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ABSTRACT 
 
With the increase in population, the evaluation of liquefaction is becoming more important for land use planning and development. In 
soil deposits under undrained condition, earthquakes induce cyclic shear stresses, may lead to soil liquefaction.  Artificial neural 
network (ANN) is one of the, artificial intelligence (AI) approaches that can be classified as machine learning. Simplified methods 
have been practiced by researchers to assess nonlinear liquefaction potential of soil. In order to address the collective knowledge built 
up in conventional liquefaction engineering, an alternative general regression neural network model is proposed in this paper. 
 
To meet this objective, a total of 30 boreholes are introduced into the model. The data includes the results of field test from (Babol, 
Mazandaran, Iran). 
 
The results produced by the proposed Artificial Neural Network model compared well with the determined liquefaction decision 
obtained by simplified methods. It provides a viable liquefaction potential assessment tool that assist geotechnical engineers in making 
an accurate and realistic predictions. Furthermore, this study integrates knowledge learned from field test and seismic parameters to 
the ongoing development of liquefaction analysis. 
 
The results show that there is liquefaction potential in western part of Babol, and in southern part of Babol no liquefaction potential 
were seen. In middle part and eastern part low liquefaction potential were predicted by ANNs. This study shows that neural networks 
are a powerful computational tool which can analyze the complex relationship between soil liquefaction potential and effective 
parameters in liquefaction. 
 
 
INTRODUCTION 
 
When saturated sand deposits are subjected to earthquake-
induced shaking, pore water pressures are built-up leading to 
liquefaction or loss of soil strength. Major earthquakes that 
have occurred during past years, such as the 1964 Alaska, 
1964 Niigata, 1989 Loma-prieta and the 1995 Hyogoken-
Nambu have demonstrated the damaging effects of soil 
liquefaction. Therefore, it is necessary to obtain a proper 
understanding of effective parameters such as soil properties 
and nature of earthquake on severity of soil liquefaction (Seed 
HB, Idriss IM, Makdisi F, Banerjee N). 
 
 

Liquefaction is a phenomenon in which the strength and 
stiffness of a soil is reduced by earthquake shaking or other 
rapid loading. During the liquefaction, pore water presure 
exerts a pressure on the soil particles that influences how 
tightly the particles themselves are pressed together. Prior to 
an earthquake, the water pressure is relatively low (Ishihara K, 
Yasuda S). However, earthquake shaking can cause the water 
pressure to increase to the point where the soil particles can 
readily move with respect to each other.Earthquake shaking 
often triggers this increase in water pressure, but construction 
related activities such as blasting can also cause an increase in 
water pressure. 
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When liquefaction occurs, the strength of the soil decreases 
and, the ability of a soil deposit to support foundations for 
buildings and bridges is reduced (Seed HB, Idriss IM).  
 
In the 1960, Gonzalo Castro, a student of Casagrande, 
performed an important series of undrained, stress-controlled 
triaxial tests. Castro observed three different types of stress-
strain behavior depending upon the soil state. Dense 
specimens initially contracted but then dilated with increasing 
effective confining pressure and shear stress. Very loose 
samples collapsed at a small shear strain level and failed 
rapidly with large strains. Castro called this behavior 
liquefaction; it is also commonly referred to as flow 

liquefaction. Medium dense soils initially showed the same 
behavior as the loose samples but, after initially exhibiting 
contractive behavior, the soil transformed and began 
exhibiting dilative behavior. Castro referred to this type of 
behavior as limited liquefaction (Whitman RV). 

 
 

 
 
 

 
 
  
 

 
 
 
 

 
Fig. 1.Static triaxial test stress paths for two specimens of different densities. 

 
Ground response analyses based on the finite element method 
provide a better assessment of liquefaction of a soil deposit by 
taking into account the nature of the earthquake and the pore 
pressure dissipation; they are often costly and time consuming. 
In addition, constitutive models used in those programs need 
large number of parameters to determine the pore pressure 
generation in soil due to earthquake loading. Therefore, 
simplified methods in assessing soil liquefaction are popular 
among practicing engineers. These procedures are very useful 
at the preliminary design stages to assess the liquefaction risk. 
If the liquefaction risk is high, then a detailed finite element 
analysis can be carried out to obtain the pore pressure 
distribution and ground displacement along the depth of the 
soil deposit, which is necessary in subsequent design of deep 
foundations. In more details improving the reliability of 
liquefaction risk, may lead to cost reduction and helps to 
operation planning (NCEER). 
 
An artificial neural network is a mathematical model or 
computational model based on Biological neural networks. It 
consists of an interconnected group of artificial neurons and 
processes information using a connectionist approach to 
computation. In most cases an ANN is an adaptive system that 
changes its structure based on external or internal information 
that flows through the network during the learning phase. 
 
Artificial neural networks mimic human brains to learn the 
relationships between certain inputs and outputs from 
experience. They are considered as information processing 
systems that have the abilities to learn, recall and generalize 

from training data. An ANN consists of several layers of 
highly interconnected computational units called neurons. 
Figure 2 shows the general structure of a three layer feed-
forward ANN. The neural network contains one input layer, 
one or two hidden layers, and one output layer The number of 
nodes in the input layer equals the number of parameters in the 
process. The output layer represents the quality responses of 
the product (Agrawal, G., Weeraratne, S., and  Khilnani, K). 
The hidden layer represents the interactions between the input 
and output layers. Normally the number of nodes in the hidden 
layer is set to be half of the total number of input nodes and 
output nodes. If the relationships between the operation 
parameters and quality responses are difficult to identify, two 
hidden layers may be used. Such neural networks are capable 
of capturing complex nonlinear relationships inherent in a 
process (Hornik K). 
 
The ANN uses a set of examples in a training database as 
input, a learning algorithm to adjust the weights and an 
activation function to derive an output. If the connection 
weight between the neurons is changed, the relationship of the 
network’s output to its input will be altered. The process of 
adjusting the connection weights by repeatedly exposing the 
network to known input-output data is called training. The 
error back-propagation learning method is the most popular 
and successful training technique. A trained ANN can take 
inputs and produce outputs very quickly, which is an 
advantage in doing optimization in the proposed approach 
(Agrawal, G., Chameau, J. A., and Bourdeau, P. L).   
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ANNs have been proved to be an universal estimator, hence 
they are promising techniques in solving pattern recognition 
and classification, optimization and function approximation 
problems. Recently, ANNs are used to model complex 
manufacturing processes and to identify the optimal process 

setting. In this research, the ANN is used to establish the 
nonlinear multivariate relationships between liquefaction 
potential and parameters, which can be used to predict the 
liquefaction potential in soil. 

 

 
 

Fig. 2.  A three-layer feed-forward neural network structure. 
 
Recently, extensive studies have been done on application of 
ANN to Geotechnical engineering problems. Chan et al. 
(1995) developed a neural network as an alternative to pile 
driving formulae. The network was trained with the same 
input parameters listed in the simplified Hiley formula (Broms 
and Lim 1988), including the elastic compression of the pile 
and soil, the pile set and the driving energy delivered to the 
pile (Abu-Kiefa, M. A). 
 
Lee (1996) utilized neural networks to predict the ultimate 
bearing capacity of piles. The problem was simulated using 
data obtained from model pile load tests using a calibration 
chamber and results of insitu pile load tests. Teh et al. (1997) 
proposed a neural network for estimating the static pile 
capacity determined from dynamic stress-wave data for 
precast reinforced concrete piles with a square section. 
 
Sivakugan et al. (1998) explored the possibility of using 
neural networks to predict the settlement of shallow 
foundations on granular soils. A neural network was trained 
with five inputs representing the net applied pressure, average 
blow count from the standard penetration test, width of 
foundation, shape of foundation and depth of foundation. The 
output was the settlement of the foundation (Riedmiller, M. 
and Braun, H). 
 
Most recently, Shahin et al. (2000) carried out similar work 
for predicting the settlement of shallow foundations on 
cohesionless soils. In this work, 272 data records were used 
for modelling. The input variables considered to have the most 
significant impact on settlement prediction were the footing 
width, the footing length, the applied pressure of the footing 
and the soil compressibility (). The results of the ANN were 
compared with three of the most commonly used traditional 
methods. These methods were Meyerhof (1965), Schultze and 
Sherif (1973) and Schmertmann et al. (1978). The results of 
the study confirmed those found by Sivakugan et al. (1998), in 
the sense that ANNs were able to predict the settlement well 
and outperform the traditional methods (Cal, Y). 

Ellis et al. (1995) developed an ANN model for sands based 
on grain size distribution and stress history. Sidarta and 
Ghaboussi (1998) employed an ANN model within a finite 
element analysis to extract the geometerial constitutive 
behaviour from non-uniform material tests. Penumadu and 
Jean-Lou (1997) used neural networks for representing the 
behaviour of sand and clay soils. Ghaboussi and Sidarta 
(1998) used neural networks to model both the drained and 
undrained behaviour of sandy soil subjected to triaxial 
compression-type testing. Penumadu and Zhao (1999) also 
used ANNs to model the stress-strain and volume change 
behaviour of sand and gravel under drained triaxial 
compression test conditions. Zhu et al. (1998a; 1998b) used 
neural networks for modelling the shearing behaviour of a 
fine-grained residual soil, dune sand and Hawaiian volcanic 
soil (Malvić, T., Velić, J. And Cvetković). 
 
It is known, that the engineering properties of soil varied from 
point to point and uncertain behaviour due to the complex and 
partially predictable physical processes associated with the 
forming of these deposits. This is in contrast to most other 
civil engineering materials, such as steel, concrete and timber, 
which exhibit far greater homogeneity and isotropy. In order 
to cope with the complexity of geotechnical behaviour, and 
the spatial variability of soil deposits, traditional forms of 
engineering design models are justifiably simplified. It is also 
known, that assessing liquefaction potential of soil plays an 
important role in geotechnical evaluation for construction of 
major structures (Cvetković). 
 
Several methods for liquefaction assessment have been 
developed. One method of analyses (Seed and Idriss) proposes 
using the estimated shear stress level and cycle number likely 
to be developed in the field, due to a design earthquake. 
Comparison of these stresses with those causing liquefaction 
of soil samples obtained from laboratory tests helps 
identifying the liquefiable zones of a deposit. Another method 
(Seed et al.) considers field observations of performance of 
sites during previous earthquakes. By combining the data on 
earthquake characteristics and insitu properties of soil 
deposits, an empirical relationship is established.  
 
The purpose of this research is to investigate the effect of the 
soil and seismic parameters, with an artificial intelligence 
computational tool, and its success in assessing liquefaction 
potential (National Research Council).  
 
Data collection in explored soils is important for assessing of 
liquefaction as well as estimation of strata thickness, soil type, 
groundwater table etc. It is also time consuming and often 
expensive process, which includes many field and laboratory 
experiments. Therefore reliable prediction of liquefaction asks 
for carefully planning of sampling, testing and exploration 
methods. Data had been collected from the boreholes 
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(maximum depth: 30 m) over a 6 square kilometres area of 
Babol municipal region. Artificial neural networks are trained 
with 60% and validated with 10% of borehole data for 
prediction of liquefaction. The whole system is eventually 
tested for efficiency, using 30% of borehole data left for test 
of the network, distributed randomly over the study area. 
Based on the obtained results and considering that the test data 
were not presented to the network in the training and 
validation process, it can be stated that the trained neural 
networks are capable of predicting variations in the 
liquefaction potential of soil with an acceptable level of 
confidence (Malvić, T. And Prskalo, S).  
 
Successful prediction of liquefaction in soil deposit using the 
existing data leads to improve the reliability of data which will 
be used for construction in future. Such approach is presented 
in the following text that generally comprises presentation of 
the study area, then description and selection of the neural 
model, its training, improving, and developing of final model 
used for prediction of liquefaction by specific ANN (Agrawal, 
G., Weeraratne, S., and  Khilnani, K). 
 
MATERIALS AND METHODS 
 
Babol, a city of Mazandaran province in the northern part of 
Iran, is considered as the study area. As shown in Figure 3 the 
city is located approximately 20 kilometres south of Caspian 
sea on the west bank of the river Babolrood and receives 
abundant annual rainfall. Babolrood has 2 groups of river 
terraces, namely H1 and H2. H1 is referred to as river terraces 
with down surface level of height one to 2.5 (m) and width of 
0 to150 m. It is as boundary of active (yearly) flood plain in 
parts of river and it is as alternative flood plain in many 
sections. It consists of fine-grained and unconsolidated 
alluvial sediments. H2 is referred to as river terraces; with 
high surface level of 4-6 (m). Vegetation on surface of terrace 
is compact. It consists of materials of Aeolian deposits (i.e. 
loess). Most major earthquakes occur around the boundaries of 
the tectonic  plates  such  as  those  that  exist  in  north of 
Iran. 

 
Fig. 3. Map of study area (top) and the zone of the Babolrood 

river (bottom). 
Very often in geotechnical engineering, it is possible to 
encounter some types of problems that are very complex and 
can not be completely understood. Mathematical models that 
attempt to solve such problems can not included entire physics 
of process and necessarily need to simplify the model or 
incorporating some assumptions. Mathematical models also 
assumed the knowing of model structure in advance, which 
does not need to be optimal. Consequently, many 
mathematical models fail to simulate the complex behavior of 
most geotechnical engineering problems. In contrast, ANNs 
are based mostly on the input data structure, assuming that 
such structure and interaction among data can describe the 
prediction model. In this case, there is no need to neither 
simplify the problem nor incorporate any assumptions (expect 
user selection of data that are in some meaningful connection). 
Moreover, one obtained neural models can always be again 
trained with more extensive and newer dataset from the same 
area with goal to reach better results.  
 
The data used in presented research, includes borehole logs 
(data collected from digging boreholes) bored in the study area 
(Figure 4) and is collected by different institutions for 
different research purposes. The database includes more than 
40 borehole logs in an area of more than 6 square kilometres 
from Babol zone.  
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Training borehole ….  

 
Validation borehole …  

 
Testing borehole …….  

 
Fig. 4. The 6 zones in Babol area. 

 
From the total of 40 raw borehole data, only 30 logs with a 
depth range of 10 to 30 meters were acceptable for using in 
ANN. The regular tests were performed on the samples. 
 
The available data set is divided into three sets, namely 
training, validation, and test sets, based on random selection. 
This way we can examine the validity of the model in a more 
comprehensive manner (Choobbasti AJ, Farrokhzad F, Barari 
A). In ANN forecasting models, 60% of the records are 
selected as training, 30% are taken for test for final evaluation, 
and the remaining 10% used for validation or monitoring the 
performance of the model during the training phase (Table 1). 
 

Table 1. Performance of different sets of data used in ANN. 
 

 Training 
set 

Validation 
set 

Testing 
set 

Number of boreholes 18 3 9 

Number of data 
(I/O data pairs) 

1500 250 750 

 
In problems dealing with different variables and with different 
ranges and dimensions, the application of several networks 
may be a good choice. Neural networks are efficient tools 
when used as pattern classifiers, it is important to properly 
select the input variables for training (learning) process of 
ANNs, as the way how to determine relationships between 
input and output variables. A set of known input and output 
values is named as input-output pair. All such pairs are usually 
divided into three sets. The first and second are described as 
training and validation sets which are used to determine the 

connection weights or weighting coefficients (like in 
interpolation methods), usually marked as wij

1, Also the 
training and validation sets are used during the training 
process and the test set is used for obtaining the estimates. All 
ANN models was trained using the automated regularization 
algorithm to improve generalization. The validation set served 
as a constraint on training, in order to minimize over fitting.  
 
The usefulness of the neural network approach for populating 
the similarity model is presented In this case study. The inputs 
to the network were data on a set of soil formative 
environmental factors; the output from the network was a set 
of similarity values to a set of prescribed soil classes divided 
by grain size, thickness of each layer and groundwater table. A 
set of 2500 samplings are performed in study area from 30 
boreholes. Data are collected using geotechnical investigation. 
Each sample is carefully checked, because to ensure the 
accurate prediction of an ANN model we need to build a 
reliable training, validating and testing sets.  
 
In this analysis, regarding the available data and their quality, 
a neural network program written in back propagation 
algorithm, is used. Eight soil and seismic parameters are 
selected as input in different models, and these parameters are 
divided into data groups. Each data group is introduced to the 
network individually, and performance of the network on the 
assessment of liquefaction potential is investigated. The 
network predictions are compared with the conventional 
liquefaction determination method proposed by Seed et al.  
 
Back propagation is selected as the training algorithm of 
neural network (Table 2). It is the best known training 
algorithm for multilayer perceptrons neural networks, and still 
one of the most useful and later improved in some advanced 
forms like RProp. Back propagation algorithm means that 
network training includes determination of the difference 
between true and wanted network response, i.e. means 
calculation of error that is backed in the neural network for 
obtaining optimal training. It has lower memory requirements 
than most algorithms, and usually reaches an acceptable 
estimation error quite quickly (in relative low number of 
iterations or epochs).  
 
The ANN model for this study was developed, trained, 
validated and tested within STATISTICA computational 
environment utilizing the neural network toolbox. And the 
accuracy of the ANN model was evaluated using RMSE 
between measured and predicted values and pressed as: 
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Where sz  is observed value, 0z is predicted value, n is 

number of samples. The RMSE of the different neurons in 
hidden layer is plotted in Figure 5. The ANN architecture for 
prediction of soil classification and layers thickness in the 
study area was a feed forward, supervised, multilayer 
perceptron (MLP) network with one hidden layer and an 
output layer. The best fitting training data set was obtained 
with six neurons in the hidden layer for prediction of 
liquefaction.  
 
In the selection of learning / training algorithm number of 
neurons in different layers (input, hidden, output), number of 
epochs, learning rate and the momentum have been applied 

instant.  
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Results of research in order to Learning / training algorithm selection. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 5. The RMSE of the different neurons in hidden layer  
for prediction of soil liquefaction potential. 

 
 
 

In each epoch, the entire training set is fed through the 
network, and used to adjust the network weights. Numbers of 
epochs are specified at the start, but also alternative stopping 
criterion may also be specified, and if over-trained network 
occurs the best network discovered during training can be 
retrieved. In this analysis, the number of epochs varied 
between 100 and 400.  
 
A batch mode feed-forward multilayer perceptron (MLP) with 
back-propagation learning rules was used to create the desired 
ANN model using STATISTICA software. Also, an adaptive 
learning rate was employed to keep the learning step size as 
large as possible while the training is stable. According to a 
universal approximation theorem, demonstrated concurrently 
by several researchers for traditional MLP, a single hidden 

layer network is sufficient to uniformly approximate any 
continuous and nonlinear function. The model architecture 
was built with one hidden layer, a learning rate of 0.1 updated 
with a coefficient of 1.1 after each epoch and a momentum 
term of 0.9 updated with a coefficient of 0.95 after each 
epoch. The input vector is fully connected to the hidden 
neurons by a tan-sigmoid transfer function and the neurons of 
hidden layer are fully connected to the output layer via a linear 
function. Experimental studies were started with one hidden 
neurons to reach the optimum number of hidden neurons and 
desired precision. Input vector contains soil initial parameters 
and output (the target vector) is liquefaction potential. In order 
to obtain a more efficient training process, the input and target 
were standardized to have zero mean and unity standard 
deviation. Cross-validation or employing another set of data 

Supervised 
Learning/ 
training 
algorithms 

Back propagation Conjugate 
Gradient 
Descent 

Levenberg-
Marquardt 

Quick 
Propagation 

Delta 
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RMSE (%) 6.3 12.1 8.7 10 9.2 
(min.error)     
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for more testing can be used to increase the generality of the 
models for future predictions. In this study, 10% of borehole 
data were used as validation set. In fact, several ANN models 
using element tests data were constituted for generating the 
models. Among them, the model with better performance 
(greater coefficient  of  determination  and  smaller  RMSE) 
for  validation  data  set  was  selected. In other words, the 
ANN models were developed with the best performance 
concurrently for training, testing and validation data sets. 
Three different ANN models   were developed using different 
combinations of input parameters in Table 3.  
It can be seen from Table 3 that, except for model #1, 
performances of the models are generally improved when 
input parameters are increased.  
 
 
 

Table . 3. Different combinations of input parameters. 
 
Model # 1 2 3 
Input 

M, 
a
g

 , 

 ,  , dR , rD  

M, 

 

 , 

sV , dR ,  

sV ,

 

 , 

dR ,   

RMSE 13%      17% 16% 

 
RESULTS AND DISCUSSION 
 
 
In the previous section, the learning or training dataset is used 
to determine the weights. Then a second validation set is used 
to monitor the performance of the model during the training 
phase and to minimize over fitting and finally the test sets to 
evaluate the trained neural network. It is evident from test data 
sets that the experimental ANN can be applied successfully to 
predict liquefaction potential.  
The samples are divided in to 3 groups (training, validation 
and testing). In Figure 6 samples of testing group are 
correlated in terms of sample number and the accuracy 
(comparison between prediction and real data) of each sample 
is shown. In these figures, terms of the ratio of actual data per 
predicted value (in Y-axis) versus Case number (in X-axis) for 
different soil samples are presented. It is clear that if the 
predicted and the true values were the same, such point lie on 
line y=1. Scattering pattern indicates on differences. It is clear 
that the average correlation of the ANN model and true data in 
all case is over 90%. So it can be concluded, that the 
prediction of liquefaction potential agrees with calculated 
value collected from boreholes.   
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Fig. 6. Errors involved ANN for prediction of liquefaction potential. 

 
CONCLUSION 
 
In this research, the data used to train the model were taken 

from area of 6 km
2 

of Babol region in the northern Iran. The 
dataset encompasses 2500 sampling points (samples) from 30 

boreholes. The average accuracy between the ANN prediction 
and real data in all cases is over 90%. The liquefaction 
potential of a soil mass during an earthquake is dependent on 
both seismic and soil parameters. The impact of these soil and 
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seismic variables on the liquefaction potential of soil is 
investigated through computational and knowledge based 
tools called neural networks. A back-propagation neural 
network model is utilized. The back propagation learning 
algorithm is a developing computational technique that assists 
in the evaluation of experimental and field data. The artificial 
neural network is trained using actual field soil records. The 
performance of the network models is investigated by 
changing the soil and seismic variables including earthquake 
magnitude, initial confining pressure, seismic coefficient, 
relative density, shear modulus, friction angle, shear wave 
velocity and electrical characteristics of the soil. The most 
efficient and global model for assessing liquefaction potential 
and the most significant input parameters affecting 
liquefaction are summarized. A forecast study is performed for 
the city of Babol, Iran. 
 
Based on the obtained results, it can be stated that the trained 
neural networks are capable of predicting liquefaction 
potential with an acceptable level of confidence. It is believed 
that, the prediction of liquefaction potential is a complex area 
of research requiring detailed investigation also with other 
methods, fieldwork and laboratory experiments. Further work 
on presented topic would be very useful to modify the 
procedure for better adapting artificial neural network with 
concept of prediction of liquefaction potential. 
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