
(x1 + x2)

3 + 0.1(x1 − x2)2 + 1√
2
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x1 − x2 + 6√
2

x2 − x1 + 6√
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(5.22)

where x1 and x2 represent the two uncertain inputs. Referred to as the four branch func-

tion, this is a common benchmark test case in reliability analysis [255, 261, 262]. Monte

Carlo samples are drawn from a multivariate Gaussian joint density N(µ,Σ), where:

µ =
[

0 0
]

and Σ =









1 0.3

0.3 1









, (5.23)

in which µ refers to the means and Σ the covariances of the joint density. The four

branch function is a useful test case as the geometry of the requirements in physical space

can be easily visualised and are cheap to evaluate, allowing us to study the convergence of

the two adaptive sampling methods to the failure probability estimated by Monte Carlo

sampling, referred to as Pmc.

The top left panel in Figure 5.5 illustrates the true LSF of the four branch function,

the location of the Monte Carlo samples and the initial parameter points in the training

dataset that was fed to both adaptive learning algorithms. The remaining panels indicate

the training data at subsequent iterations of AL-SVM (with W = I), with the estimated

LSF indicated in red at each iteration. The convergence of this estimate is clear, however

we see an interesting effect occur at iteration 80 as the SVM tries to fit the data near

the four points in the four branch function where the requirements intersect. In both

test cases we used a SVM with a polynomial kernel of degree 4, which remains fixed
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Figure 5.5: Panels indicating the convergence of the estimated LSF to the four branch
LSF during iterations 0, 20, 40, and 80 of AL-SVM, with W = I.

throughout the learning. We also use a ‘hard margin’ SVM, which does not allow for

misclassification of the training data. This can lead to a situation where the SVM does

not have sufficient degrees of freedom to adequately fit the data. In this case there is a low

density of Monte Carlo samples near these four points and consequently this numerical

effect has little impact on the estimated failure probability.

The convergence of P for both AL-SVM and AK-MCS are plotted in the left panel

of Figure 5.6. The panel also indicates the interval [Pl, Pu] at each iteration. We note

from this plot that the convergence of our implementation of AK-MCS is similar to the

implementation of AK-MCS presented in Pan and Dias [255]. The number of iterations

for the percentage deviation between P and Pmc to decrease to below a given tolerance are

presented in Table 5.1. AL-SVM was implemented three times, with varying choices of
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Figure 5.6: Plot of the convergence of P to Pmc with algorithm iteration for AL-SVM
and AK-MCS (left). CPU times (s) for each iteration of the two algorithms
(right).

W . It was found that the choice W = I, corresponding to the squared Euclidean distance,

yielded the fastest convergence of the three. In any case, it appears that the convergence

of AL-SVM is at least comparable to, if not faster than, AK-MCS with respect to the

number of requirement evaluations needed. This speed of convergence comes at a cost,

however, as can be seen from the right panel of Figure 5.6. This panel compares the CPU

time for AL-SVM and AK-MCS, which is clearly much greater for AL-SVM, especially in

later iterations. This cost arises from the solution of the optimisation described in (5.18).

As has been discussed, this optimisation is likely to be non-convex and for that reason a

local solver is run from 12 separate starting points on each iteration. The computational

cost of AL-SVM in its present formulation may be prohibitive for certain applications,

where the timescale of each evaluation of the requirements may be on the order of seconds

as opposed to minutes or hours.

5.4.2 Physical space with discontinuities

In the second test case we consider a simple feasible region corresponding to a square in

a nx = 2 physical space with two constraints:
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Method Iterations until ǫ ≤ ǫtol

10% 5% 2%
AL-SVM (W = I) 38 60 73
AL-SVM (W = Σ) 62 65 88
AL-SVM (W = Σ−1) 57 80 97
AK-MCS 38 55 116

Table 5.1: The number of iterations required by the three implementations of AL-SVM
and AK-MCS to achieve a P with percentage error below a given tolerance, as
compared to Pmc.

g(x1, x2) =















10 if x1 > 0.8 ∨ x2 > 0.8

−2 otherwise















(5.24)

where x1 and x2 again represent the uncertain inputs. Monte Carlo samples for these

inputs are generated from two independent uniform distributions U(0, 1). This LSF is

plotted in the left panel of Figure 5.7, together with the estimated LSF from AL-SVM

and the locations of the parameter points added to the training set by the algorithm. The

locations of the 5 parameter points in the initial training set are ringed in black. While

the geometry of the feasible region is straightforward, it can be considered a challenging

case for adaptive methods that employ meta-models to learn g(x) directly as g(x) changes

discontinuously across the LSF. Such discontinuities can occur frequently in real-world

problems, for example in buckling behaviour [7, 263].

The convergence of AL-SVM is plotted in the right panel of Figure 5.7 and the iterations

required to reduce the percentage error below given tolerances are displayed in Table 5.2.

For this test case the weight matrix W = I was chosen. The AL-SVM approach converges

to a value of P with a deviation from Pmc of less than 2% after 17 iterations. There will be

an offset to this estimated P , however, as an SVM with a polynomial kernel will not have

sufficient degrees of freedom to exactly replicate the corner of the feasible region, formed

by the intersection of the requirements. On the other hand, a naive implementation of

AK-MCS fails to converge as the variances shrink near the discontinuities.
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Figure 5.7: Plot of the LSF, training data, and estimated training data for the case of
discontinuous changes in g(x) (left). Plot displaying the convergence of P to
Pmc for AL-SVM (right).

This test case demonstrates an inherent advantage of classifier based approaches to relia-

bility analysis: that they can be used to approximate constraints that vary discontinuously

without modifying the algorithm. While there are established methods for modelling dis-

continuities with Gaussian Processes, for instance through piecewise Gaussian processes

[264], this can prove challenging in the context of adaptive learning, where the presence of

discontinuities may not be known a priori. Methods for detecting discontinuities in high

dimensional spaces, for example through polynomial annihilation, require many function

evaluations that might not be available in the initial iterations of an adaptive learning

algorithm [265].

Method Iterations until ǫ ≤ ǫtol

10% 5% 2%
Adaptive learning with SVM 6 8 17

AK-MCS N/A N/A N/A

Table 5.2: The number of iterations required by AL-SVM to achieve a P with percentage
error below a given tolerance, as compared to Pmc. AK-MCS did not converge
for this case.
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Summary

A novel algorithm has been presented for adaptive learning of an LSF, using SVMs to

construct a semi-algebraic approximation to the LSF. The method identifies informative

parameter points through an optimisation process in which the uncertainty function, a

polynomial function that depends on the proximity of a candidate parameter point to the

training data, is maximised. By exploiting the properties of polynomial kernel functions,

the algorithm executes a constrained search in feature space, ensuring that candidate

parameter points have an admissibly high likelihood and lie on the estimated LSF. The

predictive uncertainty of the SVM meta-model is expressed using an analytical expression

for the constraints as a function of distance from the separating hyperplane and the un-

certainty function. We applied the algorithm to two benchmark cases in nx = 2 physical

spaces and demonstrated performance that was consistent with, if not superior to, the

performance of a method utilising GPMs.

While these results are encouraging there are several aspects in which the work

presented here may be extended. Firstly, an application of the method to a higher-

dimensional physical spaces is crucial and may be instructive to the future development

of the method. Secondly, we do not fully exploit the polynomial formulation of the

algorithm here. Implementing the method using polynomial optimisation methods will

improve the performance of the algorithm. The first test case demonstrated that while

the algorithm required fewer model evaluations than the Gaussian Process method to

achieve the same accuracy, the computational cost per iteration of the algorithm was

significantly higher. Finally, the algorithm may benefit from a subroutine for tuning

the polynomial degree of the SVM, perhaps based on a bisection algorithm. Such a

subroutine might lead to quicker convergence and an analysis of the variation of the

degree with iteration number might provide a means of assessing the quality of the

convergence.



Chapter 6

Conclusions

This thesis has presented a range of novel Uncertainty Quantification (UQ) methods that

may be integrated into the design process in order to assess the uncertain performance

of a candidate design. The intention of these methods is to assist designers in designing

reliable products that offer good performance across a range of uncertain conditions by

informing decision making, particularly in the conceptual design phase. There is indus-

trial and academic interest in developing data-driven meta-models that can estimate the

performance and the probability of failure of a candidate design when experimental data

is missing or scarce and computational resources may be limited. Such meta-models allow

the designer more freedom to explore the design space before committing resources to a

single design. The work in this thesis expands the envelope of methods for Uncertainty

Quantification for the design of aerospace components and addresses four challenges:

1. In Chapter 2 a stochastic model updating algorithm for multiscale uncertainty

quantification was introduced. Uncertainty was up-scaled from one scale to the

next in a hierarchy of models through a coupling between scales, which applied the

principle of probabilistic equivalence and a meta-model based on polynomial chaos.

The algorithm was applied to a test case involving a wing box, where an equivalence

was sought between an analytical model and a more granular, finite element model.
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This test case is relevant to aeronautics, where components can be modelled with

both finite element models and simpler, lumped mass models.

2. A relatively under-researched problem in the UQ literature is how to leverage the

results of simulations with scarce experimental data. Two novel methods for this

are proposed in Chapter 3, based on the principles of probabilistic equivalence and

the Maximum Entropy Principle (MEP). The methods were demonstrated using a

dataset from experimental tests on carbon fibre composite coupons.

3. In Chapter 4 two methods for Design Space Exploration (DSE) are proposed, in

which meta-models are developed from a training set of either experimental data or

the results of evaluations of expensive computer code. In this way, the meta-models

can be used by a designer to explore the design space of a new aerospace com-

ponent, with the meta-models used to minimise the computational cost associated

with evaluating each candidate design.

4. All of the methods proposed in this thesis develop data-driven meta-models from a

training dataset that has been collected according to a Design of Experiments (DoE),

with the accuracy of the meta-model determined by the size and informativeness of

this dataset. Given the expense associated with each parameter point in the train-

ing dataset, a challenge that arises is how to improve a meta-model iteratively so

that an accurate meta-model may be trained with a minimum of data. In the final

chapter of this thesis, Chapter 5, an adaptive learning algorithm is introduced that

was developed in partnership with NASA Langley, with the specific application of

reliability analysis with a Support Vector Machine (SVM) meta-model.
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6.1 Future Developments

There are a number of directions in which the research presented in this thesis might

be expanded upon. There are three areas in which the research could be improved that

would aid its dissemination/adoption among industry and academia:

1. Probabilistic Equivalence is a powerful principle, however, in the author’s opinion its

potential has not been fully realised. This thesis has demonstrated how probabilis-

tic equivalence might be applied to problems beyond stochastic model upscaling, in

this case to histogram interpolation and inverse identification. However, a thorough

error analysis is needed for the method to reach maturity.

2. The Knowledge Based Neural Network (KBaNN) architecture introduced here is a

powerful tool for bi-fidelity simulation. There are a number of ways in which the

formulation could be extended, for instance by including a metric to describe the

predictive uncertainty of the meta-model, analogous to the kriging variance in Gaus-

sian Processes. Such a metric isn’t explicitly defined in the formulation of a neural

network, motivating the development of methods such as dropout and Bayesian neu-

ral networks, that can quantify the level of uncertainty associated with a prediction

from the meta-model [266]. For the KBaNN, such a metric could then be used in

an algorithm to adaptively improve the accuracy of the KBaNN meta-model, in a

similar manner to the uncertainty function in the adaptive learning algorithm in

Chapter 5.

With regard to the local Navier-Stokes approximator introduced in Chapter 4,

this work may be expanded, diversifying the training data available to the KBaNNs

to allow it to make estimations for more complex flows, for instance flows in three

dimensions or including wakes and separation. Topology Optimisations (TOs) can

involve repeated calls to a Computational Fluid Dynamics (CFD) solver, so there

is motivation in developing a meta-model for the CFD solver that can reduce the



6.1. FUTURE DEVELOPMENTS 167

computational resources required by the TO. Further to this, the economic impact

of KBaNNs more generally can be generated with test cases that involving high-

dimensional spaces.

3. The results presented in Chapter 5 are encouraging. One of the next steps for this

research is to demonstrate the applicability of the algorithm to problems in high-

dimensional spaces, which reflect the design spaces of industrial aerospace compo-

nents. In addition, the polynomial formulation of the algorithm is not fully exploited

currently. This will entail applying techniques for polynomial optimisation, which

will increase the speed at which the algorithm can be run.



Bibliography

[1] P.J. Clarkson, C. Simons, and C. Eckert. “Predicting Change Propagation in

Complex Design”. J. Mech. Des., 126 (2004), pp. 788–797.

[2] J. Rios, R. Roy, and A. Lopez. “Design requirements change and cost impact

analysis in airplane structures”. International Journal of Production Economics,

109 (2007), pp. 65–80.

[3] M. Eldred and J. Burkardt. “Comparison of Non-Intrusive Polynomial Chaos and

Stochastic Collocation Methods for Uncertainty Quantification”. AIAA (2009).

[4] V.J. Romero, L.P. Swiler, and A.A. Giunta. “Construction of response surfaces

based on progressive-lattice-sampling experimental designs”. Struct. Saf., 26

(2004), pp. 201–219.

[5] H.M. Gomes and A.M. Awruch. “Comparison of response surface and neural

network with other methods for structural reliability analysis”. Struct. Saf., 26

(2004), pp. 49–67.

[6] D. Crevillén-García et al. “Gaussian process modelling for uncertainty

quantification in convectively-enhanced dissolution processes in porous media”.

Advances in Water Resources, 99 (2017), pp. 1–14.

[7] A. Basudhar, S. Missoum, and A. Harrison Sanchez. “Limit state function

identification using Support Vector Machines for discontinuous responses and

168



Bibliography 169

disjoint failure domains”. Probabilistic Engineering Mechanics, 23 (2008),

pp. 1–11.

[8] T. Little. “Schedule estimation and uncertainty surrounding the cone of

uncertainty”. IEEE Software, 23 (2006), pp. 48–54.

[9] S. McConnell. Rapid development : taming wild software schedules. Redmond

Wash : Microsoft Press, 1996.

[10] L. Williams et al. “Scrum + Engineering Practices: Experiences of Three

Microsoft Teams”. 2011 International Symposium on Empirical Software

Engineering and Measurement (2011), pp. 463–471.

[11] D.E. Guest. Adams Simulation Saves Millions by Replacing Physical Testing in

Aircraft Certification - Industrial Technology Centre. 2016. url:

https://www.itc.mb.ca/simulation/adams-simulation-saves-millions-

by-replacing-physical-testing-in-aircraft-certification/. (visited on

01/19/2021).

[12] P. Jenny, S.H. Lee, and H.A. Tchelepi. “Multi-scale finite-volume method for

elliptic problems in subsurface flow simulation”. J. Comput. Phys., 187 (2003),

pp. 47–67.

[13] T.Y. Hou and X. Wu. “A multiscale finite element method for elliptic problems

in composite materials and porous media”. J. Comput. Phys., 134 (1997),

pp. 169–189.

[14] T. Yamanaka et al. “Multiscale finite element analysis of mode I delamination

growth in a fabric composite”. Compos. Struct., 133 (2015), pp. 157–165.

[15] T. Niezgoda and A. Derew onko. “Multiscale composite FEM modeling”.

Procedia Eng., 1 (2009), pp. 209–212.

[16] B.R. Reddy and K. Ramji. “Modeling and simulation of nano and multiscale

composites”. Int. J. Hybrid Inf. Technol., 9 (2016), pp. 133–144.

https://www.itc.mb.ca/simulation/adams-simulation-saves-millions-by-replacing-physical-testing-in-aircraft-certification/.
https://www.itc.mb.ca/simulation/adams-simulation-saves-millions-by-replacing-physical-testing-in-aircraft-certification/.


Bibliography 170

[17] H.Y. Chou et al. “Stochastic factors controlling the failure of carbon/epoxy

composites”. J. Mater. Sci., 51 (2015), pp. 311–333.

[18] G. Couegnat, E. Martin, and J. Lamon. “Multiscale Modelling of the Mechanical

Behaviour of Woven Composite Materials” (2010).

[19] S. Chen, M. Wang, and Z. Xia. “Multiscale fluid mechanics and modeling”.

Procedia IUTAM 10, 10 (2013), pp. 100–114.

[20] Q. Xu et al. “Multiscale modeling and simulation of directional solidification

process of turbine blade casting with MCA method”. Metallurgical and Materials

Transactions B, 45 (2014), pp. 555–561.

[21] B. Pipes. Accelerating the Certification Process for Aerospace Composites. 2014.

url: https://www.compositesworld.com/columns/accelerating-the-

certification-process-for-aerospace-composites (visited on 01/19/2021).

[22] A.R. Ervilha, J.M.C. Pereira, and J.C.F. Pereira. “On the parametric uncertainty

quantification of the Rothermel’s rate of spread model”. Appl. Math. Model., 41

(2017), pp. 37–53.

[23] P. Sasikumar, R. Suresh, and S. Gupta. “Stochastic model order reduction in

uncertainty quantification of composite structures”. Compos. Struct., 128 ().

[24] R.M. Gorguluarslan, S.-K. Choi, and G.W. Woodruff. “A simulation - based

upscaling technique for multiscale modeling of engineering systems under

uncertainty”. J. Multiscale Comput. Eng., 12 (2014), pp. 549–566.

[25] B. Ganapathysubramanian and N. Zabaras. “A stochastic multiscale framework

for modeling flow through random heterogeneous porous media”. J. Comput.

Phys., 228 (2009), pp. 591–618.

[26] P. Dostert, Y. Efendiev, and T.Y. Hou. “Multiscale finite element methods for

stochastic porous media flow equations and application to uncertainty

https://www.compositesworld.com/columns/accelerating-the-certification-process-for-aerospace-composites
https://www.compositesworld.com/columns/accelerating-the-certification-process-for-aerospace-composites


Bibliography 171

quantification”. Comput. Methods Appl. Mech. Engrg., 197 (2008),

pp. 3445–3455.

[27] X. He, L. Jiang, and J.D. Moulton. “A stochastic dimension reduction multiscale

finite element method for groundwater flow problems in heterogeneous random

porous media”. J. Hydrol., 478 (2013), pp. 77–88.

[28] L. Shi et al. “A multiscale probabilistic collocation method for subsurface flow in

heterogeneous media”. Water Resour. Res., 46 (2010), pp. 1–18.

[29] N.C. Nguyen. “A multiscale reduced-basis method for parametrized elliptic

partial differential equations with multiple scales”. J. Comput. Phys., 227 (2008),

pp. 9807–9822.

[30] F. Anker et al. “SDE based regression for linear random PDEs”. SIAM J. Sci.

Comput., 39 (2017), A1168–A1200.

[31] K. Sepahv and S. Marburg. “Spectral stochastic finite element method in

vibroacoustic analysis of fiber-reinforced composites”. Procedia Eng., 199 (2017),

pp. 1134–1139.

[32] T.Y. Hou and X.H. Wu. “A multiscale finite element method for elliptic problems

in composite materials and porous media”. J. Comput. Phys., 134 (1997),

pp. 169–189.

[33] B.O. Heimsund J. Aarnes. Multiscale Discontinuous Galerkin Methods for

Elliptic Problems with Multiple Scales. Vol. 44. In: Engquist B., Runborg O.,

Lötstedt P. (eds) Multiscale Methods in Science, Engineering. Lecture Notes in

Computational Science, and Engineering, Springer, 2005.

[34] X.F. Xu. “A multiscale stochastic finite element method on elliptic problems

involving uncertainties”. Comput. Methods Appl. Mech. Engrg., 196 (2007),

pp. 2723–2736.



Bibliography 172

[35] I. Bilionis and N. Zabaras. “A stochastic optimization approach to

coarse-graining using a relative-entropy framework”. J. Chem. Phys., 138 (2013).

[36] I. Babuška and M. Motamed. “A fuzzy-stochastic multiscale model for fiber

composites: A one-dimensional study”. Comput. Methods Appl. Mech. Engrg.,

302 (2016), pp. 109–130.

[37] J. Fish and W. Wu. “A nonintrusive stochastic multiscale solver”. Int. J. Numer.

Methods Eng., 88 (2011), pp. 862–879.

[38] L. Mehrez et al. “A PCE-based multiscale framework for the characterization of

uncertainties in complex systems”. Comput. Mech., 61 (2018), pp. 219–236.

[39] Y. Wang. “Multiscale uncertainty quantification based on a generalized hidden

Markov model”. J. Mech. Des., 133 (2011).

[40] M. Arnst and R. Ghanem. “Probabilistic equivalence and stochastic model

reduction in multi-scale analysis”. Computer Methods in Applied Mechanics and

Engineering, 197 (2008), pp. 3584–3592.

[41] S.K. Choi et al. “Simulation-based uncertainty quantification for additively

manufactured cellular structures”. J. Electron. Mater., 44 (2015), pp. 4035–4041.

[42] S. Chan and A.H. Elsheikh. “A Machine Learning Approach for Efficient

Uncertainty Quantification using Multiscale Methods”. Journal of Computational

Physics, 354 (2018), pp. 493–511.

[43] R. Bostanabad et al. “Uncertainty quantification in multiscale simulation of

woven fiber composites”. Comput. Methods Appl. Mech. Engrg., 338 (2018),

pp. 506–532.

[44] S. Trehan and L.J. Durlofsky. “Machine-learning-based modeling of coarse-scale

error, with application to uncertainty quantification”. Comput. Geosci., 22

(2018), pp. 1–21.



Bibliography 173

[45] C. Scheidt and J. Caers. “Uncertainty quantification in reservoir performance

using distances and kernel methods–application to a West Africa deepwater

turbidite reservoir”. SPE J., 14 (2013), pp. 680–692.

[46] L. Uusitalo et al. “An overview of methods to evaluate uncertainty of

deterministic models in decision support”. Environ. Model. Softw., 63 (2015),

pp. 24–31.

[47] M.A. Tatang et al. “An efficient method for parametric uncertainty analysis of

numerical geophysical models”. Journal of geophysical research, 102 (1997),

pp. 21925–21932.

[48] M. Eldred and J. Burkardt. “Comparison of Non-Intrusive Polynomial Chaos and

Stochastic Collocation Methods for Uncertainty Quantification”. AIAA (2009).

[49] D. Xiu and G.E. Karniadakis. “The Wiener Askey polynomial chaos for

stochastic differential equations”. SIAM journal on scientific computing, 24

(2002), pp. 619–644.

[50] S. Oladyshkin and W. Nowak. “Data-driven uncertainty quantification using the

arbitrary polynomial chaos expansion”. Reliability Engineering & System Safety,

106 (2012), pp. 179–190.

[51] I.P. Mysovskikh. “On the construction of cubature formulas with fewest nodes”.

Dokl. Akad. Nauk SSSR, 178 (1968), pp. 1252–1254.

[52] H. Rutishauser. “On a modification of the QD-algorithm with Graeffe-type

convergence”. Proc. IFIP Congr., 62 (1963), pp. 93–96.

[53] R. Ahlfeld, B. Belkouchi, and F. Montomoli. “SAMBA: Sparse approximation of

moment-based arbitrary polynomial chaos”. J. Comput. Phys., 320 (2016),

pp. 1–16.



Bibliography 174

[54] R. Ahlfeld et al. “Data-driven uncertainty quantification for Formula 1: Diffuser,

wing tip and front wing variations”. Proc IMechE Part D: J Automobile

Engineering, 233 (2019), pp. 1495–1506.

[55] A. Kaintura, T. Dhaene, and D. Spina. “Review of Polynomial Chaos-Based

Methods for Uncertainty Quantification in Modern Integrated Circuits”.

Electronics, 7 (2018), pp. 1–21.

[56] M. S. Eldred et al. Multifidelity Uncertainty Quantification Using Spectral

Stochastic Discrepancy Models. In Handbook of Uncertainty Quantification.

Springer, 2017.

[57] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. Dover, 1965.

[58] G. Blatman and B. Sudret. “Adaptive sparse polynomial chaos expansion based

on least angle regression”. J. Comp. Phys., 230 (2011), pp. 2345–2367.

[59] A. Doostan and G. Iaccarino. “A least-squares approximation of partial

differential equations with high-dimensional random inputs”. J. Comp. Phys.,

228 (2009), pp. 4332–4345.

[60] J. Peng, J. Hampton, and A. Doostan. “A weighted l1-minimization approach for

sparse polynomial chaos expansions”. J. Comp. Phys., 267 (2014), pp. 92–111.

[61] X. Yang and G.E. Karniadakis. “Reweighted l1 minimization method for

stochastic elliptic differential equations”. Journal of Computational Physics, 248

(2013), pp. 87–108.

[62] K. Sargsyan et al. “Dimensionality reduction for complex models via Bayesian

compressive sensing”. International Journal for Uncertainty Quantification, 4

(2014).

[63] P. Tsilifis et al. “Sparse Polynomial Chaos expansions using variational relevance

vector machines”. J. Comp. Phys., 416 (2020).



Bibliography 175

[64] D. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.

John Wiley, 1992.

[65] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and

Hall, 1986.

[66] J. Hwang, S. Lay, and A. Lippman. “Nonparametric Multivariate Density

Estimation: A Comparative Study”. IEEE Trans. Signal Process., 42 (1994),

pp. 2795–2810.

[67] A. Bowman. “An alternative method of cross-validation for the smoothing of

density estimates”. Biometrics, 71 (1984), pp. 353–360.

[68] M. Jones, J. Marron, and J. Sheather. “A Brief Survey of Bandwidth Selection

for Density Estimation”. J. Am. Stat. Assoc., 91 (1996), pp. 401–407.

[69] S. Kullback and R. A. Leibler. “On information and sufficiency”. Ann. Math.

Stat., 22 (1951), pp. 79–86.

[70] G. Corder and D. Foreman. Nonparametric Statistics: A Step-by-Step Approach.

Wiley, 2014.

[71] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”.

Comput. J., 7 (1965), pp. 308–313.

[72] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated

annealing”. Science, 220 (1983), pp. 671–680.

[73] J. Kennedy and R. Eberhart. “Particle Swarm Optimization”. Proceedings of

IEEE International Conference on Neural Networks (1995), pp. 1942–1948.

[74] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., 1989.

[75] R. H. Byrd, M. E. Hribar, and J. Nocedal. “An Interior Point Algorithm for

Large-Scale Nonlinear Programming”. SIAM J. Optim., 9 (1999), pp. 877–900.



Bibliography 176

[76] R.A. Waltz et al. “An interior algorithm for nonlinear optimization that combines

line search and trust region steps”. Math. Program., 107 (2006), pp. 391–408.

[77] A. Riccio et al. “Numerical simulations of inter-laminar damage evolution in a

composite wing box”. Appl. Compos. Mater., 21 (2013), pp. 467–481.

[78] M. Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes

Simulia Corp, 2009.

[79] R. Ahlfeld et al. “Uncertainty quantification for fat-tailed probability

distributions in aircraft engine simulations”. J. Propuls. Power, 33 (2017),

pp. 881–890.

[80] M. Zhdanov. Inverse Theory and Applications in Geophysics. Elsevier, 2015.

[81] H. Ben Ameur, G. Chavent, and J. Jaffré. “Refinement and coarsening indicators

for adaptive parametrization: application to the estimation of hydraulic

transmissivities”. Inv. Pr., 18 (2002), pp. 775–794.

[82] A. Jones and C. Taylor. “Solving Inverse Problems in Computer Vision by Scale

Space Reconstruction”. IAPR Workshop on Machine Vision Applications (1994),

pp. 401–404.

[83] L. Lucy. “Astronomical Inverse Problems”. Reviews in Modern Astronomy, 7

(1994), pp. 31–50.

[84] M. Ahmadi and W. S. Ghaly. “Aerodynamic inverse design of turbomachinery

cascades using a finite volume method on unstructured meshes”. Inverse

Problems in Engineering, 6 (1998), pp. 281–298.

[85] B. Roidl and W. Ghaly. “Redesign of a low speed turbine stage using a new

viscous inverse design method”. J. Turbomach., 133 (2011), pp. 011009–011009.

[86] M. Nili-Ahmadabadi et al. “A Novel 2D Incompressible Viscous Inverse Design

Method for Internal Flows Using Flexible String Algorithm”. J. Fluids Eng., 132

(2010), 031401 (10 pages).



Bibliography 177

[87] N. P. Kruyt and R. W. Westra. “On the inverse problem of blade design for

centrifugal pumps and fans”. Inverse Problems, 30 (2014), p. 065003.

[88] J. Hadamard. Lectures on Coghy’s problem in Linear Partial Differential

Equations. Yale University Press, 1923.

[89] P.C. Sabatier. “Past and future of inverse problems”. Journal of Mathematical

Physics, 41 (2000).

[90] R. McGreevy and L. Pusztai. “Reverse Monte Carlo Simulation: A New

Technique for the Determination of Disordered Structures”. Mol. Simul., 1

(1988), pp. 359–367.

[91] M. Liu et al. “Simultaneous-shot inversion for PDE-constrained optimization

problems with missing data”. Inverse Problems, 35 (2018), pp. 1–20.

[92] M. Grote, M. Kray, and U. Nahum. “Adaptive eigenspace method for inverse

scattering problems in the frequency domain”. Inverse Problems, 33 (2017),

pp. 1–22.

[93] A. Von Moll et al. “A Review of Exhaust Gas Temperature Sensing Techniques

for Modern Turbine Engine Controls”. 50th AIAA/ASME/SAE/ASEE Joint

Propulsion Conference (2014).

[94] J. Molimard et al. “Identification of Orthotropic Plate Stiffness Using Open Hole

Tensile Test”. Exp. Mech., 45 (2005), pp. 404–411.

[95] M. Anghileri et al. “An inverse approach to identify the constitutive model

parameters for crashworthiness modelling of composite structures”. Compos.

Struct., 68 (2005), pp. 65–74.

[96] Y. L. Kang, X. H. Lin, and Q. H. Qin. “Inverse / genetic method and its

application in identification of mechanical parameters of interface in composite”.

Compos. Struct., 66 (2004), pp. 449–458.



Bibliography 178

[97] W. Ogierman. “Inverse Identification of Elastic Properties of Constituents of

Discontinuously Reinforced Composites”. Materials (Basel)., 11 (2018), p. 232.

[98] T. Vo-Duy et al. “A two-step approach for damage detection in laminated

composite structures using modal strain energy method and an improved

differential evolution algorithm”. Compos. Struct., 147 (2016), pp. 42–53.

[99] E. Ficarella, L. Lamberti, and S. O. Degertekin. “Mechanical Identification of

Materials and Structures with Optical Methods and Metaheuristic

Optimization”. Materials (Basel)., 12 (2019), p. 2133.

[100] R. Viala, V. Placet, and S. Cogan. “Identification of the anisotropic elastic and

damping properties of complex shape composite parts using an inverse method

based on finite element model updating and 3D velocity fields measurements (

FEMU-3DVF ): Application to bio-based composite violins”. Compos. Part A,

106 (2018), pp. 91–103.

[101] M. Springmann and M. Kuna. “Identification of material parameters of the

Rousselier model by non-linear optimization”. Comp. Mat. Sci., 26 (2003),

pp. 202–209.

[102] B. Rahmani et al. “A new approach to inverse identification of mechanical

properties of composite materials : Regularized model updating”. Compos.

Struct., 105 (2013), pp. 116–125.

[103] M. Grédiac. “Principe des travaux virtuels et identification”. Comptes Rendus

l’Académie des Sci. (1989), pp. 1–5.

[104] M. Grédiac, E. Toussaint, and F. Pierron. “Special virtual fields for the direct

determination of material parameters with the virtual fields method.

2–Application to in-plane properties”. Int. J. Solids Struct., 39 (2002),

pp. 2707–2730.



Bibliography 179

[105] B. Rahmani, I. Villemure, and M. Levesque. “Regularized virtual fields method

for mechanical properties identification of composite materials”. Comput.

Methods Appl. Mech. Engrg., 278 (2014), pp. 543–566.

[106] F. Pierron et al. “Identification of the Orthotropic Elastic Stiffnesses of

Composites with the Virtual Fields Method: Sensitivity Study and Experimental

Validation”. Strain, 43 (2007), pp. 250–259.

[107] S. Avril et al. “Overview of Identification Methods of Mechanical Parameters

Based on Full-field Measurements”. Exp. Mech., 48 (2008), pp. 381–402.

[108] N. Pepper, F. Montomoli, and S. Sharma. “Multiscale uncertainty quantification

with arbitrary polynomial chaos”. Computer Methods in Applied Mechanics and

Engineering, 357 (2019), pp. 1–20.

[109] S. Das, R. Ghanem, and J. C. Spall. “Asymptotic Sampling Distribution for

Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher

information approach”. Proc. 45th IEEE Conf. Decis. Control (2006),

pp. 4139–4144.

[110] S. Das, R. Ghanem, and S. Finette. “Polynomial chaos representation of

spatio-temporal random fields from experimental measurements”. J. Comput.

Phys., 228 (2009), pp. 8726–8751.

[111] R. Ahlfeld. “A Data-Driven Uncertainty Quantification Method for Scarce Data

and Rare Events”. PhD thesis (2017).

[112] M. Fukuta et al. “Performance of scroll expander for co2 refrigeration cycle”.

International Compressor Engineering Conference (2006).

[113] X. Wang, Y. Hwang, and R. Radermacher. “Two-stage heat pump system with

vapor-injected scroll compressor using r140a as a refrigerant”. International

Journal of Refrigeration, 32 (2009), pp. 1442–1451.



Bibliography 180

[114] Y.R. Lee and W.F. Wu. “On the profile design of a scroll compressor”.

International Journal of refrigeration, 18 (1995), pp. 308–317.

[115] Y. Arai et al. “A High Speed and Compact System for Profile Measurement of

Scroll Compressors”. International Journal of Precision Engineering and

Manufacturing, 10 (2009), pp. 27–32.

[116] J. Wang et al. “Design methodology and geometric modeling of complete

meshing profiles for scroll compressors”. International Journal of Refrigeration,

91 (2018), pp. 199–210.

[117] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. “Asymptotic Minimax Character of

the Sample Distribution Function and of the Classical Multinomial Estimator”.

Ann. Math. Stat., 27 (1956), pp. 642–669.

[118] P. Massart. “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality”.

Ann. Probab., 18 (1990), pp. 1269–1283.

[119] L. Bek et al. “Calculation of B-Basis Values from Composite Material Strength

Parameters Obtained from Measurements of Non-Identical Batches”. EAN 2017 -

55th Conference on Experimental Stress Analysis 2017 (2017), pp. 477–485.

[120] O. Martin et al. “Virtual calculation of the B-value allowables of notched

composite laminates”. Compos. Struct., 212 (2018), pp. 11–21.

[121] G. Odegard and M. Kumosa. “Determination of shear strength of unidirectional

composite materials with the Iosipescu and 10 degree off-axis shear tests”.

Compos. Sci. Technol., 60 (2000), pp. 2917–2943.

[122] L. Melin et al. “Evaluation of Four Composite Shear Test Methods by Digital

Speckle Strain Mapping and Fractographic Analysis”. J. Compos. Technol. Res.,

22 (2000), pp. 161–172.



Bibliography 181

[123] A. Nouy. “Identification of multi-modal random variables through mixtures of

polynomial chaos expansions”. Comptes Rendus Mécanique, 338 (2010),

pp. 689–703.

[124] D. Hull. An Introduction to Composite Materials. Cambridge University Press,

1981.

[125] R. M. Jones. Mechanics of Composite Materials. Taylor & Francis, 1999.

[126] I. M. Daniel and O. Ishai. Engineering Mechanics of Composite Materials.

Oxford University Press, 2005.

[127] K. Potter. “Understanding the origin of defects and variability in composites

manufacture”. Proceedings of the 17th international conference on composite

materials (2009).

[128] S. E. Yamada and C. T. Sun. “Analysis of Laminate Strength and its

Distribution”. J. Compos. Mater, 12 (1987), pp. 275–284.

[129] B. Sudret. “Global sensitivity analysis using polynomial chaos expansions”.

Reliab. Eng. Syst. Saf., 93 (2008), pp. 964–979.

[130] T. Crestaux, O. Le Maitre, and J. M. Martinez. “Polynomial chaos expansion for

sensitivity analysis”. Reliab. Eng. Syst. Saf., 94 (2009), pp. 1161–1172.

[131] S. Hosder, R. W. Walters, and R. Perez. “A Non-Intrusive Polynomial Chaos

Method For Uncertainty Propagation in CFD Simulations”. 44th AIAA

Aerospace Sciences Meeting and Exhibit (2006).

[132] J.L. Wu, H. Xiao, and E.G. Paterson. “Physics-informed machine learning

approach for augmenting turbulence models: A comprehensive framework”. Phys.

Rev. Fluids, 3 (2018).

[133] H. Xiao et al. “Quantifying and reducing model-form uncertainties in

Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed

bayesian approach”. J. Comput. Phys., 324 (2016), pp. 115–136.



Bibliography 182

[134] A. Doostan, G. Geraci, and G. Iaccarino. “A Bi-fidelity for Uncertainty

Quantification of Heat Transfer in a Rectangular Ribbed Channel”. Proceedings

of ASME Turbo Expo 2016: Turbomachinery Technical Conference and

Exposition (2016), pp. 1–9.

[135] M. Giles. “Multilevel Monte Carlo methods”. Acta Numer., 24 (2015),

pp. 259–328.

[136] J. Charrier, R. Scheichl, and A. L. Teckentrup. “Finite Element Error Analysis of

Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte

Carlo Methods”. SIAM Journal on Numerical Analysis, 51 (2013), pp. 322–352.

[137] M. Pisaroni, F. Nobile, and P. Leyland. “A Continuation Multi Level Monte

Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid

aerodynamics”. Comput. Methods Appl. Mech. Eng., 326 (2017), pp. 20–50.

[138] M. C. Kennedy and A. O’Hagan. “Bayesian calibration of computer models”. J.

Roy. Stat. Soc. Ser. B, 63 (2001), pp. 425–464.

[139] D. Crevillén-García et al. “Gaussian process modelling for uncertainty

quantification in convectively-enhanced dissolution processes in porous media”.

Adv. Water Resour., 99 (2017), pp. 1–14.

[140] P. T. Roy et al. “Comparison of polynomial chaos and Gaussian process

surrogates for uncertainty quantification and correlation estimation of spatially

distributed open-channel steady flows”. Stoch. Env. Res Risk Assess, 32 (2018),

pp. 1723–1741.

[141] I. Bilionis and N. Zabaras. Handbook of Uncertainty Quantification. Springer,

2015.

[142] B. Peherstorfer, K. Willcox, and M. Gunzburger. “Survey of Multifidelity

Methods in Uncertainty Propagation, Inference, and Optimization”. SIAM Rev.,

60 (2018), pp. 550–591.



Bibliography 183

[143] P. Diaconis and D. Freedman. “On the Consistency of Bayes Estimates”. Ann.

Statist., 14 (1986), pp. 1–26.

[144] O. Vallmajó et al. “Virtual calculation of the B-value allowables of notched

composite laminates”. Compos. Struct., 212 (2018), pp. 11–21.

[145] A.P. Dempster. “Upper and lower probabilities induced by a multivalued

mapping”. The Annals of Mathematical Statistics, 38 (1967), pp. 325–339.

[146] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

[147] A. Paksoy and M. Göktürk. “Information fusion with dempster-shafer evidence

theory for software defect prediction”. Procedia Computer Science, 3 (2011),

pp. 600–605.

[148] B. Quost, M.H. Masson, and T. Denœux. “Classifier fusion in the

Dempster–Shafer framework using optimized t-norm based combination rules”.

International Journal of Approximate Reasoning, 52 (2011), pp. 353–374.

[149] J. Pearl. “Reasoning with belief functions: An analysis of compatibility”.

International Journal of Approximate Reasoning, 4 (1990), pp. 363–389.

[150] S. Hall and J. Mitchell. “Combining density forecasts”. Int. J. Forecast., 23

(2007), pp. 1–13.

[151] A. Garratt et al. “Forecast Uncertainties in Macroeconomic Modeling: An

Application to the U.K. Economy”. J. Am. Stat. Assoc., 98 (2003), pp. 829–838.

[152] M. Stone. “The Opinion Pool”. Ann. Math. Stat., 32 (1961), pp. 1339–1342.

[153] C. Genest and J. Zidek. “Combining probability distributions: A critique and an

annotated bibliography”. Stat. Sci., 1 (1986), pp. 114–135.

[154] R. Clemen and R. Winkler. “Combining Probability Distributions From Experts

in Risk Analysis”. Risk Anal., 19 (1999), pp. 187–203.

[155] T. Wallsten et al. “Evaluating and Combining Subjective Probability Estimates”.

J. Behav. Decis. Mak., 10 (1997), pp. 243–268.



Bibliography 184

[156] S. Hora. “Probability judgements for continuous quantities: Linear combinations

and calibration”. Manage. Sci., 50 (2004), pp. 597–604.

[157] R. Ranjan and T. Gneiting. “Combining probability forecasts”. J. R. Stat. Soc.,

72 (2010), pp. 71–91.

[158] A. Allard, A. Comunian, and P. Renard. “Probability aggregation methods in

geoscience”. Math. Geosci., 44 (2012), pp. 545–581.

[159] T. Gneiting and R. Ranjan. “Combining predictive distributions”. Electron. J.

Stat., 7 (2013), pp. 1747–1782.

[160] F. Bassetti, R. Casarin, and F. Ravazzolo. “Bayesian Nonparametric Calibration

and Combination of Predictive Distributions”. J. Am. Stat. Assoc., 113 (2018),

pp. 675–685.

[161] R. Casarin, G. Mantoan, and F. Ravazzolo. “Bayesian Calibration of Generalized

Pools of Predictive Distributions”. Econometrics, 4 (2016).

[162] G. Kapetanios et al. “Generalised density forecast combinations”. J. Econom.,

188 (2015), pp. 150–165.

[163] E. Jaynes. “Information Theory and Statistical Mechanics”. Phys. Rev., 106

(1957), pp. 620–630.

[164] E. Jaynes. “On the Rationale of Maximum-Entropy Methods”. Proc. IEEE, 70

(1982), pp. 939–952.

[165] A. Cesari, S. Reißer, and G. Bussi. “Using the Maximum Entropy Principle to

Combine Simulations and Solution Experiments”. Computation, 6 (2018),

pp. 1–25.

[166] H. Lou and R. Cukier. “Reweighting ensemble probabilities with experimental

histogram data constraints using a maximum entropy principle”. J. Chem. Phys.,

149 (2018).



Bibliography 185

[167] A. Cesari, A. Gil-Ley, and G. Bussi. “Combining Simulations and Solution

Experiments as a Paradigm for RNA Force Field Refinement”. J. Chem. Theory

Comput., 12 (2016), pp. 6192–6200.

[168] P. M. Baggenstoss. “Beyond Moments: Extending the Maximum Entropy

Principle to Feature Distribution Constraints”. Entropy, 20 (2018).

[169] S. Ferson et al. “Constructing probability boxes and Dempster-Shafer

structures”. Sandia National Laboratories (2003).

[170] F. Montomoli et al. “Interaction of wheelspace coolant and main flow in a new

aeroderivative low pressure turbine”. Journal of turbomachinery, 132 (2010),

pp. 1–7.

[171] F. Montomoli and M. Massini. “Gas turbines and uncertainty quantification:

Impact of PDF tails on UQ predictions, the Black Swan”. Proceedings of ASME

Turbo Expo 2013: Power for Land, Sea, and Air (2013).

[172] J.R.M. Hosking and J.R. Wallis. “Parameter and Quantile Estimation for the

Generalized Pareto Distribution”. Technometrics, 23 (1987), pp. 339–349.

[173] R.L. Smith. “Estimating the tails of probability distributions”. Ann. Statist., 15

(1987), pp. 1174–1207.

[174] R.H. Byrd, M.E. Hribar, and J. Nocedal. “An Interior Point Algorithm for

Large-Scale Nonlinear Programming”. SIAM Journal on Optimization, 9 (1999),

pp. 877–900.

[175] R. A. Waltz et al. “An interior algorithm for nonlinear optimization that

combines line search and trust region steps”. Mathematical Programming, 107

(2006), pp. 391–408.

[176] A. Gaymann et al. “Random Variable Estimation and Model Calibration in the

Presence of Epistemic and Aleatory Uncertainties”. WCX 18 SAE World Congr.

Exp. (2018), pp. 1–14.



Bibliography 186

[177] Z.G. Ghauch et al. “Integrated stochastic analysis of fiber composites

manufacturing using adapted polynomial chaos expansions”. Composites Part A:

Applied Science and Manufacturing, 118 ().

[178] P. Sasikumar et al. “A data driven polynomial chaos based approach for

stochastic analysis of CFRP laminated composite plates”. Composite Structures,

125 (2015), pp. 212–227.

[179] F. Zhang et al. “Efficient stochastic simulation approach for RTM process with

random fibrous permeability”. Composites Science and Technology, 71 (2011),

pp. 1478–1485.

[180] D. Mavris and D. DeLaurentis. “Methodology for Examining the Simultaneous

Impact of Requirements, Vehicle Characteristics, and Technologies on Military

Aircraft Design”. ICAS (2000).

[181] C.P. Frank et al. “Evolutionary multi-objective multi-architecture design space

exploration methodology”. Optim Eng, 19 (2018), pp. 359–381.

[182] J. Ölvander, B. Lundéna, and H. Gavel. “A computerized optimization

framework for the morphological matrix applied to aircraft conceptual design”.

Computer-Aided Design, 41 (2009), pp. 187–196.

[183] J.H. Bussemaker, P.D. Ciampa, and B. Nagel. “System Architecture Design

Space Exploration: An Approach to Modeling and Optimization”. AIAA Aviation

2020 Forum (2020).

[184] D.J. Singer, N. Doerry, and M.E. Buckley. “What Is Set-Based Design?” Naval

Engineers Journal, 121 (2009), pp. 31–43.

[185] M. Guenov et al. “Aircadia -an interactive tool for the composition and

exploration of aircraft computational studies at early design stage”. Proceedings

of the 29th Congress of the International Council of the Aeronautical Sciences

(2014).



Bibliography 187

[186] A. Georgiades et al. “ADOPT: An augmented set-based design framework with

optimisation”. Design Science, 5 (2019), pp. 1–40.

[187] A. D. Pimentel. “Exploring Exploration: A Tutorial Introduction to Embedded

Systems Design Space Exploration”. IEEE Design & Test, 34 (2017), pp. 77–90.

[188] M. Gries. “Methods for evaluating and covering the design space during early

design development”. Integration, 38 (2004), pp. 131–183.

[189] A. Schulz et al. “Interactive Design Space Exploration and Optimization for

CAD Models”. ACM Transactions on Graphics, 36 (2017).

[190] E. Ipek et al. “Efficient Architectural Design Space Exploration via Predictive

Modeling”. ACM. Trans. Architec. Code Optim., 4 (2008).

[191] A.L. Read. “Linear interpolation of histograms”. Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, 425 (1999), pp. 357–360.

[192] M. Baak et al. “Interpolation between multi-dimensional histograms using a new

non-linear moment morphing method”. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, 771 (2015), pp. 39–48.

[193] P. Baldi. “Autoencoders, Unsupervised Learning, and Deep Architectures”.

Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 27

(2012), pp. 37–49.

[194] R. Schöbi, B. Sudret, and J. Wiart. “Polynomial-Chaos-Based-Kriging”.

International Journal for Uncertainty Quantification, 5 (2015), pp. 171–193.

[195] R. Schöbi, B. Sudret, and S. Marelli. “Rare Event Estimation Using

Polynomial-Chaos Kriging”. ASCEASME Journal of Risk and Uncertainty in

Engineering Systems, Part A: Civil Engineering, 3 (2016).



Bibliography 188

[196] C. Thimmisetty et al. “Multiscale stochastic representations using Polynomial

Chaos Expansions with Gaussian Process Coefficients”. Data-Enabled Discov.

Appl., 2 (2018).

[197] A. Bowman. “An alternative method of cross-validation for the smoothing of

density estimates”. Biometrics, 71 (1984), pp. 353–360.

[198] M. Jones, J. Marron, and J. Sheather. “A Brief Survey of Bandwidth Selection

for Density Estimation”. J. Am. Stat. Assoc., 91 (1996), pp. 401–407.

[199] K. Z. Mao. “Orthogonal forward selection and backward elimination algorithms

for feature subset selection”. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 34 (2004), pp. 629–634.

[200] R.P. Dwight and Z.H. Han. “Efficient Uncertainty Quantification using

Gradient-Enhanced Kriging”. 11th AIAA Non-Deterministic Approaches

Conference (2009).

[201] B.A. Lockwood and M. Anitescu. “Gradient-Enhanced Universal Kriging for

Uncertainty Propagation,” Nuclear Science and Engineering, 170 (2012),

pp. 168–195.

[202] B. Echard et al. “A combined Importance Sampling and Kriging reliability

method for small failure probabilities with time-demanding numerical models”.

Reliability Engineering & System Safety, 111 (2013), pp. 232–240.

[203] V. Dubourg, B. Sudret, and J.M. Bourinet. “Reliability-based design

optimization using kriging surrogates and subset simulation”. Struct Multidisc

Optim, 44 (2011), pp. 673–690.

[204] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.

The MIT Press, 2006.

[205] T.J. Santner, B.J. Williams, and W.I. Notz. The design and analysis of computer

experiments. Springer, 2003.



Bibliography 189

[206] C.J. Moore et al. “Fast methods for training gaussian processes on large

datasets”. Royal Society Open Science, 3 (2016).

[207] D. Petelin, B. Filipič, and J. Kocijan. “Optimization of Gaussian Process Models

with Evolutionary Algorithms”. Adaptive and Natural Computing Algorithms.

Ed. by A. Dobnikar, U. Lotrič, and B. Šter. Vol. 6593. Lecture Notes in

Computer Science. Springer, 2011.

[208] M. Eldred et al. “Investigation of reliability method formulations in

DAKOTA/UQ”. Structure and Infrastructure Engineering, 3 (2007), pp. 199–213.

[209] Y.T. Wu et al. “Safety-factor based approach for probability-based design

optimization”. In Proc. 42nd AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, 196 (2001), pp. 199–342.

[210] M.W. Huang and J.S. Arora. “Optimal Design with Discrete Variables: Some

Numerical Examples”. International Journal for Numerical Methods in

Engineering, 40 (1997), pp. 165–188.

[211] L. Pronzato and W.G. Müller. “Design of computer experiments: space filling and

beyond”. Stat Comput, 22 (2012), pp. 681–701.

[212] H. Liu, Y.S. Ong, and J. Cai. “A survey of adaptive sampling for global

metamodeling in support of simulation-based complex engineering design”. Struct

Multidisc Optim, 57 (2018), pp. 393–416.

[213] D. Deschrijver et al. “Adaptive Sampling Algorithm for Macromodeling of

Parameterized S-Parameter Responses”. IEEE Transactions on Mircowave

Theory and Techniques, 59 (2011), pp. 39–45.

[214] A. Bhattacharyya. “On a measure of divergence between two statistical

populations defined by their probability distributions”. Bulletin of the Calcutta

Mathematical Society, 35 (1943), pp. 99–109.



Bibliography 190

[215] H.F. Inman and E.L. Bradley. “The overlapping coefficient as a measure of

agreement between probability distributions and point estimation of the overlap

of two normal densities”. Communications in Statistics - Theory and Methods, 18

(1989), pp. 3851–3874.

[216] M.C. Kennedy and A. O’Hagan. “Predicting the output from a complex computer

code when fast approximations are available”. Biometrika, 87 (2000), pp. 1–13.

[217] A.I.J. Forrester, A. Sobester, and A. Keane. “Multi-fidelity optimization via

surrogate modelling”. Proc. Roy. Soc. A, 463 (2007), pp. 3251–3269.

[218] J. Hensman, N. Fusi, and N.D. Lawrence. “Gaussian processes for big data”.

Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence

(2015).

[219] N. Durrande, D. Ginsbourger, and O. Roustant. “Additive covariance kernels for

high-dimensional gaussian process modeling”. Ann Fac Sci Toulouse Math, 21

(2012), pp. 481–499.

[220] D. Liu and Y. Wang. “Multi-Fidelity Physics-Constrained Neural Network and

Its Application in Materials Modeling”. Journal of Mechanical Design, 141

(2019), pp. 1–13.

[221] E. Weinan, J. Han, and A. Jentzen. “Deep learning-based numerical methods for

high-dimensional parabolic partial differential equations and backward stochastic

differential equations”. Commun. Math. Stat., 5 (2017), pp. 349–380.

[222] Z. Zhang et al. “Opening the black box of neural networks: methods for

interpreting neural network models in clinical applications”. Ann Transl Med., 6

(2018).

[223] M. Xuhui and G.E. Karniadakis. “A composite neural network that learns from

multi-fidelity data: Application to function approximation and inverse PDE

problems”. Journal of Computational Physics, 401 (2020), pp. 1–15.



Bibliography 191

[224] G.G. Towell and J.W. Shavlik. “Knowledge-based artificial neural networks”.

Artificial Intelligence, 70 (1994), pp. 119–165.

[225] G.G. Towell and J.W. Shavlik. “Extracting refined rules from knowledge-based

neural networks”. Machine Learning, 13 (1993), pp. 71–101.

[226] F. Wang and Q. Zhang. “Knowledge-based neural networks for microwave

design”. IEEE Transactions on Microwave Theory and Techniques, 44 (1997),

pp. 2333–2343.

[227] S.J. Leary, A. Bhaskar, and A.J. Keane. “A knowledge-based approach to

response surface modelling in multifidelity optimisation”. Journal of Global

Optimization, 26 (2003), pp. 297–319.

[228] H.S. Kim, M. Koç, and J. Ni. “A hybrid multi-fidelity approach to the optimal

design of warm forming processes using a knowledge-based artificial neural

network”. International Journal of Machine Tools & manufacture, 47 (2007),

pp. 211–222.

[229] G.N. Coleman and R.D. Sandberg. “A primer on direct numerical simulation of

turbulence-methods, procedures and guidelines”. Tech. Rep AFM-09/01a (2010).

[230] J.X. Xiao H.and Wang, R. Sun, and C. Roy. “Quantifying and reducing

model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A

data-driven, physics-informed bayesian approach”. J. Comput. Phys., 324 (2016),

pp. 115–136.

[231] L.J. Voet et al. “A hybrid approach combining DNS and RANS simulations to

quantify uncertainties in turbulence modelling”. Applied Mathematical Modelling,

89 (2021), pp. 885–906.

[232] C. J. Brooks et al. “Multifidelity design optimisation of a transonic compressor

rotor”. 9th European Conference on Turbomachinery Fluid Dynamics and

Thermodynamics (2011).



Bibliography 192

[233] H. Shah et al. “Multi-fidelity robust aerodynamic design optimization under

mixed uncertainty”. Aerospace Science and Technology, 45 (2015), pp. 17–29.

[234] H. Leung and S. Haykin. “Rational function neural network”. Neural

Computation, 5 (1993), pp. 928–938.

[235] A. Abdelbar and G. Tagliarini. “Honest: A new high order feedforward neural

networks”. Proc. IEEE Int. Conf. Neural Networks (1996), pp. 1257–1262.

[236] J. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”. Journal of Machine Learning Research,

12 (2011), pp. 2121–2159.

[237] N. Pepper. “Knowledge Based Neural Networks”.

https: // uk. mathworks. com/ matlabcentral/ fileexchange/ 93675-

knowledge-based-neural-networks , MATLAB Central File Exchange (2021).

[238] N. Pepper. “Knowledge Based Neural Networks”.

https: // github. com/ npepperUQLab/ Knowledge-Based-Neural-Network-),

GitHub (2021).

[239] B.L. Happel and J.M. Murre. “Design and evolution of modular neural network

architectures”. Neural Networks, 7 (1994), pp. 985–1004.

[240] D. Padmanabhan et al. “A study using Monte Carlo Simulation for failure

probability calculation in Reliability-Based Optimization”. Optimization and

Engineering, 7 (2006), pp. 297–316.

[241] B. Echard, N. Gayton, and M. Lemaire. “AK-MCS: An active learning reliability

method combining Kriging and Monte Carlo Simulation”. Structural Safety, 33

(2011), pp. 145–154.

[242] Z. Meng et al. “An active weight learning method for efficient reliability

assessment with small failure probability”. Structural and Multidisciplinary

Optimization, 61 (2020), pp. 1157–1170.

https://uk.mathworks.com/matlabcentral/fileexchange/93675-knowledge-based-neural-networks
https://uk.mathworks.com/matlabcentral/fileexchange/93675-knowledge-based-neural-networks
https://github.com/npepperUQLab/Knowledge-Based-Neural-Network-


Bibliography 193

[243] H.M. Gomes and A.M. Awruch. “Comparison of response surface and neural

network with other methods for structural reliability analysis”. Structural Safety,

26 (2004), pp. 49–67.

[244] M.R. Rajashekhar and B.R. Ellingwood. “A new look at the response surface

approach for reliability analysis”. Structural Safety, 12 (1993), pp. 205–220.

[245] V. Vapnik. Statistical learning theory, vol. 1. Wiley, 1998.

[246] V. Vapnik. The nature of statistical learning theory. Springer Science & Business

Media, 2013.

[247] C.J.C. Burges. “A Tutorial on Support Vector Machines for Pattern

Recognition”. Data Mining and Knowledge Discovery, 2 (1998), pp. 121–167.

[248] C.M. Rocco and J.A. Moreno. “Fast Monte Carlo reliability evaluation using

support vector machine”. Reliability Engineering & System Safety, 76 (2002),

pp. 237–243.

[249] J.E. Hurtado. “Filtered importance sampling with support vector margin: A

powerful method for structural reliability analysis”. Structural Safety, 29 (2007),

pp. 2–15.

[250] M.A. Hariri-Ardebili and F. Pourkamali-Anaraki. “Support vector machine based

reliability analysis of concrete dams”. Soil Dynamics and Earthquake

Engineering, 104 (2018), pp. 276–295.

[251] A. Basudhar et al. “Constrained efficient global optimization with support vector

machines”. Structural and Multidisciplinary Optimization, 46 (2012),

pp. 201–221.

[252] R. Teixeira, M. Nogal, and A. O’Connor. “Adaptive approaches in

metamodel-based reliability analysis: A review”. Structural Safety, 89 (2021),

p. 102019.



Bibliography 194

[253] A. Basudhar and S. Missoum. “Adaptive explicit decision functions for

probabilistic design and optimization using support vector machines”. Computers

& Structures, 86 (2008), pp. 1904–1917.

[254] A. Basudhar and S. Missoum. “An improved adaptive sampling scheme for the

construction of explicit boundaries”. Structural and Multidisciplinary

Optimization, 42 (2010), pp. 517–529.

[255] Q. Pan and D. Dias. “An efficient reliability method combining adaptive Support

Vector Machine and Monte Carlo Simulation”. Structural Safety, 67 (2017),

pp. 85–95.

[256] U. Alibrandi, A.M. Alani, and G. Ricciardi. “A new sampling strategy for

SVM-based response surface for structural reliability analysis”. Probabilistic

Engineering Mechanics, 41 (2015), pp. 1–12.

[257] A. Roy and S. Chakraborty. “Support vector regression based metamodel by

sequential adaptive sampling for reliability analysis of structures”. Reliability

Engineering & System Safety, 200 (2020), p. 106948.

[258] J. Shawe-Taylor and S. Sun. “A review of optimization methodologies in support

vector machines”. Neurocomputing, 74 (2011), pp. 3609–3618.

[259] D. López-Sánchez, J. Manuel Corchado, and A. González Arrieta.

“Data-independent Random Projections from the feature-map of the

homogeneous polynomial kernel of degree two”. Information Sciences, 436

(2018), pp. 214–226.

[260] A. Bondu, V. Lemaire, and M. Boullé. “Exploration vs. exploitation in active

learning : A Bayesian approach”. The 2010 International Joint Conference on

Neural Networks (IJCNN), Barcelona, Spain (2010), pp. 1–7.



Bibliography 195

[261] L. Schueremans and D. van Gemert. “Benefit of splines and neural networks in

simulation based structural reliability analysis”. Structural Safety, 27 (2005),

pp. 246–261.

[262] A. Borri and E. Speranzini. “Structural reliability analysis using a standard

deterministic finite element code”. Structural Safety, 19 (1997), pp. 361–382.

[263] C. Coulais et al. “Discontinuous Buckling of Wide Beams and Metabeams”.

Phys. Rev. Lett., 115 (2015), p. 044301.

[264] H. Kim, B. Mallick, and C. Holmes. “Analyzing Nonstationary Spatial Data

Using Piecewise Gaussian Processes”. Journal of the American Statistical

Association, 100 (2005), pp. 653–668.

[265] J.D. Jakeman, R. Archibald, and D. Xiu. “Characterization of discontinuities in

high-dimensional stochastic problems on adaptive sparse grids”. Journal of

Computational Physics, 230 (2011), pp. 3977–3997.

[266] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian approximation: Representing

model uncertainty in deep learning”. Proceedings of The 33rd International

Conference on Machine Learning, 48 (2016), pp. 1050–1059.

[267] A. Okubo and S.A. Levin. “Diffusion and ecological problems: modern

perspectives”. Springer (2013).

[268] S. Salsa. “Partial differential equations in action. From modelling to theory”.

Springer (2008).

[269] M. Bonneaua, F. Johnsonb, and C. Romagosaa. “Spatially explicit control of

invasive species using a reaction–diffusion model”. Ecological Modelling, 337

(2016), pp. 15–24.

[270] A. Ern and J.L. Guermond. “Theory and Practice of Finite Elements”. Springer

(2006).



Bibliography 196

[271] L. Formaggia, F. Saleri, and A. Veneziani. “Solving Numerical PDEs”. Springer

(2012).

[272] Y. Saad. “Iterative Methods for Sparse Linear Systems”. PWS (1996).



Appendices

A1: Example application of aPC

In this section we provide an example of how arbitrary Polynomial Chaos (aPC) may be

used to propagate uncertainty through a computational model. In this case, we consider

a continuous advection-diffusion-reaction model of parabolic type that was used to sim-

ulate the dispersal of an invasive species over a realistic landscape. While not directly

relevant to aeronautics, the numerical technique used to spatially discretise the equations

governing the dispersal of the species, the Finite Element Method, is commonly used

in structural modelling in aeronautics. The advection-diffusion-reaction model presented

here is capable of accounting for the effects of geographical features on the dispersal and

incorporating observational evidence into the model. By conducting an uncertainty study

using arbitrary Polynomial Chaos (aPC) it is possible to account for the effect of the

uncertainty in the observational evidence on the predictions of the model.

The spread of an invasive species in a region denoted by Ω ⊂ ℜ2 can be modeled by

a modified Fisher’s equation for the density u(x, t) of individuals in location x at time

t (see [267] for an introduction to diffusion in ecological problems). In the more general

form the model is a nonlinear advection-diffusion-reaction equation of parabolic type:

197
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∂tu − div (ν(x, t)∇u) + b(x, t) · ∇u + α(x, t)u (u− γ(x, t)) = f(x, t) in Ω × [0, T ].

(6.1)

In equation (6.1), the diffusion coefficient ν(x, t) accounts for the static landscape het-

erogeneities such as inhospitable regions and the presence of natural or artificial barriers

within the computational domain, like major waterways and roads. The carrying capacity

γ(x, t) expresses the birth and death rates of the species at a given spatial and temporal

location. Their spatial dependence allows to include peculiar landscape characteristics in

terms of classification of the terrain (town, meadow, rock, wood, elevation). The convec-

tive term b(x, t) · ∇u allows for transport effects within the region to be modeled. In

the case of terrestrial amphibious animals, the transport effects are associated with the

presence of rivers, that can act both as an accelerator or as a contrasting agent, accord-

ing to their flow direction with respect to the direction of the propagation front; outside

of waterways the transport effects vanish. The temporal dependence of the coefficients

allows for various types of seasonality: variations in the level of water and flow velocity

of rivers, breeding for animals or sprouting for plants. Equation (6.1) is completed by

a suitable initial value u0(x) and boundary conditions on ∂Ω [268]. In general, homo-

geneous Neumann boundary conditions are used to model an isolated environment, but

other boundary conditions can be considered as well: an homogeneous Dirichlet boundary

condition would model an hostile environment, while a Robin boundary condition would

model migratory dynamics [269, 267].

Numerical approximation

The finite element method is particularly suitable for complex geometries like the ones

represented by real geographical regions. We thus discretize equation (6.1) in space by

means of finite elements, while a classical finite difference discretization is carried out for

the time discretization.
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Spatial discretization

For a regular triangulation (also called mesh) of the domain Ω, a finite element space of

order k consists of globally continuous functions that are locally a polynomial of degree

at most k on every triangle of the mesh. Each function of a finite element space can be

represented as a linear combination of a suitable finite basis. In the numerical simulations

presented here we will use first order elements: although higher order polynomials can

be considered [270], linear ones feature a sufficient level of accuracy for the applications

being considering here. A generic element of the first order basis, denoted with ϕj(x)

(j = 1, ..., N , N being the total number of mesh points), is the piecewise linear function

equal to 1 on the jth node of the mesh and equal to 0 in all the other nodes. The finite

element approximation of the solution of equation (6.1) is given by

uh(x, t) =
N
∑

j=1

uj(t)ϕj(x). (6.2)

The unknown time-dependent vector u(t) = [u1(t), ..., uN(t)]T solves the N -dimensional

nonlinear ordinary differential system

M
du(t)
dt

+ A u(t) + B u(t) = F(u(t)), (6.3)

where M, A, and B are the mass, stiffness and transport matrices, whose (i, j)-th entries

are

Mij =
ˆ

Ω

ϕjϕi dx, Aij =
ˆ

Ω

(ν(x)∇ϕj)∇ϕi dx, Bij =
ˆ

Ω

(b(x) · ∇ϕj)ϕi dx,

(6.4)

while F(u(t)) =
´

Ω
(γ(x, t)−uh(t)) uh ·ϕi dω is the discretization of the nonlinear term.

All of the above integrals are computed by means of suitable quadrature rules.
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Time discretization

Let ∆t be a time step and tn = n∆t be the discretization of the time interval under

study. We denote by un = [ul(tn)]l=1,...,N the vector of the nodal values at time tn. The

incremental ratio (un+1 − un)/∆t is an approximation of the time derivative either in

tn+1 or tn, with an associated numerical error proportional to ∆t. As a good trade-off

between numerical stability and computational efficiency, equation (6.3) is advanced in

time by a mixed implicit/explicit (IMEX) approximation scheme, where the stiffness and

the transport are treated implicitly while the nonlinear term is treated explicitly. Know-

ing the approximation un) of the solution at time step tn, the solution at time step tn+1

is obtained by solving

(M + ∆tA + ∆tB)un+1 = Mun + ∆tF(un). (6.5)

Equation (6.5) is a linear system of dimension N , where the right hand side is easily

built since un) is known. For a more extensive discussion and application of the IMEX

method see [271].

Simulation protocol

The numerical simulations of Equations (6.1) are performed with a self-developed code

in Matlab (MathWorks Inc., Natick, MA) with a uniform time step of ∆t = 0.1 months.

Several techniques to efficiently solve linear systems like (6.5) are available based on it-

erative methods: at every time step we solve (6.5) with the conjugate gradient method,

preconditioned by an incomplete Cholesky factorization (see, for instance book by Y. Saad

[272]).

Data driven mesh generation

The computational domain is discretized by a triangular mesh, to exploit its higher ac-

curacy (compared to a typical cartesian grid for finite differences approximations) in
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representing both complex boundaries and peculiar structures in the interior of the do-

main. For best approximation properties of the finite element method, adaptive grids are

preferred: these feature smaller triangles in the areas that require higher levels of accuracy

in the description, like the region of interest and the heterogeneities of the landscape. The

geographical details described in the previous sections can be effectively implemented on

a mesh whose generation is outlined by the following procedure:

1. Identify the region of interest in the computational domain and its main geograph-

ical features (rivers, lakes, urban areas..)

2. Generate an initial grid T0, uniformly refined over the region of interest.

3. Include elevation information from NASA SRTM data by interpolation on the grid

T0.

4. Refine T0 in the surroundings of the main geographical features identified in step

(1).

5. Implement a gradient-driven refinement of T0 where the elevation gradients are

steeper (like along the sides of a valley).

To illustrate the characteristics of our method, we simulate the dispersal of an invasive

species in the territory of the Basque Country in Northern Spain. The region itself is

an excellent testbed, as the heterogeneity of its landscape encompasses various types of

environment from the sea shores of the Bay of Biscay along the Atlantic Ocean to the

mountainous region in the interior, to the higher peaks of the nearby Pyrenees range. The

computational domain Ω is the region comprised between 4◦W and 1◦W in Longitude,

and between 42◦N and the Bay of Biscay (or 44◦2’ N) in Latitude (see Figure 6.1, panel

A). The domain Ω contains the region of interest and is triangulated according to Steps

(1)-(5) described in the previous Section. The mesh consists of 78,832 points and 155,478

triangular elements. Note that throughout co-ordinates will be expressed in Longitude

and Latitude.
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In the simulated scenario the invasive species is initially absent from the region of in-

terest and is concentrated in a circle of radius 0.5 centred in the Aquitaine region in

south-western France (−1.2349, 43.8631). In a perspective of environmental conservation,

the natural interest is in the population density and speed of propagation. Some more

specific quantities of interest may be the arrival time to specific, sensitive, locations (like

a natural reserve). As an example we consider the three major cities in Basque Country:

Vitoria, Bilbao and San Sebastian. Their locations and the initial position of the invasive

species are highlighted in Figure 6.1, panel A, that shows also the elevation of the region.

Being this an illustrative case, for numerical simplicity the impact of rivers was assumed

to be negligible compared to the extended geographical heterogeneities induced by the

mountain ranges. We assume constant diffusion coefficient ν = 5 × 10−4 deg2years−1

while the carrying capacity for the species is assumed to depend solely on elevation:

γ(x, t) =

(

10 − z(x)
100

)

. (6.6)

The carrying capacity is thus maximum at sea level and is linearly decreasing with

elevation. The species is assumed not to survive at elevations greater than 1000 meters

above sea level. Results of the dispersal simulation are shown in Figure 6.1, panels B to

F. As expected, higher densities are observed along the coastline. At the same time, the

impact of elevation is evident: in particular, the barrier effect played by the Pyréneens

ridge running along the 43rd parallel significantly affects the dispersal, and forces the

species to move west (panel B and C) until the presence of a valley in the N-S direction

allows the species to move south as well (panel D and E). Panel G in Figure 6.1 shows the

arrival time (tarrive) of the species in the whole computational domain: tarrive is defined

in any point x of the domain Ω as the time at which the population density reaches 1

i.e. u(x, tarrive) = 1. Black areas are inhospital for the species due to their elevation and

will not be invaded. Finally, panel H in Figure 6.1 shows the temporal evolution of the
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population density in the three cities of interest. Naturally, San Sebastian is the first city

reached by the species. Nevertheless, Bilbao is reached before Vitoria, although the sec-

ond one is closer to the initial distribution of the invasive species. Finally, the population

density in Vitoria is significantly lower than in Bilbao and San Sebastian due to Vitoria’s

higher elevation (as it can be inferred from Figure 6.1, panel A).

Uncertainty analysis for the Basque country test case

An uncertainty analysis was performed for the Basque country test case. As an illustrative

example we explored uncertainty in both diffusion (affecting propagation, thus the speed

of the invasion) and carrying capacity (playing a key role in settling of the species in a

given location). To this end, we considered a modified version of the carrying capacity,

scaled by a random parameter α:

γ(x, t) = α

(

10 − z(x)
100

)

. (6.7)

The uncertain parameters are thus the diffusion coefficient, ν, and the scaling factor α.

Histograms for the two uncertain parameters were generated synthetically and are shown

in panel A of Figure 6.2. The histogram for ν was generated from a normal distribution

N(5×10−4, 1.2×10−4), while α was sampled from the uniform distribution U(0, 2). Having

generated synthetic histograms for ν and α, data driven aPC was used to propagate the

uncertainties in these parameters through the invasive species model. Panel A in Figure

6.2 shows also the locations of the 1D collocation points for the two input distributions.

Having found the collocation points and weights from the data, Smolyak’s rule is applied

to generate a level 1 grid. In this case the resulting grid consists of 5 points, shown in

panel B of Figure 6.2. The invasive species model was evaluated at each of the points

and based on the results, PDFs of u(x, t) were calculated, at each time step, in the whole
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Figure 6.1: Basque Country test case. Panel A. Computational domain with elevation,
initial location of the invasive species and location of the three cities under
study. Panel B to F. Density of the invasive species at different times of the
invasion process. The temporal dynamics highlights how extended hetero-
geneities due to the mountain ranges favors dispersal to the West. Panel G.
Invasion time in the whole computational domain. Black areas are inhospital
for the species and will not be invaded. Panel H. Temporal dynamics of the
population density u(x, t) for Bilbao (solid blue), Vitoria (dashed red) and
San Sebastian (dot-dashed green).
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Figure 6.2: Panel A. Histograms for the uncertain parameters ν and α, and the 1D colloca-
tion points for the input distributions. Panel B. The sampling grid calculated
through application of Smolyak’s rule at level 1.

computational domain. Figure 6.3 collects the results. Panel A to D show the mean (µ,

A and C) and the standard deviation (σ, B and D) of the PDFs on the whole region at

different time steps. The bottom row of Figure 6.3 show the results for Bilbao, Vitoria

and San Sebastian. Panel E represent uncertainty in the arrival times of the species in the

three cities, while panel F shows the temporal dynamics of the standard deviation of the

population density. Panels B, D, and F highlight how uncertainty is mainly concentrated

in the vicinity of the propagation front and drops significantly in its wake.

Predictive modeling of the spatio-temporal spread of an invasive species is a very useful

tool to help environmental conservation policymakers in their decision-taking process for

devising appropriate countermeasures. As model parameters for invasive species are often

inferred form field measurements, they are imbued with uncertainty. If the species is

poorly known, the uncertainty may be so significant to hinder the reliability of the model

predictions. We presented a continuous reaction-diffusion model for the population den-

sity of an invasive species, coupled with an arbitrary Polynomial Chaos (aPC) method
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to assess how the uncertainty of poorly known parameters affects the predictions of the

deterministic model. The coupled model has several advantages. The arbitrary Polyno-

mial Chaos is far less computational expensive with respect to a classical Monte Carlo

sampling method and, more important, is able to handle scarce data. The deterministic

model is equipped with a data-driven mesh generator which is capable of both accurately

model the region of interest and take into account landscape heterogeneities in a natural

way. Moreover, the individual runs of the deterministic model needed to set up the aPC

procedure are easily computed on a laptop in few minutes. We illustrated the practical

applicability of the proposed method by quantifying the uncertainty in the spread of a

generic invasive population in the Basque Country area in northern Spain.
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Figure 6.3: Uncertainty analysis for the Basque country test case. Panel A to D. Tem-
poral dynamics of mean and standard deviation of the population density in
the whole computational domain highlights the higher level of uncertainty
in the surrounding of the wavefront. Panel E. Uncertainty in arrival time
in Bilbao, Vitoria and San Sebastian. Panel F. Temporal dynamics of the
standard deviation for the population density in Bilbao (solid blue), Vitoria
(dashed red) and San Sebastian (dot-dashed green) shows how uncertainty
drops significantly in the wake of the propagation wavefront.
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A2: Training KBaNNs through back-propagation

The KBaNN is trained through error back-propagation, with the network parameters

determined through a gradient based optimisation algorithm. This required analytic ex-

pressions for the derivatives of the KBaNN prediction error, ǫ, with respect to the network

parameters. Expressions for these derivatives in a KBaNN architecture were first derived

in Wang et al (1997) [226]. However, the architecture presented here differs in that the

correction applied is additive rather than multiplicative. A further difference is that the

knowledge layer presented in the original paper have been replaced with a coarse model

which is not necessarily analytic. As a consequence we do not adjust the parameters of

the coarse model through back-propagation. In our KBaNN formulation there is only a

single path for error back-propagation through the KBaNN which simplifies the formulae

for the derivatives. Finally, the term added to the error term to penalise KBaNN predic-

tions that deviate from the coarse model output mean that there is an additional term to

the error derivatives. The error function derivative for the output layer may be derived

from (4.18):

∂ǫ

∂yj

= yj − Fej
(x), j = 1, 2, ..., ny. (6.8)

Derivatives of the error function for the connections between the output neurons, the

coarse model, and the normalised region neurons may then be derived from (4.17):

∂ǫ

∂βj

= (yj − Fej
(x))Fcj(x) + 2δ(βj − 1), j = 1, 2, ..., ny, (6.9)

∂ǫ

∂β0j

= (yj − Fej
(x)) + 2δβ0j

, j = 1, 2, ..., ny, (6.10)

∂ǫ

∂ρij

= (yj − Fej
(x))r′

i + 2δρij, i = 1, 2, ..., nr, j = 1, 2, ..., ny. (6.11)

The chain rule may then be employed to evaluate the gradients in the normalised region

layer, the region layer, and the boundary layer respectively:
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gr′
i

=
ny
∑

j=1

∂ǫ

∂yj

∂yj

∂r′

i

=
ny
∑

j=1

(yj − Fej
(x))ρij, i = 1, 2, ..., nr, (6.12)

gri
=

nr
∑

j=1

∂ǫ

∂r′

j

∂r′

j

∂ri

= gr′
i

1
∑nr

k=1 rk

−
∑nr

j=1 gr′rj

(
∑nr

k=1 rk)2
, i = 1, 2, ..., nr, (6.13)

gbi
=

nr
∑

j=1

∂ǫ

∂rj

∂rj

∂bi

=
nr
∑

j=1

grj
rj(1 − σ(αjibi + θji))αji, i = 1, 2, ..., nb, j = 1, 2, ..., nr.

(6.14)

(4.16) may then be used, together with these derivatives to find the error function gradient

for the region layer parameters:

∂ǫ

∂αij

=
∂ǫ

∂ri

∂ri

∂αij

= gri
ri(1 − σ(αijbj + θij))bj + 2δαij, i = 1, 2, ..., nr, j = 1, 2, ..., nb,

(6.15)

∂ǫ

∂θij

=
∂ǫ

∂ri

∂ri

∂αij

= gri
ri(1 − σ(αijbj + θij)) + 2δθij, i = 1, 2, ..., nr, j = 1, 2, ..., nb.

(6.16)

Finally, the derivatives for the parameters in the boundary layer may be calculated using

(4.15):

∂ǫ

∂v
(j)
i

= gbj
xi + 2δv(j)

i , i = 1, 2, ..., nx, j = 1, 2, ..., nb. (6.17)

Adagrad is a gradient based optimisation algorithm used to update the KBaNN pa-

rameters with a variable learning rate. The set of KBaNN parameters, Φ, are initialised

with random values and the training set iterated through. At each iteration the KBaNN

parameters are adjusted according to:

Φi,t+1 = Φi,t − η
√

Gtii
+ τ

∂ǫ

∂Φi,t

, (6.18)
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where Gt is a diagonal matrix, in which the element Gtii
contains the sums of the squares

of the past error function gradients for the ith KBaNN parameter. η represents the learn-

ing rate and the constant τ is a smoothing constant used to ensure numerical stability

when the gradients are small. After each complete pass through the training data, the

data is shuffled to prevent the KBaNN learning spurious patterns.
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